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To all those interested in learning-based 
sports analytics, may this book inspire you to 
join this exciting field, tackle its many 
challenges, and together, elevate the game



Foreword 

When I studied computer science in the 1990s, the symbiosis of machine learning 
and sports was rather arcane and visionary if accepted at all. A friend of mine handed 
in a request to be eligible to complement his computer science major with a sports 
minor. The proposal must have been so uncommon and absurd at that time, that it 
was simply rejected by the Dean for that combination did not make sense to him at 
all. Looking back, the idea was good but the world was not ready yet. 

Well, that was more than 20 years ago and the world moved on. In the meanwhile, 
academics like Keisuke raise the technical bar of machine learning approaches in 
sports level by level, sports scientists answer increasingly complex questions in data-
driven fashions, and sports clubs and associations hire data scientists to tailor quan-
titative analyses to their own needs and philosophy. Still, the gap between academia 
and practice is still one to bridge but we are on the right path. 

The most important thing about this book is that it may become a cornerstone 
of that very bridge. Keisuke offers a very complete overview of recent advances 
in sports analytics without being overly technical. He succeeds in presenting very 
complex mathematical relationships in an easily understandable way. You will hardly 
find any equation throughout the book and when you are interested in learning more 
about a particular approach or topic, Keisuke offers a great deal of carefully selected 
references containing all the tricks of the trade. This renders the book one of a kind 
and a nice read for everybody interested in sports analytics, irrespective of their 
technical skill set. If you had to settle on only a single book on sports analytics, this 
could be the one! 

Sports scientists unfamiliar with contributions from machine learning will find 
all the resources and pointers they need to delve into their favorite topics. Likewise, 
computer scientists without a background in sports will certainly identify technical 
challenges and novel problem settings while all the folks in between may just enjoy 
the overview.
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viii Foreword

Whether you come from sports, computer science, or some other field, bringing 
together work and passion means happiness in life. What else could we ask for? 

Enjoy the ride! 

September 2024 Ulf Brefeld 
Professor 

Leuphana Universität Lüneburg 
Lüneburg, Germany



Preface 

The world of sports is undergoing a significant transformation, driven by advance-
ments in technology and data analytics. This book explores the field of learning-
based sports analytics, focusing not on machine learning techniques themselves for 
sports, but on the application of machine learning in sports to enhance performance, 
training, tactics, strategy, refereeing, and fan engagement. It represents the culmina-
tion of years of research and practical applications, aiming to bridge the gap between 
theoretical concepts and real-world implementations. The motivation behind this 
work arises not just from the growing complexity and competitiveness in sports, but 
also from our intellectual curiosity and passion for improving sports performance. 
Traditional methods of data analysis, while valuable, no longer satisfy these deeper 
pursuits. By incorporating computer vision, data science, machine learning, and agent 
modeling, this book introduces a comprehensive analytical framework designed to 
enhance the predictive power and strategic depth of sports analytics. Moreover, this 
book emphasizes an open approach, where the use of open data, open code, and 
transparent, research-based methods drive the advancements of machine learning 
in sports, as already seen in fields such as computer vision and natural language 
processing. 

It is important to clarify that this book is not a detailed guide on machine learning 
algorithms specifically tailored for sports, nor is it a manual on conducting machine 
learning research within sports contexts. Instead, it offers a broader perspective on 
how machine learning and other advanced technologies can be applied to sports 
analytics. Readers with a background in machine learning will find the content 
approachable and insightful, but the material is also designed to be accessible to 
those less familiar with the complexities of these algorithms. The focus is on the 
practical applications and implications of these technologies in the field of sports, 
rather than on the technical details of the algorithms themselves. 

The book is structured into five chapters. Chapter 1 introduces the fundamen-
tals and scope of learning-based sports analytics, setting the stage for the detailed 
discussions to follow. It includes key concepts and terminology, an overview of 
the role of data in sports analytics, and the modeling techniques that are founda-
tional to the field. Chapter 2 focuses on data acquisition using computer vision,
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x Preface

detailing how vast amounts of visual data are captured and processed to generate 
useful data for meaningful insights. Chapter 3 examines predictive analysis and play 
evaluation using machine learning, describing how these models can be used to 
predict results and evaluate plays. Chapter 4 explores the potential of agent-based 
modeling for play evaluation such as using reinforcement learning, highlighting 
the integration of real-world data with virtual simulations. Finally, Chapter 5 looks 
towards the future, discussing advanced research directions, practical deployment of 
learning-based analytics, and shaping the ecosystem of sports analytics. 

Given the wide range of topics covered in this book, it was not feasible to 
include every relevant reference. Citations for representative works, particularly those 
centered around our group’s research contributions, have been provided. However, 
readers interested in further exploration are encouraged to consult the cited liter-
ature. Chapter 5 synthesizes the discussion, addressing the challenges and oppor-
tunities when considering the integration of these diverse elements into a cohesive 
framework. 

This book is intended for researchers, students, technologists, sports analysts, and 
anyone interested in the intersection of sports and technology. It is hoped that it serves 
as a valuable resource, inspiring further innovation and research in this exciting field. 

October 2024 Keisuke Fujii 
Associate Professor 
Nagoya University 

Nagoya, Japan
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Chapter 1 
What is Learning-Based Sports 
Analytics? 

Abstract This chapter introduces the foundational concepts and frameworks of 
learning-based sports analytics, offering a comprehensive overview of the field. It 
begins by exploring key concepts such as data analytics, data acquisition, and data 
visualization, which are essential for understanding how data drives insights in sports 
analytics. The chapter then focuses on the critical role of data in sports, discussing 
the various types of data utilized, the methods and techniques for data collection, 
and the challenges associated with data acquisition and management. Following 
this, the chapter outlines the general background of modeling techniques, including 
the machine learning algorithms that are central to learning-based sports analytics 
and their practical applications in sports contexts. Lastly, it provides guidance on 
accessing and contributing to research in the field, addressing the complexities of 
navigating publication venues and offering practical opinions on disseminating and 
discovering impactful research. The foundation laid in this chapter prepares the 
way for a deeper exploration of advanced modeling techniques and the practical 
applications of learning-based sports analytics in the following chapters. 

Keywords Machine learning · Data acquisition · Predictive modeling ·
Reinforcement learning · Team sports 

1.1 Introduction 

The field of sports analytics has recently seen remarkable growth and transformation. 
With the advent of machine learning, the potential to analyze and extract useful 
information from vast amounts of sports data has been expected. This chapter aims 
to introduce the concept of learning-based sports analytics, providing a foundational 
understanding of its principles and applications. 

Learning-based sports analytics refers to the application of machine learning tech-
niques to analyze and extract useful information from sports data, providing insights 
that can enhance performance and decision-making in sports [ 4]. In particular, this 
book focuses on their movements such as the next plays using their location and 
pose data as illustrated in Fig. 1.1. Unlike traditional approaches, learning-based 
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2 1 What is Learning-Based Sports Analytics?

Fig. 1.1 Examples of pose and location data. (Left) An example of player pose data in a 1-vs-1 
soccer dribble situation. The data was obtained from an optical motion capture system. (Right) An 
example of player location data in an NBA basketball game, which was obtained from a camera-
based tracking system 

ones leverage large and diverse datasets and complex algorithms to discover pat-
terns and make predictions that are not immediately apparent. For example, player 
location and pose data for obtaining insights about the next plays will be challeng-
ing in traditional frameworks to mainly deal with outcomes and events. This field 
encompasses various technologies, including computer vision for data acquisition, 
predictive modeling to anticipate future events for play evaluation, and reinforcement 
learning for strategy optimization. 

Regarding types of sports, we can roughly separate sports into individual sports 
and team sports, both of which require skillful, powerful, and/or accurate movements. 
When it comes to measuring movement data, some individual sports can be studied in 
controlled, laboratory environments. In contrast, many team sports require capturing 
the entire field of play, which presents a greater challenge. These properties can lead 
to issues when broadly analyzing various types of sports. It should be noted that some 
individual sports also take place over large areas during actual competitions. From 
the perspective of analyzing real-game scenarios where athletes perform at their best, 
focusing on team sports allows us to develop techniques that can be partially applied 
to individual sports as well. 

This book basically focuses on team sports, as well as the complexities and dynam-
ics involved in analyzing collective and skillful movements. In many team sports, 
such as soccer, basketball, handball, rugby, hockey, American football, volleyball, 
and baseball, data analysis faces several common challenges. Firstly, evaluation is 
often done through human observation or requires expensive measuring equipment, 
making it difficult for non-professionals to record large amounts of data. Even when 
vast amounts of data are available, predicting, explaining, and evaluating outcomes, 
as well as breaking down collective movements into individual contributions, can be 
challenging. This book focuses on invasion games like soccer and basketball, where 
data is accessible (as illustrated in Fig. 1.1) but analysis is particularly challenging 
due to the dynamic and collaborative nature of these sports.
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1.1.1 Importance of Analytics in Modern Sports 

In the current highly competitive sports environment, the role of analytics has become 
increasingly crucial. Teams and athletes are constantly seeking ways to obtain an 
edge over their competitors, and data-driven insights offer a significant advantage. 
Analytics can influence various aspects of sports, from player performance and injury 
prevention (e.g., [ 28]) to game strategy and fan engagement (e.g., [ 19, 20]). By 
utilizing advanced analytics, teams can make more informed decisions, optimize 
training programs (e.g., [ 29]), and develop strategies that are tailored to their strengths 
and the weaknesses of their opponents (e.g., [ 18]). Furthermore, analytics plays 
a vital role in enhancing the fan experience (e.g., [ 19]). Data-driven stories and 
insights can make the game more engaging for fans, providing them with a deeper 
understanding of the sport. Broadcasters and sports media leverage analytics to offer 
detailed analyses, enriching the narrative around games and events. 

The use of analytics in sports is not a new concept. Historically, sports analyt-
ics began with basic statistical analyses, such as using player performance metrics 
and game statistics. These early efforts laid the groundwork for more sophisticated 
analyses. In the late 1970s, pioneers like Bill James [ 13] popularized the use of sta-
tistical methods in baseball through the development of Sabermetrics, which sought 
to objectively analyze player performance and game outcomes. 

The revolution in sports analytics began with the development of digital tech-
nology and the availability of large datasets. In the 2000s, there was a significant 
interest in analytics across various sports, driven by the ability to collect and process 
vast amounts of data. The “Moneyball” era in baseball [ 14], exemplified by the Oak-
land Athletics’ use of sabermetrics to build a competitive team on a limited budget, 
highlighted the potential of analytics to transform sports management. 

A similar analytics-driven transformation occurred in basketball with the three-
point revolution [ 16]. The Houston Rockets, under the guidance of general manager 
Daryl Morey, were among the pioneers of this approach, emphasizing three-point 
shooting and layups over mid-range two-point shots considering the points-per-shot 
ratio. This analytical approach has subsequently spread throughout the NBA, fun-
damentally changing the way the game is played [ 15] and highlighting the power of 
analytics to reshape sports strategies and outcomes. 

As data collection methods became more advanced, so did the analytical tech-
niques. The introduction of wearable technology, GPS (global positioning system) 
tracking, and video cameras allowed for the collection of detailed data on player 
movements, physiological metrics, and tactics in games. Such rich data necessitated 
more sophisticated analytical methods for the integration of machine learning and 
sports analytics.
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1.1.2 Advancements in Machine Learning and Their Impact 
on Sports 

Modeling sports behavior with machine learning surpasses traditional analysis by 
obtaining quantitative insights about human skill, team dynamics, and competitive 
strategies. Sports, with their structured and rule-based environments, present a rich 
field for machine learning applications. The challenges range from predicting player 
movements in basketball to evaluating and suggesting strategic actions in soccer, 
reflecting the comprehensive themes of this book: data acquisition with computer 
vision, play evaluation with machine learning prediction, and Potential play evalua-
tion with learning-based agent modeling. 

Although current expert insights in sports are mostly subjective and implicit 
because human skillful movements are sometimes hard to annotate by natural lan-
guage, the goal is to quantify expert insights in sports, which signifies an essential 
development for the evolution of the field (Fig. 1.2). Capturing the excitement of 
motion in sports through the integration of real-world data and digital modeling [ 6], 
enhancing traditional sports data analysis. Historically, sports analytics focused on 
measuring and recognizing player positions and actions, such as shots or passes, 
within a physical space. However, experienced coaches and players go beyond mere 
observation; they predict future moves (e.g., [ 5]), evaluate the quality of motions 
(e.g., [ 25]), and suggest improvements (e.g., [ 17]). Currently, capturing these expert 
insights in digital form is challenging, but future advancements aim to make this 
knowledge universally accessible. 

The digital transformation, converting the intricate knowledge and tactical wis-
dom of experienced professionals into digital formats, democratizes access to high-
level sports strategies and practices, encouraging a learning and innovation ecosystem 
that is inclusive and expansive. The integration of expert insights with machine learn-
ing and data analytics tools amplifies the analytical depth and precision, encouraging 
idea exchange across diverse sports and related domains. 

Furthermore, this digital infrastructure supports the development of predictive 
analytics and tailored training regimes, setting the stage for changes in athlete devel-
opment, injury prevention, and performance enhancement (e.g., [ 1]). Ultimately, the 
digitization of expert sports knowledge catalyzes the formation of a well-informed, 
innovative, and interconnected global sports community, driving forward the fields 
of sports science and athlete development. 

In the following Sect. 1.2, the key concepts of learning-based sports analytics are 
introduced such as data analytics, data acquisition, and data visualization. Section 1.3 
focuses on the role of data in sports analytics, detailing the types of data used, the 
methods and techniques for data acquisition, and the challenges in data acquisition 
and management. Section 1.4 describes the general background of modeling tech-
niques, including machine learning algorithms used in learning-based sports analytics 
and their applications to sports. Finally, Sect. 1.5 provides an overview of accessing 
and contributing to research in learning-based sports analytics, highlighting the com-



1.2 Key Concepts and Terminology 5

Fig. 1.2 Current and future perspective of sports analytics and their challenges. Traditionally, sports 
analytics involves (1) measuring and recognizing where players are on the field, then (2) analyzing 
what happens such as a shot or a pass in a physical space. The first challenge is the automation 
of the data acquisition process mainly with computer vision. In addition, experienced coaches and 
players can (3) predict future moves, (4) evaluate how well a motion was executed, and (5) suggest 
improvements. In learning-based sports analytics, counterfactual prediction with machine learning 
and evaluation and generation of all players at all frames such as with reinforcement learning are 
the second and third challenges, respectively. Ultimately, we aim to access to implicit knowledge 
of experts explicitly and extend human capabilities for everyone 

plexities of navigating various publication venues and offering guidance on selecting 
appropriate platforms for disseminating and discovering research in the field. 

1.2 Key Concepts and Terminology 

In order to fully understand the scope and application of learning-based sports ana-
lytics, it is essential to grasp several foundational concepts. These concepts are inter-
connected and collectively contribute to the comprehensive framework of sports 
analytics. An example of data analytics flow is illustrated in Fig. 1.3. This section 
organizes these key concepts into structured categories to provide a clearer under-
standing of their roles and relationships as follows.

• Data analytics is the systematic computational analysis of data. In the context of 
sports, it involves examining and interpreting large volumes of data to discover 
patterns and insights. This is important for making informed decisions, optimizing 
performance, and gaining a competitive edge. Effective data analytics transforms 
raw data into actionable information, helping coaches, analysts, and players under-
stand and improve their strategies and performances. To realize such data analytics,
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Fig. 1.3 An example of data analytics flow, including six key stages: data acquisition, data pre-
processing, feature engineering, model development, model evaluation, and data visualization 

we can consider data acquisition, data pre-processing, feature engineering, model 
selection, development, evaluation, and visualization as follows.

• Data acquisition refers to the process of collecting data from various sources. 
In sports analytics, this includes gathering information from video footage, wear-
able sensors, GPS tracking devices, and other monitoring technologies. Accu-
rate and comprehensive data acquisition is essential for building a robust dataset 
that reflects the realities of sports performance. The quality of the collected data 
directly impacts the validity and reliability of subsequent analyses. The details are 
described in the next section, and in particular computer vision from video footage 
is discussed in the next chapter.

• Data pre-processing is the process of cleaning, transforming, and organizing raw 
data into a usable format. This step is important to ensure that the data used in 
the analysis is accurate, consistent, and free from errors or outliers. Data pre-
processing involves tasks such as handling missing values, normalizing data, and 
converting data types. If we use the raw data initially, this process may take longer 
than expected. Proper pre-processing enhances the quality of the data, leading to 
more reliable and valid results in the subsequent analysis phase.

• Feature engineering involves using domain knowledge to extract meaningful fea-
tures from raw data that is used for the analysis directly or enhance the performance 
of machine learning algorithms (the latter is related to learning-based analytics). In 
sports analytics, this could mean creating new variables that capture key aspects 
such as player performance, game conditions, or tactical formations. Effective 
feature engineering can not only interpret data effectively but also improve the 
predictive performance of models, making them more insightful and accurate.

• Model development involves choosing the appropriate machine learning and sta-
tistical models and building them to suit specific analytical tasks. This process 
includes evaluating different machine learning algorithms and training the mod-
els as necessary to determine the best fit for the data and the problem. Effective 
model selection and development are important for creating robust and accurate 
predictive models. Incorporating domain-specific knowledge into machine learn-
ing models ensures that the insights generated are relevant and applicable. This 
approach enhances the interpretability and accuracy of the models, making them 
more useful for coaches, players, and analysts.

• Model evaluation is the process of assessing the performance of models. Quan-
titatively, for example, this includes using various metrics to measure how well
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a model predicts outcomes compared to actual results. Qualitatively, it includes 
evaluating the interpretability, robustness, and relevance of the model in the spe-
cific context of its application. In sports analytics, model evaluation ensures that 
the developed models are reliable, interpretable, and can be trusted to provide 
accurate predictions and insights.

• Data visualization is the representation of data in graphical formats such as graphs, 
tables, maps, and charts. It helps in understanding trends, patterns, and insights 
from the data, making it easier to communicate findings to stakeholders. In sports 
analytics, data visualization can illustrate such as player movements, game statis-
tics, and performance metrics, aiding in the decision-making process. 

By connecting these key concepts with the data and modeling technologies in the 
following sections, a comprehensive framework for understanding learning-based 
sports analytics will be provided. In the next subsection, the critical role of data in 
sports analytics is described, focusing on the types of data used, the methods and 
technologies for data collection, and the challenges faced in data acquisition and 
management. 

Strategy, Tactics, and Techniques in Sports 

In the context of sports, strategies, tactics, and techniques are essential elements 
that explain the success of a team [ 11]. Strategies refer to comprehensive plans 
designed to achieve long-term objectives, such as changing lineups and formations 
in team sports. Tactics, on the other hand, are the specific actions or sequences 
of actions that teams employ during a game to execute their strategy. Examples 
include player positioning and play patterns in both offensive and defensive scenarios. 
Techniques are the fundamental skills required to execute these tactics effectively, 
including dribbling, passing, and shooting. Together, these three components form 
the backbone of competitive sports, with strategies providing the framework, tactics 
offering the means to adapt to the evolving dynamics of a game, and techniques 
ensuring the precise execution of these plans. 

1.2.1 Positioning of This Book 

This book offers a comprehensive exploration of learning-based sports analytics, 
distinguishing itself from recent reviews such as those focusing on methodology 
and evaluation in sports analytics [ 3], the potential of big data in soccer [ 10], and 
quantitative analysis in basketball [ 26, 30]. Unlike these works, which primarily 
concentrate on the application of analytics in specific sports contexts, this book 
focuses on the entire spectrum of sports analytics from the automatic acquisition of 
data to the application of advanced simulation techniques like reinforcement learning. 
Furthermore, it introduces my ideas on ecosystem development in sports analytics,
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emphasizing the creation of sustainable infrastructures that support open innovation 
and collaboration. By integrating these diverse elements, this book provides a unique 
and forward-looking perspective on the future of sports analytics, setting the stage 
for advancements in both practical deployment and theoretical research. Next, the 
fundamental roles that data plays are described, which are the important aspects and 
advanced applications of learning-based sports analytics. 

1.3 The Role of Data in Sports Analytics 

This section explores the critical role of data in sports analytics, focusing on the types 
of data used, the methods and technologies for data collection, and the challenges 
faced in data acquisition and management. Understanding these elements is essential 
for comprehending the complexities and potential of learning-based sports analytics. 

1.3.1 Types of Data Used in Sports Analytics 

Sports analytics relies on a diverse array of data types, each offering unique insights 
into athletic performance, strategy, and outcomes. Figure 1.4 gives examples of a 
soccer game scenario with players’ locations, poses, and a “pass” event. The primary 
types of data are as follows.

• Video data recordings from games and practices provide rich visual informa-
tion that can be analyzed to track player movements, actions, and interactions. In 
the context of sports, it is common practice for coaches, players, and analysts to 
review video footage to gain insights and improve performance. Computer vision 
techniques are often employed to extract meaningful insights from video data, 

Fig. 1.4 Examples of data types. It illustrates a soccer game scenario where players’ locations, 
events, and poses are identified using bounding boxes, a label, and keypoints. The event captured 
in this instance is a “pass”. This is the original figure using the SoccerNet data [ 21]
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automating the analysis process and discovering patterns that may not be imme-
diately apparent to the human eye. The detailed usage of video footage will be 
introduced in the next chapter.

• Match or game data includes fundamental records of key actions and occurrences 
during a game, such as goals, assists, substitutions, and fouls, which are defined 
in the rules of each sport, typically recorded by humans. This data provides fun-
damental information about the game and forms the backbone of performance 
analysis, helping teams optimize their tactics and improve overall performance. 
Match data is usually open and can be scraped from the web.

• Event data is the detailed records of specific actions or events and occurrences 
during a game, such as passes and intercepts (their names and definitions depend on 
sports and organizations) in addition to match data, typically obtained by humans. 
This data includes precise timestamps and (often) spatial coordinates, allowing 
us to understand the context and impact of each action within the flow of the 
game. For example, event data captures the origin and destination of each pass, 
the location, (sometimes) type, and outcome of each shot, as well as details about 
defensive actions like tackles and interceptions. It also records fouls, including 
the players involved and any disciplinary actions, as well as goal-scoring events 
and the circumstances leading to the goals. Event data is crucial for understanding 
player performance and team strategy. By combining event data with tracking 
data, analysts gain a comprehensive view of the game’s dynamics, leading to more 
informed and strategic decision-making in sports analytics. Some data provider 
companies release certain event data. For example, WyScout and StatsBomb have 
made available data for soccer events.

• Location or tracking data includes the spatial coordinates of players and the ball, 
capturing their locations and movements on the field or court using devices in the 
following subsection. It is essential for analyzing tactics and player positioning. If 
location data is collected at regular intervals, and if sampled at sufficiently short 
and approximately equal intervals, it is called tracking data and can also be used 
to compute movement speed and acceleration. This provides deeper insights into 
player dynamics and performance. For example, Metrica provides tracking data 
in three soccer games, 1 and SportVU tracking data is available in 631 basketball 
games. 2

• Pose data in sports analysis refers to the detailed information about the body 
positions and movements of athletes, typically captured by such as motion cap-
ture, computer vision, or wearable sensors. This data includes the coordinates of 
key body joints (e.g., knees, elbows, hips) at various time points, allowing for an 
in-depth analysis of an athlete’s posture, technique, and biomechanics. Pose data 
is essential for understanding how athletes move, identifying potential areas for 
improvement, and preventing injuries by detecting abnormal or suboptimal move-
ments. It can be used to enhance training programs, optimize performance, and 
tailor coaching strategies to individual needs. By providing a precise and dynamic

1 https://github.com/metrica-sports/sample-data/. 
2 https://github.com/rajshah4/BasketballData.

https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/metrica-sports/sample-data/
https://github.com/rajshah4/BasketballData
https://github.com/rajshah4/BasketballData
https://github.com/rajshah4/BasketballData
https://github.com/rajshah4/BasketballData
https://github.com/rajshah4/BasketballData
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representation of an athlete’s movements, pose data enables a more granular and 
actionable analysis, contributing to better overall performance and reduced injury 
risks in sports. Although various applications are considered, pose data cannot be 
annotated at a game-level, making its use much more limited.

• Other sensor data in sports analysis includes a range of metrics collected from 
devices such as heart rate monitors, accelerometers, and lactate sensors, which may 
be sometimes wearable or integrated into equipment. This comprehensive data is 
vital for real-time monitoring of an athlete’s physical condition, identifying fatigue, 
and preventing overtraining or injuries. Sensor data offers continuous and detailed 
streams that can be analyzed to tailor training programs, optimize performance, and 
ensure athlete well-being. However, sensor data is usually unavailable in public, 
except for GPS data. 

1.3.2 Data Collection Methods and Technologies 

Effective data collection is fundamental to sports analytics. Here, the methods and 
technologies used to collect data are introduced. 

Markerless Tracking Systems 

Advanced computer vision technologies enable the capture of motion data without 
the need for any markers or sensors, making them particularly useful for recording 
natural movements during actual gameplay. Historically, motion capture involved 
manual digitizing (e.g., until about 2000s [ 7]), where movements were tracked frame-
by-frame by hand, or the use of reflective markers in optical motion capture systems 
(currently used as most accurate methods in sports sciences). These methods, while 
accurate, were time-consuming, costly, and often impeded natural movement. In 
comparison, markerless systems offer significant advantages: they allow for natural, 
unrestricted movement, reduce setup time, and lower costs. Notable examples to 
track player and ball location data in professional team sports include SportVU 
in basketball (e.g., used in [ 12]), and TRACAB in soccer (e.g., used in [ 27]). In 
the computer vision area, multi-object tracking technologies have been developing. 
Pose estimation methods from video footage without markers have also advanced 
the field, with notable examples including OpenPose [ 2]. These computer vision 
techniques are discussed in Chap. 2. Additionally, technologies such as LiDAR and 
depth sensors enhance the capability of capturing precise motion data, potentially 
improving the analysis of player movements and team tactics with less occlusion.
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Global and Local Positioning Systems 

These technologies track the location and movement of players in real-time, pro-
viding positional data. GPS is commonly used in outdoor sports. In contrast, local 
positioning systems (LPS) can be used in indoor settings and more accurate but 
relatively be more expensive than GPS. Recent advancements in global naviga-
tion satellite systems (GNSS), including real-time kinematic GNSS (RTK-GNSS), 
have significantly improved the accuracy of positional data. GNSS refers to satellite 
systems that provide global positioning services, with GPS being one of the most 
well-known examples. RTK-GNSS enhances GNSS by using a fixed base station 
to provide real-time corrections to the positional data received from satellites. This 
technology can achieve centimeter-level accuracy, making it highly suitable for appli-
cations that require precise tracking and positioning. Consequently, RTK-GNSS can 
offer a more accurate alternative to traditional GPS, particularly in outdoor sports 
settings where high precision is essential. 

