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Abstract
Emergency medicine (EM) is one of the attractive research fields in which researchers investigate their efforts to diagnose

and treat unforeseen illnesses or injuries. There are many tests and observations are involved in EM. Detection of the level

of consciousness is one of these observations, which can be detected using several methods. Among these methods, the

automatic estimation of the Glasgow coma scale (GCS) is studied in this paper. The GCS is a medical score used to

describe a patient’s level of consciousness. This type of scoring system requires medical examination that may not be

available with the shortage of the medical expert. Therefore, the automatic medical calculation for a patient’s level of

consciousness is highly needed. Artificial intelligence has been deployed in several applications and appears to have a high

performance regarding providing automatic solutions. The main objective of this work is to introduce the edge/cloud

system to improve the efficiency of the consciousness measurement through efficient local data processing. Moreover, an

efficient machine learning (ML) model to predict the level of consciousness of a certain patient based on the patient’s

demographic, vital signs, and laboratory tests is proposed, as well as maintaining the explainability issue using Shapley

additive explanations (SHAP) that provides natural language explanation in a form that helps the medical expert to

understand the final prediction. The developed ML model is validated using vital signs and laboratory tests extracted from

the MIMIC III dataset, and it achieves superior performance (mean absolute error (MAE) = 0.269, mean square error

(MSE) = 0.625, R2 score = 0.964). The resulting model is accurate, medically intuitive, and trustworthy.
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1 Introduction

Emergency medicine (EM) is a rapid-growing specialty

which is critical and important for the society. The patients

are received in urgent cases in which rapid tests and

evaluation of vital signs are very important to obtain an

accurate diagnosis and make decisions. Therefore, this field

attracts researchers to investigate solutions in it. Artificial

intelligence is strongly involved in these investigations

including machine learning (ML) and deep learning (DL)

[1]. One of the important medical issues is the detection of

level of consciousness which is considered as one of the

important observations of the patient. For this reason, the

care givers should rapidly handle the patients in this case to

survive them [2].

Level of consciousness can be obtained by evaluation of

Glasgow coma scale (GCS) using several methods such as
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electroencephalography (EEG) and vital signs [3, 4]. Tra-

ditionally, the consciousness of a certain patient can be

determined based on his eye opening, verbal and motor

responses which are the factors of GCS. It is a dominant

method which is scaled from 0 to 15. This method needs

medical examination from the medical expert which is not

available all the time. Therefore, there is a need to inves-

tigate an automatic method for patients based on vital signs

such as hypotensive, heart-rate-disordered and hyperther-

mal patients and laboratory tests such as albumin and

hemoglobin in addition to collecting some medical records

such as EEG and EPG signals [5].

The field of artificial intelligence is involved in Big Data

and Analytics [6], Cloud/Edge Computing-based Big

Computing [7] and the Internet of Things (IoT)/Cyber-

Physical Systems (CPS) [8, 9] applications. These appli-

cations dominate industry and research for the develop-

ment of various smart-world systems [10, 11]. Large,

complicated datasets may now be approximated and

reduced into extremely accurate predictions and transfor-

mative output using artificial intelligence, making human-

centered smart systems much easier to implement [12–14].

Machine learning techniques can be used to any types of

data such as visual, auditory, numerical, text or some

combination [15]. Therefore, engineers can build their

edge-based platforms based on machine learning tech-

niques due to its high performance and low time con-

sumption. Furthermore, the deployment of machine

learning algorithms is involved to providing a security

environment to ensure the privacy of the data of the

patients which is transmitted through the network [16, 17].

Therefore, this study comprises the issue of security and

privacy and its importance in the edge communication

system [18].

The utilization of ML in medicine has witnessed an

explosion in numerous medical applications [19–22],

including automated diagnosis, classification of disease

severity, development of new therapies [23], analysis of

medical record [24] and improving the quality of medical

data [25]. The use of ML methods in automated diagnosis

has bifurcated in diverse disease types, including corona

virus [26–30], kidney disease [31, 32], heart disease

[33, 34], cancer [35, 36], diabetes and retinopathy [37, 38],

skin lesion [39] and other diseases [40–42].

• Motivation and contributions

The GCS has been extensively used to objectively

describe the extent of impaired consciousness within all

types of acute medical and trauma patients. GCS assesses

patients based on the following aspects: (i) eye-opening

verbal, (ii) motor and (iii) verbal responses. These scoring

factors are not obtained automatically, which may cause

less detailed description. In addition, there is a need to

overcome the difficulty with early detection and diagnosis.

Therefore, the objective is to provide a numerical method

to evaluate the GCS accurately has become indispensable.

The main objective of this work is to introduce a machine

learning-based system that is performed through IoT and

edge/cloud system to enable automatically measuring the

level of consciousness. The proposed system consists of

three main phases: (i) vital signs acquisition, (ii) Fog-

Assisted Consciousness Management (FACM) and (iii)

cloud server and clinical service delivery model. In addi-

tion, the proposed system is carried out on the MIMIC

dataset. Furthermore, the proposed model maintains the

interoperability issue by providing natural language

explanation for the developed decisions, in order to provide

answers for the medical straightforward inquiries. Contri-

butions of this paper can be illustrated in the following

points:

(1) Investigate a new method for GCS evaluation for

automatic estimation of the resulting score.

(2) Build an internet of medical things (IoMT) system

through edge/cloud technology.

(3) Deploy machine learning techniques for detection of

level of consciousness.

(4) Maintain the interoperability of the ML model in

order to provide explanation to the outcome of the

model.

(5) Compare the deployed techniques to obtain an

optimal one in terms of evaluation metrics.

(6) Recommend an optimal system and discuss the

limitation of its application.

(7) Evaluate the effectiveness of adopting the fog

technology on the proposed system.

