
MATLAB Roadmap to
Applications

Yi Chen · Long Huang

Volume I Fundamental

MATLAB Roadmap to Applications

Yi Chen · Long Huang

MATLAB Roadmap
to Applications
Volume I Fundamental

Yi Chen
Xi’an Jiaotong-Liverpool University
Suzhou, Jiangsu, China

Long Huang
Xi’an Jiaotong-Liverpool University
Suzhou, Jiangsu, China

ISBN 978-981-97-8787-6 ISBN 978-981-97-8788-3 (eBook)
https://doi.org/10.1007/978-981-97-8788-3

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-97-8788-3
http://creativecommons.org/licenses/by/4.0/

For My Family

—Yi Chen

For My Family

—Long Huang

Foreword

MATLAB, a powerful mathematical software package, has become an indispens-
able tool for engineers, scientists, and researchers in various academic and industry
domains. Its versatility in data analysis, visualization, computing, and simulation has
made it a cornerstone of many fields, including energy, manufacturing, transporta-
tion, healthcare, supply chain, information technologies, aerospace, business, and
finance, just name a few.

It is my pleasure to present this comprehensive guide, “MATLAB from Funda-
mentals to Applications—I Fundamentals,” which caters to students, engineers, and
researchers seeking to utilize MATLAB in their daily work. What sets this book
apart is its cross-disciplinary approaches, showcasing the wide range of applications
that MATLAB offers in fields such as engineering, science, and finance. This makes
the book suitable for a diverse audience, including undergraduate and postgraduate
students, university professors, as well as industry professionals.

The key features of this book are:

• Comprehensive Coverage: This book covers all the fundamental concepts of
MATLAB, serving as a one-stop shop for beginners starting from scratch.

• Multidisciplinary Applications: With a focus on real-world applications, this
book demonstrates how MATLAB can be utilized to analyze and solve complex
problems in various fields, catering to the needs of a wide range of readers.

• Hands-on Approach: The book emphasizes practical learning by including
hands-on experience and course works, allowing readers to apply the concepts
they learn in real-world scenarios.

• Solution-Oriented: To enhance and assess the learning progress, this book
provides solutions to problems and labs, giving readers the opportunity to test
their understanding of the materials.

• Online Resources: Supplementary online resources and modules are also avail-
able to further support the learning experience, providing additional guidance and
assistance to readers.

• Author’s Experience: The lead author of this book is a distinguished professor,
IET Fellow, and IMechE Fellow, with extensive experience in MATLAB. This

vii

viii Foreword

ensures that the book drew reliable and cutting-edge sources of knowledge,
offering valuable insights and expertise to readers.

In the era of Artificial Intelligence, we firmly believe that this book is an essential
resource for anyone seeking to learn and become a mastery of MATLAB. Whether
you are a student, a researcher, or a professional, this book will equip you with the
necessary skills to harness the power of MATLAB in your work. It is our hope that
readers will find this book not only informative but also practical, enabling them to
achieve their goals and excel in their respective fields.

With great enthusiasm, we invite you to embark on this MATLAB journey and
enjoy the numerous findings that await you to explore.

30 August 2024 Prof. Tongdan Jin
Texas State University

San Marcos, USA
tj17@txstate.edu

mailto:tj17@txstate.edu

Preface

Welcome to the first edition of “MATLAB from Fundamentals to Applications—
I Fundamentals.” As esteemed professors with extensive experience in MATLAB,
we are delighted to present this comprehensive guide to students, engineers, and
researchers who are seeking tomasterMATLAB as a powerful tool for their everyday
work.

MATLAB is a widely used programming language in various domains, including
engineering, science, finance, and many others. With its extensive range of features,
MATLAB can sometimes appear overwhelming to beginners. Thus, we have taken
the initiative to write this book, which systematically covers all the fundamental
concepts of MATLAB. Through a step-by-step approach, supported by numerous
examples and exercises, readers will develop a solid understanding of MATLAB.

This book has been carefully designed to provide readers with a roadmap for
learning MATLAB, starting from the basics and progressing to advanced concepts.
Each chapter is structured in a manner that facilitates step-by-step learning, with
clear explanations, illustrative examples, and exercises to reinforce comprehension.
In addition, the book incorporates practical lab works and courseworks, enabling
readers to apply their knowledge in real-world scenarios.

Key Features

One of the standout features of this book is its emphasis on a hands-on approach. Lab
works and course works are included to enable readers to apply the concepts they
learn to practical situations.Moreover, solutions to problems and labs are provided to
help readers assess their understanding and track their progress. To further enhance
the learning experience, this book is accompanied by online resources and modules,
including video lectures, quizzes, and supplementary exercises.

ix

x Preface

Audience

This book is tailored to cater to a wide range of readers, including:

• Undergraduate and postgraduate students studying engineering, physics, mathe-
matics, computer science, and related disciplines.

• Researchers who utilize MATLAB for data analysis and visualization in fields
such as biology, chemistry, economics, and social sciences.

• Engineers who employ MATLAB for modeling, simulation, and control system
design.

• Professionals who wish to acquire MATLAB as a valuable tool for their daily
work, including data analysts, statisticians, and financial analysts.

Organization

The book is organized as follows:

• Chapter 1: Introduction to MATLAB, encompassing its history, features, and
installation.

• Chapters 2 and 3: Fundamental concepts of MATLAB programming, covering
topics such as data types, operators, expressions, vectors, arrays, matrices, and
data structures.

• Chapters 4–6: Conditional statements, loop statements, scripts, and functions.
• Chapters 7–9: Inputs and outputs, data visualisation, programming, and algorithm

development.
• Chapter 10: Object-oriented programming.
• Appendices A and B: Solutions to problems and FAQs.

Pedagogical Features

To ensure an effective learning experience, this book incorporates various pedagog-
ical features, including:

• Step-by-step explanations and examples to facilitate comprehension.
• Exercises at strategic points to reinforce understanding.
• Lab works and examples to enable practical application.
• Solutions to problems and labs to assess progress in each chapter.

Preface xi

Prerequisites

The only prerequisite for this book is a basic understanding of mathematics and
computer science.

This book is an indispensable resource for undergraduate students, postgraduate
students, and professionals across a range of disciplines, including engineering,
physics, mathematics, and computer science. It is our sincere hope that this book
will serve as a valuable companion for anyone seeking to master MATLAB.

Suzhou, China Prof. Yi Chen
IET Fellow

IMechE Fellow
leo.chen@ieee.org

Prof. Long Huang

mailto:leo.chen@ieee.org

Acknowledgements

We express our sincere gratitude for the financial support received in part from the
Research Development Fund (RDF-21-02-019), which facilitated the development
of this book.

We would like to extend our heartfelt appreciation to our esteemed colleagues
fromvarious institutions for their unwavering support and encouragement throughout
this endeavor. These institutions include Xi’an Jiaotong-Liverpool University,
Newcastle University, University of Glasgow, University of Strathclyde, Northum-
bria University, University of Liverpool, University of Cranfield, University of Edin-
burgh, Edinburgh Napier University, Cardiff University, Queen’s University Belfast,
Massachusetts Institute of Technology, California Institute of Technology,University
College London, University of Bath, University of Bristol, University ofManchester,
University of British Columbia, University of Alberta, and Texas State University.

Our sincere thanks go to the reviewerswhogenerously provided valuable feedback
and insightful comments, which significantly contributed to enhancing the quality
and clarity of the manuscript.

We are deeply grateful to the editorial team at Springer Nature for their guidance,
professionalism, and support in publishing this book. Their expertise and dedication
have been instrumental in bringing this project to fruition.

On a personal note, one of the authors would like to extend heartfelt gratitude to
his wife for her unconditional love, support, and patience throughout the duration
of this project. Her understanding and encouragement were invaluable sources of
motivation.

xiii

Contents

1 Introduction . 1
1.1 What is MATLAB . 2
1.2 Why MATLAB? . 3
1.3 Who Should Use MATLAB? . 5
1.4 What is Covered in this Book . 6
1.5 What You Will Learn by the Book . 7
1.6 MATLAB History and Timeline . 8
1.7 MATLAB Products and Services (2024a) 12
1.8 How to Use this Book . 18
1.9 MATLAB Environment and Settings . 19
1.10 MATLAB Basic Concepts . 30
1.11 Laboratory . 39
1.12 Problems . 44
1.13 Summary . 45
References . 46

2 Data Types, Operators, and Expressions . 49
2.1 MATLAB Built-in Data Types . 50
2.2 Working with Data Types . 55

2.2.1 Creating Variables . 55
2.2.2 Accessing and Modifying Data 62
2.2.3 Type Conversion . 64
2.2.4 Operations and Functions on Data Types 68
2.2.5 Missing Data Handling . 74

2.3 Advanced Topics . 75
2.3.1 Custom Data Types . 75
2.3.2 Enumerations . 76
2.3.3 Data Type Validation . 77
2.3.4 Performance Considerations . 77
2.3.5 Memory Allocation and Management 78
2.3.6 Ranges, Casting and Machine Epsilon 79

xv

xvi Contents

2.4 Operators . 79
2.4.1 Arithmetic Operators . 79
2.4.2 Relational Operators . 80
2.4.3 Logical Operators . 81
2.4.4 Assignment Operators . 82
2.4.5 Special Characters . 82

2.5 Expressions . 83
2.5.1 Arithmetic Expressions . 83
2.5.2 Relational Expressions . 84
2.5.3 Logical Expressions . 85
2.5.4 String Expressions . 86
2.5.5 Function Expressions . 87
2.5.6 Array and Matrix Expressions . 87

2.6 Statement . 87
2.7 Laboratory . 91
2.8 Problems . 101
2.9 Summary . 102
References . 103

3 Vectors, Arrays, Matrices, and Data Structures 105
3.1 Vector . 106
3.2 Arrays . 108
3.3 Matrix . 110
3.4 Data Structures . 111
3.5 Advanced Data Structures . 115

3.5.1 MATLAB Examples . 116
3.5.2 Graph Data Structure . 116
3.5.3 Tree Data Structure . 117
3.5.4 Tall Arrays . 117

3.6 Laboratory . 118
3.7 Problems . 130
3.8 Summary . 130

4 Conditional Statements . 133
4.1 Introduction to Conditional Statements . 134
4.2 The if Statement . 135
4.3 The elseif and else Statements . 136
4.4 The switch Statement . 138
4.5 The end Keyword . 139
4.6 Laboratory . 142

4.6.1 Digit Counter . 145
4.6.2 Grade Statistics . 147
4.6.3 Menu-Driven Calculator . 148

4.7 Problems . 149
4.8 Summary . 150
References . 152

Contents xvii

5 Loop Statements . 153
5.1 Introduction . 154
5.2 Types of Loop Statements . 155

5.2.1 For Loops . 155
5.2.2 While Loops . 156
5.2.3 Do-While Loops . 157

5.3 Loop Optimisation Techniques . 159
5.3.1 Importance of Loop Optimisation for Efficiency 159
5.3.2 Strategies for Reducing Unnecessary Iterations 159
5.3.3 Loop Unrolling, Loop Fusion, and Loop

Interchange Techniques . 161
5.3.4 Best Practices for Enhancing Loop Performance 162

5.4 Applications of Loop Statements . 167
5.4.1 Solving Computational Tasks . 167
5.4.2 Real-World Problem Solving . 168

5.5 Debugging and Error Handling . 170
5.5.1 Common Errors and Pitfalls in Loop Statements 170
5.5.2 Techniques for Effective Debugging and Error

Resolution . 171
5.5.3 Testing Loop Conditions and Loop Termination

Conditions . 172
5.5.4 Strategies for Handling Exceptions and Error

Handling in Loops . 174
5.6 Advanced Topics in Loop Statements . 175

5.6.1 Conditional Loops . 175
5.6.2 Nested Loops and Loop Control 178
5.6.3 Integration with Arrays and Data Manipulation 179

5.7 Best Practices and Guidelines . 181
5.8 Laboratory . 181
5.9 Problems . 188
5.10 Summary . 189

6 Scripts and Functions . 193
6.1 Scripts . 194

6.1.1 Introduction to Scripts in MATLAB 195
6.1.2 Creating and Executing Scripts 195
6.1.3 Managing Variables in Scripts . 197

6.2 Functions . 198
6.2.1 Introduction to Functions in MATLAB 199
6.2.2 Function Syntax and Structure . 199
6.2.3 Calling Functions . 200
6.2.4 Examples of Functions in MATLAB 201

xviii Contents

6.2.5 Returning Values from Functions 202
6.2.6 Built-in Numerical Functions . 202

6.3 Variable Numbers of Arguments . 203
6.4 Nested Functions . 203
6.5 Anonymous Functions and Function Handles 204
6.6 Uses of Function Handles . 204
6.7 Recursive Functions . 204
6.8 Live Scripts . 205

6.8.1 Creating Live Scripts . 206
6.8.2 Adding Text, Equations, and Visualisations 206
6.8.3 Live Code File Format (.mlx) . 207

6.9 Laboratory . 210
6.10 Problems . 215
6.11 Summary . 217
References . 218

7 Inputs and Outputs . 219
7.1 Introduction . 220
7.2 MAT-Files (.mat) . 220
7.3 Spreadsheet Files (.xls) . 221
7.4 Binary Files (.dat) . 222
7.5 Image Files (.png, .jpg, .tif etc.) . 223
7.6 Text Files (.txt) . 224
7.7 Audio Files (.wav, .mp3, .flac etc.) . 225
7.8 Video Files (.avi, .mp4, .mov etc.) . 226
7.9 JSON Files (.json) . 227
7.10 HDF5 Files (.hdf5) . 227
7.11 XML Files (.xml) . 228
7.12 Database Files (.csv, .odb, etc.) . 228
7.13 Data Import and Analysis . 229
7.14 Laboratory . 232
7.15 Problems . 237
7.16 Summary . 238
References . 239

8 Graphics and Data Visualisation . 241
8.1 Introduction . 242
8.2 2D and 3D Plots . 244

8.2.1 Multiple Plots and Subplots . 246
8.2.2 Customising Plot Appearance . 250
8.2.3 Interactive Plot Features . 251
8.2.4 Specialised Plot Types . 253
8.2.5 Plotting Tools and Utilities . 254

8.3 Data Distribution Plots . 256
8.3.1 Histograms . 256
8.3.2 Box Plots . 257

Contents xix

8.3.3 Violin Plots . 257
8.3.4 Probability Plots . 258
8.3.5 Best Practices and Advanced Insights 258

8.4 Data Distribution Plots . 259
8.4.1 Histograms . 259
8.4.2 Box Plots . 260
8.4.3 Violin Plots . 261
8.4.4 Probability Plots . 261
8.4.5 Best Practices and Advanced Insights 262

8.5 Discrete Data Plots . 262
8.5.1 Bar Charts . 263
8.5.2 Pie Charts . 263
8.5.3 Stem Plots . 264
8.5.4 Area Plots . 265
8.5.5 Best Practices in Discrete Data Visualisation 265

8.6 Vector Fields (quiver, quiver3) . 266
8.7 Volume Visualisation (slice, isosurface,

isocaps) . 267
8.8 Images Displaying . 269

8.8.1 Basic Image Display Functions 269
8.8.2 Enhancing Image Contrast . 272
8.8.3 Applications in Various Domains 274
8.8.4 Advanced Image Manipulation 275
8.8.5 Unique Insights . 276

8.9 Animating Visualisations . 276
8.9.1 Creating Animated Plots . 276
8.9.2 Visualising Time-Series Data . 277
8.9.3 Animating 3D Plots . 278

8.10 Formatting and Annotation . 279
8.10.1 Customising Plot Appearance . 279
8.10.2 Adding Labels and Titles . 280
8.10.3 Adding Legends . 280
8.10.4 Annotating Plots . 281
8.10.5 Unique Insights and Advanced Formatting 281

8.11 Advanced Visualisation Techniques . 282
8.11.1 Interactive Visualisations . 282
8.11.2 Visualising Big Data . 282
8.11.3 Visualising Real-Time Data . 283
8.11.4 Visualising Uncertainty . 284
8.11.5 Visualising Geographical Data . 285

8.12 Advanced Visualisation Techniques . 287
8.12.1 Interactive Visualisations . 287
8.12.2 Visualising Big Data . 288
8.12.3 Visualising Real-Time Data . 288

xx Contents

8.12.4 Visualising Uncertainty . 289
8.12.5 Visualising Geographical Data . 291

8.13 Visualisation Best Practices . 292
8.13.1 Choosing the Right Plot Type . 293
8.13.2 Effective Use of Colour . 293
8.13.3 Simplifying Complex Visualisations 294
8.13.4 Designing for Different Audiences 294

8.14 Laboratory . 296
8.15 Problems . 307
8.16 Summary . 308
References . 309

9 Programming and Algorithm Development . 313
9.1 Introduction to Programming . 314
9.2 Algorithms . 315
9.3 From Algorithm to Programming . 316
9.4 Programme Organisation . 318
9.5 Control Flow in MATLAB . 320
9.6 Variable Scope . 322

9.6.1 Global and Local Scope . 325
9.6.2 Local Scope . 325
9.6.3 Global Scope . 328
9.6.4 Persistent Variables . 328
9.6.5 Nested Functions and Variable Scope 329

9.7 Errors and Pitfalls . 332
9.7.1 Syntax Errors . 333
9.7.2 Logic Errors . 333
9.7.3 Rounding Error . 334

9.8 Debugging and Testing . 334
9.9 Eval and Text Macros . 336
9.10 Live Scripts, Code Cells, and Publishing Code 337

9.10.1 Live Scripts . 337
9.10.2 Code Cells . 338
9.10.3 Publishing Code . 339

9.11 Files and Folders . 339
9.12 Security in MATLAB Code . 341

9.12.1 Understanding MATLAB Security 342
9.12.2 Example MATLAB Codes for Secure

Programming . 345
9.13 Graphical User Interfaces . 345

9.13.1 Basic Structure of a GUI . 346
9.13.2 A First Example: Getting the Time 346
9.13.3 Newton’s Method . 348
9.13.4 Axes on a GUI . 352
9.13.5 Adding Color to a Button . 355

Contents xxi

9.14 Apps Building in MATLAB . 357
9.14.1 Types of Apps in MATLAB . 357
9.14.2 App Development Tools . 358
9.14.3 Creating and Customising UI Components 359
9.14.4 Deploying and Sharing Apps . 360

9.15 Programming for Simulink . 361
9.15.1 Quick Introduction to Simulink 361
9.15.2 What Is an S-Function . 362
9.15.3 Advanced Simulink Programming Techniques

and Applications . 363
9.16 Software Development Tools . 364

9.16.1 Debugging and Analysis . 364
9.16.2 Performance and Memory . 365
9.16.3 Background Processing . 366
9.16.4 Projects . 367
9.16.5 Source Control Integration . 367
9.16.6 Testing Frameworks . 368
9.16.7 Build Automation . 370
9.16.8 Continuous Integration (CI) . 370
9.16.9 Toolbox Distribution . 371
9.16.10 Tool Qualification and Certification 372
9.16.11 MATLAB Grader . 373
9.16.12 MATLAB Cody . 376

9.17 Programming with AI . 377
9.17.1 MATLAB AI Chat Playground 377
9.17.2 ChatGPT . 378
9.17.3 Cursor—Pair-Programming with AI 380

9.18 Laboratory . 383
9.19 Problems . 393
9.20 Summary . 395
References . 396

10 Object-Oriented Programming . 399
10.1 Introduction to Object-Oriented Programming 400
10.2 Classes and Objects . 401
10.3 Inheritance and Hierarchies . 406
10.4 Encapsulation and Access Control . 409
10.5 Polymorphism and Overloading . 412
10.6 Events, Listeners, and Callbacks . 416
10.7 Advanced OOP Concepts . 418
10.8 OOP Design Patterns . 422
10.9 OOP Applications and Best Practices . 425

xxii Contents

10.10 Laboratory . 432
10.11 Problems . 435
10.12 Summary . 438
References . 439

Appendix A: Solutions to Chapter Problems . 441

Appendix B: Frequently Asked Questions (FAQs) . 563

Glossary . 589

Acronyms

AI Artificial Intelligence
CI Continuous Integration
CPU Central Processing Unit
EISPACK Matrix Eigensystem Package
GPU Graphics Processing Unit
GUI Graphical User Interface
GUIs Graphical User Interfaces
IDE Integrated Development Environment
LINPACK Linear Equation Package
ODE Ordinary Differential Equation
OOP Object-Oriented Programming

xxiii

List of Figures

Fig. 1.1 MATLAB family tree . 3
Fig. 1.2 MATLAB main window . 20
Fig. 1.3 MATLAB online with a MathWorks account 22
Fig. 1.4 MATLAB online main page . 24
Fig. 1.5 MATLAB editor and figure . 24
Fig. 1.6 MATLAB LiveEditor . 25
Fig. 1.7 MATLAB grader . 30
Fig. 2.1 Fundamental data types of classes in MATLAB 50
Fig. 2.2 MATLAB data types in Mindmap . 55
Fig. 3.1 Sudoku grid . 128
Fig. 6.1 Sine wave plot generated by the script . 197
Fig. 6.2 How functions work in MATLAB . 199
Fig. 8.1 MATLAB gallery: animation and contour plots 244
Fig. 8.2 MATLAB gallery: data distribution plots 245
Fig. 8.3 MATLAB gallery: discrete data plots . 245
Fig. 8.4 MATLAB gallery: geographic plots and images 246
Fig. 8.5 MATLAB gallery: line plots . 247
Fig. 8.6 MATLAB gallery: polar plots . 247
Fig. 8.7 MATLAB gallery: scatter and bubble charts 248
Fig. 8.8 MATLAB gallery: surface and mesh plots 248
Fig. 8.9 MATLAB gallery: vector fields and volume visualisation 249
Fig. 8.10 Advanced customisation techniques for scientific

visualisation . 254
Fig. 8.11 Example image display using imshow . 270
Fig. 8.12 Example image display using imadjust . 273
Fig. 8.13 Plot of the quadratic equation y = 2x2 + 5x − 6 295
Fig. 8.14 Plotting quadratic curve . 295
Fig. 8.15 Histogram of salary distribution . 300
Fig. 8.16 Plot FFT in 3D view . 307
Fig. 9.1 Conditional statements: if statement . 321
Fig. 9.2 Conditional statements: switch and case . 323

xxv

xxvi List of Figures

Fig. 9.3 Loop statements: for loops . 324
Fig. 9.4 Loop statements: while loops . 325
Fig. 9.5 Jump statements . 326
Fig. 9.6 Global and local scope . 327
Fig. 9.7 Nested functions and variable scope . 330
Fig. 9.8 The initial state of the time GUI . 348
Fig. 9.9 The time GUI after clicking the “Get Time” button 348
Fig. 9.10 The MATLAB codes for Newton’s method GUI 349
Fig. 9.11 The initial state of the Newton’s method GUI 351
Fig. 9.12 The Newton’s method GUI showing the convergence

of the method . 353
Fig. 9.13 The initial state of the GUI with axes . 354
Fig. 9.14 The GUI with the sine wave plotted on the axes 355
Fig. 9.15 The initial state of the GUI with a default button color 356
Fig. 9.16 The initial state of the GUI with a default button

colour—red . 357
Fig. 9.17 The GUI with the button colour changed to green 357
Fig. 9.18 Using the MATLAB AI chat playground 378
Fig. 9.19 Using ChatGPT with MATLAB—linear regression: prompt 379
Fig. 9.20 Using ChatGPT with MATLAB—linear regression:

outcome from GPT4o . 379
Fig. 9.21 Using cursor for AI-assisted coding—an example

of factorial . 382
Fig. 9.22 Using cursor for programming languages 383
Fig. 9.23 Using cursor for AI-assisted coding—an example of linear

regression . 383
Fig. 9.24 MATLAB APP development . 393
Fig. 9.25 Line plot with error band using ChatGPT 395
Fig. 10.1 An example of OOP for PID controller design 428
Fig. 10.2 An example of OOP for GUI—digital clock 431
Fig. A.1 Example: line plot with error band using ChatGPT 534
Fig. B.1 MATLAB Logo generated by the codes in [6] 566
Fig. B.2 MATLAB Plot Cheat Sheet . 584

List of Tables

Table 2.1 Fundamental MATLAB classes . 56
Table 2.2 Truth table for logical AND operation . 60
Table 2.3 Truth table for logical OR operation . 60
Table 2.4 Truth table for logical NOT operation . 60
Table 2.5 Type conversion functions in MATLAB . 66
Table 2.6 Specialised functions in MATLAB . 69
Table 2.7 Missing data handling functions in MATLAB 74
Table 3.1 Grade sheet for 8 students . 121
Table 3.2 Grade sheet for 8 students with total and grade 122
Table 3.3 Grade sheet for 8 students with average, total, and grade 122
Table 3.4 Fruit sets in warehouses . 126
Table 3.5 Stock data for day 3 . 126
Table 3.6 Ranking of students’ total scores . 128
Table B.1 Comprehensive glossary of MATLAB terms and concepts 589

xxvii

Chapter 1
Introduction

Chapter Learning Outcomes

• Explain the purpose and applications of MATLAB in various fields
• Gain an overview of the MATLAB environment and user interface
• Understand the structure and organisation of this book
• Appreciate the importance of MATLAB as a programming language and
numerical computing tool

• Describe the topics covered in this book
• Discover the benefits of using MATLAB.
• Identify the different types of users who can benefit from using MATLAB.

Chapter Key Words

• MATLAB: A high-performance numerical computing environment and program-
ming language widely used in various fields, including engineering, science, and
finance, for data analysis, algorithm development, and Visualisation.

• Programming Language: A formal language designed to instruct computers and
computing devices to perform specific tasks by writing code or programs, follow-
ing a set of rules and syntax.

• User Interface: The means by which users interact with a computer system or
application, typically consisting of graphical elements like menus, toolbars, and
windows.

• Environment: In the context of MATLAB, it refers to the integrated development
environment (IDE) where users can write, edit, and execute MATLAB code, as
well as access various tools and features.

• Mathematical Operations: Fundamental arithmetic operations, such as addition,
subtraction, multiplication, and division, as well as more advanced operations like
matrix calculations and trigonometric functions, performed using MATLAB.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_1&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_1

2 1 Introduction

• Variables: Named storage locations in computer memory used to store andmanip-
ulate data values, which can be assigned, modified, and referenced within MAT-
LAB programs.

• Data Types: The classification of data based on the type of values they can repre-
sent, such as numbers, characters, or logical values, which determines the opera-
tions and functions that can be applied to them in MATLAB.

• Arrays: Ordered collections of elements, often of the same data type, which can
be one-dimensional (vectors) or multi-dimensional (matrices) in MATLAB, and
are widely used for numerical computations and data manipulation.

1.1 What is MATLAB

MATLAB (Matrix Laboratory) is a high-performance, numerical computing envi-
ronment and programming language developed by MathWorks. It is widely used
in various fields, including engineering, science, finance, and academia, for data anal-
ysis, algorithm development, and Visualisation [2]. MATLAB stands out for its ease
of use, powerful matrix and array manipulation capabilities, and extensive toolboxes
for diverse applications.

MATLAB provides an IDE that combines a code editor, debugger, and Visualisa-
tion tools, facilitating the entire workflow from initial prototyping to final implemen-
tation. The IDE offers a user-friendly interface, making it accessible to both novice
and experienced users. One of MATLAB’s key strengths is its high-level program-
ming language that leverages matrix and array operations, enabling concise and
efficient code development for scientific and engineering computations.

The MATLAB language is designed to perform numerical computations effi-
ciently, with built-in support for linear algebra, signal processing, image processing,
and othermathematical functions. It also provides powerful dataVisualisation capa-
bilities, allowing users to create high-quality 2D and 3Dplots, graphs, and animations
to explore and communicate their data effectively.

MATLAB is highly extensible through the use of toolboxes, which are collections
of specialised functions and applications tailored to specific domains, such as con-
trol systems, machine learning, optimisation, and finance. These toolboxes expand
MATLAB’s functionality, enabling users to tackle a wide range of problems and
leverage cutting-edge algorithms and techniques.

Furthermore,MATLAB seamlessly integrates with other programming languages
and technologies, including C, C++, Fortran, Java, .NET, and Python, allowing for
interoperability and code reuse across different platforms and systems. This flexi-
bility makes MATLAB an invaluable tool for developing and deploying applications
in diverse environments, from embedded systems to cloud computing platforms.

As shown in Fig. 1.1, the MATLAB product tree has different components [1].

1.2 Why MATLAB? 3

Fig. 1.1 MATLAB family tree

1.2 Why MATLAB?

• Ease of Use One of the primary reasons to choose MATLAB is its user-friendly
environment, which promotes accessibility and productivity. MATLAB’s intuitive
syntax, combined with its interactive desktop, makes it easy for beginners to get
startedwith programming andnumerical computations. Experienced programmers
also appreciate MATLAB’s simplicity, which allows them to focus on problem-
solving rather than dealing with complex language constructs.
Example:

Listing 1.1 Simple arithmetic in MATLAB

% Simple arithmetic operations
a = 5;
b = 3;
c = a + b
d = a * b

Listing 1.2 Results: Simple arithmetic in MATLAB

% Results:
c = 8
d = 15

• High-PerformanceComputingMATLAB’s architecture is optimised for efficient
numerical computations, making it a powerful tool for handling large data sets
and complex calculations. It leverages optimised libraries for linear algebra, signal
processing, and othermathematical operations, enabling researchers and engineers
to solve computationally intensive problems.

4 1 Introduction

One of the key features of MATLAB is its ability to scale computations from
the desktop to clusters and clouds. This allows users to prototype and develop
their algorithms on their local machines, and then seamlessly scale up to larger
computational resources when needed.
For example, consider the code snippet in Listing 1.3, which performs matrix
multiplication on large random matrices. On a desktop machine, this computation
may take a significant amount of time.However, by leveragingMATLAB’s parallel
computing capabilities, such as the parfor loop and batch processing, the same
computation can be distributed across multiple cores or cluster nodes, greatly
reducing the overall computation time.

Listing 1.3 Matrix operations in MATLAB

% Create large random matrices
A = rand (1000, 1000);
B = rand (1000, 1000);

% Matrix multiplication
C = A * B;

MATLAB also provides a rich set of tools for parallel computing, including the
Parallel Computing Toolbox, which enables users to harness the power of multi-
core processors, GPUs, and computer clusters. This toolbox provides high-level
constructs, such as parallel for-loops (parfor), distributed arrays, and parallel
numerical algorithms, which allow users to parallelise their code with minimal
changes to their existing MATLAB programs.
In addition to the Parallel Computing Toolbox,MATLAB also integrates with pop-
ular cluster and cloud platforms, such as AmazonWeb Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP). This enables users to scale their com-
putations to the cloud, taking advantage of the virtually unlimited computational
resources available in these platforms.

• Vast Collection of Toolboxes MATLAB offers a comprehensive range of tool-
boxes that extend its capabilities to various domains, including signal processing,
control systems, machine learning, computer vision, and many more. These tool-
boxes provide pre-built functions, algorithms, and applications, enabling users to
solve complex problems without starting from scratch.

• Integrated Development Environment MATLAB’s IDE provides a seamless
environment for developing, debugging, and visualizing code. Features like live
code editing, debugging tools, and integrated documentation make the develop-
ment process more efficient and productive.

• Cross-Platform Compatibility MATLAB is available on multiple platforms,
including Windows, macOS, and Linux, ensuring consistent performance and
compatibility across different operating systems. This cross-platform compati-
bility facilitates collaboration and code sharing among teams and organisations.

By highlighting the ease of use, high-performance computing capabilities, exten-
sive toolbox collection, integrated development environment, and cross-platform

1.3 Who Should Use MATLAB? 5

compatibility, this section effectively communicates the key advantages of using
MATLAB for a wide range of technical computing tasks.

1.3 Who Should Use MATLAB?

MATLAB can be used by a wide range of users:

• Undergraduate engineering students for numerical computing courses.
• Graduate students and researchers for developing and prototyping algorithms.
• Data scientists for data analytics and visualisations.
• Professional engineers across various domains communications, signal process-
ing, control systems, computer vision, etc.

Specifically,

• Engineers and Scientists MATLAB is widely used by engineers and scientists
across various disciplines, such as mechanical engineering, electrical engineer-
ing, aerospace engineering, and physics. Its powerful computational capabilities,
combined with its intuitive programming environment, make it an ideal tool for
numerical analysis, data processing, and system modeling.
Example:

Listing 1.4 Solving a system of linear equations

% Define the coefficient matrix and constants
A = [1 2 3; 4 5 6; 7 8 10];
b = [6; 15; 33];

% Solve the system of linear equations
x = A \ b

• Researchers and Academics MATLAB is extensively used in research and aca-
demic institutions for data analysis, algorithm development, and simulation. Its
rich ecosystem of toolboxes and libraries enables researchers to tackle complex
problems in fields such as signal processing, machine learning, control systems,
and computational biology [3].
Example:

Listing 1.5 Plotting a sine wave

% Generate a sine wave
t = 0:0.01:2* pi;
y = sin(t);

% Plot the sine wave
figure;
plot(t, y);
xlabel(’Time’);

6 1 Introduction

ylabel(’Amplitude ’);
title(’Sine Wave’);

• Students and Educators MATLAB’s intuitive syntax and interactive environ-
ment make it a popular choice for teaching and learning programming, numerical
methods, and computational mathematics in educational settings. Many universi-
ties and colleges incorporate MATLAB into their curricula across various STEM
fields.

• Industry ProfessionalsMATLAB is widely adopted in various industries, includ-
ing automotive, aerospace, finance, and biotechnology. Its ability to handle large
datasets, perform complex simulations, and integrate with other programming lan-
guages makes it a valuable tool for professionals working in these domains.
By highlighting the diverse user base, including engineers, scientists, researchers,
academics, students, educators, and industry professionals, this section effectively
communicates the broad applicability and versatility of MATLAB across various
domains and professions.

1.4 What is Covered in this Book

• Introduction toMATLAB: These topics will provide an overview ofMATLAB, its
history, and its significance in the field of technical computing. It will explain the
core features of MATLAB, such as its matrix-based language, built-in graphics
capabilities, and integrated development environment.

• MATLAB Programming Fundamentals: These topics will cover the fundamental
concepts of MATLAB programming, including variables, data types, operators,
and control structures. It will introduce the syntax and structure of MATLAB
scripts and functions, as well as provide examples to illustrate these concepts.
Example:

Listing 1.6 Variable assignment and arithmetic operations

% Variable assignment
a = 5;
b = 3;

% Arithmetic operations
sum = a + b;
difference = a - b;
product = a * b;
quotient = a / b;

• Data Handling and Visualisation: These topics will delve into techniques for
importing, preprocessing, and analysing data in MATLAB. It will cover topics
such as reading and writing data files, data manipulation, and data visualisa-
tion using various plotting functions and techniques.

1.5 What You Will Learn by the Book 7

Example:

Listing 1.7 Plotting a scatter plot

% Generate sample data
x = rand (100, 1);
y = 2 * x + randn (100, 1);

% Create a scatter plot
figure;
scatter(x, y);
xlabel(’X’);
ylabel(’Y’);
title(’Scatter Plot’);

• AdvancedMATLABProgramming: These topics will explore more advanced pro-
gramming concepts in MATLAB, such as object-oriented programming, func-
tional programming, and parallel computing. It will also introduce techniques
for developing and deploying MATLAB applications.

• MATLAB Toolboxes and Problem Solving This section will provide an overview
of the various toolboxes available in MATLAB, which extend its functionality to
specific domains, such as signal processing, control systems, optimisation, and
machine learning. It will also showcase real-world applications of MATLAB in
various fields.
By covering a comprehensive range of topics, from introductory concepts to
advanced programming techniques and domain-specific applications, this section
outlines the scope and depth of thematerial covered in the book, catering to readers
with varying levels of expertise and interests.

1.5 What You Will Learn by the Book

This book aims to provide a comprehensive introduction to MATLAB, a powerful
programming language and environment widely used by engineers and scientists
for technical computing. From the basics of MATLAB syntax and command-line
operations to advanced topics in numerical computation and data visualisation, you
will gain the knowledge necessary to excel in your academic or professional pursuits.
This section will outline the key skills and concepts you will master by reading and
working through the examples in this book.

By the end of this book, you will:

• Understand what is MATLAB and its key capabilities
• Get an overview of MATLAB’s history and evolution
• Learn about MATLAB’s programming environment and interface
• Understand basic MATLAB concepts like arrays, matrices, data types, etc.
• Programming in MATLAB and Problem Solving
• Data Analysis and Visualisation.

8 1 Introduction

By covering these topics, the book will provide you with a comprehensive under-
standing of MATLAB’s capabilities and equip you with the skills to leverage its
power for various computational tasks and applications.

1.6 MATLAB History and Timeline

This section chronicles the remarkable journey ofMATLAB, highlighting the pivotal
milestones that have shaped its evolution from its inception to its current state as a
powerful computational platform. The timeline unfolds, tracing MATLAB’s origins,
major updates, and groundbreaking advancements that have propelled its widespread
adoption across diverse fields [4].

Comprehending MATLAB’s historical development is essential for grasping its
capabilities and profound impact. The narrative begins with its mathematical roots
in solving matrix equations and eigenvalue problems using Algol 60, a foundational
step that paved the way for subsequent breakthroughs. The Matrix Eigensystem
Package(EISPACK) and Linear System Package(LINPACK) projects played cat-
alytic roles in advancing mathematical software, culminating in Cleve Moler’s pio-
neering development of the first MATLAB version in Fortran, which demonstrated
its potential as an interactive matrix calculator.

A seminal moment occurred with MATLAB’s transition to C and its commer-
cial release in 1984, marking a significant milestone that facilitated the expansion
of its functionality and widespread adoption across diverse fields. It is noteworthy
that MATLAB’s continuous evolution, manifested through the introduction of new
features and toolboxes, has significantly contributed to its versatility and extensive
utilization in engineering, mathematics, and scientific research endeavors.

For students, professional researchers, and engineers, understanding MATLAB’s
historical context and evolution offers valuable insights into its capabilities and the
profound impact it has exerted across various domains.

• Founders
MATLAB was co-founded by Cleve Moler [5], a mathematician and computer
scientist, and Jack Little [6], an electrical engineer and computer scientist [7].
Moler was a professor at several universities, including the University of Michi-
gan, Stanford University, and the University of New Mexico, before co-founding
MathWorks. Little earned degrees from MIT and Stanford before meeting Moler
and recognising the potential for MATLAB as a commercial product.

• Mathematical Origins (1965–1970):
The genesis of MATLAB is deeply intertwined with the pioneering work of
J. H. Wilkinson and his associates, whose research papers on algorithms for
addressing matrix linear equations and eigenvalue problems established the
bedrock upon which MATLAB was built [8]. These seminal works were encapsu-
lated in the authoritative volume “Handbook for Automatic Computation, Volume

1.6 MATLAB History and Timeline 9

II: Linear Algebra”, serving as the mathematical and computational foundation
for the development of MATLAB.
Drawing inspiration from these scholarly articles, the inaugural rendition of MAT-
LAB was crafted in Algol 60. This early prototype was not a programming lan-
guage by contemporary standards but functioned as a rudimentary interactive
matrix calculator. It was devoid of the advanced features that define modern pro-
gramming languages, such as user-defined programs, toolboxes, graphic capabil-
ities, ordinary differential equations (ODEs) solvers, and fast Fourier transform
(FFT) utilities. Despite its simplicity, it was a potent mathematical instrument
specifically tailored for solving matrix linear equations and eigenvalue problems.
In the late 1960s, Cleve Moler embarked on the development of numerical linear
algebra software using Fortran, a programming language renowned for its scien-
tific computing applications [9]. This initiative marked a significant step towards
the evolution of MATLAB as we know it today.

• EISPACK and LINPACK (1970–1976):
During the 1970s,CleveMoler played a pivotal role in authoring the scientific sub-
routine libraries known asEISPACK andLINPACK, which served as the bedrock
for MATLAB’s mathematical prowess [9]. The inception of these libraries repre-
sented a significant juncture in the evolution of numerical computing software.
EISPACK, which emerged in the early 1970s, offered a suite of routines dedi-
cated to eigenvalue computations. Subsequently, LINPACK, introduced later in
the decade, provided comprehensive solutions for linear equations and linear least-
squares problems. These libraries collectively formed the foundational capabilities
of MATLAB.

– EISPACKTheEISPACK initiativewas launched by a consortiumof researchers
at Argonne National Laboratory. It was designed as a package for tackling
eigenvalue problems by translating Algol 60 algorithms into Fortran. With an
aim to develop and rigorously test high-calibre mathematical software, the first
iteration of EISPACK was unveiled in 1971. This project was seminal in setting
the stage for subsequent advancements in mathematical software [10].

– LINPACK The LINPACK project, spearheaded by Cleve Moler [5] and his
collaborators, was proposed to the U.S. National Science Foundation with the
objective of exploring methodologies for the development of mathematical soft-
ware. Unlike EISPACK, LINPACK was developed directly in Fortran, eschew-
ing the need for Algol translation. This project culminated in the creation of
LINPACK, a package specifically designed to address linear equation prob-
lems. Comprising 44 subroutines across various numeric precisions, LINPACK
was initially penned in Fortran and represented a landmark development in the
domain of mathematical software [11].

10 1 Introduction

• Historic MATLAB (1970s–1980s):
MATLAB traces its origins back to the late 1970s at theUniversity of NewMexico,
where Cleve Moler, a computer science professor, was working on developing a
programming environment for his students. Inspired by the LINPACK and EIS-
PACK projects, which provided Fortran libraries for numerical linear algebra,
Moler aimed to create a user-friendly interface that would make these libraries
more accessible to students and researchers [9]. Initially called MATLAB, the
software was designed to provide a more intuitive and interactive environment
for working with matrices and numerical computations, serving as an interactive
matrix calculator to provide easy access to LINPACK and EISPACK functionali-
ties.
MATLAB allowed users to perform matrix operations and numerical computa-
tions in an interactive and user-friendly manner, providing an accessible interface
for the LINPACK and EISPACK libraries. Initially used in academia, MATLAB’s
ease of use and powerful computational abilities quickly gained popularity among
students and researchers. This period saw the transformation of MATLAB from a
simple matrix calculator into a comprehensive computational environment, offer-
ing a simple syntax and powerful matrix operations that gained popularity among
engineers and scientists.

• Commercial MATLAB (1980s–2020s):

– The first commercial version ofMATLAB (MATLAB1.0)was released in 1984,
Moler collaborated with Jack Little, to further develop and refine MATLAB.
JackLittlewrote a newversion inC,which debuted as PC-MATLABat the IEEE
Conference on Decision and Control in 1984 [12]. MATLAB was rewritten in
C and commercially released for the first time. This version introduced a more
extensive function library and improved performance, expanding its capabilities.
It quickly gained popularity among researchers and engineers due to its ease
of use and powerful computational capabilities, which included features such
as matrix manipulation, plotting, and numerical analysis functions. This release
marked the beginning of MATLAB’s widespread use and popularity

– In 1984, Steve Bangert, a computer engineer, joined the project, and the three
co-founders established MathWorks, a company dedicated to commercialising
MATLAB.

– MATLAB’s user-friendly interface, marked by the introduction of a graphical
user interface (GUI) in 1987, has made it accessible to users with varying levels
of technical expertise. The GUI allows users to visually navigate through MAT-
LAB’s features using menus and buttons, simplifying complex computations
and enabling users to focus on their specific tasks.

– In 1992, MATLAB expanded its reach by becoming available on multiple plat-
forms, including Windows and Macintosh, making it accessible to a broader
audience of researchers, engineers, and students from diverse backgrounds.

1.6 MATLAB History and Timeline 11

– One of the key advancements in MATLAB’s capabilities occurred with the
integration of Simulink in 2000. Simulink provided researchers and engineers
with a graphical simulation andmodel-based design environment, enabling them
to Analyse and simulate complex dynamic systems.

– MATLAB’s specialiszation in various domains is evident through its specialised
toolboxes. For instance, the Image Processing Toolbox, introduced in 2004,
equippedMATLAB users with a comprehensive set of functions and algorithms
for image analysis and processing.

– Similarly, the Parallel Computing Toolbox, introduced in 2011, enabled users
to leverage parallel computing capabilities for faster and more efficient compu-
tation.

Nowadays,MATLABboasts a global user base of over onemillion, highlighting its
widespread adoption and profound influence in academia, industry, and research.
Its intuitive interface, extensive library of functions, and powerful computational
capabilities render it an invaluable tool for users across various disciplines and
industries.
MATLAB continued to evolve with regular updates and the introduction of new
features and toolboxes, becoming a widely used software tool in engineering,
mathematics, and scientific research, enabling tasks such as numerical analysis
and data visualisation. A list of toolboxes is provided below:

– ODEs (1980s): MATLAB’s commercial version included numerical solutions
for ordinary differential equations (ODEs), which are central to Simulink,MAT-
LAB’s companion product for simulation and model-based design.

– 1987: MATLAB introduced a graphical user interface (GUI), making it easier
for users to interactwith the software. TheGUI allowedusers to visually navigate
through MATLAB’s features and perform operations using menus and buttons.

– Simulink (1990s): In the early 1990s, Simulink, a block diagram environment
for modeling and simulating dynamic systems, was integrated into MATLAB,
allowing engineers and scientists to design and simulate complex systems.

– Sparse Matrices (1992): MATLAB 4 introduced sparse matrices, a memory-
efficient representation for large arrays with few non-zero values.

– Cell Arrays (1996): MATLAB 5 introduced cell arrays, allowing for indexed
collections of heterogeneous MATLAB objects.

– Structures (1996): Structures were added, providing a way to create complex
data structures with associated methods.

– Objects (2008): MATLAB’s object-oriented programming capabilities were
enhanced, simplifying tasks involving specialised data structures.

– Desktop andLive Editor (2000, 2016):TheMATLABdesktop and Live Editor
significantly improved usability, especially for users without prior programming
experience.

– Parallel Computing (2004): MATLAB introduced the Parallel Computing
Toolbox, supporting both coarse-grained and fine-grained parallelism, unlock-
ing new realms of computational power.

12 1 Introduction

– Toolboxes (2018): As of release 2018a, MATLAB offers an impressive arsenal
of 63 specialised toolboxes, catering to diverse applications across numerous
domains.

– Data Types (2000s): To accommodate larger datasets and diverse applications,
MATLAB introduced single precision, integer, and logical data types, expanding
its versatility and applicability.

• MATLAB in the 21st Century
As the new millennium dawned, MATLAB expanded its reach into various indus-
tries, solidifying its position as a pivotal tool in engineering, finance, biotech, and
numerous other domains. It embraced cutting-edge technologies such as cloud
computing, parallel computing, and automatic code generation [13], further
enhancing its capabilities and versatility.
MATLAB’s burgeoning popularity paved the way for the development of numer-
ous toolboxes, broadening its functionality to encompass realms such as machine
learning, deep learning, data analytics, and control systems. Toolboxes like the
Statistics and Machine Learning Toolbox, Neural Network Toolbox, and Control
SystemToolbox furnished users with specialised functions and algorithms tailored
for specific applications, extending MATLAB’s prowess into novel frontiers.
Today, MATLAB stands as one of the most widely adopted programming lan-
guages and environments for scientific and engineering computations. Its evolu-
tionary journey continues unabated, with regular releases introducing new features
and enhancements, ensuring its enduring relevance and preeminence. MATLAB’s
extensive ecosystem, comprising online communities, comprehensive documen-
tation, and robust support, empowers users to leverage its capabilities effectively,
fostering innovation and driving advancements across myriad disciplines.