Other Sensors 

Other devices such as accelerometers, gyroscopes, and heart rate monitors are worn 
by athletes to measure various performance metrics. These sensors provide real-
time data that can be used for immediate feedback and long-term analysis. Heart rate 
monitors track cardiovascular performance, providing insights into an athlete’s fitness 
level, endurance, and recovery times. Accelerometers measure the acceleration of the 
body, capturing data on speed, agility, and the intensity of movements. Gyroscopes, 
which detect rotational movements, help in analyzing balance and coordination. In 
addition, magnetometers, which measure the Earth’s magnetic field, are sometimes 
used to detect orientation relative to the Earth’s magnetic poles. When combined with 
accelerometers and gyroscopes, these sensors form an Inertial Measurement Unit 
(IMU), commonly used to provide comprehensive motion analysis. Lactate sensors 
measure the concentration of lactate in the blood, offering crucial information about 
an athlete’s anaerobic threshold and overall metabolic condition. 

1.3.3 Challenges in Data Acquisition and Management 

Despite the advances in data collection technologies, several challenges remain. For 
example:

• Data Quality: Ensuring the accuracy and reliability of collected data is crucial. 
Automatically captured data, such as that from wearable sensors and cameras, 
often contains noise and errors compared to ground truth data created using optical 
motion capture systems or manual corrections. This automatic data acquisition
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introduces inaccuracies that necessitate careful pre-processing to filter out errors 
and improve data quality.

• Data Volume: The volume of data generated during sports events can significantly 
impact the choice of machine learning models used for analysis. Large datasets 
enable the use of complex models, such as deep learning, which require extensive 
data to train effectively. Conversely, smaller datasets might necessitate the use of 
simpler models, such as linear regression or decision trees, which are less data-
intensive. Therefore, the amount of data available directly influences the modeling 
approach and the potential insights that can be derived from the analysis. Unfortu-
nately, in cases where data is not provided by professional sports data providers, 
the volume of available data is often limited.

• Privacy Concerns: Collecting and analyzing personal data, especially visual and 
pose information, can identify individuals, raising significant privacy issues. Pro-
fessional league data provided by official data providers is typically covered under 
contracts with the leagues. However, when researchers collect data themselves, 
such as in university studies, ethical approval from an institutional review board 
is required. Additionally, separate consent is necessary for the public release of 
any collected data. Ensuring that data is collected and used ethically, with proper 
consent and safeguards, is essential.

• Integration of Data Sources: Combining data from multiple sources (e.g., wear-
able sensors, video, and GPS) to create a comprehensive dataset can be complex. 
This integration is crucial for generating holistic insights but requires various data 
fusion techniques such as sensor fusion, data alignment, synchronization, interpo-
lation, and format integration. Such (pre-) processing steps can be time-consuming, 
adding to the complexity of the main task. 

1.3.4 Addressing the Complexities of Sports Movement 
Analysis 

Modeling sports behavior with machine learning has the potential to surpass tradi-
tional analysis by exploring the complexities of human skill, team dynamics, and 
competitive strategies. For example, capturing the intricate movements in a bas-
ketball 1-vs-1 situation (e.g., [ 8]) or the coordination of a soccer team (e.g., [ 25]) 
requires advanced technologies and methodologies. This complexity highlights the 
importance of accurate and comprehensive data collection. 

Technologies such as wearable sensors and markerless tracking systems play 
a vital role in capturing these complex movements. Despite these advancements, 
challenges such as data noise, high costs, and the practical difficulties of attaching 
sensors to athletes persist. Additionally, ensuring that data accurately reflects the 
dynamic and interactive nature of sports remains a critical task. 

In summary, understanding the types of data, the methods for collecting it, and 
the challenges involved are essential for advancing the field of learning-based sports
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analytics. In the next section, various modeling techniques used in learning-based 
sports analytics will be explored, such as how these methods transform raw data into 
actionable insights, enhance player performance, and inform strategic decisions. 

1.4 Modeling Techniques for Learning-Based Sports 
Analytics 

In this section, various modeling techniques are introduced, which are used in the 
analysis of learning-based sports analytics. Generally, modeling refers to the abstrac-
tion and representation of real-world phenomena in a way that makes them easier 
to understand. Our real-world includes numerous complex systems and processes, 
such as climate change, market trends, and human behavior, which are difficult to 
comprehend solely through intuition or experience. Modeling helps us understand, 
predict, and control these phenomena. Although detailed examples will be presented 
in Chap. 3, this section provides an overview of the essential modeling framework, 
which is needed to understand the techniques and applications discussed also in 
Chap. 5. 

In the context of learning-based sports analytics, the concepts of forward and 
inverse problems play a crucial role in understanding and analyzing sports perfor-
mances as illustrated in Fig. 1.5. A forward problem involves generating outcomes 
from known causes or models, such as predicting the results of specific tactics or for-
mations in a soccer game. This approach, known as forward analysis, is often used in 
simulations where predefined strategies are tested to observe their potential impact. 
Conversely, an inverse problem involves deducing the underlying strategies or causes 
from observed outcomes, such as analyzing game data to discover the tactics that 
led to a particular result. This approach, referred to as inverse analysis, is commonly 
employed by coaches and analysts to understand actual team performance. Both for-
ward and inverse analysis are essential in learning-based sports analytics to bridge 
the gap between simulating future outcomes and understanding the current tactics. 
Further details on these methods will be discussed in Chap. 4. 

Fig. 1.5 Conceptual diagram of forward and inverse problems. Generating data from a model is a 
forward problem and is referred to as forward analysis, while estimating the model from data is an 
inverse problem and is referred to as inverse analysis
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Models can be categorized into several types, including mathematical models, 
rule-based models, and machine learning models as follows. The detailed examples 
and their integrations will be presented in Chaps. 3 and 5. 

1.4.1 Mathematical Models 

Mathematical modeling is used across various fields, such as physics, economics, 
and biology, to represent real-world phenomena through mathematical expressions 
(equations or functions). These models are constructed based on physical laws and/or 
clear mathematical principles to predict future behaviors of systems and guide system 
design. In sports, for example, models based on the equations of motion can predict 
the trajectory of a ball or an athlete’s movement during play (e.g., [ 22] in soccer). 
Another example is spatial partitioning methods, such as Voronoi diagrams (e.g., 
[ 24] in soccer), applied in team sports to analyze player optimal positioning and 
tactics. These and other examples are introduced in Chap. 3. 

1.4.2 Rule-Based Models 

A rule-based model is a modeling approach where the underlying “rules” govern-
ing a system or behavior are explicitly programmed into a computer by humans. 
By rule-based modeling, complex phenomena are broken down into simpler, more 
manageable sets of rules. For example, in sports analytics, a rule-based model can 
be used to classify and evaluate player movements based on predefined strategies or 
game rules (e.g., [ 9, 23] in basketball. For the details, see Chap. 3). The computer 
follows these programmed rules to simulate and analyze different scenarios, such as 
determining the best possible player positioning during a match (e.g., various simu-
lators introduced in Chap. 4). This approach is particularly useful when the system 
being modeled operates under clear, well-defined guidelines that can be accurately 
captured through programming. 

1.4.3 Machine Learning Models 

Machine learning models automatically extract useful patterns or knowledge from 
input data, enabling predictions or classifications on unknown data. Unlike traditional 
programming, where features and rules are explicitly defined by humans, machine 
learning models “learn” these from data. This approach is widely applicable in areas 
such as image recognition, natural language processing, medical diagnostics, and 
autonomous driving, though it requires large amounts of data and computational 
resources. In the context of sports analytics, machine learning models can be divided
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into two major categories: extracting features from data and simulating or controlling 
specific actions [ 4]. Most feature extraction techniques are categorized into inverse 
analysis. Typical machine learning approaches include unsupervised learning, super-
vised learning, reinforcement learning, and their combinations. 3

Regarding approaches to extracting features from data, unsupervised learning 
involves learning without using target variables (e.g., play types or scores in sports 
data analysis), which includes dimensionality reduction and clustering. Supervised 
learning involves learning to align with target variables. When the target variable is 
discrete (e.g., play types), it is called classification; when continuous (e.g., position 
data or scores), it is called regression. Like school tests, this method typically involves 
using a separate test dataset for validation to prevent overfitting (see Sect. 3.4). 

Simulating and controlling actions can be done using pattern-based or agent-
based approaches. Pattern-based methods use supervised learning to predict player 
actions and movement trajectories for simulations. In contrast, agent-based methods 
involve modeling the agents themselves, often applying reinforcement learning (RL, 
see also Chap. 4). RL models agents that learn to perform actions to maximize 
rewards, deriving policies from states. While RL concepts can also be applied to 
inverse analysis, it is generally difficult to model human players accurately, leading 
to applications in state or action evaluation, policy, or reward estimation (known as 
imitation learning or inverse reinforcement learning). 

In summary, the modeling concepts and problem settings discussed in this chapter 
form the basis for understanding the simulation and analysis of human behavior in 
sports. These models, whether mathematical, rule-based, or machine learning-based, 
share the common goal of predicting and understanding unknown phenomena and 
data. By leveraging the strengths of each approach, we can select the most appropriate 
model to solve specific challenges in sports analytics, which will be discussed in 
Chaps. 3, 4, and 5. In particular, the integration of data collections (in Chap. 2) and 
various modeling (in Chaps. 3 and 4) for real-world applications are discussed in 
Chap. 5. 

1.5 Accessing and Contributing to Learning-Based Sports 
Analytics Research 

In the field of learning-based sports analytics, finding relevant research papers can 
be a complex and often confusing task when searching for conferences and journals. 
Unlike other scientific and engineering research domains, where top journals and 
major international conferences are well-established, the landscape of sports analyt-
ics lacks a clear consensus on top venues for publication. This lack of clarity makes 
it challenging for researchers, particularly those new to the field, to identify where 
to publish or where to find the most impactful research.

3 It should be noted that these distinctions are often blurred in practice, as described in Chap. 3. 



16 1 What is Learning-Based Sports Analytics?

For those primarily interested in reading rather than writing papers, understanding 
the different types of publications in this field is crucial. Broadly speaking, publica-
tions can be categorized into six types: 

1. Sports science journals 
2. Journals regarding computer science and engineering 
3. Journals covering both sports, computer, and engineering science 
4. Conferences for sports science and analytics 
5. Conferences in computer science and engineering 
6. Sports workshops at conferences in computer science and engineering 

It is important to note that most sports science conferences typically do not publish 
full papers; instead, they focus on abstract submission and information exchange, 
which can make them less suitable for finding detailed research papers. The main 
challenge lies in the scattered nature of these papers across different venues and the 
fact that the best sources of information depend on our specific research objectives. 

Particularly for categories 1–3, it is not uncommon to question why certain papers 
were published in specific journals. This often has more to do with the preferences 
and constraints of the authors rather than the needs of the readers. While Google 
Scholar is a useful tool, arXiv can also be a valuable resource for finding preprints, 
especially for papers in categories 2, 3, 5, and 6. However, one must be cautious, as 
arXiv papers are not peer-reviewed, which means that while they offer early access 
to research, their quality is not guaranteed. 

When seeking the latest developments in the field, international conferences tend 
to provide more up-to-date information. Among the recommended conferences and 
workshops are CVSports 4 at CVPR and MMSports 5 at ACM MM in the computer 
vision and multi-media domains, and MIT SSAC 6 and MLSA 7 at ECML-PKDD in 
the sports analytics domain. These conferences and workshops are well-known and 
are held regularly, providing a platform for the latest research. 

For those considering entering this field or seeking to understand the considera-
tions of researchers in sports analytics, it is essential to recognize that only a small 
number of researchers consistently publish in this area globally. The field is still 
developing, with many research challenges yet to be addressed, making it a promis-
ing area for future work. Unlike other scientific and engineering fields, where the 
publication process is more straightforward, researchers in sports analytics must nav-
igate a complex landscape where seemingly similar studies might be submitted to 
entirely different venues based on subtle differences in focus. Given the challenges 
of the publishing process, choosing the right venue is crucial to avoid the frustration 
of a misplaced submission.

4 International Workshop on Computer Vision in Sports, https://vap.aau.dk/cvsports/. 
5 Multimedia Content Analysis in Sports, a webpage in 2024 is: http://mmsports.multimedia-
computing.de/mmsports2024/. 
6 MIT Sloan Sports Analytics Conference, https://www.sloansportsconference.com/. 
7 Workshop on Machine Learning and Data Mining for Sports Analytics, a webpage in 2024 is: 
https://dtai.cs.kuleuven.be/events/MLSA24/. 
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The experience of the author involved submitting to a wide range of venues, often 
through trial and error, and the author hopes to share these insights to help others 
avoid common pitfalls. The fundamental reason for publishing is to disseminate new 
scientific or engineering knowledge. To do this effectively, one must thoroughly 
understand prior research and conduct studies in a way that convinces peer reviewers 
of the validity of the findings. While the author believes that the quality of research 
is more important than the venue of publication, the reality is that community recog-
nition plays a significant role in securing academic activities. The challenge in sports 
analytics and machine learning is that the most respected venues in this field (cate-
gories 4 and 6) are not always recognized in adjacent science and engineering fields. 
Therefore, when selecting a venue for submission, the content of the research, the 
context of the authors, and the broader goals of the research project should be care-
fully considered. 

In summary, for researchers new to this field or those with a background in related 
areas, I hope this overview provides useful guidance on where to submit or find 
research in sports analytics. Despite the current complexity of the field, it remains 
an area rich with potential and opportunities for groundbreaking work. 

1.6 Summary 

This chapter has outlined a general introduction and the critical elements in learning-
based sports analytics and the complexities involved in navigating the diverse pub-
lication landscape. By providing a structured approach to understanding the key 
concepts and challenges in data acquisition, processing, and analysis, the chapter 
equips researchers with the knowledge needed to make decisions about where to 
focus their efforts and how to contribute effectively to the field. The next chapter 
will focus on the role of computer vision in sports analytics, specifically focusing on 
how automatic data acquisition technologies are performed in sports. 
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Chapter 2 
Computer Vision for Sports Analytics 

Abstract Recent advancements in computer vision have significantly impacted 
sports analytics by automating the collection, analysis, and interpretation of data 
from sports video footage. Traditionally, data collection and labeling in sports has 
relied heavily on manual effort, which is both time-consuming and costly. However, 
computer vision offers a more efficient alternative by employing advanced algorithms 
to extract meaningful information from video footage, thus enabling detailed insights 
into player movements and team tactics. Computer vision is applied across various 
tasks including field registration, object tracking, action recognition and detection, 
and pose estimation. These tasks leverage machine learning models to handle large 
volumes of visual data. This chapter explores how these technologies are transform-
ing sports analytics, introducing interesting research examples and highlighting the 
importance of automated data collection for sports analytics. 

Keywords Field registration · Object tracking · Player identification · Action 
recognition · Pose estimation 

2.1 Introduction 

In recent years, computer vision has emerged as a powerful tool in the field of sports 
analytics, advancing the way data is collected, analyzed, and interpreted. Computer 
vision is a research field involving the use of algorithms and techniques to enable 
computers to interpret and understand visual information from the world. In sports, 
this means capturing and analyzing video footage to extract valuable insights about 
player movements and tactical elements. However, much of data acquisition, includ-
ing raw data collection and labeling relies on manual effort, which is time-consuming 
and labor-intensive. While expensive equipment is sometimes used, financial con-
straints limit these use to only top-tier professionals. Therefore, there is a growing 
need for automated data acquisition using computer vision technologies. 

The application of computer vision in sports analytics spans a wide range of 
tasks, including field registration, object tracking, action recognition, and pose esti-
mation. These tasks leverage advanced machine learning models to process vast 
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amounts of visual data, providing detailed and meaningful information that was 
previously unattainable with traditional methods. By automating the extraction of 
meaningful information from video footage, computer vision allows for more com-
prehensive insights into sports performance and strategy. International workshops 
such as CVSports and MMSports on computer vision in sports continually introduce 
the latest approaches for efficiently collecting and analyzing these data. This chapter 
explored how these technologies are transforming the future of sports analytics, 
showing interesting research examples. Although a comprehensive list of commer-
cial devices and applications is provided in [166], the focus of this chapter is to intro-
duce openly shared technologies rather than less transparent commercial devices. In 
the following, an overview of key computer vision tasks is provided. Then, Sect. 2.2 
describes the details of essential computer vision elements for analyzing sports data. 
Section 2.3 explores advanced applications and integrations of computer vision tech-
niques. Finally, Sect. 2.4 discusses future directions and potential advancements in 
computer vision for sports analytics. 

2.1.1 Overview of Key Computer Vision Tasks for Sports 
Analysis 

Following the introduction of computer vision’s role in sports analytics, it is essential 
to consider fundamental tasks for sports analytics. The subsequent tasks form the 
backbone of computer vision applications in this domain. Here, field registration, 
tracking, re-identification, action recognition and detection, and pose estimation are 
briefly introduced. These tasks are crucial for generating event data, tracking data, 
and pose data, which are essential for comprehensive sports analytics. The detailed 
explanations are described in the next subsection. Figure 2.1 illustrates the application 
of field registration, tracking, and identification in a soccer match [150]. 
Field Registration involves the alignment of the captured video footage with a 
pre-defined or template playing field. The terms “field registration” and “camera cal-
ibration” are sometimes used interchangeably, but they have distinct purposes [107]. 
Sports field registration estimates a homography between the 3D sports field plane 
and the image, which is limited to applications within the field plane. In contrast, 
camera calibration provides a mapping between the entire 3D world and the image, 
making it suitable for comprehensive 3D applications. By achieving precise field reg-
istration, analysts can create a reliable spatial context for tracking player movements 
and game events, enabling a consistent frame of reference throughout the analysis. 
This chapter will primarily introduce field registration techniques for sports analytics. 
Tracking includes both the detection and association of relevant objects within video 
frames. In sports, this involves first detecting players, the ball, and other key elements 
using advanced algorithms like neural network approaches that accurately locate 
and classify these objects, even under varying lighting conditions and occlusions. 
Once detected, for example, some tracking algorithms predict the positions of these
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Fig. 2.1 An illustration of field registration, tracking, and identification in a soccer match used in 
a game state reconstruction competition [150]. The figure highlights how positional data is aligned 
with a pre-defined field model, and players are tracked and identified through their jersey numbers. 
The minimaps at the bottom show the predicted and ground truth positions on the minimaps. This 
figure utilizes the image with permission from the SoccerNet Community 

objects in future frames based on their current trajectory and velocity. This process 
of detection and tracking is important for analyzing player movements, including 
speed and interactions with other players and the ball. 
Re-identification addresses the challenge of recognizing the same player across 
different camera views or after occlusions. This process ensures continuity in tracking 
individual players throughout the game. Player re-identification is important for 
automatic video processing in sports, leveraging distinctive features of the player’s 
image, such as jersey color and number, or feature vectors obtained from various 
feature extraction methods. By using these features, reliable re-identification can be 
achieved, which is particularly important for long-duration tracking. Deep learning 
models are often employed to learn and extract these distinctive features, allowing 
for accurate re-identification and ensuring reliable tracking of individual players 
throughout the game. 
Action recognition and detection is the process of identifying specific actions or 
events in sports footage, such as passes, shots, tackles, or goals. This involves ana-
lyzing sequences of frames to detect patterns that correspond to particular actions, 
with rule-based or deep learning models commonly used to recognize these actions 
based on spatial and temporal features extracted from video data. In addition to 
recognizing actions in each video, related tasks like action spotting and temporal 
action segmentation broaden the scope of analyzing sports footage. Action spotting 
focuses on pinpointing the exact time at which a particular event occurs. It pro-
vides precise timestamps for key actions, which is particularly useful for generating 
automated highlights and applications requiring exact event timing. Temporal action 
segmentation or localization involves dividing the video into segments based on the 
occurrence of actions, identifying the start and end times of actions, and offering a
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more detailed understanding of the duration and sequence of events. By consider-
ing action recognition, action spotting, and temporal action segmentation, advanced 
systems can automate the annotation of key events in a game, facilitating detailed 
performance and tactical analysis. 
Pose estimation and tracking involves determining the precise positions of a 
player’s body joints from video footage. By capturing and analyzing the skeletal 
structure of players, it allows for the analysis of player postures, movements, and 
biomechanics. In pose estimation, algorithms such as using deep learning models are 
used to map the locations of key joints (e.g., shoulders, elbows, knees) within each 
frame. This data can then be used to assess techniques, identify potential injury risks, 
and enhance training programs. Pose estimation is especially valuable for both team 
and individual sports, where body mechanics are important to enhance performance. 

By focusing on these essential components, computer vision systems can provide 
a robust framework for sports analytics. Each element plays a critical role in trans-
forming raw video footage into meaningful data that can be used to derive insights 
into player performance and team tactics. 

2.1.2 Importance and Challenges of Data Acquisition in 
Sports 

Accurate and reliable data acquisition is the cornerstone of effective sports ana-
lytics. The quality of the insights and analyses derived from computer vision tech-
niques heavily depends on the quality of the data collected. In sports, data acquisition 
involves capturing various types of visual and positional information from games and 
practices, which are then used to inform decisions and strategies. 

However, acquiring high-quality data in sports presents several challenges:

• Complexity of movements: Sports involve fast-paced and complex movements, 
making it difficult to capture precise data by hardware (cameras) like motion blur. 
In addition, players on the same team often wear similar uniforms, sudden changes 
in movement direction, and moves with intentional physical contact (increases the 
frequency of occlusion), complicating accurate tracking, identification, and other 
techniques.

• Environmental factors: Weather conditions including lighting, camera angles, 
and obstructions can significantly affect the quality of the captured footage. Devel-
oping methods that are robust to various environmental factors is a major chal-
lenge because it is nearly impossible to ensure consistent and clear visuals across 
different stadiums and sports.

• Volume of data: Sports events generate large volumes of data, including video 
footage, tracking data, event data, pose data, and other sensor information. Man-
aging and processing this data efficiently is critical for timely analysis and 
feedback.
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• Integration of multiple data sources: Combining data from various sources, such 
as cameras, GPS devices, and wearable sensors, to create a cohesive dataset can 
be complex. Ensuring the synchronization and compatibility of these data streams 
is essential for accurate analysis.

• Privacy and ethical considerations: Collecting detailed data on athletes raises 
privacy and ethical concerns. Ensuring that data collection practices comply with 
legal and ethical standards is important for protecting the rights and well-being of 
all athletes, with particular attention needed for children. 

Despite these challenges, advancements in computer vision technologies continue to 
enhance the capabilities of sports analytics. By addressing these issues and leveraging 
state-of-the-art techniques, researchers and practitioners can obtain high-quality data 
that drives better performance and tactics. 

In the following sections, specific technologies and datasets used in computer 
vision for sports analytics are explored, highlighting their applications, methodolo-
gies, and impact on the field. In particular, these sections emphasize how open-source 
datasets benefit the scientific community by driving research in this field. 

2.2 Description of Key Computer Vision Elements for 
Sports Analysis 

This section provides a detailed examination of the work carried out in each key 
task of computer vision used in sports analysis, including the available datasets and 
developed methods. We discuss how these elements, including field registration, 
tracking, re-identification, action recognition and detection, and pose estimation, 
are essential for extracting meaningful insights from sports footage. Each of these 
components plays a crucial role in the analysis pipeline, contributing to precise data 
acquisition for sports analytics. Through a detailed examination of these elements, 
the advancements in computer vision technology and their impact on sports analytics 
are introduced. 

2.2.1 Field Registration 

Field registration is an important process in sports analytics, aligning video footage 
with a pre-defined playing field to ensure that positional data accurately corresponds 
to real-world coordinates. This alignment allows for precise tracking of player move-
ments, forming the foundation for various analytical tasks. This section first intro-
duces available datasets for field registration, and then different approaches to field 
registration are explored, including camera calibration techniques, recent keypoint-
based and keypoint-less approaches, and strategies for handling multiple camera 
views and occlusions.
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Datasets for Field Registration 

To develop and evaluate field registration methods, researchers have shared and 
utilized various datasets annotated with such as homographies and geometric field 
elements in sports fields. These datasets are important for benchmarking and advanc-
ing the accuracy of field registration techniques. Here, a summary of some significant 
datasets used in sports analytics is presented, highlighting their scope, annotations, 
and accessibility. As of 2024, the datasets have been comprehensively summarized 
by Magera et al. [107]. Note that the following datasets include field markings, homo-
graphies, or pinhole models. Field markings include geometric field elements such as 
lines and circles in sports fields. Homography is a simpler transformation suited for 
2D planar surfaces, while the pinhole model provides a complete 3D mapping that 
accounts for the camera’s intrinsic and extrinsic parameters, enabling more complex 
spatial analyses. 

In soccer, the WorldCup 14 dataset includes 395 images annotated with homogra-
phies and is openly available. It has been extensively used in studies such as [ 29, 67], 
making it a popular choice for evaluating field registration methods. Similarly, the 
TS-WorldCup dataset provides 3,812 soccer images with homography annotations 
and is also publicly accessible [ 33]. The SoccerNet-calibration dataset [ 35] is another 
notable resource, offering 21,132 soccer images annotated with field markings. This 
dataset is publicly available and has been employed in several studies, such as [165]. 
The CARWC dataset contains 4,207 soccer images with homographies and is openly 
available [ 39]. 

In ice hockey, the SportLogiq dataset reportedly had 1.67 million images, although 
the specifics of the annotations are not disclosed, and the dataset is not publicly acces-
sible [ 67, 81]. For multi-sport applications, the SportsFields by Amazon dataset 
includes 2,967 images annotated with homographies but is also not publicly avail-
able [122]. For volleyball, a dataset containing 470 images with homographies was 
reported [ 29], but the annotation data is not publicly available. 

In basketball, DeepSportRadar and 3DMPB, offer 728 and 10,000 images respec-
tively, both annotated using the pinhole model and are publicly available [ 72, 170]. 
The College Basketball dataset consists of 640 basketball images with homogra-
phies and is not publicly accessible [145]. Lastly, the Athletics dataset provides 
10,000 images with pinhole model annotations and is also publicly accessible [ 13]. 

These datasets allow the development for the development of field registration 
algorithms, providing diverse and annotated images that facilitate the creation and 
evaluation of reliable camera calibration methods. However, the varying nature of 
annotations, limited dataset sizes for certain sports, and restricted access to some 
datasets pose challenges in achieving consistent and comparable results across 
different studies.
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Traditional Field Regisration Approaches 

Field registration has been basically considered as a homography estimation prob-
lem, whereby corresponding features or keypoints are identified between the image 
and the field model, and the mapping between them is computed using techniques 
such as RANSAC (Random Sample Consensus) [ 48] and DLT (direct linear trans-
formation) [ 60]. These methods rely on detecting specific points or features on the 
field, such as corners and line intersections, to compute the homography or camera 
parameters required for field registration. 