This paper is organized as follows: In Sect. 2, back-

ground and related work is reviewed. In Sect. 3, an

edge/cloud system for consciousness detection is proposed.

In Sect. 4, experimental results are detailed. Section 5

presents a discussion for the results and comparison with

the works in the literature. In Sect. 6, the paper is

concluded.

2 Background and related work

This work proposes an edge/cloud medical system whose

objective is to estimate the level of consciousness. For this

purpose, we deployed a set of ML techniques to predict the

value of GCS automatically. This section discusses the

works in the literature which are relevant to the proposed

system. Firstly, we discuss the GCS. GCS is one of the

most utilized scores for responsiveness assessment of

inpatients. It was introduced in 1974 to standardize the

clinical assessment of level of consciousness in patients
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with head injuries [43]. GCS is an effective means to

compare responses of patients in different coma states and

to compare effectiveness of treatments [44]. GCS is a

realization of three components: motor response, verbal

response and eye opening. The scale originally consisted of

fourteen points, four for eye opening and five for each

motor response and verbal response. A sixth point was

added 2 years later for motor response [45]. The GCS and

its score points are shown in Table 1.

The manual calculation of GCS score involves summing

the scores corresponding to the best response for each

individual behavior. Hence, the total score has values

between 3, being in deep coma or death, and 15, being fully

alert.

To the best of our knowledge, there are no relevant

contributions in the literature that exploit laboratory tests

and vital signals to automatically provide a numeric esti-

mate of GCS level using machine learning techniques.

Consequently, this study is the first to conduct a similar

method and results. However, early studies have shown the

feasibility of using GCS levels to automatically determine

the functional state of the autonomic nervous system

(ANS) in coma patients. However, these studies classify

the consciousness level into subgroups: two subgroups

(with GCS from 3 to 5 and from 6 to 8) [46], or three

subgroups (low, mild and high consciousness) [4].

Estévez et al. [46] presented an approach to classify

coma patients into two subgroups according to their GCS

based on the heart rate variability (HRV). The experiments

were conducted on 47 patients in coma. All patients were

in ICU and mechanically ventilated. In this approach, ECG

signals have been extracted, resampled into 1000 Hz and

then processed using Hilbert–Huang transform (HHT) to

extract a number of key spectral features. A logistic

regression model was implemented to classify the con-

sciousness level of patients into two categories: deep and

mild coma, based on their HRV. They reported that their

model achieved an overall efficiency of 95.74%.

Latifoğlu et al. [4] proposed an approach for automatic

evaluation of the state of consciousness of coma patients

based on EEG signals. The state of consciousness is clas-

sified into either low, mild or high based on GCS levels.

They obtained EEG signals from 34 coma patients in ICU.

Features are extracted using power spectral density (PSD)

method. The authors adopted various machine learning

classifiers to classify the consciousness level, and they

obtained an accuracy of 92.5%.

Furthermore, machine learning algorithms are widely

adopted in health care, relying on medical data to predict or

classify various health states [47, 48]. Also, ML and DL

have wide applications in emergency medicine [49–53]. An

ML-based model was presented in [54] to predict the

outcome of patients after traumatic brain injury (TBI). GCS

level, besides the other thirteen parameters, was involved

in predicting the patients’ outcome. Authors have con-

ducted a performance comparison of different nine ML

algorithms and reported that the random forest algorithm

had achieved the best performance in outcome prediction

with an accuracy of 91.7%. They also concluded that GCS

score, besides age, fibrin/fibrinogen degradation products

and glucose are the most important factors for outcome

prediction. Tsiklidis et al. [55] implemented an ML model

based on a gradient boosting classifier to predict the mor-

tality rate of trauma patients at admission. They relied on

the GCS and other seven health parameters to train the

model. The accuracy of the model was 92.4%. The authors

remarked that GCS, age and systolic blood pressure had the

highest impact on the final decision of the model.

In addition, Hall et al. [56] implemented a decision tree-

based model to identify patients with a potentially modi-

fiable outcome after intracerebral hemorrhage (ICH). They

demonstrated that the GCS score is one of the most

important predictors to identify the patient outcome. Sim-

ilar results were concluded in [57] and [58] as the GCS

score is the most significant variable in predicting the

outcome and mortality of TBI, and subarachnoid hemor-

rhage (SAH) patients, respectively, using various machine

learning models [59, 60].

The term ‘‘fog computing’’ refers to a paradigm that

brings cloud computing and its associated services to the

edge of a network. In this manner, various issues that are

inherently associated with cloud computing, such as

latency, lack of mobility support and lack of location

awareness, are solved [61]. Fog computing and cloud

computing have common and distinct features [62, 63];

Table 2 lists a comparison between the fog and cloud

Table 1 Glasgow coma scale

Behavior Response Score

Eye opening Spontaneous 4

To speech 3

To pain 2

No response 1

Verbal response Oriented 5

Confused conversation 4

Inappropriate words 3

Incomprehensible sounds 2

No response 1

Motor response Obeys commands 6

Localizes pain 5

Flex to withdraw from pain 4

Abnormal flexion 3

Abnormal extension 2

No response 1
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platforms in terms of various technical aspects. With the

existence of IoT devices, the requirements for high band-

width, security and low-latency applications are raised

[64]. Therefore, fog computing is fitted here to provide

such requirements for IoT networks. Recently, ML has

been widely adopted with fog computing to enhance its

services. Abdulkareem et al. [61] investigated the different

roles of ML in the fog computing paradigm and provided

diverse improvements in ML techniques associated with

fog computing services, such as security, accuracy and

resource management. Kishor et al. [65] presented an ML-

based fog computing approach to minimize latency in

healthcare applications. They implemented a multimedia

data segregation scheme in fog computing to reduce the

total latency resulting from the data transmission, compu-

tation and network delay. They employed the random

forest model to calculate the total latency. The reported

results reveal that 95% reduction in latency is achieved

compared to another pre-existing model. Khater et al. [66]

proposed a lightweight intrusion detection system (IDS) for

fog computing using a multilayer perceptron (MLP) model.