1.7 MATLAB Products and Services (2024a)

• Product Families [1]

– MATLAB

· Parallel Computing

· Parallel Computing Toolbox
· MATLAB Parallel Server

· AI, Data Science, and Statistics

· Deep Learning Toolbox
· Statistics and Machine Learning Toolbox
· Curve Fitting Toolbox
· Text Analytics Toolbox

1.7 MATLAB Products and Services (2024a) 13

· Math and Optimization

· Optimization Toolbox
· Global Optimization Toolbox
· Symbolic Math Toolbox
· Mapping Toolbox
· Partial Differential Equation Toolbox

· Reporting and Database Access

· Database Toolbox
· MATLAB Report Generator

· Code Generation

· MATLAB Coder
· Embedded Coder
· HDL Coder
· HDL Verifier
· Filter Design HDL Coder
· Fixed-Point Designer
· GPU Coder

· Application Deployment

· MATLAB Compiler
· MATLAB Compiler SDK
· MATLAB Production Server
· MATLAB Web App Server

· Verification, Validation, and Test

· Requirements Toolbox
· MATLAB Test

– Simulink

· Event-Based Modeling

· Stateflow
· SimEvents

· Physical Modeling

· Simscape
· Simscape Battery
· Simscape Driveline
· Simscape Electrical
· Simscape Fluids
· Simscape Multibody

14 1 Introduction

· Real-Time Simulation and Testing

· Simulink Real-Time
· Simulink Desktop Real-Time

· Reporting

· Simulink Report Generator

· Systems Engineering

· System Composer
· Requirements Toolbox

· Code Generation

· Simulink Coder
· Embedded Coder
· DDS Blockset
· AUTOSAR Blockset
· C2000 Microcontroller Blockset
· Fixed-Point Designer
· Simulink PLC Coder
· Simulink Code Inspector
· DO Qualification Kit (for DO-178)
· IEC Certification Kit (for ISO 26262 and IEC 61508)
· HDL Coder
· HDL Verifier

· Application Deployment

· Simulink Compiler

· Verification, Validation, and Test

· Requirements Toolbox
· Simulink Check
· Simulink Coverage
· Simulink Design Verifier
· Simulink Fault Analyzer
· Simulink Test
· Polyspace Bug Finder
· Polyspace Bug Finder Server
· Polyspace Code Prover
· Polyspace Test
· Polyspace Access
· Polyspace Code Prover Server
· Polyspace Client for Ada
· Polyspace Server for Ada

1.7 MATLAB Products and Services (2024a) 15

• Application Products

– Signal Processing

· Signal Processing Toolbox
· DSP System Toolbox
· Audio Toolbox
· Wavelet Toolbox
· DSP HDL Toolbox

– Image Processing and Computer Vision

· Image Processing Toolbox
· Computer Vision Toolbox
· Lidar Toolbox
· Medical Imaging Toolbox
· Vision HDL Toolbox
· Image Acquisition Toolbox

– Control Systems

· Control System Toolbox
· System Identification Toolbox
· Predictive Maintenance Toolbox
· Robust Control Toolbox
· Model Predictive Control Toolbox
· Fuzzy Logic Toolbox
· Simulink Control Design
· Simulink Design Optimization
· Reinforcement Learning Toolbox
· C2000 Microcontroller Blockset
· Motor Control Blockset

– Test and Measurement

· Data Acquisition Toolbox
· Instrument Control Toolbox
· Image Acquisition Toolbox
· Industrial Communication Toolbox
· Vehicle Network Toolbox
· ThingSpeak

– RF and Mixed Signal

· Antenna Toolbox
· RF Toolbox
· RF PCB Toolbox
· RF Blockset
· Mixed-Signal Blockset
· SerDes Toolbox
· Signal Integrity Toolbox

16 1 Introduction

– Wireless Communications

· Communications Toolbox
· 5G Toolbox
· LTE Toolbox
· WLAN Toolbox
· Bluetooth Toolbox
· Satellite Communications Toolbox
· Wireless HDL Toolbox
· Wireless Testbench

– Radar

· Radar Toolbox
· Phased Array System Toolbox
· Sensor Fusion and Tracking Toolbox
· Mapping Toolbox

– Robotics and Autonomous Systems

· Automated Driving Toolbox
· Robotics System Toolbox
· Navigation Toolbox
· ROS Toolbox
· Sensor Fusion and Tracking Toolbox
· RoadRunner
· RoadRunner Asset Library
· RoadRunner Scenario
· RoadRunner Scene Builder
· Simulink 3D Animation

– FPGA, ASIC, and SoC Development

· HDL Coder
· HDL Verifier
· Deep Learning HDL Toolbox
· Wireless HDL Toolbox
· Vision HDL Toolbox

– Embedded Systems

· Embedded Coder
· HDL Coder
· HDL Verifier
· Filter Design HDL Coder
· Fixed-Point Designer
· GPU Coder
· C2000 Microcontroller Blockset
· PLC Coder

1.7 MATLAB Products and Services (2024a) 17

· DO Qualification Kit (for DO-178)
· IEC Certification Kit (for ISO 26262 and IEC 61508)

– Industrial Automation

· Industrial Communication Toolbox
· Vehicle Network Toolbox
· Simulink PLC Coder
· Simulink Test
· Simulink Requirements
· Simulink Coverage
· Motor Control Blockset

– Aerospace

· Aerospace Blockset
· Aerospace Toolbox
· UAV Toolbox
· DO Qualification Kit (for DO-178)
· Simulink 3D Animation

– Computational Finance

· Datafeed Toolbox
· Database Toolbox
· Econometrics Toolbox
· Financial Toolbox
· Financial Instruments Toolbox
· Risk Management Toolbox
· Spreadsheet Link (for Microsoft Excel)

– Computational Biology

· Bioinformatics Toolbox
· SimBiology

– Code Verification

· Polyspace Bug Finder
· Polyspace Bug Finder Server
· Polyspace Code Prover
· Polyspace Test
· Polyspace Access
· Polyspace Code Prover Server
· Polyspace Client for Ada
· Polyspace Server for Ada.

• Services

– Software Maintenance
– Training
– Consulting.

18 1 Introduction

• License Types

– Industry Use
– Student Use
– University Use
– Academic Teaching Use
– Primary and Secondary School Use
– Startup Use
– Home Use.

• Cloud Solutions

– MATLAB Online
– MATLAB Online Server
– Simulink Online
– MATLAB Drive
– ThingSpeak
– MATLAB Mobile
– MATLAB Grader

• Community and Third-Party

– File Exchange
– Hardware Support Packages and Services
– Third-Party Products and Services
– MATLAB and Simulink Books

1.8 How to Use this Book

This book is designed to be used as:

• A textbook for undergraduate and postgraduate students.
• A reference manual for researchers and professional engineers.
• A self-learning guide for enthusiasts.

The chapters are organised logically building up from fundamentals to advanced
concepts. Multiple illustrative examples are provided throughout. While no strict
prerequisites are required, some background in the following areas will help readers
get the most out of this textbook:

• Programming experience–Prior experience in any programming language like C,
Python, Java, etc. will be helpful to understand basic programming constructs and
data structures.

• Mathematics–Foundational knowledge in mathematics including calculus, linear
algebra, probability and statistics will enable better understanding of examples
and applications.

1.9 MATLAB Environment and Settings 19

• Engineering/Science basics–Some familiarity with basic engineering or science
concepts will provide context for many of the examples. However, the book covers
fundamentals as well.

• Computer skills–Basic computer skills including proficiency with an operating
system, file management, office productivity tools etc. will be useful.

The book is designed in a modular fashion allowing even beginners with no prior
experience to pick up MATLAB skills systematically. The programming aspects are
built up gradually with abundant examples. Necessary mathematical and scientific
context is provided along the way.

Readers with some amount of prior experience in programming, mathematics or
an engineering/science discipline will likely be able to progress through the material
more quickly. However, the book can be used even by complete beginners starting
from first principles.

1.9 MATLAB Environment and Settings

The MATLAB Environment and Settings play a crucial role in optimising the user
experience and streamlining the workflow. This section will delve into the various
aspects of the MATLAB Desktop, preferences, and platform-specific considerations
[14].

• MATLAB Desktop
The MATLAB Desktop serves as the primary user interface, providing a uni-
fied environment for managing files, variables, code development, debugging, and
visualisation [14].
This subsection will cover:

– Desktop Layout: This section provides an overview of the various compo-
nents of theMATLABDesktop, including theCommandWindow,Workspace
Browser, Current Folder Browser, Editor Window, and plotting areas, as
shown in Fig. 1.2. TheCommandWindow is where users can enter commands
and run scripts, while theWorkspace Browser displays all the variables in the
current workspace. The Current Folder Browser allows users to navigate and
manage files within the current directory, and the Editor Window is used for
writing, editing, and debugging code. The plotting areas enable users to visualise
data in various forms, such as graphs and charts.

– Toolstrip and Toolbars: This section explains the Toolstrip and Toolbars,
which provide quick access to commonly used functions and tools. The Tool-
strip is a ribbon-like interface that organises tools into tabs and sections, facil-
itating easy access to different functionalities such as file operations, plotting
tools, and code execution. The Toolbars offer shortcuts to frequently used com-
mands, enhancing the efficiency of the user interface.

20 1 Introduction

Fig. 1.2 MATLAB main window

– Customisation: This section discusses techniques for customising the desktop
layout, including dockingwindows, creating customdesktop layouts, and setting
preferences. Users can dock and undock windows, arrange them in different
configurations, and save these configurations as custom layouts. Preferences
such as font size, colour schemes, and keyboard shortcuts can be personalised
to suit individual needs, thereby

Listing 1.8 Customising the MATLAB Desktop

% Change desktop layout
desktop(’-layout ’, ’dock’);
% Create a custom desktop layout
desktop.layout.LayoutConfig(’Layout Name’, ’Custom ’);

• Preferences and Settings

MATLAB offers a wide range of preferences and settings to tailor the environ-
ment to individual needs and preferences. This subsection will explore:

– General Preferences: Configuring the MATLAB environment, including font
size, colour scheme, and keyboard shortcuts.

– Language-Specific Preferences: Setting preferences for the MATLAB lan-
guage, such as indentation, code folding, and auto-completion.

– Hardware and Performance Settings: Optimising MATLAB’s performance
by configuring memory usage, parallel computing, and GPU acceleration.

1.9 MATLAB Environment and Settings 21

Listing 1.9 Accessing MATLAB Preferences

% Open MATLAB Preferences
preferences;

% Set a specific preference programmatically
setpref(’EditorPage ’, ’DefaultFontSize ’, 14);

• Platform-Specific Considerations

MATLAB supports various platforms, including Windows, macOS, and Linux.
While the core functionality remains consistent across platforms, there are some
platform-specific considerations to keep in mind:

– Installation and Licensing: Platform-specific installation procedures and
licensing requirements.

– System Integration: Integrating MATLAB with platform-specific tools and
utilities, such as system libraries and compilers.

– PerformanceOptimisation: Platform-specific performance tuning and optimi-
sation techniques.

Listing 1.10 Checking the Current Platform

% Get the current platform
platform = computer;

% Perform platform -specific actions
if strcmp(platform , ’PCWIN64 ’)
% Windows -specific code
elseif strcmp(platform , ’GLNXA64 ’)
% Linux -specific code
elseif strcmp(platform , ’MACI64 ’)
% macOS -specific code
end

• Command Window
The Command Window is a vital component of the MATLAB Desktop, allow-
ing users to interact with MATLAB by entering commands, executing code, and
viewing results. This subsection will cover:

– CommandSyntax: Explanation of the syntax for entering commands, including
the use of semicolons, newlines, and comment lines.

– Command History: Techniques for recalling and re-executing previous com-
mands using the command history.

– Formatting Output: Methods for controlling the formatting of output in the
Command Window.

22 1 Introduction

Listing 1.11 Using the Command Window

% Enter a command and display output
x = 1:10;
disp(x)

% Suppress output using a semicolon
y = 2:2:20;

% Recall and execute a previous command
hist % View command history
rehash 5 % Execute the 5th command in the history

• Editor
TheMATLABEditor is a powerful tool for creating, editing, and debuggingMAT-
LAB code, as shown in Fig. 1.3. This section will cover:

– Creating and Opening Files: Techniques for creating new MATLAB files
(scripts, functions, classes) and opening existing files.

– Code Editing Features: An overview of code editing features such as syntax
highlighting, code folding, auto-indentation, and code completion.

– Debugging Tools: Explanation of debugging tools available within the Editor,
including setting breakpoints, stepping through code, and monitoring variables.

Listing 1.12 Debugging in the MATLAB Editor

% Set a breakpoint
editor.breakpoint(’set’, ’file.m’, 10)

Fig. 1.3 MATLAB online with a MathWorks account

1.9 MATLAB Environment and Settings 23

% Step through code
editor.stepInto ()
editor.stepOver ()

% Monitor variables
editor.addWatchpoint(’x’)

• Live Editor
The Live Editor provides a versatile and user-friendly environment for devel-
oping and presenting computational narratives. By combining executable code,
rich text formatting, and inline visualisations, Live Scripts facilitate the creation
of interactive and self-explanatory documents. This enables users to effectively
communicate their ideas, share results, and collaborate with others, as shown in
Fig. 1.4.
One of the key advantages of the Live Editor is its ability to support interac-
tive execution. Users can execute code sections individually or run the entire
script, allowing for incremental development and immediate feedback. This fea-
ture enhances the exploratory nature ofMATLAB programming and enables users
to quickly iterate on their code and see the results in real-time.
In addition to its interactive capabilities, the Live Editor also provides seamless
exporting and sharing options. Live Scripts can be exported to various formats,
including HTML, PDF, and LaTeX, making it easy to share the documents with
colleagues, incorporate them into reports or presentations, or publish them online.
This flexibility ensures that the insights and results captured in Live Scripts can
be effectively disseminated and communicated to a wider audience.

Listing 1.13 Creating a Live Script

% Create a new Live Script
edit(’live’)

% Execute a code section
run(1) % Run the first code section
% Export to HTML
export(’example.mlx’, ’html’)

1. MATLAB Online provides a convenient way to access the Live Editor from
anywhere with an internet connection. To use MATLAB Online:

a. Visit https://matlab.mathworks.com in a web browser.
b. Sign in with a MathWorks account or create a new account if needed, as

shown in Fig. 1.5.
c. Once logged in, users can create, edit, and run Live Scripts directly in the

browser, as shown in Fig. 1.6.

https://matlab.mathworks.com

24 1 Introduction

Fig. 1.4 MATLAB online main page

Fig. 1.5 MATLAB editor and figure

MATLABOnline offers a seamless experience, allowing users to access their
files, collaborate with others, and utilise the Live Editor’s features without
the need for a local installation.

2. Accessing Live Editor in Local MATLAB Installation

For users with a local installation of MATLAB on their computer, accessing the
Live Editor is straightforward [15]:

1.9 MATLAB Environment and Settings 25

Fig. 1.6 MATLAB LiveEditor

a. Open the MATLAB software on the computer.
b. In the MATLAB toolstrip, click on the New Live Script” button or select

Live Script” from the “New” menu.
c. A new Live Script will open in the MATLAB Editor, ready for editing and

execution.

Local installation of MATLAB provides the full range of features and capabili-
ties, including the Live Editor, and allows users to work offline without the need
for an internet connection.

Listing 1.14 Accessing Live Editor in Local MATLAB

% Open a new Live Script in local MATLAB
livescript

% Alternatively , use the "New" menu
uiopen(’live’)

Regardless of whether users choose to access the Live Editor online or through
a local installation, they will have access to the same powerful features and
capabilities for creating interactive and engaging computational narratives.

• Variables and Workspace

MATLAB’sworkspace is a crucial component, storingvariables anddata structures
created during a session. This section will cover:

– Variable Types: An overview of the different variable types in MATLAB,
including arrays, structures, and objects.

– Managing Variables: Techniques for creating, modifying, and deleting vari-
ables in the workspace, as well as techniques for saving and loading variables
to/from files.

26 1 Introduction

– Workspace Browser: Explanation of the Workspace Browser, a tool for visu-
alizing and interacting with variables in the current workspace.

Listing 1.15 Working with Variables

% Create a variable
x = 1:10;

% Save variables to a file
save(’data.mat’, ’x’)

% Load variables from a file
load(’data.mat’)

• Debugging
Debugging is an essential part of the programmingprocess, andMATLABprovides
powerful tools to help identify and fix errors. This section will discuss:

– Types of Errors and Warnings: An overview of the different types of errors
and warnings in MATLAB, such as syntax errors, runtime errors, and warnings.

– Identifying and Fixing Errors: Techniques for identifying the cause of errors
and warnings, including methods for tracking down and fixing bugs.

– Debugging Tools: Explanation of MATLAB’s debugging tools, such as setting
breakpoints, stepping through code, monitoring variables, and inspecting the
call stack.

• File Types
MATLAB supports various file types for different purposes, such as code, data,
models, and documentation. This subsection will provide an overview of the most
common file types:

– .m:MATLABcode file that contains scripts or functions. These files can include
commands that you would run in the command window or define functions that
can be used within other scripts or functions.

– .mat: Binary data file that stores variables that are created during a MAT-
LAB session. This format is specific to MATLAB and can be loaded into the
workspace with the load function.

– .mlx: MATLABLive Script file that combines code, output, and formatted text
in an interactive document. It’s useful for sharing and presenting workflows,
algorithms, and analyses.

– .mdl: File that contains a model created with an older version of Simulink, a
graphical programming environment for modeling, simulating, and analysing
multidomain dynamical systems.

– .mex: MEX-file (short for MATLAB Executable) that contains a program
intended to be called from MATLAB that is written in C, C++, or Fortran and
compiled into binary form. MEX-files can provide high-performance functions
that are callable directly from MATLAB.

1.9 MATLAB Environment and Settings 27

– .fig: MATLAB Figure file that stores the data needed to recreate a plot or
graphical user interface. These files are generated by the figure window’s Save
option and can be reopened in MATLAB for further manipulation or editing.

– .p: MATLAB P-code file, which contains MATLAB code that has been obfus-
cated into a form of bytecode. P-code files can be executed just like .m files,
but their contents cannot be easily viewed, providing a measure of intellectual
property protection.

– .slx: File that represents a model created with the latest versions of Simulink.
This format is XML-based and is the successor to the older .mdl file format.

– .mldatx: File that contains simulation data from MATLAB. It is often used
with Simulink to store simulation input and output data.

– .sfx: MATLAB Shared library or toolbox file that is intended to be shared
across different machines or platforms. This file type is used for add-on appli-
cations that extend MATLAB’s capabilities.

– .mupad: File associated with MuPAD, which used to be MATLAB’s symbolic
math engine before it was replaced by MATLAB’s Symbolic Math Toolbox.
Although MuPAD notebooks are deprecated, some users might still encounter
these files.

– .asv: MATLAB AutoSave file that is created automatically by MATLAB as a
backup of an unsaved script or function file (.m). This feature helps in recovering
data in case of an unexpected interruption or crash.

– .mexw64: MEX-file for 64-bit Windows operating systems. Similar to .mex
files, but specifically compiled for 64-bit Windows environments.

– .mexa64: MEX-file for 64-bit Linux operating systems. Similar to .mex files,
but specifically compiled for 64-bit Linux environments.

– .mexmaci64: MEX-file for 64-bit macOS. Similar to .mex files, but specifi-
cally compiled for 64-bit macOS environments.

– .mlapp: MATLAB App Designer file, which is used for building MATLAB
apps with the App Designer tool. These can include both the design and code
of the app.

– .mlappinstall: MATLABApp installation file, which is created when you
package an app using MATLAB App Designer. This file type is used for dis-
tributing or sharing MATLAB apps.

– .mltbx: MATLAB Toolbox installation file. It is a package of MATLAB code
files, data files, apps, examples, and documentation, used to share or distribute
toolboxes.

– .mlprj: MATLAB Project file used by MATLAB’s Project tool to manage
and share all the files associated with a project, track their status, and integrate
with source control systems.

– .mn: MATLAB Notebook file, which is an interactive document that can inte-
grate MATLAB code, output, and formatted text in a notebook interface (pri-
marily used in earlier versions of MATLAB).

– .rpt: MATLABReport Generator file, which contains information to generate
reports from MATLAB applications and can include code, results, graphs, and
formatted text.

28 1 Introduction

– .cdf: Common Data Format file, which is used for storing multidimensional
data. MATLAB can import and export data in CDF format using the appropriate
functions.

– .nc: NetCDF (Network Common Data Form) file, which is a set of software
libraries andmachine-independent data formats that support the creation, access,
and sharing of array-oriented scientific data.

– .hdf, .h5, .hdf5: Hierarchical Data Format files, which are designed to
store and organise large amounts of data. MATLAB supports reading from
and writing to these formats, often used in high-performance computing and
scientific research.

– .tgz, .zip: Compressed file archives that MATLAB can create or extract.
These formats are used to package multiple files into a single archive that’s
easier to distribute or transfer.

– .java: Java class files that can be called from within MATLAB. MATLAB
integrates with Java, allowing users to write Java code and create Java objects
within the MATLAB environment.

– .jar: Java ARchive files that can be added to MATLAB’s Java classpath,
enabling the use of the Java classes they contain from within MATLAB.

– .csv: Comma-Separated Values file, a common data exchange format that can
be read into and written from MATLAB as a table or matrix.

– .txt, .dat: Text or data files that contain plain text and can be imported into
MATLAB. They are often used to store numerical data in a simple format that
can be read by various software programs.

– .xml: Extensible Markup Language file, which is a markup language that
defines a set of rules for encoding documents in a format that is both human-
readable and machine-readable. MATLAB can read and write XML files.

– .json: JavaScript Object Notation file, a lightweight data-interchange format
that is easy for humans to read andwrite.MATLABprovides functions to encode
and decode JSON data.

– .ini: Initialisation file, a configuration file for Windows programs. MATLAB
can read and write INI files, though it’s not a common practice for MATLAB-
specific applications.

– .xlsx, .xls: Excel spreadsheet files. MATLAB can read from and write to
these files directly, allowing for data exchange betweenMATLABandMicrosoft
Excel.

– .sim: Simulink model file used in older versions of Simulink prior to the
introduction of the .slx format.

– .sldd: Simulink Data Dictionary file, which stores design data, such as defi-
nitions of bus objects and data type objects, separately from Simulink models.

– .slxp: Simulink protected model file, which is a compiled version of a
Simulink model that protects the intellectual property of the model’s design.

– .req: Requirements file, which can be used in conjunction with MATLAB’s
Requirements Management Interface to link requirements to MATLAB models
and code.

1.9 MATLAB Environment and Settings 29

– .sldvdata: SimulinkDesignVerifier data file,which contains analysis results
from theSimulinkDesignVerifier tool used for formal verification andvalidation
of Simulink models.

– .sfx: MATLAB Shared library or toolbox file that is intended to be shared
across different machines or platforms. This file type is used for add-on appli-
cations that extend MATLAB’s capabilities.

• Help and DocumentationMATLAB provides extensive help and documentation
resources to assist users in learning and troubleshooting. This subsection will
cover:

– Accessing Help: Methods for accessing MATLAB’s built-in help system,
including keyword searches, browsing by topic, and accessing demo examples.

– Online Resources: An overview of online resources, such as the MATLAB
documentation, community forums, and file exchange.

– Contextual Help: Techniques for accessing contextual help within the MAT-
LAB environment, such as using the “Help” button in dialog boxes or the “Help
on Selection” feature in the Editor.

Listing 1.16 Accessing MATLAB Help

% Search for help on a topic
doc mean

% Open the MATLAB documentation browser
doc

% Access contextual help
help editor % Help on the Editor

• MATLAB Grader
The MATLAB Grader is a tool for automatically grading MATLAB assignments
and providing feedback to students, as shown in Fig. 1.7. This subsection will
provide an overview of its features and capabilities.

– Automated Grading: Explanation of how the MATLAB Grader can automati-
cally gradeMATLAB assignments by running test cases and comparing outputs.

– FeedbackandReporting: Discussion of the feedback and reporting capabilities
of theMATLABGrader, including the generation of detailed reports for students
and instructors.

– Integration with Learning Environments: Overview of how the MATLAB
Grader can be integrated with learning management systems (LMS) and other
educational platforms.

• Startup and Shutdown Startup command line flags, startup and shutdown files
• Add-Ons Find, run, and install add-ons, including optional features, apps, tool-
boxes, and support packages

30 1 Introduction

Fig. 1.7 MATLAB grader

• System Commands Interact programmatically with operating system and MAT-
LAB environment

• Internationalisation Locale settings and messages.

1.10 MATLAB Basic Concepts

• Current Directory:

– The current directory refers to the folder location whereMATLAB is currently
operating.

– It is the default folder where MATLAB looks for files and where it saves newly
created files.

– Example: cd command to see current directory

1.10 MATLAB Basic Concepts 31

Listing 1.17 Displaying the current directory.

cd

• Defined Path:

– The defined path in MATLAB is a set of folders that MATLAB searches for
files and functions.

– By adding folders to the defined path, you can access files and functions from
any location without specifying the full file path.

– The addpath function is used to add a folder to the defined path, and the
savepath function saves the current path for future MATLAB sessions.

Listing 1.18 Adding a folder to the defined path

addpath(’C:\ My_MATLAB_Files ’)
savepath

• Saving Files:

– MATLAB allows you to save your work as scripts, functions, or data files.
– MATLAB code can be saved in script files with a .m extension, while data can
be saved in various formats such as .mat, .txt, or .csv. The save function is
used to save data to a file.

– Example: save filename.mat to save .mat file

Listing 1.19 Saving data to a .mat file

save(’data.mat’, ’variable1 ’, ’variable2 ’)

• Loading Files:

– Loading files in MATLAB involves reading data from external files into the
MATLAB workspace.

– MATLAB provides functions to load different types of files such as load for
.mat files, readtable for .txt or .csv files, and imread for image files.

– Example: load(’data.mat’) to load .mat file

Listing 1.20 Loading data from a .mat file

data = load(’data.mat’)

• File Naming Constraints:
MATLAB has certain naming constraints for files and variables. File names must
start with a letter and can contain letters, numbers, or underscores. Variable names
must also start with a letter, can contain letters, numbers, or underscores, and must
not be a keyword or function name. When working with MATLAB, it is crucial to
adhere to specific file naming constraints to ensure compatibility and avoid errors.
This section outlines the primary constraints and best practices for naming files.

32 1 Introduction

– Length Limitations The maximum length of a file name is 63 characters.
Exceeding this limit may result in errors or unexpected behaviour.

Listing 1.21 File name length limit

% Avoid excessively long file names
thisIsAVeryLongFileName .m % May exceed the length

limit

– Valid Characters

· Start with a Letter: MATLAB file names must begin with a letter (A-Z,
a-z).

· Followed by Letters, Digits, or Underscores: After the initial letter, the file
name can include letters, digits (0-9), and underscores (_).

· No Special Characters: Spaces, punctuation marks, and non-ASCII char-
acters are not allowed in file names. For example, my_script.m is valid,
but my script!.m is not.

Listing 1.22 Valid file names

% Valid file names
myFile.m
data_analysis.m
project1.mat
my_Script1.m

– Case Sensitivity: MATLAB is case-insensitive on Windows, meaning
MyScript.m and myscript.m are considered different files, but case-
sensitive on UNIX and Linux systems. It is advisable to maintain consistent
casing conventions to avoid confusion.

Listing 1.23 Case-sensitive file names

% Case -sensitive file names
myFile.m
myfile.m % Considered a different file

– Reserved Words: File names should not be the same as MATLAB reserved
words, such as for, while, if, etc. Avoid using names that conflict with
MATLAB built-in functions or keywords. For instance, sum.m would conflict
withMATLAB’ssum function, leading to potential issues during execution. For
example, using names like ’plot.m’ or ’for.m’ can lead to unexpected behaviour.

– Spaces: File names should not contain spaces. If spaces are necessary, they can
be replaced with underscores (_) or hyphens (-).

– Extension: File names for MATLAB functions and scripts should end with the
.m extension. For example, myFunction.m is a valid script file name.

– No Leading Dots: File names should not start with a dot (.), as this is reserved
for hidden files in UNIX and Linux systems.

– No Special Characters: Avoid using characters like < > ? * | as they can
cause issues with file operations in different operating systems.

1.10 MATLAB Basic Concepts 33

– No Trailing Periods: File names should not end with a period, as this can be
interpreted as an extension.

To illustrate these constraints, consider the following MATLAB code snippet that
demonstrates valid and invalid file names:

Listing 1.24 Examples of Valid and Invalid File Names

% Valid file names
validFileName1 = ’myScript1.m’;
validFileName2 = ’data_analysis.m’;

% Invalid file names
invalidFileName1 = ’my script !.m’; % Contains space

and exclamation mark
invalidFileName2 = ’123 file.m’; % Starts with a

digit
invalidFileName3 = ’sum.m’; % Conflicts with

built -in function

By adhering to these file naming constraints, users can ensure that their MATLAB
scripts and functions are easily identifiable, maintainable, and free from naming
conflicts.

• Variables:

– Variables in MATLAB are used to store and manipulate data.
– They can be assigned values of different data types such as numbers, strings,
arrays, or structures.

– Variables are dynamically typed, meaning their data type can change during
program execution.

– Example: x = 5; to assign a value to variable x

• Operators:

– MATLAB supports various operators such as arithmetic, relational, logical, and
assignment operators.

– Arithmetic operators perform mathematical calculations, relational operators
compare values, logical operators perform Boolean operations, and assignment
operators assign values to variables.

– Example: a + b, a == b, a & b, a = 5

• Expressions:

– In MATLAB, expressions are combinations of variables, operators, and func-
tions that are evaluated to produce a result.

– Expressions can be simple arithmetic calculations or complex mathematical
operations involving arrays and matrices.

– Example: 3 + 4, sin(x), A*x

34 1 Introduction

• Arrays:

– Arrays in MATLAB are used to store collections of data.
– They can be one-dimensional (vectors), two-dimensional (matrices), or multi-
dimensional.

– MATLAB provides powerful built-in functions for creating, accessing, and
manipulating arrays.

– Example: a = [1 2 3], A = rand(3,5)

• Matrix Manipulations:

– MATLAB is renowned for its matrix manipulation capabilities.
– It provides numerous functions for matrix operations such as addition, subtrac-
tion, multiplication, inversion, transposition, and solving linear equations.

– Example: A*B, inv(A), A’

• Data Types:

– MATLAB supports various data types including numeric, character, logical,
cell, and structure arrays.

– Each data type has its own properties and functions for manipulation.
– Example: double, char, logical, cell, struct

• Arithmetic Operations:

– MATLAB allows performing arithmetic operations on variables and arrays.
– These operations include addition, subtraction, multiplication, division, expo-
nentiation, and more.

– Example: a + b, a - b, a * b, a / b, a^2

• Built-in Functions:

– MATLAB offers a vast collection of built-in functions for a wide range of
applications.

– These functions perform tasks such as mathematical calculations, data analysis,
signal processing, image processing, and more.

– Example: sum, mean, fft, image

• Plotting:

– MATLAB provides powerful tools for creating plots and visualisations.
– It provides functions for creating 2D and 3D plots, histograms, scatter plots, bar
graphs, and more.

– Plots can be customized with various options such as colours, markers, line
styles, and labels.

– Example:

Listing 1.25 Plotting

x = 0:0.1:2* pi;
y = sin(x);
plot(x, y, ’r-o’) % red line with circle markers

1.10 MATLAB Basic Concepts 35

title(’Sine Wave’)
xlabel(’x’)
ylabel(’sin(x)’)

• Programming Constructs:

– MATLAB supports various programming constructs such as conditional state-
ments (if-else), loops (for and while), switch-case statements, and function def-
initions.

– These constructs enable you to write structured and modular MATLAB code.
– Example:

Listing 1.26 Programming Constructs

if x > 0
disp(’Positive ’)
else
disp(’Non -positive ’)
end

• Control Flow:

– Control flow refers to the order inwhich statements and instructions are executed
in a program.

– MATLAB provides various control flow structures such as loops (for, while),
conditional statements (if-else, switch), and function calls.

– These structures allow you to control the flow of execution based on certain
conditions or for repetitive tasks.

– Example:

Listing 1.27 Display index number through for-loop

for i = 1:10
disp(i)
end

• Functions:

– Functions in MATLAB are reusable blocks of code that perform a specific task.
– They allow you to modularize your code and make it more organised and easier
to maintain.

– MATLAB provides built-in functions as well as the ability to create user-defined
functions.

– Example:

Listing 1.28 Function example

function y = square(x)
y = x^2;
end

36 1 Introduction

• File Input/Output:

– File input/output (I/O) refers to reading data from files and writing data to files.
– MATLAB provides functions for reading and writing data in various formats
such as text files, spreadsheets, images, and sound files.

– This allows you to work with external data and save your results for future use.
– Example:

Listing 1.29 Load and Write Data

% Read data from text file
data = load(’data.txt’);

% Write matrix to Excel file
xlswrite(’output.xlsx’, A)

% Save plot as image
print(’figure.png’)

• Debugging and Error Handling:

– Debugging is the process of finding and fixing errors or bugs in your code.
– MATLAB provides tools and techniques for debugging, such as setting break-
points, stepping through code, and inspecting variables.

– Error handling involves anticipating and handling errors that may occur during
program execution.

– MATLAB provides mechanisms for catching and handling errors, ensuring that
your program continues to run smoothly.

– Example:

Listing 1.30 Try to capture error

try
error_prone_code
catch err
fprintf(’Error: %s\n’, err.message)
fprintf ’Error identifier: %d\n’, err.identifier
end

• Symbolic Math:

– Symbolic math inMATLAB allows you to work with mathematical expressions
symbolically, rather than numerically.

– You can perform operations such as differentiation, integration, simplification,
and equation solving symbolically.

– This is useful in fields such as mathematics, engineering, and physics, where
exact symbolic solutions are desired.

– Example:

1.10 MATLAB Basic Concepts 37

Listing 1.31 Symbolic example

syms x
f = x^2 + 2*x + 1;
diff(f) % Differentiate f
int(f) % Integrate f

• Toolboxes and Applications:

– MATLABoffers awide range of toolboxes and applications for specific domains
and applications.

– These toolboxes provide additional functions and features tailored to specific
fields such as image processing, control systems, optimisation, and more.

– Understanding how to use and leverage these toolboxes can greatly enhance
your MATLAB skills and expand your capabilities.

– Example:

Listing 1.32 Read and process image

image = imread(’image.png’);
edges = edge(image , ’canny’); % Image Processing

Toolbox

sys = tf(1, [1 2 1]);
step(sys) % Control System Toolbox

• Logical Operations

Logical operations inMATLABallowevaluating conditions andperformingoper-
ations based on logical values (true or false) . Logical operators such asAND (&&),
OR (||), and NOT (˜) are used to combine or negate logical conditions. Logical
operations are often used in conditional statements and for selecting elements from
arrays based on specific criteria:

– AND (&&): The && operator performs a logicalAND operation. It returns true
if both operands are true; otherwise, it returns false. This operator is used for
short-circuit evaluation, meaning the second operand is evaluated only if the
first operand is true.

– OR (||): The || operator performs a logical OR operation. It returns true
if at least one of the operands is true; otherwise, it returns false. Similar to
&&, this operator also uses short-circuit evaluation, where the second operand
is evaluated only if the first operand is false.

– NOT (˜): The˜ operator performs a logicalNOT operation. It inverts the logical
state of its operand. If the operand is true, the result is false, and vice versa.

Listing 1.33 Logical operations in MATLAB.

x = 5;
y = 10;
if x > 0 && y > 0
disp(’Both x and y are positive ’)

38 1 Introduction

end

A = [1 2; 3 4];
B = A > 2; % Logical indexing

For example:

The logical expression $a && b$ represents the AND operation between
a and b.
The logical expression $a \lor (\sim b)$ represents the OR operation
between a and the negation of b.

• String Manipulation MATLAB provides functions for string manipulation,
allowing you to work with and modify character arrays and strings [2]. Common
string operations include concatenation, substring extraction, searching, replacing,
and converting between character arrays and strings:

Listing 1.34 String manipulation in MATLAB.

str1 = ’Hello’;
str2 = ’World’;
concatenated = [str1 , ’ ’, str2]; % Concatenation
substring = str1 (1:3); % Substring extraction
found = contains(str1 , ’el’); % Searching for a

substring

• Cell Arrays Cell arrays in MATLAB are containers that can hold elements of
different data types and sizes . They provide a flexible way to store and organize
heterogeneous data. Cell arrays are created using curly braces and can be accessed
and manipulated using indexing:

Listing 1.35 Cell arrays in MATLAB.

cell_array = {’Hello’, 42, [1 2; 3 4]};
element = cell_array {1}; % Accessing elements
cell_array {2} = ’World’; % Modifying elements

• Structures Structures in MATLAB are data types that group related data using
named fields [2]. They allow organizing and accessing data in a more meaningful
and intuitive way. Structures are created using the struct() function or by directly
assigning values to named fields:

Listing 1.36 Structures in MATLAB.

student.name = ’John’;
student.age = 20;
student.grades = [85, 90, 92];
name = student.name; % Accessing fields

1.11 Laboratory 39

1.11 Laboratory

1. Installing and Launching MATLAB

a. Download and install MATLAB on your computer.
b. Launch MATLAB and explore the desktop environment.

Solution:

a. Follow the installation instructions provided byMathWorks for your specific
operating system.

b. After installation, launch MATLAB from the Start menu (Windows) or
Applications folder (macOS/Linux).

c. Familiarise yourself with the various components of the desktop environ-
ment, such as the Command Window, Workspace, Editor, and others.

2. Get familiar with MATLAB Environment, create and view a matrix

a. Create a matrix A with 2 rows and 3 columns.
b. Locate the MATLAB Workspace and double-click to view A.

Solution:

a. In the Command Window, enter the following command to create a 2x3
matrix:

Listing 1.37 Creating a matrix.

A = [1 2 3; 4 5 6]

b. In the Workspace window, locate the variable A and double-click on it to
view its contents.

3. Working with the Command Window

a. Open the Command Window in MATLAB.
b. Perform basic arithmetic operations (addition, subtraction, multiplication,

division) using the Command Window.
c. Assign values to variables and display their contents.

Solution:

a. To open the CommandWindow, click on the “Command Window” icon in
theMATLAB desktop environment or press the “Ctrl+1” keyboard shortcut.

b. Enter arithmetic expressions like “2 + 3” or “4 * 5” and press Enter to see
the results.

c. Assign values to variables using the assignment operator (=). For example,
“x = 10” assigns the value 10 to the variable x. Display the variable’s contents
by typing its name and pressing Enter.

40 1 Introduction

4. Familiarising with Command Window, “doc” Function, and Figure Oper-
ations

In this lab work, you will become familiar with the Command Window, the
“doc” function, and various operations related to figures in MATLAB. Please
follow the step-by-step guide below:

a. On the command line, create an array “x” with the natural numbers from 1
to 100.

The basic syntax to create the array “x” is:

Listing 1.38 Creating array x.

x = 1:100;

b. Create an array “y” where each element is twice the corresponding element
in “x” (i.e., y = 2*x).

The basic syntax to create the array “y” is:

Listing 1.39 Creating array y.

y = 2*x;

c. Use the “doc plot” command on the command line to access the documen-
tation and learn how the plot function is used.

On the command line, enter the following command:

Listing 1.40 Accessing plot function documentation.

doc plot

This will open theMATLAB documentation for the plot function, providing
information on its usage and options.

d. Draw a figure using “x” as the horizontal coordinate and “y” as the vertical
coordinate.

The basic syntax to draw the figure is:

Listing 1.41 Drawing the figure.

plot(x, y);

This will create a plot with “x” as the horizontal axis and “y” as the vertical
axis.

1.11 Laboratory 41

e. In the Figure interface, adjust the LineWidth of the curve to 2 by selecting
“Edit” -> “Current Object Properties”.
Follow these steps:
i. Click on the curve of the image in the Figure window.
ii. Navigate to the “Edit” menu.
iii. Select “Current Object Properties”.
iv. Adjust the LineWidth to 2.
This will change the thickness of the curve to 2.

f. In the command history, select the commands used in the previous steps, copy
them to a new MATLAB script (m-script), and save the script.

Below is the complete solution for your reference:

Listing 1.42 Complete solution.

% Lab Work 4: Familiarizing with Command Window , "doc"
Function , and Figure Operations

% Step 1: Create the array x with natural numbers from 1
to 100

x = 1:100;

% Step 2: Create the array y by multiplying each element
of x by 2

y = 2*x;

% Step 3: Access the documentation for the plot function
doc plot;

% Step 4: Draw the figure using plot function
plot(x, y);

% Step 5: Adjust the LineWidth of the curve to 2 in the
Figure interface

% Step 6: Copy the commands to a new MATLAB script and
save the script

Make sure to follow the steps carefully and review the provided solution. This
lab work will help you become more comfortable with the CommandWindow, the
“doc” function, and figure operations in MATLAB.

5. Creating and Running a Script

Solution:

a. Open a new script file in the MATLAB Editor.
b. Write a simple script that performs a series of calculations and displays the

results.
c. Save and run the script.

42 1 Introduction

Solution:

a. To open a new script file, click on the “New Script” icon in the MATLAB
desktop environment or press the “Ctrl+N” keyboard shortcut.

b. Write a series of MATLAB statements in the script, such as variable assign-
ments, arithmetic operations, and output statements using the disp() func-
tion.

c. Save the script with a .m extension (e.g., myScript.m).
d. Run the script by clicking the “Run” icon in the Editor or by pressing the “F5”

key.

6. Importing and Exporting Data

a. Import a sample data file (e.g., a CSV file) into MATLAB using the appro-
priate function.

b. Perform some basic data manipulation or analysis on the imported data.
c. Export the processed data to a new file format (e.g., Excel spreadsheet).

Solution:

a. Use the readtable() or readmatrix() function to import a CSV file
intoMATLAB.

The basic syntax to import a CSV file is:

Listing 1.43 Importing a CSV file.

data = readtable(’filename.csv’);

b. Perform data manipulation or analysis operations on the imported data, such
as filtering, sorting, or computing summary statistics.

c. Use the writematrix() or writetable() function to export the pro-
cessed data to a new file format like an Excel spreadsheet.

The basic syntax to export data to an Excel file is:

Listing 1.44 Exporting data to Excel.

writetable(data , ’output.xlsx’);

7. Exploring Built-in Functions and Documentation

a. ExploreMATLAB’s built-in functions by using the help and doc commands.
b. Find and read the documentation for a specific function (e.g., sin(),

plot(), or any other function of your choice).
c. Use the function in a simple script or command to observe its functionality.

Solution:

a. In the Command Window, type “help” followed by a function name (e.g.,
“help sin”) to get a brief description and syntax of the function.

1.11 Laboratory 43

b. Type “doc” followed by a function name (e.g., “doc sin”) to open the full
documentation for that function in the MATLAB Help Browser.

c. After reading the documentation, use the function in a script or command to
observe its functionality. For example, create a script that generates a sinewave
plot using the sin() and plot() functions.

The basic syntax to plot a sine wave is:

Listing 1.45 Plotting a sine wave.

x = 0:0.1:10;
y = sin(x);
plot(x, y);

8. Get familiar with creating ’favorite’ folder
Step 1: Based on Lab 1.2, input close all in the command line to observe
the change of the Figure window.
Step 2: Enter clear in the command line and observe the change of variables
in the Workspace.
Step 3:Enter clc in the command line and observe the change of theCommand
Window.
Step 4: In the home page -> Favorites, create a new favorite item (the label is
set to “clear up”), and enter the above commands into the code area, and save.
Step 5:After repeating Lab 1.2, click “clear up” in the favorites and observe the
changes of Figure, Workspace, and Command Window again.

9. To solve the system of equations:

2x + 3y − 6z − 12w = 4
5x − 7y + 4z + 2w = −3

x + 8z − 2w = 9
−6x + 5y − 4z + 10w = −8

(1.1)

We can use the syms function in MATLAB to define the variables and the
solve function to find the solution:

Listing 1.46 Solving the system of equations.

syms x y z w

eq1 = 2x + 3y - 6z - 12w == 4;
eq2 = 5x - 7y + 4z + 2w == -3;
eq3 = x + 8z - 2w == 9;
eq4 = -6x + 5y - 4z + 10w == -8;

sol = solve ([eq1 , eq2 , eq3 , eq4], [x, y, z, w]);

sol.x
sol.y
sol.z
sol.w

44 1 Introduction

The solution to the system of equations is:

x = −47

97

y = 2

97

z = 349

291

w = −136

291

(1.2)

Therefore, the values of x, y, z, and w that satisfy the equations are as shown
above.

1.12 Problems

1. Creating a Simple Calculator

• Write a MATLAB script that prompts the user to enter two numbers and an
operation (addition, subtraction, multiplication, or division).

• Perform the requested operation on the two numbers and display the result.
• Include error handling to gracefully handle invalid input or division by zero.

2. Data Analysis and Visualisation

• Load a dataset from a provided file (e.g., a CSV file containing weather data or
stock prices).

• Perform data cleaning and preprocessing steps as necessary (e.g., handling
missing values, removing outliers).

• Analyse the data by computing summary statistics and visualizing the results
using appropriate plots (e.g., line plots, histograms, scatter plots).

3. Implementing a Simple Algorithm

• Implement a sorting algorithm (e.g., bubble sort, insertion sort) in MATLAB
as a function.

• Write a script that generates a random array of numbers and calls your sorting
function to sort the array.

• Verify the correctness of your implementation by comparing the sorted array
with the expected output.

4. Solving Systems of Equations

• Write a MATLAB function that takes a system of linear equations as input (in
the form of coefficient matrices and constant vectors).

1.13 Summary 45

• Use MATLAB’s built-in functions to solve the system of equations and return
the solution vector.

• Test your function with multiple sets of linear equations, including cases with
unique solutions, no solutions, and infinitely many solutions.

5. Creating a Simple Game

• Design and implement a simple game using MATLAB’s graphical capabilities
(e.g., a number guessing game, a simple version of Tic-Tac-Toe or Hangman).

• Create a graphical user interface (GUI) for the game, with components for user
input, displaying game state, and providing feedback.

• Implement the game logic and rules within MATLAB functions and callbacks.

1.13 Summary

This chapter provided a comprehensive introduction to the MATLAB environment,
covering various aspects essential for effective use and understanding of this powerful
computational tool. The key points discussed in this chapter are summarised below:

• MATLAB Overview: MATLAB is a high-level programming language and
numerical computing environmentwidely used in academia, research, and industry
for data analysis, algorithm development, and visualisation.

• MATLAB Interface: The MATLAB interface consists of several components,
including the Command Window, Editor, Workspace, and various toolboxes and
apps. Understanding the functionality and purpose of each component is crucial
for efficient workflow.

• DataTypes andVariables:MATLAB supports various data types, such as scalars,
vectors, matrices, and structures. Variables in MATLAB do not require explicit
declaration of data types, allowing for flexible and dynamic programming.

• Array Indexing and Operations: MATLAB provides powerful array indexing
and manipulation capabilities, enabling efficient handling of large datasets and
matrix operations,which are fundamental inmany scientific and engineering appli-
cations.

• Plotting and Visualisation: MATLAB offers extensive plotting and visualisation
tools, allowing users to create high-quality 2D and 3D plots, charts, and graphical
user interfaces (GUIs) for effective data representation and analysis.

• Programming Constructs: MATLAB supports various programming constructs,
such as loops, conditional statements, and functions, enabling the development of
complex algorithms and applications.

• File Types and Data Import/Export: MATLAB supports a wide range of file
types for code, data, models, and documentation, facilitating seamless integration
with other software and data sources.

46 1 Introduction

• Help andDocumentation: MATLAB provides extensive help and documentation
resources, including built-in help, online resources, and contextual help, empow-
ering users to learn and troubleshoot effectively.

• MATLAB Grader: The MATLAB Grader is a powerful tool for automatically
grading MATLAB assignments and providing feedback to students, making it an
invaluable resource in educational settings.

For undergraduate students, this chapter serves as a foundational introduction
to MATLAB, equipping them with the essential skills and knowledge required for
various academic and research endeavors. By understanding the core concepts, data
types, programming constructs, and visualisation capabilities of MATLAB, students
can effectively utilise this powerful tool for numerical computations, data analysis,
and problem-solving in their respective fields of study.

Postgraduate students and researchers will find this chapter beneficial for its com-
prehensive coverage of MATLAB’s advanced features and functionalities. The in-
depth discussion on array operations, toolboxes, and integration with other software
and data sources empowers them to tackle complex research problems, develop
sophisticated algorithms, and conduct data-driven analyses across various domains,
such as engineering, sciences, and computational fields.

For professional engineers and practitioners, this chapter serves as a valuable
resource for leveraging MATLAB’s powerful capabilities in industry and real-world
applications. The sections on graphical user interfaces (GUIs), file handling, and
integration with other software systems provide a solid foundation for developing
user-friendly applications, automating processes, and streamlining workflows. Addi-
tionally, the extensive help and documentation resources ensure that professionals
can effectively navigate and utilise MATLAB’s vast array of features and toolboxes
for their specific domains and projects.

By combining theoretical concepts with practical examples, exercises, and real-
world applications, this chapter equips readers from diverse backgrounds with the
knowledge and skills necessary to harness the full potential of MATLAB, enabling
them to solve complex problems, Analyse and visualise data, and drive innovation
in their respective fields.