Traditional approaches primarily focus on estimating homography, which only 
provides a mapping between the 2D field plane and the image. However, it is chal-
lenging to account for camera distortions, changes in perspective, and variations in 
camera parameters, leading to less accurate and reliable results. Therefore, camera 
calibration is also important in field registration, and it is important to recognize that 
the two tasks complement each other. Some works have explored camera calibration 
to enable the projection of non-planar points, such as those belonging to goal posts or 
crossbars (e.g., [ 27, 35, 150]). This involves estimating the camera’s intrinsic param-
eters (focal length, principal point) and extrinsic parameters (rotation, translation) 
using the known dimensions of the sports field as a calibration rig. 

Deep Learning Approaches in Field Registration 

Despite the precision offered by traditional field registration and calibration meth-
ods, they often rely on manual feature selection and parameter tuning, making them 
less adaptable to varying conditions. Deep learning approaches have emerged as 
a powerful alternative, leveraging large datasets and advanced algorithms to auto-
mate and enhance the field registration process, offering improved robustness and 
efficiency. Keypoint-based approaches using deep learning have focused on either 
directly predicting an initial homography matrix [ 81, 163] or seeking the optimal 
matching homography within a reference database of synthetic images with known 
homographies or camera parameters [145, 147, 188, 189]. Other methods exploit 
the temporal consistency between subsequent video frames [ 38, 122] to refine the 
homography estimates. Also, geometry-based 3D sports field registration has been 
proposed [ 58], which is currently the best open-source method for soccer field reg-
istrations [ 58]. By employing classical camera calibration techniques such as the 
DLT algorithm and RANSAC, the method achieved superior performance in both 
multiple- and single-view 3D camera calibration. 

Keypoint-less approaches do not rely on detecting specific points or features on 
the field. Instead, they use more generalized features, such as lines or regions, to 
achieve field registration. TVCalib [165] uses a differentiable objective function to 
learn camera pose and focal length from segment correspondences. By using segment 
localization and an iterative calibration module, this approach minimizes reprojection 
errors and performs well even with broadcast soccer videos [ 37, 58].
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Common challenges in field registration 

A common challenge in field registration is the presence of partial occlusion of the 
court in broadcast videos. To address this, recent methods have incorporated deep 
learning-based semantic segmentation [ 67, 122, 188] or edge detection [147] to  
extract relevant features from the field. For another challenge, current approaches 
still largely overlook the complexities introduced by camera lens distortions and non-
linearities in the mapping between video footage and real-world coordinates. Some 
approaches have focused on leveraging the geometric properties of sports fields to 
generate keypoint grids, enabling robust camera calibration with minimal refinement 
using DLT and RANSAC algorithms [ 58]. Investigating new models and algorithms 
that can accurately account for these factors will be important in further enhancing the 
precision and reliability of field registration. Such advancements in field registration 
contribute significantly to the overall effectiveness of computer vision applications 
in sports analytics, facilitating detailed and accurate analysis of player movements. 

2.2.2 Tracking 

Researchers have proposed various methods for tracking players and the ball in team 
sports. Tracking involves detecting and following the movements of players and 
the ball across successive video frames (the latter is called multi-object tracking 
(MOT)), enabling to generate accurate positional data, which serves as the founda-
tion for further analytical tasks. Various traditional and deep learning approaches 
have been developed to enhance the accuracy and efficiency of tracking in sports. 
Previous surveys [110, 133] summarized various approaches that combine back-
ground subtraction, multi-camera triangulation, and Kalman filters to track player 
movements on the pitch, and here, a more brief but comprehensive review including 
recent approaches is presented. 

Datasets for Tracking 

In the sports domain, pioneering work in sports tracking datasets has provided soccer 
player location data using multi-view video cameras, offering valuable resources 
for player tracking and analysis [ 44]. Additionally, datasets featuring 2K panorama 
monocular and multi-view videos combined with LPS (local positioning system) 
data have further enhanced the ability to track player movements accurately [131]. 
For broader applications, large broadcast video datasets such as SoccerNet [ 36, 150] 
and SoccerDB [ 82] have been made publicly available. In other team sports, datasets 
like APIDIS and SPIROUDOME for basketball [ 41, 104], handball [ 19], as well 
as volleyball video datasets [ 75], provide comprehensive video data for tracking 
players.
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Recent datasets such as SoccerNet-Tracking [ 36] and SportsMOT [ 40] (soccer, 
basketball, and volleyball) utilize unedited main camera and broadcast footage. 
These datasets often require additional processing for image registration and han-
dling zoom. SoccerTrack [142] offers full-pitch tracking using drone and fisheye 
cameras and has been recently extended to the TeamTrack dataset, which provides 
multi-sport (including basketball and handball) MOT in full-pitch videos [141] as  
illustrated in Fig. 2.2. Furthermore, virtual environments such as Google research 
football (GFootball) [ 89] enable the generation of synthetic camera and location 
data, providing a controlled setting for developing and testing tracking algorithms. 
These advancements in tracking datasets significantly democratize accurate tracking 
for sports analytics, as well as allow benchmarking algorithms and comparing their 
performance in a standardized environment. 

Object Detection 

For accurate tracking of players and balls, object detection is the initial step, involv-
ing the identification of relevant objects within a video frame. Traditional approaches 
utilize techniques like background subtraction, which helps distinguish players and 
the ball from static parts of the field. This method isolates moving objects by subtract-
ing the background image from the current frame. Feature-based methods such as 

Fig. 2.2 An illustration of TeamTrack dataset [141]. It offers full-pitch tracking using a drone (a, 
c, e) and fisheye (b, d, f) cameras in multi-sport MOT in full-pitch videos. The dataset covers 
soccer (a, b), basketball (c, d, e), and handball (f) with different camera perspectives, enhancing the 
diversity and applicability of tracking methodologies. From the arXiv version of [141], the figure 
is licensed under CC-BY 4.0
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Histogram of Oriented Gradients (HOG) use gradient information to detect players 
and the ball [ 32, 106]. Edge detection methods, such as the Canny edge detector and 
Sobel filtering, identify the edges and contours of players and the ball (e.g., [ 4, 43]. 
Recently, deep learning approaches have been used such as in RetinaNet [ 99], Cen-
terNet [ 45], and YOLO (You Only Look Once) [136]. YOLO, in particular, has 
seen numerous iterations and improvements, with newer versions continually being 
developed to enhance detection accuracy and speed. However, off-the-shelf algo-
rithms like YOLO tend to over-detect non-athlete individuals, such as spectators or 
staff around the field. Therefore, fine-tuning these models on sports-specific datasets 
is important to ensure that detection focuses primarily on the athletes on the field. 

Tracking-by-Detection Approach 

Once objects are detected, the next step is to associate the detections across succes-
sive frames, which is called the tracking-by-detection approach. Traditional tracking 
methods include point tracking techniques of players and the ball such as the Kalman 
filter (e.g., [ 61]). Contour tracking, silhouette tracking, and graph-based tracking 
involve tracking the contours or boundaries of players and the ball using active con-
tour models (e.g., [ 91]), employing shape analysis techniques to match and track 
silhouettes (e.g., [117]), and representing player positions as nodes on a graph with 
trajectories as edges (e.g., [ 47]), respectively. 

In recent MOT, associating detected objects across frames to maintain consistent 
identities is a key challenge, particularly in scenarios involving occlusion or rapid 
motion. Two primary approaches for addressing this association problem are motion-
based and appearance-based techniques, each with its own strengths and limitations. 

Motion-based methods rely on predicting the future positions of detected objects 
using their past trajectories. SORT (Simple Online and Realtime Tracking) [ 18] have  
gained popularity for their speed and simplicity, which uses a combination of the 
Kalman filter for motion prediction and the Hungarian algorithm for data association. 
Building on this, many algorithms have been developed such as ByteTrack [191] and 
OC-SORT (Observation-Centric) [ 24], BIoU (the buffer of two overlapping boxes) 
[183], EIoU (expanding the IoU according to different scales of expansion) [ 74]. 
BIoU and EIoU also demonstrate the effectiveness of MOT on the SportsMOT [ 40] 
and SoccerNet-Tracking [ 36] datasets. 

Appearance-based methods complement motion-based techniques by using visual 
features to distinguish and associate objects. In tracking, this approach is particularly 
important for maintaining consistent identification across frames, often leveraging 
re-identification features to associate tracklets or detections accurately, which also 
appears in the following subsections. DeepSORT is a pioneering method that incorpo-
rates deep visual features for object association [174]. Such deep learning approaches 
have been used for association via feature extraction, such as by convolutional neu-
ral networks (CNNs) [ 62, 194] and transformers [ 63, 148]. However, these methods 
face challenges when dealing with objects that have similar visual characteristics 
or are frequently occluded (e.g., [154]). Despite these challenges, appearance-based
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approaches provide valuable complementary data, enhancing the overall robustness 
of tracking systems when combined with motion-based techniques. 

Unique Challenges for MOT in Sports 

MOT in sports environments presents significantly greater challenges. This com-
plexity arises due to the unique characteristics of sports, such as the rapid and unpre-
dictable movements of athletes, the visual similarity among players within the same 
team, and the increased occurrence of occlusions due to the dynamic nature of the 
sport. Instead of a tracking-by-detection paradigm, in domains other than sports, end-
to-end tracking methodologies integrate object detection and tracking into a single 
process, potentially improving performance by handling both tasks concurrently. For 
instance, Tracktor [ 17] leverages frame redundancy to streamline data association, 
while Neural Solver [ 20] and DeepMOT [180] utilize neural and Siamese networks 
to improve tracking accuracy. Transformer-based models like DETR [ 26] have also  
been adapted for tracking, as seen in Trackformer [114] and TransTrack [155]. 

Despite their potential, end-to-end tracking approaches are not widely used in 
current sports MOT. This may be due to such as less amount of annotation data and 
the complex nature of sports environments including severe occlusions and others 
mentioned above. Several researchers have made notable contributions to address 
such challenges in various sports. For example, in football, tracking accuracy was 
improved through simultaneous field and player localization [108]. MV-Soccer [109] 
leveraged motion vectors to enhance real-time detection, instance segmentation, and 
tracking of soccer players. In basketball, human pose information and actions were 
utilized as embedding features for player tracking [ 7]. In highly occluded scenar-
ios such as wide-view basketball from the TeamTrack dataset [141], Hu et al. [ 71] 
developed Basketball-SORT to reacquire long-lost IDs based on specific basketball 
scene characteristics. In ice hockey, Vats et al. [172] combined team classification 
and player identification techniques to enhance tracking. In multiple sports, includ-
ing basketball, volleyball, and soccer, Huang et al. [ 73] integrated OC-SORT with 
appearance-based post-processing. In summary, these advancements are important 
for sports analytics, enabling detailed analysis of player movements. 

2.2.3 Re-identification 

Player re-identification (Re-ID) is an essential process in sports video analysis, aim-
ing to identify and distinguish each player across different video frames and camera 
angles. This process is critical for automated video processing tasks such as track-
ing player movements, generating highlights, and analyzing player behavior. Player 
Re-ID leverages various features from players’ images, including jersey color and 
number, and more sophisticated feature vectors obtained from deep learning models.



32 2 Computer Vision for Sports Analytics

Datasets for Re-ID in Sports 

Datasets for Re-ID in non-team sports often originated from simple identification 
tasks, where the primary goal was to distinguish athletes using features like bib 
numbers or facial recognition. The RBNR Dataset [ 15] is specifically tailored for 
marathon events, containing 217 color images with annotated ground truth bib num-
bers, which are important for training and testing Re-ID models in long-distance run-
ning scenarios. Similarly, the Marathon RBN Dataset [129] includes 9,706 images 
captured in daylight, providing ample data for re-identifying marathon runners. 
Another significant dataset in this category is the TGC20ReId Dataset [130], which 
addresses the Re-ID problem in an ultra-running sport event. This dataset comprises 
4,373 images of runners captured under varying lighting conditions (day and night), 
across 2–5 different locations, offering a novel approach to player Re-ID in more 
challenging outdoor environments. Recently, a re-ID model and evaluation dataset 
for runners [159], focusing on consistently tracking athletes across frames without 
relying solely on known identity markers, is provided, which is described later. 

In contrast, team sports datasets for Re-ID often involve recognizing players by 
their jersey numbers or other visual attributes. The Synergy Re-Identification Dataset 
[170] provided by DeepSportradar, includes image crops of basketball players, ref-
erees, and coaches from short game sequences, with a training set of 8,569 images, 
and various query and gallery images for testing and challenges. The Hockey Dataset 
[ 86], which includes legible images of players’ jersey numbers from university ice 
hockey games, and the McGill Hockey Player Tracking Dataset [192], spans multiple 
games and provides extensive data for player Re-ID in hockey. Furthermore, the Soc-
cerNet Re-Identification Dataset [ 35] provided 340,993 player thumbnails extracted 
from broadcast videos of 400 soccer games across six major leagues. This dataset 
is designed to re-identify soccer players across multiple camera viewpoints during 
games, offering a comprehensive resource for evaluating and training Re-ID models 
in team sports scenarios. Similarly, the SoccerNet Game State Reconstruction dataset 
[150] offered a video-based re-identification (through time) and identification (jersey 
number) setup, which is described later. These datasets present a range of challenges 
including similar uniforms, dynamic movements, and varying lighting conditions, 
essential for advancing player performance analysis in sports analytics. 

Image-Level Re-ID 

Also in sports Re-ID, image-level methodologies have been first developed. For 
example, early research explored visual local features related to the faces of soccer 
players [ 11]. Jersey numbers are distinctive and easily recognizable, making them 
reliable identifiers. For instance, jersey colors and numbers have been utilized for 
player detection in basketball and soccer, demonstrating the utility of these features 
in sports analysis [ 79, 120].
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However, relying solely on jersey numbers is insufficient due to various challenges 
such as occlusions, varying camera angles, and low resolution. To address these chal-
lenges, advanced techniques involving feature extraction from deep learning models 
have been developed. For example, the use of deep convolutional representation and 
multi-scale pooling for part-based player identification has shown promise [143]. 
Additionally, body feature alignment techniques have been employed in soccer to 
improve Re-ID accuracy [ 2]. 

Advanced deep learning methods have further enhanced player identification in 
various sports. For instance, techniques like constrastive learning and the use of 
CLIP (Contrastive Language-Image Pre-Training) models have been employed for 
more robust player identification in hockey and basketball [ 59, 87, 171]. Multi-task 
learning frameworks have also been developed for joint Re-ID, team affiliation, and 
role classification in soccer visual tracking [111]. The Attention-Aware Multiple 
Granularities Network (A2MGN) captures discriminative features from different 
granularities using multiple branches, including a global branch, part-based branches, 
and an attention-aware branch [ 5]. Additionally, an enhanced Swin Transformer 
has been developed for soccer player Re-ID, leveraging advanced deep learning 
architectures to further boost accuracy [ 3]. 

More Realistic Setting 

Here, a more realistic Re-ID setting can be considered. In sports, Re-ID involves 
not only recognizing players based on individual images but also tracking them over 
sequences of frames, known as tracklets. Tracklet-level Re-ID [ 86] is important for 
long-term tracking and analysis, addressing challenges such as motion blur, occlu-
sions, and varying camera angles. The approach involves aggregating information 
across multiple frames to maintain consistent player identification. To solve these 
issues, a robust pipeline was proposed that starts with the main subject filtering 
to isolate frames where the player is not occluded. A legibility classifier identifies 
frames with clear jersey numbers, and a scene text recognition system is then used 
to recognize the jersey numbers in these frames [ 86]. The final step aggregates these 
frame-level predictions into a tracklet-level prediction, enhancing the accuracy and 
reliability of jersey number recognition in sports videos. 

Also in [150], athlete Re-ID is evaluated at the video level rather than just the 
image level. The Re-ID process involves tracking athletes throughout the game by 
integrating multiple attributes such as their role, team, and jersey number. This com-
prehensive approach addresses challenges like occlusions, varying camera angles, 
and partial visibility of jersey numbers by leveraging feature extraction from deep 
learning models. This game state reconstruction [150] is described in Sect. 2.3. 

Another topic is the open-world problem setting. Most studies on player Re-ID 
focus on the closed-world setting, which relies on improving the performance of fea-
ture extractors using pre-prepared image datasets with sufficient labeled data [184] 
(Fig. 2.3 left). However, this approach is limited for general sports video process-
ing due to the high cost of labeling image datasets from videos and the need to
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Fig. 2.3 The open-world setting for runner Re-ID. The left illustrates the closed-world setting, 
where pre-labeled images can be used for training. The right depicts the open-world setting, where 
raw video data is processed directly, allowing for the identification of players not present in the 
training dataset. This approach is particularly suited for general sports video processing and daily 
practice scenarios. The pictures are the original 

identify players not included in the dataset. Consequently, the open-world setting, 
which involves directly processing raw images or videos, including person image 
extraction and feature extraction, is more suitable for real-world applications [184] 
(Fig. 2.3 right). This setting does not require manual data processing and is particu-
larly beneficial for daily practice videos where cost constraints are significant with 
video measurement and processing costs. In this open-world setting, Suzuki et al. 
[159] addressed this by tracking runners, detecting their shoes, and extracting image 
features through an unsupervised method with a mix of global and local features. 
In summary, such advancements in Re-ID technology contribute significantly to the 
automation and accuracy of player performance analysis in sports analytics. 

2.2.4 Action Recognition and Detection 

Action recognition and detection in sports videos is a complex field involving var-
ious tasks such as action recognition, action spotting, temporal action segmenta-
tion, and other specialized tasks. These tasks are crucial for analyzing sports events, 
understanding player behaviors, and automating video analysis processes. Action 
recognition usually identifies one action class describing the whole video clip, but 
action detection or temporal action segmentation/localization refers to the task of 
identifying the times of actions within a video. In action detection, action spotting 
focuses on pinpointing the exact time at which a particular event occurs. Temporal 
action segmentation/localization identifies the start and end times of actions based 
on the occurrence of actions. By considering action recognition, action spotting, 
and temporal action segmentation, advanced systems can automate the annotation of 
key events in a game, facilitating detailed performance and strategy analysis. Here, 
datasets for action recognition and detection are first introduced, then the details of 
these tasks and the proposed methods are explained.
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Datasets for Action Recognition and Detection 

Researchers have established numerous benchmarks in the sports domain to address 
challenges to explore promising application prospects. For video action recognition, 
datasets such as UCF Sports Action [138] and Diving48 [ 96] provide extensive 
collections of action clips for training and evaluation. Group action recognition, 
which involves tagging each video clip with a group action label, utilizes datasets 
like basketball [182], volleyball [ 76], ice hockey [ 9, 10], and collective sports [187] 
highlighting the interactions and coordinated movements among team members. 

Action spotting tasks were introduced by the SoccerNet dataset [ 37, 42, 53], 
which focuses on identifying specific moments within sports footage. Temporal 
action segmentation, which aims to detect and segment continuous actions over 
time, is addressed using datasets like diving [179], gymnasitics [146], and figure 
skating [ 50, 102]. MultiSports dataset [ 97] including aerobic gymnastics, basket-
ball, soccer, and volleyball is also commonly used for this purpose. Additionally, 
SportsHHI dataset [176] provides interaction definitions and annotations to explic-
itly explore human-human interaction. These datasets collectively advance the field 
of sports analytics by providing rich sources of data for various analytical tasks. 

Action Recognition Studies 

Action recognition involves identifying and classifying a specific action within a 
video segment [ 66], assuming that the temporal boundaries of the actions are already 
known (or rather not of interest) and focusing solely on recognizing the type of action 
being performed. In the context of team sports, it is essential to focus on group action 
recognition, which is critical for understanding team dynamics and strategies. A com-
prehensive review [175] categorizes methods for group activity recognition (GAR) 
into traditional approaches based on handcrafted features and more recent methods 
utilizing deep learning. Traditional approaches are divided into top-down methods, 
which analyze global group motion and interactions, and bottom-up methods, which 
focus on individual actions and their aggregation. Deep learning methods are dis-
cussed in terms of hierarchical temporal modeling, relationship modeling, attention 
modeling, and unified frameworks, highlighting both the progress and challenges 
in the field. Many studies use the volleyball dataset [ 76], and recent research has 
explored Transformer architectures using pose information and person attributes 
(e.g., [ 94, 119]). 

Specific event recognition in sports has seen advancements in various areas, 
addressing the need for automated systems to assist in decision-making processes. 
In soccer, automated offsides detection has been developed to enhance the accuracy 
and speed of rulings during matches [168]. Additionally, a video assistant referee 
(VAR) system has been proposed for making automated decisions from multiple 
camera views, improving the overall fairness and consistency in soccer games [ 64]. 
In rugby, the detection of dangerous tackles has been explored to enhance player 
safety and game integrity [124]. Similarly, in athletics, methods for the automatic
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detection of faults in race walk have been developed, providing reliable and objective 
assessments of athlete performance [156, 157]. Furthermore, edge error detection in 
figure skating has been introduced to support judges in identifying technical mistakes, 
thereby contributing to more accurate scoring [162]. These innovations emphasize 
the growing role of automated event recognition systems in improving the accuracy, 
safety, and fairness of sports competitions. 

Action Detection and its challenges 

In sports analytics, it is crucial to identify key actions within a video. Action spotting, 
focusing on identifying specific moments or key events within a video, is essential in 
terms of sports analytics. Unlike action recognition, which deals with pre-segmented 
actions, action spotting involves locating the precise time points where actions occur. 
This task is particularly relevant in sports, where fast-paced actions need to be pin-
pointed accurately. Action spotting and the following temporal action segmentation 
share common techniques, but the choice between them depends on the character-
istics of the sport. For instance, action spotting is often preferred for identifying 
discrete events, such as passes in soccer or jumps in figure skating, where the action 
is best captured at specific moments. 

Recent action spotting techniques benefit significantly from end-to-end (E2E) 
approaches, compared to feature-based approaches (e.g., [ 34, 55, 195] due to their 
ability to simultaneously learn features and make predictions in a unified frame-
work. For instance, E2E-Spot [ 69] combines the steps of finding important features 
and making predictions into one unified model, making the system more efficient 
and accurate. Building upon these concepts, T-DEED (Temporal-Discriminability 
Enhancer Encoder-Decoder) [177] further enhanced the approach by refining token 
discriminability and handling multiple temporal scales. In particular, T-DEED [177] 
has achieved both novelty and high performance, even securing first place in the 
SoccerNet Ball Action Spotting 2024 competition. In addition, a recent open-source 
library aims to gather all methods into a single framework [ 16]. While action spot-
ting can be done manually by a team member or outsourced if budget allows, it is a 
labor-intensive process that not every team can manage. Nevertheless, the insights 
gained from recognizing these events are essential for game analysis, providing fun-
damental information. Therefore, improving the accuracy of action spotting and the 
following temporal action segmentation is an essential step toward automating data 
acquisition in sports analytics. 

Temporal action segmentation (TAS) involves dividing a video into segments, 
each corresponding to a distinct action or event. This task is important for creat-
ing structured representations of untrimmed videos, enabling detailed analysis and 
understanding of continuous video streams. TAS methods often use both proposal 
generation and classification stages to identify and label each segment accurately. 
Although there are several datasets available for TAS in sports as described above, 
TAS for sports has not been extensively studied (often focusing on cooking proce-
dures in kitchens such as [ 88] and assembly procedures for furniture and toys such as
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[ 12]). This might be due to the inherent complexity and variability of sports actions, 
which are often more dynamic and context-dependent than those in kitchen or assem-
bly tasks. TAS models previously had frame-based approaches (e.g., [ 46, 186]) that 
rely on temporal convolution networks or tranformers to refine feature representa-
tions over multiple stages. On the other hand, two-stage methods (e.g., [ 14]) aim to 
capture long-range temporal information by learning action features in two distinct 
phases. In sports, the boundaries of events are often not well-defined but TAS has 
intensively investigated in figure skating [ 98, 160, 161]. In particular, Tanaka et al. 
[161] used the FACT framework, which integrates frame and action features through 
bidirectional cross-attention [105], to perform TAS in figure skating jumps by lever-
aging 3D pose data. Despite these challenges, there is significant potential for TAS 
in sports (reviewed about soccer [144]) because it requires more in-depth knowledge 
of the specific sport, and automatic acquisition of such fundamental information is 
highly anticipated and essential from a sports analytics perspective. 

2.2.5 Pose Estimation 

Pose estimation in sports presents unique challenges due to the dynamic and complex 
movements involved, the limitations of camera setups, and the frequent occlusions 
and contact between players. Sports activities often require capturing fast, intricate 
motions, which is a significant challenge compared to existing datasets. Addition-
ally, sports scenes sometimes involve moving, low-resolution, and complicating pose 
estimation efforts. Team sports also introduce substantial occlusions as players fre-
quently come into contact, and the similar appearance of players wearing matching 
uniforms makes it difficult to distinguish between individuals using appearance-
based methods. This introduces the necessity of specialized datasets, advancements 
in both 2D and 3D pose estimation techniques, and solutions to these challenges. 

Datasets for Pose Estimation in Sports 

2D pose estimation in sports often relies on well-annotated datasets to train and eval-
uate models. Some notable 2D pose datasets include the LSP dataset, which contains 
1,000 images specifically curated for human pose estimation in sports settings [ 84]. 
The Sport Image dataset provides 1,300 images focused on various sports activi-
ties, facilitating detailed analysis of athletic poses [173]. The MPII Human Pose 
dataset is more extensive, offering 25,000 images capturing a wide range of human 
activities, including sports [ 6]. OCHuman dataset, with 4,700 images, emphasizes 
occluded human poses, which are common in dynamic sports scenes [190]. The 
COCO-WholeBody dataset is the most comprehensive, with 250,000 images cov-
ering the whole body, including detailed annotations for face, hands, and feet [ 83]. 
Additionally, the 3DSP dataset offers 4,000 images specifically annotated for soccer 
player poses [185] and KTH Multiview Football Dataset II [ 85] provides 800 frames
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pose data captured from 3 views. These are built upon extensive manual effort. The 
DeepSportLab dataset 1 [ 52] can be utilized to train a unified model that simultane-
ously predicts ball detection, player instance segmentation, and pose estimation in 
team sports scenes, demonstrating its effectiveness specifically in basketball contexts 
(672 images of professional basketball games captured from 29 arenas). 