They evaluated the developed system against two bench-

mark datasets: Australian Defense Force Academy Linux

Dataset (ADFA-LD) and Australian Defense Force Acad-

emy Windows Dataset (ADFA-WD), which contain

exploits and attacks on various applications. The developed

system is implemented using a single hidden layer, and it

achieved a 94% accuracy in ADFA-LD and 74% accuracy

in ADFA-WD.

3 Proposed edge/cloud system

This work proposes an edge/cloud system for conscious-

ness detection. The deployed scenario is based on fog-as-

signed consciousness managing system. The main

objective of this proposed system is to enable the scoring

system based on vital signs and laboratory tests such as

blood pressure, heart rate, respiratory rate and oxygen flow

rate to determine the consciousness level of the patient. A

theoretical approach is first introduced. Recent research in

describing the subsequent level of consciousness has been

concerned with determining GCS, which includes several

functions such as eye-opening, verbal response and motor

response. Then, the collected information is recorded

manually by a therapist in a local system computer-based

or paper-based. In some cases, this method used may

ignore significant factors such as alcohol intoxication, low

blood oxygen and drug use histories. In addition, it may

suffer a delay time in decision making. All these issues

lead to an inappropriate score that can alter and negatively

affect a patient’s level of consciousness. Therefore, intro-

ducing a dynamic data exchange environment with a high

ability to deal transparently with a large scale of vital

functions should be required.

The structure of the proposed edge/cloud system, as

shown in Fig. 1, consists of three main phases: (i) vital

signs acquisition, (ii) Fog-Assisted Consciousness Man-

agement (FACM), and (iii) cloud server and clinical ser-

vice delivery model. The edge/cloud system can be

implemented in a wide range of intelligent healthcare

sectors that are characterized by a massive infusion of data

and a high need for careful and rapid decision-making,

such as emergency departments and intensive care units.

3.1 Vital signs acquisition

The operation in this face divides into two directions are:

(i) collecting information of vital signs from the real sen-

sors that directly connected to the patient; and (ii) getting

information from the medical report prepared by special-

ists. Lately, IoT sensor devices play an essential role in

Table 2 A comparison between

the old challenges that caused

by cloud computing and the

added updates using fog

computing and SDN

Parameter Cloud computing Fog & SDN

Processing operation [62, 67, 68] Very high Moderate

Data processing [67, 68, 69] At cloud server Locally—at fog and SDN

Transmission delay [62, 70, 68] High Very low

Location-awareness [67, 68, 70] No High

System reliability [67, 68, 69, 71] Support Support

System scalability [62, 67, 68] Support Support

Geographical distribution [62, 67, 68] No High

Real-time interactions [68] Not fully support Support

Power consumption [68] High Low

Ubiquitous services [68] Support Support

Management model [68] Centralized Decentralized

Decision-making [68] Remotely Locally

Security [68] It’s hard Easy to apply and maintain
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medical construction in which it provides interactive real-

time network connection to the users and medical devices

through various communication technologies. Wearable

devices are a part of IoT devices that allow sensor devices

to collect real information from patients about their vital

signs from everywhere at any time; this technique is called

ubiquitous technology. The cope of these collected vital

signs will be through the software-defined network (SDN)

and fog computing installed in FACM layer. In the tradi-

tional architecture proposed in several types of research,

the data will transfer to the cloud server; this technique

affects not only network bandwidth but also response time.

Table 2 describes old challenges that caused by cloud

computing and the added updates using fog computing and

SDN.

3.2 Fog-Assisted Consciousness Management
(FACM)

This second phase includes several operations related to

managing the process of data transmission from and to the

cloud server and end-user within the treatment and pre-

vention phase. The integration between SDN and fog

technology initially enables data communication systems

to be more dynamic, secure, and reliable. The security and

data reliability achieved by the SDN will establish a private

channel with the fog server via its controller in OpenFlow

to ensure the level of data privacy. Inside this channel, the

fog server applies an access control policy that is prede-

fined by the fog setting. For more data protection, the fog

server uses the integrity check process via adding octets/

Fig. 1 Conceptual design of the edge/cloud system
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bytes with every data packet sent [62]. This technique is a

common Internet technique that is used to notify the fog

server about any change in the bytes of data. The opera-

tions in this phase are listed as follows:

• Providing a decentralized data transmission strategy

through distributed SDN nodes integrated with other

deployed fog nodes. This strategy supports local data

processing and avoids unnecessary data traveling to the

cloud server, thus reducing network bandwidth usage.

• Establishing a secure channel for boosting data protec-

tion during the operation of data exchange between

SDN and IoT sensors and SDN and fog nodes.

• According to vital signs that sent from the lower layer,

the fog computing starts to build a predictive model of

consciousness level based on an unsupervised learning

technique called the principal component analysis

(PCA).

As shown in Fig. 2, the vital signs are sent from sensors

in an event shape. Each event includes sensor_ID,

patient_ID, patient’s location, flow entries that tell the SDN

what to do with an incoming packet, as well as the patient’s

vital signs. Using OpenFlow (OF) protocol, the events will

convert to flow entries for feeding SDN. This technique

increases SDN capability in network monitoring and

management.

From the network point of view, achieving better net-

work connectivity relies on avoiding communication range

violation during the process of data transmission [62].

Therefore, the available communication range for each

SDN is determining according to the available predefined

range assigned by the fog node. For instance, as seen in

Fig. 2, the communication range in coverage area I is

determined by Fog1 and thus the SDN1 can only direct

connected with sensors deployed in this area. Each event

sent from this area has been addressed by a labeled infor-

mation about sensors and patients connected in this area

only. In addition, SDN1 has equipped with cache memory

for saving requests and adding security rules for them.