References

1. MathWorks, “MATLAB Product Family,” https://www.mathworks.com/products.html
2. MathWorks, “MATLAB Fundamentals,” [Online]. Available: https://www.mathworks.com/

help/matlab/, accessed on Feb. 17, 2024
3. Hanselman D, Littlefield B (2003) Mastering MATLAB 7. Pearson Education
4. Cleve M, “A Brief History of MATLAB,” [Online]. Available: https://www.mathworks.com/

company/newsletters/articles/a-brief-history-of-matlab.html, accessed on Feb. 17, 2024
5. MathWorks, “Founders,” [Online]. Available: https://uk.mathworks.com/company/aboutus/

founders/clevemoler.html, accessed on Feb. 17, 2024
6. MathWorks, “Founders–Jack Little,” [Online]. Available: https://uk.mathworks.com/

company/aboutus/founders/jacklittle.html, accessed on Feb. 17, 2024

https://www.mathworks.com/products.html
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://uk.mathworks.com/company/aboutus/founders/clevemoler.html
https://uk.mathworks.com/company/aboutus/founders/clevemoler.html
https://uk.mathworks.com/company/aboutus/founders/jacklittle.html
https://uk.mathworks.com/company/aboutus/founders/jacklittle.html

References 47

7. Moler C, Little J (2020) A history of MATLAB. In: Proc. ACM Program. Lang., vol. 4, no.
HOPL, pp 1–67, Art. no. 81. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3386331

8. Wilkinson JH, Reinsch C (1965) Handbook for automatic computation, volume II: linear alge-
bra. Springer-Verlag, Berlin

9. Moler C, Numerical Linear Algebra Software Development, [Online]. Available: https://
www.mathworks.com/company/newsletters/articles/numerical-linear-algebra-software-
development.html, accessed on Feb. 17, 2024

10. Burton S (1974) Garbow, EISPACK-A package of matrix eigensystem routines. Comput Phys
Commun 7(4):179–184

11. Stewart GW (1977) Research, development, and LINPACK, mathematical software, pp 1–14
Proceedings of a Symposium Conducted by the Mathematics Research Center, the University
of Wisconsin-Madison, March 28–30

12. Little J (1984) PC-MATLAB: A Matrix Laboratory for the IBM PC. MathWorks, Natick, MA
13. MathWorks, "MATLAB and Simulink in the Cloud," [Online]. Available: https://www.

mathworks.com/solutions/cloud.html, accessed on Feb. 17, 2024
14. MathWorks, “Environment and Settings,” https://ww2.mathworks.cn/help/matlab/desktop-

tools-and-development-environment.html
15. MathWorks, “Live Scripts and Functions,” [Online]. Available: https://uk.mathworks.com/

help/matlab/live-scripts-and-functions.html, accessed on Feb. 17, 2024

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://dl.acm.org/doi/pdf/10.1145/3386331
https://www.mathworks.com/company/newsletters/articles/numerical-linear-algebra-software-development.html
https://www.mathworks.com/company/newsletters/articles/numerical-linear-algebra-software-development.html
https://www.mathworks.com/company/newsletters/articles/numerical-linear-algebra-software-development.html
https://www.mathworks.com/solutions/cloud.html
https://www.mathworks.com/solutions/cloud.html
https://ww2.mathworks.cn/help/matlab/desktop-tools-and-development-environment.html
https://ww2.mathworks.cn/help/matlab/desktop-tools-and-development-environment.html
https://uk.mathworks.com/help/matlab/live-scripts-and-functions.html
https://uk.mathworks.com/help/matlab/live-scripts-and-functions.html
http://creativecommons.org/licenses/by/4.0/

Chapter 2
Data Types, Operators, and Expressions

Chapter Learning Outcomes

• Comprehend the concept of data types and their significance in MATLAB
programming.

• Distinguish between the various data types available in MATLAB, such as
numeric types, characters, and logical values.

• Utilise appropriate type conversion techniques to manipulate and transform data
as required.

• Apply arithmetic operators, such as addition, subtraction,multiplication, and
division, to perform basic mathematical computations.

• Employ relational operators, including equality and inequality operators, to
compare values and evaluate conditions.

• Utilise logical operators, such as AND, OR, and NOT, to create logical expres-
sions and make decisions based on conditions.

• Grasp the concept of operator precedence and utilise parentheses to control the
order of operations.

• Utilise MATLAB’s built-in functions and operators to work with strings and per-
form string manipulations.

• Perform arithmetic and logical operations using various operators and construct
complex expressions.

Chapter Key Words

• Data Types: The different types of data that can be stored and manipulated in
MATLAB, such as numeric types, characters, and logical values.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_2

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_2&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_2

50 2 Data Types, Operators, and Expressions

• Type Conversion: The process of converting data from one type to another in
MATLAB.

• Arithmetic Operators:Mathematical operators used to perform basic arithmetic
operations in MATLAB, including addition, subtraction, multiplication, and divi-
sion.

• Relational Operators:Operators used to compare values and evaluate conditions
in MATLAB, such as equality and inequality operators.

• Logical Operators: Operators used to create logical expressions and make deci-
sions based on conditions in MATLAB, such as AND, OR, and NOT.

• Strings: Sequences of characters in MATLAB, used to represent and manipulate
text data.

• Variables: Learn how to create, manipulate, and use variables in MATLAB code.
• Constants: Recognise and use constants in MATLAB programs.
• Literals: Understand the concept of literals and how to use them in expressions.
• Operators: Grasp the different types of operators inMATLAB, such as arithmetic,
relational, logical, and assignment operators.

• Expressions: Construct and evaluate expressions using variables, operators, and
functions in MATLAB.

• Operator Precedence: Apply the rules of operator precedence to ensure correct
order of operations in expressions.

2.1 MATLAB Built-in Data Types

In MATLAB, there are several built-in data types that provide the foundation for
storing and manipulating data. These data types are designed to handle different
kinds of information and support various operations. Here is a list of MATLAB’s
built-in data types as shown in the Fig. 2.1.

Fig. 2.1 Fundamental data types of classes in MATLAB

2.1 MATLAB Built-in Data Types 51

• Matrix or Array (m-by-n, m ≥ 0 and n ≥ 0)
MATLAB has 17 fundamental data types (or classes) [1, 2]. Each of these classes
is in the form of a matrix or array.

– Numeric Data Type
By default, MATLAB stores all numeric variables as double-precision floating-
point values. Additional data types store text, integer or single-precision values,
or a combination of related data in a single variable. More information on data
types can be found in the Help index [3].
MATLAB also supports signed and unsigned integer types and single-precision
floating-point, by means of functions such as int8, uint8, single, and the
like. However, before mathematical operations can be performed on such types,
they must be converted to double precision using the double function.

· double: Represents double-precision floating-point numbers with 64 bits
of precision.

Listing 2.1 Creating a double-precision variable

x = 3.14159; % x is a double -precision floating -
point number

· single: Represents single-precision floating-point numbers with 32 bits of
precision.

Listing 2.2 Creating a single-precision variable

y = single (1.23456); % y is a single -precision
floating -point number

· int8, int16, int32, int64: Represent signed integers with different bit
sizes (8, 16, 32, 64).

Listing 2.3 Creating signed integer variables

a = int8 (-128); % a is an 8-bit signed integer
b = int16 (32767); % b is a 16-bit signed integer
c = int32 (-2147483648); % c is a 32-bit signed

integer
d = int64 (9223372036854775807) ; % d is a 64-bit

signed integer

· uint8, uint16, uint32, uint64: Represent unsigned integers with
different bit sizes (8, 16, 32, 64).

Listing 2.4 Creating unsigned integer variables

e = uint8 (255); % e is an 8-bit unsigned integer
f = uint16 (65535); % f is a 16-bit unsigned

integer
g = uint32 (4294967295); % g is a 32-bit unsigned

integer

52 2 Data Types, Operators, and Expressions

h = uint64 (18446744073709551615); % h is a 64-bit
unsigned integer

– Logical Data Type
Represents logical values, which can be either true or false. MATLAB uses
logical data types for logical operations and conditional statements. Logical
arrays in MATLAB can be created using relational and logical operators, and
they are useful for indexing, masking, and logical operations.

Listing 2.5 Creating logical variables

x = true; % x is a logical value (true)
y = false; % y is a logical value (false)
z = (5 > 3); % z is a logical value (true)

% Creating a logical array
A = [1 2 3; 4 5 6];
B = (A > 3); % B is a logical array
% B = [false false false
% true true true]

Logical arrays can be used for indexing and masking:

Listing 2.6 Using logical arrays for indexing and masking

A = [1 2 3; 4 5 6];
B = (A > 3); % B is a logical array
C = A(B); % C contains elements of A where B is true
% C = [4 5 6]

– String Data Type
Strings inMATLABare arrays of characters that provide advanced stringmanip-
ulation capabilities. Strings can be created using double quotes or the string
function, and they support various operations such as concatenation, substring
extraction, and regular expressions.

Listing 2.7 Creating and manipulating string variables

str1 = "Hello , World !"; % str1 is a string
str2 = string(’MATLAB ’); % str2 is a string

% Concatenating strings
fullStr = strcat(str1 , ’ ’, str2); % fullStr = "

Hello , World! MATLAB"

% Extracting substrings
subStr = str1 (8:12); % subStr = "World"

% Using regular expressions
matches = regexp(str2 , ’[AE]’, ’match’); % matches =

{’A’, ’E’}

2.1 MATLAB Built-in Data Types 53

– Character Data Type
Represents a sequence of characters, such as letters, numbers, and symbols.
MATLAB uses Unicode encoding to support a wide range of characters. Char-
acter arrays in MATLAB are row vectors of characters, and they can be created
using single quotes or the char function.

Listing 2.8 Creating and manipulating character array variables

char_array = ’abcd’; % char_array is a character
array

greek_char = ’\alpha’; % greek_char is the Greek
letter ’alpha ’

% Concatenating character arrays
combined_chars = [char_array , greek_char]; %

combined_chars = ’abcd\alpha ’

% Converting to string
str = string(char_array); % str = "abcd"

– Table
Represents tabular data with named variables (columns) and observations
(rows). Tables provide a convenient way to work with structured data. Tables
can be created from cell arrays, numeric arrays, or other data sources, and they
support various operations such as sorting, filtering, and merging.

Listing 2.9 Creating and manipulating a table

names = {’John’, ’Jane’, ’Bob’, ’Alice’};
ages = [25, 32, 41, 28];
heights = [1.75 , 1.68, 1.82, 1.63];
myTable = table(names , ages , heights , ...
’VariableNames ’, {’Name’, ’Age’, ’Height ’});

% Sorting the table by age
sortedTable = sortrows(myTable , ’Age’);

% Filtering the table by height
filteredTable = myTable(myTable.Height > 1.7, :);

– Cell
Cell arrays inMATLAB can store different data types, including numeric arrays,
character arrays, strings, structures, and other cell arrays. They provide a flexible
way to store and manipulate heterogeneous data.

Listing 2.10 Creating and manipulating a cell array

c = {1, ’hello’, true , [1 2; 3 4]}; % c is a cell
array

% Accessing elements of a cell array
num = c{1}; % num = 1
str = c{2}; % str = ’hello ’

54 2 Data Types, Operators, and Expressions

logical_val = c{3}; % logical_val = true
matrix = c{4}; % matrix = [1 2; 3 4]

% Adding elements to a cell array
c{end +1} = struct(’name’, ’John’, ’age’, 35); % adds

a structure to the end of the cell array

– Structures
Represents a collection of related data fields grouped together under a single
variable. Each field can hold data of different types and sizes. Structures provide
a way to organize and manipulate data in a structured manner.

Listing 2.11 Creating and manipulating a structure

person.Name = ’John Doe’;
person.Age = 35;
person.Height = 1.78;
person.IsStudent = false;

% Accessing structure fields
name = person.Name; % name = ’John Doe ’
age = person.Age; % age = 35

% Adding a new field
person.Email = ’john.doe@example.com’;

% Creating an array of structures
employees (1) = person; % initialize the first

employee
employees (2) = struct(’Name’, ’Jane Smith’, ’Age’,

28, ’Height ’, 1.65, ’IsStudent ’, true);

These examples demonstrate the usage andmanipulation of various data types in
MATLAB, including logical arrays, strings, character arrays, tables, cell arrays,
and structures. They cover creating, accessing, and modifying these data types,
as well as performing common operations on them.

With the exceptions of function handles and tables, this matrix or array is a min-
imum of 0-by-0 in size and can grow to an n-dimensional array of any size. A
function handle is always scalar (1-by-1). A table always has m rows and n vari-
ables, where m ≥ 0 and n ≥ 0.

• Scalar (1-by-1)

– Function Handles
Represents a reference to a function. Function handles allow passing functions
as arguments, storing them in variables, and calling them dynamically.

2.2 Working with Data Types 55

Fig. 2.2 MATLAB data types in Mindmap

Listing 2.12 Creating a function handle

f = @sin; % f is a function handle to the sine
function

x = 0:pi /4:2*pi; % Create a vector of x values
y = f(x); % Evaluate the sine function at x values

2.2 Working with Data Types

In the exploration of MATLAB’s data types, as shown in Fig. 2.2, one learns that
MATLAB offers a comprehensive set of built-in types that meet the needs of both
numerical and text processing. The variety and flexibility of these data types allow
users to performcomplex computations and datamanipulationwith ease. This section
will delve into the instantiation and application of these types, illuminating the sig-
nificance of each specific type within MATLAB’s ecosystem.

The fundamental MATLAB classes are shown in the following Table 2.1.

2.2.1 Creating Variables

InMATLAB, variables are used to store data of various types, such as numbers, text,
logical values, and more, which are used to store and manipulate data in MATLAB.

56 2 Data Types, Operators, and Expressions

Table 2.1 Fundamental MATLAB classes

No. Data type Features

1 double, single • Floating-point numbers

• Required for fractional numeric data

• Double- and single-precision

• double is the default numeric type

• Two-dimensional arrays can be sparse

• Use realmin and realmax to show range of values

2 int8, uint8, int16, uint16,
int32, uint32, int64,
uint64

• Integers
• Signed and unsigned whole numbers

• More efficient use of memory

• Choose from 4 sizes (8, 16, 32, and 64 bits)

• Use intmin and intmax to show range of values

3 string, char • Data types for text

• Both data types store characters as Unicode characters

• Support conversions to and from numeric representations

• Use either data type with regular expressions

• string arrays recommended for storing multiple strings

• To search for and match text in strings, use pattern objects.
(since R2020b)

4 logical • Used in relational conditions or to test state

• Can have one of two values: true or false

• Also useful in array indexing

• Two-dimensional arrays can be sparse

5 cell • Cells store arrays of varying classes and sizes

• Allows freedom to package data as you want

• Manipulation of elements is similar to numeric or logical
arrays

• Method of passing function arguments

• Use in comma-separated lists

• More memory required for overhead

6 table, timetable • Tables and timetables are rectangular containers for
mixed-type, column-oriented data

• Tables have row and variable names that identify contents

• Timetables also provide storage for time series data in a table
with rows labeled by timestamps. Timetable functions can
synchronize, resample, or aggregate timestamped data

• Use properties to store metadata such as variable units

• Manipulation of elements similar to numeric or logical arrays

• Access data by numeric or named index

• Can select a subset of data and preserve the table container or
can extract the data from a table

(continued)

2.2 Working with Data Types 57

Table 2.1 (continued)

No. Data type Features

7 struct • Fields store arrays of varying classes and sizes

• Access one or all fields/indices in single operation

• Field names identify contents

• Method of passing function arguments

• Use in comma-separated lists

• More memory required for overhead

8 function_handle • Pointer to a function

• Enables passing a function to another function

• Can also call functions outside usual scope

• Use to specify graphics callback functions

• Save to MAT-file and restore later

They can be assigned values of different data types, such as numeric, character,
logical, and cell arrays. Variables are created by assigning a value to a valid variable
name, which follows certain rules. To create a variable, one simply needs to assign
a value to it using the assignment operator (=). The variable name must start with
a letter and can contain letters, digits, and underscores. MATLAB is case-sensitive,
so variables with the same name but different cases are treated as different variables.

Here is an example of creating a variable in MATLAB:

Listing 2.13 Creating a numeric variable.

myNumber = 5; % Assigns the value 5 to the variable ’
myNumber ’

x = 5; % Numeric variable
y = ’Hello’; % Character vector
z = true; % Logical variable
c = {1, 2, 3}; % Cell array

In the above example, a variable named myNumber is created and assigned the
value of 5. MATLAB automatically determines the data type of the variable based
on the assigned value.

Another example showcasing the creation of a string variable:

Listing 2.14 Creating a string variable.

myString = "Hello , MATLAB !"; % Assigns a string value to
the variable ’myString ’

Here, the variable myString is created and assigned the string value “Hello, MAT-
LAB!”. String values in MATLAB are enclosed in double quotes.

It is important to note that variables in MATLAB do not need to be explicitly
declared or definedbefore assigning a value to them.MATLABdynamically allocates
memory for variables as needed.

58 2 Data Types, Operators, and Expressions

• Numeric
Numeric classes inMATLABinclude signed andunsigned integers, and single- and
double-precision floating-point numbers. By default, MATLAB stores all numeric
values as double-precision floating point. You can choose to store any number, or
array of numbers, as integers or as single-precision. Integer and single-precision
arrays offer more memory-efficient storage than double-precision
All numeric types support basic array operations, such as subscripting, reshaping,
andmathematical operations. Two-dimensional double and logical matrices can be
created using one of two storage formats: full or sparse. For matrices with mostly
zero-valued elements, a sparse matrix requires a fraction of the storage space
required for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems
Here are two MATLAB examples demonstrating the use of numeric data types:

Listing 2.15 Example of double and single precision floating-point numbers.

% Double precision (default)
a = 3.14159;
disp(a);

% Single precision
b = single (3.14159);
disp(b);

Listing 2.16 Example of sparse matrix.

% Create a sparse matrix
S = sparse ([1 1 2 3], [1 3 2 3], [5 7 6 8], 3, 3);
disp(S);

% Perform operations on the sparse matrix
X = S * 2; % Scalar multiplication
Y = S + S; % Addition

• Character andStringMATLABprovides twodata types for text: string and char.
Both data types store characters as Unicode characters. They support conversions
to and from numeric representations and can be used with regular expressions.
To store multiple strings, it is recommended to use string arrays rather than cell
arrays of character vectors. However, cell arrays can still be used for this purpose.
Here are two MATLAB examples demonstrating the use of character and string
data types:

Listing 2.17 Example of string concatenation

% Create a string array
str = [" Hello", "World "];

% Concatenate strings
greeting = str (1) + " " + str(2);
disp(greeting);

2.2 Working with Data Types 59

Listing 2.18 Example of regular expression matching

% Create a character vector
text = ’The quick brown fox jumps over the lazy dog.’;

% Find matches using a regular expression
pattern = ’the’;
matches = regexp(text , pattern , ’match’);
disp(matches);

• Logical The logical class is used in relational conditions or to test state. A logical
value can have one of two values: true or false. Logical arrays are also useful in
array indexing. Two-dimensional logical arrays can be sparse.
Here are two MATLAB examples demonstrating the use of the logical data type:

Listing 2.19 Example of logical indexing

% Create a numeric array
A = [1 2 3; 4 5 6; 7 8 9];

% Use logical indexing to select elements
mask = A > 5;
B = A(mask);
disp(B);

Listing 2.20 Example of logical operations

% Logical operations
a = true;
b = false;

% Logical AND
c = a && b;
disp(c);

% Logical OR
d = a || b;
disp(d);

% Logical NOT
e = ~a;
disp(e);

In the first example, we create a numeric array A and then use a logical mask mask
= A > 5 to select elements from A that are greater than 5. The selected elements
are stored in the new array B.
The second example demonstrates various logical operations:

– c = a && b performs a logical AND operation between a and b.
– d = a || b performs a logical OR operation between a and b.
– e = ∼a performs a logical NOT operation on a.

60 2 Data Types, Operators, and Expressions

Table 2.2 Truth table for
logical AND operation

A B A AND B

True True True

True False False

False True False

False False False

Table 2.3 Truth table for
logical OR operation

A B A OR B

True True True

True False True

False True True

False False False

Table 2.4 Truth table for
logical NOT operation

A NOT A

True False

False True

These logical operations can be useful in various contexts, such as conditional
statements, array indexing, and data filtering.
Here are the truth tables for the logicalAND,OR, andNOToperations inMATLAB
presented (Tables 2.2, 2.3 and 2.4).
The truth tables clearly illustrate the behavior of the logical AND, OR, and NOT
operations in MATLAB:

– The logical AND operation (&&) returns true only when both operands are true.
– The logical OR operation (||) returns true when at least one of the operands is
true.

– The logical NOT operation (∼) returns the opposite truth value of the operand.

These truth tables are fundamental in understanding and working with logical
operations in MATLAB, which are essential for various programming tasks such
as conditional statements, data filtering, and logical indexing.

• Table andTimetable Tables and timetables are rectangular containers formixed-
type, column-oriented data. Tables have row and variable names that identify
their contents. Timetables also provide storage for time series data in a table with
rows labeled by timestamps. Timetable functions can synchronize, resample, or
aggregate timestamped data.
The properties of a table or timetable can be used to storemetadata such as variable
units. Manipulation of elements is similar to numeric or logical arrays, and data
can be accessed by numeric or named index.
Here are two MATLAB examples demonstrating the use of tables and timetables:

2.2 Working with Data Types 61

Listing 2.21 Example of creating and manipulating a table

% Create a table
T = table ([1 2 3]’, [4 5 6]’, ’VariableNames ’, {’A’, ’

B’}, ’RowNames ’, {’Row1’, ’Row2’, ’Row3’});

% Access data by variable name
disp(T.A);

% Add a new variable
T.C = [7 8 9]’;

Listing 2.22 Example of creating and resampling a timetable

% Create a timetable
times = datetime (2023 , 4, 1) + calmonths (0:2:6);
data = [1 2 3 4]’;
TT = timetable(times , data , ’VariableNames ’, {’Values ’

});

% Resample the timetable
resampledTT = retime(TT , ’monthly ’);
disp(resampledTT);

• Structure and Cell Array Structures and cell arrays are containers that can
store arrays of varying classes and sizes.
In a structure, fields store the arrays, and field names identify the contents. Struc-
tures can access one or all fields/indices in a single operation, and they are often
used as a method of passing function arguments or in comma-separated lists.
However, structures require more memory overhead than other data types.
Cell arrays allow freedom to package data as you want, and the manipulation
of elements is similar to numeric or logical arrays. Like structures, cell arrays are
commonly used as amethod of passing function arguments or in comma-separated
lists, but they also require more memory overhead than other data types.
Here are two MATLAB examples demonstrating the use of structures and cell
arrays:

Listing 2.23 Example of creating and accessing a structure

% Create a structure
student.Name = ’John Doe’;
student.Age = 25;
student.GPA = 3.8;

% Access structure fields
disp([’Name: ’ student.Name]);
disp([’Age: ’ num2str(student.Age)]);

62 2 Data Types, Operators, and Expressions

Listing 2.24 Example of creating and manipulating a cell array

% Create a cell array
C = {[1 2 3], ’hello’, true};

% Access cell elements
disp(C{1}); % Display the numeric array
disp(C{3}); % Display the logical value

% Add a new cell element
C{4} = magic (3); % Add a 3x3 magic square

• Function Handle A function handle is a pointer to a function. It enables passing
a function to another function and can also call functions outside the usual scope.
Function handles are commonly used to specify graphics callback functions and
can be saved to a MAT-file and restored later.
Here are two MATLAB examples demonstrating the use of function handles:

Listing 2.25 Example of a function handle as a callback

% Define a callback function
function handleClick(src , event)
disp(’Button clicked!’);
end

% Create a button with the callback function
fig = uifigure;
btn = uibutton(fig , ’Text’, ’Click Me’, ’Position ’,

[50 50 100 30]);
btn.ButtonPushedFcn = @handleClick;

Listing 2.26 Example of passing a function handle as an argument

% Define a function that takes a function handle as an
argument

function result = applyFunction(func , x)
result = func(x);
end

% Pass an anonymous function as a function handle
squareRoot = @(x) sqrt(x);
result = applyFunction(squareRoot , 25);
disp(result);

2.2.2 Accessing and Modifying Data

Once data is stored in variables or arrays in MATLAB, it is often necessary to
access and modify specific elements or portions of that data. MATLAB provides
several methods for accessing and modifying data using indexing, or extract subsets

2.2 Working with Data Types 63

of data using slicing. Data can be modified by assigning new values or using built-in
functions. Indexing and slicing are powerful techniques in MATLAB for accessing
and manipulating specific elements or subsets of data within arrays, matrices, and
other data structures. Indexing allows you to access individual elements or subarrays
using numerical indices, while slicing enables you to extract specific rows, columns,
or submatrices using colon notation or logical indexing.

Here’s an example:

Listing 2.27 Accessing and modifying data in MATLAB

A = [1 2 3; 4 5 6]; % Create a matrix
A(2, 3) = 10; % Modify an element
B = A(1, :); % Extract a row

• Assigning Assignment is the process of storing or modifying data in a variable
or array using the assignment operator (=). In addition to simple assignment,
MATLAB supports various forms of assignment, such as array expansion and
structure field assignment.

Listing 2.28 Modifying elements in an array using assignment

A = zeros (3,3); % Create a 3x3 array of zeros
A(1,:) = [1 2 3]; % Assign values to the first row
A(:,2) = [4; 5; 6]; % Assign values to the second

column

• Indexing
Accessing elements in MATLAB arrays is achieved through the use of indices,
which can be either scalar or vectorised. The modification of array elements is
similarly realisable by assigning new values to specific indices by specifying the
row and column indices of the desired element(s).
For instance, consider the following MATLAB syntax to access and modify an
element in an array:

Listing 2.29 Accessing and modifying an array element

% Given an array ’A’
A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

% Accessing the element at the second row , third
column

element = A(2, 3);

% Modifying the element at the second row , third
column to 10

A(2, 3) = 10;

A = [1 2 3; 4 5 6; 7 8 9]; % Create a 3x3 matrix

A(2, 3) % Access element at row 2, column 3

64 2 Data Types, Operators, and Expressions

This capacity to pinpoint a specific datum is pivotal. Additionally, let us illustrate
altering a section of an array through logical indexing:

Listing 2.30 Modifying elements using logical indexing

% Modifying elements greater than 5 to be equal to 5
A(A > 5) = 5;

• Slicing
The slicing is also called subscripting, which are essentially the same concept.
They both refer to the process of extracting a subset or a part of an array or matrix
using indices or logical expressions.
The term “subscripting” is more commonly used in MATLAB documentation
and literature, but “slicing” is also sometimes used, especially when referring to
extracting a contiguous subset of elements from a vector or a row/column from a
matrix.
Here are some examples that illustrate the equivalence of subscripting and slicing
in MATLAB:

Listing 2.31 Subscripting/slicing examples

% Create a vector
x = [1 2 3 4 5 6 7 8 9];

% Subscripting/slicing to extract a subset
x(3:6) % Returns [3 4 5 6] (slicing)

% Create a matrix
A = [1 2 3; 4 5 6; 7 8 9];

% Subscripting/slicing to extract a row
A(2, :) % Returns [4 5 6] (slicing a row)

% Subscripting/slicing to extract a column
A(:, 3) % Returns [3; 6; 9] (slicing a column)

B = A(:, 2:3) % Extract columns 2 and 3 from A

In the examples above, the use of colon operators (e.g., 3:6, :, 2, :, :,3) is a form of
subscripting or slicing that extracts a subset of elements from the array or matrix.
So, while the term “subscripting” is more prevalent in MATLAB documentation,
the concepts of subscripting and slicing are effectively the same and refer to the
process of extracting parts of arrays or matrices using indices or logical expres-
sions.

2.2.3 Type Conversion

In MATLAB, data type conversion refers to the process of transforming values
from one data type to another, allowing for compatibility and flexibility in data

2.2 Working with Data Types 65

manipulation.MATLABprovides various functions to facilitate conversions between
different data types, such as numeric arrays, strings, character arrays, dates and times,
categorical arrays, tables, and timetables. Common conversions include converting
numbers to text, text to numeric values, hexadecimal and binary representa-
tions, and converting between text and datetime or duration values.

The cast function is a powerful tool for type conversion in MATLAB. It converts
the data type of an input array or variable to the specified data type. The syntax for
using the cast function is:

Listing 2.32 Syntax for the cast function

new_data = cast(original_data , ’data_type ’);

Here, original_data is the input array or variable, and ’data_type’ is a
string specifying the desired data type for the output array new_data.

For example, to convert a double-precision array to a single-precision array:

Listing 2.33 Converting from double to single precision

x = [1.2345 6.7890]; % Double -precision array
y = cast(x, ’single ’); % Convert to single precision

MATLAB also provides Specialised functions for type conversion, such as
double, single, int8, int16, int32, int64, uint8, uint16, uint32,
uint64, logical, and char. These functions convert the input data to the cor-
responding data type [4].

Listing 2.34 Converting a character array to a double-precision array

str = ’3.14159 ’; % Character array
x = double(str); % Convert to double -precision array

Type conversion can also be performed using operators such as + and - when
operating on different data types. MATLAB automatically converts the operands to
the highest precision data type involved in the operation.

Listing 2.35 Automatic type conversion during arithmetic operations

x = int8 (5); % Integer 8-bit value
y = x + 2.5; % y is a double -precision value

In the example above, the int8 value x is automatically converted to a double-
precision value before adding 2.5, resulting in y being a double-precision value.

Proper type conversion is essential for efficient memory usage, accurate compu-
tations, and compatibility with various functions and operations in MATLAB. The
documentation [4] provides a comprehensive guide on type conversion functions and
techniques. Here is to list a few in Table 2.5.

• Numbers and Text:

– To convert numbers to text, functions like string, char, cellstr,
int2str, mat2str, and num2str can be used.

66 2 Data Types, Operators, and Expressions

Table 2.5 Type conversion functions in MATLAB

Function Description

Convert numbers to text

string String array

char Character array

cellstr Convert to cell array of character vectors

int2str Convert integers to characters

mat2str Convert matrix to characters

num2str Convert numbers to character array

Convert text to numbers

str2double Convert strings to double precision values

str2num Convert character array or string to numeric
array

native2unicode Convert numeric bytes to Unicode character
representation

unicode2native Convert Unicode character representation to
numeric bytes

Hexadecimal and binary numbers

base2dec Convert text representation of base-n integer to
double value

bin2dec Convert text representation of binary integer to
double value

dec2base Convert decimal integer to its base-n
representation

dec2bin Convert decimal integer to its binary
representation

dec2hex Convert decimal integer to its hexadecimal
representation

hex2dec Convert text representation of hexadecimal
integer to double value

hex2num Convert IEEE hexadecimal format to
double-precision number

num2hex Convert single- and double-precision numbers
to IEEE hexadecimal format

Dates and times

datetime Arrays that represent points in time

duration Lengths of time in fixed-length units

matlab.datetime.compatibility.
convertDatenumConvert

Convert inputs to datetime values in a
backward-compatible way

Categorical arrays, tables, and timetables

categorical Array that contains values assigned to
categories

table2array Convert table to homogeneous array

table2cell Convert table to cell array

table2struct Convert table to structure array

array2table Convert homogeneous array to table

(continued)

2.2 Working with Data Types 67

Table 2.5 (continued)

Function Description

cell2table Convert cell array to table

struct2table Convert structure array to table

array2timetable Convert homogeneous array to timetable

table2timetable Convert table to timetable

timetable2table Convert timetable to table

Cell arrays and structures

cell2mat Convert cell array to ordinary array of the
underlying data type

cell2struct Convert cell array to structure array

mat2cell Convert array to cell array whose cells contain
subarrays

num2cell Convert array to cell array with consistently
sized cells

struct2cell Convert structure to cell array

Convert from structure to Mindmap

Struct2MindMap Creates a mindmap from a given MATLAB
structure

– To convert text to numeric values, functions like str2double, str2num,
native2unicode, and unicode2native are available.

• Hexadecimal and Binary Numbers:

– Functions like base2dec, bin2dec, dec2base, dec2bin, dec2hex,
hex2dec,hex2num, and num2hex allow conversions between decimal, hex-
adecimal, and binary representations of numbers.

• Dates and Times:

– To convert values to datetime or duration objects, functions like
datetime, duration, and matlab.datetime.compatibility.
convertDatenumConvert can be used.

– To convert datetime or duration objects to text, functions like string,
char, and cellstr are available.

• Categorical Arrays, Tables, and Timetables:

– Functions likecategorical,table2array,table2cell,table2str
uct, array2table, cell2table, struct2table, array2timetab,
letable2timetable, and timetable2table facilitate conversions
between these data types.

68 2 Data Types, Operators, and Expressions

• Cell Arrays and Structures:

– Functions likecell2mat,cell2struct,mat2cell,num2cell,struc
t2cell, and struct2cell enable conversions between cell arrays, struc-
tures, and regular arrays.

Proper data type conversion is essential for compatibility between different oper-
ations, efficient memory usage, and accurate computations within MATLAB.

Here’s an example of converting a numeric value to text:

Listing 2.36 Converting numeric value to text

num = 42;
str = \textcolor{green }{ num2str }(num); % Convert numeric

value to string

MATLAB also provides the struct2mindmap function [5] to convert a MATLAB
structure to a MindMap format, which can be useful for visualizing and sharing
complex data structures. Also, to import a mindmap to MATLAB.

2.2.4 Operations and Functions on Data Types

MATLAB provides a wide range of built-in functions and operators that can be
applied to various data types, enabling efficient datamanipulation and analysis. These
include arithmetic operations, logical operations,matrix operations, string oper-
ations, and Specialised functions for specific data types like datetime and categorical
arrays [6] (Table 2.6).

1. Arithmetic operations such as addition, subtraction,multiplication, and divi-
sion can be performed on numeric data types like doubles, singles, and integers.
MATLAB also provides built-in functions like sin, cos, tan, and sqrt for
performing mathematical calculations on these data types. For example:

Listing 2.37 Arithmetic operations and functions on numeric data types

a = 3.5; % double
b = int32 (10); % int32
c = a + b; % Addition of double and int32
d = sin(a); % Sine function on a double

Listing 2.38 Matrix operations on numeric data types

A = [1 2 3; 4 5 6]; % Double matrix
B = [3 4; 2 1; 5 6]; % Double matrix
C = A * B; % Matrix multiplication
D = \textcolor{green}{sin}(A); % Apply the sine

function element -wise

2.2 Working with Data Types 69

Table 2.6 Specialised functions in MATLAB

Function Description

Numeric data types

diff, int Calculus: Numerical differentiation and
integration

interp1, interp2 Interpolation: Interpolation of data in 1-D and
2-D

fmincon, fminsearch optimisation: Constrained and unconstrained
optimisation

mean, std, var Statistics: Compute mean, standard deviation,
variance

fft, ifft Fourier Transforms: Fast Fourier Transform
and inverse

String data types

regexp, regexprep Regular Expressions: Pattern matching and
replacement

tokenizedDocument, removeWords Natural Language Processing: Text
tokenization and cleaning

unicode2native String Encoding: Convert between Unicode
and native encodings

Table and timetable data types

sortrows, unstack Data Manipulation: Sort rows, restructure
table layout

outerjoin, innerjoin Merging: Merge tables based on key columns

synchronize, rmmissing, resample Time Series Analysis: Synchronize, remove
missing, resample data

Other application domains

imfilter, medfilt2 Image Processing: Filter and process images

filter, deconv Signal Processing: Filter and deconvolve
signals

tf, step Control Systems: Transfer functions, step
response

cpomplexp, lteOFDMModulate Communications: Complex plane, LTE
OFDM modulation

2. Matrix operations
Matrix operations are a core part of MATLAB and can be performed on numeric
data types like doubles, singles, and integers. MATLAB provides a rich set of
functions and operators for working with matrices and arrays.
Basic matrix operations include addition, subtraction, multiplication (both
element-wise and matrix multiplication), division, exponentation, and more.
These can be performed using standard arithmetic operators like addition (+),
subtraction (−), multiplication (∗), division (/), and exponentiation (ˆ), etc. For
example:

70 2 Data Types, Operators, and Expressions

Listing 2.39 Basic matrix arithmetic operations

A = [1 2; 3 4];
B = [5 6; 7 8];
C = A + B; % Matrix addition
D = A - B; % Matrix subtraction
E = A * B; % Matrix multiplication
F = A .* B; % Element -wise multiplication
G = A .^ 2; % Element -wise exponentation

MATLAB also provides many functions for common matrix operations like
transpose (transpose, permute), inverse (inv), determinant (det), trace
(trace), eigenvalues and eigenvectors (eig), norms (norm) and much more.
For example:

Listing 2.40 Matrix functions in MATLAB

A = [1 2 3; 4 5 6; 7 8 9];
B = inv(A); % Matrix inverse
lambda = eig(A); % Eigenvalues of A
[V, D] = eig(A); % Eigenvectors (V) and eigenvalues (

D) of A
normA = norm(A); % Norm of matrix A
traceA = trace(A); % Trace of matrix A

In addition to these basic operations, MATLAB provides advanced functions for
matrix decompositions like LU, QR, SVD and more through functions like lu,
qr, svd etc.
Sparsematrices, which efficiently storematriceswithmostly zero entries, can also
be created and operated on using functions like sparse, issparse, full etc.
Overall, MATLAB’s ability to perform a wide variety of matrix operations on
numeric data types is a core strength thatmakes it suitable for linear algebra, signal
processing, image processing and many other technical computing applications.

3. Logical operations like and, or, and not can be performed on logical data
types, which store boolean values (true or false). These operations are often used
in conditional statements and indexing. For example:

Listing 2.41 Logical operations on logical data types

a = true; % Logical true
b = false; % Logical false
c = a && b; % Logical AND operation
d = ~c; % Logical NOT operation

Listing 2.42 Indexing with logical data types

A = [1 2 3; 4 5 6]; % Double matrix
B = A > 3; % Logical matrix based on condition
C = A(B); % Extracting elements of A where B is true

2.2 Working with Data Types 71

4. String operations for string data types, MATLAB provides a range of func-
tions for string manipulation, such as concatenation, splitting, searching, and
replacing. These functions are available through two primary data types in MAT-
LAB: the traditional character arrays (char) and the modern string arrays
(string) introduced in MATLAB R2016b [7]. The string array functionality
provides enhanced capabilities for text processing, including advanced pattern
matching, array operations, and Unicode support [8]. MATLAB’s string handling
framework offers a comprehensive suite of functions:

• Core String Functions: Essential operations such as strcat, strtrim,
strrep, and strcmp for basic string manipulation [7].

• Pattern Matching: Advanced text processing through regexp, contains,
startsWith, and endsWith functions.

• String Array Operations: Modern functions like join, split, strip, and
replaceBetween that operate efficiently on string arrays [7].

• ConversionUtilities: Functions for converting between different text represen-
tations, including char, string, cellstr, and various numeric conversion
functions [9].

For example:

Listing 2.43 String operations and functions on string data types

str1 = "Hello "; % String array
str2 = "World "; % String array
fullStr = str1 + str2; % String concatenation
idx = contains(fullStr , "lo"); % Finding substring
newStr = replace(fullStr , "lo", "LO"); % Replacing

substring

Listing 2.44 Regular expression operations on string data types

str = "The quick brown fox jumps over the lazy dog .";
pattern = "(?<animal >\w+)\s+(?<color >\w+)\s+(?<

animal2 >\w+)"; % Pattern with named groups
[start , endPos , extractor , matches] = regexp(str ,

pattern , "names"); % Regular expression matching

5. Specialised functions
MATLAB offers a wide range of specialised functions that cater to various data
types and application domains, enabling advanced data manipulation, analysis,
and processing capabilities. These functions are optimised for specific tasks and
provide efficient and accurate results.
These are just a few examples of the various operations and functions available in
MATLAB for different data types. It is important to understand the capabilities
of each data type and the corresponding operations and functions to effectively
manipulate and analyze data in MATLAB.

72 2 Data Types, Operators, and Expressions

In addition to basic operations, MATLAB provides many Specialised functions
for working with different data types. These functions enable advanced data
manipulation, analysis, and processing capabilities.

• For numeric data types like doubles and singles, MATLAB offers a vast
library of specialised math functions. This includes functions for calculus
(diff, int), interpolation (interp1, interp2), optimisation (fmincon,
fminsearch), statistical computations (sum,mean,std,var), Fast Fourier
Transforms (fft,ifft). Additionally, functions such asconv,filter, and
resample are available for signal processing tasks [10], and more.

For example:

Listing 2.45 Specialised math functions in MATLAB

x = 0:0.1:2* pi;
y = sin(x);
yprime = diff(y); % First derivative of y
area = trapz(x, y); % Numerical integration to find

area

X = membrane (5, 7); % Test problem data
options = optimoptions(’fmincon ’,’Algorithm ’,’

interior -point’);
[x, fval] = fmincon(@(x) myFunObj(x, X), [], [], [],

[], [], [], [], [], options);

Here is to explain the example step by step:

– x = 0:0.1:2*pi; generates a vector x with values ranging from 0 to
2π with a step size of 0.1.

– y = sin(x); calculates the sine of each element in x and assigns the
result to y.

– yprime = diff(y); computes the first derivative of y using the diff
function, which calculates the difference between consecutive elements.

– area = trapz(x, y);numerically integrates the function represented
by x and y using the trapezoidal rule and assigns the result to area.

– X = membrane(5, 7); generates test problem data using the
membrane function, which is likely a user-defined function or part of a
specific toolbox.

– options = optimoptions(’fmincon’,’Algorithm’,’
interior-point’); sets the options for the fmincon optimisation
function, specifying the interior-point algorithm.

– [x, fval] = fmincon(@(x) myFunObj(x, X), [], [],
[], [], [], [], [], [], options); calls the fmincon opti-
misation function to minimise the objective function myFunObj subject
to the specified options. The empty brackets [] indicate that no linear

2.2 Working with Data Types 73

inequality constraints, linear equality constraints, lower bounds, or upper
bounds are provided.

Note: Assuming that the membrane and myFunObj functions are properly
defined, and make sure to replace myFunObjwith the actual objective function you
want to minimise when using this code snippet.

• For string data types, MATLAB provides functions for regular expression oper-
ations (regexp, regexprep), string comparison, searching, regular expres-
sion matching, and replacement operations (strcmp, strfind, and strrep),
natural language processing (tokenizedDocument, removeWords), string
encoding (unicode2native), and more. These functions simplify the manip-
ulation and analysis of textual data. For example:

Listing 2.46 String processing functions in MATLAB

str = "The quick brown fox jumps over the lazy dog .";
pattern = "\w+"; % Word pattern
tokens = regexp(str , pattern , ’match’); % Extract all

words

text = "This is good. However , it is raining outside
.";

doc = tokenizedDocument (text);
doc = removeWords(doc , ["is", "raining"], ’IgnoreCase ’

, true); % Not case -sensitive

• For table and timetable data types, MATLAB provides functions for datamanip-
ulation (sortrows, unstack), merging (outerjoin, innerjoin), time
series analysis (synchronize, rmmissing, resample), and more. These
functions facilitate data sorting, merging, aggregation, and resampling operations,
making it convenient to work with tabular and time-series data.

• MATLAB also includes specialised toolboxes and functions for application
domains like image processing (imfilter, medfilt2), signal processing
(filter,deconv),controlsystems(tf,step),communications(cpomplexp,
lteOFDMModulate), and many others. Such as,

– Image Processing: Functions such as imfilter and medfilt2 are used for
image enhancement and filtering techniques.

– Signal Processing: The filter and deconv functions are fundamental for
designing and analysing signal processing systems.

– Control Systems: Functions like tf and step are essential for the design and
analysis of control systems.

– Communications: Toolboxes provide functions such as complexp and
lteOFDMModulate for communication system design and modulation tech-
niques.

74 2 Data Types, Operators, and Expressions

These Specialised functions greatly extend MATLAB’s capabilities beyond basic
data operations, enabling users to perform advanced analysis, modeling, and pro-
cessing tasks across various domains and data types.

2.2.5 Missing Data Handling

In real-world data analysis, missing or invalid data is a common occurrence. MAT-
LAB provides various techniques for handling missing data, such as identifying,
filtering, and imputing missing values. The isnan function can be used to identify
missing values represented by NaN (Not a Number), and functions like rmmissing
can remove missing data.

Here’s an example of identifying and removing missing data:

Listing 2.47 Handling missing data in MATLAB

data = [1 2 NaN; 4 5 6; 7 NaN 9];
missing_indices = \textcolor{green}{ isnan}(data); % Find

missing values
clean_data = \textcolor{green}{ rmmissing }(data); %

Remove missing values

In this table, It has been highlighted important concepts like NaN, Inf, miss-
ing, and outlier values using the command. The table is divided into three sec-
tions: Missing Data Identification, Missing Data Imputation, and Missing Data Han-
dling in Analysis, each with relevant MATLAB functions and their descriptions
(Table 2.7).

Table 2.7 Missing data handling functions in MATLAB

Function Description

Missing data identification

isnan Check for NaN (Not a Number) values

isfinite Check for finite (non-Inf and non-NaN) values
ismissing Check for missing values in tables and

timetables

Missing data imputation

fillmissing Replace missing values with specified value or
method

rmmissing Remove missing observations from data

filloutliers Replace outlier values with specified method

Missing data handling in analysis

nanmean, nansum, etc. Compute statistics ignoring NaN values

rmmissing Remove missing observations before analysis

fillmissing Impute missing values before analysis

2.3 Advanced Topics 75

2.3 Advanced Topics

2.3.1 Custom Data Types

In addition to the built-in data types that MATLAB provides, users can also create
their own customdata types using classes and structures. This allows for the creation
of more complex data types that can encapsulate multiple properties and behaviours.

• Classes Classes in MATLAB are user-defined data types that can contain prop-
erties (data) and methods (functions). They provide a way to create objects that
combine data and the operations that can be performed on that data. This allows
for better organisation and modularity of code, as well as the ability to create more
complex data structures.
Here is a simple example of defining a class in MATLAB:

Listing 2.48 Defining a class in MATLAB

classdef Person
properties
Name
Age
end
methods

function obj = Person(name , age)
obj.Name = name;
obj.Age = age;

end

function greet(obj)
disp([’Hello , my name is ’ obj.Name ’ and I am

’ num2str(obj.Age) ’ years old.’]);
end

end
end

In this example, the Person class has two properties (Name and Age) and two
methods (Person and greet). The Person method is a constructor that initialises the
object with a name and age, while the greet method prints a greeting message.
Here’s another example of creating a custom data type called Circle in MAT-
LAB:

Listing 2.49 Custom data type example

classdef Circle
properties
radius
center
end
methods

function obj = Circle(r, x, y)
obj.radius = r;

76 2 Data Types, Operators, and Expressions

obj.center = [x, y];
end

function area = getArea(obj)
area = pi * obj.radius ^2;

end
end
end

In this example, the Circle class has two properties: radius and center.
The constructor method initializes these properties, and the getArea method
calculates the area of the circle based on its radius.

• Structures Structures in MATLAB are another way to create custom data types.
They are similar to classes, but are generally simpler and do not support methods.
Structures are useful for grouping related data together in a single variable.
Here is an example of creating a structure in MATLAB:

Listing 2.50 Creating a structure in MATLAB

person = struct(’Name’, ’John Doe’, ’Age’, 30, ’Email’
, ’john.doe@example.com’);

disp(person)

This creates a structure called person with three fields: Name, Age, and Email.
The values of these fields can be accessed using dot notation, e.g., person.Name.
Both classes and structures provide away to create custom data types inMATLAB,
with classes offering more advanced features and functionality, while structures
are simpler but more limited.

2.3.2 Enumerations

Enumerations (or enums) are a special data type in MATLAB that allows develop-
ers to define a set of named constant values. Enumerations are useful for representing
a fixed set of choices or states, making the code more readable and maintainable.

Here’s an example of defining and using an enumeration in MATLAB:

Listing 2.51 Enumeration example

% Define the enumeration
TrafficLight = enumeration(’TrafficLight ’, ’Red’, ’

Yellow ’, ’Green’);

% Use the enumeration
currentLight = TrafficLight.Green;
if currentLight == TrafficLight.Red
disp(’Stop!’);
else
disp(’Go!’);
end

2.3 Advanced Topics 77

In this example, the TrafficLight enumeration is defined with three possible
values: ’Red’, ’Yellow’, and ’Green’. The enumeration is then used to rep-
resent the current state of a traffic light, and a conditional statement checks the state
and displays the appropriate message.