3D pose estimation requires datasets that provide depth and spatial coordinates to 
capture the complexities of athletic movements. Creating a 3D pose dataset requires 
the use of multiple cameras, or for more precise data, an optical motion capture 
system. The ASPset-510 dataset offers 330,000 frames focused on various sports, 
providing detailed 3D annotations to support sports-related pose estimation [121]. 
The Sportspose dataset includes 1.5 million frames specifically designed for sports 
pose estimation, facilitating advanced research in this area [ 77]. The AIST++ dataset 
is one of the largest, containing 10.1 million frames of dancing sequences, which 
helps in understanding complex motion patterns [ 93]. The Runner dataset, with about 
20,000 frames, is tailored for running activities [158]. Recently, figure skating jump 
dataset [161] was published including both 3D pose data and video data from 12 
viewpoints and 78,000 frames. However, in general, there is a shortage of 3D pose 
datasets specialized in specific sports movements, excluding the above, due to the 
fact that it is hard to capture 3D pose ground truth data on the field (compared to a 
controlled lab environment). These datasets are essential for developing and refining 
pose estimation models in sports, enabling accurate analysis and understanding of 
athletic performance. 

2D Pose Estimation 

Top-down and bottom-up approaches are the two main strategies for 2D human 
pose estimation. The top-down approach in 2D human pose estimation has evolved 
significantly over the years, demonstrating impressive advancements in accuracy 
and efficiency. This approach typically involves a two-stage process: first detecting 
individual persons in an image, then estimating the pose for each detected person. 
DeepPose [167] pioneered the use of deep neural networks for pose estimation, 
formulating it as a DNN-based regression problem. The High-Resolution Network 
(HRNet) [153] further improved upon this by maintaining high-resolution represen-
tations throughout the entire process, leading to more accurate and spatially precise 
keypoint predictions. Most recently, ViTPose [181] demonstrated that even a sim-
ple Vision Transformer-based model, without complex modules or CNN fusion, can 
achieve competitive results in human pose estimation. These top-down approaches 
are often more accurate than the following bottom-up approach but computationally 
expensive and dependent on detection quality. 

Bottom-up approaches for 2D human pose estimation have also evolved signifi-
cantly over the years, offering efficient solutions for multi-person pose estimation.

1 https://ispgroup.gitlab.io/code/deepsportlab/. 

https://ispgroup.gitlab.io/code/deepsportlab/
https://ispgroup.gitlab.io/code/deepsportlab/
https://ispgroup.gitlab.io/code/deepsportlab/
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https://ispgroup.gitlab.io/code/deepsportlab/
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DeepCut [132] pioneered the use of deep learning for jointly detecting and associat-
ing body parts. OpenPose [ 25] further advanced the field by introducing part affinity 
fields for real-time multi-person pose estimation. HigherHRNet [ 31] improved upon 
previous methods by introducing a scale-aware representation learning approach, 
particularly effective for detecting poses of people at different scales. Bottom-up 
approaches are often more efficient and scalable than top-down approaches but can 
struggle with accurate keypoint grouping and may sometimes yield lower overall 
accuracy. More recently, end-to-end approaches that blur the line between bottom-
up and top-down methods have emerged (e.g., [100, 149]). These end-to-end meth-
ods try to address the challenges of multi-person pose estimation, such as occlu-
sions and varying scales, by leveraging the global context provided by transformer 
architectures. 

3D Pose Estimation 

3D pose estimation has seen significant advancements through various approaches, 
including direct estimation and 2D-to-3D lifting. Here, monocular 3D pose estima-
tion methods are first introduced, and then multi-view ones are described. Direct 
estimation methods aim to predict 3D poses directly from 2D images without inter-
mediate 2D pose estimation (A seminal work is [164]). This approach, while inno-
vative, often struggles with depth ambiguities and occlusions. In contrast, 2D-to-3D 
lifting methods first estimate 2D poses and then lift these 2D keypoints to 3D space 
(pioneering work is [112]). Recently, transformer-based models have been used in 
sports 3D pose estimation. For example, StridedTransformer-Pose3D [ 95] was used 
in figure skating [162], and MotionAGFormer [113] was used for soccer broadcast 
videos [185] in our group as shown in Fig. 2.4. 

Multi-view 3D pose estimation has gained significant attention due to its ability 
to handle complex scenarios and occlusions. To address these issues, for example, 
a learnable triangulation of human pose method [ 78] and a method simultaneously 
reasoning about multiple individuals’ 3D body joint reconstructions and associa-
tions in space and time [135] were proposed, which allow for end-to-end training 
and improved accuracy. In sports, a method for learning monocular 3D human pose 
estimation from multi-view images is proposed, leveraging view consistency and a 
small set of labeled data to enable pose estimation for motions with limited annota-
tions [137]. A fast greedy algorithm for multi-person 3D pose estimation and tracking 
in sports was also presented, which associates 2D poses across views and generates 
3D skeletons to handle challenging sports scenarios [ 21]. Additionally, a motion-
aware and data-independent model for multi-view 3D pose refinement in volleyball 
spike analysis is introduced, utilizing multi-view relationships and sport-specific 
motion patterns to improve pose estimation accuracy [103].
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Fig. 2.4 A 3D pose estimation example from soccer broadcast videos in our group [185]. The top 
photo is the broadcast video frame, and the bottom-left and bottom-right images correspond to the 
2D and 3D pose estimations, respectively. This figure utilizes the image with permission from the 
SoccerNet Community 

Challenges in Sports Pose Estimation 

Pose estimation in sports presents several significant challenges that impact its accu-
racy and applicability. One major issue is the stringent accuracy requirements of 
sports biomechanists, who need highly precise joint center positions for their analy-
ses. Current pose estimation models often fail to consistently provide the necessary 
level of precision, resulting in a mismatch between the goals of computer scientists 
developing these models and the specific needs of sports biomechanists. Further-
more, the dynamic and complex nature of sports movements, combined with the 
frequent occlusions and similar appearances of players in team sports, aggravates 
the difficulty of achieving accurate pose estimations. These challenges necessitate 
advancements in pose estimation techniques to better serve the needs of the sports 
science community. 

To address some of these challenges, recent research has explored innovative 
approaches such as unsupervised fine-tuning. Suzuki et al. proposed a system for 
unsupervised fine-tuning of monocular 3D pose estimation models [158] as illustrated 
in Fig. 2.5. Their method leverages multi-view estimation to obtain initial 3D joint
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Fig. 2.5 Comparison of motion capture techniques. The figure contrasts ground truth motion cap-
ture, which is accurate but costly, with cost-effective motion capture methods [158]. Ground truth 
motion capture involves many cameras and manual calibration, resulting in accurate measurements. 
On the other hand, cost-effective motion capture [158] utilizes fewer cameras, automatic calibration, 
and unsupervised fine-tuning. This approach can be accurate using multi-view setups or convenient 
using monocular setups, depending on the situation 

position estimates, which are then used as pseudo-labels for fine-tuning a monocular 
model based on [ 90]. This approach aims to improve the cost-effectiveness and accu-
racy of sports motion capture by reducing the need for extensive manual calibration 
and multiple camera setups. In another work, the use of unlabelled data to enhance 
the robustness and generalizability of pose estimation models was explored [139]. 
These advancements contribute to the broader field of sports analytics by addressing 
the specific needs in accurately capturing and analyzing athletic performance. 

2.3 Advanced Applications 

This section introduces advanced applications of computer vision for sports analyt-
ics, highlighting the integration of various techniques to enhance data acquisition 
and analysis. First, the SoccerNet Game State Reconstruction (GSR) [150] frame-
work is introduced, which is important for sports analytics because field registra-
tion, tracking, and Re-ID are combined. Additionally, the advancements in ball state 
recognition and the prediction and evaluation of actions directly from video are intro-
duced. Finally, the integration of language models with computer vision is examined, 
demonstrating its potential to bring more context-aware insights to sports analytics. 

2.3.1 Integration of Field Registration, Tracking, and Re-ID 

The SoccerNet GSR framework integrates field registration, tracking, and identifica-
tion to achieve a comprehensive understanding of a game’s state [150] as illustrated 
in Fig. 2.1. The process begins with precise pitch localization and camera calibra-
tion, enabling the mapping of 2D image coordinates to real-world coordinates on the 
pitch. This integration ensures that athlete positions are accurately projected onto
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the field, providing a foundational layer for subsequent tracking and identification 
tasks. Player detection is carried out using advanced MOT algorithms, which are 
essential for continuously monitoring player movements throughout the game. The 
Re-ID process then leverages attributes such as jersey number, team affiliation, and 
player roles to uniquely identify each athlete, even in scenarios involving occlusions 
or players with similar appearances. 

The SoccerNet-GSR dataset plays a pivotal role in advancing the integration of 
field registration, tracking, and Re-ID by providing dense annotations that facilitate 
accurate pitch localization, player positions, and identities. This dataset is instrumen-
tal for training and evaluating models, ensuring that the reconstructed game state is 
precise and reliable. To measure the effectiveness of these models, the GS-HOTA 
(Game State Higher Order Tracking Accuracy) metric is introduced, which offers a 
comprehensive evaluation by considering projection accuracy, tracking accuracy, and 
the quality of player identification. This holistic approach to performance assessment 
helps in fine-tuning the models to handle the dynamic and complex nature of sports 
scenarios. Consequently, the integration of these technologies within the SoccerNet-
GSR framework significantly enhances the ability to capture and analyze critical data 
for sports analytics. This comprehensive data acquisition enables deeper insights into 
player performance, team strategies, and game dynamics, ultimately contributing to 
improved coaching, training, and broadcasting in sports. 

2.3.2 Ball State Recognition 

Ball state recognition has seen significant advancements in recent years, particularly 
in the field of 3D trajectory reconstruction from monocular video. Pioneering work 
[115] reconstructed 3D soccer ball trajectories from single static camera systems. 
Building on this, a method for reconstructing 3D trajectories of ballistic basketball 
shots from monocular videos [ 28] was developed. More recently, MonoTrack [101], a 
new approach for reconstructing shuttle trajectories in badminton from the monocular 
video was proposed, addressing the unique challenges posed by the high-speed and 
small size of shuttlecocks. Complementing these trajectory reconstruction methods, 
a technique for 3D localization of balls from a single calibrated image [169] was  
proposed, further expanding the capabilities of ball state recognition systems. These 
advancements collectively demonstrate the evolving landscape of ball tracking and 
trajectory analysis across various sports, utilizing single-camera setups to extract 
valuable 3D information. 

Ball spin estimation in sports is a complex task that can be approached both 
indirectly and directly. Indirect methods leverage related elements such as human 
pose and racket movements to infer spin. For instance, in table tennis, human pose 
information has been utilized to estimate the spin of a ball [140], while robust racket 
detection methods have been employed to predict ball spin [ 51]. Direct methods, 
on the other hand, focus on the ball itself, analyzing its trajectory (e.g., [ 30]) or 
observing specific features of the ball. Techniques that track logos or patterns on the
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ball’s surface, such as logo-based tracking (e.g., [ 56]) and pattern-based approaches 
(e.g., [ 49]), provide direct spin measurements. Recent advancements include the use 
of event cameras in volleyball and tennis [ 57, 118], which are sensors inspired by 
the visual system of animals outputting the brightness changes in a scene. 

2.3.3 Action Prediction and Evaluation from Videos 

Although it is common to perform predictions and evaluations after extracting data, 
action prediction directly from a video has been extensively explored in contexts 
such as pedestrian prediction [134] and cooking [ 1], and it has also found applica-
tions in sports for predicting passes, fouls, and the position and orientation of the 
ball. In soccer, pass prediction has been enhanced by imitation learning techniques, 
which utilize player coordinates and body orientation data to calculate pass feasibil-
ity among teammates, achieving notable accuracy improvements [ 8]. Additionally, 
combining trajectory data with video input has significantly enhanced pass receiver 
prediction accuracy [ 68]. Foul prediction in soccer has been advanced through the 
use of estimated poses from broadcast videos, leveraging methods similar to those 
used for pedestrian intention prediction [ 80]. Furthermore, volleyball trajectory pre-
diction has been improved using skeletal motion data from the setter player [151], 
and real-time forecasting of human body motion has been applied to reduce delays in 
interactive systems [ 70]. These advancements demonstrate the evolving capabilities 
and applications of action prediction in various sports contexts. 

For action evaluation in sport from video, a method to automatically score Olympic 
events from video footage was developed, focusing on diving and figure skating 
performances [128]. This work was extended to assess action quality across mul-
tiple sports, including gymnastics vault and ski jumping [127]. Another approach 
proposed a joint relation graph to assess action quality by modeling detailed joint 
interactions in sports videos [126]. A system specifically for scoring figure skating 
performances from video data was also created [178]. Additionally, a combination 
of rule-based and computer vision approaches for comprehensive and explainable 
action quality assessment in diving was introduced [125]. In baseball, PitcherNet 
was developed for analyzing mechanics and performance from video analytics [ 22]. 
While earlier works focused on end-to-end neural models, more recent studies have 
explored hybrid approaches that incorporate domain knowledge and aim for greater 
explainability. These advancements in automated action quality assessment have 
significant potential to enhance coaching, judging, and player development across 
multiple sports disciplines.
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2.3.4 Integration with Language Models 

Recent advancements in integrating language models with computer vision tech-
niques have opened new avenues for sports analytics, allowing for more nuanced 
and context-aware insights. For instance, the GOAL dataset [152] leverages videos 
of football to develop models capable of understanding and interpreting game 
events. Similarly, the Sports-QA dataset [ 92] uses various sports videos to create 
a question-answering system that can respond to queries about the games. 

The SoccerNet-caption dataset [116] focuses on generating captions for football 
games, providing detailed descriptions of game events from video footage. Building 
on this, SoccerNet-XFoul [ 65] includes 22,000 questions and answers specifically 
related to football fouls, enabling the development of models that can answer detailed 
questions about rule violations in the sport. 

In addition to football, other sports have also benefited from these integrations. 
For example, research on rugby scene classification [123] uses vision-language mod-
els to improve the classification of scenes. Another notable work, DanceMVP [193], 
applies self-supervised learning with transformer text prompting to assess dance per-
formance, demonstrating the versatility and wide-ranging applications of integrating 
language models in sports analytics. 

2.4 Future Directions in Computer Vision for Sports 
Analytics 

The future of sports analytics will be shaped by the integration of multiple modalities 
and the continuous advancement of computer vision technologies. By combining 
visual data with other sensory inputs and developing sophisticated machine learning 
models, the field aims to enhance the depth and accuracy of analysis, providing 
comprehensive insights into player performance and team tactics. 

2.4.1 Integration of Multiple Modalities 

The integration of multiple modalities, such as combining visual data with other 
sensory inputs, is a growing trend in sports analytics. This approach enhances the 
robustness and depth of analysis by incorporating diverse data sources like GPS, 
biometric sensors, and audio inputs alongside video footage. For instance, combin-
ing video-based tracking with wearable GPS devices can provide comprehensive 
insights into player positioning and movement patterns. This multi-modal integra-
tion is important for creating more accurate and context-aware analytical models, as 
it allows for the synthesis of complementary data streams, offering a holistic view 
of player performance and game dynamics.
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2.4.2 Potential Advancements and Their Impact on Sports 
Analytics 

The future of sports analytics lies in the continuous advancement of computer vision 
technologies and their integration with other modalities. Potential advancements 
include the development of more sophisticated machine learning models that can 
handle the complexities of sports environments, such as rapid and unpredictable 
movements, occlusions, and varying lighting conditions. These models will likely 
employ more advanced neural network architectures, such as transformers and graph 
neural networks, to improve accuracy and efficiency. 

However, it is important to recognize that the effectiveness of these methods is 
not solely dependent on model advancements. The availability of large-scale, high-
quality annotated datasets is equally critical for driving performance improvements. 
Publicly sharing more data with high-quality annotations can significantly boost the 
performance of these models. To address the challenge of manual annotation, which 
can be resource-intensive, active learning techniques offer a promising solution. By 
selectively annotating the most informative samples, these techniques can reduce the 
annotation burden while still improving model performance (e.g., [ 54]). 

Furthermore, the adoption of these technologies is expected to extend beyond elite 
sports, becoming accessible to amateur and youth sports through cost-effective solu-
tions. For example, the study on action spotting transfer capabilities across diverse 
soccer domains [ 23], highlights the importance of these approaches in mitigating 
the differences between professional and amateur sports footage. By automating the 
extraction and analysis of meaningful information from video footage and leveraging 
these advancements in both data availability and machine learning, the sports analyt-
ics field will see more comprehensive and detailed insights into player performance, 
team strategies, and overall game dynamics. These advancements will ultimately 
enhance coaching, training, and broadcasting across various levels of sports, from 
elite to amateur and youth levels. 

2.5 Summary 

This chapter has provided a comprehensive overview of the critical elements of com-
puter vision in sports analytics, including field registration, object tracking, Re-ID, 
action recognition, and pose estimation. These components collectively enable the 
automated extraction of meaningful insights from sports footage, advancing the anal-
ysis of player movements and team tactics. The importance of datasets in training 
and evaluating these computer vision models was also discussed, highlighting vari-
ous benchmarks used in the sports domain. Additionally, the integration of multiple 
modalities and advanced machine learning techniques, such as deep learning and
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transformers, were explored to enhance the robustness and accuracy of these analyt-
ical models. These advancements are essential for achieving precise data acquisition 
and comprehensive analysis in sports. 

Computer vision plays a pivotal role in advancing sports analytics by provid-
ing automated, detailed, and accurate insights into player performance and game 
dynamics. The technology reduces the reliance on manual data collection and label-
ing, making advanced analytics accessible to a broader range of sports, from elite 
to amateur levels. As the transition to the next chapter, which focuses on predictive 
analysis and play evaluation using machine learning, it is essential to acknowledge 
how the data obtained through computer vision serves as the foundation for these 
advanced analytical techniques. The integration of machine learning with rich visual 
data enables predictive models that can anticipate player actions and evaluate plays, 
further enhancing strategic decision-making in sports. This synergy between com-
puter vision and machine learning marks a significant step forward in the evolution 
of sports analytics. 
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Chapter 3 
Predictive Analysis and Play Evaluation 
with Machine Learning 

Abstract This chapter examines the important role of machine learning in sports 
predictive analysis and play evaluation. It covers a spectrum of techniques, from 
traditional result analysis to advanced machine learning approaches, addressing key 
areas such as game result, event, and trajectory prediction, as well as action and space 
evaluation in team sports. The chapter introduces various datasets and methodolo-
gies, highlighting the evolution from rule-based systems to deep learning models. It 
explores how these techniques are applied to classify plays, cluster similar behav-
iors, extract meaningful features, and learn complex representations from sports data. 
The discussion extends to counterfactual analysis, providing insights into hypothet-
ical scenarios and their potential impacts. By presenting cutting-edge research and 
future directions, including posture analysis and real-time analytics, this chapter 
offers a comprehensive view of how data-driven approaches advance sports analyt-
ics, enhancing our understanding of individual and team performances, and informing 
tactic decision-making in sports. 

Keywords Machine learning · Predictive analysis · Play evaluation · Space 
evaluation · Counterfactual analysis 

3.1 Introduction 

Predictive analysis has become a vital component in sports, providing valuable 
insights that influence both individual and tactical decisions. By leveraging machine 
learning, analysts can evaluate player performance, predict game outcomes, and 
understand complex team tactics. The advancements in machine learning, including 
neural network approaches, have significantly enhanced our ability to process and 
interpret large datasets, offering a more detailed understanding of sports behaviors 
and outcomes. This chapter explores the impact of these technologies on predictive 
analysis and play evaluation, highlighting their applications and potential in various 
sports. 
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This chapter introduces the application of machine learning in sports predictive 
analysis and play evaluation, focusing on several key areas. Section 3.2 first intro-
duces the dataset we can use in as well as in Chaps. 1 and 2. Section 3.3 describes 
traditional result data analysis is introduced to understand its history, limitations, 
and challenges. Next, the latter of this section introduces machine learning applica-
tions for sports behavior analysis, covering classification and clustering methods, and 
highlighting recent approaches to feature extraction and representation learning. The 
chapter then moves on to predictive analysis and play evaluations in Sect. 3.4, dis-
cussing methods for outcome prediction, event prediction, space evaluation, and tra-
jectory prediction in team sports. Finally, Sects. 3.5 and 3.6 introduce counterfactual 
analysis techniques and discuss future topics, including posture analysis and other 
applications, setting the stage for further advancements in sports analytics. These 
sections show a comprehensive overview of how machine learning is advancing the 
analysis and evaluation of individual performance and tactics. 

3.2 Datasets for Predictive Analysis and Play Evaluation 

In Chap. 2, datasets accompanied by video footage are introduced, which provide rich 
visual context for analysis. This chapter mainly focuses on event and tracking data, 
which offer detailed information about specific actions and player movements usually 
during more games than video datasets. These datasets are crucial for understanding 
the movements and interactions within the game. However, note that pose data, 
which provides precise body position and movement details, is not publicly available 
without accompanying video footage. 

In soccer, several comprehensive datasets are available for event data as described 
in Chaps. 1 and 2. Wyscout, in collaboration with Pappalardo et al. [108], provides 
open spatiotemporal event data for matches from the top five European leagues, 
EURO 2016, and the 2018 World Cup. Statsbomb also offers open event data, includ-
ing lineup and match metadata of the top five European leagues and international 
championships such as EURO 2020, 2022, and 2024, and the 2022 World Cup, acces-
sible via their GitHub repository. 1 Statsbomb also provides 360 freeze frame data, 
which includes the positions of all players at the moment of key events captured 
in broadcast footage, for the above international championships. For tracking data, 
Metrica Sports offers tracking data and events for top-tier football matches, 2 and 
the data in three matches are publicly available. Opta, a division of Stats Perform, 
is well-known for its rich event and tracking data and is widely used by analysts 
and clubs globally, whereas DataStadium Inc. also provides high-quality tracking 
and event data in Japan, but both are not publicly available. Tracking data is gen-
erally paid and/or restricted access, and its limited availability poses challenges 
to the democratization of sports analytics. For example, knowledge about various

1 https://github.com/statsbomb/open-data. 
2 https://github.com/metrica-sports/sample-data. 
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pre-processing (e.g., synchronizing tracking data with event data [140]) and main 
processing techniques is not widely shared. 

In basketball, tracking data have recently been analyzed, but data sources are lim-
ited. Most studies have relied on the only open-source dataset 3 from the National Bas-
ketball Association (NBA) 2015–2016 season, pre-processed by the STATS SportVU 
system, now known as STATS Perform. This dataset includes the trajectories of bas-
ketball players and the ball at 25 frames per second from approximately 630 games. 
The positional data contains the XY coordinates of each player on the court and the 
XYZ coordinates of the ball. Even in 2024, this dataset remains widely used because 
no alternative open-source dataset has emerged. Additionally, the dataset’s size is 
sufficient for most machine learning models. However, as time passes, this dataset 
will become outdated and be necessary for more large-scale trajectory datasets in the 
future. Although not considering trajectory data, there have been studies analyzing 
games using movement annotations, such as those in the FIBA Basketball Champi-
ons League [128] and the Liga ACB Spanish Championship [ 76]. In other invasion 
team sports, handball datasets provide video, tracking, and event data in [ 4, 98] and 
American football tracking and event data in NFL are available. 4 Tracking data for 
other invasion team sports, such as rugby, as well as field and ice hockey, may not 
be publicly available, although there might be some datasets that exist but are not 
widely known. 

3.3 Result Analysis in Match and Play 

Historically, observable outcomes such as the number of shots and passes have been 
manually counted and analyzed through visual observation. However, this approach 
only handles events that can be consistently defined by any observer and requires the 
same amount of time to reanalyze as it did initially (e.g., [ 57]). This makes it difficult 
to quantify the frequency of common patterns in sports, such as “various potential 
next plays that experienced players can narrow down based on their knowledge”, 
or “plays that are defined differently by experienced players but are important for 
understanding the game” (for example, see [151]). Evaluating such plays is naturally 
challenging as well. 

On the other hand, by using machine learning techniques to process player and ball 
positions along with event data, it is possible to include expert knowledge and analyze 
plays based on a transparent set of criteria. Although it might not be entirely per-
suasive to many individuals, this approach allows for repeated recalculations and the 
processing of large datasets, offering significant advantages over visual observation.

3 https://github.com/rajshah4/BasketballData. 
4 https://github.com/asonty/ngs_highlights. 
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3.3.1 Traditional Approach 

In traditional methods that do not utilize a learning-based approach, researchers have 
relied on their experience and established theories to evaluate the characteristics 
of multi-agent behaviors. For example, based on hypotheses, they have calculated 
the distances and relative phases of two athletes (e.g., [ 5, 44, 137]), the speeds of 
movements (e.g., [121]), and the frequencies and angles of actions such as shots and 
passes (e.g., [ 21, 45, 49, 143]). These analyses often involve the computation of 
representative values such as averages and maximums. Measurement systems with 
high spatiotemporal resolution, like motion capture systems and force platforms, 
have been used to analyze skillful maneuvers in terms of cognition, force, and torque 
(e.g., [ 38, 43]). After obtaining these representative values, specific hypotheses are 
tested, sometimes using statistical analysis (e.g., [ 44, 111]). 

For instance, in basketball, defensive cooperation against team attacks, known as 
screen-plays, which block the movements of a defender, has been evaluated. The 
results showed that defenders flexibly change their roles (switching, overlapping, 
ignoring, or providing global help) according to the level of urgency [ 44]. This tra-
ditional quantitative approach is powerful, applicable to small datasets, and easy to 
interpret across various fields because it allows for the direct testing of hypotheses. 
In soccer, for example, after estimating ball trajectory from videos, six typical soccer 
attack patterns for tactic analysis are defined in a rule-based manner [104]. Mathe-
matical approaches have also been used to compute representative values. For exam-
ple, players’ areas of control in soccer have been represented as Voronoi diagrams 
[132] (for the details, see Sect. 3.4.3). Other studies have analyzed pass connections 
using network theory [156], self-similarity in team positioning [ 69], and the breaking 
of spatiotemporal symmetry using group theory in ball possession scenarios [162]. 
However, to represent cooperative and competitive interactions more flexibly and 
practically, advanced modeling techniques are needed. 

3.3.2 Machine Learning Approaches for Result Analysis 

To integrate machine learning into result analysis in sports analytics, feature extrac-
tion, and representation learning are crucial. Machine learning techniques process 
raw motion data to extract features, which are then used for tasks such as classifica-
tion and regression, including play recognition and motion prediction. Here exam-
ples of learning-based classification in soccer and basketball analytics are mainly 
introduced. 