Table 3 illustrates a sample of data stored in the SDN1

caching table.

The next operation in SDN is between SDN and Fog

node. Each SDN generates its own private and public key

for adding them to the transferred data to the fog node. For

example, a single fog node can manage multiple SDNs in

the same area or even different areas to provide a large

scale of data processing and analysis and overcome high

response time. Herein, the data in the fog node have

become accessible from multiple users, and it needs to

protect.

The transferred data from the SDN to the fog node will

be addressed by some flow entries and SDN_ID for

labelling. Moreover, the SDN adds a public key with each

packet for protection. Only authorized fog node has the

private key to decode this packet. It is worth to point out

that only data related to the packet remain confidential,

while vital signs are sent without encryption for ensuring

the acceleration of fog performance. Table 4 discusses the

steps of data transmission between SDN and fog node.

According to the proposed edge/cloud system, the

deployment of fog nodes in the 2nd layer between the

cloud server and IoT sensor devices plays a significant role

in carrying out many fundamental operations on the

received data from the SDN before passing it to the cloud

Fig. 2 The process of data and vital signs exchange from patient to SDN and from SDN to Fog
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server layer. One of these operations is related to reducing

the consumption of network bandwidth [1, 2]. Fog node

performs the processing on received data locally. There-

fore, the data does not need to travel to the cloud server for

processing. On the other hand, the fog nodes use a tree-

based approach for building an intelligent model calculat-

ing the scoring conscious based on the vital signs received

by SDN. Figure 3 depicts the main steps for building an

intelligent model on the fog node.

The fog node takes the data preparation file from the

previous phase in the 1st step. In the 2nd step, the fog node

applies PCA for selecting the most effective features

among a huge number of vital signs collected from the

patient. This operation decreases the size of data that

affects the system performance. In the 3rd step, the fog

node builds the consciousness prediction model based on a

random forest (RF) algorithm. The use of an RF to predict

the GCS using vital signs has returned to several reasons

that are: (i) RF gives the ability to measure feature corre-

lation for all features using the Gini index that indicates the

impact of each feature in the model [72], (ii) RF compro-

mising the explainability and accuracy issues. Generally,

models that have a good performance in terms of classifi-

cation accuracy as SVM and LDA are not able to provide a

clear explanation about the output decision [73], whereas

the most tree-based algorithms are very good explainabil-

ity, but may not be the best algorithm in terms of perfor-

mance [74], and (iii) RF is a tree-based algorithm that

utilized several trees and then combined the final decision

using a majority voting algorithm. Information gain is used

to split points in each tree. As a result, outliers are ignored

by most trees that make RF a more stable algorithm [75]. In

the 4th step, the GCS with correlation table will be stored

at the cloud server to build historical data about these

patients.

3.3 Cloud server and clinical service delivery
model

In the healthcare industry, cloud computing plays a pivotal

role in supporting the shift of conventional storage to the

digitalization of healthcare data. The revised vital data

collected from the FACM phase will be travelled to cloud

computing for saving, computing and analyzing. This

technique affects network bandwidth usage and accelerates

cloud decisions. With cloud computing, a historical

healthcare database will build to wrap up patients’ data

flowing from FACM. This database intends to create data

linkages throughout the healthcare systems, irrespective of

where the data originate or are stored. Moreover, cloud-

based data analysis can prepare more personalized care

reports for patients on an individual level, and thus several

healthcare-related functions will be improved in terms ofTa
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GCS evaluation and detection of the level of consciousness

automatically.

4 Experimental results

4.1 Experiment 1

This section is going to measure the performance of the

edge/cloud medical system-based fog technology com-

pared to traditional monitoring system without fog tech-

nology. The NS2.35 is used to model the wireless sensor

network and fog sensor with varying network range from

100 to 400 sensor, Table 5 shows all network settings. The

sensor nodes connect to others via IEEE 802.11p/WAVE.

Table 6 depicts the configuration of the IEEE 802.11p

interface described as it is in [76], and fog nodes were

reconfigured based on the reference guide called ‘‘Fog

hierarchical deployment model’’ from OpenFog Reference

Architecture [77].

Reliable communication has typically relied upon the

quality of the packet transmission process. To this end, the

performance of the proposed edge/cloud medical system in

achieving high reliability was tested. In Fig. 4a, the x-axis

denotes the network size, and the y-axis denotes the total

speed of sensors, while in Fig. 4b, the x-axis denotes the

total number of data packets, and the y-axis denotes the

system throughput (kb/s). As observed shown in Fig. 4a b,

the proposed system-based fog computing outperforms the

traditional monitoring system-based cloud computing

because the fog computing technology can increase the

number of successful packets sent without affecting the

network bandwidth, as is evident from Fig. 4b. Fog com-

puting also provides the process of data processing locally,

and thus, there is no need to transfer data via the Internet;

only the data that need more processing and analysis will

send to the cloud server.

4.2 Experiment 2

In this experiment, we exploit the proposed edge/cloud

system to improve the efficiency of the consciousness

measurement through efficient local data processing.

Moreover, an efficient machine learning (ML) model to

predict the level of consciousness of a certain patient based

on the patient’s demographic, vital signs and laboratory

tests is proposed, as well as maintaining the explainability

issue using Shapley additive explanations (SHAP) that

provides natural language explanation in a form that helps

the medical expert to understand the final prediction.