2.3.3 Data Type Validation

MATLAB provides data type validation functions that allow developers to check
the data type of variables or arrays and ensure they conform to the expected type.
This can be useful for catching errors early and maintaining data integrity.

Here’s an example of using theisa function to validate the data type of a variable:

Listing 2.52 Data type validation example

x = 3.14;
if isa(x, ’double ’)
disp(’x is a double -precision floating -point number.’);
else
error(’x is not a double -precision floating -point number

.’);
end

In this example, the isa function checks if the variable x is of the ’double’
data type. If the condition is true, a message is displayed; otherwise, an error is
thrown.

2.3.4 Performance Considerations

The choice of data type in MATLAB can have a significant impact on performance,
both in terms of memory usage and computational speed. In general, it is recom-
mended to use the smallest data type that can accurately represent the data, as smaller
data types require less memory and can often be processed more efficiently.

Here’s an example that demonstrates the performance difference between using
double-precision and single-precision floating-point numbers:

Listing 2.53 Performance comparison example

% Create double -precision and single -precision arrays
A_double = rand (1000 , 1000);
A_single = single(A_double);

% Time matrix multiplication
tic
B_double = A_double * A_double ’;
t_double = toc;

78 2 Data Types, Operators, and Expressions

tic
B_single = A_single * A_single ’;
t_single = toc;

disp([’Double -precision time: ’, num2str(t_double), ’
seconds ’]);

disp([’Single -precision time: ’, num2str(t_single), ’
seconds ’]);

In this example, two largematrices (A_double and A_single) are created, one
using double-precision and the other using single-precision floating-point numbers.
The time taken to perform matrix multiplication on each matrix is measured and
displayed. Generally, the single-precision operation will be faster and require less
memory than the double-precision operation, but at the cost of reduced precision.

2.3.5 Memory Allocation and Management

MATLAB provides several functions and techniques for memory allocation and
management, which can be important for optimizing memory usage and perfor-
mance, particularly when working with large datasets or running computationally
intensive operations.

One way tomanagememory is by using the whos function to display information
about the variables in the workspace, including their data types and the amount of
memory they are using. Here’s an example:

Listing 2.54 Using whos to check memory usage

A = rand (1000 , 1000);
B = single(A);
whos

The whos command will display information about the variables A and B, includ-
ing their data types and the amount of memory they are using.

Another technique for managing memory is to use the clear function to remove
variables from the workspace when they are no longer needed. This can free up
memory for other operations. For example:

Listing 2.55 Using clear to free memory

A = rand (1000 , 1000);
% ... perform some operations with A
clear A;

In this example, the variable A is removed from the workspace after it is no longer
needed, freeing up the memory it was using.

MATLAB also provides functions for managing memory allocation and preal-
location, such as maxNumCompThreads, memory, and malloc, which can be
useful for optimizing performance in certain scenarios.

2.4 Operators 79

2.3.6 Ranges, Casting and Machine Epsilon

• Ranges in MATLAB refer to the span of values that a data type can represent.
Different data types have different ranges, which determine the minimum and
maximum values they can store. For example, the range of the double data type
in MATLAB is approximately ±1.7 × 10308, while the range of the int32 data
type is -2,147,483,648 to 2,147,483,647. It is crucial to be aware of the range of
your data type to avoid overflowor underflow errorswhen performing calculations.

• Casting in MATLAB refers to the process of converting a value from one data
type to another. MATLAB provides various casting functions, such as int8,
int16, int32, int64, double, single, and so on, to facilitate data type
conversions. Casting can be useful when you want to ensure that your calculations
are performed with the desired data type or when you need to convert data between
different types.

• Machine Epsilon is a concept that relates to the precision of floating-point arith-
metic in a computer. It represents the smallest positive number that, when added to
1, yields a value greater than 1. In MATLAB, the value of machine epsilon can be
obtained using the eps function. Machine epsilon is important to consider when
dealing with numerical algorithms, as it affects the accuracy of calculations and
can lead to issues such as round-off errors.

Understanding ranges, casting, and machine epsilon in MATLAB is crucial
for ensuring accurate and reliable numerical computations. By being aware of the
limitations of data types and the precision of floating-point arithmetic, you can
make informed decisions when designing algorithms and performing calculations in
MATLAB.

2.4 Operators

2.4.1 Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition,
subtraction, multiplication, division, and exponentiation. The basic arithmetic oper-
ators in MATLAB are:

• Addition (+)
• Subtraction (-)
• Multiplication (*)
• Division (/)
• Exponentiation (̂)

80 2 Data Types, Operators, and Expressions

Example 1: Basic arithmetic operations

Listing 2.56 Arithmetic operations in MATLAB

a = 5;
b = 3;

sum = a + b; % Addition: sum = 8
diff = a - b; % Subtraction: diff = 2
prod = a * b; % Multiplication : prod = 15
div = a / b; % Division: div = 1.6667
pow = a ^ b; % Exponentiation : pow = 125

Example 2: Performing operations on arrays

Listing 2.57 Array operations using arithmetic operators

A = [1 2 3; 4 5 6]; % 2x3 matrix
B = [7 8; 9 10; 11 12]; % 3x2 matrix

C = A * B; % Matrix multiplication
D = A .^ 2; % Element -wise exponentiation

2.4.2 Relational Operators

Relational operators are used to compare two values or expressions and return a
logical value (true or false). The main relational operators in MATLAB are:

• Equal to (==)
• Not equal to (=)
• Greater than (>)
• Less than (<)
• Greater than or equal to (>=)
• Less than or equal to (<=)

Example 1: Using relational operators on scalars

Listing 2.58 Relational operations on scalar values

a = 5;
b = 3;

equal = (a == b); % false
notEqual = (a ~= b); % true
greaterThan = (a > b); % true
lessThan = (a < b); % false
geq = (a >= b); % true
leq = (a <= b); % false

2.4 Operators 81

Example 2: Applying relational operators on arrays

Listing 2.59 Relational operations on arrays

A = [1 2 3; 4 5 6];
B = [1 3 5; 4 6 8];

C = (A == B); % Element -wise comparison
D = (A > 2); % Comparison with scalar

2.4.3 Logical Operators

Logical operators are used to combine or negate logical values (true or false). The
main logical operators in MATLAB are:

• Logical AND: (&)
• Logical OR: |
• Logical NOT: ∼

The logical AND operator (&) returns true if both operands are true, and false
otherwise. The logical OR operator (|) returns true if at least one of the operands is
true, and false if both operands are false. The logical NOT operator () negates the
logical value of the operand, returning true if the operand is false, and false if the
operand is true.

Example 1: Using logical operators on scalar values

Listing 2.60 Logical operations on scalar values

a = true;
b = false;

and_result = a & b; % false
or_result = a | b; % true
not_result = ~a; % false

Example 2: Applying logical operators on arrays

Listing 2.61 Logical operations on arrays

A = [1 2 3; 4 5 6];
B = [1 3 5; 4 6 8];

C = (A > 2) & (B < 6); % Element -wise logical AND
D = ~(A == B); % Element -wise logical NOT and comparison

Logical operators are particularly useful in conditional statements, such as if
statements and switch statements, where they are used to evaluate conditions and
control the flow of the program. They can also be used to perform element-wise
operations on arrays of logical values.

82 2 Data Types, Operators, and Expressions

2.4.4 Assignment Operators

Assignment operators are used to assign values to variables. The basic assignment
operator in MATLAB is the equals sign (=). There are also compound assignment
operators that combine an arithmetic operation with assignment.

• Assignment (=)
• Addition assignment (+=)
• Subtraction assignment (-=)
• Multiplication assignment (*=)
• Division assignment (/=)

Example 1: Using the basic assignment operator

Listing 2.62 Basic assignment in MATLAB

x = 10; % Assign the value 10 to variable x
y = x; % Assign the value of x to variable y

Example 2: Compound assignment operators

Listing 2.63 Compound assignment operators

a = 5;
a = a + 3; % a = 8
a += 3; % a = 11 (equivalent to a = a + 3)
a -= 2; % a = 9 (equivalent to a = a - 2)
a *= 2; % a = 18 (equivalent to a = a * 2)
a /= 3; % a = 6 (equivalent to a = a / 3)

2.4.5 Special Characters

In MATLAB, there are several special characters that serve specific purposes in pro-
gramming. These characters are typically used in combination with other characters
or words to represent certain operations or concepts. The paragraph below discusses
some of the most commonly used special characters in MATLAB.

• Percent sign (%) is used to denote comments in MATLAB code. Any text fol-
lowing the percent sign on the same line is treated as a comment and is ignored
by the MATLAB interpreter.

• Semicolon (;) is used to suppress the output of a command or expression. When
a semicolon is placed at the end of a line, MATLAB will execute the command or
expression but will not display the result in the Command Window.

• Comma (,) is used to separate elements or arguments in various contexts, such as
function calls, array creation, and cell array creation.

2.5 Expressions 83

• Colon (:) has multiple uses inMATLAB. It can be used to create a range of values,
represent all elements in a particular dimension of an array, or specify a step size
when creating a range.

• Dot (.) is used for several purposes, including accessing properties or methods of
objects, performing element-wise operations on arrays, and concatenating strings.

• Underscore (_) is commonly used in variable and function names to improve
readability, particularly in cases where multiple words are involved.

Here are two examples demonstrating the use of special characters in MATLAB:

Listing 2.64 Using special characters in MATLAB.

% This is a comment using the percent sign (%)
a = 1:5; % Creates a range from 1 to 5
b = [1, 2, 3]; % Comma separates elements
c = a .* b; % Dot performs element -wise multiplication
disp(c); % Displays the result

d = ’Hello’; e = ’World’; % Strings
f = strcat(d, ’_’, e); % Underscore concatenates strings
disp(f); % Output: ’Hello_World ’

Listing 2.65 Using special characters in Indexing.

A = [1 2 3; 4 5 6; 7 8 9]; % Create a 3x3 matrix
B = A(:, 2:3); % Colon selects all rows and columns 2 to

3
disp(B); % Output:
% 2 3
% 5 6
% 8 9

2.5 Expressions

In MATLAB, expressions are used to perform calculations and manipulate data.
An expression is a combination of variables, constants, and operators that can be
evaluated to produce a value. This section provides an overview of the different
types of expressions and their usage within the MATLAB language.

2.5.1 Arithmetic Expressions

Arithmetic expressions in MATLAB involve mathematical operations such as addi-
tion, subtraction, multiplication, and division. These expressions are evaluated based
on the precedence of operators and can include parentheses to control the order of
operations.

84 2 Data Types, Operators, and Expressions

Example: Arithmetic Expressions.
Arithmetic expressions involve mathematical operations such as addition, sub-

traction, multiplication, and division. These expressions follow the standard math-
ematical conventions and can be used to perform calculations on numeric data in
MATLAB. The basic arithmetic operators in MATLAB are:

• Addition: The ‘+’ operator is used to add two values together.
• Subtraction: The ‘-’ operator is used to subtract one value from another.
• Multiplication: The ‘*’ operator is used to multiply two values.
• Division: The ‘/’ operator is used to divide one value by another.
• Exponentiation: The ‘′̂ operator is used to raise a value to a power.

For example, the expression a = b + c adds the values of variables b and c and
assigns the result to variable a. Similarly, expressions like d = e ∗ f and g = h/ i
perform multiplication and division operations, respectively. It is important to note
that MATLAB follows the order of operations (PEMDAS/BODMAS) when evalu-
ating arithmetic expressions.

1 % Addition
2 a = 3 + 4;
3

4 % Subtraction
5 b = 10 - 5;
6

7 % Multiplication
8 c = 2 * 6;
9

10 % Division
11 d = 15 / 3;
12

13 % Exponentiation
14 e = 2 ^ 4;

2.5.2 Relational Expressions

Relational expressions are used to compare values and determine the relationship
between them. These expressions return logical (Boolean) values of either true or
false. The relational operators available in MATLAB are:

• Equal to: The ‘==’ operator checks if two values are equal.
• Not equal to: The ‘ =’ operator checks if two values are not equal.
• Greater than: The ‘>’ operator checks if one value is greater than another.
• Less than: The ‘<’ operator checks if one value is less than another.
• Greater than or equal to: The ‘>=’ operator checks if one value is greater than
or equal to another.

2.5 Expressions 85

• Less than or equal to: The ‘<=’ operator checks if one value is less than or equal
to another.

These relational operators are commonly used in conditional statements and loops
to control the flow of program execution based on certain conditions.

Example: Relational Expressions

1 % Equal to
2 a = 5;
3 b = 5;
4 result1 = a == b;
5

6 % Not equal to
7 c = 3;
8 d = 7;
9 result2 = c ~= d;

10

11 % Greater than
12 e = 10;
13 f = 7;
14 result3 = e > f;
15

16 % Less than
17 g = 4;
18 h = 6;
19 result4 = g < h;
20

21 % Greater than or equal to
22 i = 8;
23 j = 8;
24 result5 = i >= j;
25

26 % Less than or equal to
27 k = 5;
28 l = 7;
29 result6 = k <= l;

2.5.3 Logical Expressions

Logical expressions involve logical (Boolean) operators that combine multiple rela-
tional expressions. These operators allow for the evaluation of complex conditions
by combining simple conditions. The logical operators available in MATLAB are:

• Logical AND: The ’&&’ operator returns true if both conditions are true.
• Logical OR: The ’||’ operator returns true if at least one condition is true.
• Logical NOT: The ’∼’ operator negates the result of a condition.

86 2 Data Types, Operators, and Expressions

These logical operators are fundamental in constructing conditional statements
and making decisions based on multiple conditions. These operators are used to
combine multiple conditions and evaluate the overall truth value of an expression.

Example: Logical Expressions.

1 % Logical AND
2 a = 5;
3 b = 7;
4 result1 = (a > 0) && (b < 10);
5

6 % Logical OR
7 c = 3;
8 d = 11;
9 result2 = (c < 5) || (d > 10);

10

11 % Logical NOT
12 e = true;
13 result3 = ~e;

2.5.4 String Expressions

In addition to numeric computations, MATLAB also supports string manipulation.
String expressions involve operations on character arrays or strings, such as con-
catenation, substring extraction, and comparison. Strings can be enclosed in single
quotes (‘’) or double quotes (“”) in MATLAB.

String expressions in MATLAB are used to manipulate and concatenate character
arrays. String concatenation is performed using the+ operator, and string comparison
is done using the relational operators (==, =, etc.) as with other data types.

Example: String Expressions.

1 % String concatenation
2 str1 = ’Hello’;
3 str2 = ’World’;
4 result1 = [str1 , ’ ’, str2];
5

6 % Substring extraction
7 str = ’MATLAB ’;
8 result2 = str (2:4);
9

10 % String comparison
11 str1 = ’apple’;
12 str2 = ’banana ’;
13 result3 = strcmp(str1 , str2);

2.6 Statement 87

2.5.5 Function Expressions

Function expressions (Function calls) in MATLAB involve the use of built-in func-
tions or user-defined functions to perform specific tasks. Function expressions are
formed by providing input arguments to a function, which then returns the desired
output. These expressions follow the syntax of the function name followed by paren-
theses, which may contain input arguments if required. Function calls allow for the
execution of predefined algorithms or user-defined procedures to perform specific
tasks.

Example: Function Expressions.

1 % Built -in function call
2 result1 = sin(pi/2);
3

4 % User -defined function call
5 result2 = myFunction(x, y, z);

In addition to these types of expressions, MATLAB also supports other advanced
concepts such as indexing expressions, array operations, and control flow expres-
sions. These topics will be covered in more detail in later sections.

2.5.6 Array and Matrix Expressions

1 % Element -wise operations
2 a = [1, 2, 3];
3 b = [4, 5, 6];
4 result1 = a + b;
5

6 % Matrix multiplication
7 c = [1, 2; 3, 4];
8 d = [5, 6; 7, 8];
9 result2 = c * d;

10

11 % Matrix inversion
12 e = [1, 2; 3, 4];
13 result3 = inv(e);

2.6 Statement

In MATLAB, statements are the building blocks of programs and are used to per-
form various operations and manipulations on data. Statements can be expressions
that compute values, assignments that store values in variables, or control flow

88 2 Data Types, Operators, and Expressions

statements that control the execution of other statements based on certain conditions
or loops.

MATLAB supports several types of statements, including arithmetic, relational,
logical, and assignment statements. These statements can be combined using oper-
ators and expressions to create more complex computations and algorithms.

• Arithmetic Statements
Arithmetic statements in MATLAB involve the use of arithmetic operators such
as addition (+), subtraction (-), multiplication (*), division (), and exponentiation
(ˆ). These operators can be used to perform arithmetic operations on numeric data
types, including scalars, vectors, and matrices.
The basic syntax for arithmetic statements in MATLAB is:

Listing 2.66 Arithmetic Statement Syntax

result = operand1 operator operand2;

To demonstrate the use of arithmetic statements, consider the following example:

Listing 2.67 Arithmetic Statement Example

% Arithmetic operations
a = 5;
b = 3;

c = a + b; % Addition
d = a - b; % Subtraction
e = a * b; % Multiplication
f = a / b; % Division
g = a ^ b; % Exponentiation

% Display results
disp([’Sum: ’ num2str(c)]);
disp([’Difference: ’ num2str(d)]);
disp([’Product: ’ num2str(e)]);
disp([’Quotient: ’ num2str(f)]);
disp([’Power: ’ num2str(g)]);

This example performs various arithmetic operations on the variables ’a’ and ’b’,
and displays the results using the disp and num2str functions.

• Relational and Logical Statements
Relational statements in MATLAB involve the use of relational operators to
compare values and produce logical results (true or false). The relational operators
used in MATLAB are:

– Less than (<): Returns true if the operand on the left is less than the operand
on the right.

– Greater than (>): Returns true if the operand on the left is greater than the
operand on the right.

– Less than or equal to (<=): Returns true if the operand on the left is less than
or equal to the operand on the right.

2.6 Statement 89

– Greater than or equal to (>=): Returns true if the operand on the left is greater
than or equal to the operand on the right.

– Equal to (==): Returns true if the operands on both sides are equal.
– Not equal to (=): Returns true if the operands on both sides are not equal.

Logical statements, on the other hand, involve the use of logical operators to
combine or manipulate logical values (true or false). The logical operators used
in MATLAB are:

– Logical AND (&): Returns true if both operands are true.
– Logical OR (|): Returns true if either or both operands are true.
– Logical NOT ()̃: Returns the opposite logical value of the operand.

The basic syntax for relational and logical statements in MATLAB is:

Listing 2.68 Relational and Logical Statement Syntax

logical_result = operand1 relational_operator operand2
;

combined_result = logical_value1 logical_operator
logical_value2;

To illustrate the use of relational and logical statements, consider the following
example:

Listing 2.69 Relational and Logical Statement Example

% Relational and logical operations
a = 10;
b = 5;

c = a > b; % Relational operation (greater than)
d = a == b; % Relational operation (equal to)
e = c & ~d; % Logical operation (AND and NOT)
f = c | d; % Logical operation (OR)

% Display results
disp([’a > b: ’ num2str(c)]);
disp([’a == b: ’ num2str(d)]);
disp([’(a > b) AND NOT (a == b): ’ num2str(e)]);
disp([’(a > b) OR (a == b): ’ num2str(f)]);

In this example, the relational operations a > b and a == b are performed, and the
results are stored in the variables c and d, respectively. Then, the logical operations
c & d̃ (AND and NOT) and c | d (OR) are performed, and the results are stored
in the variables e and f, respectively. Finally, the results of these operations are
displayed using the disp and num2str functions.
Relational and logical statements are widely used in MATLAB for various pur-
poses, such as conditional execution, loop control, and data manipulation. They
are essential for implementing decision-making and flow control in MATLAB
programs.

90 2 Data Types, Operators, and Expressions

Listing 2.70 Relational and Logical Statements Example

% Define some variables
a = 10;
b = 5;
c = 7;
d = 3;

% Relational statements
disp(’Relational Statements:’)
disp([’a > b: ’ num2str(a > b)]); % Returns 1 (true)
disp([’a < b: ’ num2str(a < b)]); % Returns 0 (false)
disp([’a == c: ’ num2str(a == c)]); % Returns 0 (false

)
disp([’b >= d: ’ num2str(b >= d)]); % Returns 1 (true)
disp([’c ~= d: ’ num2str(c ~= d)]); % Returns 1 (true)

% Logical statements
disp(’Logical Statements:’)
disp([’(a > b) & (c > d): ’ num2str ((a > b) & (c > d))

]); % Returns 1 (true)
disp([’(a < b) | (c > d): ’ num2str ((a < b) | (c > d))

]); % Returns 1 (true)
disp([’(a == c): ’ num2str ((a == c))]); % Returns 1 (

true)

% Combination of relational and logical statements
disp(’Combination of Relational and Logical Statements

:’)
disp([’((a > b) & (c > d)) | ((a < b) & (c < d)): ’

...
num2str (((a > b) & (c > d)) | ((a < b) & (c < d)))]);

% Returns 1 (true)

In this example, we first define four variables a, b, c, and d using assignment
statements. Then, we demonstrate the use of relational operators (>, <, ==, >=,
=) to perform comparisons and store the logical results (0 for false, 1 for true) in
the MATLAB console.

• Assignment Statements
Assignment statements in MATLAB are used to store values in variables. The
basic syntax for an assignment statement is:

Listing 2.71 Assignment Statement Syntax

variable = expression;

Where variable is the name of the variable to be assigned, and expression is a valid
MATLAB expression that evaluates to a value.
To demonstrate the use of assignment statements, consider the following example:

2.7 Laboratory 91

Listing 2.72 Assignment Statement Example

% Assignment statements
a = 10;
b = 3.14;
c = ’hello’;
d = true;

% Display variable values
disp([’Value of a: ’ num2str(a)]);
disp([’Value of b: ’ num2str(b)]);
disp([’Value of c: ’ c]);
disp([’Value of d: ’ num2str(d)]);

In this example, various data types (integer, floating-point, string, and logical)
are assigned to variables ’a’, ’b’, ’c’, and ’d’, respectively. The values of these
variables are then displayed using the disp and num2str functions.

2.7 Laboratory

This section provides several lab works and exercises to help reinforce the concepts
covered in this chapter.

1. Arithmetic Statements

a. Write a MATLAB script that performs the following arithmetic operations:

• Addition of two scalars
• Subtraction of two vectors
• Multiplication of a scalar and a matrix
• Division of two scalars
• Exponentiation of a scalar and a vector

Solution:

Listing 2.73 Arithmetic Statements Lab Work

% Arithmetic statements lab work

% Addition of two scalars
a = 5;
b = 3;
c = a + b;
disp([’Addition: ’ num2str(c)]); % Output:

Addition: 8

% Subtraction of two vectors
x = [10, 20, 30];
y = [5, 10, 15];
z = x - y;

92 2 Data Types, Operators, and Expressions

disp(’Subtraction: ’);
disp(z); % Output: Subtraction: 5 10 15

% Multiplication of a scalar and a matrix
A = [1, 2; 3, 4];
k = 2;
B = k * A;
disp(’Multiplication : ’);
disp(B); % Output: Multiplication : 2 4
% 6 8

% Division of two scalars
p = 10;
q = 5;
r = p / q;
disp([’Division: ’ num2str(r)]); % Output:

Division: 2

% Exponentiation of a scalar and a vector
s = 2;
t = [1, 2, 3];
u = s .^ t; % Element -wise exponentiation
disp(’Exponentiation : ’);
disp(u); % Output: Exponentiation : 2 4 8

b. Create a MATLAB script that computes the area and circumference of a circle
given its radius. Display the results with appropriate labels.
Solution:

Listing 2.74 Circle Area and Circumference

% Compute area and circumference of a circle
radius = 5; % Radius of the circle

% Constants
pi = 3.14159;

% Calculations
area = pi * radius ^2;
circumference = 2 * pi * radius;

% Display results
disp([’Area of the circle: ’ num2str(area)]);
disp([’Circumference of the circle: ’ num2str(

circumference)]);

2. Relational and Logical Statements

a. Write aMATLABscript that compares twomatrices element-wise anddisplays
the indices of the elements where the condition is true.

2.7 Laboratory 93

Solution:

Listing 2.75 Matrix Comparison

% Compare two matrices element -wise
A = [1, 2, 3; 4, 5, 6; 7, 8, 9];
B = [2, 3, 1; 5, 6, 4; 8, 9, 7];

% Element -wise comparison
C = A > B;

% Find indices where condition is true
[row , col] = find(C);

% Display indices
disp(’Indices where A > B:’);
disp([row , col]);

b. Create a MATLAB script that checks if a given number is even or odd using
a relational and logical statement.
Solution:

Listing 2.76 Even or Odd

% Check if a number is even or odd
num = 17;

% Check for even or odd
isEven = mod(num , 2) == 0;

% Display result
if isEven
disp([num2str(num) ’ is an even number.’]);
else
disp([num2str(num) ’ is an odd number.’]);
end

3. Assignment Statements

a. Write a MATLAB script that creates a vector of 10 random integers between
1 and 100, sorts the vector in ascending order, and assigns the sorted vector to
a new variable.
Solution:

Listing 2.77 Random Vector Sorting

% Create a vector of 10 random integers
randomVector = randi ([1, 100], 1, 10);

% Sort the vector in ascending order

94 2 Data Types, Operators, and Expressions

sortedVector = sort(randomVector);

% Display the original and sorted vectors
disp(’Original vector:’);
disp(randomVector);
disp(’Sorted vector:’);
disp(sortedVector);

b. Create a MATLAB script that prompts the user to enter their name and age,
stores the input values in appropriate variables, and displays a greetingmessage
with the user’s name and age.
Solution:

Listing 2.78 User Input and Greeting

% Prompt user for input
name = input(’Enter your name: ’, ’s’);
age = input(’Enter your age: ’);

% Display greeting message
disp([’Hello , ’ name ’! You are ’ num2str(age) ’

years old.’]);

4. MATLAB Expressions

a. Write aMATLAB script that evaluates the following expression: f (x) = x3 −
2x2 + 3x − 5 for a given value of x.
Solution:

Listing 2.79 Evaluating a Function Expression

% Evaluate the function f(x) = x^3 - 2x^2 + 3x
- 5

x = 2; % Given value of x

% Evaluate the expression
f = x^3 - 2x^2 + 3x - 5;

% Display the result
disp([’For x = ’ num2str(x) ’, f(x) = ’ num2str(f)

]);

b. Create a MATLAB script that computes the sum of the first n natural numbers
using the formula: Sn = n(n+1)

2 . Prompt the user to enter the value of n.
Solution:

Listing 2.80 Sum of First n Natural Numbers

% Prompt user for input
n = input(’Enter the value of n: ’);

2.7 Laboratory 95

% Compute the sum of the first n natural numbers
sum_n = n * (n + 1) / 2;

% Display the result
disp([’The sum of the first ’ num2str(n) ’ natural

numbers is: ’ num2str(sum_n)]);

5. Debugging

a. Debug the following MATLAB script that is supposed to compute the area of
a rectangle but contains an error.

Listing 2.81 Rectangle Area (with Error)

% Compute the area of a rectangle
length = 5;
width = 3;

area = length * width % Missing semicolon

% Display the result
disp(’The area of the rectangle is:’)
disp(area)

Solution: The error in the script is the missing semicolon at the end of the line
‘area = length * width’. MATLAB interprets this line as a command to display
the result of ‘length * width’ instead of assigning it to the variable ‘area’. To
fix the error, add a semicolon at the end of the line:

Listing 2.82 Rectangle Area (Corrected)

% Compute the area of a rectangle
length = 5;
width = 3;

area = length * width; % Semicolon added

% Display the result
disp(’The area of the rectangle is:’)
disp(area)

b. Debug the following MATLAB script that is supposed to compute the volume
of a sphere but contains an error.

Listing 2.83 Sphere Volume (with Error)

% Compute the volume of a sphere
radius = 3;
pi = 3.14159;

96 2 Data Types, Operators, and Expressions

volume = 4/3 * pi * radius ^3 % Missing parentheses

% Display the result
disp([’The volume of the sphere is: ’ num2str(

volume)]);

Solution: The error in the script is the missing parentheses around the expres-
sion ‘

V = 4

3
πradius3

’. MATLAB evaluates the expression from left to right, so it first divides 4 by
3 and then multiplies the result by ‘pi’ and ‘

radius3

’. To fix the error, add parentheses around the expression:

Listing 2.84 Sphere Volume (Corrected)

% Compute the volume of a sphere
radius = 3;
pi = 3.14159;

volume = (4/3) * pi * radius ^3 % Parentheses added

% Display the result
disp([’The volume of the sphere is: ’ num2str(

volume)]);

6. Creating a Class

Listing 2.85 Creating a class in MATLAB.

classdef Vehicle
properties
Make
Model
Year
end

methods
function obj = Vehicle(make , model , year)

obj.Make = make;
obj.Model = model;
obj.Year = year;

end

function display(obj)
disp([’This is a ’, num2str(obj.Year), ’ ’,

obj.Make , ’ ’, obj.Model]);
end

2.7 Laboratory 97

end
end

% Creating an instance of the Vehicle class
myCar = Vehicle(’Toyota ’, ’Corolla ’, 2018);
myCar.display (); % Output: This is a 2018 Toyota

Corolla

7. Creating a Structure

Listing 2.86 Creating a structure in MATLAB.

student = struct(’Name’, ’Alice’, ’Age’, 20, ’Major’,
’Computer Science ’);

% Accessing structure fields
disp([’Name: ’, student.Name]);
disp([’Age: ’, num2str(student.Age)]);
disp([’Major: ’, student.Major]);

8. Defining an enumeration in MATLAB

Listing 2.87 Defining an enumeration.

TrafficLight = enumeration(’TrafficLight ’, ’Red’, ’
Yellow ’, ’Green’)

TrafficLight =

1* enumeration
Red Yellow Green

TrafficLight enumeration

In the above example, we define an enumeration called TrafficLight with
three members: Red, Yellow, and Green. The enumeration members are
assigned integer values starting from 1 by default.
Enumerations can be used in various contexts, such as switch statements, com-
parisons, and function arguments. Here’s an example of using the Traffic
Light enumeration in a switch statement:

Listing 2.88 Using an enumeration in a switch statement.

currentLight = TrafficLight.Yellow;

switch currentLight
case TrafficLight.Red
disp(’Stop’)
case TrafficLight.Yellow
disp(’Slow down’)
case TrafficLight.Green
disp(’Go’)
end

98 2 Data Types, Operators, and Expressions

This code will output:

Slow down

9. Practice Creating Variables and Type Conversion
1. Create a variable date1, equal to the date of today 2. Create a variable num,
equal to 100. 3. Create a variable date2, equal to date1+num. 4. View the size
and type of the above variables.

Listing 2.89 Practice Creating Variables and Type Conversion

date1 = datetime(’today’);
num = 100;
date2 = date1 + num;
% View the size and type of the above variables
whos date1 date2 date3 num str is_same diff

10. Display the range of various data types.

Listing 2.90 Display the range of various data types.

% Integer
[intmin ("int8") intmax ("int8")]
[intmain (" int16") intmax ("int16 ")]
[intmain (" int32") intmax ("int32 ")]
[intmain (" int64") intmax ("int64 ")]
[intmin (" uint8") intmax (" uint8")]
[intmain (" uint16 ") intmax (" uint16 ")]
[intmain (" uint32 ") intmax (" uint32 ")]
[intmain (" uint64 ") intmax (" uint64 ")]

% Floating number
[-realmax(’single ’) -realmin(’single ’) realmin(’

single ’) realmax(’single ’)]
[-realmax -realmin realmin realmax]

11. Cast various data types.

a. Cast an all-1 array to a complex array.

Listing 2.91 Cast various data types.

A = ones (2,3);
p = complex (1,1);
B = cast(A, ’like’, p);

b. Cast a hexadecimal floating-point number to a decimal floating-point number.

Listing 2.92 Cast a hexadecimal floating-point number to a decimal floating-point number.

a = ’b6eae18b ’;
c = typecast(uint32(hex2dec(a)),’single ’);

2.7 Laboratory 99

12. Display the Machine Epsilon of the floating point number.
Determine whether the results of the three equations (same numbers, different
order) are equal.

Listing 2.93 Display the Machine Epsilon of the floating point number.

x1 = 0.33 - 0.5 + 0.17;
x2 = 0.33 + 0.17 - 0.5;
x3 = 0.17 - 0.5 + 0.33;

% Show results
fprintf(’The value of x1 is %d.\n’,x1);
fprintf(’The value of x2 is %d.\n’,x2);
fprintf(’The value of x3 is %d.\n’,x3);

% Use "==" to determine
disp(x1 == x2);
disp(x1 == x3);
disp(x2 == x3);

% Determine with the precision
disp(abs(x1 -x2)<eps);
disp(abs(x1 -x3)<eps);
disp(abs(x2 -x3)<eps);

13. Practice the use of Arithmetic Operators.
Calculate the values of the following mathematical expressions:

sin

(|15 − 91 + 7|2
8

)
(2.1)

5.8(2.4×1.9) (2.2)

tan
(√

2
)

+ log
(
cos

(π

2

))
(2.3)

exp (1 + sin(10)) (2.4)

Listing 2.94 Practice the use of Arithmetic Operators.

sin(abs (15 -91+7) ^2/8)
5.8^(2.4*1.9)
tan(sqrt (2))+log(cos(pi/2))
exp (1+ sin (10))

100 2 Data Types, Operators, and Expressions

14. Practice the use of Relational Operators.
Find the location of numbers greater than 60 in the vector A = [203 15 9 64 52
47 87 9 11], then extract those numbers.

Listing 2.95 Practice the use of Relational Operators.

A = [203 15 9 64 52 47 87 9 11];
% Use the relational operator ">".

I = find(A > 60)
A(I)

The running result shows that the values greater than 60 in the vector are 203,
64, 87, and their positions are 1, 4, and 7 respectively.

15. Practice the use of Logical Operators.
Find and extract all even numbers in the vector [67 83 46 92 8 332 26 583].

Listing 2.96 Practice the use of Relational Operators.

A = [67 83 46 92 8 332 26 583];
B = mod(A,2);
% Use the logical operator "~".
C = ~B;
A(C)

The results show that the even numbers in the vector are 46, 92, 8, 332, and 26.
16. Practice the use of Assignment Operators.

a. Practice using “=” assignment and deal function assignment.

Listing 2.97 Practice the use of Assignment Operators.

% Direct assignment
x1 = 88;
fprintf(’The value of x1 is %d.\n’,x1);

% Assign values using the deal function
[y1 , y2 , y3] = deal (11);
fprintf(’The value of y1 is %d.\n’,y1);
fprintf(’The value of y2 is %d.\n’,y2);
fprintf(’The value of y3 is %d.\n’,y3);
[z1 , z2 , z3] = deal(21, 22, 33);
fprintf(’The value of z1 is %d.\n’,z1);
fprintf(’The value of z2 is %d.\n’,z2);
fprintf(’The value of z3 is %d.\n’,z3);

Results:

The value of x1 is 88.

The value of y1 is 11.

The value of y2 is 11.

The value of y3 is 11.

2.8 Problems 101

The value of z1 is 21.

The value of z2 is 22.

The value of z3 is 33.

b. Load the file height.mat
1. Load the file height.mat. 2. Create age by converting ageMos from months
to years. 3. Create avgM and avgF by converting avgMcm and avgFcm from
centimeters to feet (1 ft = 30.48 cm). 4. Plot both converted heights versus
age. 5. Add a title, axis labels, and a legend. 6. Calculate and plot the height
difference between genders in inches. 7. Add a black dashed line where the
difference is zero.

Listing 2.98 Practice the use of Assignment Operators.

edit heightByAge_template .mlx
edit heightByAge.mlx

17. Evaluate the expression

5 + cos
(
49π
180

)
13 + √

7 − 2i
(2.5)

Evaluate the expression 2.5, assign the result to variable x, and then determine
whether variable x is greater than 0.

Listing 2.99 Evaluate the expression

% Evaluate the expression in Equation
numerator = 5 + cos (49*pi /180);
denominator = 13 + sqrt (7) - 2i;
x = numerator / denominator;

% Determine if x is greater than 0
if real(x) > 0

disp(’x is greater than 0.’)
else

disp(’x is not greater than 0.’)
end

2.8 Problems

This section provides several problems to help reinforce the concepts covered in this
chapter.

1. Write a MATLAB script that takes two user inputs (a and b) and computes the
following expression: y = a2+b3

a−2b . The script should handle the case where the
denominator is zero and display an appropriate error message.

102 2 Data Types, Operators, and Expressions

2. Create a MATLAB script that generates a random 3×3 matrix with integer values
between 1 and 10. The script should then find the maximum and minimum values
in the matrix and display their indices.

3. Write a MATLAB function that takes two vectors as input and returns their dot
product. The function should handle the casewhere the input vectors havedifferent
lengths and display an appropriate error message.

4. Create aMATLAB script that generates a random vector of length 10 with integer
values between 1 and 20. The script should then count the number of occurrences
of each value in the vector and display the results.

5. Write a MATLAB script that prompts the user to enter a string. The script should
then count the number of vowels (a, e, i, o, u) and consonants in the string and
display the results.

2.9 Summary

This chapter covers the fundamental concepts of data types, expressions, and state-
ments in MATLAB. It provides a comprehensive introduction to the different types
of data that can be represented and manipulated in MATLAB, including scalars,
vectors, matrices, and strings. The chapter also explores arithmetic, relational, and
logical expressions, as well as assignment statements, which are essential for per-
forming calculations and assigning values to variables.

• Data Types: MATLAB supports various data types, including numeric (double,
single, integer), logical, character, and cell arrays. Understanding the different data
types and their properties is crucial for effective data manipulation and analysis.

• Arithmetic Expressions: Arithmetic expressions involve mathematical opera-
tions such as addition, subtraction, multiplication, division, and exponentiation.
MATLAB provides a range of arithmetic operators and functions to perform these
operations on scalars, vectors, and matrices.

• Relational and Logical Expressions: Relational expressions compare values
using operators like greater than, less than, equal to, and not equal to. Logical
expressions combine relational expressions using logical operators (AND, OR,
NOT) to form more complex conditions.

• Assignment Statements: Assignment statements are used to assign values to vari-
ables in MATLAB. These statements can involve scalars, vectors, matrices, or
expressions, and they allow for efficient data manipulation and storage.

• Expressions and Statements: Expressions are combinations of variables, opera-
tors, and functions that produce a result. Statements, on the other hand, are instruc-
tions that perform actions or operations in MATLAB, such as assigning values,
displaying results, or controlling program flow.

• Debugging: Debugging is an essential part of the programming process. This
chapter provides examples of common errors and techniques for identifying and
resolving them, such as adding missing semicolons or parentheses.

2.9 Summary 103

For undergraduate students, this chapter lays the foundation for understanding
and working with data in MATLAB. It introduces the fundamental concepts and
syntax necessary for performing basic calculations, manipulating data, and control-
ling program flow. By mastering these concepts, students will be better equipped to
tackle more advanced topics and applications in subsequent chapters.

For postgraduate students and researchers, this chapter serves as a refresher and
reinforcement of the core principles of MATLAB programming. While the concepts
covered may seem basic, they are crucial for writing efficient, error-free, and main-
tainable code. Additionally, the examples and exercises provided can help strengthen
problem-solving skills and prepare researchers for more complex data analysis and
modeling tasks.

For professional engineers and practitioners, this chapter can serve as a reference
for the essential building blocks of MATLAB programming. It provides a concise
overview of data types, expressions, and statements, which are fundamental to many
engineering applications, such as signal processing, control systems, and data analy-
sis. By solidifying their understanding of these concepts, professionals can enhance
their productivity and efficiency when working with MATLAB in various industries
and domains.

Overall, this chapter serves as a comprehensive introduction to the fundamen-
tal concepts of data types, expressions, and statements in MATLAB. It provides a
strong foundation for individuals at all levels, from undergraduate students to pro-
fessional engineers, to effectively utilize MATLAB for a wide range of applications
and domains.

References

1. MathWorks, “Data Types,” [Online]. Available: https://www.mathworks.com/help/matlab/
data-types.html, accessed on Feb. 17, 2024

2. MathWorks, “Fundamental MATLAB Classes,” [Online]. Available: https://www.mathworks.
com/help/matlab/matlab_prog/fundamental-matlab-classes.html, accessed on Feb. 17, 2024

3. MathWorks, “Data Type Identification,” [Online]. Available: https://www.mathworks.com/
help/matlab/data-type-identification.html, accessed on Feb. 17, 2024

4. MathWorks, “Data Type Conversion,” [Online]. Available: https://www.mathworks.com/help/
matlab/data-type-conversion.html, accessed on Feb. 17, 2024

5. MathWorks, “Convert from Structure to Mindmap,” [Online]. Available: https://
www.mathworks.com/matlabcentral/fileexchange/43654-struct2mindmap-a-structure-to-
mindmap-converter, accessed on Feb. 17, 2024

6. MathWorks, “Operators and Special Characters,” [Online]. Available: https://www.mathworks.
com/help/matlab/matlab_prog/matlab-operators-and-special-characters.html, accessed on
Feb. 17, 2024

7. MathWorks, “String Functions”, 2023. [Online]. Available: https://www.mathworks.com/help/
matlab/characters-and-strings.html

8. R. Pratap, “Getting StartedwithMATLAB:AQuick Introduction for Scientists andEngineers”,
7th ed. Oxford: Oxford University Press, 2016

9. S. Attaway, “MATLAB: A Practical Introduction to Programming and Problem Solving”, 5th
ed. Oxford: Butterworth-Heinemann, 2018

10. MathWorks, “Signal Processing Toolbox” [Online]. Available: https://uk.mathworks.com/
help/signal/index.htm, accessed on Feb. 17, 2024

https://www.mathworks.com/help/matlab/data-types.html
https://www.mathworks.com/help/matlab/data-types.html
https://www.mathworks.com/help/matlab/matlab_prog/fundamental-matlab-classes.html
https://www.mathworks.com/help/matlab/matlab_prog/fundamental-matlab-classes.html
https://www.mathworks.com/help/matlab/data-type-identification.html
https://www.mathworks.com/help/matlab/data-type-identification.html
https://www.mathworks.com/help/matlab/data-type-conversion.html
https://www.mathworks.com/help/matlab/data-type-conversion.html
https://www.mathworks.com/matlabcentral/fileexchange/43654-struct2mindmap-a-structure-to-mindmap-converter
https://www.mathworks.com/matlabcentral/fileexchange/43654-struct2mindmap-a-structure-to-mindmap-converter
https://www.mathworks.com/matlabcentral/fileexchange/43654-struct2mindmap-a-structure-to-mindmap-converter
https://www.mathworks.com/help/matlab/matlab_prog/matlab-operators-and-special-characters.html
https://www.mathworks.com/help/matlab/matlab_prog/matlab-operators-and-special-characters.html
https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/characters-and-strings.html
https://uk.mathworks.com/help/signal/index.htm
https://uk.mathworks.com/help/signal/index.htm

104 2 Data Types, Operators, and Expressions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Vectors, Arrays, Matrices, and Data
Structures

Chapter Learning Outcomes

• Understand the concepts of vectors, arrays, andmatrices in MATLAB, and their
differences.

• Create and manipulate vectors and matrices using various techniques.
• Perform array operations such as addition, subtraction, multiplication, and
element-wise operations.

• Utilise indexing and slicing to access and modify specific elements or subsets of
arrays.

• Work with multi-dimensional arrays and understand their applications.
• Explore cell arrays and structures as data structures for storing heterogeneous
data.

• Apply logical indexing and masking techniques to extract and manipulate data
based on conditions.

Chapter Key Words

• Vector: A one-dimensional array of elements, represented as a row or column in
MATLAB. Vectors can store numeric, logical, or character data.
Explanation: Vectors are fundamental data structures in MATLAB. They are
used to represent ordered collections of scalar values, such as a list of numbers
or characters. Vectors can be created using square brackets or colon notation, and
they support various operations like arithmetic, indexing, and concatenation.

• Matrix: A two-dimensional array of elements, arranged in rows and columns.
Matrices are widely used for representing and manipulating data in MATLAB.
Explanation: Matrices are essential for numerical computations and data analysis
in MATLAB. They can be created using square brackets or specific functions like
‘zeros’, ‘ones’, and ‘eye’. Matrices support a wide range of operations, including
arithmetic, matrix multiplication, transposition, and various specialized functions
for linear algebra and signal processing.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_3

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_3&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_3

106 3 Vectors, Arrays, Matrices, and Data Structures

• Array Operations: Mathematical operations performed on arrays, such as addi-
tion, subtraction, multiplication, and element-wise operations (like squaring or
taking the square root of each element).
Explanation: Array operations are fundamental inMATLAB for performing com-
putations on vectors and matrices. These operations can be performed element-
wise (applying the operation to each element individually) or using matrix oper-
ations like multiplication and transposition, depending on the specific operation
and the dimensions of the arrays involved.

• Indexing and Slicing: Techniques for accessing and modifying specific elements
or subsets of arrays using indices or ranges of indices.
Explanation: Indexing and slicing are powerful tools for accessing andmanipulat-
ing data in MATLAB arrays. Indexing allows you to retrieve or modify individual
elements or specific rows/columns of an array, while slicing enables you to extract
or modify subsets of array elements based on specified ranges of indices.

3.1 Vector

MATLAB is a high-level language and interactive environment for numerical com-
putation, visualisation, and programming, uses various types of data structures to
store and manage data. Among these, vectors, arrays, matrices, and more general
data structures are fundamental.

Vectors are one-dimensional arrays that can hold a sequence of numerical or
categorical data. They are the fundamental building blocks for more complex data
structures in MATLAB. MATLAB distinguishes between row vectors and column
vectors, where a row vector is represented by a single row of elements and a column
vector by a single column.

• A rowvector is created by enclosing the elementswithin square brackets, separated
by space or commas.

rowVec = [1 2 3 4]; % Creates a row vector

• A column vector is created by separating the elements with semicolons or by using
the transpose operator on a row vector.

colVec = [1; 2; 3; 4]; % Creates a column vector

Listing 3.1 Vector Example

% Row vector
row_vector = [1, 2, 3]; % Creates a 1-by-3 row vector
% Column vector
column_vector = [1; 2; 3]; % Creates a 3-by-1 column vector

3.1 Vector 107

Vectors are crucial for performing mathematical operations and are commonly
used in linear algebra and calculus, which can be created using various MATLAB
functions and operators, such as:

• Using the [...] operator: x = [1, 2, 3, 4, 5];
• Using Constant values with the zeros(n) function: x = zeros(5, 1);
• Using Constant values with the ones(n) function: x = ones(5, 1);
• Using the Linear spacing function ‘linspace(a, b, n)’, e.g. : x = linspace(0, 10, 5);
• Using the random numbers with ‘rand(n)’.

MATLAB provides various operations that can be performed on vectors, includ-
ing:

• Addition: x = [1, 2, 3] +[4, 5, 6];
• Subtraction: x = [1, 2, 3] −[4, 5, 6];
• Multiplication: x = [1, 2, 3] ×[4, 5, 6];
• Division: x = [1, 2, 3] /[4, 5, 6];
• Modulus: x = [1, 2, 3] mod [4, 5, 6];
• Dot Product: x = [1, 2, 3] ·[4, 5, 6];
• Magnitude: x = ‖[1, 2, 3]‖ or abs([1, 2, 3]);

Vectors can also be created using the colon notation, which generates a sequence
of values between a specified start and end value. For instance:

Listing 3.2 Creating a vector using colon notation.

x = 1:5 % Creates the vector [1 2 3 4 5]
y = 10:-2:2 % Creates the vector [10 8 6 4 2]

Once created, vectors support various operations such as arithmetic operations,
indexing, and concatenation. Here’s an example of performing element-wise multi-
plication on two vectors:

Listing 3.3 Element-wise vector multiplication.

a = [1 2 3];
b = [4 5 6];
c = a .* b % Element-wise multiplication, c = [4 10 18]

Indexing allows accessing and modifying specific elements of a vector. For
instance:

Listing 3.4 Vector indexing.

v = [10 20 30 40 50];
v(3) % Returns the third element, 30
v(2:4) = [25 35 45] % Modifies elements 2 to 4

Vectors play a crucial role in various mathematical operations, data analysis, and
Visualisation tasks in MATLAB.