One of the simplest applications of machine learning involves using static features 
and annotated labels in classification models. Examples include team identification 
in soccer [ 81], classification of ball possession [ 93] and attacking processes [ 70] 
in soccer, screen-play classification in basketball [ 57, 88, 89, 168], and predicting 
who will obtain a rebound in basketball [ 58], utilizing techniques such as linear
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Fig. 3.1 Schematic diagram of our Graph DMD for team play classification [ 40]. a Input data: the 
grayscale spectrum in each edge represents the values as a function of the distance between agents; 
they approach 0 if far and 1 if near. The input of Graph DMD is the adjacency matrix series At , 
where t is each timestamp. b Graph DMD decomposes the input into the sum of the product of 
graph (spatial) j-th modes Zj and temporal dynamics λ j (b represents an initial value). To analyze 
the time-varying dynamics, Graph DMD is performed for each temporal sliding window. c After 
Graph DMD, features for classification are computed in different approaches. One is simply to 
vectorize the Graph DMD modes (i.e., spectrum). The second is to compute graph features using 
existing methods. d Using feature vectors and labels, classification models for screen-play and zone 
defense are trained, validated, and tested. The figure is used in [ 40] 

discriminant analysis (LDA), logistic regression, or support vector machine (SVM) 
with handcrafted static features like distances between players and angles, such as 
player-goal vectors on the court. 

However, when applied to complex multi-agent movements, it is often neces-
sary to account for spatiotemporal structures. A straightforward approach is to use 
spatiotemporal features derived from unsupervised learning techniques. Common 
methods include unsupervised learning techniques for spatial or multivariate inputs, 
such as principal component analysis (PCA), which aids in dimensionality reduc-
tion. Dimensionality reduction transforms high-dimensional data into meaningful 
lower-dimensional representations. For instance, PCA, factor analysis [ 50, 75], t-
distributed stochastic neighbor embedding (t-SNE) [139] regarding shot types [ 85], 
non-negative matrix factorization (NMF) [ 94], tensor decomposition [106] regard-
ing shot types, and topic modeling [ 95, 146] of trajectories have been used to sum-
marize diverse interactive sports behaviors into lower-dimensional representations. 
However, some of these methods assume independence of sampling, meaning the 
extracted information does not reflect temporal properties.



64 3 Predictive Analysis and Play Evaluation with Machine Learning

Several approaches are used to reduce the number of dimensions while considering 
the time-series structures. For example, image-based approaches transform trajec-
tory data into images using neural networks (e.g., [103, 145]), including the self-
organizing map (e.g., [ 68]). Another approach for extracting physically interpretable 
dynamical properties is a method called dynamic mode decomposition (DMD), which 
is applied to screen-play and zone defense classifications [40] as illustrated in Fig. 3.1. 

Clustering is an unsupervised learning technique that groups a set of objects into 
clusters, where objects within the same cluster exhibit higher similarity based on 
selected features compared to those in different clusters. This method is particularly 
useful for identifying natural groupings in data without predefined labels. In team 
sports data, researchers have utilized hierarchical clustering (e.g., [ 56]) based on 
similarity measures [ 24, 66, 125] and distribution-based clustering using Gaussian 
mixture models [110]. However, challenges arise with time-series data, as it is diffi-
cult to compute similarity when data lengths are not fixed. To address this, specific 
designs for time series similarity enable the application of conventional clustering 
methods. Hierarchical clustering requires appropriate distance measures, such as the 
Fréchet distance and dynamic time warping (DTW), used in basketball [ 16, 24, 125] 
and soccer [ 24]. Fast and scalable methods for computing Fréchet distance for tra-
jectory mining [ 66, 131] and discriminative sub-trajectory mining [ 8] have also been 
developed. 

Another challenge is calculating the distance or similarity between multi-agent 
trajectories. Simple methods for comparing agent-to-agent trajectories face permuta-
tion problems due to the constant swapping of players or roles in multiple sequences 
of plays [125]. This misalignment is inherent in raw multi-agent data. A rule-based 
method addresses this by permuting the players closest to the ball (e.g., [ 39, 40]). 
Alternatively, data-driven permutation techniques, such as the Hungarian algorithm 
(a linear assignment method), have been applied to role assignment problems in bas-
ketball, identifying roles like guard, forward, and center [125, 157]. Another way 
to handle the permutation problem is by calculating the similarity of multivariate 
nonlinear dynamical systems using DMD, as used in [ 37, 39]. Since DMD is a 
dimensionality reduction technique similar to PCA, it extracts dynamical properties 
that are invariant to permutations. 

As machine learning evolves, neural networks have become instrumental in 
automating feature extraction. Various neural network architectures, such as recurrent 
neural networks (RNN) [145], temporal convolutional networks [103], graph neural 
networks (GNN) [ 2], and transformers [120], are considered for feature extraction. 
In particular, GNN and transformer approaches can learn permutation-equivariant 
features, which solve the permutation problem described above. Additionally, neu-
ral network approaches that compute trajectory similarities in scalable ways using 
a metric learning framework with a Siamese network have been proposed [149]. 
Other researchers have developed an interpretable classification model with atten-
tion mechanism [166]. These methods are highly scalable, suitable for large datasets, 
and capable of capturing abstract or complex representations. However, they require
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substantial amounts of data for training. Supervised learning provides a potent strat-
egy when a large amount of labeled data is available, yet the associated disadvantages 
include big labor costs and often limited size of labeled datasets. 

Semi-supervised learning approaches are one of the solutions, in which the model 
is trained on a dataset that contains labeled data and (usually much larger) unlabeled 
data. In team sports, semi-supervised methods have been applied to the extraction 
of tactical patterns in soccer [ 2, 31]. Self-supervised learning also utilizes unlabeled 
data by deriving supervisory signals through diverse pre-processing techniques. For 
example, a transformer-based approach was applied in basketball for recognizing 
group behaviors [ 54] and learning trajectory representations [ 1, 147]. Although semi-
and self-supervised learning approaches are currently rare in team sports, the potential 
may grow in the future, particularly when we can access larger amounts of (unlabeled) 
data. 

3.4 Predictive Analysis and Play Evaluations 

This section introduces approaches in predictive analysis and play evaluations in four 
areas: game results prediction, event prediction and evaluation, space evaluation, and 
trajectory prediction. It explains how advanced models and data-driven techniques 
can predict the outcomes of team sports games, assess and forecast in-game events, 
evaluate the spatial aspects of play, and predict player and ball trajectories. Each of 
these subfields contributes to a comprehensive understanding of the game, providing 
valuable insights for coaches, analysts, and other stakeholders (e.g., [ 22, 134]). 

3.4.1 Game Result Prediction 

Predicting the outcomes of sports matches is a significant and complex task, espe-
cially in soccer, due to factors like low scoring and frequent draws. This complexity 
attracts various stakeholders, including fans, bookmakers, and team analysts. Accu-
rate game result predictions are crucial for betting markets, while coaches and ana-
lysts use models to identify key match features to enhance team performance [158]. 
Notable efforts in soccer prediction include the 2017 and 2023 Soccer Prediction 
Challenges, which utilized the Open International Soccer Database containing over 
216,000 matches from 52 leagues across 35 countries. These competitions have set 
benchmarks for evaluating predictive models, particularly emphasizing the Ranked 
Probability Score (RPS) as a key evaluation metric [ 19, 30]. 

The primary approaches employed for soccer match result prediction include sta-
tistical models, machine learning approaches, and hybrid techniques that combine 
elements of both. Statistical models often involve the use of distributions like the 
Poisson model to predict goal counts (e.g., [ 29, 83]), while ML models leverage
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algorithms such as gradient-boosted trees (e.g., CatBoost) [115] and deep learn-
ing frameworks [116]. Hybrid models, which integrate statistical approaches with 
machine learning techniques, have shown promise in improving prediction accuracy 
(e.g., [ 52, 72]). For instance, studies have demonstrated the effectiveness of com-
bining random forest models with Poisson-based ranking systems (e.g., [ 52]). Addi-
tionally, to enhance prediction performance, ensemble methods like XGBoost and 
CatBoost have been applied successfully to soccer-specific ratings, such as pi-ratings 
[ 20] and Berrar ratings [ 3]. These methods have been further refined through the inte-
gration of spatiotemporal data and advanced feature selection techniques [ 67, 108], 
aiming to balance accuracy with model interpretability for practical applications in 
sports analytics. 

3.4.2 Event Prediction and Evaluation 

Play evaluation methods include machine learning, mathematical models, and their 
combinations. In team sports tactics, even plays with high success probabilities can be 
countered by opposing strategies. Consequently, there is no definitive single measure 
for player and team evaluations, then these assessments should be used as indicative 
references rather than absolute truths. This section introduces event prediction and 
evaluation, including scoring and other actions such as passes and interceptions. 

The most popular example of event prediction is a scoring prediction, which has 
been investigated such as in basketball [ 12, 14, 37, 39, 80]. Based on a similar idea, 
the expected possession value [ 12, 13] have been developed to evaluate expected 
score values for each possession or attack, which was extended in soccer [ 35] and 
handball [ 73, 97]. When analyzing player compatibility in basketball (more scoring 
opportunities and substitutions), the performance of a particular lineup has been eval-
uated based on scoring efficiency as a regression analysis (called a lineup analysis). 
For example, player positions (roles) were redefined by clustering players based on 
play frequency and success rates to evaluate lineup efficiency [ 65]. Another example 
is Bayesian modeling by including a flag indicating the presence of two specific play-
ers on offense to estimate their impact on scoring efficiency [ 62]. Building on these 
studies, Yamada and Fujii exclusively focused on offensive features to quantitatively 
assess player compatibility [155] to provide deeper insights into lineup efficiency. For 
more comprehensive and interpretable analysis, to obtain interpretable spatial rep-
resentations, researchers have developed several approaches to predict action from 
player locations, such as using matrix [163] and tensor [109] factor models, and 
Poisson point process model [ 96]. 

In soccer, having rare scoring opportunities and fewer substitutions, players or 
plays have been evaluated based on the expected values of goals [ 23, 86, 87, 107] 
(reviewed in [142]). In machine learning approaches, large amounts of data have 
been used to predict the probability of scoring or the probability of an on-ball event 
occurring (e.g., dribbles and passes), by evaluating actions as a “move that is likely
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to score points” [ 22]. The strength of this learning-based approach is that it can be 
modeled flexibly without using much sports knowledge. 

However, evaluations based on score predictions are unstable (particularly, in 
soccer) because they predict events that are rare in the entire game, and it is difficult 
to evaluate the variety of plays leading up to points scored and lost. For this reason, 
methods have been proposed to evaluate a team’s defense using player behavior 
and position information of all players and the ball, based on predictions of ball 
capture and effective attacks [135, 138] as shown in Fig. 3.2. This approach evaluates 
performance based not just on the results of actions (such as shots or goals) but 
on the process and decision-making leading up to those actions. For instance, a 
scenario where a shot results in a goal might not necessarily be evaluated as a poor 
defense if this probabilistic assessment of their actions is realized. Regarding passing 
actions, similarly, researchers have considered modeling and valuing of a pass [ 6, 48, 
112–114, 118], pass-receiving [ 26, 45, 79], the defender’s pass interception [117], 
pressing [ 92], and bulid-up defense [141]. 

In American football, a study examined the relationships between player actions 
and game outcome, highlighting how specific player behaviors and decisions impact 
the overall success of the team [ 18]. Using Bayesian non-parametric models, the 
expected hypothetical completion probability framework was developed to evaluate 
if quarterbacks throw passes to the receiver most likely to catch it [ 25]. Using a 

Fig. 3.2 Example of our defensive play analysis based on the event prediction via machine learning 
[135] called VDEP (Valuing Defense by Estimating Probabilities of ball recovering and being 
attacked). a The VDEP value for each event is indicated, including the type of event, and the player 
who took the action. Our classifiers for VDEP predict a ball recovery or an effective attack in 
the subsequent 5 actions or events. b The position of all players when the shot was performed is 
visualized (red: defending team; blue: attacking team) and the flow of the event with the ball. In 
this scene, the VDEP values were positive in all events, suggesting that the defensive performance 
was not poor enough to result in conceding a goal. The figure is used in [135]
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neural network approach, within-play valuation models were proposed using player-
tracking data to estimate the expected yards gained by the ball-carrier based on the 
positions and trajectories of all players on the field [164]. 

Transformer-based action prediction models have been also used for forecasting 
and evaluating player actions. Seq2Event model [126] predicts the next events and 
positions based on past events and context, and developed a practical metric, called 
possession utilization. Yeung et al. [161] introduced a transformer-based neural point 
process model to predict the next events, positions, and inter-event time. They also 
proposed the possession utilization score (HPUS) metric and examined its relation-
ship with team performance indicators over a season, such as final rankings, average 
goals scored, and expected goals (xG), highlighting its utility in comprehensive foot-
ball analysis. Recently, event modeling inspired by large language models has been 
proposed [ 90, 91]. 

3.4.3 Space and Off-Ball Player Evaluation 

Although on-ball player performance is generally evaluated through event prediction, 
the movements of off-ball players are often not defined as events. Hence, off-ball 
player movements are frequently assessed using space evaluation metrics. Defensive 
play evaluation is essentially the counterpart of offense evaluation, focusing largely 
on on-ball events such as defensive pressure and ball recoveries, which can be eval-
uated based on event prediction in the previous subsection. As reviewed by [ 36], 
group-level defensive behavior and synchronization have been also investigated in 
soccer. 

Rule-based evaluations of off-ball movements have been considered in basket-
ball. For example, off-ball cutting was evaluated [130] and other researchers [ 76] 
show that a player’s off-ball movements can substantially influence the probability 
of getting an open shot. An extensive model for evaluating off-ball movements in 
passing situations was also introduced [153], which also accounts for player pro-
files. In soccer, rule-based space evaluation about dangerousity has been consid-
ered [ 78]. Researchers have tried to evaluate off-ball players, but analyzing their 
spatial movements is highly complex due to the multiple potential actions in various 
situations. 

Space evaluation has been also considered in the context of off-ball play eval-
uations. As mathematical models for space evaluation, the dominant area from the 
perspective of the Voronoi diagram [ 46, 132] was considered based on the mini-
mum arrival time to determine which player can reach each area on the field most 
quickly, which sometimes takes into account velocity and acceleration. Such studies 
have extended to the estimation of the kinematic model for each player [ 7, 84] and 
weighting the field with the arrival times of the players [102]. More advanced stud-
ies have quantified off-ball scoring opportunities (OBSO) with probabilistic math-
ematical models [127] and proposed an index to evaluate the movement to create 
space by separating defensive players from other attacking players during a certain
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period [ 34]. Since OBSO model [127] is a versatile mathematical model, and in our 
group, it has been extended with the improved scoring model with defenders [134, 
159] and extended to defenders in soccer [138], attackers in basketball [ 74] and 
Ultimate [ 64] by modification based on the sport specificity. In particular, our group 
[ 74] proposed two mathematical models to predict off-ball scoring opportunities in 
basketball, considering pass-to-score, dribble-to-score, and interception situations, 
called the Ball Intercept and Movement for Off-ball Scoring (BIMOS) models. In 
contrast, purely data-driven space evaluation is also possible, e.g., developed with a 
neural network approach in badminton doubles [ 28]. 

3.4.4 Trajectory Prediction 

Although event prediction primarily focuses on forecasting specific events at given 
time points, machine learning approaches can also predict player trajectories. In the 
1990s and 2000s, research on pedestrian prediction problems, mainly mathematical 
or rule-based models (see, e.g., [ 55]), was widely investigated. However, trajectory 
prediction of players in team sports, which involve complex movements, has been 
significantly accelerated by the advent of deep learning. For multi-agent trajectory 
prediction in sports such as basketball and soccer, many methods have employed 
RNNs [ 63, 77, 123, 167], including variational RNNs [ 41, 157, 165]. Additionally, 
some approaches have utilized generative adversarial networks (GANs) [ 15, 60], 
variational autoencoders [ 33], and transformer-based models [ 1, 11]. While most of 
these methods treat trajectory prediction as a straightforward forecasting task, a few 
studies have framed it as an imitation learning problem within the reinforcement 
learning framework, utilizing expert demonstrations [ 41, 77]. 

In many of these models, agents are assumed to have complete visibility of other 
agents to facilitate long-term centralized prediction [157, 165]. This assumption, 
however, often results in a lack of interpretability regarding the agents’ internal 
states, such as which information each agent utilizes. To address this, attention-based 
observation techniques have been proposed for multi-agent systems in real-world 
applications [ 41, 53, 59]. Other methods, like neural relational inference, focus on 
estimating movement coupling in physical and biological systems [ 51, 71]. For more 
precise modeling, decentralized approaches [ 41] are necessary to compute individual 
agent observations and contributions accurately. 

Recent studies have introduced new frameworks to enhance the accuracy and effi-
ciency of multi-agent trajectory prediction. For example, “Team Game” approach that 
explicitly models interactions at multiple levels was proposed [150]. Semi-supervised 
generative models for multiagent trajectories were developed [ 32], while the focus 
on modeling conditional dependencies in multiagent trajectories using autoregres-
sive models and GNN was addressed [119]. The challenge of off-screen behavior 
prediction in football was tackled with GNN [105] and diffusion models [ 61], further 
expanding the application of trajectory prediction in sports analytics. These advance-
ments, combined with the use of permutation-equivariant features in graph neural
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networks [ 51, 71, 129, 157] and multi-head attention mechanisms in transformer 
[ 1], have significantly improved the ability to model complex multi-agent dynamics 
and predict trajectories more accurately. 

Another important approach is to incorporate tactical perspectives into trajectory 
prediction. For example, trajectory predictions reflecting defensive evaluations in 
soccer [133], trajectory computation optimizing defensive evaluations in basketball 
[124], and offensive evaluations in soccer [ 27], have been developed. In American 
football, player trajectories by predicting league average movements [ 9, 122] were  
simulated and evaluated. In particular, research on trajectory prediction and space 
evaluation using mathematical models have developed separately, with the former 
alone being unable to evaluate players, and the latter alone being able to evaluate only 
the player receiving the ball. In this respect, the work of [134] in our group can eval-
uate sacrificed movements for teammates (for example, movements to create space) 
by quantifying every off-ball player’s impact on scores in terms of the difference 
between predicted and real player trajectory, as illustrated in Fig. 3.3. In general, 
evaluating plays using counterfactual prediction is one of the important applications 
of trajectory prediction, which is explained in the next section. 

3.5 Counterfactual Analysis 

Counterfactual analysis in sports analytics offers a substantial utility that allows 
analysts to explore hypothetical scenarios and their potential impacts on game out-
comes. This technique helps us understand the effects of different strategies, and 
player movements by considering various “what-if” situations. There are several 
approaches to conducting counterfactual analysis, each with its unique strengths and 
applications. These include conditioning within machine learning, causal inference, 
mathematical modeling, and simulation-based methods. 

3.5.1 Conditioning in Machine Learning 

In sports analytics, conditioning within machine learning involves training models 
on specific scenarios to evaluate what might happen if those situations change. For 
example, a model could be trained on a dataset to predict player movements based on 
the positions of their teammates and opponents. By conditioning on certain variables, 
such as the position of a key player with RNN [ 41, 157] and diffusion models [ 17] in  
basketball, the model can generate predictions for different hypothetical scenarios. 
This approach helps us understand how specific factors influence player behavior, 
providing insights into strategic decision-making. 

In soccer, our group introduced the Shooting Payoff Computation (SPC) frame-
work [159], which uses game theory and machine learning to analyze shot-taking 
scenarios in football. The framework includes the Expected Probability of Shot On
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Fig. 3.3 Overview of our C-OBSO approach [134] (Creating Off-ball Scoring Opportunity). (i) 
First, a score model in OBSO [127] (it consists of a pitch control model to evaluate spatial control and 
area dominance on the soccer pitch, a transition model to predict the ball position in the next event, 
and score model to represent scoring probability when a shot is performed in the area) is modified 
as a potential score model by including defenders’ positions. (ii) Then players’ trajectories are 
predicted using Graph Variational RNN (GVRNN) [157] to generate a reference player trajectory. 
Each agent trajectory is processed via an RNN with shared parameters. The graph encoder and 
decoder model the relationship between agents, and finally output the movement of each agent 
in the next timestamp. (iii) Finally, a C-OBSO metric for player i is calculated by the difference 
between the evaluation value in the actual game Vk for future on-ball player k and the referenced 
or predicted value V ′

k via GVRNN. From the arXiv version of [134], the figure is licensed under 
CC-BY-SA 4.0 

Target (xSOT) metric based on deep learning, allowing for counterfactual analysis 
of shot situations, including determining optimal passing decisions. By developing 
the xSOT metric based on deep learning, the framework effectively evaluates player 
actions beyond just goals, allowing for detailed analysis and comparison of different 
shots and providing insights into optimal strategies as illustrated in Fig. 3.4. 

In another soccer example, the TacticAI framework [148], developed with Liv-
erpool FC experts, analyzes and optimizes player positioning during corner kicks 
in football. Incorporating predictive and generative components allows for coun-
terfactual analysis, determining the most effective player setups. Validated through 
benchmark tasks and expert evaluations, TacticAI provides suggestions that are pre-
ferred over existing tactics 90% of the time, demonstrating its utility in improving 
tactical decisions. However, it is often limited by the bias of the training data (in 
particular when the training data is limited) and the inability to capture true causal 
effects beyond observed correlations.



72 3 Predictive Analysis and Play Evaluation with Machine Learning

Fig. 3.4 Shot-taking situation example in our shooting payoff computation framework [159]. In 
the left figure, an example scene in the match of Italy vs. Wales in EURO 2020 is shown. In the 
right table, P(Son) represents the probability of a shot being on target. P(Sof  f  ) is the probability of 
a shot being off target. P(Sblock ) indicates the probability of a shot being blocked by the defender. 
P(Son), P(Sof  f  ), and  P(Sblock ) are probabilities related to shot outcomes when the player is in 
possession of the ball. P(Control) represents the probability of the attacker maintaining control of 
the ball when receiving a pass. Combined with the left figure, Attacker 9, positioned closest to the 
goal, showed the highest likelihood of an on-target shot (0.27) and the lowest chance of shooting 
off-target (0.32). Attacker 20, while further from the goal, had the second-best on-target probability 
(0.23) and faced the lowest risk of shot blockage (0.03), likely due to fewer defenders in their path. 
Attacker 14 demonstrated the highest ball control probability (0.99), presumably due to a lack of 
nearby defenders. Given these probabilities, passing to Attacker 14 appears to be the most strategic 
decision for maintaining possession and potentially creating better scoring opportunities because 
their high P(Control) increases the likelihood of sustained possession. The figure and table are 
modified from [159] 

3.5.2 Causal Inference 

Causal inference in sports analytics is one of the statistical techniques to estimate 
the causal relationships between different factors and outcomes. This approach often 
involves the use of counterfactuals, where the goal is to understand what would have 
happened if a different action had been taken in the context of sports analytics. If 
we can perform randomized experiments by setting the same situations, it would be 
easy to estimate the effect of actions by comparing the outcomes with and without 
the actions, but in many sports situations, there is no practical or ethical way to 
conduct such randomized experiments. Instead, we must rely on observational data 
and advanced statistical methods to infer causal relationships and estimate the impact 
of various actions and strategies. 

For example, in the static setting of causal inference for team sports, propensity 
score matching to reduce selection bias by matching units with similar propensity 
scores (i.e., the probability of receiving an intervention in given state; more precisely, 
within the framework of causal inference, it is the probability of a treatment assign-
ment conditional on covariates) was used to investigate the causal effect of going for 
the touchdown in American football [154], clearing the puck in ice hockey [136],
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the effectiveness of timeouts in basketball [ 47], at stopping an opposing run crossing 
the ball in soccer [152], and baseball pitching [100]. 

In the dynamic setting, a g-computation method was applied [144] to examine 
the effect of a specific pitch (taking a pitch during a 3-0) in baseball. However, these 
approaches cannot estimate the effect of actions in a spatiotemporal multi-agent 
setting. Recently our work [ 42] has addressed this issue by counterfactual recurrent 
networks in multi-agent systems to estimate the effect of extra pass actions in a shot 
situation as illustrated in Fig. 3.5. This approach utilizes graph variational RNNs 
and domain-specific theory-based computation for individual treatment effect (ITE) 
estimation based on long-term predictions of multi-agent covariates and outcomes. 
These methods have performed realistic counterfactual predictions and evaluated the 
counterfactual passes in shot scenarios. 

Outside the context of causal inference based on the Rubin causal model, the 
causality of the physics-based system such as using neural relational inference (e.g., 
[ 71]) has been considered (sometimes called causal reasoning). While more chal-
lenging to implement, causal methods can provide more robust and generalizable 
insights about the effects of actions in complex sports systems. If we know the math-
ematical structures of sports, we can utilize mathematical models for counterfactual 
prediction. 

3.5.3 Mathematical Models 

Mathematical models in counterfactual analysis involve creating mathematical rep-
resentations of sports that can simulate different scenarios. Although causal inference 
in the previous subsection is a methodology developed with a statistical foundation 
that estimates underlying relationships from data. In contrast, mathematical models 
differ in that they regard the models of underlying relationships as predefined. The 
mathematical models are often based on well-established physical or mathematical 
rules. Examples of the mathematical models are already introduced in Sect. 3.4.3. By  
adjusting the parameters of the model, analysts can explore how changes in one aspect 
of the game might affect the overall outcome. This approach provides a structured 
and quantitative way to explore “what if” questions in sports. For example, Umemoto 
and Fujii [138] proposed an evaluation method for team soccer defense positioning 
by computing counterfactuals based on the OBSO model [127], identifying optimal 
defensive positions. 

3.5.4 Rule-Based Simulation Models 

Simulation-based approaches or rule-based models involve creating detailed models 
of the sport and simulating various scenarios to observe potential outcomes often 
in the longer term than mathematical models. This approach is particularly useful
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Fig. 3.5 Example of NBA counterfacutual analysis using our causal model approach [ 42]. Visu-
alization of (top) trajectories and (bottom) outcome time series in (left) ground truth without inter-
vention, (middle) counterfactual intervention using our model (TV-CRN: Theory-based variational 
counterfactual recurrent network), and (right) the baseline (modification of GCRN (Graph coun-
terfactual recurrent network) [ 82] to predict the trajectory). Here the intervention is an extra pass 
in the shot situation. (Top) Red and blue numbers, gray line, and orange circle and line indicate 
an attacker, a defender, players’ historical trajectories, and the ball, respectively. The positions of 
the numbers are at the end of the factual data (shot), which is shown as the break line in lower 
plots. In the CF (counterfactual) intervention subplots, colored trajectories indicate counterfactual 
predictions. The actual red player #5 shot (left) but in the counterfactual prediction (middle and 
right columns), the player tried to pass to a teammate. In the middle top (our method), the player 
successfully passes to the teammate red #3, but in the right top (baseline), the player’s pass failed. 
(Bottom) outcome time series (attack effectiveness) are shown. We define the attack effectiveness 
as the outcome by predicting whether the attack is effective (defined in a rule-based manner [ 42]) or 
not at the next time stamp using logistic regression. The “a” in the lower caption is the intervention 
times. For example, “a = 95” means the case of intervention at the 95th frame (9.5 s). The figure 
is reprinted with permission from IEEE about the article [ 42] 

for exploring complex interactions and dynamics that are difficult to capture with 
traditional statistical models. Although rule-based modeling can closely align with 
human intentions, it remains challenging to represent all events and perform coun-
terfactual predictions in sports. For example, our group [ 99] proposes a new method 
for estimating the effect of various batting strategies in baseball using counterfac-
tual simulations and a deep learning model that transforms batting ability based on 
strategy changes. The method found that employing different strategies can increase 
runs when switching costs are ignored, and it provides insights into the conditions 
under which multiple strategies are effective, offering a clearer understanding of their 
impact on game outcomes. In invasion team sports such as soccer and basketball, it
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would be necessary to consider movement-based agent models. The agent modeling 
is described in Chap. 4. 