4.2.1 Data collection

Medical Information Mart for Intensive Care III (MIMIC-

III) is a publicly available dataset for intensive care units

(ICU). It comprises electronic health record (EHR) data

extracted from the bedside monitors inside ICU units of the

Israel Medical center in Boston, USA [78]. MIMIC III was

approved and maintained by the Massachusetts Institute of

Technology (MIT), and it is freely available on PhysioNet

[79]. MIMIC III includes data for 46,520 different patients

and 58,976 different admissions, gathered between 2001

and 2012 [80, 81]. Each patient is associated with minute-

by-minute vital signs measurements and laboratory tests.

The median age of adult patients is 65.8 years, and 55.9%

of patients are males. The sampling interval of records

ranges from few seconds to hours, according to the

acquired physiological measurements.

Table 4 The steps of data transmission between SDN and fog node

Step Description

1 Each SDN stores sensing data received from its coverage area into a flow table. This table contains two types of the information:

(i) information about forwarded data packet and (ii) information about vital signs

2 Each SDN generates its own public key and adds it to every data packet as it is shown in Table 3

3 The traffics between SDN and Fog node in the same area are occurred in a secure channel using SSH protocol

4 SDN uses a public key to encrypt only the header of the packet, and therefore the data packet has become anonymous or without

personally identifiable information. The vital signs only will send clearly

5 The traffic sent from SDN is directly connected to the fog node located in the same area. This process helps to mitigate communication

overhead

6 Each fog node provides an intelligent model that can predict the consciousness level according to vital signs sent from SDN. Only fog

node that has the private key can decrypt messages sent from a certain SDN

7 Fog in a certain area can send the data packet to another fog node in another area for processing. This technique helps to achieve network

load balancing so that if the fog node is busy the message will immediately redirect to another fog node. In our case, the fog node only

can communicate with other fog nodes in different areas, while each SDN can establish the communication between its fog node located

in the same area
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In the current study, we extracted 10,349 records from

the entire MIMIC dataset and are used to train/test the

model to predict the level of consciousness. The data were

randomly split into 80/20 ratio for training and testing the

ML models, respectively. Appendix A gives some infor-

mation (normal range, unit of measurement) of physio-

logical measurements and laboratory tests that are adopted

in the current study.

4.2.2 Data pre-processing

These steps aim to enhance the quality of the chosen

dataset. MIMIC III dataset includes several challenges,

including missing values, outliers, etc. This may occur due

to sensor or transmission failure, error in saving data, etc.

Training a model in such noisy and incomplete data is

considered the main reason for a model with poor perfor-

mance. The following subsections discuss the steps taken

to handle such data challenges.

Fig. 3 The main steps for calculating the level of consciousness

Table 5 Network setting

Parameter Value

Sensor range 100–400

Simulation time 1500 S

MAC protocol IEEE 802.11p

Channel type WirelessPhy

Energy model Battery

Antenna model OmniAntenna

Packet size 512 bytes

Traffic source CBR

Table 6 IEEE80211.p interface configuration [76]

Parameter Value

Channel 175

Bandwidth 20 MHz

Frequency 5.875 GHz

Antenna gain 2dBi

Setup TxPower 23/18 dBm

Receiver sensitivity - 95.2 dBm
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4.2.3 Irregular time interval

In MIMIC III, vital signs are measured at irregular time.

Some of them measured every couple of minutes and other

measured every few seconds [82, 83. Unless most ML

techniques are not prepared to deal with time series data,

some of them could handle it when sampled with the same

interval. To solve this problem, we aggregated patient’s

vital signs observations to provide a single record every 1 h

by taking the average of all measurements over that hour.

As a result, each record includes consistent values.

4.2.4 Removing outliers

Outliers are values that are too far from the normal range

[75, 84]. Normal range specified according to medical

expert opinions. The outliers are removed; then, expecta-

tion maximization technique is used to impute them [85].

4.2.5 Data imputation

Medical data usually include missing values. This returns

to several reasons, including sensor failure, recording data

at different time intervals, etc. The simple way to handle

missing values is to remove them. However, this way may

lead to losing significant information. Therefore, several

algorithms have been developed to impute missing values

based on the other records such as hot-deck encoding [86],

and expectation maximization [85]. In the preprocessing

stage of MIMIC III, large proportion of data (40–55%) in

important features are lost, but we could not eliminate them

due to their importance in the prediction process. Consid-

ering this issue, we decide to choose cases that have at least

2 values in each measurement, then applying expectation

maximization [85, 87] to impute other missing values.

4.3 Feature extraction

In this step, we mainly depend on medical expert opinions

in specifying the most important features that could con-

tribute to predict GCS and assure the ability of predicting

GCS from vital signs. As mentioned before, GCS is a

medical score that used to specify the consciousness of the

patient through three main measures: verbal response, eye

opening and motor response [88, 89]. These measurements

are highly correlated with changing in patient’s vital signs.

For example, low blood pressure level may lead to

Fig. 4 The performance of edge/cloud medical system-based on fog computing versus the traditional monitoring system-based on cloud

computing is shown in figure (a), and the overall system throughput is shown in Figure (b)
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hypotensive; therefore, patient will not be able to respond

correctly through verbal or motor response [90]. This is

because decreasing blood pressure will result in generating

metabolites that cause problem in circulation and tissue

functions as well. The same for heart rate, the rapid or slow

heart rate will mainly affect the cardiac functions that may

cause cardiac arrest or blockage and subsequently affect

the circulation. On the other hand, when the heart rate

exceeds normal range, it increases the probability of

tachyarrhythmia that may be reflected in fibrillation or

atrial flutter [91, 92]. Temperature also affects the response

of the patients; if the patient has hyperthermia (Temp[
40 C), the temperature autoregulation centers in the brain

will be affected [93, 94]. If patient has hypothermia

(Temp\ = 35 C), this will affect patient response.