108 3 Vectors, Arrays, Matrices, and Data Structures

3.2 Arrays

Arrays are fundamental data structures in MATLAB that allow you to store and
manipulate collections of values of the same data type. MATLAB arrays can be
multidimensional, meaning they can have more than two dimensions, and can store
various data types, including numeric, logical, character, and cell data.

Here is an example of creating and manipulating a numeric array in MATLAB:

Listing 3.5 Creating and manipulating a numeric array.

% Creating a numeric array
A = [1 2 3; 4 5 6; 7 8 9];

% Accessing elements of the array
element = A(2, 3); % Returns 6

% Modifying elements of the array
A(1, 2) = 10;

% Reshaping the array
B = reshape(A, 1, 9); % Converts A to a row vector

% Performing arithmetic operations
C = A + 2; % Adds 2 to each element of A

MATLAB also supports logical arrays, which are arrays containing only the
logical values true and false. Logical arrays are commonly used for indexing,
conditional operations, and boolean operations. Here’s an example:

Listing 3.6 Working with logical arrays.

% Creating a logical array
A = [1 2 3; 4 5 6; 7 8 9];
B = A > 5; % B is a logical array

% Using logical arrays for indexing
C = A(B); % C contains only the elements of A greater than 5

% Performing logical operations
D = B & (A < 9); % D is a logical array with elements that satisfy

both conditions

These examples demonstrate the versatility and power of arrays in MATLAB,
which is a core feature of the language and essential for many numerical and data
analysis tasks.

MATLAB provides a wide range of functions and operations for creating, manip-
ulating, and analyzing arrays. These include functions for creating arrays, accessing
and modifying array elements, reshaping arrays, performing arithmetic operations,
and more.

One of the key features of MATLAB arrays is their vectorization, which allows
element-wise operations to be performed on entire arrays simultaneously, without

3.2 Arrays 109

the need for explicit looping constructs. This vectorization capability contributes
to the efficiency and conciseness of MATLAB code, making it a powerful tool for
numerical computing and data analysis.

The term array in MATLAB refers to both one-dimensional (vectors) and multi-
dimensional collections of elements. Thus, a vector is a special case of an array. An
array in MATLAB, on the other hand, can be multi-dimensional, allowing for more
complex data organisation, can contain elements of the same or different data types.

The simplest form of an array is a two-dimensional matrix.

Listing 3.7 Array Example

% 2D array
two_d_array = ones(2, 3); % Creates a 2-by-3 array of ones
% Multi-dimensional array
multi_d_array = zeros(2, 2, 2); % Creates a 2-by-2-by-2 array of

zeros

Arrays can have multiple dimensions, making them suitable for a wide range of
applications, including machine learning and data analysis.

• KeyDifferences:While a vector is a one-dimensional array, the term array encom-
passes vectors, matrices, and other multi-dimensional structures. The main differ-
ences between them include:

• Dimensionality: Vectors are one-dimensional, whereas arrays can be two or more
dimensions.

• Functionality: Vectors are often used for mathematical operations, while arrays
are used for complex data representation.

– Vectors are typically used for operations that require a single series of elements,
such as in physics for force vectors.

– Arrays, especially multi-dimensional ones, are suited for more complex data
representations, like images (which can be 2D) or time-series data across mul-
tiple variables (which can be 3D or higher).

• Flexibility: Arrays provide a more flexible data structure to accommodate higher-
dimensional data.
Arrays can be created and manipulated using MATLAB’s array operations, such
as:

– Concatenation with the ‘[]’ operator.
– Element-wise operations with functions like ‘sum()’, ‘mean()’, and ‘std()’.

• Usage inMATLABFunctionsManyMATLAB functions are designed to operate
on both vectors and arrays. However, the behaviour of these functions may differ
depending on whether they are applied to a vector or an array.

Listing 3.8 Function behaviour on vectors vs. arrays

% Applying the ’sum’ function on a vector
sum_vector = sum(row_vector); % Sums the elements of the vector

110 3 Vectors, Arrays, Matrices, and Data Structures

% Applying the ’sum’ function on a 2D array
sum_array = sum(matrix); % Sums the elements of each laikocolumn

In conclusion, understanding the difference between vectors and arrays is pivotal
in MATLAB programming, as it influences data structure organisation and the
application of built-in functions.

3.3 Matrix

Amatrix is a fundamental data type inMATLAB, representing a rectangular array of
numerical values. Matrices are the building blocks for many operations and compu-
tations in MATLAB. They can store and manipulate data of various numeric types,
including double, single, integer, and logical values. Usually, matrices are denoted
by capital letters, such as A, B, M, N, and their elements can be accessed using row
and column indices.

The matrix data type is versatile and powerful, enabling efficient numerical com-
putations, linear algebra operations, and data analysis tasks. It supports a wide range
of operations such as arithmetic calculations, matrix multiplication, transposition,
and more. MATLAB provides numerous built-in functions and operators specifically
designed for working with matrices, making it a highly efficient and convenient tool
for scientific and engineering applications.

Here are two examples demonstrating the usage of matrices in MATLAB:

Listing 3.9 Creating and manipulating matrices

% Create a 3x3 matrix
A = [1 2 3; 4 5 6; 7 8 9]

% Access a specific element
element = A(2, 3) % Returns 6

% Perform matrix multiplication
B = [1 0; 2 1];
C = A * B

% Find the determinant of a matrix
det_A = det(A)

Listing 3.10 Working with sparse matrices

% Create a sparse matrix
S = sparse([1 1 2 3], [1 3 2 1], [5 7 6 8], 3, 4)

% Perform operations on sparse matrices
D = S * S’ % Matrix multiplication
nnz(D) % Count non-zero elements

3.4 Data Structures 111

Matrices are a fundamental concept in linear algebra and arewidely used in various
scientific and engineering domains, such as signal processing, image analysis, control
systems, and machine learning. MATLAB’s extensive support for matrix operations
makes it a powerful tool for developing and implementing algorithms that involve
matrix computations.

• Defining Matrices
Amatrix is a two-dimensional array, which is particularly useful in linear algebra.
In MATLAB, matrices are fundamental and are used for representing systems of
linear equations, transformations, and more.

Listing 3.11 Matrix example

% Matrix
matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % Creates a 3-by-3 matrix

Amatrix is a two-dimensional array of numbers, which is a common data struc-
ture used in linear algebra and numerical computations.

• Matrix Operations
Matrix operations in MATLAB include:

– Addition and subtraction.
– Multiplication, including element-wise (.*) and matrix (*) multiplication.
– Transpose with the ‘’” operator.
– Sorting: MATLAB provides built-in functions for sorting data in various ways,
including sorting vectors or matrices in ascending or descending order based on
values or specific criteria.

3.4 Data Structures

In MATLAB, vectors and arrays are both data structures capable of storing a col-
lection of elements. Despite their similarities, they are utilised for different purposes
and possess distinct characteristics.

MATLAB also provides more advanced data structures like structures (struct
arrays), cell arrays, and tables, which are used to organise related data of varied
types and sizes.

In MATLAB, there are several data structures available to organise and manipu-
late data efficiently. These data structures serve different purposes and offer various
functionalities. Here is a list of some commonly used data structures in MATLAB:

• Vector: A vector is a one-dimensional array that can store a sequence of elements.
It is often used to represent a set of values, such as time series data or a list of
coordinates. The basic syntax is:

112 3 Vectors, Arrays, Matrices, and Data Structures

Listing 3.12 Creating a vector

v = [1, 2, 3, 4]; % Row vector
v = [1; 2; 3; 4]; % Column vector

• Array: An array is a multi-dimensional data structure that can store elements of
the same data type. It can have two or more dimensions, making it suitable for
representing matrices or higher-dimensional data. The basic syntax is:

Listing 3.13 Creating a 2D array

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

• Matrix: Amatrix is a two-dimensional array with rows and columns. It is exten-
sively used in linear algebra operations, such as matrix multiplication, solving
linear equations, and eigenvalue calculations. The basic syntax is:

Listing 3.14 Creating a matrix

M = [1, 2; 3, 4]; % 2x2 matrix

• Cell: A cell is a container that can hold elements of different data types. It is
commonly used to store heterogeneous data, such as different-sized arrays or a
combination of numbers, strings, and structures. The basic syntax is:

Listing 3.15 Creating a cell array

C = {1, ’text’, [3, 4, 5]; 6, {7, 8}, ’string’};

• Structures: Structures allow grouping related data together under a single vari-
able name. Each field within a structure can store different types of data, providing
a convenient way to organise and access complex data. The basic syntax is:

Listing 3.16 Creating a structure

S.name = ’John’;
S.age = 32;
S.scores = [85, 90, 88];

• String: A string is a sequence of characters enclosed in single quotes (‘ ’) or
double quotes (“ ”). MATLAB provides various string manipulation functions and
operations to work with textual data efficiently. The basic syntax is:

Listing 3.17 Creating a string

str1 = ’Hello, world!’;
str2 = "Hello, MATLAB!";

• Table: A table is a two-dimensional data structure that can store heterogeneous
data in a tabular format. It is similar to a spreadsheet or a database table and offers
easy indexing, sorting, and filtering capabilities. The basic syntax is:

3.4 Data Structures 113

Listing 3.18 Creating a table

T = table([1; 2; 3], {’A’; ’B’; ’C’}, [true; false; true],
...
’VariableNames’, {’ID’, ’Label’, ’Flag’});

It is important to note that the choice of data structure depends on the specific
requirements of the problem at hand. Each data structure has its own advantages
and trade-offs in terms of storage efficiency, access speed, and ease of manipulation.
Understanding the characteristics and appropriate usage of these data structures is
essential for efficient data organisation and manipulation in MATLAB.

Each of the data structures discussed has its own set of practical applications.
Here, we provide a few examples to illustrate how these data structures can be used
in real-world scenarios.

• Vectors

– Example in Signal Processing

Listing 3.19 Example of using vectors in signal processing

% Create a time vector
t = 0:0.01:1;

% Generate a sine wave signal
signal = sin(2 * pi * 10 * t);

% Plot the signal
plot(t, signal);
xlabel(’Time (s)’);
ylabel(’Amplitude’);
title(’Sine Wave Signal’);

• Arrays and Matrices

– Example in Image Processing

Listing 3.20 Example of using arrays in image processing

% Read an image into an array
img = imread(’example.jpg’);

% Convert the image to grayscale
gray_img = rgb2gray(img);

% Display the original and grayscale images
subplot(1, 2, 1);
imshow(img);
title(’Original Image’);

subplot(1, 2, 2);
imshow(gray_img);
title(’Grayscale Image’);

114 3 Vectors, Arrays, Matrices, and Data Structures

• Cell Arrays and Structures

– Example of Structures for Experimental Data

Listing 3.21 Example of using structures for experimental data

% Create a structure for experimental data
experiment.subject = ’Subject A’;
experiment.date = ’2024-05-16’;
experiment.data = {rand(1, 10), rand(1, 10)};

% Access and display experiment data
disp([’Subject: ’, experiment.subject]);
disp([’Date: ’, experiment.date]);
disp(’Data:’);
disp(experiment.data);

• Strings

– Example in Text Analysis

Listing 3.22 Example of using strings for text analysis

% Define a string
text = "MATLAB is a powerful tool for numerical computation and

visualization.";

% Find the position of a substring
pos = strfind(text, ’powerful’);

% Extract a substring
substring = extractBetween(text, pos, pos + 7);

% Display the results
disp([’The word "powerful" starts at position: ’, num2str(pos)]);
disp([’Extracted substring: ’, substring]);

• Tables

– Example in Data Analysis

Listing 3.23 Example of using tables for data analysis

% Create a table with survey data
SurveyData = table([1; 2; 3], {’Male’; ’Female’; ’Female’}, [25;

30; 35], ...
’VariableNames’, {’ID’, ’Gender’, ’Age’});

% Calculate the mean age
mean_age = mean(SurveyData.Age);\xm{\para}

% Display the results

3.5 Advanced Data Structures 115

disp([’The mean age of the survey participants is: ’, num2str(
mean_age)]);

3.5 Advanced Data Structures

In MATLAB, several advanced data structures are utilised to handle various compu-
tational tasks efficiently:

• Sets: Sets are not inherently provided as a built-in data structure in MATLAB.
However, sets can be represented andmanipulated using arrays or logical indexing
operations in MATLAB.

• Queues: Similar to sets, queues are not directly provided as a built-in data struc-
ture in MATLAB. Nevertheless, queue-like behaviour can be implemented using
MATLAB’s arrays or cell arrays, leveraging appropriate indexing and operations.

• Stacks: Stacks are also not inherently provided as a built-in data structure in
MATLAB.Likequeues, you can simulate stackbehaviour usingMATLAB’s arrays
or cell arrays, employing suitable indexing and operations.

• Graphs: MATLAB offers a built-in data structure known as the graph object,
specifically designed for representing andmanipulating graphs consisting of nodes
(vertices) and edges. The graph object in MATLAB provides various functions for
creating, modifying, and analysing graphs.

• Trees: Trees are not natively provided as a built-in data structure in MATLAB.
However, you can represent and work with trees using MATLAB’s arrays or cell
arrays, utilizing appropriate indexing and operations to navigate and manipulate
the tree structure.

• Tall Arrays:Tall arrays are a specialised data structure inMATLAB designed for
the efficient handling of large-scale data that exceeds the available memory. Tall
arrays enable processing of data stored outside of memory, such as in a database
or on disk, using lazy evaluation and parallel computing. MATLAB’s tall arrays
are specifically designed for efficient processing of big data sets .

While sets, queues, and stacks are not directly provided as built-in data structures
inMATLAB, they can be implemented using arrays or cell arrays along with suitable
indexing and operations. On the other hand,MATLABprovides native data structures
for graphs and tall arrays, offering specialised functionality for working with graph-
based data and large-scale data processing, respectively.

The basic syntax for creating and manipulating these data structures is as follows:

Listing 3.24 Basic syntax for data structures in MATLAB

% Example of Stack implementation using arrays
stack = [];
stack = [stack, new_element]; % Push operation
stack(end) = []; % Pop operation

116 3 Vectors, Arrays, Matrices, and Data Structures

% Example of Queue implementation using arrays
queue = [];
queue = [queue, new_element]; % Enqueue operation
queue(1) = []; % Dequeue operation

3.5.1 MATLAB Examples

Example 1: Stack Implementation

Listing 3.25 Stack implementation in MATLAB

% MATLAB code for stack operations
stack = [];

% Push operation
stack = [stack, 10];
stack = [stack, 20];
disp(’Stack after push operations:’);
disp(stack);

% Pop operation
stack(end) = [];
disp(’Stack after pop operation:’);
disp(stack);

Example 2: Queue Implementation

Listing 3.26 Queue implementation in MATLAB

% MATLAB code for queue operations
queue = [];

% Enqueue operation
queue = [queue, 10];
queue = [queue, 20];
disp(’Queue after enqueue operations:’);
disp(queue);

% Dequeue operation
queue(1) = [];
disp(’Queue after dequeue operation:’);
disp(queue);

3.5.2 Graph Data Structure

The graph object inMATLABallows for creating,modifying, and analysing graphs.
Below is an example demonstrating its use:

3.5 Advanced Data Structures 117

Listing 3.27 Graph object in MATLAB

% MATLAB code for creating and visualising a graph
nodes = {’A’, ’B’, ’C’, ’D’};
edges = [1 2; 1 3; 2 4; 3 4];
G = graph(edges(:,1), edges(:,2), [], nodes);
plot(G);
title(’Graph Representation’);

3.5.3 Tree Data Structure

MATLAB does not natively support tree data structures, but they can be imple-
mented using cell arrays or structures. Here is an example of a simple binary tree
implementation:

Listing 3.28 Binary tree implementation in MATLAB

% MATLAB code for binary tree operations
tree = struct(’value’, 10, ’left’, [], ’right’, []);

% Insert nodes
tree.left = struct(’value’, 5, ’left’, [], ’right’, []);
tree.right = struct(’value’, 15, ’left’, [], ’right’, []);
disp(’Binary Tree:’);
disp(tree);

3.5.4 Tall Arrays

Tall arrays are essential for handling large-scale data that cannot fit into memory.
They allow for out-of-memory computations using parallel processing. Below is an
example of how to create and use tall arrays:

Listing 3.29 Tall arrays in MATLAB

% MATLAB code for using tall arrays
ds = datastore(’largeDataset.csv’);
tallArray = tall(ds);

% Perform operations on tall arrays
meanValue = mean(tallArray.Var1);
gather(meanValue); % Collect result

118 3 Vectors, Arrays, Matrices, and Data Structures

Example 1: Creating Tall Arrays

Listing 3.30 Creating tall arrays in MATLAB

% MATLAB code for creating tall arrays from datastore
ds = datastore(’data.csv’, ’TreatAsMissing’, ’NA’, ’MissingValue’,

0);
ta = tall(ds);

% Display first few rows of the tall array
preview(ta);

Example 2: Processing Tall Arrays

Listing 3.31 Processing tall arrays in MATLAB

% MATLAB code for processing tall arrays
ds = datastore(’data.csv’);
ta = tall(ds);

% Calculate mean of a tall array column
meanValue = mean(ta.Var1);
result = gather(meanValue); % Gather result into memory
disp(’Mean value:’);
disp(result);

3.6 Laboratory

1. Working with Vectors

a. Practice the use of vector.
Given f(x) and g(x),

f (x) = 3x5 − 5x4 − x3 + 9x + 6 (3.1)

g(x) = 7x4 + 5x − 3 (3.2)

to solve:

f (x) + g(x) = (3x5 − 5x4 − x3 + 9x + 6) + (7x4 + 5x − 3) (3.3)

f (x) − g(x) = (3x5 − 5x4 − x3 + 9x + 6) − (7x4 + 5x − 3) (3.4)

f (x) × g(x) = (3x5 − 5x4 − x3 + 9x + 6) × (7x4 + 5x − 3) (3.5)

f (x) ÷ g(x) = 3x5 − 5x4 − x3 + 9x + 6

7x4 + 5x − 3
(3.6)

3.6 Laboratory 119

Solution:

Listing 3.32 Practice the use of vector

f = [3 -5 -1 0 9 6];
g = [7 0 0 5 -3];

result1 = f + [0 g] % addition
result2 = f - [0 g] % subtract
result3 = conv(f,g) % multiply
[result4 r] = deconv(f,g) % divide

Results
result1 = [

3 2 −1 0 14 3
]

(3.7)

result2 = [
3 −12 −1 0 4 9

]
(3.8)

result3 = [
21 −35 −7 15 29 52 3 45 3 −18

]
(3.9)

result4 = [
0.4286 −0.7143

]
(3.10)

r = [
0 0 −1.0000 −2.1429 13.8571 3.8571

]
(3.11)

b. Sort the elements

i Create a row vector with elements from 1 to 10.
ii Create a column vector with the square roots of the elements in the row

vector.
iii Calculate the dot product of the two vectors.
vi Find the length (norm) of the column vector.
iv Sort the elements of the row vector in descending order.

Solution:

Listing 3.33 Working with vectors

% Create a row vector with elements from 1 to 10
row_vector = 1:10

% Create a column vector with the square roots of the elements in
the row vector

col_vector = sqrt(row_vector)’

% Calculate the dot product of the two vectors
dot_product = row_vector * col_vector

% Find the length (norm) of the column vector
vector_length = norm(col_vector)

% Sort the elements of the row vector in descending order
sorted_vector = sort(row_vector, ’descend’)

120 3 Vectors, Arrays, Matrices, and Data Structures

2. Creating and Manipulating Matrices

a. Create a 3x4 matrix
i Create a 3x4 matrix with random integer values between 1 and 10.
ii Find the maximum and minimum values in the matrix.
iii Calculate the sum of all elements in the matrix.
vi Extract the second row of the matrix.
v Transpose the matrix.

Solution:

Listing 3.34 Creating and manipulating matrices

% Create a 3x4 matrix with random integer values between 1 and 10
A = randi(10, 3, 4)

% Find the maximum and minimum values in the matrix
max_value = max(A(:))
min_value = min(A(:))

% Calculate the sum of all elements in the matrix
sum_elements = sum(A, ’all’)

% Extract the second row of the matrix
second_row = A(2, :)

% Transpose the matrix
A_transpose = A’

b. Find All Elements Find all elements in the array A whose absolute value is
greater than 5.

A =
⎛

⎝
−7 −1 5
−5 1 7
−3 3 9

⎞

⎠ (3.12)

Solution:

Listing 3.35 Creating and manipulating matrices

% Create a 3x4 matrix with random integer values between 1 and 10
A = zeros(3,3);
A(:) = -7:2:9; % Use the "full element" assignment method to obtain

A
L = abs(A)>5; % Generates a logical array with the same dimension

as A
B = A(L); % Take the element in A corresponding to the logical

value 1 in L
B = B’;
disp(A);
disp(B);

3.6 Laboratory 121

c. Solve equation group

Given the equation group in 3.13,

4.6x1 − 2.31x2 + 8.3x3 + 29.4x4 = 40.34

20.5x1 + 8.7x2 + 40.1x3 − 11.9x4 = 1.15

36.4x1 + 0.92x2 − 3.7x3 + 64.3x4 = 32.4

7.84x1 + 40.01x2 − 2.68x3 − 7.92x4 = 27.55

(3.13)

Solution:

Listing 3.36 Solve equation group

A = [4.6 -2.31 8.3 29.4; 20.5 8.7 40.1 -11.9; 36.4 0.92 -3.7 64.3;
7.84 40.01 -2.68 -7.92];

b = [40.34;1.15;32.4;27.55];
x = A\b;
disp(x’)

Thus, the values are:
x1 ≈ −1.6082

x2 ≈ 1.3572

x3 ≈ 0.9872

x4 ≈ 1.4517

(3.14)

3. Practice the use of cell arrays. Store the data listed in Table 3.1 in a cell array S
with the following structure:

• The cell array S should have 8 rows and 3 columns.
• The 1st column of S should contain the names of the students.
• The 2nd column of S should contain the scores of the three subjects for each
student.

• The 3rd column of S should contain the total score for each student.

Table 3.1 Grade sheet for 8 students

Name Chinese Math English

Zhao 88 95 91

Qian 92 94 99

Sun 74 64 81

Li 98 77 83

Zhou 61 41 80

Wu 52 25 33

Zheng 82 73 79

Wang 79 95 77

122 3 Vectors, Arrays, Matrices, and Data Structures

Table 3.2 Grade sheet for 8 students with total and grade

Name Chinese Math English Total Grade

Zhao 88 95 91 274 A

Qian 92 94 99 285 A

Sun 74 64 81 219 B

Li 98 77 83 258 A

Zhou 61 41 80 182 B

Wu 52 25 33 110 C

Zheng 82 73 79 234 B

Wang 79 95 77 251 A

Table 3.3 Grade sheet for 8 students with average, total, and grade

Name Chinese Math English Average Total Grade

Zhao 88 95 91 91.33 274 A

Qian 92 94 99 95.00 285 A

Sun 74 64 81 73.00 219 B

Li 98 77 83 86.00 258 A

Zhou 61 41 80 60.67 182 B

Wu 52 25 33 36.67 110 C

Zheng 82 73 79 78.00 234 B

Wang 79 95 77 83.67 251 A

After storing the data, add a fourth column to the cell array S to indicate the
grade of each student based on their total score (Tables 3.2 and 3.3):

• If the total score is greater than 240, assign the grade ‘A’.
• If the total score is between 180 and 240 (inclusive), assign the grade ‘B’.
• If the total score is less than 200, assign the grade ‘C’.

Solution:

Listing 3.37 Grade sheet for 8 students

names = ["zhao", "qian", "sun" , "li", "zhou", "wu", "zheng", "wang
"];

scores = [88, 92, 74, 98, 61, 52, 82, 79;
95, 94, 64, 77, 41, 25, 73, 95;
91, 99, 81, 83, 80, 33, 79, 77];

S = cell(8,3);
for i = 1:8

name = names(i);
score = scores(:,i);
total_score = sum(score);
S(i,:) = {name, score, total_score};

end

3.6 Laboratory 123

for j = 1:size(S,1)
total_score = S{j,3};
% Judge grades
if total_score > 240

grade = {’A’};
elseif total_score >= 180

grade = {’B’};
else

grade = {’C’};
end
S(j,4) = grade;

end

4. Arithmetic Operations on Matrices

a. Create two 3x3 matrices with random values between -5 and 5.
b. Add the two matrices element-wise.
c. Multiply the two matrices.
d. Calculate the determinant of the first matrix.
e. Find the inverse of the second matrix (if it exists).

Solution:

Listing 3.38 Arithmetic operations on matrices

% Create two 3x3 matrices with random values between -5 and 5
A = randi([-5, 5], 3, 3)
B = randi([-5, 5], 3, 3)

% Add the two matrices element-wise
C = A + B

% Multiply the two matrices
D = A * B

% Calculate the determinant of the first matrix
det_A = det(A)

% Find the inverse of the second matrix (if it exists)
if det(B) ~= 0
inv_B = inv(B)
else
disp(’Matrix B is singular and does not have an inverse.’)
end

5. Sparse Matrices

a. Create a 5x5 sparse matrix with random non-zero values between 1 and 10.
b. Count the number of non-zero elements in the sparse matrix.
c. Perform matrix multiplication with the sparse matrix and a full matrix.

124 3 Vectors, Arrays, Matrices, and Data Structures

d. Convert the sparse matrix to a full matrix.
e. Find the maximum value in the sparse matrix and its corresponding indices.

Solution:

Listing 3.39 Sparse matrices

% Create a 5x5 sparse matrix with random non-zero values between 1
and 10

S = sprand(5, 5, 0.3) * 10

% Count the number of non-zero elements in the sparse matrix
nnz_count = nnz(S)

% Perform matrix multiplication with the sparse matrix and a full
matrix

A = randi(10, 5, 5)
B = S * A

% Convert the sparse matrix to a full matrix
S_full = full(S)

% Find the maximum value in the sparse matrix and its corresponding
indices

[max_value, max_indices] = max(S(:))

6. Array Reshaping and Indexing

a. Create a 1x12 vector with consecutive integers from 1 to 12.
b. Reshape the vector into a 3x4 matrix.
c. Extract the sub-matrix consisting of the first two rows and the last two

columns.
d. Create a logical matrix to select elements greater than 5 from the original

vector.
e. Replace the selected elements with their squares.

Solution:

Listing 3.40 Array reshaping and indexing

% Create a 1x12 vector with consecutive integers from 1 to 12
vector = 1:12

% Reshape the vector into a 3x4 matrix
matrix = reshape(vector, 3, 4)

% Extract the sub-matrix consisting of the first two rows and the
last two columns

sub_matrix = matrix(1:2, 3:4)

% Create a logical matrix to select elements greater than 5 from
the original vector

logical_mask = vector > 5

3.6 Laboratory 125

% Replace the selected elements with their squares
vector(logical_mask) = vector(logical_mask).^2

7. Practice the use of structure
Create a structure that contains information about the 8 students in Table 3.1 and
calculate the total and average scores of these students.

Solution:

Listing 3.41 Array reshaping and indexing

students = struct(’name’, {’zhao’, ’qian’, ’sun’ , ’li’, ’zhou’, ’
wu’, ’zheng’, ’wang’},...

’chinese’, {88, 92, 74, 98, 61, 52, 82, 79},...
’math’, {95, 94, 64, 77, 41, 25, 73, 95},...
’english’, {91, 99, 81, 83, 80, 33, 79, 77});
scores = [students.chinese; students.math; students.english];
names = {students.name};
x = sum(scores);
disp(’The total score of each student is:’);
disp(x);
disp(’The average score of each student is:’);
disp(x/3);

8. Practice the use of string
A fruit store manages two warehouses that store various types of fruits. To
optimize their inventory and distribution, the store wants to analyze the fruits
stored in each warehouse. The task is to use ‘set operations’ to:

a. Identify the fruits that are present in both warehouses (common fruits).
b. Determine the fruits that are exclusively stored in each warehouse (unique

fruits).
c. Create a comprehensive list of all the fruits available in the two warehouses

combined.

By performing these set operations, the fruit store can gain insights into their
inventory distribution and make informed decisions about stock management
and fruit allocation between the warehouses. Let W1 and W2 denote the sets of
fruits stored in Warehouse 1 and Warehouse 2, respectively. The set operations
can be defined as follows:

Common Fruits = W1 ∩ W2

Unique Fruits in Warehouse 1 = W1 \ W2

Unique Fruits in Warehouse 2 = W2 \ W1

All Fruits = W1 ∪ W2

126 3 Vectors, Arrays, Matrices, and Data Structures

Table 3.4 Fruit sets in warehouses

Set Fruits

Common fruits “banana”, “pear”

Unique fruits in warehouse 1 “apple”, “strawberry”, “watermelon”

Unique fruits in warehouse 2 “litchi”, “orange”, “pineapple”

All fruits “apple”, “banana”, “litchi”, “orange”, “pear”,
“pineapple”, “strawberry”, “watermelon”

Table 3.5 Stock data for day 3

Date Open High Low Close Average Difference

2024-03-03 35.18 35.31 34.5 35.16 34.905 0.02

The results of these set operations will provide the fruit store with the neces-
sary information to effectively manage their inventory and optimize their fruit
distribution strategies (Table 3.4).

Solution:

Listing 3.42 Practice the use of string

warehouse1 = ["apple" "banana" "strawberry" "pear" "watermelon"];
warehouse2 = ["banana" "orange" "pear" "pineapple" "litchi"];
x1 = intersect(warehouse1, warehouse2);
x2 = setdiff(warehouse1, warehouse2);
x3 = setdiff(warehouse2, warehouse1);
x4 = union(warehouse1, warehouse2);
disp(x1); disp(x2); disp(x3); disp(x4)

9. Practice the use of tables

a. Read the stock data from the Excel table and store it in a tabular format.
b. Calculate the average value of the highest and lowest prices for each day

and add it as a new column to the table.
c. Compute the absolute difference between the close price and the open price

for each day and include it as another column in the table.
d. Display the data corresponding to the third day from the updated table

(Table 3.5).

Solution:

Listing 3.43 Practice the use of tables

data = readtable(’data.xlsx’);
data{:,’average’}=(data.high+data.low)/2; % add average value
data{:,’difference’}=abs(data.close-data.open); % add absolute

difference value
disp(data(3,:)); % display the data of the third day

3.6 Laboratory 127

The results are

10. Practice the use of sort and index

a. Calculate the total score for each student based on their scores in Chinese,
Math, and English, as obtained in lab work 7.

b. Sort the students in descending order according to their total scores.
c. Print the names of the students in the sorted order.

Solution:

Listing 3.44 Practice the use of sort and index

%% (this part is same as previous lab work)
%%%
students = struct(’name’, {’zhao’, ’qian’, ’sun’ , ’li’, ’zhou’, ’

wu’, ’zheng’, ’wang’},...
’chinese’, {88, 92, 74, 98, 61, 52, 82, 79},...
’math’, {95, 94, 64, 77, 41, 25, 73, 95},...
’english’, {91, 99, 81, 83, 80, 33, 79, 77});
scores = [students.chinese; students.math; students.english];
names = {students.name};
x = sum(scores);
disp(’The total score of each student is:’);
disp(x);
disp(’The average score of each student is:’);
disp(x/3);

%%%

x = sum(scores);
disp(’The total score of each student is:’);
disp(x);
[B,sy] = sort(x, ’descend’);
disp(’The ranking is:’)
for i = 1:8
e = B(i);
d = find(x==e);
disp(names(d))
end

Then the result are (Table 3.6)

11. Sudoku Verification
Sudoku is a puzzle game played on a 9 × 9 grid, which is divided into 9 sub-
grids of size 3 × 3, called chambers or boxes. The objective is to fill the grid
with digits from 1 to 9, subject to the following constraints:

1. Each row must contain the digits 1–9, without any repetition.
2. Each column must contain the digits 1–9, without any repetition.
3. Each 3 × 3 chamber must contain the digits 1–9, without any repetition.

Given a completed Sudoku grid, as shown in Fig. 3.1, the task is to verifywhether
it satisfies all three requirements mentioned above.

128 3 Vectors, Arrays, Matrices, and Data Structures

Table 3.6 Ranking of
students’ total scores

Student Total score

Zhao 285

Qian 274

Wang 258

Wu 251

Zhou 234

Li 219

Zheng 182

Sun 110

Fig. 3.1 Sudoku grid

Let the Sudoku grid be represented by a 9 × 9 matrix S, where Si, j denotes the
digit in the i-th row and j-th column, and 1 ≤ Si, j ≤ 9.
To verify the Sudoku grid, we need to check the following conditions:

a. Row Check: For each row i , the set Si,1, Si,2, . . . , Si,9 must contain all digits
from 1 to 9 without repetition.

b. Column Check: For each column j , the set S1, j , S2, j , . . . , S9, j must contain
all digits from 1 to 9 without repetition.

c. Chamber Check: For each 3 × 3 chamber, the set of digits within that cham-
ber must contain all digits from 1 to 9 without repetition.

If all three conditions are satisfied, the Sudoku grid is considered valid. Other-
wise, if any of the conditions are violated, the Sudoku grid is invalid.

3.6 Laboratory 129

The verification process can be implemented using set operations or by iterating
over the rows, columns, and chambers to check for duplicates andmissing digits.
Solution:

Listing 3.45 Sudoku verification

% Define the Sudoku grid
sudoku_grid = [

9 3 4 7 6 2 1 5 8;
7 2 8 1 3 5 4 9 6;
1 6 5 9 8 4 3 2 7;
3 4 7 6 2 1 9 8 5;
2 8 9 3 5 7 6 4 1;
6 5 1 4 9 8 2 7 3;
8 1 6 2 7 9 5 3 4;
4 7 2 5 1 3 8 6 9;
5 9 3 8 4 6 7 1 2

];

% Function to check if a set contains all digits from 1 to 9
without repetition

function result = check_set(set)
result = all(ismember(1:9, set)) && length(unique(set)) ==

9;
end

% Step 1: Row Check
row_check = all(arrayfun(@check_set, sudoku_grid));

% Step 2: Column Check
column_check = all(arrayfun(@check_set, sudoku_grid.’));

% Step 3: Chamber Check
chamber_check = true;
for i = 1:3:7

for j = 1:3:7
chamber = sudoku_grid(i:i+2, j:j+2);
chamber_check = chamber_check & check_set(chamber(:));

end
end

% Final Verification
if row_check & column_check & chamber_check

disp(’The Sudoku grid is valid.’);
else

disp(’The Sudoku grid is invalid.’);
end

The result from https://matlab.mathworks.com/, the Sudoku grid is invalid.

https://matlab.mathworks.com/

130 3 Vectors, Arrays, Matrices, and Data Structures

3.7 Problems

1. Given a matrix A, create a new matrix B by replacing all negative elements in
A with their absolute values.

2. Given a matrix A, find the row and column indices of the maximum element in
the matrix.

3. Given a matrix A, create a new matrix B by swapping the elements along the
main diagonal with the elements along the secondary diagonal.

4. Given a matrix A, create a new matrix B by shifting each element in A one
position to the right, wrapping around to the beginning of the rowwhen reaching
the end.

5. Given a matrix A, create a new matrix B by extracting the elements along the
diagonals parallel to the main diagonal.

3.8 Summary

In this chapter, we covered the following key concepts related to Arrays andMatrices
in MATLAB:

• Array Creation: We learned how to create arrays in MATLAB using different
methods, such as direct assignment, colon notation, and functions like zeros,
ones, eye, and rand.

• Array Indexing and Slicing:We explored how to access andmanipulate elements
of arrays using various indexing techniques, including linear indexing, subscripted
indexing, and slicing with colon notation.

• Array Operations: We studied various array operations, such as arithmetic oper-
ations (element-wise and matrix operations), relational operations, logical opera-
tions, and array concatenation.

• Matrix Operations: We covered important matrix operations, including matrix
multiplication, transpose, inverse, determinant, and solving linear systems of equa-
tions using techniques like Gaussian elimination and matrix decompositions.

• Special Matrix Types: We discussed special matrix types like diagonal, trian-
gular, sparse, and banded matrices, and learned how to create and manipulate
them in MATLAB.

• Array Reshaping and Manipulation: We explored functions like reshape,
repmat,permute, and circshift for reshaping, replicating, and rearranging
arrays in various ways.

• Array andMatrixVisualisation:We learned how to visualize arrays andmatrices
using different plotting techniques, such as image plots, surface plots, and contour
plots.

For undergraduate students, this chapter provides a solid foundation in working
with arrays andmatrices, which are fundamental data structures inMATLAB.Under-

3.8 Summary 131

standing these concepts is crucial for various applications in engineering, science,
and data analysis.

For postgraduate students and professional researchers or engineers, this chapter
serves as a refresher and introduces more advanced topics like special matrix types,
matrix decompositions, and linear system solvers. These concepts are essential for
numerical analysis, optimization, signal processing, and many other domains that
heavily rely on matrix computations.

Overall, this chapter aims to equip readers with a comprehensive understanding of
arrays andmatrices inMATLAB, enabling them to efficientlymanipulate and analyze
data, perform numerical computations, and solve real-world problems across various
disciplines.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
Conditional Statements

Chapter Learning Outcomes

• Understand the concept and importance of conditional statements in program-
ming.

• Implement if statements to execute code based on a specific condition.
• Use if-else statements to handle alternative cases when a condition is not met.
• Applynested if statements to handlemultiple conditionswithin a single statement.
• Utilise switch-case statements for more efficient handling of multiple conditions.
• Employ logical operators (&&, ||, ~) to combine and negate conditions.
• Writewell-structured and readable conditional statements followingbest practices.

Chapter Key Words

• Conditional Statement: A statement in programming that allows the execution
of different code blocks based on whether a specified condition is true or false.
Conditional statements are used to control the flow of a program based on certain
conditions being met or not met.

• If Statement: The most basic form of a conditional statement. It executes a block
of code if a specified condition is true. If the condition is false, the code block is
skipped, and the program continues to the next statement.

• If-Else Statement: An extension of the if statement that allows for the execution
of an alternative code block if the condition is false. It provides a way to handle
both cases (true and false) of a condition.

• Nested If Statement: A conditional statement where one or more if statements are
nested within another if statement. This allows for more complex decision-making
processes by evaluating multiple conditions in a hierarchical manner.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_4

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_4&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_4

134 4 Conditional Statements

• Switch-Case Statement: A control flow statement that allows for the evaluation of
a single expression against multiple cases. It provides a more concise and efficient
way to handle multiple conditions compared to using multiple if-else statements.

• LogicalOperators: Operators used to combine or negate conditions in conditional
statements. The commonly used logical operators are AND (&&), OR (||), and
NOT (~). These operators allow for more complex conditions to be evaluated.

• Condition: A boolean expression that evaluates to either true or false. Condi-
tions are used in conditional statements to determine which code block should be
executed based on the outcome of the evaluation.

4.1 Introduction to Conditional Statements

Conditional statements are a cornerstone of algorithmic logic and programming.
MATLAB provides a comprehensive set of conditional constructs that are instru-
mental for formulating effective algorithms. They allow a programme to execute
different code segments based on certain conditions at runtime. In MATLAB, con-
ditional statements are pivotal for decision-making processes within code, enabling
dynamic and responsive programming. Accordingly, this chapter will delineate the
essentials of formulating conditional statements in MATLAB.

• Overview and Role of Conditional Statements Conditional statements are a fun-
damental concept in programming that allow you to control the flow of execution
based on certain conditions being met or not. They enable programs to make
decisions and perform different actions depending on the evaluation of logical
expressions or conditions. Conditional statements are essential for implementing
complex logic, handling various scenarios, and creating interactive and responsive
applications.
In MATLAB, conditional statements play a crucial role in data analysis, algorithm
development, and scientific computing tasks. They provide a powerful mechanism
to explore and manipulate data, implement mathematical models, and automate
decision-making processes based on specific criteria or thresholds.

• Understanding Control Flow and Decision-Making Control flow refers to the
order in which statements in a program are executed. Decision-making is the
process of evaluating conditions and determining which set of statements should
be executed based on the outcome of those conditions. Conditional statements
are the primary constructs used for decision-making and controlling the flow of
execution in a program [1].
By incorporating conditional statements, MATLAB programs can adapt their
behavior based on the state of variables, user inputs, or the results of compu-
tations. This flexibility allows for the creation of dynamic and intelligent systems
that can respond to changing conditions and make informed decisions.

4.2 The if Statement 135

• Types of Conditional Statements in MATLABMATLAB provides several types
of conditional statements to facilitate decision-making and control flow. The main
conditional statements in MATLAB are:

– if statement: Executes a block of code if a specified condition is true.
– if-else statement: Executes one block of code if a condition is true, and another
block of code if the condition is false.

– if-elseif-else statement: Evaluates multiple conditions in a hierarchical manner
and executes the corresponding block of code for the first true condition.

– switch-case statement: Evaluates an expression against multiple cases and exe-
cutes the corresponding block of code for the matched case.

These conditional statements, along with logical operators (e.g.,&&, ||, ~), enable
programmers to create complex decision structures and implement sophisticated
algorithms in MATLAB [2].

4.2 The if Statement

Syntax and Structure of the if Statement:

Listing 4.1 If statement syntax.

if condition
statements
end

• Example 1: Check if a number is positive.

Listing 4.2 Check if a number is positive.

num = 5;
if num > 0
disp(’The number is positive.’)
end

• Example 2: Evaluate the value of a function.

Listing 4.3 Evaluate the value of a function.

x = -2;
if x >= 0
y = \textcolor{green}{sqrt}(x);
else
y = -\textcolor{green}{sqrt}(-x);
end
disp([’The value of y is ’, num2str(y)])

136 4 Conditional Statements

• EvaluatingLogicalExpressions andConditionsThe condition in an if statement
is a logical expression that evaluates to either true (nonzero) or false (zero). The
statements inside the if block are executed if the condition is true.

• Examples of Using the if Statement

– With Different Data Types Example 1: Check if a number is positive.

Listing 4.4 Check if a number is positive.

num = 5;
if num > 0
disp(’The number is positive.’)
end

Example 2: Check if a string is empty.

Listing 4.5 Check if a string is empty.

str = ’’;
if \textcolor{green}{ isempty }(str)
disp(’The string is empty.’)
else
disp([’The string is: ’, str])
end

– Nested if Statements for Complex Conditions Example 3: Determine the sign
of a number using nested if statements.

Listing 4.6 Determine the sign of a number.

num = -3;
if num > 0
disp(’The number is positive.’)
else
if num < 0
disp(’The number is negative.’)
else
disp(’The number is zero.’)
end
end

4.3 The elseif and else Statements

The elseif clause is used to specify additional conditions to check if the previous
conditions are false. The basic syntax is:

4.3 The elseif and else Statements 137

Listing 4.7 If-elseif statement syntax.

if condition1
statements1
elseif condition2
statements2
...
else
statements_else
end

– The else Clause for Alternative Cases The else clause is used to specify a block
of statements to execute if none of the previous conditions are true.

– Examples of if-elseif-else Statements

• Handling Multiple Conditions Example 4: Categorize a score into different
grade levels.

Listing 4.8 Categorize a score into grade levels.

score = 85;
if score >= 90
grade = ’A’;
elseif score >= 80
grade = ’B’;
elseif score >= 70
grade = ’C’;
elseif score >= 60
grade = ’D’;
else
grade = ’F’;
end
disp([’The grade is: ’, grade])

• Different Scenarios and Applications Example 5: Determine the state of water
based on temperature.

Listing 4.9 Determine the state of water.

temperature = 25;
if temperature < 0
state = ’solid’;
elseif temperature >= 0 && temperature < 100
state = ’liquid ’;
else
state = ’gas’;
end
disp([’At ’, num2str(temperature), ’ degrees Celsius ,

water is in the ’, state , ’ state.’])

138 4 Conditional Statements

4.4 The switch Statement

The switch statement is an alternative to the if-elseif-else construct for evaluating
multiple conditions. It is often used when there are multiple cases to consider based
on the value of a single expression.

The basic syntax for the switch statement is:

Listing 4.10 Switch statement syntax.

switch expression
case case1
statements1
case case2
statements2
...
otherwise
statements_otherwise
end

– Using case and otherwise Clauses The case clauses specify the values or con-
ditions to match against the expression. The otherwise clause is optional and
specifies the block of statements to execute if none of the cases match.

– Examples of switch Statements

• With Different Data Types Example 6: Perform different operations based on
user input.

Listing 4.11 Perform operations based on user input.

operation = input(’Enter operation (+, -, , /): ’, ’s’);
switch operation
case ’+’
disp(’You selected addition.’)
case ’-’
disp(’You selected subtraction.’)
case ’’
disp(’You selected multiplication.’)
case ’/’
disp(’You selected division.’)
otherwise
disp(’Invalid operation.’)
end

• Comparison with if-elseif-else Statements Example 7: Determine the day of
the week based on a numerical input.

4.5 The end Keyword 139

Listing 4.12 Determine the day of the week.

% Using a switch statement
day_num = 3;
switch day_num
case 1
day = ’Monday ’;
case

ant = b^2 - 4ac;
if discriminant > 0
% Two real roots
root1 = (-b + sqrt(discriminant)) / (2a);
root2 = (-b - sqrt(discriminant)) / (2a);
roots = [root1 , root2];
elseif discriminant == 0
% One real root
root = -b / (2*a);
roots = root;
else
% Complex roots
roots = [];
end
end

4.5 The end Keyword

The end keyword inMATLAB is crucial for delimiting the scope of various program-
ming constructs, such as loops, conditional statements, and function definitions. It
serves as a terminator thatmarks the end of a block of code, ensuring proper execution
and readability of the program.

In the context of conditional statements, the end keyword is used to terminate the
block of code associated with an if, elseif, or switch statement. It ensures that the
program flow follows the intended path based on the evaluated conditions. Failing
to include the end keyword or misplacing it can lead to syntax errors or unintended
behavior.

The basic syntax for using end in conditional statements is as follows:

Listing 4.13 If statement syntax with end.

if condition
% Statements to execute if condition is true
end

if condition
% Statements to execute if condition is true
else
% Statements to execute if condition is false
end

140 4 Conditional Statements

if condition1
% Statements to execute if condition1 is true
elseif condition2
% Statements to execute if condition2 is true
else
% Statements to execute if both conditions are false
end

– CommonMistakes and Best Practices Related to end One common mistake when
using the end keyword is forgetting to include it or mismatching it with the corre-
sponding control structure. This can lead to syntax errors or logical errors in the
program. To avoid such issues, it is recommended to follow best practices, such
as:

• Indent code blocks properly to maintain a clear visual structure.
• Use comments to clarify the purpose of each code block and its associated end
keyword.

• Consider using an integrated development environment (IDE) or text editor with
syntax highlighting and code folding features, which can help identify missing
or misplaced end keywords.

– Examples and Applications

1. Practical Examples in Various Domains Conditional statements, including the
use of the end keyword, are widely used across various domains and applications
in MATLAB. Here are a few examples:

a. Signal Processing: Applying conditional statements to filter or manipulate
signals based on specific criteria, such as noise levels or frequency ranges.

b. Image Processing: Implementing image segmentation, edge detection, or
object recognition algorithms using conditional statements to classify pixels
or regions based on their properties.

c. Control Systems: Designing control algorithms with conditional statements
to adjust system parameters or apply different control strategies based on the
system’s state or environmental conditions.

d. Data Analysis: Applying conditional statements to handle missing data,
detect outliers, or apply different data processing techniques based on the
characteristics of the dataset.

2. Solving Real-World Problems with Conditional Statements Conditional state-
ments are essential for solving real-world problems that involve decision-making
or branching logic. Here are two examples that demonstrate their usage:

Listing 4.14 Temperature converter.

function convertedTemp = temperatureConverter (temp ,
fromScale)

4.5 The end Keyword 141

if strcmp(fromScale , ’C’)
% Convert from Celsius to Fahrenheit
convertedTemp = (temp * 9/5) + 32;
elseif strcmp(fromScale , ’F’)
% Convert from Fahrenheit to Celsius
convertedTemp = (temp - 32) * 5/9;
else
error(’Invalid temperature scale. Use "C" for Celsius or

"F" for Fahrenheit.’)
end
end

Listing 4.15 Grade classification.

function gradeCategory = classifyGrade(grade)
if grade >= 90
gradeCategory = ’A’;
elseif grade >= 80
gradeCategory = ’B’;
elseif grade >= 70
gradeCategory = ’C’;
elseif grade >= 60
gradeCategory = ’D’;
else
gradeCategory = ’F’;
end
end

3. Integration with Other Programming Concepts

• Loops and Conditional Statements Conditional statements are often used in
conjunction with loops to create more complex program flows. For example,
a conditional statement inside a loop can be used to skip or perform specific
operations based on certain conditions, allowing formore efficient and targeted
code execution.