3.6 Future Research Topics 

As future research topics, we can consider conducting next play analyses, such as 
offensive tactics, defensive maneuvers, or other player movements in the next game, 
from the perspective of several critical factors, including model validation, posture 
analysis, and real-time data processing. Evaluating the validity of play evaluation 
models is extremely challenging due to the lack of ground truth. Quantitative assess-
ment can be conducted using event success probabilities or selection probabilities 
(such as in [148]), but these only measure model accuracy and are merely necessary 
conditions for validating the models. From the perspectives of team or player eval-
uations, it is possible to calculate correlations with existing metrics such as goals, 
player ratings in a game, and salaries (e.g., [101, 134]). However, since the goal is to 
assess elements not covered by these metrics, perfect alignment is neither achievable 
nor desirable. Thus, qualitative evaluation is also essential (e.g., [ 10]), but reliance 
on it should be minimized due to its subjectivity, particularly regarding tactical eval-
uation. In summary, it is essential to combine quantitative and qualitative evaluations 
to achieve a comprehensive assessment. 

Pose information is crucial for play evaluation as it provides insights into a player’s 
orientation and readiness for the next move. However, in team sports, while there are 
some datasets available for posture (see Chap. 2), this information is not yet widely 
linked to large-scale event data and tracking data, making it challenging to use for 
tactical analysis. Starting with focused analyses on specific scenarios like shooting, 
as demonstrated by [160], is a practical approach. Moving forward, the release of 
such comprehensive datasets will be essential for advancing tactical analysis. 

Many of the computations introduced in this discussion, especially those involving 
deep learning, require a certain amount of time for training; however, the inference 
time is quite rapid. This means that once the data is collected at the end of a game, 
evaluations can be performed almost immediately. The primary bottleneck, therefore, 
lies in the acquisition of data from video and sensors. Automated processes for field 
detection, tracking, and Re-ID, although advanced, are not perfect and still require 
manual corrections. If complete data is not required, it is technically feasible to 
output evaluations in near real-time. Advancements in computer vision are expected 
to reduce processing time.
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3.7 Summary 

This chapter has provided a comprehensive overview of machine learning applica-
tions in sports predictive analysis and play evaluation. Various approaches are intro-
duced, from traditional result analysis to advanced machine learning techniques, 
covering areas such as game result prediction, event prediction and evaluation, space 
evaluation, and trajectory prediction. The introduction of counterfactual analysis 
methods has shown how we can explore hypothetical scenarios to gain deeper insights 
into game dynamics. As the field continues to evolve, the integration of these tech-
niques promises to provide increasingly sophisticated and actionable insights for 
coaches, analysts, and other stakeholders in the world of sports. 
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148. Wang, Z., Veličković, P., Hennes, D., Tomašev, N., Prince, L., Kaisers, M., Bachrach, Y., 
Elie, R., Wenliang, L.K., Piccinini, F., et al.: Tacticai: an ai assistant for football tactics. Nat. 
Commun. 15(1), 1906 (2024) 

149. Wang, Z., Long, C., Cong, G., Ju, C.: Effective and efficient sports play retrieval with deep 
representation learning. In: Proceedings of the 25th ACM SIGKDD International Conference 
on Knowledge Discovery & Data Mining, pp. 499–509 (2019) 

150. Wei, Z., Zhu, X., Dai, B., Lin, D.: Rethinking trajectory prediction via team game (2022). 
arXiv:2210.08793 

151. Williams, A.M.: Perceptual skill in soccer: implications for talent identification and develop-
ment. J. Sports Sci. 18(9), 737–750 (2000) 

152. Wu, L.Y., Danielson, A.J., Joan Hu, X., Swartz, T.B.: A contextual analysis of crossing the 
ball in soccer. J. Quant. Anal. Sports 17(1), 57–66 (2021) 

153. Yihong, W., Deng, D., Xie, X., He, M., Jie, X., Zhang, H., Zhang, H., Yingcai, W.: Obtracker: 
visual analytics of off-ball movements in basketball. IEEE Trans. Visual Comput. Graph. 
29(1), 929–939 (2023) 

154. Yam, D.R., Lopez, M.J.: What was lost? A causal estimate of fourth down behavior in the 
national football league. J. Sports Anal. 5(3), 153–167 (2019) 

155. Yamada, K., Fujii, K.: Offensive lineup analysis in basketball with clustering players based 
on shooting style and offensive role (2024). arXiv:2403.13821 

156. Yamamoto, Y., Yokoyama, K.: Common and unique network dynamics in football games. 
PLoS ONE 6(12), e29638 (2011) 

157. Yeh, R.A., Schwing, A.G., Huang, J., Murphy, K.: Diverse generation for multi-agent sports 
games. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 
4610–4619 (2019) 

158. Yeung, C., Bunker, R., Umemoto, R., Fujii, K.: Evaluating soccer match prediction models: 
a deep learning approach and feature optimization for gradient-boosted trees. Mach. Learn. 
1–24 (2024)

http://arxiv.org/abs/2210.08793
http://arxiv.org/abs/2403.13821


84 3 Predictive Analysis and Play Evaluation with Machine Learning

159. Yeung, C., Fujii, K.: A strategic framework for optimal decisions in football 1-vs-1 shot-
taking situations: an integrated approach of machine learning, theory-based modeling, and 
game theory. Complex Intell. Syst. 1–20 (2024) 

160. Yeung, C., Ide, K., Fujii, K.: Autosoccerpose: automated 3d posture analysis of soccer shot 
movements. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 3214–3224 (2024) 

161. Yeung, C.C.K., Sit, T., Fujii, K.: Transformer-based neural marked spatio temporal point 
process model for football match events analysis (2023). arXiv:2302.09276 

162. Yokoyama, K., Yamamoto, Y.: Three people can synchronize as coupled oscillators during 
sports activities. PLoS Comput. Biol. 7(10), e1002181 (2011) 

163. Yue, Y., Lucey, P., Carr, P., Bialkowski, A., Matthews, I.: Learning fine-grained spatial models 
for dynamic sports play prediction. In: 2014 IEEE International Conference on Data Mining, 
pp. 670–679. IEEE (2014) 

164. Yurko, R., Matano, F., Richardson, L.F., Granered, N., Pospisil, T., Pelechrinis, K., Ventura, 
S.L.: Going deep: models for continuous-time within-play valuation of game outcomes in 
American football with tracking data. J. Quant. Anal. Sports 16(2), 163–182 (2020) 

165. Zhan, E., Zheng, S., Yue, Y., Sha, L., Lucey, P.: Generating multi-agent trajectories using 
programmatic weak supervision. In: International Conference on Learning Representations 
(2019) 

166. Zhang, Z., Bunker, R., Takeda, K., Fujii, K.: Multi-agent deep-learning based comparative 
analysis of team sport trajectories. IEEE Access 11, 43305–43315 (2023) 

167. Zheng, S., Yue, Y., Hobbs, J.: Generating long-term trajectories using deep hierarchical net-
works. In: Advances in Neural Information Processing Systems, vol. 29, pp. 1543–1551 
(2016) 

168. Ziyi, Z., Takeda, K., Fujii, K.: Cooperative play classification in team sports via semi-
supervised learning. Int. J. Comput. Sci. Sport 21(1), 111–121 (2022) 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://arxiv.org/abs/2302.09276
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 4 
Potential Play Evaluation with 
Learning-Based Agent Modeling 

Abstract This chapter explores the potential of learning-based agent models in 
play evaluation for sports analytics. It begins by discussing the fundamentals of 
agent modeling, including key concepts in this field, such as the Markov decision 
process, reinforcement learning, and game theory, and including several simulation 
platforms. Next, the inverse approach for player and team evaluation from data and 
the forward approach for virtual simulations are introduced, and the advantages of 
using learning-based methods over traditional simulation techniques are highlighted. 
These approaches collectively contribute to the advancement of modeling complex 
scenarios, evaluating different tactical choices, and suggesting optimal actions in 
sports. Finally, this chapter examines the technical and practical challenges associated 
with these methods, as well as future research opportunities in the field. This chapter 
may provide us with a comprehensive understanding of how learning-based agent 
modeling can enhance play evaluation and contribute to the advancement of sports 
analytics. 

Keywords Agent modeling · Reinforcement learning · Game theory ·
Simulation · Multi-agent systems 

4.1 Introduction 

The previous Chap. 3 explores predictive analysis and play evaluation using machine 
learning, focusing primarily on supervised/unsupervised learning or pattern-based 
solutions. These approaches leverage historical data to identify patterns and predict 
outcomes, providing an intelligent framework for understanding player behavior and 
their interactions. However, they often lack controllability when considering new 
scenarios and may not capture the complex decision making of players. In contrast, 
learning-based agent modeling offers a dynamic approach that can simulate and 
evaluate their decision making and their interactions, providing deeper insights into 
players’ potential plays and their evaluations. 

The application of agent modeling in sports analytics presents several challenges. 
One of the primary difficulties is accurately representing the diverse behaviors 
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and interactions of players as multi-agent systems. Traditional rule-based methods 
require manually defining the rules and parameters for player movements, which 
can be time-consuming and inflexible. These approaches struggle to adapt to dif-
ferent sports or new scenarios without extensive manual adjustments. A data-driven 
approach, utilizing machine learning, offers a potential solution by automatically 
learning from vast amounts of data. This allows for the creation of more adaptable 
and realistic models that can be generalized across various sports and scenarios, 
enhancing the efficiency and effectiveness of sports simulators. If a high-quality 
sports simulator can be developed, it would be possible to simulate various real-world 
scenarios, allowing for the evaluation of different action choices and the suggestions 
of optimal actions. 

This chapter explores the potential of learning-based agent models in play evalua-
tion. The chapter begins by discussing the fundamentals of agent modeling, including 
key concepts in this field, such as the Markov decision process (MDP), reinforcement 
learning (RL), game theory, and including several simulation platforms in Sect. 4.2. 
Next, Sects. 4.3 and 4.4 introduce the inverse approach for player and team evalua-
tion from data and the forward approach for virtual simulations, respectively, and the 
advantages of using learning-based methods over traditional simulation techniques 
are highlighted. Finally, Sect. 4.5 examines the technical and practical challenges 
associated with these methods, as well as future research opportunities in the field. 

4.2 Key Concepts of Agent Modeling 

Agent modeling is a powerful approach in sports analytics, allowing for the simula-
tion, evaluation, and suggestion of player behavior and interactions. This approach 
involves the creation of virtual agents that can mimic real-world players, enabling 
the verification of researchers’ hypotheses through future prediction or in situations 
that cannot be directly measured. Agent modeling involves planning, which explic-
itly addresses the long-term movement goals of agents and computes policies or 
path hypotheses to achieve these goals. The key concepts of agent modeling are 
grounded in the principles of MDP and RL, which provide a mathematical frame-
work for decision-making, described in Sect. 4.2.1. Next, various available platforms 
of sports simulators are introduced in Sect. 4.2.2, which facilitate the development 
and testing of these models. Then, traditional rule-based simulations and applications 
of game theory to team sports are introduced in Sects. 4.2.3 and 4.2.4, respectively. 
Finally, inverse and forward planning approaches are described for understanding 
the evolution and application of agent modeling in sports analytics.
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4.2.1 Markov Decision Process and Reinforcement Learning 

Here, we consider a sequential decision-making setting involving multiple agents 
interacting in a team sports environment. To facilitate our discussion, MDP is 
introduced as illustrated in Fig. 4.1, which provides a mathematical framework for 
decision-making in stochastic environments. Although real-world players do not 
necessarily follow an MDP, for simplicity, we use this model and assume that all 
aspects of the environment are fully observable. 

A multi-agent MDP can be defined as a tuple (K , S, A, T , R, γ  ), where: 

• K is the fixed number of agents; 
• S is the set of states s; 
• A = [A1, ..., AK ] represents the set of joint action a ∈ A (for a variable number 
of agents), and Ak is the set of joint actions, and Ak is the set of local actions ak 
that agent k can take; 

• T (s ′|s, a) : S × A × S → [0, 1] is the transition model for all agents; 
• R = [R1, ..., RK ] :  S × A → RK is the joint reward function; 
• γ ∈ (0, 1] is the discount factor. 

In the MDP, the goal of each agent is to maximize the expected total reward 
over time by selecting actions based on the current state of the environment. The 
transition model T determines the probability of moving from one state to another 
given the agents’ actions, and the reward function R assigns a numerical reward to 
each state-action pair, guiding the agents’ decision-making process. 

RL is a type of machine learning where agents learn to make decisions by inter-
acting with their environment and receiving rewards or penalties [ 55]. The aim is to 
learn a policy that maximizes cumulative reward. Recent RL algorithms, including 
deep RL, have advanced the field significantly by enabling agents to learn from high-
dimensional sensory inputs and complex environments (e.g., [36]), and by integrating 
various strategies to balance exploration and exploitation and adapt to dynamic envi-
ronments (e.g., [ 3]). 

In the context of multi-agent reinforcement learning (MARL), several additional 
challenges arise compared to single-agent RL (e.g., [ 72]). One key challenge is the 
non-stationary environment caused by the presence of multiple learning agents. Since 
each agent’s actions and policies evolve over time, the environment from any single 
agent’s perspective is constantly changing. This non-stationarity can make it difficult 
for agents to learn stable and effective policies. 

Fig. 4.1 Conceptual 
diagram of a MDP
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Another significant challenge in MARL is the coordination and cooperation 
among agents. In many multi-agent settings, agents must work together to achieve 
common goals or optimize joint rewards. This requires sophisticated mechanisms 
for competition and coordination, which are not typically required in single-agent 
RL. Designing algorithms that can facilitate effective cooperation and gain a com-
petitive edge while ensuring each agent pursues its own objective is a complex task. 
Additionally, the presence of competition and conflicting objectives among agents 
necessitates anticipating and responding to opponents’ strategies, a strategic inter-
action often modeled using game theory; balancing cooperative and competitive 
interactions, as well as developing strategies robust against adversarial behaviors, 
are critical challenges that will be further detailed in Sect. 4.2.4 and Chap. 5. 

In the context of RL in team sports, due to the lack of real-world data and the 
difficulty of achieving tasks in a continuous state space, RL algorithms often start with 
simpler approaches, focusing first on defining the states, actions, transition models, 
and reward functions, which can be determined in either rule-based or learning-based 
manners. Some of the platforms discussed in the following Sect. 4.2.2 implement 
these elements using rule-based approaches but also support RL, allowing for the 
development and validation of learning-based agent models. 

4.2.2 Simulation Platforms 

Team sports simulation platforms have evolved significantly over the years, offering 
researchers and developers powerful tools to study and improve various aspects of 
sports movements and strategies. RoboCup [ 17], initiated as the Robot World Cup 
Initiative, represents a pioneering effort in bridging physical and virtual spaces for 
sports simulation. The initiative has expanded to include various leagues, including 
the 2D Soccer Simulation League (e.g., [ 1]), which is particularly noteworthy in 
the context of sports analytics. This league operates on a two-dimensional plane, 
abstracting complex physical interactions into a more manageable format. The 2D 
simulation environment shares a similar level of abstraction with event and tracking 
data in sports analytics, making it highly compatible with real-world sports anal-
ysis techniques. This synergy allows researchers to apply insights gained from 2D 
simulations to actual sports scenarios and vice versa. 

In recent years, several simulation platforms have emerged for RL. Google 
research football (GFootball) [ 18] provides a comprehensive environment for RL 
in soccer, offering various difficulty levels and scenarios. Based on this, we created 
an original soccer environment called NFootball [ 15] because in GFootball [ 18], the 
transition algorithms are difficult to customize, and some commands (e.g., pass) did 
not work well within the intended timings. NFootball has a simple soccer environ-
ment and all algorithms are written in Python, and then transparent based on MAPE 
environments [ 32, 60]. The Simple Team Sports Simulator [ 52], developed by Elec-
tronic Arts, offers a flexible framework for simulating generic team sports, allowing
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researchers to model and analyze various game dynamics. A data-driven simulator 
for assessing decision-making using soccer event data has also been developed [ 35]. 

While publicly available team sports simulators offer valuable research oppor-
tunities, it is worth noting that some popular commercial games can be used but 
directly unavailable for academic purposes. Many esports titles like EA Sports FIFA, 
NBA 2K, and eFootball, have sophisticated simulation engines that could potentially 
benefit research, but their proprietary nature limits their use outside of commercial 
contexts. 1 Additionally, some researchers used a 3-vs-3 basketball simulator called 
Fever Basketball Defense [ 57], and a different platform was developed [ 34], both of 
which are currently unavailable. 

4.2.3 Traditional Rule-Based Simulations 

In traditional rule-based methods, researchers manually establish the rules governing 
agent movements, such as approaching the ball or avoiding opponents. Model param-
eters, including player positions, speeds, and interactions, are either manually set or 
statistically estimated through regression models based on the knowledge of sports. 
For instance, the movements in a 3-vs-1 soccer possession task are often modeled 
using three virtual social forces: spatial, avoiding, and cooperative forces [ 70]. More 
complex rule-based approaches have been used to model pass probabilities [ 53] and 
the future trajectories of players [ 2] in actual soccer games. These rule-based meth-
ods offer a clear understanding of simulated behaviors because all rules are explicitly 
defined by the users. However, adapting these methods to different sports, such as 
transitioning from soccer to basketball, requires significant human effort and it is 
challenging to derive universal rules for multi-agent behaviors. 

While comprehensive simulations of full-player games (e.g., 11-vs-11 soccer 
matches) are successfully conducted in projects like RoboCup or esports games, 
research at the academic level often focuses on simulating partial group movements, 
as seen in studies like the aforementioned examples. Numerous pedestrian simula-
tors exist, but the complex rules of team sports make it burdensome for individual 
researchers to develop and publicly share detailed team sport simulators. 

4.2.4 Game Theory 

Game theory plays an essential role in the study of sports, offering a theoretical basis 
for understanding players’ behavioral strategies. The game theory differs fundamen-
tally from multi-agent MDP (MAMDP) and MARL by focusing on the strategic 
interactions among multiple players (e.g., discussed in [ 19]). While MAMDP and

1 When the application is limited to depth estimation [ 22] or 3D mesh reconstruction [ 74], some 
game data has been made publicly available, contributing to the field of computer vision. 
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MARL primarily aim to maximize individual agent rewards through learning optimal 
policies within a defined environment, game theory emphasizes the equilibrium that 
arises from the interplay of strategies among rational players. In MAMDP, agents 
operate under a framework that includes state spaces, action spaces, and reward 
functions, and MARL extends this by allowing agents to learn and adapt their strate-
gies over time through interaction with the environment. However, these approaches 
do not inherently account for the strategic dependencies between agents’ actions. 
In contrast, game theory introduces the concept of Nash equilibrium, where each 
player’s strategy is optimal given the strategies of all other players [ 39, 56]. This 
equilibrium condition ensures that no player can unilaterally improve their payoff 
by changing their strategy, thus providing a stable solution concept for analyzing 
strategic interactions in competitive and cooperative settings. The distinct focus of 
game theory on equilibrium and strategic interdependence sets it apart from the more 
individually focused optimization goals of MAMDP and MARL. 

Comprehensive overviews of how game theory can be applied to team sports [ 23, 
50] and specifically to soccer [ 61] have been provided. In team sports, for simplicity, 
game theory is often utilized for tactical choices in static settings with complete 
information. For example, the majority of existing game-theoretic studies in soccer 
and basketball have focused on simple scenarios such as penalty kicks in soccer [ 4, 
5, 7, 8, 25, 40] and live shot [ 37], and shot selection in basketball [ 51], where the 
interaction is primarily between the shooter and one or no defender (goalkeeper), 
allowing for more precise analysis. For other team sports, volleyball [ 28], American 
football [ 10, 67], handball, and ice hockey [ 23] have been investigated. 

In particular, Yeung and Fujii [69] employed Nash equilibrium to analyze the inter-
action strategies between the shooter and the closest defender in soccer shot-taking 
scenarios, using a Shooting Payoff Computation (SPC) framework as described in 
Sect. 3.5.1. The optimal strategy for the shooter was to pass the ball when the defender 
was in a blocking position, while the optimal strategy for the defender was to block 
the shot. This situation represents a Nash equilibrium, where neither player can 
improve their expected payoff by unilaterally changing their strategy. 

Despite these advances, the potential benefits of game-theoretic analysis in team 
sports are limited unless the focus shifts from static set-piece analysis to more 
dynamic settings, which is discussed in the review of [ 61]. Addressing the com-
plexities of scenarios involves overcoming significant challenges, such as the large 
number of active players, the exponential growth of the strategy space, and the vari-
ability in player trajectories. Additionally, the longer duration of plays in team sports 
compared to those in more controlled environments suggests that extensive-form 
analysis, which considers each player’s knowledge, opportunities, and actions, may 
be more appropriate than the simpler normal-form approaches typically used for set 
pieces. More advanced topics are discussed in Sect. 5.1.
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4.2.5 Inverse and Forward Approaches in Agent Modeling 

Planning-based methods focus on addressing the long-term objectives of agents by 
computing policies or path hypotheses that allow agents to achieve these goals. 
Planning-based methods can be divided into two categories: inverse and forward 
approaches. In general, as illustrated in Fig. 1.5, a forward problem involves generat-
ing results (data) from known causes (models), whereas an inverse problem involves 
estimating the causes (models) from known results (data). In the context of sports, a 
forward problem includes generating or predicting outcomes based on specific tactics 
or formations. In research using simulations, it is common to simulate results based 
on predefined behaviors or tactics, which is referred to as forward analysis. On the 
other hand, an inverse problem involves analyzing the causes or underlying tactics 
from actual match results or data. This is a common practice for human coaches and 
players during post-match analysis, which is known as inverse analysis. 

Inverse planning methods derive the action model or reward function from 
observed data using statistical learning techniques. This approach also leverages 
RL frameworks using real-world data in a physical space. While it shares some sim-
ilarities with predictive modeling, the main focus of inverse planning is to evaluate 
actions and states to achieve specific goals, rather than extracting features or pre-
dicting trajectories. Forward planning methods, on the other hand, assume optimal 
criteria for an agent’s movements based on a predefined reward function, such as a 
score in team sports. This contrasts with pattern-based methods, which often rely on 
historical data to identify patterns and predict outcomes without explicitly planning 
for long-term goals. However, when dealing with simulation agents that behave intel-
ligently like humans or problems that involve replicating movements from human 
behavior data, both forward and inverse analysis may be required, making it difficult 
to simplify the approach. For instance, estimating tactics during simulations is an 
inverse problem, while trajectory prediction in human behavior analysis is a for-
ward problem. The next sections introduces inverse approaches for player and team 
evaluations and forward approaches for learning-based simulation. 

4.3 Player and Team Evaluations as Inverse Approach 

In the inverse approach from real-world data, the key challenges are to evaluate states 
and actions, and to replicate actual behaviors. Due to the difficulty in complete mod-
eling, researchers have often focused on sub-problems such as action evaluation and 
policy/reward estimation. In specific team plays, deep RL to estimate the quality of 
the defensive actions was used in ball-screen defense in basketball [ 64]. To value on-
ball actions, several studies have estimated state-action value function (Q-function) 
or other policy functions in soccer event data [ 29, 62, 63] and with tracking data 
[ 41, 43, 44], ice hockey [ 30, 48], and both [ 54], badminton [ 9], and basketball [ 6, 
65], which can be considered as offline RL (reviewed by [ 24]). However, they often
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Fig. 4.2 Example of estimated Q-values in the RL model from actual soccer data [ 38]. a shows an 
example attack. Blue, red, and black indicate the attacker, defender, and the ball, respectively (note 
that the ball is over a defender). b show the Q-value of player A for each action using the RL model 
with action supervision. It takes the highest value in a pass action, indicating that the pass action 
is suggested to be the best option in this situation. Note that i, p, sh, sp, rd, ss  correspond to idle, 
pass, shot, sprint, decelerate, and sprint end, respectively, and arrows correspond to the direction of 
movement 

modeled team representation with on-ball events and did not evaluate off-ball players 
in all time steps. Our group [ 38] considered a holistic RL model estimating multi-
ple players’ Q-functions for simultaneously evaluating on- and off-ball players even 
when no event occurs as illustrated in Fig. 4.2. 

In terms of inverse RL (IRL), research on estimating reward functions has also 
been conducted [ 33, 42]. To estimate policy functions, researchers have sometimes 
performed trajectory prediction through imitation learning [ 13, 20, 21, 58] and 
behavioral modeling [ 14, 27, 68, 71], aiming to mimic (rather than optimize) a pol-
icy using neural networks. For other examples using MDP, researchers have modeled 
the transition probabilities and shot policy tensors and have simulated seasons under 
alternative shot policies of interest [ 46]. A sequential team selection model was also 
considered in soccer to optimize long-term team performance by mitigating injury 
risks [ 12]. 

4.4 Learning-Based Simulation as Forward Approach 

Learning-based simulation can basically utilize RL but can be categorized in various 
ways based on the nature of the data and learning methodologies. One of the primary 
categories is RL from scratch (e.g., without expert demonstrations or real-world 
data). This involves agents learning optimal policies purely through interaction with 
the environment, often starting from scratch without any prior data. These agents
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rely heavily on trial and error to maximize rewards, exploring different actions and 
learning from the results. This approach is particularly useful in scenarios where 
prior data is unavailable or where the environment is too complex to model explicitly 
before the learning process begins. 

Another category is imitation learning without RL, where agents learn by mim-
icking the behavior observed in demonstrations provided by experts, rather than 
through rewards and penalties (described in Sect. 3.4.4). Additionally, learning from 
demonstration (with expert data and online RL) [ 47] combines elements of both RL 
and imitation learning. In this approach, agents start by learning from demonstration 
data and then refine their policies through RL techniques. This approach can include 
IRL with online RL, where agents infer the reward function that a demonstrator is 
optimizing, and then use this inferred reward function to learn an optimal policy. 
This method is beneficial when the reward function is not explicitly provided. 