Deceasing in O2 saturation may also lead to cardiac

arrest or lactic acid accumulation [95]. Low hemoglobin

level may also consider a risk indicator, especially with

kidney diseases patients, while high level may lead to

strokes, clots and heart attacks [91, 96, 97]. There are other

features such as PCO2, HCO3, PO2. These features used to

specify the percentage of carbon and oxygen in the blood,

indicate the level of blood PH and patient’s acid–base

balance [98]. All of these are critical situations, affect

patient response and may lead to sudden death [99, 100].

Appendix A shows the feature names, Id, normal range and

unit of measurement (UoM).

4.4 Results and discussion

The simulation results are carried out on the collected data

from the patients using a server with NVIDIA GPU, Intel

Core i7 CPU and 32 GB RAM. We used this facility to

make sure that the proposed framework can be commonly

used in the real application. This work proposes several

ML techniques, including Linear Regression (LR), Support

Vector Machine (SVM), Decision Tree (DT), k-Nearest

Neighbor (k-NN) and Ridge Regression (RG). In addition,

we deployed some ensemble ML methods, including

Random Forest (RF) and Gradient Boosting Regression

(GBR). Table 7 illustrates the hyperparameters of each one

of the proposed models. These parameters are selected

based on several iterations using grid search algorithm in

terms of the optimal performance.

4.4.1 Evaluation metrics

The following metrics are used to evaluate the performance

of the proposed model, which are Mean Absolute Error

(MAE), Mean Square Error (MSE), Median Absolute Error

(MedAE) and R2 score. These metrics are computed as

follows:

MAE ¼ 1

n

Xn

i¼1

yi � ŷij j ð1Þ

MSE ¼ 1

n

Xn

i¼1

yi � ŷið Þ2 ð2Þ

MedAE ¼ median y1 � ŷ1j j; y2 � ŷ2j j; . . .; yn � ŷnj jð Þ ð3Þ

R2 ¼ 1�
Pn

i¼1 yi � ŷið Þ2
Pn

i¼1 yi � yð Þ2
ð4Þ

whereyi is the ith true value. byi is the corresponding pre-

dicted value. n is the number of observations. y is the mean

of the true values.

Table 7 ML algorithms hyperparameters

Algorithm Coefficient

LR fit_intercept = True, normalize = True, copy_X = True,

n_jobs = -1

SVR C = 1.0,epsilon = 0.1,kernel = ’rbf’

DT criterion = ’mse’, splitter = ’best’, max_depth = 20,

presort = False

k-NN n_neighbors = 7, algorithm = ’auto’, leaf_size = 30,

p = 2, metric = ’minkowski’

Ridge alpha = 1.0, fit_intercept = True, normalize = False,

copy_X = True,, tol = 0.001, solver = ’auto’,

random_state = 33

RF n_estimators = 100, max_depth = 16,

random_state = 33

GBR n_estimators = 100,max_depth = 16,

learning_rate = 1.5,random_state = 33

Table 8 Results of ML models

without feature selection
Algorithm Training score Testing score MAE MSE MedAE R2 score

LR 0.819 0.816 0.701 1.995 0.381 0.816

SVM 0.850 0.849 0.3926 1.642 0.08591 0.8491

DT 0.897 0.896 0.503 1.168 0.348 0.8926

KNN 0.891 0.835 0.570 1.795 0.119 0.835

Ridge 0.819 0.816 0.711 1.993 0.392 0.816

(GBR) 0.885 0.880 0.572 1.3031 0.2578 0.880

RF 0.929 0.922 0.406 0.8385 0.2839 0.9229
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4.4.2 Results without feature selection

The proposed models are performed on the dataset without

feature selection. This scenario is performed to highlight

the performance of the proposed models without any pre-

processing. Table 8 illustrates the training and testing

scores. In addition, it contains the evaluation metrics

including MAE, MSE, MedAE and R2 score. It can be

observed that the tree algorithm which is deployed using

DT achieved a quite high performance with 0.503, 1.186,

0.348 and 0.8926 for MAE, MSE, MedAE and R2 score,

respectively. Moreover, the ensemble method (RF) appears

an optimal performance with 0.406, 0.8385, 0.2839 and

0.9229 for MAE, MSE, MedAE and R2 score, respectively.

Furthermore, Fig. 5a–g shows the learning curves of the

proposed methods containing the train and validation

curves. It can be observed that the proposed DT and RF

methods achieved their optimal performance at number of

iterations of 7000, while the other deployed method

achieved theirs at 8000. This means that they have a high

performance with a low complexity. So, these techniques

(DT and RF) can be considered as acceptable automatic

GCS prediction solutions without preprocessing. However,

there is a need to enhance their performance with some

preprocessing like feature selection which is discussed in

the next subsection.

4.4.3 Results with feature selection

In this section, we perform feature selection algorithm

which utilized to magnify the impact of the input features

by selecting the most important features to estimate the

output value. For this purpose, we used the recursive fea-

ture elimination (RFE) algorithm with feature scaling to

figure out the most impacted feature by a recursive elimi-

nation process which leads to a high performance. Table 9

illustrates the simulation results of the proposed models. It

can be observed that DT model achieved 0.39, 0.961, 0.25

and 0.917 for MAE, MSE, MedAE and R2 score, respec-

tively. In addition, RF model achieved 0.269, 0.625, 0.0784

and 0.946 for MAE, MSE, MedAE and R2 score, respec-

tively. Thus, it can be noticed the performance of both DT

and RF model is considerably increased by deploying

feature selection. Furthermore, the proposed SVM regres-

sor achieved 0.283, 0.813, 0.0844 and 0.929 for MAE,

MSE MedAE and R2 score, respectively. So, the proposed

models can be considered as efficient solutions for detec-

tion of level of consciousness. Figure 6a–g shows the

training and testing performance of the developed model

performance.