Listing 4.16 Loop with conditional statement.

% Calculate the sum of positive numbers in an array
numbers = [5, -2, 8, 0, -7, 3];
sum_positive = 0;

for i = 1: length(numbers)
if numbers(i) > 0
sum_positive = sum_positive + numbers(i);
end
end

disp([’The sum of positive numbers is: ’, num2str(
sum_positive)]);

142 4 Conditional Statements

• Functions and Conditional Statements Conditional statements are also com-
monly used within functions to handle different input scenarios or perform spe-
cific computations based on certain conditions. This allows for more modular and
reusable code.

Listing 4.17 Function with conditional statement.

function result = computeValue(x, operation)
if strcmp(operation , ’square ’)
result = x^2;
elseif strcmp(operation , ’cube’)
result = x^3;
else
error(’Invalid operation. Use "square" or "cube".’)
end
end

4.6 Laboratory

1. The ’If-Else’ selection statement
For any input natural number, determine whether it is odd or even.

Solution:

Listing 4.18 ’If-Else’ selection statement

x=input(’Please input a natural number ’);

if mod(x,2) ==1
disp(’It is a odd number.’)

else
disp(’It is a even number.’)

end

2. The ‘elseif’ selection statement
Reassign any input value, assigning 1 if greater than 0, -1 if less than 0, and not
replacing if equal to 0.

Solution:

Listing 4.19 The ’elseif’ selection statement

x=input(’Please input the value for x:’);

If x>0
x=1;

elseif x<0

4.6 Laboratory 143

x=-1;
else

x=0;
end
disp(x)

3. The ‘nested elseif’ selection statement
Please assign a grade based on the test score using the following criteria:

• A score of 90 or above receives an A.
• A score between 60 and 89 (inclusive) receives a B.
• A score below 60 receives a C.

Solution:

Listing 4.20 The ’nested elseif’ selection statement

% Prompt the user to enter the score
score = input(’Please enter the test score: ’);

% Determine the grade based on the score
if score >= 90

grade = ’A’;
elseif score >= 60

grade = ’B’;
else

grade = ’C’;
end

% Display the grade
disp(grade);

4. The switch selection statement
Determine the value of season based on the entered month.

Solution:

Listing 4.21 The switch selection statement

% Prompt the user to enter the month as a number (1 -12)
month = input(’Please enter the month as a number (1-12)

: ’);

% Determine the season based on the month
if month == 12 || month == 1 || month == 2

season = ’Winter ’;
elseif month >= 3 && month <= 5

season = ’Spring ’;
elseif month >= 6 && month <= 8

season = ’Summer ’;
elseif month >= 9 && month <= 11

season = ’’Autumn ’;

144 4 Conditional Statements

else
season = ’Invalid month. Please enter a number

between 1 and 12.’;
end

% Display the season
disp(season);

5. Supermarket Discounting
A supermarket is conducting a significant reward activity and is discounting the
goods sold. The discount criteria are as follows:

• price < 500: 2% discount
• 500 ≤ price < 700: 3% discount
• 700 ≤ price < 1100: 5% discount
• 1100 ≤ price < 1500: 7% discount
• 1500 ≤ price < 2500: 11% discount
• price ≥ 2500: 15% discount

Please use MATLAB to implement this. When entering the price, output the
discounted price.

Solution:

Listing 4.22 Supermarket Discounting

% Prompt the user to enter the price
price = input(’Please enter the price: ’);

% Determine the discount based on the price
if price < 500

discount = 0.02;
elseif price >= 500 && price < 700

discount = 0.03;
elseif price >= 700 && price < 1100

discount = 0.05;
elseif price >= 1100 && price < 1500

discount = 0.07;
elseif price >= 1500 && price < 2500

discount = 0.11;
else

discount = 0.15;
end

% Calculate the discounted price
discounted_price = price * (1 - discount);

% Display the discounted price
disp([’The discounted price is: ’, num2str(

discounted_price)]);

4.6 Laboratory 145

6. TemperatureConverterWrite aMATLAB function that takes a temperature value
and a character (‘C’ or ‘F’) representing the input scale (Celsius or Fahrenheit).
The function should convert the temperature to the other scale and return the
converted value.

Solution:

Listing 4.23 Temperature Converter Function.

function converted_temp = convertTemperature(temp ,
input_scale)

if upper(input_scale) == ’C’
% Convert from Celsius to Fahrenheit
converted_temp = (temp * 9/5) + 32;
elseif upper(input_scale) == ’F’
% Convert from Fahrenheit to Celsius
converted_temp = (temp - 32) * 5/9;
else
error(’Invalid input scale. Use ’’C’’ for Celsius or ’’F

’’ for Fahrenheit.’)
end
end

4.6.1 Digit Counter

Write aMATLAB function that takes a positive integer as input and returns the count
of each digit (0-9) present in the number.

Solution:

Listing 4.24 Digit Counter Function.

function digit_counts = countDigits(num)
digit_counts = zeros(1, 10);
num_str = num2str(num);
for i = 1: length(num_str)
digit = str2double(num_str(i));
digit_counts(digit + 1) = digit_counts(digit + 1) + 1;
end
end

7. Vowel CounterWrite aMATLAB function that takes a string as input and returns
the count of vowels (a, e, i, o, u) present in the string.

146 4 Conditional Statements

Solution:

Listing 4.25 Vowel Counter Function.

function vowel_count = countVowels(str)
vowel_count = 0;
vowels = ’aeiou’;
for i = 1: length(str)
char = lower(str(i));
if any(char == vowels)
vowel_count = vowel_count + 1;
end
end
end

8. Palindrome Checker Write a MATLAB function that takes a string as input and
determines if it is a palindrome (reads the same forward and backward) or not.

Solution:

Listing 4.26 Palindrome Checker Function.

function isPalindrome = checkPalindrome(str)
% Remove non -alphanumeric characters and convert to

lowercase
clean_str = regexprep(lower(str), ’[^a-z0 -9]’, ’’);

% Check if the string is equal to its reverse
isPalindrome = strcmp(clean_str , flip(clean_str));

end

9. Rock-Paper-Scissors GameWrite a MATLAB script that implements the classic
Rock-Paper-Scissors game. The script should prompt the user to enter their
choice (rock, paper, or scissors), randomly generate the computer’s choice, and
determine the winner based on the rules of the game.

Solution:

Listing 4.27 Rock-Paper-Scissors Game.

% Define the choices
choices = {’rock’, ’paper’, ’scissors ’};

% Get user ’s choice
user_choice = input(’Enter your choice (rock , paper , or

scissors): ’, ’s’);

% Generate computer ’s choice randomly
computer_choice = choices{randi (3)};

% Determine the winner
if strcmp(user_choice , computer_choice)

4.6 Laboratory 147

disp(’It’’s a tie!’)
elseif strcmp(user_choice , ’rock’) && strcmp(

computer_choice , ’scissors ’) || ...
strcmp(user_choice , ’paper’) && strcmp(computer_choice ,

’rock’) || ...
strcmp(user_choice , ’scissors ’) && strcmp(

computer_choice , ’paper’)
disp(’You win!’)
else
disp(’Computer wins!’)
end

4.6.2 Grade Statistics

Write a MATLAB script that prompts the user to enter a series of grades (integers
between 0 and 100) and calculates the following statistics:

Minimum grade Maximum grade Mean grade Number of passing grades (>= 60)
Number of failing grades (< 60).

Solution:

Listing 4.28 Grade Statistics Script.

grades = [];
while true
grade = input(’Enter a grade (0-100, or -1 to stop): ’);
if grade == -1
break;
elseif grade >= 0 && grade <= 100
grades = [grades , grade];
else
disp(’Invalid grade. Please enter a value between 0 and

100.’);
end
end

if isempty(grades)
disp(’No grades entered.’);
return;
end

min_grade = min(grades);
max_grade = max(grades);
mean_grade = mean(grades);
num_passing = sum(grades >= 60);
num_failing = sum(grades < 60);

disp([’Minimum grade: ’, num2str(min_grade)]);
disp([’Maximum grade: ’, num2str(max_grade)]);

148 4 Conditional Statements

disp([’Mean grade: ’, num2str(mean_grade)]);
disp([’Number of passing grades: ’, num2str(num_passing)

]);
disp([’Number of failing grades: ’, num2str(num_failing)

]);

4.6.3 Menu-Driven Calculator

Write aMATLAB script that implements a simplemenu-driven calculator. The script
should display a menu with options for addition, subtraction, multiplication, and
division. Based on the user’s choice, the script should prompt for two numbers and
perform the selected operation, displaying the result.

Solution:

Listing 4.29 Menu-Driven Calculator Script.

while true
% Display menu
disp(’Menu:’);
disp(’1. Addition ’);
disp(’2. Subtraction ’);
disp(’3. Multiplication ’);
disp(’4. Division ’);
disp(’5. Exit’);
% Get user choice
choice = input(’Enter your choice (1-5): ’);

% Exit condition
if choice == 5

break;
end

% Get operands
num1 = input(’Enter the first number: ’);
num2 = input(’Enter the second number: ’);
% Perform operation based on choice
switch choice

case 1
result = num1 + num2;
operation = ’Addition ’;

case 2
result = num1 - num2;
operation = ’Subtraction ’;

case 3
result = num1 * num2;
operation = ’Multiplication ’;

case 4
if num2 ~= 0

4.7 Problems 149

result = num1 / num2;
operation = ’Division ’;

else
disp(’Error: Division by zero’);
continue;

end
otherwise

disp(’Invalid choice. Please try again.’);
continue;

end

% Display result
disp([’Result of ’, operation , ’: ’, num2str(result)]);
end

These lab works cover a variety of scenarios and applications, allowing you to
practice and reinforce your understanding of conditional statements in MATLAB.
Feel free to modify and extend these exercises to further enhance your skills.

4.7 Problems

1. Write a MATLAB function that takes a number as input and returns the absolute
value of that number using an if statement.

2. Implement a MATLAB script that prompts the user to enter a character and
determines whether it is a vowel or a consonant using a switch statement.

3. Create a MATLAB function that takes three numbers as input and returns the
maximum value among them using nested if statements.

4. Write a MATLAB script that generates a random number between 1 and 10, and
based on the value, displays a corresponding message using a switch statement.

5. Implement aMATLAB function that takes a year as input and determineswhether
it is a leap year or not using an if-elseif-else statement.

6. Create a MATLAB script that prompts the user to enter their age and displays
a message indicating their age category (e.g., child, teenager, adult) using an
if-elseif-else statement.

7. Write aMATLAB function that takes a character as input and determineswhether
it is a digit, an uppercase letter, a lowercase letter, or a special character using
nested if statements.

8. Implement aMATLABscript that prompts the user to enter a number and displays
whether it is positive, negative, or zero using an if-elseif-else statement.

9. Create aMATLAB function that takes two numbers as input and returns their sum
if both numbers are positive, their difference if one number is positive and the
other is negative, or zero if both numbers are negative, using nested if statements.

10. Write a MATLAB script that generates two random numbers between 1 and
6 (representing dice rolls) and displays a message indicating the outcome (e.g.,
“You rolled a double,” “You rolled a high number,” etc.) using a switch statement.

150 4 Conditional Statements

4.8 Summary

In this chapter, we have explored the fundamental concept of conditional statements
inMATLAB, which are essential for controlling the flow of program execution based
on certain conditions. The key points covered in this chapter are summarized as
follows:

• Conditional statements allow you to execute different blocks of code based on
the evaluation of logical expressions or conditions.

• The if statement is the most basic form of conditional statement, which executes
a block of code if a specified condition is true.

• The if-else statement provides an alternative block of code to execute if the con-
dition in the if statement is false.

• The if-elseif-else statement allows you to specify multiple conditions and execute
different blocks of code based on the first condition that evaluates to true.

• The switch statement is an alternative to nested if-elseif statements and is used
to execute different blocks of code based on different possible values of a single
expression.

• The end keyword is crucial for delimiting the scope of conditional statements and
ensuring proper execution and readability of the program.

• Conditional statements are widely used in various domains and applications, such
as signal processing, image processing, control systems, and data analysis, to solve
real-world problems involving decision-making or branching logic.

• Conditional statements can be integrated with other programming concepts, such
as loops and functions, to create more complex program flows and modular code.

• Best practices forwriting readable andmaintainable conditional statements include
using descriptive variable and function names, consistent indentation, and adding
comments to explain complex logic.

• Optimizing code efficiency and performance can be achieved by avoiding unnec-
essary computations, using vectorized operations, precomputing or caching fre-
quently used values, and utilizing MATLAB’s built-in functions and optimized
algorithms.

• Debugging techniques for conditional statements include using MATLAB’s built-
in debugger, adding print statements, simplifying complex conditions, employing
logging or tracing mechanisms, and writing unit tests or test cases.

• Guidelines for choosing the appropriate conditional statement (e.g., if-elseif-else
or switch) depend on factors such as the complexity of the conditions, the need for
logical operations or string comparisons, and code readability and maintainability
considerations.

For Undergraduate (UG) Students:

Conditional statements are a fundamental concept in programming that allows you
to control the flow of your code based on specific conditions. This chapter provides a

4.8 Summary 151

comprehensive introduction to conditional statements in MATLAB, including their
syntax, usage, and applications. By understanding and mastering conditional state-
ments, you will be able to write more efficient and effective programs that can handle
a wide range of scenarios and make intelligent decisions based on specific criteria.

For Postgraduate (PG) Students and Professional Researchers or Engineers:

Conditional statements are a powerful tool for implementing decision-making logic
and branching in your MATLAB programs. This chapter delves into the nuances of
conditional statements, including best practices forwriting readable andmaintainable
code, optimizing performance, and debugging techniques. Additionally, it explores
the integration of conditional statements with other programming concepts, such as
loops and functions, enabling you to createmore sophisticated andmodular solutions.
Whether you are working on research projects, developing algorithms, or building
applications, a solid understanding of conditional statements will equip you with the
skills necessary to tackle complex problems effectively.

For Postgraduate (PG) Students and Professional Researchers or Engineers:

Mastering conditional statements is crucial for developing efficient and robust algo-
rithms, implementing decision-making logic in simulations and models, and build-
ing intelligent systems that can adapt to varying conditions and inputs. This chapter
equips you with the necessary knowledge and techniques to leverage the power of
conditional statements in MATLAB, enabling you to tackle complex research prob-
lems, optimize performance, and write maintainable and scalable code. Additionally,
the integration of conditional statements with other programming concepts opens up
a wide range of possibilities for creating sophisticated solutions and exploring new
avenues in your field of study or professional practice.

By thoroughly understanding and applying the concepts covered in this chapter,
you will be well-prepared to develop advanced applications, conduct rigorous
research, and contribute to the advancement of your discipline through the effec-
tive use of conditional statements in MATLAB.

Here are some additional points:

• Nested conditional statements allow you to combine multiple conditions and
execute different blocks of code based on their evaluation, providing greater control
and flexibility in program flow.

• Short-circuit evaluation of logical expressions in conditional statements can
improve performance by avoiding unnecessary computations when the final result
can be determined early.

• Conditional statements are essential for implementing control flow in programs,
enabling them to make decisions and respond accordingly based on various con-
ditions and inputs.

152 4 Conditional Statements

• The ternary operator in MATLAB provides a concise way to write simple con-
ditional expressions, making the code more compact and readable in certain situ-
ations.

• Logical operators (&&, ||, and ~) can be used to combine multiple conditions in
conditional statements, allowing for more complex decision-making logic.

• Relational operators (<,>,<=,>=,==, and =) are used to compare values and
evaluate conditions in conditional statements.

• Conditional statements can be used in conjunction with other programming con-
cepts, such as arrays, matrices, and data structures, to perform operations or
manipulations based on specific conditions.

• Code refactoring andmodularisation can improve the readability and maintain-
ability of code involving conditional statements, especially in larger and more
complex programs.

References

1. MathWorks, “MATLAB Fundamentals,” [Online]. Available: https://www.mathworks.com/
help/matlab/, accessed on Feb. 17, 2024

2. MathWorks, “Conditional Statements,” [Online]. Available: https://www.mathworks.com/help/
matlab/matlab_prog/conditional-statements.html, accessed on Feb. 17, 2024

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/matlab_prog/conditional-statements.html
https://www.mathworks.com/help/matlab/matlab_prog/conditional-statements.html
http://creativecommons.org/licenses/by/4.0/

Chapter 5
Loop Statements

Chapter Learning Outcomes

• Understand the concept of iteration and when loop constructs are necessary in a
programme.

• Learn to implement and differentiate between for loops and while loops.
• Develop the ability to translate repetitive tasks into efficient loop statements.
• Recognise the importance of loop control structures such asbreak and continue.
• Write nested loops for problems requiring multiple levels of iteration.
• Analyse loop performance and identify cases of infinite loops.
• Apply best practices to ensure readability and maintainability of loop constructs.

Chapter Key Words

• for loop: A for loop is a control flow statement that allows code to be executed
repeatedly based on a given Boolean condition. In MATLAB, the for loop is
used to iterate over a range or collection of values, executing a block of code a
specific number of times. This is particularly useful for repetitive tasks that have
a predictable number of iterations.

• while loop: A while loop in MATLAB is another looping construct that executes
a block of code as long as a specified condition is true. Unlike the for loop, while
loops are ideal when the number of iterations is not known beforehand and depends
on dynamic conditions during runtime.

• nested loop: A nested loop occurs when one loop is placed inside another. MAT-
LAB allows for loops to be nested within for or while loops. This is useful for
multi-dimensional data structures or complex iterative processes that require mul-
tiple levels of iteration.

• break statement: Thebreak statement is usedwithin loop constructs to terminate
the loop prematurely when a certain condition is met. It provides a way to escape
from the loop without having to wait for the loop condition to be false.

• continue statement: In contrast to the break statement, the continue statement
is used to skip the rest of the code inside the loop and proceed with the next

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_5

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_5&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_5

154 5 Loop Statements

iteration. This can be used to avoid executing certain parts of the loopwhen specific
conditions are encountered.

• infinite loop: An infinite loop is a sequence of instructions in a computer program
that repeats indefinitely. This is usually due to a loop condition that never becomes
false. InMATLAB, it is crucial to avoid infinite loops as they can cause the program
to become unresponsive or enter an endless execution cycle.

• loop performance: Loop performance is an important aspect of writing efficient
code. In MATLAB, loop performance can often be improved by vectorisation,
preallocating arrays, or using built-in functions instead of loops where applicable.

5.1 Introduction

Loop statements are control structures that enable the repetitive execution of a block
of code until a specified condition is met or a certain number of iterations is reached.
They play a crucial role in programming by allowing developers to automate repet-
itive tasks, iterate over data structures, and implement algorithms and simulations
efficiently. The significance of loop statements lies in their ability to control the
program flow based on predetermined conditions or criteria, thereby enhancing the
flexibility and versatility of software applications.

InMATLAB, loop statements are indispensable for various tasks, such as data pro-
cessing, numerical computations, simulations, and algorithm implementation. They
enable developers to perform operations on large datasets, iterate over matrices and
arrays, and implement iterative algorithms for solving complex problems. By lever-
aging loop statements, programmers can create dynamic and responsive programs
that can adapt to different inputs, scenarios, and requirements.

Efficient and optimised loop statements are crucial for ensuring the performance
and scalability of MATLAB applications. Poorly designed or inefficient loops can
lead to significant performance bottlenecks, particularly when dealing with large
datasets or computationally intensive operations. Consequently, understanding the
different types of loop statements, their syntax, and best practices for optimisation
is essential for developing high-performance and robust MATLAB programs.

• Definition and significance of loop statements in programming:

– Loop statements enable the repetitive execution of a block of code spsciteMAT-
LABLoops

– Allow automation of repetitive tasks and iteration over data structures
– Facilitate implementation of algorithms and simulations

• Role of loop statements in controlling program flow:

– Provide control over program execution based on conditions or criteria
– Enable dynamic and responsive program behavior
– Allow programs to adapt to different inputs, scenarios, and requirements

5.2 Types of Loop Statements 155

• Importance of efficient and optimised loop statements:

– Ensure performance and scalability of MATLAB applications
– Avoid performance bottlenecks, especially with large datasets or computation-
ally intensive operations

– Require understanding of different loop types, syntax, and optimisation
techniques

5.2 Types of Loop Statements

This chapter provides an overview of the different types of loop statements in MAT-
LAB. Loop statements are essential in programming to perform repetitive tasks. The
three main types of loop statements in MATLAB are for loops, while loops, and
do-while loops. Each type has its own syntax, structure, and specific use cases.

5.2.1 For Loops

The for loop is one of the most commonly used loop statements in MATLAB. It is
used to iterate over a range of values or elements in a vector or matrix. For loops
are commonly used when the number of iterations is known or when iterating over
a fixed set of values.

The basic syntax of a for loop in MATLAB is as follows:

Listing 5.1 Syntax of a for loop.

for index = start_value : step : end_value
% Loop block of code
end

In a for loop, the loop index is initialized to a start value, and the loop block is
executed until the end value is reached, with each iteration incrementing the index
by the specified step value. For loops are commonly used in scenarios where a task
needs to be repeated a specific number of times, such as iterating over an array or
performing mathematical calculations. The loop body, enclosed between the for
and end keywords.

Example 1:An example of a for loop that calculates the sumof the first 10 positive
integers:

Listing 5.2 Example of a for loop.

sum = 0;
for ind = 1:10
sum = sum + i;
end
disp(sum);

156 5 Loop Statements

This code initializes a variable sum to 0 and then uses a for loop to iterate from 1
to 10, adding each value of i to the sum. The final result is displayed using the disp
function.

Example 2: Iterating over a range of values.

Listing 5.3 Iterating over a range of values.

% Iterate from 1 to 10
for ind = 1:10
disp(ind)
end

This code will print the values from 1 to 10 in the MATLAB Command Window.
Example 3: Iterating over the elements of a vector.

Listing 5.4 Iterating over a vector.

% Create a vector
myVector = [1, 2, 3, 4, 5];

% Iterate over the vector elements
for elem = myVector
disp(elem)
end

This code will print each element of the vector myVector in the MATLAB
Command Window.

5.2.2 While Loops

While loops are used when the number of iterations is not known in advance or
when the loop needs to continue until a certain condition is met. It executes a block
of code repeatedly as long as a specified condition is true.

The basic syntax of a while loop in MATLAB is as follows:

Listing 5.5 Syntax of a while loop.

while condition
% Loop block of code
end

In a while loop, the loop block is executed repeatedly as long as the condition
specified is true. The loop condition is evaluated before each iteration, and if it is
false, the loop is exited. While loops are commonly used in scenarios where the
number of iterations depends on dynamic conditions, such as reading data from a
file or listening for user input.

5.2 Types of Loop Statements 157

Example 1: An example of a while loop that calculates the factorial of a number.

Listing 5.6 Example of a while loop.

n = 5;
factorial = 1;
while n > 1
factorial = factorial * n;
n = n - 1;
end
disp(factorial);

This code calculates the factorial of a number n by multiplying it with all the
numbers from n down to 1. The loop continues until n becomes 1, and the final result
is displayed using the disp function.

Example 2: Counting up to a specific value.

Listing 5.7 Counting up to a value.

count = 1;
maxValue = 10;

while count <= maxValue
disp(count)
count = count + 1;
end

This code will print the values from 1 to 10 in the MATLAB Command Window.
Example 3: Iterating until a specific condition is met.

Listing 5.8 Iterating until a condition is met.

x = 1;
threshold = 1e-6;

while abs(x - exp(x)) > threshold
x = exp(x);
end

disp([’The value of x is: ’, num2str(x)])

5.2.3 Do-While Loops

Do-while loops are similar to while loops, but with one key difference: the loop block
is executed at least once before the loop condition is evaluated. The basic syntax of
a do-while loop in MATLAB is as follows.

158 5 Loop Statements

Listing 5.9 Syntax of a do-while loop.

do
% Loop block of code
while condition

In a do-while loop, the loop block is executed first, and then the loop condition is
evaluated. If the condition is true, the loop block is executed again, and this process
continues until the condition becomes false. Do-while loops are advantageous in
situations where the loop block needs to be executed at least once, regardless of the
initial condition.

Here is two examples:

• Example 01 A do-while loop that prompts the user for input until a valid number
is entered:

Listing 5.10 Example of a do-while loop.

number = 0;
do
number = input(’Enter a positive number: ’);
while number <= 0
disp(number);

This code prompts the user to enter a positive number using the input function. The
loop continues to prompt the user until a valid number greater than 0 is entered.
The final result is displayed using the disp function.

• Example 02

Listing 5.11 Example 1: Repeat-until user enters a positive number.

repeat = true;
while repeat

number = input(’Enter a positive number: ’);
repeat = number <= 0;

end

Listing 5.12 Example 2: Imitating do-while to perform a task at least once.

repeat = true;
doSomethingImportant();
while repeat

% Check if we need to repeat
repeat = askToRepeat();

end

function doSomethingImportant()
disp(’Performing an important task.’);

end

function repeat = askToRepeat()
answer = input(’Repeat the task? y/n: ’,’s’);
repeat = (lower(answer) == ’y’);

end

5.3 Loop Optimisation Techniques 159

5.3 Loop Optimisation Techniques

Loop optimisation techniques play a crucial role in improving the efficiency of code
execution. By optimising loops, unnecessary iterations can be reduced, resulting in
faster and more efficient programs. This section discusses the importance of loop
optimisation, strategies for reducing unnecessary iterations, and various loop opti-
misation techniques such as loop unrolling, loop fusion, and loop interchange. Addi-
tionally, best practices for enhancing loop performance will be explored.

5.3.1 Importance of Loop Optimisation for Efficiency

The basic syntax for a for loop in MATLAB is:

Listing 5.13 For loop syntax.

for index = startValue:endValue
% Statements

end

Loops are often the most time-consuming parts of a programme. In computational
tasks, especially those involving large datasets or complex algorithms, loop optimi-
sation plays a critical role in enhancing efficiency. Optimising loops can significantly
reduce the execution time and resource consumption ofMATLABprogrammes. Loop
optimisation is essential for improving the efficiency of code execution, especially
when dealing with large data sets or computationally intensive tasks. By optimising
loops, we can minimize the number of iterations required, reduce redundant calcula-
tions, and improve memory access patterns. This leads to faster execution times and
more efficient resource utilisation.

Optimising loops can have a significant impact on the overall performance of a
program. Inmanycases, amajority of the execution time is spentwithin loops,making
them an important target for optimisation. By carefully analyzing and optimising
loops, we can achieve substantial performance improvements in our code. MATLAB
provides several built-in functions and techniques for loop optimisation.

5.3.2 Strategies for Reducing Unnecessary Iterations

One of the key strategies for loop optimisation is to reduce unnecessary iterations
in loop optimisation. Unnecessary iterations occur when a loop continues to execute
even when further iterations will not contribute to the final result. By identifying and
eliminating these unnecessary iterations, we can improve the efficiency of our code.

There are several techniques for reducing unnecessary iterations in loops.

160 5 Loop Statements

• One common approach is loop termination based on a condition. By setting appro-
priate loop termination conditions, we can avoid executing the loop when further
iterations are not required. This can be achieved by using conditional statements
such as if statements within the loop.

• Another strategy is loop Vectorisation, which involves performing operations on
entire arrays or vectors instead of individual elements. Vectorised operations can
eliminate the need for explicit loops and reduce the number of iterations required.
This technique leverages the power of MATLAB’s built-in functions, such as sum
and dot, that can operate on arrays efficiently.

• Some other common strategies include pre-computing invariant expressions out-
side the loop and using logical indexing instead of loops where possible.

To,

1. Preallocating arrays: Allocatememory for arrays before the loop to avoid costly
resizing operations.

2. Vectorisation: Replace loops with vectorised operations when possible to take
advantage of MATLAB’s optimised built-in functions.

3. Loop-invariant code motion: Move computations that produce the same result
in each iteration outside the loop.

Example 1: Using preallocation:

Listing 5.14 Reducing iterations by preallocating arrays.

% Inefficient loop
for ind = 1:n
result(ind) = computeValue(ind);
end

% optimised loop with preallocation
result = zeros(1, n);
for ind = 1:n
result(ind) = computeValue(ind);
end

Example 2: Pre-computing invariant expressions:

Listing 5.15 Pre-computing invariant expressions.

% Inefficient way
for i = 1:1000

y(i) = i * cos(0.5 * pi);
end

% Efficient way
constant = cos(0.5 * pi);
for i = 1:1000

y(i) = i * constant;
end

5.3 Loop Optimisation Techniques 161

Example 3: Using logical indexing:

Listing 5.16 Using logical indexing.

% Inefficient way
for i = 1:length(data)

if data(i) > threshold
result(i) = data(i);

else
result(i) = 0;

end
end

% Efficient way
result = zeros(size(data));
result(data > threshold) = data(data > threshold);

5.3.3 Loop Unrolling, Loop Fusion, and Loop Interchange
Techniques

Advanced loop optimisation techniques such as loop unrolling, loop fusion, and
loop interchange can further improve performance by reducing overhead and
enhancing data locality.

• Loop unrolling involves replicating loop iterations to reduce the overhead of loop
control. By executing multiple loop iterations in a single iteration, we can reduce
the number of loop control instructions and improve the overall performance.
However, loop unrolling can increase code size and may not be beneficial for all
types of loops.

Listing 5.17 Loop unrolling example.

% Original loop
for ind = 1:n
result(ind) = computeValue(ind);
end

% Unrolled loop
for ind = 1:4:n
result(ind) = computeValue(ind);
if i+1 <= n, result(i+1) = computeValue(i+1); end
if i+2 <= n, result(i+2) = computeValue(i+2); end
if i+3 <= n, result(i+3) = computeValue(i+3); end
end

• Loop fusion combines multiple loops that perform similar operations into a single
loop. By eliminating redundant loop iterations and merging loop bodies, we can
reduce the overhead of loop control and improve cache utilisation. This technique
can be particularly effective when dealing with nested loops.

162 5 Loop Statements

Here is to combine two loops that iterate over the same range can reduce loop
overhead:

Listing 5.18 Loop Fusion.

% Before fusion
for i = 1:N

A(i) = A(i) + 1;
end
for i = 1:N

B(i) = B(i) * 2;
end

% After fusion
for i = 1:N

A(i) = A(i) + 1;
B(i) = B(i) * 2;

end

• Loop interchange involves swapping the order of nested loops to improve memory
access patterns. By changing the loop order, we can optimise the memory access
patterns and enhance data locality. This can result in improved cache utilisation
and reduced memory access times.
This example is to change the order of nested loops, which can improve cache
performance.

Listing 5.19 Loop interchange

% Before interchange
for i = 1:M

for j = 1:N
A(i, j) = A(i, j) + 1;

end
end

% After interchange
for j = 1:N

for i = 1:M
A(i, j) = A(i, j) + 1;

end
end

5.3.4 Best Practices for Enhancing Loop Performance

In addition to specific optimisation techniques, there are some general best practices
that can enhance loop performance. These practices include:

• Minimising the use of conditional statements within loops, as they can introduce
branching and impact performance.

5.3 Loop Optimisation Techniques 163

• Minimising memory accesses within loops by reducing the frequency of array
indexing operations.

• Utilising appropriate data types and avoiding unnecessary type conversions within
loops.

• Taking advantage of MATLAB’s built-in functions, such as max and min, for
optimised computations.

• Considering parallelisation techniques, such as MATLAB’s Parallel Computing
Toolbox, to exploit multi-core processors and accelerate loop execution.

By following these best practices and applying appropriate loop optimisation
techniques, we can significantly improve the performance of our code. Specifically,

5.3.4.1 Minimise the Use of Nested Loops

Deeply nested loops can lead to significant performance degradation. Whenever
possible, try to minimise the levels of nesting by restructuring your code or using
vectorisation techniques.

Example of reducing nested loops:

Listing 5.20 Reducing nested loops

% Deeply nested loop
for i = 1:N

for j = 1:M
A(i, j) = i + j;

end
end

% Using matrix operations
[i, j] = meshgrid(1:N, 1:M);
A = i + j;

5.3.4.2 Avoid Growing Arrays in Loops

As mentioned earlier, dynamically growing arrays inside loops can severely impact
performance. Always preallocate arrays to their maximum required size before enter-
ing the loop.

Example of avoiding array growth:

Listing 5.21 Avoiding array growth in loops

% Inefficient way
A = [];
for i = 1:1000

A(i) = i^2;
end

164 5 Loop Statements

% Efficient way
A = zeros(1, 1000);
for i = 1:1000

A(i) = i^2;
end

5.3.4.3 Use MATLAB Built-in Functions

MATLAB’s built-in functions are highly optimised and can often perform operations
faster than custom code. Whenever possible, use these functions instead of writing
your own.

Example of using built-in functions:

Listing 5.22 Using built-in functions

% Custom implementation
result = 0;
for i = 1:length(A)

result = result + A(i);
end

% Using built-in function
result = sum(A);

5.3.4.4 Utilise Logical Indexing

Logical indexing can replace loops for certain operations, leading to more concise
and faster code.

Example of using logical indexing:

Listing 5.23 Using logical indexing

% Using loop to find elements
result = zeros(size(A));
for i = 1:length(A)

if A(i) > threshold
result(i) = A(i);

end
end

% Using logical indexing
result = A .* (A > threshold);

5.3 Loop Optimisation Techniques 165

5.3.4.5 Profile and Benchmark Your Code

Regularly profile andbenchmarkyour code to identify slowsections.UseMATLAB’s
profiling tools to gather performance data and make informed decisions about where
optimisations are needed.

Example of profiling code:

Listing 5.24 Profiling code

% Start profiling
profile on;

% Code to be profiled
for i = 1:1000

A(i) = i^2;
end

% Stop profiling
profile off;

% View profiling results
profile viewer;

5.3.4.6 Using tic and toc to Measure Performance

The tic and toc functions in MATLAB are simple yet effective tools for measur-
ing the elapsed time of code execution. They are useful for quickly benchmarking
sections of your code to understand where optimisations might be needed.

Example of using tic and toc:

Listing 5.25 Using tic and toc for performance measurement

% Start timer
tic;

% Code to be timed
for i = 1:1000

A(i) = i^2;
end

% Stop timer and display elapsed time
elapsedTime = toc;
fprintf(’Elapsed time: %.2f seconds\n’, elapsedTime);

By using tic and toc, you can quickly measure the performance of different
sections of your code, making it easier to identify areas that require optimisation.

166 5 Loop Statements

5.3.4.7 Avoid Unnecessary Computations

Eliminate redundant calculations within loops. If a value does not change within the
loop, compute it once before the loop starts.

Example of avoiding unnecessary computations:

Listing 5.26 Avoiding unnecessary computations

% Inefficient way
for i = 1:1000

A(i) = sqrt(i) + cos(i);
end

% Efficient way
cosValues = cos(1:1000);
for i = 1:1000

A(i) = sqrt(i) + cosValues(i);
end

5.3.4.8 Choose the Right Data Types

Using appropriate data types can have a significant impact on performance. For
example, using single precision instead of double precision can reduce memory
usage and improve speed if the precision is sufficient for your requirements.

Example of choosing the right data types:

Listing 5.27 Choosing appropriate data types

% Using double precision
A = zeros(1, 1000);

% Using single precision
A = zeros(1, 1000, ’single’);

5.3.4.9 Utilise Parallel Computing

For computationally intensive tasks, consider using MATLAB’s parallel computing
capabilities. Functions like parfor can distribute loop iterations across multiple
processors or cores, significantly speeding up execution.

Example of using parallel computing:

Listing 5.28 Using parallel computing with parfor

% Normal for loop
for i = 1:1000

A(i) = i^2;
end

5.4 Applications of Loop Statements 167

% Parallel for loop
parfor i = 1:1000

A(i) = i^2;
end

By adhering to these best practices, you can write MATLAB code that is not
only faster but also easier to understand and maintain. Optimised loops contribute
to overall program efficiency, which is particularly important in data-intensive and
high-performance computing applications.

In this section,we discussed the importance of loop optimisation for efficiency and
explored strategies for reducing unnecessary iterations.We also introduced advanced
loop optimisation techniques such as loop unrolling, loop fusion, and loop inter-
change. Additionally, we provided best practices for enhancing loop performance.
By applying these techniques and following the recommended practices, program-
mers can achieve significant performance improvements in their code.

5.4 Applications of Loop Statements

Loop statements in MATLAB are versatile tools that can be applied to solve a wide
range of computational and real-world problems. This section explores the various
applications of loop statements, highlighting their usefulness in solving computa-
tional tasks and real-world problem-solving scenarios.

5.4.1 Solving Computational Tasks

Loop statements can be used in various mathematical calculations and simulations,
making them indispensable tools for scientific and engineering applications. By util-
ising loops, iterative algorithms and numerical methods can be implemented effi-
ciently. These algorithms are particularly useful when solving complexmathematical
problems that require repetitive calculations or approximations.

• Leveraging loops for mathematical calculations and simulations that require
repeated operations, such as iterative solutions to equations or Monte Carlo sim-
ulations.

• Application of loops in iterative algorithms and numerical methods including
fixed-point iteration, Newton-Raphson method, and gradient descent.

• Utilisation of loop statements in various scientific and engineering domains such
as computational fluid dynamics, finite element analysis, and environmental mod-
elling.

• Employing loops for timing tasks and benchmarks to measure performance of
algorithms across different computing architectures spsciteMoler2011.

• Using loops for mathematical calculations and simulations: Loop statements allow
for the repeated execution of a set of mathematical calculations or simulations.

168 5 Loop Statements

This is beneficial when dealing with tasks such as solving equations, generating
random numbers, or simulating dynamic systems.

• Iterative algorithms and numerical methods: Many computational tasks require
iterative algorithms or numerical methods to reach an accurate solution. Loop
statements provide a convenient way to iterate through a set of calculations until
a desired level of accuracy is achieved.

• Examples from various scientific and engineering domains: Loop statements find
applications in diverse scientific and engineering domains. For instance, they can
be used in physics simulations, optimisation problems, financial modeling, and
many other fields.

• Loops for Timing: In certain scenarios, it is necessary to measure the execution
time of a code segment. Loop statements can be used to repeat the execution
of a code segment multiple times, allowing for an accurate measurement of the
time taken. This is especially important when optimising code performance or
comparing different algorithms.

To illustrate the applications of loop statements in computational tasks, consider
the following MATLAB code snippet. It calculates the sum of the first 100 natural
numbers using a loop:

Listing 5.29 Calculating the sum of natural numbers using a loop

sum = 0;
for ind = 1:100
sum = sum + i;
end

In the above example, the loop iterates from 1 to 100 and adds each number to
the variable ‘sum’, resulting in the sum of the first 100 natural numbers.

5.4.2 Real-World Problem Solving

Loop statements also play a crucial role in solving real-world problems by enabling
data processing and repetitive task execution. They provide amechanism for automat-
ing tasks that involve processing large datasets or performing repetitive operations
on data.

• Application of loops in processing data sets and performing repetitive tasks such
as data cleansing and transformation in data analysis workflows.

• Implementing loop statements for image and signal processing tasks including
filtering, segmentation, and feature extraction relevant in biomedical imaging and
communication systems.

• Streamlining automation and batch processing operations using loop statements,
essential in manufacturing processes and robotic control systems.

• Applying loops to process data and perform repetitive tasks: Loop statements are
commonly used to iterate through data structures, such as arrays or matrices, and

5.4 Applications of Loop Statements 169

perform operations on each element. This allows for efficient data processing and
manipulation.

• Examples fromdata analysis, image processing, and signal processing: Real-world
problemsoften involve analyzing andprocessing large amounts of data. Loop state-
ments can be used to implement algorithms for data analysis, image processing,
signal processing, and other related tasks.

• Automation and batch processing using loop statements: In scenarios where repet-
itive tasks need to be performed on multiple datasets or files, loop statements can
automate the process. By iterating through a list of files or datasets, the same set
of operations can be applied to each, saving time and effort.

To demonstrate the applications of loop statements in real-world problem solving,
consider the following MATLAB code snippet. It calculates the average value of an
array of numbers using a loop:

Listing 5.30 Calculating the average value of an array using a loop

data = [1, 2, 3, 4, 5];
sum = 0;
for ind = 1:length(data)
sum = sum + data(ind);
end
average = sum / length(data);

In the above example, the loop iterates through each element of the data’ array
and adds it to the variable sum’. The average value is then calculated by dividing the
sum by the length of the array.

Listing 5.31 Jacobi method for solving linear equations

% Assuming ’A’ is the coefficient matrix and ’b’ is the right-hand
side vector

x = zeros(size(b)); % Initial guess of the solution
maxIter = 100; % Maximum number of iterations
tolerance = 1e-6; % Convergence tolerance

for iter = 1:maxIter
x_new = x;
for ind = 1:length(b)

sum = b(ind);
for jnd = 1:length(b)

if i ~= j
sum = sum - A(i,j) * x(j);

end
end
x_new(ind) = sum / A(i,i);

end
if max(abs(x_new - x)) < tolerance

break;
end
x = x_new;

end

170 5 Loop Statements

Overall, loop statements inMATLABhave numerous applications in both compu-
tational tasks and real-world problem solving. By utilising their power and flexibility,
complex problems can be efficiently tackled, leading to enhanced productivity and
improved outcomes.

5.5 Debugging and Error Handling

This section focuses on the important aspects of debugging and error handling within
loop statements. It covers common errors and pitfalls that can occur in loop state-
ments, techniques for effective debugging and error resolution, testing loop condi-
tions and termination conditions, as well as strategies for handling exceptions and
error handling in loops.

5.5.1 Common Errors and Pitfalls in Loop Statements

In MATLAB, loop statements such as for and while loops are fundamental con-
structs for iterative operations. However, they can be prone to several common errors.

• One frequent issue is the off-by-one error, where the loop iterates one time too
many or too few.

• Another common pitfall is failing to initialise loop variables correctly, leading
to unexpected results or infinite loops. Understanding these errors is crucial for
efficient debugging and optimisation.

Loop statements can be tricky to work with, and programmers often encounter
common errors and pitfalls. These errors can lead to incorrect or unexpected behavior
of the loop. Understanding these common errors and pitfalls is crucial for efficient
debugging and error resolution.

Some common errors and pitfalls include:

• Off-by-one errors: These occur when the loop iterates one too many or one too
few times, often due to incorrect indexing or condition checks.

• Infinite loops: These occur when the loop condition never evaluates to false, caus-
ing the loop to run indefinitely.

• Logic errors: These errors occur when the loop’s logical structure does not match
the intended behavior, leading to incorrect results.

• Variable scope issues: These occur when variables used within the loop have
incorrect or unexpected values due to scope-related problems.

Understanding these common errors and pitfalls will help programmers identify and
resolve issues efficiently.

The basic syntax for a for loop is:

5.5 Debugging and Error Handling 171

Listing 5.32 For loop syntax

for index = start_value:end_value
% Loop body

end

Example 1: A correctly implemented for loop.

Listing 5.33 Correct for loop example

for ind = 1:5
disp(ind);

end

Example 2: A for loop with an off-by-one error.

Listing 5.34 Off-by-one error in for loop.

for ind = 0:5
disp([’Current index is: ’, num2str(ind)]);

end

Example 3: Example of Correct Loop Initialisation.

Listing 5.35 Example of correct loop initialisation

% Correct loop initialisation
for i = 1:10

disp(i)
end

5.5.2 Techniques for Effective Debugging and Error
Resolution

Effective debugging in MATLAB involves using built-in tools such as the Editor
and Command Window. Setting breakpoints allows one to inspect variables and
step through code to observe the program’s behaviour. The dbstop function can
set breakpoints programmatically. Additionally, the try-catch construct can help
identify and handle errors gracefully.

When facing errors in loop statements, effective debugging and error resolution
techniques can greatly aid in identifying and resolving the issues. Here are some
techniques to consider:

• Print statements: Adding print statements within the loop can help track the flow
of execution and identify any unexpected values or behaviors.

• Variable inspection: Inspecting the values of variables at different points in the
loop can help pinpoint where the error occurs and why.

• Step-through debugging: utilising a debugger to step through the loop line by line
can provide insights into the program’s execution and help identify the source of
errors.

172 5 Loop Statements

• Code review: Seeking assistance from a colleague or peer to review the code can
help identify logical errors or provide fresh perspectives on the problem.

By employing these techniques, programmers can efficiently debug and resolve
errors in loop statements.

The basic syntax for setting a breakpoint in MATLAB is to use the Editor.
Example 1: Using a breakpoint to investigate a loop’s behaviour.

Listing 5.36 Using breakpoints for debugging

% Setting a breakpoint
for i = 1:10

if i == 5
disp(’Breakpoint here’)

end
disp(i)

end

Example 2: Using try-catch for Error Handling.

Listing 5.37 Using try-catch for error handling

% Using try-catch for error handling
try

for i = 1:10
disp(i)

end
catch ME

disp(’An error occurred’)
disp(ME.message)

end

5.5.3 Testing Loop Conditions and Loop Termination
Conditions

Testing loop conditions and ensuring proper termination is critical to avoid infinite
loops and ensure that the loops perform as expected. The while loop requires careful
condition setting to ensure it terminates correctly. Using the break statement can
provide an emergency exit from the loop upon meeting certain conditions.

To test loop conditions and loop termination conditions effectively, consider the
following:

• Test with different input values: Ensure that the loop condition is tested with
various input values to account for different scenarios and edge cases.

• Use logical operators correctly: Employ logical operators such as AND (&&), OR
(||), and NOT (∼) appropriately in loop conditions to capture the desired behavior.

• Validate termination conditions: Verify that loop termination conditions are cor-
rectly implemented to prevent infinite loops or premature termination.

5.5 Debugging and Error Handling 173

Listing 5.38 Testing while loop conditions

% while loop condition testing
i = 1;
while i <= 10

disp(i)
i = i + 1;

end

Listing 5.39 Using break in loops

% Using break statement
for i = 1:10

if i == 5
break

end
disp(i)

end

By thoroughly testing loop conditions and termination conditions, programmers
can ensure the reliability and correctness of their loops.

The basic syntax for a while loop is:

Listing 5.40 While loop syntax

while condition
% Loop body

end

Example 1: A while loop with a clear termination condition.

Listing 5.41 While loop with termination condition

ind = 1;
while i <= 5

disp(ind);
ind = i + 1;

end

Example 2: A while loop where the termination condition is never met.

Listing 5.42 Faulty while loop with no termination

ind = 1;
while i > 0 % Incorrect condition, creates an infinite loop

disp(ind);
ind = i + 1;

end

The validity of loop conditions is paramount for the correct execution of loop
statements:

174 5 Loop Statements

Listing 5.43 Testing loop conditions for validity

% Example of a for loop with a valid termination condition
for ind = 1:10
disp(ind);
end

% Example of a while loop with a valid termination condition
count = 0;
while count < 5
count = count + 1;
disp(count);
end

5.5.4 Strategies for Handling Exceptions and Error
Handling in Loops

Handling exceptions and errors within loops is essential for robust code. UsingMAT-
LAB’s try-catch blocks within loops allows one to handle unexpected conditions
gracefully without terminating the loop abruptly. This approach ensures that the loop
continues to execute even if an error occurs in one iteration. Exception handling plays
a vital role in ensuring the robustness of loop statements. By employing effective
strategies for handling exceptions and error handling in loops, programmers can
gracefully handle errors and prevent program crashes.

Some strategies for handling exceptions and error handling in loops include:

• Try-catch blocks: Utilize try-catch blocks to catch and handle exceptions that may
occur within the loop. This allows for graceful error handling and recovery.

• Error logging: Implement error logging mechanisms to record and track errors
that occur during loop execution. This information can aid in debugging and trou-
bleshooting.

• Error recovery: Define fallback mechanisms or alternate strategies to recover from
errors and continue loop execution whenever possible.

By incorporating these strategies, programmers can ensure that their loops handle
exceptions and errors effectively, enhancing the overall reliability of their programs.

• Example 1: Try-Catch Block

% Example of using try-catch block for error handling
x = [1, 2, 3];
try
disp(x(4));
catch
disp(’Error: Index out of bounds’);
end

5.6 Advanced Topics in Loop Statements 175

• Example 2: Graceful Error Handling

% Example of graceful error handling in a loop
x = [1, 2, 3];
for ind = 1:4
try
disp(x(ind));
catch
disp([’Error: Index ’ num2str(ind) ’ out of bounds’]);
end
end

In this section, we have explored the importance of debugging and error handling
in loop statements. We discussed common errors and pitfalls that programmers may
encounter and provided techniques for effective debugging and error resolution.
Additionally, we delved into testing loop conditions and termination conditions to
ensure correct loop behavior. Lastly, we presented strategies for handling exceptions
and error handling within loops to ensure robust and reliable code execution.