Based on the above categories, in team sports, RL from scratch has been inten-
sively studied to improve learning efficiency, computation, and communication in 
GFootball (e.g., [ 11, 26, 31, 45]) and Fever Basketball Defense [ 57]. Meanwhile, 
in the RoboCup 2D Simulation League, methods that do not use RL but instead 
combine rule-based and machine learning are currently superior (e.g., [ 1]). With 
Simple Team Sports Simulator, the process by which agents autonomously discover 
high-level skills needed for collaborative task completion was investigated [ 66, 73], 
focusing on human-AI cooperation. 

However, the above studies did not utilize real-world data for realistic sports sim-
ulators. Before creating simulators, we compared ball-passing behaviors in artificial 
agents using GFootball with those of professional soccer players, though a gap still 
exists between forward and backward approaches [ 49]. The gap between forward and 
backward approaches will be discussed in Sects. 4.5 and 5.1. Recently we integrated 
both methodologies to balance the reproducibility of imitation and the generalization 
needed to obtain rewards [ 15]. We used chase-and-escape and soccer tasks with the 
different dynamics between the unknown source and target environments as illus-
trated in Figs. 4.3 and 4.4, respectively. We show that our approach for both tasks 
achieved a balance between the reproducibility and the generalization ability com-
pared with the baselines. In the soccer task (see Fig. 4.4), although our approach 
correctly learned Q-function values in which the higher values were observed in 
pass and shot actions for the passer (agent 1) and shooter (agent 0) compared with 
DQN, respectively, our approach did not reproduce the demonstration movements 
toward the goal. Combining to learn both on- and off-ball actions is a future work. 
For example, creating a better multi-agent simulator and RL model utilizing domain 
knowledge is a possible future research direction for reproducing not only actions 
but also movements (e.g., [ 59]).
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Fig. 4.3 Example RL results in the 2vs1 chase-and-escape task with our approach [ 15]. Our 
approach (DQAAS: Deep Q-learning with adaptive action supervision, right top) and the base-
line (DQfD [ 16], center), and the demonstration in the source domain (left) are shown. Note that the 
two predetors in the target domain are slower than those in the source domain, thus it is difficult to 
learn the correct actions and a domain adaptation approach is required. We adopt an approach that 
combines RL and supervised learning by selecting actions of demonstrations in RL based on the 
minimum distance of dynamic time warping for utilizing the information of the unknown source 
dynamics. Histograms are the Q-function values for each action. There are 13 actions including 
acceleration in 12 directions every 30 degrees in the relative coordinate system (action 0 means 
moving towards the prey) and doing nothing (action 12: round point). The histograms show that 
our approach learned the correct action value regarding the direction of pursuit, but the baseline 
approach did not 

4.5 Future Research Topics 

Future research in the field of learning-based sports simulations should first focus 
on enhancing the definitions and representations of state, action, and reward. Cur-
rently, states are often defined too simplistically, using only positions and velocities 
(e.g., [ 15, 38]). However, real players make decisions based on a more complex 
understanding, often involving tactical knowledge and selective attention to certain 
information. Therefore, integrating these aspects such as by combining them with 
mathematical models used in space evaluation could provide a more realistic and 
effective state representation. Similarly, more sophisticated models can be created 
by refining action and reward definitions such as in [ 43, 44], which accurately reflect 
the intricate dynamics of team sports. 

When using data, the combination of states and actions creates a vast array of 
possibilities that go beyond simple pattern-based prediction problems. This means 
that more sophisticated methods are required to use more data than pattern-based 
approaches and/or to handle this complexity. Mathematical models can potentially 
reduce the reliance on extensive data by providing a structured way to model player
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Fig. 4.4 Example RL results in the 2vs2 soccer task with our approach [ 15]. Configurations are 
the same as Fig.  4.3. In the demonstration and DQAAS, the agents obtained the goal, but the DQN 
failed. There are 12 actions including the movement in 8 directions (with constant velocity) every 
45 degrees in the relative coordinate system (actions 0-7 and action 0 means moving toward the 
center of the goal), doing nothing (action 8: round point), and high pass (action 9: ph), short pass 
(action 10: ps ), and shot (action 11: s), which are partially based on GFootball [ 18]. The histograms 
show that our approach learned the correct action value regarding the shot (agent 0) and pass (agent 
1), but the baseline approach did not 

behaviors. Moreover, current research has a significant gap between forward and 
backward approaches. The inverse approach aims to replicate actual behavior from 
real-world data, but it is uncertain whether the actions generated are genuinely 
reward-earning since forward simulation is not performed. On the other hand, the 
forward approach generates reward-earning actions in a virtual space without mea-
sured data, yet their real-world applicability remains uncertain. A hybrid approach 
such as in [ 15] that combines these methods could address the challenges inherent 
in both and lead to more robust and accurate models. 

The integration of game theory and RL also presents a promising but largely 
unexplored avenue. By combining the strategic interaction models of game theory 
with the adaptive learning capabilities of RL, it is possible to develop agents that can 
optimize their behavior not only in response to the environment but also in response 
to the strategies of other agents. This could significantly enhance the realism and 
effectiveness of simulations in team sports analytics. 

4.6 Summary 

This chapter explored the potential of learning-based agent models in sports analytics, 
highlighting their ability to simulate complex scenarios, evaluate tactical choices, and 
suggest optimal actions. We discussed the fundamentals of agent modeling, including



96 4 Potential Play Evaluation with Learning-Based Agent Modeling

the MDP, and examined various simulation platforms such as RoboCup and GFoot-
ball. This chapter differentiated from traditional rule-based simulations, emphasizing 
the advantages of learning-based approaches. We also discussed the application of 
game theory and the roles of inverse and forward planning methods in evaluating 
actions and generating realistic simulations. In the next chapter, future perspectives 
and ecosystems, covering advanced research directions, practical applications, and 
the shaping of future ecosystems will be introduced. 

References 

1. Akiyama, H., Nakashima, T., Hatakeyama, K., Fujikawa, T., Hishiki, A.: Helios2023: Robocup 
2023 soccer simulation 2d competition champion. In: Robot World Cup, pp. 386–394. Springer 
(2023) 

2. Alguacil, F.P., Arce, P.P., Sumpter, D., Fernandez, J.: Seeing in to the future: using self-propelled 
particle models to aid player decision-making in soccer. In: Proceedings of the MIT Sloan Sports 
Analytics Conference (2020) 

3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learn-
ing: a brief survey. IEEE Signal Proc. Mag. 34(6), 26–38 (2017) 

4. Azar, O.H., Bar-Eli, M.: Do soccer players play the mixed-strategy nash equilibrium? Appl. 
Econ. 43(25), 3591–3601 (2011) 

5. Buzzacchi, L., Pedrini, S.: Does player specialization predict player actions? Evidence from 
penalty kicks at fifa world cup and uefa euro cup. Appl. Econ. 46(10), 1067–1080 (2014) 

6. Chen, X., Jiang, J.-Y., Jin, K., Zhou, Y., Liu, M., Brantingham, P.J., Wang, W.: Reliable: offline 
reinforcement learning for tactical strategies in professional basketball games. In: Proceedings 
of the 31st ACM International Conference on Information & Knowledge Management, pp. 
3023–3032 (2022) 

7. Chiappori, P.-A., Levitt, S., Groseclose, T.: Testing mixed-strategy equilibria when players are 
heterogeneous: the case of penalty kicks in soccer. Am. Econ. Rev. 92(4), 1138–1151 (2002) 

8. Coloma, G.: The penalty-kick game under incomplete information. University of CEMA Eco-
nomics Serie Documentos de Trabajo (487) (2012) 

9. Ding, N., Takeda, K., Fujii, K.: Deep reinforcement learning in a racket sport for player eval-
uation with technical and tactical contexts. IEEE Access 10, 54764–54772 (2022) 

10. Emara, N., Owens, D.M., Smith, J., Wilmer, L.: Minimax on the gridiron: serial correlation 
and its effects on outcomes in the national football league (2014). SSRN 2502193 

11. Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., Michalski, M.: SEED RL: scalable and 
efficient deep-rl with accelerated central inference. In: International Conference on Learning 
Representations (2019) 

12. Everett, G., Beal, R., Matthews, T., Norman, T.J., Ramchurn, S.D.: The strain of success: a 
predictive model for injury risk mitigation and team success in soccer. In: Proceedings of the 
MIT Sloan Sports Analytics Conference (2024) 

13. Fujii, K., Takeishi, N., Kawahara, Y., Takeda, K.: Decentralized policy learning with partial 
observation and mechanical constraints for multiperson modeling. Neural Netw. 171, 40–52 
(2024) 

14. Fujii, K., Takeuchi, K., Kuribayashi, A., Takeishi, N., Kawahara, Y., Takeda, K.: Estimating 
counterfactual treatment outcomes over time in multi-vehicle simulation. In: Proceedings of 
the 30th International Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL’22), pp. 1–4 (2022) 

15. Fujii, K., Tsutsui, K., Scott, A., Nakahara, H., Takeishi, N., Kawahara, Y.: Adaptive action 
supervision in reinforcement learning from real-world multi-agent demonstrations. In: 16th



References 97

International Conference on Agents and Artificial Intelligence (ICAART’24), vol. 2, pp. 27– 
39 (2024) 

16. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, 
J., Sendonaris, A., Osband, I., et al.: Deep q-learning from demonstrations. In: Proceedings 
of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative 
Applications of Artificial Intelligence Conference, pp. 3223–3230 (2018) 

17. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: the robot world cup 
initiative. In: Proceedings of the First International Conference on Autonomous Agents, pp. 
340–347 (1997) 
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Chapter 5 
Future Perspectives and Ecosystems 

Abstract In this final chapter, the necessity of integrating computer vision, pre-
dictive analysis, and learning-based agent modeling in sports analytics is explored 
to address the complex and dynamic nature of sports movements. A hypothesis on 
advanced research directions is presented, emphasizing the integration of real-world 
data and digital modeling. This integration enables more comprehensive systems 
capable of prediction, play evaluation, and optimal play suggestions. Furthermore, 
the practical deployment of these technologies in real-world scenarios is discussed, 
focusing on their impact on various levels of sports. Finally, the formation of future 
ecosystems that support these advancements is explored, highlighting the importance 
of open approaches, standardization, and collaboration. 

Keywords Digital modeling · Performance monitoring · Strategic 
decision-making · Fan engagement · Open-source 

5.1 Introduction 

In Chaps. 2–4, computer vision, predictive analysis, and learning-based agent model-
ing are explored but are currently being researched independently in terms of sports 
analytics. While each of these technologies has demonstrated significant potential 
on its own, their real-world applications necessitate an integrated approach. To fully 
leverage the benefits of these advancements, it is important to combine these tech-
nologies, creating comprehensive systems that can address the complex and dynamic 
nature of sports movements. 

This final chapter first introduces a hypothesis of advanced research directions, 
highlighting the integration of real-world data and digital modeling that are shaping 
the future of sports analytics in Sect. 5.2. Following this, we discuss the deployment 
of these technologies in real-world scenarios, focusing on their practical implemen-
tations and the impact they can have on sports at various levels in Sect. 5.3. Finally, 
the formation of future ecosystems necessary to support and sustain these advance-
ments is explored in Sect. 5.4, emphasizing the importance of an open approach, 
collaboration, standardization, and other considerations. 
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It is important to note that this chapter contains several hypotheses about future 
directions, drawn from the author’s personal experiences and insights gained through 
non-published communications. While these ideas are forward-looking, they may 
not yet be empirically validated. Readers are encouraged to consider these points as 
exploratory rather than definitive conclusions. Additionally, while the term “machine 
learning” is often used in this book, the more broadly recognized term “AI” (artificial 
intelligence) can be used interchangeably in certain contexts for better accessibility 
in this chapter. AI encompasses a broader field, of which machine learning is a part, 
making it more familiar to a wider audience. 

5.2 A Hypothesis of Advanced Research Directions 

While advancements in individual technologies for learning-based sports analytics 
are crucial, the true potential lies in the integration of real-world data and digital 
modeling. This integration is important because it enables the creation of accurate 
digital representations of biological entities, allowing for comprehensive analysis, 
prediction, evaluation, and suggestion of optimal tactics and strategies. By combin-
ing data from cameras, wearable sensors, and other monitoring technologies with 
advanced machine learning algorithms and simulation models, we can achieve a 
deeper understanding of player and team performances. This holistic approach not 
only has the potential to improve the effectiveness of play evaluations but also may 
facilitate feedback and enhancements, which could lead to significant improvements 
in training, conditioning, and game performance. Here, this hypothesis is explored 
in detail, as illustrated in Fig. 5.1, examining how these potential enhancements can 
be achieved and their implications for the future of sports analytics. 

To illustrate this, Fig. 5.1 presents a comprehensive framework for integrated 
learning-based sports analytics. The diagram outlines the four main processes: (1) 
data acquisition, (2) modeling, (3) simulation, and (4) feedback and enhancement. To 
realize this, there are three major challenges within these processes: (a) automation 
of data acquisition, (b) addressing the domain gap between real-world and simu-
lated environments, and (c) effective implementation of learned models in practical 
applications. In particular, first, (b) the critical step of real-to-sim domain adaptation 
is considered in Sect. 5.2.1, where real-world data in a physical space is adapted to 
simulation in a digital space. Other challenges for each component are explained in 
Sect. 5.2.2. Finally, long future prospects and benefits of digital modeling in sports 
are explored in Sect. 5.2.3. 

5.2.1 Integration of Real-World Data and Digital Modeling 

When modeling real-world biological multi-agents, domain gaps may occur between 
behaviors in the sources (real-world data) with unknown dynamics and targets (sim-
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Fig. 5.1 A hypothesis in integrated learning-based sports analytics framework. This diagram illus-
trates the four main processes in learning-based simulation: (1) data acquisition, (2) modeling, (3) 
simulation, and (4) feedback and enhancement. From (2) modeling to (3) simulation, a real-to-sim 
domain adaptation problem should be considered, in which the source and target are real-world data 
in physical space and simulated data in digital space, respectively. It also highlights three signifi-
cant challenges within these processes: a automation of data acquisition, b addressing the domain 
gap between real-world and simulated environments, and (c) effective implementation of learned 
models in practical applications 

ulation in digital space). The opposite configuration, known as sim-to-real [ 28], 
transfers knowledge from simulations or human demonstrations to real-world appli-
cations, such as robotics [ 20, 30]. However, domain adaptation in real-world situa-
tions often deals with unknown source dynamics, making it difficult to utilize explicit 
transition models. In contrast, real-to-sim domain adaptation focuses on translating 
unknown real-world data into simulated environments (Fig. 5.1). In team sports, for 
example, this means leveraging reinforcement learning (RL) in digital space for 
flexible adaptation to complex environments [ 21, 24] and data-driven modeling for 
reproducing real-world behaviors [ 12, 22, 44]. Despite the gap between these for-
ward and backward approaches in multi-agent RL (MARL) scenarios, an integrated 
approach that combines both strengths is essential to bridge this divide and fully 
harness the potential of sports analytics. 

When considering the advancement of learning-based sports analytics, the inte-
gration of real-world data with digital models is expected to be an important area of 
development. This integration is key to enhancing the utility of prediction, play eval-
uation, and optimal play suggestion technologies. By comparing this integration to 
well-known two concepts, the importance of integration in transforming sports ana-
lytics can be further emphasized. The first concept, cyber-physical systems (CPS), 
which tightly integrates physical processes with digital computations and networking 
(e.g., [ 33]). CPS monitors and controls physical processes with feedback loops that 
allow physical actions to influence computations and vice versa. In sports, CPS can be 
utilized to monitor athlete performance, refine training routines, and enhance game 
tactics and strategies in real-time. However, implementing CPS in sports analytics 
faces significant challenges. The real-time data processing and complex integration 
required are currently limited by technological constraints, such as the need for high-
speed networking infrastructure, real-time and accurate data processing capabilities,
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and the seamless integration of diverse data sources. These requirements are often 
difficult to meet in dynamic and variable environments like sports fields. 

Meanwhile, digital twins offers a good example for creating virtual replicas of 
physical/biological entities [ 13] (in this case, athletes or sports environments). Dig-
ital twins use real-time data to mirror the physical world in a digital environment, 
facilitating advanced simulations, analysis, and enhancement. They enable contin-
uous monitoring and provide insights that can improve performance and predict 
future outcomes. However, the creation and maintenance of accurate digital twins 
require high-fidelity data and sophisticated modeling techniques (usually examined 
in physical entities, rather than biological ones), which can be resource-intensive and 
complex to implement in sports analytics. The current state of technology in sports 
analytics often lacks the necessary precision and resolution in data acquisition, as 
well as the computational power required for real-time updates and detailed simu-
lations. For these reasons, focusing on the integration of real-world data and digital 
modeling is more appropriate at this stage. This approach also leverages real-world 
data to create accurate digital models for prediction and tactical analysis, ultimately 
bridging the gap between physical and digital spaces in sports analytics. 

Integrating real-world data with digital models involves four steps as illustrated 
in Fig. 5.1:

• Data Acquisition: Real-world data is collected from various sources, includ-
ing cameras, sensors, and other manual/automatic monitoring technologies. This 
data includes field, tracking, event, pose, and other information as described in 
Chaps. 1 and 2.

• Modeling: Digital models are created to replicate sports behaviors. These models 
use the collected data to accurately reflect the current state of the athletes and 
sports environments. The process involves using machine learning algorithms and 
other techniques to develop models that can predict, evaluate, and suggest plays 
based on the input data as described in Chaps. 3 and 4.

• Simulation: Once the digital models are established, simulations can be run to test 
different scenarios and strategies. These simulations help in understanding how 
various factors interact and influence the outcomes, allowing for experimentation 
without impacting the real-world environment, as described in Chap. 4.

• Feedback and Enhancement: Insights from the digital models and simulations are 
used to make adjustments to the real-world environments. For example, training 
programs and game strategies can be refined. Necessary components to realize 
them and detailed examples are described in Sects. 5.2.2 and 5.2.3, respectively. 

This approach leverages real-world data to create accurate digital models, effec-
tively bridging the gap between physical space and digital space. Next, future devel-
opments in each component of digital modeling in sports are discussed.
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5.2.2 Future Developments in Each Component for Digital 
Modeling 

The integration of real-world data and digital modeling in sports depends on advance-
ments in several key components. These components collectively enhance the capa-
bility to monitor, model, simulate, and enhance various aspects of athletic perfor-
mance and sports strategies. This section explores the progress in data acquisition, 
modeling, simulation, and feedback and enhancement, which are crucial for devel-
oping future intelligent digital models in sports. In this context, the definition of 
“real-time” refers to data or information being processed and utilized almost imme-
diately after it is generated. This typically implies processing within a delay of a 
few milliseconds to a few seconds. However, in practice, achieving strict real-time 
processing can be technically challenging. Here, the term “near real-time” is used, 
which allows for delays of a few minutes to a few hours. 

Data Acquisition 

The current state of annotated data for sports analytics is overwhelmingly insufficient 
in both quantity and diversity. The only somewhat sufficient source of annotated 
data is video footage of soccer games, largely thanks to the efforts of the SoccerNet 
community. However, for other sports and different filming methods, such as those 
in [ 31], the amount of available annotated data is still severely lacking. While data 
acquisition approaches are discussed in more detail in Sects. 5.3 and 5.4, this section 
focuses on the technical approaches. From a technical standpoint, it is challenging to 
fully automate the annotation process, so strategies need to be developed to achieve 
complete data sets with minimal manual annotation. This could involve techniques 
like human-in-the-loop or active learning (e.g., action spotting in soccer [ 14] and 
action recognition in basketball [ 1]), which incorporates human feedback during the 
learning process, semi-supervised learning that combines a small amount of labeled 
data with a large amount of unlabeled data (e.g., predicting trajectories [ 11], extract 
tactical patterns in soccer [ 4], and screen-play detection in basketball [ 45]), and 
transfer learning which leverages data from other leagues (e.g., [ 6]) or even sports 
to improve the model’s performance. 

Another promising area for technical advancement is the end-to-end approach 
using neural networks. While component-specific methods such as tracking (e.g., 
[ 8]) and event detection (e.g., [ 18]) are already in use, there is potential for more 
comprehensive solutions, such as directly estimating player positions on the field or 
court from video footage. As the volume of data increases, these methods are expected 
to become more efficient and faster. Additionally, the development of methods with 
multiple modalities, which integrate sensor data, pose data, language, and sound as 
discussed in Chap. 2, is essential for creating more accurate digital models. These 
advancements will significantly enhance the accuracy and efficiency of subsequent 
modeling processes.
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Modeling 

If there is sufficient data in both quality and quantity, it is possible to create digital 
models of players using purely data-driven approaches. For instance, in outcome 
prediction, event prediction, and trajectory prediction, transformer-based methods 
that follow scaling laws (e.g., [ 19]) can achieve accurate predictions if the data quality 
and its quantity are sufficient. However, when it comes to agent-based models, as 
discussed in Chap. 4, it is extremely challenging to gather enough data to cover all 
possible combinations of unobserved states and actions. Therefore, incorporating 
some form of domain knowledge is necessary to enhance the modeling process. 

One of the most feasible approaches is the introduction of mathematical models to 
evaluate spatial configurations, which, once computational complexity is addressed, 
can become quite effective. Additionally, by defining fundamentally important and 
simplified states and actions, it is possible to reduce the complexity of the state and 
action spaces, thereby increasing the coverage of these spaces by the available data 
(expressed in more precise reinforcement learning terminology). It is also important 
to consider the strategic interactions between players, necessitating the integration of 
game theory into the models. To effectively incorporate such agent decision making, 
dynamic game theory will be promising for future research (e.g., [ 3]). This approach 
is necessary to account for the evolving strategies and decisions of players in near 
real-time, thus providing a more robust and realistic model of player behavior and 
interactions. 

Simulation 

Developing realistic model simulations using real-world data can enable the testing 
and validation of various tactics and strategies. A central issue, as mentioned in 
Sect. 5.2.1, is bridging the gap between inverse modeling from real-world data and 
forward simulation modeling. Human behavior may be a mix of deductive rules based 
on knowledge and inductive actions based on experience. Therefore, it is challenging 
to achieve realistic simulations using purely rule-based or purely learning-based 
approaches. To address this, a hybrid methodology is necessary, combining rule-
based systems that capture skilled movements with learning-based methods that 
allow for flexible adaptation to different situations (e.g., [ 38]). This hybrid approach 
would enable the creation of agent models that can both follow known strategies and 
adapt to new scenarios dynamically. 

Another advanced topic is the development of pose simulators using reinforcement 
learning, as demonstrated by DeepMind’s MuJoCo (Multi-Joint dynamics with Con-
tact) Multi-Agent Soccer Environment [ 16] (MuJoCo is a physics engine designed 
for simulating complex, realistic motion and interactions in robotic and biomechan-
ical systems). Recently, models have been proposed to train end-to-end robot soccer 
policies with fully onboard computation and sensing via egocentric RGB vision 
[ 37]. These advancements highlight the need for bipedal robot models to simulate 
sophisticated physical movements accurately. Future developments are expected to
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focus on enhancing real-to-sim techniques for bipedal robots, leveraging real-world 
pose data to improve the realism and effectiveness of these simulations. This will 
be important for advancing the field of sports analytics and achieving more accurate 
and reliable simulations. 

Feedback and Enhancement 

The significance of feedback and enhancement, which has not been extensively cov-
ered in this book, lies in their ability to enhance the effectiveness of sports training 
and performance analysis. Research on visualization techniques is crucial for deliv-
ering analytical results in a comprehensible format to users. For instance, papers in 
soccer [ 7], basketball [ 42], and team sports broadly [ 36], have extensively discussed 
various visualization methods that help coaches and analysts interpret complex sports 
data more effectively. Additionally, there is a growing body of research on feedback 
and training methods using VR (and more broadly, XR) technologies [ 10, 26]. These 
studies emphasize how immersive environments and real-time feedback can improve 
athletes’ training experiences and outcomes. 

Following the feedback process, the next critical step in team sports is what we 
refer to as “Enhancement”. This involves a comprehensive approach to improving 
player performance and team strategies based on the insights gained from feedback, 
which can be employed in upcoming matches to exploit the opponent’s weaknesses 
and enhance the team’s strengths [ 15, 25]. Coaches and analysts must collaborate 
to design targeted training sessions that address the identified weaknesses and rein-
force successful tactics. Additionally, the enhancement process may involve mental 
conditioning, recovery protocols, and the integration of new techniques and technolo-
gies to ensure continuous improvement (e.g., [ 27]). By systematically implementing 
these enhancement strategies, teams can effectively translate feedback into action-
able improvements, ultimately leading to better performance in future games. While 
there is potential for this process to be automated through coaching AI in the future, 
it is currently believed that human communication skills and reliability surpass those 
of machines. Even with the introduction of AI, a system for human oversight would 
be necessary to ensure the effectiveness and trustworthiness of the enhancement 
process. 

Advancements in data acquisition, modeling, simulation, feedback, and enhance-
ment are driving the integration of real-world data and digital modeling in sports. 
These innovations are expected to transform how athletes train, how strategies are 
developed, and how performances are enhanced.
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5.2.3 Long Future Prospects and Benefits of Digital 
Modeling in Sports 

The integration of real-world data with digital modeling has the potential to transform 
sports analytics, offering unprecedented insights and advancements across various 
domains. From enhanced performance monitoring and training programs to strategic 
decision-making and advanced recruitment strategies, the applications of learning-
based sports analytics are vast and multifaceted. This chapter explores the innovative 
ways in which these technologies are reshaping the landscape of team sports, pro-
viding detailed analysis and new opportunities for coaches, players, and fans alike. 
By leveraging cutting-edge machine learning techniques, we can achieve new levels 
of understanding and efficiency, ultimately driving the evolution of sports analytics 
to new heights.

• Enhanced performance monitoring: The integration of real-world data with dig-
ital models will enable continuous and detailed monitoring of athlete performance. 
Currently, this monitoring primarily relies on biometric, GPS, and Inertial Mea-
surement Unit (IMU) data (e.g., [ 32]). However, there is an increasing expectation 
that performance-based monitoring from images will also be able to track skill lev-
els and identify injury risk factors. This advancement will allow for near real-time 
feedback and adjustments, helping athletes refine their skills and prevent injuries. 
Additionally, continuous monitoring can extend to tracking recovery processes and 
predicting peak conditions, providing insights into minute aspects of performance 
and health that were previously undetectable.