4.5 Model explainability

ML and deep learning (DL) have been widely used in

predicting and diagnosing various diseases such as pre-

dicting hypertension [101], diabetes [102], sepsis [103].

Unfortunately, most of these studies concentrated on

achieving advances in the overall performance of the

developed models, while disregarding the interpretability

issues. ML and DL are considered as a black box that is

unable to provide answers for the medical straightforward

inquiries (i.e., why it developed this decision, what the

correlation between patient’s medical features and the

developed output, etc.). Therefore, the physicians find it

complex to depend on such models without a clear and

understandable explanation. As a result, there exists a

serious gap between the developed models and their uti-

lization in medical practice.

In the latest years, a quite number of studies tried to

justifying this issue by explaining the developed models

using what is known as explainable artificial intelligence

[73, 74, 104]. Explainable artificial intelligence or

explainability (XAI) is the ability of ML and DL models to

open the black box and provide natural language expla-

nation for the developed decisions [105–107], explain what

occurred in the developed model from input features to the

final output. It utilized to help non-ML experts to under-

stand the solutions developed by ML models. Therefore,

bFig. 5 Results of machine learning models without feature selection

for both training and testing (a) linear regression model, (b) support
vector regression model, (c) decision tree model, (d) k-nearest

neighbor, (e) ridge regression, (f) XGBoost, (g) random forest

regressor

Table 9 Results of ML models

with feature selection
Algorithm Training score Testing score MAE MSE MedAE R2 score

LR 0.8912 0.888 0.652 1.304 0.408 0.888

SVM 0.934 0.929 0.283 0.813 0.0844 0.929

DT 0.932 0.917 0.390 0.961 0.25 0.917

KNN 0.949 0.934 0.350 0.762 0.0 0.934

Ridge 0.8911 0.885 0.658 1.305 0.414 0.888

(GBR) 0.927 0.916 0.475 0.974 0.240 0.916

RF 0.960 0.940 0.269 0.625 0.0784 0.946
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we not only concentrate in developing ML model that

could predict GCS based on vital signs and laboratory tests,

but also provide an explanation for the developed decision.

In this work, we depend on the SHAP library in the

explanations issue [108]. SHAP explainers usually depend

on a tree-based classifier (i.e., DT, RF, XGBoost,

LightGBM, etc.) to calculate the contribution of each

feature in the decision [109, 110]. Furthermore, we utilize

the internal logic of the RF regressor to discuss the

explainability of features as well as cases.

4.5.1 Explainability of features (globally)

Feature importance gives a general view of the rank of all

features and the impact of each feature on the final deci-

sion. In this work, we depend on RF to calculate the

importance of all features. Table 10 shows the feature

importance for all features. Unfortunately, we cannot

depend on it to specify the direction of each feature. For

instance, we cannot specify if increasing the cardiac index

will contribute to increasing the overall score of con-

sciousness or not.

In this section, we utilized SHAP summary plots to

show the rank of each feature. As shown in Fig. 7, each

line represents one feature, and each dot represents the

effect of this feature in a specific instance. Feature corre-

lation is represented by colors (blue for low correlation,

and red for high correlation). From the summary plot, we

can observe the following: (1) heart rate has a significant

impact on the overall decision. (2) Increasing heart rate and

O2 flow value have a positive impact in increasing the

overall score. (3) On the contrary, decreasing the value of

cholesterol, respiratory effort and CVP alarm [high] have a

positive impact on the overall performance of the calcu-

lated score. (4) Summary plot also allows us to specify the

impact of the outliers. For example, the respiratory effort is

not the global critical feature, but it has a high negative

effect on some cases. This is indicated in the long-tail that

is distributed along the left direction. Features that have a

long tail in the right direction are likely to have a positive

effect on the total decision. Our medical expert reported

that this is a medically intuitive issue that increases the

confidence in our model.

To ensure the impact of the chosen feature in the

developed model, we extract the feature importance using

RF model. Table 10 illustrates the correlation among the

whole features and the estimated output. It can observe that

there are some features have high correlation such as heart

rate, temperature and blood pressure. Others have low

correlation values such as cardiac index and arterial PH.

4.5.2 Explainability of cases (locally)

In this section, we will discuss the explainability for each

case. For example, as we show in Fig. 8, each example

represents a horizontal line. It firstly shows the final pre-

diction for this case (GCS = 11.15). It also shows the

features that have a positive impact on the final decision

(heart rate = 68, albumin = 6), and features that push the

total prediction away from the optimal values (SpO2-

= 90.6%, O2_flow = 90.83% and BUN = 1.6). This rep-

resents the effect of each feature in the final output by

colors (red = supported, blue = not supported).

5 Discussion

5.1 Comparison between model performance
before and after feature selection (FS)

In this section, we compare the performance of our pro-

posed model in terms of the two-feature list (before and

bFig. 6 Results of machine learning models with feature selection for

both training and testing (a) linear regression model, (b) support

vector regression model, (c) decision tree model, (d) k-nearest

neighbor, (e) ridge regression, (f) XGBoost, (g) random forest

regressor

Table 10 Importance of features according to RF model

Feature name Correlation using RF

Heart rate 0.09850

SpO2 0.09146

Temperature C (calc) 0.04965

Arterial blood pressure systolic 0.03043

CVP alarm [low] 0.04972

O2 flow 0.02934

CVP alarm [high] 0.02933

Respiratory rate 0.08911

HCO3 (serum) 0.02906

Hemoglobin 0.02817

Blood urea nitrogen (BUN) 0.07517

Creatine kinesis 0.06293

WBC 0.02269

Insulin 0.02019

Cardiac index 0.01621

Cholesterol, HDL 0.0349

Respiratory effort 0.06302

Arterial blood pressure diastolic 0.06255

Glucose finger stick 0.05606

Arterial pH 0.01021

weight 0.01822

Albumin 0.02703

Urine out void 0.00257
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Fig. 7 SHAP summary plots for the proposed model

Fig. 8 SHAP model behavior

for cases

Fig. 9 Comparison between models performance (before and after FS step)
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after feature selection). Figure 9 shows comparison

between all models in terms of MAE, MSE and R2 score.