5.6 Advanced Topics in Loop Statements

In this section, we will explore some advanced concepts and techniques related
to loop statements in MATLAB. We will discuss nested loops, loop control using
break and continue statements, and the integration of loops with arrays and data
manipulation.

5.6.1 Conditional Loops

• InMATLAB, it is possible to combine loop statements with conditional statements
(if, elseif, and else) to create more complex control flow structures. This combi-
nation allows for selective execution of code blocks based on specified conditions
within the loop iterations.
The basic syntax for conditional loops is as follows:

Listing 5.44 Conditional loop syntax

for variable = expression
% Conditional statements
if condition1
% Statements to be executed
elseif condition2
% Statements to be executed
else
% Statements to be executed
end
end

176 5 Loop Statements

• Alternatively, conditional statements can be used within a while loop:

Listing 5.45 Conditional while loop syntax

while condition
% Conditional statements
if condition1
% Statements to be executed
elseif condition2
% Statements to be executed
else
% Statements to be executed
end
end

This structure allows for the combination of a while loop with conditional state-
ments, enabling more complex decision-making and control flow within the loop
iterations. The while loop continues to execute as long as the main condition
is true, and within each iteration, the conditional statements are evaluated to deter-
mine which block of code should be executed.
Example 1: Computing the sum of positive values in a vector.

Listing 5.46 Computing the sum of positive values

% Create a vector
myVector = [-2, 5, 0, 3, -1, 7];
positiveSum = 0;
ind = 1;

% Iterate over the vector elements
while i <= length(myVector)
% Check if the element is positive
if myVector(ind) > 0
positiveSum = positiveSum + myVector(ind);
end
ind = i + 1;
end

disp([’The sum of positive values is: ’, num2str(positiveSum)])

In this example, a while loop is used to iterate over the elements of the vector
myVector. Within the loop, an if statement checks if the current element is
positive. If it is, the element is added to the positiveSum variable. The loop
continues until all elements have been processed, and the final sum of positive
values is printed.
Example 2: Finding the first positive value in a matrix.

Listing 5.47 Finding the first positive value in a matrix

% Create a matrix
myMatrix = [-2, 0, 5; -1, 3, -4; 2, 6, 1];
found = false;
ind = 1;

5.6 Advanced Topics in Loop Statements 177

jnd = 1;

% Iterate over the matrix elements
while ~found && i <= size(myMatrix, 1) && j <= size(myMatrix, 2)
% Check if the element is positive
if myMatrix(ind, jnd) > 0
found = true;
disp([’The first positive value is: ’, num2str(myMatrix(ind, jnd)

)])
else
jnd = j + 1;
if j > size(myMatrix, 2)
jnd = 1;
ind = i + 1;
end
end
end

% If no positive value is found
if ~found
disp(’No positive value found in the matrix.’)
end

This code uses a while loop to iterate over the elements of the matrix myMatrix.
Within the loop, an if statement checks if the current element is positive. If a
positive value is found, the loop terminates, and the value is printed. If no positive
value is found after iterating over all elements, a message is displayed indicating
that no positive value was found in the matrix.
These examples demonstrate how conditional statements can be combined with
while loops to introduce more complex control flow and decision-making logic
within the loop iterations.

Conditional statements within loops provide additional control over the program
flow, allowing for more sophisticated decision-making and branching logic. This is
particularly useful when dealing with complex data structures, filtering or processing
data based on specific criteria, or implementing algorithms with multiple conditions
or edge cases.

Example 1: Summing even numbers in a vector.

Listing 5.48 Summing even numbers using a conditional loop

% Create a vector
myVector = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
evenSum = 0;

% Iterate over the vector elements
for num = myVector
% Check if the number is even
if mod(num, 2) == 0
evenSum = evenSum + num;

178 5 Loop Statements

end
end

disp([’The sum of even numbers is: ’, num2str(evenSum)])

This code iterates over the elements of the vector myVector and checks if each
number is even using the mod function. If the number is even, it is added to the
evenSum variable. The final sum of even numbers is then printed.

Example 2: Finding the maximum value in a matrix with conditions.

Listing 5.49 Finding the maximum value with conditions

% Create a matrix
myMatrix = [5, 2, 8, 1; 3, 6, 4, 9; 7, 0, 2, 5];
maxValue = -inf;

% Iterate over the matrix elements
for ind = 1:size(myMatrix, 1)
for jnd = 1:size(myMatrix, 2)
% Check if the element is positive and greater than maxValue
if myMatrix(ind, jnd) > 0 && myMatrix(ind, jnd) > maxValue
maxValue = myMatrix(ind, jnd);
end
end
end

disp([’The maximum positive value is: ’, num2str(maxValue)])

This code uses nested for loops to iterate over the elements of the matrix
myMatrix. For each element, it checks if the value is positive and greater than
the current maxValue. If both conditions are met, the maxValue is updated with
the new maximum value. Finally, the maximum positive value found in the matrix
is printed.

5.6.2 Nested Loops and Loop Control

In the realm of programming, nested loops and loop control mechanisms are pivotal
for managing complex iterative processes. Nested loops allow for the execution of
a loop within another loop, which is essential for iterating over multi-dimensional
data structures or performing tasks that require multiple levels of looping.

• Nesting loops for complex iterations and patterns Nested loops involve placing one
loop inside another to handle complex iterations and generate intricate patterns.
The inner loop completes all its iterations for each iteration of the outer loop. This
allows for more sophisticated control over the flow of the program.

5.6 Advanced Topics in Loop Statements 179

The basic syntax for nested loops is as follows:

Listing 5.50 Nested loop syntax

for outer_variable = start:step:end
for inner_variable = start:step:end
% Statements to be executed
end
end

• Controlling loop execution using break and continue statements MATLAB pro-
vides two important statements for controlling loop execution: break and con-
tinue. The break statement is used to prematurely exit a loop, while the continue
statement skips the remaining statements in the current iteration and moves to the
next iteration.
Here’s an example that demonstrates the usage of nested loops and the break
statement:

Listing 5.51 Nested loop with break statement

for ind = 1:5
for jnd = 1:5
if ind == j
break;
end
fprintf(’(%d, %d) ’, i, j);
end
fprintf(’\n’);
end

In this example, the outer loop iterates from 1 to 5, and the inner loop also iterates
from 1 to 5. However, when the values of i and j are equal, the break statement
is encountered, causing the inner loop to terminate prematurely and move to the
next iteration of the outer loop.

• Practical examples and scenarios requiring nested loops.

5.6.3 Integration with Arrays and Data Manipulation

Loops are instrumental in handling arrays and performing data manipulation tasks.
Through iteration, loops enable the access and modification of array elements, cater-
ing to operations such as data aggregation, filtering, and transformation.

• Accessing and manipulating array elements using loops
Here’s an example that demonstrates accessing and manipulating array elements
using loops:

180 5 Loop Statements

Listing 5.52 Array manipulation using loops

data = [10, 20, 30; 40, 50, 60; 70, 80, 90];
[rows, cols] = size(data);

for ind = 1:rows
for jnd = 1:cols
data(ind, jnd) = data(ind, jnd) * 2;
end
end

disp(data);

• Array iteration techniques and multidimensional arrays
• Data aggregation, filtering, and transformation using loops.

The syntax to loop through an array is as follows:

Listing 5.53 Array iteration syntax

for ind = 1:length(array)
statements
end

Here are two examples that illustrate arraymanipulation using loops inMATLAB:

Listing 5.54 Example of array manipulation using loop

% Sum of array elements
array = [1, 2, 3, 4, 5];
sum = 0;

for ind = 1:length(array)
sum = sum + array(ind);

end

fprintf(’The sum of the array elements is %d\n’, sum);

Listing 5.55 Example of data filtering using loop

% Filtering negative values from an array
array = [-3, 1, -2, 4, 5];
filtered_array = [];

for ind = 1:length(array)

if array(ind) > 0
filtered_array = [filtered_array, array(ind)];
end
end

disp(’Filtered array:’);
disp(filtered_array);

5.8 Laboratory 181

The examples provided are intended to demonstrate the utility of loop statements
in MATLAB for sophisticated programming tasks. They are structured with clear
syntax and colour schemes to enhance readability and comprehension.

5.7 Best Practices and Guidelines

• Writing clear, readable, and maintainable loop statements
• Choosing appropriate loop types for different scenarios
• Performance considerations and optimisation strategies
• Documentation and commenting practices for loop statements.

5.8 Laboratory

This section provides a set of lab works and exercises to reinforce the concepts and
practical implementation of loop statements in MATLAB.

1. Practice of for loop statement
Calculate the sum of odd numbers between 1 and 100.

Solution:

Listing 5.56 Practice of for loop statement

sum = 0; % Initialisation parameter

for ind = 1:2:100
sum = sum + ind;
end

sum

2. The for loop iterating over vectors

a. Write a MATLAB script that creates a vector of random integers between
1 and 100 with a length of 20. Use a for loop to iterate over the vector and
print each element to the Command Window.

Solution:

Listing 5.57 Iterating over a vector

% Create a vector of random integers
myVector = randi([1, 100], 1, 20);

182 5 Loop Statements

% Iterate over the vector
for ind = 1:length(myVector)
disp(myVector(ind))
end

b. Modify the script from the previous exercise to calculate the sum of all elements
in the vector.

Listing 5.58 Calculating the sum of vector elements

% Create a vector of random integers
myVector = randi([1, 100], 1, 20);
vectorSum = 0;

% Iterate over the vector and calculate the sum
for ind = 1:length(myVector)
vectorSum = vectorSum + myVector(ind);
end

disp([’The sum of vector elements is: ’, num2str(vectorSum)])

3. Nested Loops

a. Write a MATLAB script that creates a 5x5 matrix with random values
between 1 and 10. Use nested for loops to iterate over the matrix and print
each element to the Command Window.

Solution:

Listing 5.59 Iterating over a matrix

% Create a 5x5 matrix with random values
myMatrix = randi([1, 10], 5, 5);

% Iterate over the matrix
for ind = 1:size(myMatrix, 1)
for jnd = 1:size(myMatrix, 2)
disp(myMatrix(ind, jnd))
end
end

b. Modify the script from the previous exercise to calculate the sum of all elements
in the matrix.

5.8 Laboratory 183

Listing 5.60 Calculating the sum of matrix elements

% Create a 5x5 matrix with random values
myMatrix = randi([1, 10], 5, 5);
matrixSum = 0;

% Iterate over the matrix and calculate the sum
for ind = 1:size(myMatrix, 1)
for jnd = 1:size(myMatrix, 2)
matrixSum = matrixSum + myMatrix(ind, jnd);
end
end

disp([’The sum of matrix elements is: ’, num2str(matrixSum)])

4. Conditional Loops

a. Write a MATLAB script that creates a vector of random integers between
-10 and 10 with a length of 15. Use a for loop and conditional statements to
count the number of positive, negative, and zero values in the vector.

Solution:

Listing 5.61 Counting positive, negative, and zero values

% Create a vector of random integers
myVector = randi([-10, 10], 1, 15);
positiveCount = 0;
negativeCount = 0;
zeroCount = 0;

% Iterate over the vector and count values
for ind = 1:length(myVector)
if myVector(ind) > 0
positiveCount = positiveCount + 1;
elseif myVector(ind) < 0
negativeCount = negativeCount + 1;
else
zeroCount = zeroCount + 1;
end
end

disp([’Number of positive values: ’, num2str(positiveCount)])
disp([’Number of negative values: ’, num2str(negativeCount)])
disp([’Number of zero values: ’, num2str(zeroCount)])

b. Write a MATLAB script that creates a 4x4 matrix with random values between
1 and 20. Use nested for loops and conditional statements to find the maximum
and minimum values in the matrix.

184 5 Loop Statements

Solution:

Listing 5.62 Finding maximum and minimum values in a matrix

% Create a 4x4 matrix with random values
myMatrix = randi([1, 20], 4, 4);
maxValue = -inf;
minValue = inf;

% Iterate over the matrix and find maximum and minimum values
for ind = 1:size(myMatrix, 1)
for jnd = 1:size(myMatrix, 2)
if myMatrix(ind, jnd) > maxValue
maxValue = myMatrix(ind, jnd);
end
if myMatrix(ind, jnd) < minValue
minValue = myMatrix(ind, jnd);
end
end
end

disp([’The maximum value in the matrix is: ’, num2str(maxValue)])
disp([’The minimum value in the matrix is: ’, num2str(minValue)])

5. Vectorisation and Performance

a. Write aMATLABscript that creates two vectors,A andB, of random integers
between 1 and 100 with a length of 1,000,000. Calculate the element-wise
sum of the two vectors using a for loop and Vectorisation, and compare the
execution times of both approaches.

Solution:

Listing 5.63 Comparing loop and vectorisation performance

% Create two large vectors
A = randi([1, 100], 1, 1000000);
B = randi([1, 100], 1, 1000000);

% Calculate the sum using a for loop
tic
sumLoop = zeros(size(A));
for ind = 1:length(A)
sumLoop(ind) = A(ind) + B(ind);
end
loopTime = toc;

% Calculate the sum using Vectorisation
tic
sumVector = A + B;
vectorTime = toc;

5.8 Laboratory 185

disp([’Time taken for loop approach: ’, num2str(loopTime), ’
seconds’])

disp([’Time taken for Vectorisation approach: ’, num2str(vectorTime
), ’ seconds’])

b. Write a MATLAB function that computes the dot product of two vectors using
a for loop and Vectorisation. Compare the execution times of both approaches
for various vector lengths (e.g., 1,000, 10,000, 100,000).

Solution:

Listing 5.64 Comparing loop and vectorisation performance for dot product

unction comparePerformance(length)
% Create two random vectors
A = rand(1, length);
B = rand(1, length);
% Calculate dot product using a for loop
tic
dotProductLoop = 0;
for ind = 1:length

dotProductLoop = dotProductLoop + A(ind) * B(ind);
end

loopTime = toc;

% Calculate dot product using Vectorisation
tic
dotProductVector = dot(A, B);
vectorTime = toc;

disp([’For vector length ’, num2str(length), ’:’])
disp([’Time taken for loop approach: ’, num2str(loopTime), ’

seconds’])
disp([’Time taken for Vectorisation approach: ’, num2str(vectorTime

), ’ seconds’])

end

% Call the function with various vector lengths
comparePerformance(1000)
comparePerformance(10000)
comparePerformance(100000)

6. Loop Unrolling and Parallelisation

a. Write a MATLAB script that creates a large vector of random integers
between 1 and 100 with a length of 10,000,000. Calculate the sum of the
vector elements using a for loop and the codegen function to generate
unrolled C code. Compare the execution times of both approaches.

186 5 Loop Statements

Solution:

Listing 5.65 Comparing loop and loop unrolling performance

% Create a large vector
largeVector = randi([1, 100], 1, 10000000);

% Calculate the sum using a for loop
tic
sumLoop = 0;
for ind = 1:length(largeVector)
sumLoop = sumLoop + largeVector(ind);
end
loopTime = toc;

% Calculate the sum using loop unrolling
sumUnrolled = @(x) sumUnrolledCodegen(x);
tic
sumUnrolledResult = sumUnrolled(largeVector);
unrolledTime = toc;

disp([’Time taken for loop approach: ’, num2str(loopTime), ’
seconds’])

disp([’Time taken for loop unrolling approach: ’, num2str(
unrolledTime), ’ seconds’])

b. Write a MATLAB script that creates a large matrix of random values between
1 and 100 with dimensions 10,000x10,000. Use the parfor construct to par-
allelize the computation of the sum of all elements in the matrix. Compare the
execution time with the serial implementation using a for loop.

Solution:

Listing 5.66 Comparing serial and parallel loop performance

% Create a large matrix
largeMatrix = randi([1, 100], 10000, 10000);

% Calculate the sum using a for loop
tic
sumSerial = 0;
for ind = 1:size(largeMatrix, 1)
for jnd = 1:size(largeMatrix, 2)
sumSerial = sumSerial + largeMatrix(ind, jnd);
end
end
serialTime = toc;

% Calculate the sum using a parallel loop
tic
sumParallel = 0;
parfor ind = 1:size(largeMatrix, 1)
for jnd = 1:size(largeMatrix, 2)

5.8 Laboratory 187

sumParallel = sumParallel + largeMatrix(ind, jnd);
end
end
parallelTime = toc;

disp([’Time taken for serial approach: ’, num2str(serialTime), ’
seconds’])

disp([’Time taken for parallel approach: ’, num2str(parallelTime),
’ seconds’])

7. Loop through vector and for timing

a. Step 1: Let i be a natural number ranging from 1 to 107. Calculate A(i) =
sin(i) · cos(i) using a for loop, and record the execution time of the loop.

b. Step 2: Implement A(i) = sin(i) · cos(i)usingmatrix operations, and record
the computation time.

Solution:

Listing 5.67 Comparing loop and loop unrolling performance

clear;

% Calculation using a for loop
tic;
for ind = 1 : 10^7

A = sin(ind) * cos(ind);
end
t1 = toc;

% Calculation using matrix operations
B = zeros(1, 10^7);
tic;
jnd = 1 : 10^7;
B(1, j) = sin(jnd) .* cos(jnd);
t2 = toc;

8. The ’for’ and ’while ’
Calculate the sum of the exponential function 2x for x being a natural number
between 0 and 20, using both a for loop and a while loop. Compare the
structural differences between the for and while implementations.

Solution:

Listing 5.68 The ’for’ and ’while’

% Calculate the sum using a for loop
sum_for = 0;
for x = 0:20

sum_for = sum_for + 2^x;
end

188 5 Loop Statements

fprintf(’Sum calculated using for loop: %d\n’, sum_for);

% Calculate the sum using a while loop
sum_while = 0;
x = 0;
while x <= 20

sum_while = sum_while + 2^x;
x = x + 1;

end
fprintf(’Sum calculated using while loop: %d\n’, sum_while);

9. While loop statement
Enter a series of numbers from the keyboard. End the input by entering 0.
Calculate and display the average and the sum of these numbers.

Solution:

Listing 5.69 While loop statement

% Initialize the sum and counter
total_sum = 0;
count = 0;

% Prompt the user to enter a number
number = input(’Enter a number (end with 0): ’);

% Continue accepting numbers until 0 is entered
while number ~= 0

total_sum = total_sum + number;
count = count + 1;
number = input(’Enter a number (end with 0): ’);

end

% If at least one number was entered, calculate and display the sum
and mean

if count > 0
fprintf(’Sum = %f\n’, total_sum);
average = total_sum / count;
fprintf(’Average = %f\n’, average);

end

5.9 Problems

This section provides a set of problems to further challenge and reinforce the under-
standing of loop statements in MATLAB.

1. Write a MATLAB script that creates a vector of random integers between 1 and
20 with a length of 10. Use a for loop to iterate over the vector and print all
elements that are even.

5.10 Summary 189

2. Write a MATLAB function that takes a vector as input and returns a new vector
containing only the positive elements. Use a for loop to iterate over the input
vector.

3. Write a MATLAB script that creates a 3x3 matrix with random values between
1 and 10. Use nested for loops to iterate over the matrix and print the elements
in reverse row order.

4. Write a MATLAB function that takes a scalar value and a vector as input. Use a
for loop to iterate over the vector and multiply each element by the scalar value.
Return the modified vector.

5. Write a MATLAB script that creates a vector of random integers between 1 and
100 with a length of 20. Use a while loop to iterate over the vector and print all
elements that are divisible by 3 or 5.

6. Write a MATLAB function that takes a matrix as input and computes the sum
of all elements in the matrix using nested for loops.

7. Write a MATLAB script that creates two vectors, A and B, of random integers
between 1 and 10 with a length of 5. Use Vectorisation to compute the element-
wise sum, difference, and product of the two vectors.

8. Write a MATLAB function that takes a vector as input and returns the maximum
and minimum values in the vector using a for loop.

9. Write a MATLAB script that creates a vector of random integers between 1 and
20 with a length of 15. Use a for loop to iterate over the vector and replace all
occurrences of the number 3 with the value -1.

10. Write a MATLAB function that takes a matrix as input and computes the sum
of the diagonal elements using a single for loop.

5.10 Summary

One way to optimise loops is to minimise the number of unnecessary iterations. This
can be achieved by:

• Understanding the importance of loop optimisation for computational efficiency,
which is critical when dealing with large data sets or simulations where execution
time is of the essence.

• Implementing strategies for reducing unnecessary iterations, which minimises
the computational load and enhances the overall speed of MATLAB programs.

• Practical application of loop unrolling, loop fusion, and loop interchange tech-
niqueswhich are advanced practices for improving loop performance in scripting.

• Adhering to best practices for enhancing loop performance such as prealloca-
tion of memory and vectorisation, that lead to significant improvements in script
execution times.

Advanced loop optimisation techniques include:

• Loopunrolling: Reduce loop overhead by replicating the loop bodymultiple times
and adjusting the iteration count accordingly.

190 5 Loop Statements

• Loop fusion: Combine multiple loops that iterate over the same range into a single
loop to reduce overhead and improve data locality.

• Loop interchange: Rearrange the order of nested loops to optimisememory access
patterns and improve cache utilisation.

• For Undergraduate (UG) Students:
This chapter covers the fundamental concepts of loops in MATLAB, specifically
the for andwhile loops. Loops are essential for iterating over vectors,matrices, and
other data structures, allowing you to perform operations on individual elements
or subsets of data. The for loop is used when the number of iterations is known
in advance, while the while loop is useful when the number of iterations depends
on a specific condition. Understanding loops is crucial for writing efficient and
effective MATLAB code, enabling you to automate repetitive tasks and perform
complex data manipulations.

• For Postgraduate (PG) Students:
This chapter delves into the applications of loops in MATLAB, demonstrating
their versatility in various computational tasks. Loops are invaluable tools for data
processing, numerical analysis, and algorithm implementation. The examples
provided showcase the use of loops for vector and matrix operations, element-
wise computations, conditional statements, and data manipulation. Addition-
ally, the chapter introduces techniques for optimising loop performance, such as
Vectorisation and preallocation, which are essential for efficient code execution,
especially in large-scale computations.

• For Professional Researchers or Engineers:
The chapter on loops inMATLAB serves as a comprehensive reference for profes-
sionals working in various domains, including scientific computing, data anal-
ysis, and engineering applications. It highlights the importance of loop control
structures in implementing complex algorithms, performing iterative calcula-
tions, and automating repetitive tasks. The examples provided demonstrate best
practices for code readability, modularity, and maintainability, ensuring that
your MATLAB code is robust, efficient, and scalable. Additionally, the chapter
explores advanced techniques, such asnested loops and loop optimisation strate-
gies, equipping you with the tools necessary to tackle demanding computational
challenges in your respective fields.

5.10 Summary 191

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Scripts and Functions

Chapter Learning Outcomes

By the end of this chapter, you should be able to:

• Understand the difference between scripts and functions in MATLAB
• Create and execute scripts to automate repetitive tasks and perform complex
calculations

• Define and call functions to modularise code and improve code reusability
• Utilise input arguments and return values in functions for flexible and efficient
programming

• Implement local and global variables in scripts and functions to manage data
scope and accessibility

• Gain proficiency in organizing code into modular functions for better code reuse
and maintainability.

• Apply scripts and functions to solve mathematical and computational problems in
MATLAB.

Chapter Key Words

• Scripts: Scripts are files containing a sequence of MATLAB commands that can
be executed together. They are used to automate repetitive tasks, perform complex
calculations, and store a series of commands for later use. Scripts do not accept
input arguments or return output values, and they operate on the variables in the
current workspace.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_6

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_6&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_6

194 6 Scripts and Functions

• Functions: Functions are self-contained units of code that perform a specific task.
They can accept input arguments, perform computations, and return output
values. Functions are used tomodularise code, improve code reusability, andmake
code more readable and maintainable. Functions have their own local workspace
and can access variables from the calling workspace using global variables.

• Structure: Refers to the organization and layout of code in MATLAB. It includes
the use of indentation, comments, and proper naming conventions to enhance code
readability.

• Syntax: The set of rules and conventions that dictate how MATLAB commands
and statements should be written. Syntax governs the proper use of operators,
functions, and data types.

• Input Arguments: Input arguments are values passed to a function when it is
called. They allow functions to be more flexible and reusable by enabling them to
perform computations on different data sets. Input arguments are specified in the
function definition and are passed to the function in the order they are defined.

• OutputArguments: Variables or values returned by a function after performing its
operations. They represent the results or processed data generated by the function.

• Return Values: Return values are the output of a function. They are the results of
the computations performed by the function and can be assigned to variables in
the calling workspace. Functions can return multiple values by enclosing them in
square brackets.

• Local Variables: Local variables are variables that are defined within a function
and are only accessible within that function. They are used to store temporary
results and perform calculations within the function. Local variables have a sep-
arate workspace from the calling workspace and are cleared from memory when
the function ends.

• Global Variables: Global variables are variables that are accessible from any
workspace, including the base workspace and all functions. They are used to share
data between different parts of a program. Global variables are declared using the
global keyword and must be declared in each function that uses them.

6.1 Scripts

In MATLAB, scripts are files containing a sequence of commands saved in a file
with a .m extension. that can be executed together. Scripts are used to automate
repetitive tasks, perform complex calculations, and store a series of commands for
later use. Unlike functions, scripts do not accept input arguments nor return output
values; instead, they operate on the data available in the current workspace. This
section will cover the basics of creating and executing scripts, as well as managing
variables within scripts.

6.1 Scripts 195

6.1.1 Introduction to Scripts in MATLAB

Scripts are plain text files with a .m extension, making them easy to create, edit,
and share. The .m extension identifies the file as a MATLAB script, distinguishing
it from other file types. Script files can be created and edited using the MATLAB
Editor or any text editor that can save files with a .m extension.

Scripts contain a sequence of MATLAB commands and statements that are exe-
cuted sequentially. These commands and statements can include variable assign-
ments, mathematical operations, function calls, control flow statements (e.g., loops
and conditionals), and plotting commands. The commands and statements in a script
are executed in the order they appear, from top to bottom. Scripts can also include
comments, which are lines of text that provide explanations or descriptions of the
code. Comments start with a percent sign (

Unlike functions, scripts do not have a formal mechanism for accepting input
arguments or returning output values. Scripts operate on the variables in the current
workspace and can modify or create new variables, but they do not explicitly return
values to the caller. If a script needs to use specific input values, these values must
be assigned to variables within the script or be present in the workspace before the
script is executed. If a script generates results that need to be used later, those results
must be assigned to variables within the script, which can then be accessed from the
workspace after the script finishes execution.

When a script is executed, it has access to all the variables in the current MAT-
LAB workspace. Scripts can read and modify the values of existing variables in the
workspace, as well as create new variables. Any variables created or modified by a
script will remain in the workspace after the script finishes execution, allowing those
variables to be used in subsequent commands or scripts. It is important to be aware
of the state of the workspace when executing a script, as the script’s behavior can be
influenced by the presence or absence of certain variables. To avoid unintended con-
sequences, it is often a good practice to start with a clean workspace before running
a script.

The basic syntax for a MATLAB script is:

Listing 6.1 Basic MATLAB script syntax.

% A simple MATLAB script
% This script calculates the square of an array of numbers
numbers = [1, 2, 3, 4, 5];
squaredNumbers = numbers.^2;
disp(squaredNumbers);

6.1.2 Creating and Executing Scripts

Creating scripts in MATLAB is a straightforward process that can be accomplished
using the built-inMATLABEditor. The Editor is a powerful tool that provides a user-

196 6 Scripts and Functions

friendly interface for writing, editing, and debugging MATLAB code. It offers fea-
tures such as syntax highlighting, auto-completion, and code folding, which enhance
the coding experience and help users write more efficient and error-free scripts. The
Editor can be accessed by clicking the “New Script” button in the MATLAB toolbar
or by using the edit command in the Command Window.

To create a new script, users can either click the “New Script” button in the MAT-
LAB toolbar or use the edit command followed by the desired script name in the
Command Window. For example, typing edit my_script.m in the Command
Window will open a new script file named “my_script.m” in the Editor. If the spec-
ified file does not exist, MATLAB will create a new file with that name. Once the
new script file is open in the Editor, users can start writing their MATLAB code,
including commands, statements, and comments.

When saving a script, it is essential to use the correct file extension, which is .m
for MATLAB scripts. The .m extension identifies the file as a MATLAB script and
ensures that MATLAB recognizes and executes the file correctly. To save a script,
users can click the “Save” button in the Editor toolbar or use the “Save” option from
the “File” menu. It is good practice to give scripts descriptive names that reflect their
purpose, making it easier to identify and manage them within a project.

Executing a script in MATLAB is a simple process that can be done in two ways:
typing the script name in the Command Window or clicking the “Run” button in the
Editor. To execute a script from the Command Window, users should type the script
name without the .m extension and press “Enter.” MATLAB will then execute the
commands and statements in the script sequentially. Alternatively, users can open
the script in the Editor and click the “Run” button in the toolbar. This will execute
the script and display any output or results in the Command Window. If the script
contains errors or issues warnings, these will be displayed in the CommandWindow,
helping users identify and resolve any problems with their code (Fig. 6.1). The basic
syntax for creating a script is:

Listing 6.2 Script syntax.

% Script name: example_script.m
% This is a comment describing the script

% MATLAB commands and statements
x = 1:10;
y = sin(x);
plot(x, y);

Example 1: Calculate the average of a set of numbers

Listing 6.3 Average calculation script.

% Script name: calculate_average.m
numbers = [4, 7, 1, 9, 3, 5];
average = mean(numbers);
disp([’The average is: ’, num2str(average)]);

Example 2: Plot a sine wave

6.1 Scripts 197

Fig. 6.1 Sine wave plot generated by the script

Listing 6.4 Sine wave plot script.

% Script name: plot_sine_wave.m
t = 0:0.01:2*pi;
y = sin(t);
plot(t, y);
xlabel(’Time’);
ylabel(’Amplitude’);
title(’Sine Wave’);

6.1.3 Managing Variables in Scripts

In MATLAB, variables created within a script are automatically added to the current
workspace, which is a memory area where MATLAB stores all the variables, func-
tions, and other objects currently in use. When a script assigns a value to a variable
name, that variable becomes available in the workspace, allowing it to be accessed
and manipulated not only within the script but also from the Command Window or
other scripts and functions that are subsequently executed. This feature enables seam-
less integration between scripts and the broader MATLAB environment, facilitating
data sharing and result propagation across different parts of a project.

198 6 Scripts and Functions

Scripts have the power to access and modify variables that already exist in the
workspace, providing a high degree of flexibility and interactivity. A script can read
the values of variables created before its execution, either by the user in theCommand
Window or by previously executed scripts or functions.Moreover, scripts canmodify
the values of these pre-existing variables, overwriting their original values with new
ones. This capability allows scripts to build upon and interact with the data and results
generated by other parts of the MATLAB environment, enabling complex analyses
and iterative refinements.

It is crucial to understand that variables created ormodified by a script persist in the
workspace even after the script has finished executing. This persistence means that
any variables created within a script will remain available for use in the Command
Window or in other scripts and functions executed later.While this persistence can be
advantageous formaintaining data and results across different parts of a project, it can
also lead to unintended consequences if the script inadvertently modifies variables
used elsewhere in the program. Therefore, careful variable management is essential
to ensure the integrity and reliability of MATLAB programs.

Tomitigate the risk of unintended variable changes andmaintain a clean and orga-
nized workspace, MATLAB provides the clear and clearvars commands. These
commands allow users to remove variables from the workspace selectively. The
clear command, when used without any arguments, removes all variables from the
workspace, effectively resetting it to its initial state. Alternatively, users can specify
the names of individual variables to be removed, such as clear var1 var2. The
clearvars command serves a similar purpose but offers more fine-grained control
over which variables are removed based on their attributes or types. By employing
these commands judiciously, users can maintain a clean workspace, prevent unin-
tended variable changes, and ensure the robustness and reliability of their MATLAB
programs. Regular workspace management, including the use of clear and clearvars
commands, is considered a best practice inMATLAB programming, promoting code
clarity, reproducibility, and reducing the likelihood of errors stemming from variable
name conflicts or unintended variable modifications.

6.2 Functions

In MATLAB, functions are self-contained units of code that perform a specific
task. Functions can accept input arguments, perform computations or actions, and
return output values. Calling functions is a fundamental aspect of programming in
MATLAB, as it allows for modular and reusable code.

6.2 Functions 199

6.2.1 Introduction to Functions in MATLAB

InMATLAB, user-defined functions allow programmers to create their own reusable
code blocks that perform specific tasks. These functions help in organising code,
improving readability, and promoting code reuse. User-defined functions are stored
in separate files with a .m extension and can be called from scripts or other functions.

• Why are Functions Needed?
Functions in MATLAB are essential for several reasons:

– Modularity: Functions allow the decomposition of complex problems into
smaller, manageable sub-problems.

– Reusability: Once defined, functions can be reused in various parts of a program
or in different projects.

– Maintainability: Codewritten in functions is easier to debug, test, andmaintain.
– Clarity: Functions provide a clear structure to the code, making it more readable
and understandable.

• How Functions Work in MATLAB
As given in Fig. 6.2, Functions in MATLAB operate by encapsulating a sequence
of statements that perform a specific task.When a function is called,MATLABcre-
ates a new workspace for the function, ensuring that variables within the function
do not interfere with those in the global workspace.

6.2.2 Function Syntax and Structure

A MATLAB function consists of a function header, which includes the keyword
function, the function name, and input and output arguments. The function body
contains the code that performs the desired task. The basic syntax of a function is:

Fig. 6.2 How functions
work in MATLAB

Script 1 Script 2

Function

200 6 Scripts and Functions

Basic Syntax:

Listing 6.5 Function definition syntax.

function [output1, output2, ...] = functionName(input1, input2,
...)

% Function body
statements

end

6.2.3 Calling Functions

To call a function in MATLAB, you simply use the function name followed by
parentheses, with any required input arguments provided within the parentheses. If
the function returns an output value, you can assign it to a variable. Here’s the basic
syntax for calling a function [1]:

Listing 6.6 Function call syntax.

[output] = functionName(input1, input2, ...);

Here are two examples demonstrating how to call functions in MATLAB:

Listing 6.7 Calling a built-in function.

% Call the built-in sqrt() function to compute the square root
x = 16;
sqrtResult = sqrt(x);
disp(sqrtResult);

Listing 6.8 Calling a user-defined function.

% Define a function to calculate the area of a circle
function area = circleArea(radius)
area = pi * radius^2;
end

% Call the user-defined circleArea() function
r = 5;
areaResult = circleArea(r);
disp(areaResult);

In thefirst example, the built-insqrt() function is calledwith the input argument
x to calculate the square root. The result is assigned to the variable sqrtResult
and then displayed using the disp() function.

In the second example, a user-defined functionnamedcircleArea() is defined
to calculate the area of a circle given its radius. The function is then called with the
input argument r, and the result is assigned to the variable areaResult before
being displayed.

6.2 Functions 201

MATLAB provides a wide range of built-in functions for various tasks, such as
mathematical operations, data analysis, and visualisation. Additionally, users can
define their own functions to encapsulate specific functionality and promote code
reusability.

6.2.4 Examples of Functions in MATLAB

• Example 1: Simple Arithmetic Function

Listing 6.9 Addition Function.

function sum = addNumbers(a, b)
% This function adds two numbers
sum = a + b;

end

• Example 2: Advanced Calculation Function

Listing 6.10 Quadratic Equation Solver.

function [root1, root2] = solveQuadratic(a, b, c)
% This function solves a quadratic equation of the form

ax^2 + bx + c = 0
discriminant = b^2 - 4*a*c;
root1 = (-b + sqrt(discriminant)) / (2*a);
root2 = (-b - sqrt(discriminant)) / (2*a);

end

• Figures for Examples

Listing 6.11 Plotting Quadratic Roots.

% MATLAB code to plot quadratic equation and its roots
a = 1;
b = -3;
c = 2;
[root1, root2] = solveQuadratic(a, b, c);
f = @(x) a*x.^2 + b*x + c;

% Plotting the quadratic function
fplot(f, [-10, 10])
hold on
plot(root1, 0, ’ro’)
plot(root2, 0, ’ro’)
title(’Quadratic Equation and its Roots’)
xlabel(’x’)
ylabel(’f(x)’)
legend(’Quadratic Function’, ’Roots’)
grid on
hold off

202 6 Scripts and Functions

6.2.5 Returning Values from Functions

Functions can return one or more values, or they may not return any value at all. The
number and type of output arguments are specified in the function header.

• Return One Value
To return a single value from a function, specify the output argument in the function
header and assign the value to the output argument within the function body.

Listing 6.12 Returning one value.

function result = square(x)
result = x^2;
end

• Return Multiple Values To return multiple values from a function, enclose the
output arguments in square brackets in the function header and assign values to
each output argument within the function body.

Listing 6.13 Returning multiple values.

function [sum, diff] = sumDiff(a, b)
sum = a + b;
diff = a - b;
end

• Return Nothing Functions that do not return any value are called void functions.
These functions perform tasks without returning any output.

Listing 6.14 Void function.

function printMessage(message)
fprintf(’%s\n’, message);
end

6.2.6 Built-in Numerical Functions

MATLAB provides a wide range of built-in numerical functions that perform various
mathematical operations.

• eps function The eps function returns the floating-point relative accuracy of the
machine. It is useful for determining the smallest representable difference between
two floating-point numbers.

Listing 6.15 Using the eps function.

x = 1;
y = x + eps;

6.4 Nested Functions 203

• The “Is” Functions
MATLAB provides a set of “is” functions that test the properties of variables or
arrays. Some commonly used “is” functions include isscalar, isvector,
ismatrix, isempty, and isnan.

Listing 6.16 Using "is" functions.

x = [1, 2, 3];
isscalar(x) % Returns 0 (false)
isvector(x) % Returns 1 (true)

6.3 Variable Numbers of Arguments

MATLAB allows functions to accept a variable number of input arguments using the
varargin keyword. This feature enables functions to handle different numbers of
input arguments flexibly.

Listing 6.17 Variable number of arguments.

function result = sumAll(varargin)
result = sum([varargin{:}]);
end

6.4 Nested Functions

• Introduction to nested functions in MATLAB: Nested functions are functions
defined within another function, known as the parent function. They are useful for
encapsulating related functionality and improving code organization.

• Creating and using nested functions: Nested functions are definedwithin the parent
function’s body and can access the parent function’s workspace. They are called
using the nested function’s name within the parent function.

• Scope and visibility of nested functions: Nested functions have access to the parent
function’s workspace, including local variables and input arguments. However,
they are not visible outside the parent function.

Listing 6.18 Nested function example.

function y = parentFunction(x)
y = nestedFunction(x);

function z = nestedFunction(a)
z = a^2;

end
end

204 6 Scripts and Functions

6.5 Anonymous Functions and Function Handles

• Introduction to anonymous functions in MATLAB: Anonymous functions are
small, inline functions that are defined without a specific name. They are useful
for creating simple, one-time-use functions.

• Creating and using anonymous functions: Anonymous functions are created using
the @ operator followed by the function’s input arguments and the function body.
They can be assigned to variables or passed as arguments to other functions.

• Function handles and their uses: Function handles are MATLAB objects that
reference a function. They allow functions to be treated as data and can be used
for function composition, function arrays, and more.

Listing 6.19 Anonymous function example.

square = @(x) x^2;
result = square(5); % Returns 25

6.6 Uses of Function Handles

• Passing functions as arguments to other functions: Function handles allow func-
tions to be passed as arguments to other functions. This enables functional pro-
gramming techniques and the creation of flexible, reusable code.

• Storing functions in variables or data structures: Function handles can be assigned
to variables or stored in data structures like arrays or cell arrays. This allows for
dynamic function selection and execution.

• Creating function arrays or cell arrays of functions: Function handles can be used
to create arrays or cell arrays of functions, enabling the storage and manipulation
of multiple functions as a single entity.

Listing 6.20 Function handle example.

functionArray = {@sin, @cos, @tan};
result = functionArray{2}(pi/4); % Calls the cos function

6.7 Recursive Functions

• Introduction to recursive functions in MATLAB: Recursive functions are func-
tions that call themselves within their own definition. They solve problems by
breaking them down into smaller subproblems and combining the results.

6.8 Live Scripts 205

• Creating and using recursive functions: Recursive functions typically have a base
case that terminates the recursion and a recursive case that calls the function with
modified arguments. Proper termination conditions are crucial to avoid infinite
recursion.

• Examples of recursive algorithms and problem-solving: Recursive functions are
often used for tasks like factorial calculation, Fibonacci sequence generation, tree
traversal, and divide-and-conquer algorithms.

Listing 6.21 Recursive function example.

function result = factorial(n)
if n == 0
result = 1;
else
result = n * factorial(n-1);
end
end

6.8 Live Scripts

MATLAB Live Scripts (.mlx files) combine executable code, formatted text, and
plots in a single interactive environment, enabling users to create dynamic and engag-
ing documents for collaboration, teaching, and learning [2]. Live Scripts support a
variety of data types, including numeric arrays, characters and strings, tables, struc-
tures, and cell arrays [3].

One of the key features of Live Scripts is the ability to incorporate formatted text
alongside MATLAB code. This allows users to provide explanations, context, and
insights directly within the script. The text can be formatted using a range of styles,
such as headings, bullet points, and equations [2].

Live Scripts also support the inclusion of inline plots and interactive controls.
Inline plots enable users to visualise the results of their code directly within the
script, making it easier to understand and interpret the data. Interactive controls,
such as sliders and drop-down menus, allow users to dynamically adjust parameters
and observe the effects on the output.

Live Scripts use the .mlx file extension and can be created directly from theMAT-
LAB environment. They are particularly useful for sharing results, creating tutorials,
and documenting workflows. Users can insert sections, run code interactively, and
visualise outputs inline, making it a powerful tool for both teaching and research.

206 6 Scripts and Functions

6.8.1 Creating Live Scripts

Creating a Live Script is straightforward. Users can start by selecting New Live
Script from the Home tab or using the command line. Once a Live Script is created,
it can be saved with the .mlx extension.

The basic syntax for creating a Live Script is:

Listing 6.22 Creating a Live Script

% Create a Live Script
filename = ’example.mlx’;
edit(filename);

Here is an example of a simple Live Script that displays a plot:

Listing 6.23 Simple Plot in a Live Script

% Simple Plot Example
x = linspace(0, 2*pi, 100);
y = sin(x);
plot(x, y);
title(’Sine Wave’);
xlabel(’x’);
ylabel(’sin(x)’);

6.8.2 Adding Text, Equations, and Visualisations

Live Scripts allow the inclusion of formatted text, mathematical equations, and visu-
alisations. This feature enables users to create comprehensive documents that explain
the code and its outputs in context.

Text and equations can be added using the Insert tab or by typing directly into
the Live Script. For example, to add a title and a description:

Listing 6.24 Adding Text and Equations

% Adding Text and Equations
% This is a Live Script example.

% Equation: E = mc^2
syms m c
E = m * c^2;
disp(E);

The inclusion of visualisations and interactive controls enhances the interactiv-
ity of Live Scripts, making them a valuable tool for exploratory data analysis and
presentation.

Here are two examples demonstrating the usage of Live Scripts:

6.8 Live Scripts 207

Listing 6.25 Creating a Live Script with formatted text and a plot.

%% Sine Wave Plot
% This section plots a sine wave with adjustable frequency and

amplitude.

frequency = 1; % Set the frequency of the sine wave
amplitude = 2; % Set the amplitude of the sine wave

t = linspace(0, 2*pi, 100);
y = amplitude * sin(frequency * t);

plot(t, y)
xlabel(’Time’)
ylabel(’Amplitude’)
title(’Sine Wave’)

Listing 6.26 Creating a Live Script with an interactive slider.

%% Interactive Plot
% This section demonstrates an interactive plot using a slider.

a = 1;
x = linspace(-10, 10, 100);
y = a * x.^2;

plot(x, y)
xlabel(’x’)
ylabel(’y’)
title(’Parabola’)

% Create an interactive slider
a_slider = uicontrol(’Style’, ’slider’, ’Min’, -5, ’Max’, 5, ’Value

’, a, ’Position’, [150 20 120 20]);
a_slider.Callback = @(src, event) updatePlot(src, event, x);

function updatePlot(src, event, x)
a = src.Value;
y = a * x.^2;
plot(x, y)
end

In summary, Live Scripts provide a powerful and flexible environment for creat-
ing interactive and engaging MATLAB documents. By combining executable code,
formatted text, and plots, Live Scripts enable users to effectively communicate their
ideas, share their results, and collaborate with others.

6.8.3 Live Code File Format (.mlx)

MATLAB stores live scripts and functions using the Live Code file format in a
file with a .mlx extension [4]. The Live Code file format uses Open Packaging

208 6 Scripts and Functions

Conventions technology, which is an extension of the zip file format. Code and
formatted content are stored in an XML document separate from the output using
the Office Open XML (ECMA-376) format [5].

• The Live Code file format offers several benefits:

– Interoperable Across Locales: Live code files support storing and displaying
characters across all locales, facilitating sharing files internationally.For exam-
ple, a live script created with a Japanese locale setting will display correctly
when opened with a Russian locale setting.

– Extensible: The live code files can be extended through the ECMA-376 format,
supporting a range of formatting options provided by Microsoft Word. The for-
mat also accommodates arbitrary name-value pairs, allowing further extensions
beyond the standard offerings.

– Forward Compatible: Future versions of live code files are compatible with
previous versions of MATLAB by implementing the ECMA-376 standard’s
forward compatibility strategy.

– Backward Compatible: Future versions of MATLAB can support live code
files created by a previous version of MATLAB.

– Source Control When using source control, it is essential to register the .mlx
extension as binary. This ensures that the files are correctly managed by the
version control system. MATLAB provides tools to compare live scripts or
functions, such as the MATLAB Comparison Tool. For more information on
registering binary files with source control systems like SVN or Git, refer to the
official documentation.

To determine and display code differences between live scripts or functions, the
MATLAB Comparison Tool can be used. When using source control, it is recom-
mended to register the .mlx extension as binary.

Listing 6.27 Creating a live script.

% Create a new live script
livescript = mlxlive("MyLiveScript.mlx");

% Add code
livescript.Code = "x = linspace(0,10);";
livescript.Code += newline + "y = sin(x);";

% Add formatted text
para = livescript.Paragraph("This is a live script!");
para.Style = ["bold" "italic"];

% Display the live script
view(livescript);

Listing 6.28 Comparing live scripts.

% Open the comparison tool
visdiff("MyScript1.mlx", "MyScript2.mlx");

6.8 Live Scripts 209

Note: The older .m extension used for MATLAB scripts and functions is still
supported, but the .mlx format is recommended for new live scripts and functions to
take advantage of the benefits outlined above.

• Office Open XML, ECMA-376
TheLiveCode file format used byMATLAB for live scripts and functions utilises
the Office Open XML (OOXML) format, which is an open standard (ECMA-
376) developed byMicrosoft [5]. ThisXML-based format enables the separation of
code and formatted content from the output, making the files more interoperable
across locales and extensible for future enhancements [4].
The use of OOXML in MATLAB’s Live Code files offers several advantages:

– Forward compatibility: Future versions of live code files remain compatible
with previous MATLAB versions by adhering to the ECMA-376 standard’s
forward compatibility strategy.

– Backward compatibility: NewerMATLAB versions can support live code files
created by older MATLAB versions.

– Extensibility: The ECMA-376 format supports a wide range of formatting
options and allows for arbitrary name-value pairs, enabling future extensions
beyond the standard’s current capabilities.

Listing 6.29 Creating a live script with formatted content.

% Create a new live script
livescript = mlxlive("MyLiveScript.mlx");

% Add formatted content
para = livescript.Paragraph("This is a bold and italic paragraph.")

;
para.Style = ["bold" "italic"];

% Display the live script
view(livescript);

Listing 6.30 Accessing live script content.

% Load a live script
livescript = mlxlive("MyLiveScript.mlx");

% Access the code
code = livescript.Code;

% Access formatted content
content = livescript.Paragraphs;

• Old Functions and Recommendations
Over the years,MATLABhas evolved, leading to the deprecation of older functions
in favour of more efficient and powerful alternatives. This section highlights some
of the old functions and the recommended newer functions to use in their place.