• Refining training programs: Training programs are structured plans designed to 
improve an athlete’s performance through specific exercises, drills, and recovery 
protocols. Currently, these programs are developed by a range of professionals, 
including tactical and performance coaches, strength and conditioning coaches, 
and trainers. Each of these experts contributes their specialized knowledge to create 
comprehensive training programs. If we can digitalize their data as input, machine 
learning models can flexibly simulate different training scenarios and analyze 
their outcomes. This allows for the design of personalized training programs that 
maximize an athlete’s potential. These programs can be dynamically adjusted 
based on near real-time performance data.

• Strategic decision-making in game preparation, execution, and review: Digital 
modeling can simulate game scenarios and analyze the effectiveness of different 
strategies, providing invaluable insights for coaches and analysts. Before the game, 
it aids in scouting opponents and selecting optimal lineups for one’s own team. Dur-
ing the game, it helps in recognizing the opponent’s tactics, predicting the flow of 
the match, and making timely decisions on substitutions and tactical adjustments. 
After the game, it allows for detailed analysis and validation of player movements 
and tactical decisions. Looking ahead, the ability to run complex simulations in 
near real-time could enable adaptive strategy adjustments during games, giving 
teams a significant competitive edge.
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• Advanced recruitment strategies: Traditionally, the recruitment of promising 
young athletes or competitive players from other leagues and teams has relied on 
video footage, static statistics related to ball handling and athletic performance, 
and subjective assessments by scouts, agents, and management. However, with 
learning-based sports analytics, it is now possible to conduct deeper evaluations 
of players’ in-game actions, such as effective off-ball offensive movements and 
coordinated defensive plays. These insights allow for more comprehensive assess-
ments of a player’s overall contribution and potential for growth. Consequently, 
teams can better identify players who fit specific roles and strategies, leading to 
more targeted and effective recruitment decisions that align with the team’s long-
term goals.

• Learning-based refereeing: The future of learning-based (or AI) refereeing in 
team sports is promising, with advancements focusing on two main aspects: motion 
detection and evaluation. Motion detection typically involves estimating the posi-
tions and postures of players, such as the location of their joints and their position 
on the field, often using non-contact methods like cameras. In the evaluation phase, 
where detected motions are assessed, AI referees are most effective in scenarios 
with clearly defined rules and measurable parameters. Well-known applications 
include offside detection in soccer (e.g., [ 39]). However, more complex fouls or 
violations, such as contact fouls in soccer and basketball, pose significant chal-
lenges. In motion detection, the crowded nature of such scenes often leads to 
occlusion issues, complicating motion estimation. In addition, these situations 
often involve subjective judgment and player tactics that make accurate detection 
difficult. For instance, players might exaggerate their movements to simulate a 
foul, complicating the machine learning task. Although AI can assist by detect-
ing initial contact, fully automating foul detection remains challenging. Research 
in this area is active, with new models being developed to explain foul decisions 
using large language models [ 17]. In the near future, AI systems may be integrated 
to support human referees, aiding in training and providing supplementary foul 
assessments.

• Fan engagement and experience: In the field of fan engagement, advancements 
in sports analytics can significantly enhance how fans interact with broadcast 
footage, websites, and other media. Beyond merely highlighting scoring plays, 
these technologies can quantitatively explain the decision-making processes of 
players, making it easier for fans to understand the rationale behind key actions. 
This includes extracting and evaluating the performances of favorite players, even 
when they are away from the ball. Such detailed and quantitative analysis can pro-
mote new levels of fan engagement by providing deeper insights into the game. In 
particular, this approach offers unbiased, quantitative commentary on increasingly 
sophisticated tactics, making it easier for beginners to understand complex strate-
gies. Similarly, in the context of in-game betting, establishing real-time evaluation 
systems can enhance the accuracy of predictions and enrich the overall betting 
experience, providing fans with more reliable and engaging interactions.

• Democratizing sports analytics via machine learning: Currently, data acquisi-
tion systems are predominantly used in well-funded professional sports leagues,
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such as European soccer and basketball in the US. The high costs associated with 
obtaining this data often result in it being restricted by companies and leagues, lim-
iting public access and restricting the democratization of sports analytics. Alterna-
tively, automated data acquisition through video processing from a limited number 
of cameras can reduce these costs. If this technology becomes widely accessible, 
it has the potential to democratize sports analytics. This would be particularly ben-
eficial for amateur and youth athletes, enabling them to access advanced analytics 
and improve their performance. Such democratization would allow everyone to 
enjoy the benefits of sophisticated sports analytics, developing a more inclusive 
and equitable sports environment. Further discussion on this topic will be provided 
in the next section. 

In summary, the integration of real-world data and digital modeling will change 
sports analytics by providing advanced tools for performance monitoring, refining 
training, strategic decision-making, and injury prevention. These technologies offer 
significant benefits, from enhancing fan engagement and democratizing sports ana-
lytics to supporting advanced recruitment strategies and learning-based refereeing. 
As these innovations continue to develop, they will play an increasingly vital role 
in shaping the future of sports and developing a more inclusive and equitable envi-
ronment. The next section will focus on the practical deployment and real-world 
implementation of these advancements in sports analytics, examining how they can 
be effectively utilized in various settings to maximize their impact. 

5.3 Practical Deployment of Learning-Based Analytics 

The practical deployment and real-world implementation of sports analytics involve 
more than just the technical rollout of systems; they encompass the integration of 
these technologies into everyday practices and workflows. This process includes 
not only the technical aspects of installing and configuring the systems but also 
ensuring that they are effectively utilized by end-users such as coaches, players, 
analysts, and other stakeholders. The significance of practical deployment and real-
world implementation lies in its ability to transform theoretical models and analytical 
tools into actionable insights and strategies that can enhance performance, improve 
decision-making, and provide a competitive edge in sports. 

5.3.1 Data Acquisition 

When filming with a single camera for sports, which requires coverage of a large field 
such as soccer and rugby, it is necessary to move the camera and zoom in on the ball 
and surrounding players, similar to broadcast footage. This scenario requires the use 
of field registration techniques, as explained in Chap. 2. If the camera can be fixed, the
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need for field registration is minimized, making the estimation problem much simpler 
and less time-consuming, even feasible to do manually. Despite this advantage, a fixed 
camera setup results in smaller images of players and the ball, which complicates 
tracking and re-identification (Re-ID). Therefore, a practical solution may involve 
using two fixed cameras, balancing the trade-off between manual effort and the 
accuracy of computer vision techniques. 

In many sports, the ball can often be obscured by players (though soccer tends 
to have better visibility), but if event data can be obtained, linking it to the ball han-
dler’s ID often negates the need for precise ball position data. Realistically, tracking 
all players and annotating events require human correction of machine learning pre-
dictions. Thus, a user-friendly interface that reduces manual labor is essential. For 
example, an event annotation tool for soccer 1 is publicly available, and that inter-
face for basketball is illustrated in [ 41]. For pose data, manual correction is almost 
cost-prohibitive, thus methods that can analyze using incomplete estimation data are 
necessary. 

Using GPS sensors to estimate player positions can help avoid occlusion prob-
lems, but it comes with potential issues of drift and operational costs related to attach-
ment and removal. Additionally, other sensors such as IMUs and heart rate monitors 
can provide valuable information about player movements and physiological states. 
However, deploying these sensors requires careful planning to avoid interfering with 
player performance. Integrating sensor data with analytical platforms involves set-
ting up efficient data pipelines, ensuring data accuracy, and addressing issues related 
to sensor calibration and synchronization. Proper handling of these aspects is crucial 
to effectively leverage sensor data for enhancing player performance analysis and 
overall game strategy. 

5.3.2 Application Examples in Learning-Based Sports 
Analytics 

After acquiring data, machine learning-based analytics are applied according to var-
ious on-field objectives. The techniques employed differ based on user goals and are 
thus diverse. Currently, developing a universal solution to address all these needs is 
challenging. Therefore, This section discusses the technically feasible applications 
of these technologies in the same order as presented in Sect. 5.2.2. Each example will 
illustrate how current machine learning methods can be utilized to enhance different 
aspects of sports performance and strategy, demonstrating their practical deployment 
in real-world scenarios.

• Enhanced performance monitoring: Currently, performance monitoring in sports 
primarily relies on metrics such as total distance covered during a match and the 
number of sprints, which can be also calculated using GPS. Additionally, mechan-

1 https://github.com/SilvioGiancola/SoccerNetv2-DevKit/tree/main/Annotation. 
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ical and physiological loads can be assessed using IMUs and heart rate monitors, 
while event data can provide information on the number of passes made. How-
ever, with the availability of positional data for all players captured by cameras, 
it becomes possible to calculate more detailed metrics. For instance, the speed of 
sprints and the number of passes made in specific tactical situations can be accu-
rately measured. This level of detail allows for a more comprehensive understand-
ing of player performance and tactical execution, enabling coaches and analysts to 
make more informed decisions to optimize team strategies and individual player 
development.

• Strategic decision-making in game analysis: Currently, the technology avail-
able for capturing accurate tracking data in real-time is incomplete for live game 
analysis, thus limiting the primary use of analytics to pre-game preparations and 
post-game reviews. In pre-game analysis, accumulated data can be leveraged to 
understand the opponent’s tactics and key players beyond basic statistics. It also 
allows for evaluating the recent tactical success rates and performance levels of 
one’s own players, aiding in strategic decision-making for the next game, such as 
selecting tactics and lineups. Post-game reviews focus on verifying the effective-
ness of chosen strategies and lineups and preparing for future matches. This process 
does not necessarily require extensive data from multiple games, though having 
more data can enhance predictions and digital modeling, thereby broadening the 
scope and depth of analysis.

• Advanced recruitment strategies: Recruiting promising young athletes or com-
petitive players from other leagues and teams, along with providing valuable 
insights to agents and executives, requires a vast database facilitated by extensive 
networking. Traditionally, this recruitment process has relied on video footage, 
static statistics related to ball handling and athletic performance, and subjective 
assessments. While commercial services exist that share such data internationally, 
they often lack comprehensive tracking data, especially for off-ball movements. To 
implement learning-based analytics that includes these off-ball actions, standard-
ized methods for collecting and sharing tracking data are essential. This presents 
a significant challenge, as current practices are not yet equipped to handle such 
extensive data acquisition and standardization. To overcome this, collaboration 
between leagues, teams, and technology providers is necessary to develop and 
adopt unified tracking systems, ensuring consistent data quality and accessibility 
across different regions and competitions.

• Referee assistance systems: In evaluating player movements from the captured 
data, referee assistance systems are most effective in scenarios where position 
data can be accurately measured, and the movements are clearly defined by human 
standards. Known applications include gymnastics (e.g., [ 2]) and offside detection 
(e.g., [ 40]) in soccer, and more advanced systems such as automated line judgment 
in volleyball (e.g., [ 29]) and tennis (e.g., [ 9]), and automated strike zone calls in 
baseball (e.g., [ 23]) are already in use. The feasibility of implementing referee 
assistance systems hinges on both the current technological capabilities and the 
practicality of their integration into the existing framework. From a technological 
perspective, research is ongoing in various sports, including swimming dives [ 43],
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figure skating jumps [ 35], and race walk faults [ 34] detection. While the preci-
sion required for practical deployment varies, achieving the necessary accuracy 
for competition use will demand extensive data acquisition and refinement of AI 
models, necessitating larger teams and resources. Although technically feasible, as 
demonstrated in gymnastics, integrating these systems into official events presents 
challenges such as cost, incorporation into existing rules, the interaction between 
human referees and AI, and ensuring the systems do not detract from the excite-
ment of the game. Thus, implementing these systems requires substantial effort 
and collaboration among stakeholders. Moreover, the accuracy of operational ref-
eree assistance systems is expected to match or exceed human referees, given their 
multi-layered validation process. Human referees bring extensive experience but 
are limited by their biological constraints, while AI systems can process data with 
high spatiotemporal resolution and operate without time and location restrictions, 
making them potentially more effective in many scenarios.

• Fan engagement and experience: To enhance the fan experience or provide valu-
able information for betting, we need to move beyond the current methods centered 
around video footage, static statistics, and heat maps. Learning-based analytics 
that evaluates all players in real-time is essential for this advancement. While it 
is technically feasible to perform field registration, tracking, and Re-ID in real 
time on broadcast footage at the cost of some accuracy, the main challenge lies in 
determining what information to provide to viewers and bettors. For those receiv-
ing information in real-time, too much data can overwhelm and detract from the 
experience. Therefore, it is important to carefully curate and minimize the informa-
tion presented to maintain an engaging and informative user experience. Further 
considerations include designing user interfaces that highlight key insights and 
ensuring the information is actionable and relevant, thereby enriching the overall 
engagement and making the viewing or betting experience more enjoyable and 
insightful. 

Despite the current capabilities of technology, there are numerous opportunities 
for deployment. In well-funded professional sports leagues, data companies possess 
vast amounts of data, facilitating machine learning-based research. However, the 
increasing cost and strict management of broadcasting rights, along with the large 
number of stakeholders and organizational rigidity, often hinder new initiatives. On 
the other hand, amateur leagues and university teams, though limited in data vol-
ume (typically covering only a few games), can benefit from more flexible and rapid 
deployment. Open innovation can promote frequent information transfers between 
amateur and professional levels, accelerating the adoption of learning-based analyt-
ics across all tiers of sports. This exchange of knowledge and techniques between 
amateurs and professionals will enhance the overall landscape of sports analytics, 
making it more accessible and widespread.
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5.3.3 Key Principles for Advancing Learning-Based Sports 
Analytics 

To advance learning-based sports analytics effectively, it is essential to support open 
innovation that involves those who collect data, those who analyze it, and those 
who utilize it. This approach relies on establishing several key principles, such as 
trustworthiness, fairness, and transparency. These principles ensure the reliable and 
ethical development and deployment of analytics systems, promoting wider accep-
tance and use. By integrating these concepts, we can enhance the credibility and 
utility of sports analytics, ultimately benefiting all stakeholders involved.

• Trustworthiness: Trustworthiness refers to the inherent qualities and character-
istics that make a system or organization reliable and dependable. In the context 
of sports analytics, systems must demonstrate consistency, accuracy, and integrity 
in their operations and outputs. By ensuring that data acquisition, processing, and 
analysis are conducted with the highest standards of reliability, users can develop 
confidence in the analytics provided. Trustworthiness is the foundation on which 
trust is built, making it essential for the adoption and acceptance of advanced sports 
analytics systems.

• Fairness: Fairness in sports analytics involves ensuring that the algorithms and 
models reduce biases and that they provide equitable opportunities for all athletes 
and teams. This includes addressing potential differences in data representation 
and algorithmic decisions that could unfairly disadvantage certain groups. For 
example, in the case of AI referees, it is important that these systems are designed 
and trained to avoid any biases that might result in inconsistent or unfair rulings, 
particularly against underrepresented teams or players. By prioritizing fairness, we 
can promote a level playing field and ensure that analytics contribute positively to 
the development and success of all participants, regardless of their background or 
circumstances.

• Transparency: Transparency is critical for building trust and ensuring account-
ability in sports analytics. This involves openly sharing the methodologies, data 
sources, and decision-making processes used in analytics systems. By making 
these aspects accessible and understandable to users, analysts, and stakeholders, 
we can clarify the technology and promote greater acceptance. Transparency also 
allows for independent verification and validation, further enhancing the credibil-
ity and reliability of the analytics provided. 

By focusing on these principles-trustworthiness, fairness, transparency, and 
collaboration-we can create a robust framework for the ethical and effective advance-
ment of learning-based sports analytics. This foundation will support the growth of 
the field, encourage widespread adoption, and ultimately lead to better performance 
insights and outcomes in sports. Based on these principles, the next section will 
introduce specific proposals for shaping future ecosystems in sports analytics.
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5.4 Shaping Future Ecosystems 

To fully realize the future applications of sports analytics introduced in Sect. 5.2 and 
to enhance the current implementations discussed in Sect. 5.3, it is essential to shape 
supportive ecosystems that involves those who collect data, those who analyze it, and 
those who utilize it. These ecosystems are crucial for promoting innovation, ensur-
ing standardization, and promoting ethical use. By building collaborative research 
networks, promoting open source initiatives, and standardizing data formats within 
sports analytics, we can create a robust foundation for future advancements. For 
example, PySport for various python libraries in many sports, SportsLabKit 2 and 
TrackLab, 3 which processes sports videos, and OpenSTARLab 4 and Kloppy, which 
plans to further enhance its library for team sports advanced analysis in the future, 
can be mentioned. Additionally, addressing cross-disciplinary innovations, sustain-
ability, educational programs, and public policy outside of sports analytics will not 
only drive technological progress but also increase the user base and acceptance of 
these technologies. These efforts are necessary to build a sustainable, innovative, and 
ethically sound ecosystem that supports the long-term growth and impact of sports 
analytics. 

5.4.1 Building the Infrastructure of Sports Analytics 

The development of a robust ecosystem within sports analytics is essential to achiev-
ing long-term success and sustainability in the field. Such an ecosystem facilitates 
collaboration, innovation, and the seamless integration of various technologies and 
methodologies. By focusing on collaborative research networks, open data initia-
tives, and the standardization of data formats, we can create an environment that 
leads to significant advances in sports analytics.

• Open source initiatives: Promoting the sharing of sports data and code for research 
and development is essential for accelerating progress in sports analytics. Open 
source initiatives encourage transparency and accessibility, allowing researchers 
and developers to access a wealth of information that can be used to train models, 
validate theories, and develop new applications. By making data widely available, 
these initiatives reduce barriers to entry, enabling more individuals and organi-
zations to contribute to the field. Furthermore, open data cultivates a culture of 
collaboration and innovation, as researchers can build on each other’s work, lead-
ing to more rapid and impactful advancements. To further enhance these efforts, 
organizing competitions and open lectures can play a significant role in promot-
ing understanding and engagement. Competitions can challenge participants to

2 https://github.com/AtomScott/SportsLabKit. 
3 https://github.com/TrackingLaboratory/tracklab. 
4 https://github.com/open-starlab. 
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develop innovative solutions using open data and code, while open lectures pro-
vide educational opportunities to learn from experts in the field. These activities 
not only drive interest and participation but also help disseminate knowledge and 
best practices, furthering the goals of open source initiatives.

• Standardization of data formats: Establishing common protocols for data acqui-
sition and analysis in sports is vital for ensuring consistency and interoperability 
across different systems and platforms. Standardization simplifies the integration 
of various data sources, making it easier to combine and analyze information from 
different sensors, devices, and applications. This uniformity enhances the reliabil-
ity and comparability of analytical results, enabling more accurate and actionable 
insights. For instance, tracking and pose estimation benefit from common formats 
such as MOT (multi-object tracking) and COCO (common objects in context), 
which have facilitated concentrated research and algorithm development. In the 
sports domain, initiatives like PySport 5 provide diverse Python code for sports ana-
lytics, but there are few efforts to create common formats for different datasets. 
Kloppy 6 is a notable exception, as it aims to standardize event and tracking data 
from various soccer data providers into a common format. Similarly, the Events in 
Invasion Games Dataset [ 5] attempts to represent event data for handball and soccer 
using a unified format. By adopting standardized data formats, the sports analytics 
community can streamline the development and deployment of new technologies, 
reduce redundancy, and increase efficiency.

• Collaborative research networks: Building networks between academic institu-
tions, sports organizations, and tech companies are crucial for promoting innova-
tion and advancing research in sports analytics. These networks enable the shar-
ing of knowledge, resources, and expertise, leading to the development of more 
sophisticated analytical tools and techniques. Collaboration also helps bridge the 
gap between theoretical research and practical application, ensuring that innova-
tions are grounded in real-world needs and challenges. Academic conferences play 
a vital role in this ecosystem by providing a platform for presenting cutting-edge 
research, exchanging ideas, and forming partnerships. However, the increase of 
conferences and workshops has made it challenging to consolidate efforts and 
maintain focus. Therefore, establishing a larger community that integrates the 
efforts of academic conferences with corporate partnerships is essential. This inte-
grated approach can help streamline efforts, reduce redundancy, and enhance the 
impact of collaborative research networks. By facilitating these partnerships, such 
networks can drive the evolution of sports analytics, enabling stakeholders to lever-
age the collective intelligence and capabilities of the community effectively.

5 https://opensource.pysport.org/. 
6 https://kloppy.pysport.org/. 
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These foundational elements within sports analytics are essential for creating a 
robust ecosystem that supports continuous innovation and application. By promoting 
collaboration, promoting open data, and standardizing data formats, we can ensure 
that sports analytics remains at the forefront of technological advancement, driving 
improvements in athletic performance, fan engagement, and overall sports manage-
ment. 

5.4.2 Extending the Reach of Sports Analytics 

To maximize the impact and reach of sports analytics, it is crucial to consider broader 
contexts beyond the immediate domain. This involves promoting cross-disciplinary 
innovations, developing educational programs, and shaping public policy and regu-
lation. These initiatives are essential for creating a holistic ecosystem that supports 
the integration and ethical application of sports analytics across various sectors.

• Cross-disciplinary innovations: Encouraging collaboration between fields such 
as robotics, artificial intelligence, and sports science is essential for driving inno-
vation in sports analytics. By leveraging the expertise and methodologies from 
different disciplines, we can develop more comprehensive and effective solutions. 
For example, the success of digital modeling in sports analytics fundamentally 
depends on the integration of robotics and machine learning. Although neither 
discipline can fully replicate human abilities at present, both are capable of approx-
imating human cognition and movement to a substantial degree. It is important 
to approach these fields not as isolated domains but as interconnected areas of 
research. Robotics, which emphasizes physical interaction with the environment, 
and machine learning, which excels in processing and predicting complex pat-
terns, together play a vital role in narrowing the gap between human intuition and 
artificial replication. The continued development of these fields, in conjunction 
with one another, will be essential for advancing our understanding and modeling 
of human performance in sports.

• Educational programs: Developing curricula to train the next generation of sports 
data scientists and analysts is essential for ensuring continued growth and inno-
vation in the field. Educational programs should focus on providing students with 
a strong foundation in data science, machine learning, and sports analytics, as 
well as practical experience with real-world data and tools. By equipping students 
with the necessary skills and knowledge, we can cultivate a workforce capable of 
advancing sports analytics and applying it to a wide range of applications. This 
investment in education will help sustain the field’s momentum and ensure a steady 
supply of talented professionals.

• Ethical governance of AI in sports decision-making: Shaping public policy 
and regulation for the ethical use of AI and data in sports is important, par-
ticularly in ensuring fairness and transparency, which are of paramount impor-
tance in AI-based decision-making processes, such as AI refereeing. As AI and
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data increasingly influence human decision-making in sports, policymakers must 
collaborate with researchers, sports organizations, and technology companies to 
establish guidelines that promote responsible use. This includes setting standards 
for data protection, ensuring transparency and accountability in AI algorithms, and 
addressing potential biases in data acquisition and analysis. Effective regulation 
will not only safeguard privacy but also build trust in sports analytics, ensuring 
that its benefits are achieved ethically and with social responsibility. 

By focusing on these areas outside of sports analytics, we can create a support-
ive ecosystem that enhances the integration, application, and ethical use of sports 
analytics. These efforts will drive innovation, promote sustainability, and ensure the 
field’s long-term growth and impact across various sectors. 

5.5 Summary 

This final chapter proposes a hypothesis about the future direction of learning-based 
sports analytics, emphasizing the integration of real-world data and digital modeling. 
This approach addresses challenges such as automating data acquisition, bridging 
domain gaps, and implementing learned models. The integration aims to enhance 
the prediction, evaluation, and optimization of play. The chapter also highlights the 
long-term benefits of digital modeling, including enhanced performance monitoring 
and training, strategic decision-making, advanced recruitment, and fan engagement. 
Practical deployment challenges are discussed, along with the need for open inno-
vation and key principles like trustworthiness, fairness, and transparency. Shaping 
future ecosystems involves building infrastructure, fostering cross-disciplinary inno-
vations, and addressing the ethical governance of AI in sports decision-making. 
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Glossary 

Data Collection The process of collecting data from various sources such as video 
footage, wearable sensors, and GPS tracking devices in sports analytics. 

Data Preprocessing The process of cleaning, transforming, and organizing raw data 
into a usable format. 

Feature Engineering The process of using domain knowledge to extract meaningful 
features from raw data that enhance the performance of machine learning models. 

Model Development The process of selecting and building appropriate machine 
learning and statistical models tailored to specific tasks in sports analytics. 

Model Evaluation The process of assessing the performance of models through 
various metrics to ensure reliability and accuracy in predictions within sports 
analytics. 

Data Visualization The representation of data in graphical formats such as graphs, 
tables, maps, and charts. 

Strategies Comprehensive plans designed to achieve long-term objectives in sports. 
Tactics Specific actions or sequences of actions that teams employ during a game to 

execute their strategy. 
Techniques The fundamental skills required to execute tactics effectively in sports. 
Forward Problem The process of generating outcomes from known causes or 

models. 
Inverse Problem The process of deducing the underlying causes or strategies from 

observed outcomes. 
Mathematical Models The use of mathematical expressions to represent real-world 

phenomena. 
Rule-Based Models An approach where the underlying rules governing a system or 

behavior are explicitly programmed into a computer by humans. 
Machine Learning Models Algorithms that automatically extract useful patterns or 

knowledge from input data. 
Unsupervised Learning A type of machine learning that involves learning without 

using target variables. 
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124 Glossary 

Supervised Learning A type of machine learning that involves learning to align 
with target variables. 

Reinforcement Learning A type of machine learning where agents learn to make 
decisions by interacting with their environment and receiving rewards or penalties. 

Counterfactual Analysis A technique in sports analytics that explores hypothetical 
scenarios to understand the impact of different strategies and player movements 
on game outcomes. 

Trajectory Prediction The process of predicting the future positions of players dur-
ing a game using machine learning models, often applied in team sports scenarios. 

Field Registration The alignment of captured video footage with a pre-defined play-
ing field. 

Camera Calibration The process of determining the parameters of a camera, 
enabling the transformation between 3D world coordinates and 2D image coor-
dinates. 

Tracking The process of detecting and following the movements of objects, such as 
players and the ball, across successive video frames. 

Re-identification The process of recognizing the same player across different cam-
era views or after occlusions. 

Action Recognition and Detection The process of identifying specific actions or 
events in sports footage. 

Pose Estimation The process of determining the precise positions of a player’s body 
joints from video footage. 
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Convolutional neural network, 30 
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CVSports, 16 
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D 
2D-to-3D lifting, 39 
3D pose estimation, 39 
Data pre-processing, 6 
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Digital modeling, 4, 102 
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Dynamic mode decomposition, 64 
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Feature engineering, 6 
Field registration, 22, 25, 110 
Figure skating, 35–38, 43, 113 
Forward analysis, 13, 91 
Forward problem, 13, 91 
Foul prediction, 43 
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