From this figure we can observe that the performance

improved about 2–6% for all evaluation metrics. This

enhancement ensures the importance of this step in the final

result. Figure 10a, b shows correlation between the feature

list and the output before and after FS stage.

5.2 Study limitations

Although our proposed model provides a promising solu-

tion for GCS automatic calculation, it still has some limi-

tations that need to be handled. First, there are some

situations in which changes in vital signs will not affect

GCS, such as small changes in blood pressure that did not

reach hypotension, hypothermia that did not affect ther-

moregulation center. Second, MIMIC dataset was extracted

from one institute; therefore, using MIMIC dataset to

evaluate the developed model does not guarantee the

generalization ability of the model. Third, the imputing

process for several important features could negatively

affect model performance. Therefore, we intend to inves-

tigate several imputation techniques. All of these limita-

tions will be addressed in the future studies.

5.3 Comparison with the works in the literature

This paper proposes a GCS prediction system to estimate

the level of consciousness of the patients based on their

vital signs. For this purpose, several machine learning

techniques are deployed to achieve the optimal method.

The simulation results are carried out on the MIMIC III

dataset with the interest of the vital signs and the level of

consciousness. This paper proposes several machine

Fig. 10 a Correlation before FS, b Correlation after FS

Table 11 Illustration of the

proposed work and the works in

the relation

Work Method Model Metric Performance

Proposed Regression KNN R2 score 0.835

SVM 0.894

RF 0.923

KNN ? feature selection 0.934

SVM ? feature selection 0.929

RF ? feature selection 0.946

[2] Classification KNN Accuracy 0.875

SVM 0.831

RF 0.925
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learning models to handle this issue. The simulation results

are carried out on the data with and without feature

selection. The feature selection is performed based on the

importance of the features and their impact on the output

according to their correlation with the output. The simu-

lation results reveal that the proposed SVM, KNN, DT and

RF models achieved the optimal performance prior to GCS

value prediction. To highlight the performance of the

proposed system, we illustrate the impact of the proposed

system with the works in the literature. The objective of the

proposed system is to predict the value of the GCS using

regression. The works in the literature focused on the

classification as a solution for this issue. As proposed in

[4], they categorized the GCS into three ranges and per-

formed machine learning techniques to classify among

them. We show the performance of the proposed system

with the proposed in [4] in terms of the mutual machine

learning techniques, including KNN, SVM and RF. We

compare their performance as classifiers and regressors to

solve the problem of diagnosis of level of consciousness.

The regression method is evaluated by R2 score, while the

classification method is evaluated by accuracy. Both of the

evaluation metrics are within range of 0–1. As shown in

Table 11, the proposed models without feature selection

achieve 0.835, 0.849 and 0.923 for KNN, SVM and RF,

respectively. On the other hand, these models with feature

selection achieved 0.934, 0.929 and 0.946 for KNN, SVM

and RF, respectively. Therefore, it can be observed that the

regression trend achieved a quite high performance rather

than classification trend prior to diagnosis of level of

consciousness.

6 Conclusion

The problem of detection of level of consciousness has

been discussed in this work. This issue has been handled in

the presence of IoT system and cloud/edge environment.

The proposed framework is based on deploying machine

learning for automatic prediction of the level of con-

sciousness based on some vital signs and laboratory tests.

Therefore, several machine learning models including both

ensemble and kernel models have been implemented to

provide a judgeable comparison and extensive study. The

simulation results reveal that the proposed ensemble

models present a superior performance prior to prediction

of the level of consciousness. Therefore, it can be consid-

ered as an efficient solution for consciousness level pre-

diction in IoT and cloud/edge environments.

Appendix A: Features description

Item_ID Label Normal range Unit of

measurement

619,

224,690

Respiratory rate 12–16 Breaths per

minute

2381,

220,045

Heart rate 60–100 Beats per

minute

646, 5820 SpO2 [ 90 %

470 O2 flow 80–100 %

1525 Creatine 0.74–1.35 mg/dL

3066,772 Albumin 0.4–5.4 g/dL

116, 7610 Cardiac index 2.5–4.0 l/min/m2

1162,781 Blood urea

nitrogen (BUN)

6–24 mg/dL

220,050,

220,179

Blood pressure 120/80 mmHg

676,

223,762

Temperature 36.1–37.2 Celsius

440,546,

227,062

WBC (4–11)000 N/lL

225,664 Glucose finger

stick

80–130 mg/dL

Insulin 80–130 mg/dL

50,909 Cortisol 6–8

am,10–40 pm

mcg/dL

50,904 Cholesterol, HDL 40–59 mg/dL

616 Respiratory effort – –

780 Arterial pH 7.25–7.55 mmHg

40,069 Urine out void 0.3–0.5 ml for

kg per H

mL

Weight Kg

Age Y

198,

227,015

GCS 11–15

(mg/dl) milligrams/deciliter

(g/dl) grams/deciliter
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Appendix B: List of abbreviations

Term Abbreviations

DL Deep learning

LR Linear regression

SVR Support vector regression

KNN K nearest neighbor

MLP Multilayer perceptron

RF Random forest

BUN Blood urea nitrogen

WBC White blood cells

GCS Glasgow coma scale

UoM Unit of measurement

XAI Explainability artificial intelligence

SHAP Shapley additive explanations

SDN Software defined network

IoT Internet of things

PCA Principle component analysis

FACM Fog-Assisted Consciousness Management

MAE Mean absolute error

MSE Mean square error
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