210 6 Scripts and Functions

– Old Functions

· findstr–Used to find one string within another.
· fliplr–Used to flip matrices left to right.
· fread–Used for reading data from binary files.

– Recommended Functions

· strfind–Replaces findstr for finding substrings within strings.
· flip–Replaces fliplr and can be used for flipping matrices in any dimension.
· readmatrix–Replaces fread for reading data more efficiently.

– Example: Using strfind

Listing 6.31 Using strfind to find a substring.

% Old function findstr
oldIndex = findstr(’hello world’, ’world’);
disp(oldIndex);

% Recommended function strfind
newIndex = strfind(’hello world’, ’world’);
disp(newIndex);

– Example: Using flip

Listing 6.32 Using flip to flip a matrix.

% Old function fliplr
oldMatrix = [1, 2; 3, 4];
flippedOld = fliplr(oldMatrix);
disp(flippedOld);

% Recommended function flip
flippedNew = flip(oldMatrix, 2); % Flip along the second

dimension
disp(flippedNew);

6.9 Laboratory

1. Writing and Executing Scripts

a. Create a new MATLAB script file called calculate_area.m.
b. Inside the script, define variables radius and pi with values 5 and 3.14159,

respectively.
c. Calculate the area of a circle using the formula area = π × radius2.
d. Display the calculated area using the disp() function.
e. Save the script and run it in the MATLAB environment.

6.9 Laboratory 211

Solution:

Listing 6.33 Script to calculate the area of a circle.

radius = 5;
pi = 3.14159;
area = pi * radius^2;
disp([’The area of the circle is: ’, num2str(area)]);

Output: The area of the circle is: 78.5398

2. Defining and Using Functions

a. Function–calculate_volume.m

• Create a new MATLAB function file called calculate_volume.m.
• Define the function to accept three input arguments: length, width, and

height.
• Inside the function, calculate the volume of a rectangular box using the

formula volume = length * width * height.
• Return the calculated volume from the function.
• In the MATLAB command window, call the function with sample values

for length, width, and height, and display the returned volume.

Solution:

Listing 6.34 Function to calculate the volume of a rectangular box.

function volume = calculate_volume(length, width, height)
volume = length * width * height;
end

Command window:

vol = calculate_volume(3, 4, 5)
vol =
60

b. Function–pyramid number
Create aMATLAB function file that takes a single input argument n and returns a
vector of thefirstn pyramid numbers. Then-th pyramid number, P(n), represents
the number of blocks in a pyramid made from an n-by-n square of blocks at the
base, an (n − 1)-by-(n − 1) square on top of that, and so on. It can therefore be
calculated as:

P(n) =
n∑

k=1

k2 (6.1)

Add statements to check that n is a positive integer before performing the cal-
culations.

212 6 Scripts and Functions

function P = pyramid_numbers(n)
% Check that n is a positive integer
if ~isscalar(n) || n <= 0 || n ~= floor(n)

error(’Input must be a positive integer.’);
end

% Initialize the output vector
P = zeros(1, n);

% Calculate pyramid numbers
for k = 1:n

P(k) = sum((1:k).^2);
end

end

3. Passing Arguments to Functions

a. Create a new MATLAB function file called calculate_hypotenuse.m.
b. Define the function to accept two input arguments: side1 and side2.
c. Inside the function, calculate the hypotenuse of a right triangle using the

Pythagorean theorem: hypotenuse =
√
side12 + side22.

d. Return the calculated hypotenuse from the function.
e. In the MATLAB command window, call the function with different sets of

values for side1 and side2, and display the returned hypotenuse.

Solution:

Listing 6.35 Function to calculate the hypotenuse of a right triangle.

function hypotenuse = calculate_hypotenuse(side1, side2)
hypotenuse = sqrt(side1^2 + side2^2);
end

Command window:

hyp1 = calculate_hypotenuse(3, 4)
hyp1 =
5
hyp2 = calculate_hypotenuse(5, 12)
hyp2 =
13

4. Returning Values from Functions–Statistical Measures of a Vector

a. Create a new MATLAB function file called calculate_stats.m.
b. Define the function to accept a vector of numbers as input.
c. Inside the function, calculate the mean, median, and standard deviation of the

input vector.

6.9 Laboratory 213

d. Return the calculatedmean,median, and standard deviation as separate output
arguments from the function.

e. In the MATLAB command window, call the function with a sample vector
of numbers, and display the returned statistics.

Solution:

Listing 6.36 Function to calculate statistical measures of a vector.

function [mean_val, median_val, std_val] = calculate_stats(
data_vec)

mean_val = mean(data_vec);
median_val = median(data_vec);
std_val = std(data_vec);
end

Command window:

data = [5, 8, 2, 10, 7];
[mean_data, median_data, std_data] = calculate_stats(data)
mean_data =
6.4000
median_data =
7
std_data =
2.7639

5 Returning Values from Functions–Variable Numbers of Arguments Function

a. Write a MATLAB function named who_is_bigger that accepts two input
arguments, a and b, and returns the larger of the two.

b. Test the function with the call who_is_bigger(2, 3).

Solution:

function bigger = who_is_bigger(a, b)
% This function returns the larger of the two input arguments a

and b.
if a > b

bigger = a;
else

bigger = b;
end

end

% Test the function with the call who_is_bigger(2, 3)
result = who_is_bigger(2, 3);
disp([’The bigger number is: ’, num2str(result)]);

The bigger number is: 3

214 6 Scripts and Functions

6. Scope of Variables in Scripts and Functions

a. Create a new MATLAB script file called variable_scope.m.
b. Inside the script, define a variable x with a value of 10.
c. Create a function called update_x that takes no input arguments.
d. Inside the update_x function, increment the value of x by 5 and display the

updated value.
e. Call the update_x function from within the script.
f. Display the value of x after calling the function.
g. Run the script and observe the output.

Solution:

Listing 6.37 Script to demonstrate variable scope in MATLAB.

x = 10; % Global variable

function update_x()
x = x + 5; % Error: Attempt to increment undefined function ’x’
disp([’Inside function, x = ’, num2str(x)]);
end

update_x(); % Calling the function
disp([’Outside function, x = ’, num2str(x)]);

Output:

Error: Attempt to increment undefined function ’x’
Outside function, x = 10

Explanation: Inside the function update_x , the variable x is treated as a local
variable, which is undefined until it is assigned a value. The function cannot access
the global variable x defined in the script. To fix this, the function should either accept
x as an input argument or use the global keyword to access the global variable.

7. Anonymous Functions and Function Handles
Use an anonymous function to compute the integral of x2 from 0 to 1.

Solution:

% Define the anonymous function
f = @(x) x.^2;

% Compute the integral from 0 to 1
integral_value = integral(f, 0, 1);

% Display the result
disp([’The integral of x^2 from 0 to 1 is: ’, num2str(

integral_value)]);

6.10 Problems 215

8. Investment on stocks
Given the prices of 20 stocks over a certain period, devise a method to select the
best value stock for investment based on this data.
One possible method is as follows:

a. Assume that the linear trend of the stock price represents its value. The greater
the slope, the higher the investment value of the stock.

b. Calculate the slope of the price trend for each stock and select the stock with
the highest slope.

Here is the MATLAB code to achieve this:

% Sample data: prices of 20 stocks over 10 days
prices = rand(10, 20); % Replace with actual stock price data

% Initialize variables to store slopes and best stock index
slopes = zeros(1, 20);
best_stock_index = 1;
max_slope = -inf;

% Compute the slope of the linear trend for each stock
for i = 1:20

% Get the prices of the i-th stock
stock_prices = prices(:, i);

% Fit a linear model to the stock prices
p = polyfit(1:10, stock_prices’, 1);

% Extract the slope
slope = p(1);
slopes(i) = slope;

% Check if this is the highest slope
if slope > max_slope

max_slope = slope;
best_stock_index = i;

end
end

% Display the index of the best stock
disp([’The best stock for investment is stock number: ’, num2str(

best_stock_index)]);
disp([’The slope of the best stock is: ’, num2str(max_slope)]);

6.10 Problems

1. Write a MATLAB script that prompts the user to enter their name and age, and
then displays a personalised greeting.

2. Create a MATLAB function that takes two numbers as input and returns their
sum, difference, product, and quotient (if applicable).

216 6 Scripts and Functions

3. Write a MATLAB script that generates a random vector of 10 integers between
1 and 100, and then calculates the mean, median, and standard deviation of the
vector.

4. Create a MATLAB function that takes a string as input and returns the number
of vowels (a, e, i, o, u) in the string.

5. Write a MATLAB script that prompts the user to enter the coefficients of a
quadratic equation (

ax2 + bx + c = 0

) and calculates its roots using the quadratic formula.
6. Create a MATLAB function that takes a vector of numbers as input and returns

a new vector containing only the unique elements.
7. Write a MATLAB script that generates a random 3x3 matrix and calculates its

determinant, trace, and inverse (if applicable).
8. Create a MATLAB function that takes a positive integer as input and returns the

sum of its digits.
9. Write a MATLAB script that prompts the user to enter the side lengths of a

triangle and determines whether the triangle is equilateral, isosceles, or scalene.
10. Create a MATLAB function that takes a vector of numbers as input and returns

a new vector containing the cumulative sum of the elements.
11. Create a MATLAB function to calculate ’the coefficient of determination or

R2’[6] with the function name ’SECF_assess_R2.m’, in which, the first line is

R2 = SECF_assess_R2(Y_test, y_calculation)

12. Create two MATLAB functions to calculate ’the moving mean of the average
precision (mmAP)’ and ’the moving mean of standard derivation (mmSTD)’[7].
The definition of the two trend indices: mmAP and mmSTD. Both are given in
equations (6.2) and (6.3), respectively.
As stated in equation (6.2), the index of mmAP is a moving average score of the
mean value of vector f j , where i = 1, 2, · · · , p, p is the population of the data
set,MEAN(·) is the average function. The index of mmSTD is a moving average
score of the STD value of vector f j , as given in equation (6.3), where STD(·) is
the standard deviation function. Both indices are used to mitigate the short-term
fluctuations by capturing the longer-term trend across the evolutionary process.

mmAP
(
f j

) = 1

p

p∑

i=1

⎛

⎝1

i

i∑

j=1

MEAN
(
f j

)
⎞

⎠ (6.2)

mmST D
(
f j

) = 1

p

p∑

i=1

⎛

⎝1

i

i∑

j=1

STD
(
f j

)
⎞

⎠ (6.3)

6.11 Summary 217

6.11 Summary

• User-defined functions allow programmers to create reusable code blocks that
perform specific tasks.

• Functions can return one or more values, or they may not return any value at all.
• MATLAB provides a wide range of built-in numerical functions for various
mathematical operations.

• Functions can accept a variablenumberof input argumentsusing thevarargin
keyword.

• Nested functions are functions defined within another function and have access
to the parent function’s workspace.

• Anonymous functions are small, inline functions definedwithout a specific name.
• Function handles are MATLAB objects that reference a function and allow func-
tions to be treated as data.

• Recursive functions call themselves within their own definition and solve prob-
lems by breaking them down into smaller subproblems.

For Undergraduate (UG) Students:

• This chapter serves as an excellent introduction toMATLAB scripting and func-
tion development. It covers essential concepts such as input/output operations,
control structures, arithmetic operations, string manipulation, matrix oper-
ations, and vector operations.

• The step-by-step approaches, sample code, and sample outputs provided for each
problem facilitate a better understanding of MATLAB’s syntax and functionality.

• The extensions and variations suggested for each problem encourage students to
explore further and enhance their problem-solving skills.

• Overall, this chapter lays a solid foundation for UG students to develop profi-
ciency in MATLAB programming, which is widely used in various engineering
and scientific disciplines.

For Postgraduate (PG) Students and Professional Researchers/Engineers:

• While this chapter covers fundamental MATLAB concepts, it also serves as a
valuable reference for scripting techniques and function development, which
are essential skills for PG students and professionals working with data analysis,
simulations, and computational tasks.

• The problems presented in this chapter encompass a wide range of applications,
including string processing, numerical analysis, matrix operations, and data
manipulation, making it relevant for various research domains.

• The solutions provided demonstrate best practices for code organization, read-
ability, and modularity, which are crucial for developing maintainable and scal-
able MATLAB projects.

• The extensions and variations encourage researchers and engineers to explore
advanced topics and tailor the solutions to their specific requirements, fostering
problem-solving skills and adaptability.

218 6 Scripts and Functions

• Overall, this chapter serves as a valuable resource for PG students, researchers,
and engineers, reinforcing their MATLAB proficiency and enabling them to tackle
complex computational challenges effectively.

By providing a comprehensive set of problems and solutions, along with sugges-
tions for extensions and variations, this chapter caters to learners at various levels,
from UG students to professional researchers and engineers. It strikes a balance
between introducing fundamental concepts and offering opportunities for advanced
exploration, making it a valuable addition to any MATLAB-focused curriculum or
reference material.

References

1. MathWorks, “Function,” https://uk.mathworks.com/help/matlab/ref/function.html, accessed on
Feb. 17, 2024

2. “Live Script Gallery,” https://ww2.mathworks.cn/products/matlab/live-script-gallery.html,
accessed on Feb. 17, 2024

3. MathWorks, “Data Types,” [Online]. Available: https://www.mathworks.com/help/matlab/data-
types.html, accessed on Feb. 17, 2024

4. MathWorks, “MATLAB Fundamentals,” [Online]. Available: https://www.mathworks.com/
help/matlab/, accessed on Feb. 17, 2024

5. https://learn.microsoft.com/en-us/openspecs/office_standards/ms-oe376/db9b9b72-b10b-
4e7e-844c-09f88c972219, accessed on Feb. 17, 2024

6. Yi Chen, Zhang G (2013) Exchange rates determination based on genetic algorithms using
Mendel’s principles: investigation and estimation under uncertainty. Inf Fusion 14(3):327–333

7. Yi C, Guangfeng Z, Tongdan J, Shaomin W, Bei P (2014) Quantitative modelling of electricity
consumption using computational intelligence aided design. J Clean Prod 69:143–152. https://
doi.org/10.1016/j.jclepro.2014.01.058

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://uk.mathworks.com/help/matlab/ref/function.html
https://ww2.mathworks.cn/products/matlab/live-script-gallery.html
https://www.mathworks.com/help/matlab/data-types.html
https://www.mathworks.com/help/matlab/data-types.html
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-oe376/db9b9b72-b10b-4e7e-844c-09f88c972219
https://learn.microsoft.com/en-us/openspecs/office_standards/ms-oe376/db9b9b72-b10b-4e7e-844c-09f88c972219
https://doi.org/10.1016/j.jclepro.2014.01.058
https://doi.org/10.1016/j.jclepro.2014.01.058
http://creativecommons.org/licenses/by/4.0/

Chapter 7
Inputs and Outputs

Chapter Learning Outcomes

• Understand the various file formats supported by MATLAB for input and output
operations, includingMAT-files, spreadsheet files, binary files, image files, text
files, audio files, video files, JSON files, HDF5 files, XML files, and database
files.

• Perform input and output operations using MATLAB functions specific to each
file format.

• Apply appropriate techniques for reading data from files and writing data to files
in MATLAB.

• Utilize lower-level file input/output functions in MATLAB for more flexible and
controlled data access.

• Incorporate file input and output operations into MATLAB scripts and functions
for data processing and analysis tasks.

Chapter Key Words

• MAT-files: MATLAB’s native file format for storing andmanaging data, including
variables, arrays, and other MATLAB objects. MAT-files provide efficient storage
and retrieval of data within the MATLAB environment.

• Spreadsheet files: File formats such as Excel files (.xls) that are commonly used
for storing and organizing tabular data. MATLAB provides functions to read from
and write to spreadsheet files, enabling data exchange with external applications.

• Binary files: Files that store data in a binary format, which can be efficiently read
and written using low-level file input/output functions in MATLAB. Binary files
offer flexibility and control over data access.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_7

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_7&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_7

220 7 Inputs and Outputs

• Image files: Various file formats used for storing digital images, such as PNG,
JPEG, and TIFF. MATLAB supports reading and writing image files, allowing for
image processing and analysis tasks.

• Text files: Plain text files that store data in a human-readable format. MATLAB
provides functions to read from and write to text files, enabling data exchange and
processing of textual information.

7.1 Introduction

In MATLAB, inputs and outputs play a crucial role in interacting with the user and
transferring data between functions and scripts. MATLAB supports a wide variety
of file formats for input and output operations, extending beyond just MAT-files
and spreadsheet files. These file formats include images, audio, video, JSON, XML,
HDF5, binary files, and databases. The flexibility provided byMATLABallows users
to easily work with diverse data sources and seamlessly integrate with various appli-
cations. This chapter provides a comprehensive overview of the different methods
and techniques for performing input and output operations in MATLAB, covering a
range of file formats and their corresponding functions.

7.2 MAT-Files (.mat)

MAT-files are the native file format in MATLAB for storing and managing data.
They provide an efficient means of saving and loading variables, arrays, and other
MATLAB objects. MAT-files offer the advantage of preserving the data types and
structures specific toMATLAB, ensuring seamless data transferwithin theMATLAB
environment. This section explores the functions and techniques for performing input
and output operations with MAT-files, including saving variables to MAT-files using
the save function and loading data from MAT-files using the load function.

The basic syntax for saving variables to a MAT-file is:

Listing 7.1 Saving variables to a MAT-file.

save(’filename.mat’, ’variable1 ’, ’variable2 ’, ...)

And the basic syntax for loading data from a MAT-file is:

Listing 7.2 Loading data from a MAT-file.

load(’filename.mat’)

7.3 Spreadsheet Files (.xls) 221

Here are two examples demonstrating the usage of MAT-files in MATLAB:

Listing 7.3 Saving and loading a matrix to/from a MAT-file.

% Create a matrix
matrix = [1 2 3; 4 5 6; 7 8 9];

% Save the matrix to a MAT -file
save(’matrix_data.mat’, ’matrix ’);

% Clear the matrix variable
clear matrix;

% Load the matrix from the MAT -file
load(’matrix_data.mat’);

Listing 7.4 Saving and loading multiple variables to/from a MAT-file.

% Create variables
var1 = 10;
var2 = [1.5, 2.7, 3.2];
var3 = ’Hello , world!’;

% Save the variables to a MAT -file
save(’variables.mat’, ’var1’, ’var2’, ’var3’);

% Clear the variables
clear var1 var2 var3;

% Load the variables from the MAT -file
load(’variables.mat’);

7.3 Spreadsheet Files (.xls)

MATLAB provides functions to read and write data from spreadsheet files, such as
Microsoft Excel files with the .xls or .xlsx extension. While the xlsread()
andxlswrite() functionswere used in earlier versions ofMATLAB, it is now rec-
ommended to use the readtable() and writetable() functions for improved
functionality and performance [1].

To read data from a spreadsheet file, you can use the readtable() function.
It reads a spreadsheet file and returns a table array containing the data [1]. Here’s an
example:

Listing 7.5 Reading data from a spreadsheet file.

% Read data from a spreadsheet file
filename = ’data.xlsx’;
data = readtable(filename);

In this example, the readtable() function reads the data from the file
’data.xlsx’ and stores it in the data variable as a table array.

222 7 Inputs and Outputs

To write data to a spreadsheet file, you can use the writetable() function. It
writes a table array to a spreadsheet file [1]. Here’s an example:

Listing 7.6 Writing data to a spreadsheet file.

% Create a table array
data = table (1:5’, rand (5,1), ’VariableNames ’, {’ID’, ’

Value’});

% Write the table to a spreadsheet file
filename = ’output.xlsx’;
writetable(data , filename);

In this example, a table array data is created with two columns: ’ID’ and
’Value’. The writetable() function is then used to write the table array to
the file ’output.xlsx’.

The readtable() and writetable() functions provide additional options
for specifying the range of cells to read or write, the sheet name, and other parameters
to customize the input and output of spreadsheet files.

By using these functions, MATLAB simplifies the process of reading and writing
data from spreadsheet files, making it easier to work with data stored in popular file
formats like Microsoft Excel.

7.4 Binary Files (.dat)

MATLAB provides lower-level file input/output functions that offer more flexibility
and control over data access. These functions allow reading and writing data in
various formats, including binary files and text files. Binary files store data in a binary
format, which can be efficiently read and written using functions like fread and
fwrite. This section explores the usage of lower-level file input/output functions
in MATLAB for handling binary files and demonstrates their application in different
scenarios.

The basic syntax for reading data from a binary file is:

Listing 7.7 Reading data from a binary file.

fileID = fopen(’filename.dat’, ’r’);
data = fread(fileID , size , precision);
fclose(fileID);

And the basic syntax for writing data to a binary file is:

Listing 7.8 Writing data to a binary file.

fileID = fopen(’filename.dat’, ’w’);
fwrite(fileID , data , precision);
fclose(fileID);

7.5 Image Files (.png, .jpg, .tif etc.) 223

Here are two examples demonstrating the usage of binary files in MATLAB:

Listing 7.9 Reading binary data from a file.

% Open the binary file for reading
fileID = fopen(’data.bin’, ’r’);

% Read the binary data
data = fread(fileID , ’double ’);

% Close the file
fclose(fileID);

Listing 7.10 Writing binary data to a file.

% Create some data
data = [1.5, 2.7, 3.2, 4.8];

% Open the binary file for writing
fileID = fopen(’output.bin’, ’w’);

% Write the data to the file
fwrite(fileID , data , ’double ’);

% Close the file
fclose(fileID);

7.5 Image Files (.png, .jpg, .tif etc.)

MATLAB provides functions for reading and writing image files, supporting various
image formats such as PNG, JPEG, and TIFF. The imread function is used to
read image files, while the imwrite function is used to write image data to files.
Image processing and analysis tasks can be performed on the loaded image data.
This section demonstrates how to read image files, display them, and perform basic
operations using MATLAB.

The basic syntax for reading an image file is:

Listing 7.11 Reading an image file.

imageData = imread(’filename.png’);

And the basic syntax for writing an image file is:

Listing 7.12 Writing an image file.

imwrite(imageData , ’filename.png’);

224 7 Inputs and Outputs

Here are two examples demonstrating the usage of image files in MATLAB:

Listing 7.13 Reading and displaying an image.

% Read the image file
imageData = imread(’image.jpg’);

% Display the image
imshow(imageData);

Listing 7.14 Resizing and saving an image.

% Read the image file
imageData = imread(’input.png’);

% Resize the image
resizedImage = imresize(imageData , [256, 256]);

% Save the resized image
imwrite(resizedImage , ’output.png’);

7.6 Text Files (.txt)

Text files are commonly used for storing and processing textual data. MATLAB
provides functions for reading from and writing to text files, enabling data exchange
andmanipulation of textual information. Functions like fileread,importdata,
and textscan can be used to read data from text files, while functions such as
fprintf and diary can be used to write data to text files. This section explores
the techniques for performing input and output operationswith text files inMATLAB.

The basic syntax for reading data from a text file is:

Listing 7.15 Reading data from a text file.

fileData = fileread(’filename.txt’);

And the basic syntax for writing data to a text file is:

Listing 7.16 Writing data to a text file.

fileID = fopen(’filename.txt’, ’w’);
fprintf(fileID , ’Hello , world!’);
fclose(fileID);

Here are two examples demonstrating the usage of text files in MATLAB:

Listing 7.17 Reading and processing data from a text file.

% Read the text file
fileData = fileread(’data.txt’);

% Split the data into words
words = strsplit(fileData);

7.7 Audio Files (.wav, .mp3, .flac etc.) 225

% Count the number of words
wordCount = numel(words);

Listing 7.18 Writing formatted data to a text file.

% Open the text file for writing
fileID = fopen(’output.txt’, ’w’);

% Write formatted data to the file
fprintf(fileID , ’Name: %s\nAge: %d\nCity: %s\n’, ’John’,

25, ’New York’);

% Close the file
fclose(fileID);

7.7 Audio Files (.wav, .mp3, .flac etc.)

MATLAB supports reading and writing audio files, enabling audio processing and
analysis tasks. The audioread function is used to read audio files, while the
audiowrite function is used to write audio data to files. Various audio file for-
mats, such as WAV, MP3, and FLAC, can be handled in MATLAB. This section
demonstrates how to read audio files, apply basic operations, and save the modified
audio using MATLAB .

The basic syntax for reading an audio file is:

Listing 7.19 Reading an audio file.

[audioData , sampleRate] = audioread(’filename.wav’);

And the basic syntax for writing an audio file is:

Listing 7.20 Writing an audio file.

audiowrite(’filename.wav’, audioData , sampleRate);

Here are two examples demonstrating the usage of audio files in MATLAB:

Listing 7.21 Reading and playing an audio file.

% Read the audio file
[audioData , sampleRate] = audioread(’audio.wav’);

% Play the audio
sound(audioData , sampleRate);

Listing 7.22 Modifying and saving an audio file.

% Read the audio file
[audioData , sampleRate] = audioread(’input.mp3’);

226 7 Inputs and Outputs

% Increase the volume by a factor of 2
modifiedAudio = audioData * 2;

% Save the modified audio
audiowrite(’output.mp3’, modifiedAudio , sampleRate);

7.8 Video Files (.avi, .mp4, .mov etc.)

MATLAB provides capabilities for reading and writing video files, enabling video
processing and analysis tasks. The VideoReader class is used to read video files,
while the VideoWriter class is used to write video data to files. Various video
file formats, such as AVI, MP4, andMOV, can be handled in MATLAB. This section
demonstrates how to read video files, extract frames, apply operations, and save the
modified video using MATLAB.

The basic syntax for reading a video file is:

Listing 7.23 Reading a video file.

videoReader = VideoReader(’filename.mp4’);

And the basic syntax for writing a video file is:

Listing 7.24 Writing a video file.

videoWriter = VideoWriter(’filename.avi’);
open(videoWriter);
writeVideo(videoWriter , frames);
close(videoWriter);

Here are two examples demonstrating the usage of video files in MATLAB:

Listing 7.25 Reading and displaying video frames.

% Create a VideoReader object
videoReader = VideoReader(’video.mp4’);

% Read and display the video frames
while hasFrame(videoReader)
frame = readFrame(videoReader);
imshow(frame);
pause (1/ videoReader.FrameRate);
end

Listing 7.26 Processing and saving video frames.

% Create a VideoReader object
videoReader = VideoReader(’input.avi’);

% Create a VideoWriter object
videoWriter = VideoWriter(’output.avi’);

7.10 HDF5 Files (.hdf5) 227

open(videoWriter);

% Process and write the video frames
while hasFrame(videoReader)
frame = readFrame(videoReader);
grayFrame = rgb2gray(frame);
writeVideo(videoWriter , grayFrame);
end

% Close the VideoWriter object
close(videoWriter);

7.9 JSON Files (.json)

JSON (JavaScript Object Notation) is a lightweight data interchange format that is
easy for humans to read and write and easy for machines to parse and generate. MAT-
LAB provides functions for encoding and decoding JSON data, making it convenient
to interact with web services and APIs that use JSON. The jsondecode function is
used to parse JSONdata intoMATLABdata types, while thejsonencode function
is used to convert MATLAB data types to JSON format [2].

Here’s an example of parsing JSON data in MATLAB:

Listing 7.27 Parsing JSON data.

% JSON data
jsonData = ’{"name": "John", "age": 30, "city": "New

York"}’;

% Parse JSON data into a MATLAB structure
data = jsondecode(jsonData);

% Access the parsed data
disp(data.name);
disp(data.age);
disp(data.city);

7.10 HDF5 Files (.hdf5)

HDF5 (Hierarchical Data Format version 5) is a file format designed for storing large
and complex data sets. It provides efficient I/O performance and supports a variety of
data types, including multidimensional arrays, tables, and groups. MATLAB offers
functions for reading and writing HDF5 files, allowing you to work with large data
sets effectively. The h5read function is used to read data from an HDF5 file, while
the h5write function is used to write data to an HDF5 file [3].

228 7 Inputs and Outputs

Here’s an example of reading data from an HDF5 file in MATLAB:

Listing 7.28 Reading data from an HDF5 file.

% Read data from an HDF5 file
data = h5read(’data.h5’, ’/dataset ’);

% Access the read data
disp(data);

7.11 XML Files (.xml)

XML (eXtensible Markup Language) is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable and machine-
readable. MATLAB provides functions for parsing XML data into MATLAB struc-
tures, making it convenient to work with data stored in XML format. The xmlread
function is used to read XML data from a file or a string, while the xmlwrite
function is used to write XML data to a file [4].

Here’s an example of parsing XML data in MATLAB:

Listing 7.29 Parsing XML data.

% Read XML data from a file
xmlData = xmlread(’data.xml’);

% Access the parsed data
disp(xmlData.getElementsByTagName (’name’).item (0).

getTextContent ());
disp(xmlData.getElementsByTagName (’age’).item (0).

getTextContent ());
disp(xmlData.getElementsByTagName (’city’).item (0).

getTextContent ());

7.12 Database Files (.csv, .odb, etc.)

MATLAB provides functions to read and write data from various database file for-
mats, such as comma-separated value (CSV) files and OpenDocument Database
(ODB) files. In earlier versions ofMATLAB, the csvread() [5] and dlmread()
[6] functions were commonly used for reading CSV files. However, these functions
are now considered outdated and are not recommended for use in newer versions of
MATLAB [7].

Instead, it is recommended to use the readmatrix() function for reading data
from CSV files and other delimited text files [8]. The readmatrix() function
provides a more versatile and efficient way to read data from text files.

7.13 Data Import and Analysis 229

Here’s an example of reading data from a CSV file using the readmatrix()
function:

Listing 7.30 Reading data from a CSV file using readmatrix().

% Read data from a CSV file
filename = ’data.csv’;
data = readmatrix(filename);

In this example, the readmatrix() function reads the data from the file
’data.csv’ and stores it in the data variable as a numeric matrix.

For writing data to a CSV file, you can use the writematrix() function
[9], which is the recommended alternative to the outdated csvwrite() and
dlmwrite() functions. Here’s an example:

Listing 7.31 Writing data to a CSV file using writematrix().

% Create a numeric matrix
data = [1 2 3; 4 5 6; 7 8 9];

% Write the matrix to a CSV file
filename = ’output.csv’;
writematrix(data , filename);

In this example, a numeric matrix data is created, and then the
writematrix() function is used to write the matrix to the file ’output.csv’.

The readmatrix() and writematrix() functions provide additional
options for specifying the delimiter, numeric format, and other parameters to
customize the input and output of delimited text files.

By using these recommended functions, MATLAB simplifies the process of read-
ing and writing data from various database file formats, ensuring better performance
and compatibility with newer versions of MATLAB.

7.13 Data Import and Analysis

MATLAB provides a wide range of functions for importing and analyzing data from
various sources, such as text files, spreadsheets, and databases. In earlier versions
of MATLAB, functions like textread(), xlsread(), and csvread() were
commonly used for importing data [10]. However, these functions have been replaced
by more versatile and efficient alternatives in newer versions of MATLAB.

• Data Import and Export
MATLAB supports importing data from text files, spreadsheets, and other file
formats. It also allows for hardware interfacing and web access. Some of the
commonly used functions for data import and export include:

– textscan: Read formatted data from text file or string (recommended over
textread)

230 7 Inputs and Outputs

– readtable: Read tabular data from file (recommended over xlsread for Excel
files)

– writetable: Write tabular data to file

For importing data from text files, the readtable()[11] and readmatrix()
[12] functions are recommended instead of textread() [13]. These functions
provide more flexibility in handling different file formats and data types. Here’s an
example of using readtable() to import data from a tab-delimited text file:

Listing 7.32 Importing data from a text file using readtable().

% Import data from a tab -delimited text file
filename = ’data.txt’;
data = readtable(filename , ’Delimiter ’, ’\t’);

Listing 7.33 Example of importing data from a text file.

fileID = fopen(’data.txt’, ’r’);
dataArray = textscan(fileID , ’%f %f %f’, ’Delimiter ’, ’,

’);
fclose(fileID);

For importing data from spreadsheets, the readtable() and readcell() func-
tions are recommended instead of xlsread() [14]. These functions provide more
options for specifying the range of data to import and handling different data types.
Here’s an example of using readtable() to import data from an Excel file:

Listing 7.34 Importing data from an Excel file using readtable().

% Import data from an Excel file
filename = ’data.xlsx’;
data = readtable(filename , ’Sheet’, ’Sheet1 ’, ’Range’, ’

A1:D10’);

Listing 7.35 Example of reading data from an Excel file.

data = readtable(’data.xlsx’, ’Sheet’, 1);

Once the data is imported,MATLAB provides a rich set of functions for data analysis
and visualisation. The summary() function can be used to get a quick overview of
the imported data, including the number of observations, variable names, and data
types. For example:

Listing 7.36 Summarizing imported data using summary().

% Summarize the imported data
summary(data);

• Large Files and Big Data
MATLAB provides capabilities to access and process collections of files and large
data sets [15]. Some key functions include:

7.13 Data Import and Analysis 231

– datastore: Access collections of data files as a single entity
– tall: Array that stores data on disk and allows for efficient computations

Listing 7.37 Example of using datastore to read multiple files.

ds = datastore(’*.txt’, ’TextType ’, ’string ’);
data = readall(ds);

Listing 7.38 Example of using tall arrays for big data processing.

t = tall(csvDatastore(’largedata.csv’));
result = gather(t.var1 + t.var2);

• Preprocessing Data
MATLABalso provides functions for data preprocessing, such as handlingmissing
values, filtering, and transforming variables. The ismissing() function can be
used to identify missing values in the data, while the fillmissing() function
can be used to replace missing values with specific values or interpolated values.
Data preprocessing is an essential step in data analysis. MATLAB provides func-
tions for data cleaning, smoothing, and grouping [15]. Some commonly used
functions include:

– fillmissing: Fill missing values in arrays
– smooth: Smooth data using moving average or Savitzky-Golay filter
– groupsummary: Compute summary statistics for groups of data

Listing 7.39 Example of filling missing data.

data = fillmissing(data , ’constant ’, 0);

Listing 7.40 Example of smoothing data using moving average.

smoothed_data = smooth(data , 5);

• Visual Exploration
MATLAB’s graphical capabilities allow for visual exploration of data through
panning, zooming, rotating graphics, and modifying and saving observations [15].
Some useful functions and tools include:

– plot: Create 2D line plots
– scatter: Create scatter plots
– histogram: Plot histograms
– imagesc: Display matrix as scaled image
– Data Brushing: Interactively select and highlight data points

For data visualisation, MATLAB offers a wide range of plotting functions, includ-
ing plot(), scatter(), bar(), and histogram() [16]. These functions
allow you to create various types of charts and graphs to visualize and explore the
imported data.

232 7 Inputs and Outputs

• Managing Experiments
MATLAB provides tools to design experiments, run MATLAB code, visualize,
filter, and compare results [15]. The Experiment Manager app allows for orga-
nizing and running experiments, while the Parallel Computing Toolbox enables
parallel execution of experiments on multi-core processors and clusters.

• Climate Data Visualisation and Analysis
MATLAB offers resources for climate data visualisation and analysis through the
MathWorks Teaching Resources portal. These resources provide examples and
tutorials on working with climate data, creating visualisations, and performing
statistical analyses.
By leveraging the powerful data import and analysis capabilities of MATLAB,
users can efficiently load, process, and gain insights from their data, enabling
them to make informed decisions and solve complex problems.

7.14 Laboratory

1. Reading Data from a Text File In this lab work, you will learn how to read data
from a text file into MATLAB.

a. Create a text file named “data.txt” in a directory of your choice, containing
the following data:

1.2 3.4 5.6
7.8 9.0 2.1
4.5 6.7 8.9

b. In MATLAB, navigate to the directory containing the “data.txt” file using the
‘cd’ command.

c. Use the ‘dlmread’ function to read the data from the text file into a matrix.
The basic syntax is:

Listing 7.41 Reading data from a text file.

data = dlmread(’data.txt’);

d. Print the contents of the ‘data’ matrix to the MATLAB command window
using the ‘disp‘ function.

disp(data)

Expected Output:

1.2000 3.4000 5.6000
7.8000 9.0000 2.1000
4.5000 6.7000 8.9000

7.14 Laboratory 233

2. Writing Data to a Text File
In this lab work, you will learn how to write data from MATLAB to a text file.

a. Create a matrix ‘data’ in MATLAB with some sample data:

data = [1.5 2.7 4.3; 6.9 8.1 3.2; 5.4 7.6 9.8];

b. Use the ‘dlmwrite’ function to write the contents of the ‘data’ matrix to a text
file named “output.txt". The basic syntax is:

Listing 7.42 Writing data to a text file.

dlmwrite(’output.txt’, data , ’delimiter ’, ’\t’);

c. Open the “output.txt” file in a text editor to verify that the data was written
correctly. The data should be tab-separated.
Expected Output in “output.txt”:

1.5000 2.7000 4.3000
6.9000 8.1000 3.2000
5.4000 7.6000 9.8000

3. Command-Line Input
In this labwork, youwill learn how to prompt the user for input from the command
line and use the input in MATLAB.

a. Use the ‘input’ function to prompt the user to enter their name. The basic
syntax is:

Listing 7.43 Command-line input.

name = input(’Enter your name: ’, ’s’);

b. Display a greeting message using the ‘fprintf’ function, incorporating the
user’s name. The basic syntax is:

Listing 7.44 Formatted output.

fprintf(’Hello , %s!\n’, name);

Sample Output:

Enter your name: John
Hello , John!

4. Formatted Output
In this lab work, you will learn how to format output in MATLAB using the
‘fprintf’ function.

234 7 Inputs and Outputs

a. Define some variables in MATLAB:

x = 3.14159;
y = 2.71828;
z = 1.61803;

b. Use the ‘fprintf’ function to print the values of these variables with a specific
number of decimal places. The basic syntax is:

Listing 7.45 Formatted output.

fprintf(’x = %.2f, y = %.3f, z = %.4f\n’, x, y
, z);

Expected Output:

x = 3.14, y = 2.718, z = 1.6180

5. Data Visualisation
In this lab work, you will learn how to create a simple plot in MATLAB using
the ‘plot’ function.

a. Define some sample data:

x = linspace (0, 2*pi , 100);
y = sin(x);

b. Use the ‘plot’ function to create a plot of the sine wave. The basic syntax is:

Listing 7.46 Plotting data.

plot(x, y);

c. Add a title, x-label, and y-label to the plot using the ‘title’, ‘xlabel’, and
‘ylabel’ functions, respectively.

title(’Sine Wave’);
xlabel(’x’);
ylabel(’sin(x)’);

d. Reading data from an excel In a health examination, the blood pressure
data is stored in an Excel file named bloodpressure.xls. Please read
the blood pressure data from this file. Open the file outside of MATLAB to
view the data, specifically,

• Reads thebloodpressure data from theExcel filebloodpressure.xls
using the readtable function.

• Displays the data in the MATLAB Command Window.
• Opens the Excel file using the winopen function to view the data outside

of MATLAB.

7.14 Laboratory 235

Here is the MATLAB code to achieve this:

% Read the blood pressure data from the Excel file
filename = ’bloodpressure.xls’;
data = readtable(filename);

% Display the data
disp(data);

% Open the file outside MATLAB to view the data
winopen(filename);

6. Import an image file, and output the image after being processed

• Import an image file and output the processed image.
• Read the image of a mountain from the file peak.jpg.
• Enlarge the image by a factor of 2.
• Output the enlarged image.

Here is the MATLAB code to achieve this:

% Read the image of a mountain from the file ’peak.
jpg ’

image = imread(’peak.jpg’);

% Enlarge the image by a factor of 2
enlarged_image = imresize(image , 2);

% Display the original and enlarged images
figure;
subplot(1, 2, 1);
imshow(image);
title(’Original Image’);

subplot(1, 2, 2);
imshow(enlarged_image);
title(’Enlarged Image’);

% Save the enlarged image to a file
imwrite(enlarged_image , ’peak_enlarged.jpg’);

7. Read a video file
The provided video file (visiontraffic.avi) is intended for road vehicle
monitoring. Please accomplish the following tasks:

• Identify and mark the vehicles in the video with red bounding boxes.
• Develop and execute a program to count the total number of vehicles detected
in the video.

The steps are listed here:

• Loads the video file visiontraffic.avi.
• Creates a video player object for displaying the video.

236 7 Inputs and Outputs

• Uses a foreground detector to identify moving objects (vehicles).
• Analyzes the blobs to find connected components representing vehicles.
• Draws red bounding boxes around detected vehicles.
• Counts the cumulative number of vehicles throughout the video.
• Displays the processed video and outputs the total vehicle count.

Here is the MATLAB code to achieve these tasks:

% Load the video file
videoReader = VideoReader(’visiontraffic.avi’);

% Create a video player object for displaying the
video

videoPlayer = vision.VideoPlayer(’Position ’, [100,
100, 680, 520]);

% Create a foreground detector object
foregroundDetector = vision.ForegroundDetector(’

NumGaussians ’, 3, ...
’NumTrainingFrames ’, 50);

% Create a blob analysis object to find connected
components

blobAnalysis = vision.BlobAnalysis(’
BoundingBoxOutputPort ’, true , ...
’AreaOutputPort ’, false , ’CentroidOutputPort ’,

false , ...
’MinimumBlobArea ’, 150);

% Initialize the vehicle count
vehicleCount = 0;

% Process each frame of the video
while hasFrame(videoReader)

% Read the next frame
frame = readFrame(videoReader);

% Detect the foreground in the current frame
foreground = step(foregroundDetector , frame);

% Perform morphological operations to remove
noise

filteredForeground = imopen(foreground , strel(’
rectangle ’, [3, 3]));

filteredForeground = imclose(filteredForeground ,
strel(’rectangle ’, [15, 15]));

filteredForeground = imfill(filteredForeground , ’
holes ’);

% Detect connected components in the foreground
bbox = step(blobAnalysis , filteredForeground);

% Draw bounding boxes around detected vehicles

7.15 Problems 237

result = insertShape(frame , ’Rectangle ’, bbox , ’
Color ’, ’red’);

% Update vehicle count
vehicleCount = vehicleCount + size(bbox , 1);

% Display the result
step(videoPlayer , result);

end

% Release the video player object
release(videoPlayer);

% Display the total vehicle count
disp([’Total number of vehicles: ’, num2str(

vehicleCount)]);

These lab works and exercises cover various aspects of input/output operations
in MATLAB, including reading data from files, writing data to files, command-line
input, formatted output, and data visualisation. Each lab work provides step-by-
step instructions, sample code snippets, and expected outputs to facilitate hands-on
learning and reinforce the concepts covered in this chapter.

7.15 Problems

1. Write a MATLAB function that takes a text file as input and counts the occur-
rences of each unique word in the file. The function should return a struct or a
cell array containing the unique words and their corresponding counts.

2. Create aMATLAB script that reads data from aCSV (Comma-SeparatedValues)
file and performs basic data analysis tasks, such as calculating themean, median,
and standard deviation for each column of numerical data.

3. Implement a MATLAB function that takes a text file as input and removes all
occurrences of a specified string from the file. The function should create a new
file with the modified contents.

4. Write a MATLAB script that prompts the user to enter a series of file names and
then concatenates the contents of all the specified files into a single output file.

5. Create a MATLAB function that takes a matrix as input and saves it to a binary
file. The function should also include the ability to load the matrix from the
binary file at a later time.

6. Develop a MATLAB script that reads data from an Excel file and creates a bar
plot or a histogram to visualise the data distribution.

7. Implement a MATLAB function that takes a text file as input and performs
basic text processing tasks, such as counting the number of lines, words, and
characters, as well as identifying the most frequently occurring word in the file.

238 7 Inputs and Outputs

8. Write a MATLAB script that prompts the user to enter a directory path and then
lists all the files in that directory, along with their sizes and modification dates.

9. Create a MATLAB function that takes a text file as input and replaces all occur-
rences of a specified word or phrase with a new word or phrase. The function
should create a new file with the modified contents.

10. Develop a MATLAB script that reads data from a text file, where each line
represents a data point with multiple values separated by commas or tabs. The
script should plot the data using appropriate visualisation techniques (e.g., scatter
plot, line plot) and allow the user to interactively explore the data.

7.16 Summary

• File I/O operations: The chapter covers various file input/output operations in
MATLAB, including reading from andwriting to text files,Excel files, and binary
files.

• MATLAB supports a wide range of file formats for input and output, including
MAT-files, spreadsheet files, binary files, text files, image files, audio files,
video files, JSON files, HDF5 files, XML files, and database files.

• MAT-files are MATLAB-specific files that can store multiple variables, including
arrays, structures, and cell arrays, in a binary format.

• Spreadsheet files, such as Excel files, can be read and written using functions like
xlsread and xlswrite.

• Binary files store data in a binary format and can be efficiently read and written
using functions like fread and fwrite.

• Text files are commonly used for storing and processing textual data, and MAT-
LAB provides functions like fileread, textscan, and fprintf for reading
from and writing to text files.

• Image files in various formats, such as PNG, JPEG, and TIFF, can be read using
the imread function and written using the imwrite function.

• Audio files, such as WAV, MP3, and FLAC, can be read using the audioread
function and written using the audiowrite function.

• Video files, such as AVI, MP4, and MOV, can be read using the VideoReader
class and written using the VideoWriter class.

• JSON files are lightweight data interchange formats that can be parsed into MAT-
LAB data types using the jsondecode function and encoded from MATLAB
data types using the jsonencode function.

• HDF5 files are designed for storing large and complex data sets and can be read
using the h5read function and written using the h5write function.

• XML files are markup language files that can be parsed into MATLAB structures
using the xmlread function and written using the xmlwrite function.

• Database files such as CSV and ODB files, can be read using functions like
csvread and odbcread to access data stored in databases.

References 239

• MATLAB’s comprehensive file input/output capabilities enable efficient data stor-
age, retrieval, and exchange across a wide range of file formats, facilitating data
analysis, processing, and sharing of results.

• The additional file formats, including JSON, HDF5, XML, and database files,
provide more options for data input and output, catering to specific data storage
and exchange requirements in various domains and applications.

For Undergraduate (UG) Students:

This chapter introduces essential file handling and data processing concepts in MAT-
LAB. It covers basic file operations like reading from and writing to text, Excel,
and binary files, enabling students to work with various data formats. The chapter
also demonstrates data visualisation techniques using bar plots and histograms,
allowing students to visually represent and analyze data. Additionally, it explores
text processing tasks such as word counting, phrase replacement, and statistical
analysis, equipping students with tools for working with textual data. Lastly, the
chapter discusses directory operations, teaching students how to list files and their
associated metadata within a specified directory. Overall, this chapter provides a
solid foundation for UG students to work with files, visualise data, process text, and
manage directories in MATLAB.

For Postgraduate (PG) Students and Professional Researchers or Engineers:

Buildingupon the fundamental concepts covered in theUGsection, this chapter offers
advanced techniques and considerations for file handling, data visualisation, text pro-
cessing, anddirectory operations inMATLAB. It delves intomore complex scenarios,
such as handling large files efficiently, implementing error handling and robust input
validation, and exploring additional visualisation options like line plots and scat-
ter plots. The chapter also discusses advanced text processing techniques, such as
regular expression-based replacements and natural language processing integration.
Furthermore, it covers strategies for optimizing performance through techniques like
multithreading, parallel processing, and memory-mapped files. For researchers and
engineers, the chapter highlights potential extensions and variations, such as inte-
grating with version control systems, developing graphical user interfaces (GUIs)
or command-line interfaces (CLIs), and implementing logging and error reporting
mechanisms. Overall, this chapter equips PG students, researchers, and professional
engineers with advanced skills and considerations for working with files, visualizing
data, processing text, andmanaging directories inMATLAB, enabling them to tackle
more complex and specialised tasks in their respective fields.

References

1. MathWorks, Read Spreadsheet Data into Table. [Online]. https://uk.mathworks.com/help/
matlab/import_export/read-spreadsheet-data-into-table.html. [Accessed: Feb. 17, 2024]

2. MathWorks, JSON Processing. [Online]. https://www.mathworks.com/help/matlab/json-
format.html. [Accessed: Feb. 17, 2024]

https://uk.mathworks.com/help/matlab/import_export/read-spreadsheet-data-into-table.html
https://uk.mathworks.com/help/matlab/import_export/read-spreadsheet-data-into-table.html
https://www.mathworks.com/help/matlab/json-format.html
https://www.mathworks.com/help/matlab/json-format.html

240 7 Inputs and Outputs

3. HDF5 Files. (n.d.). MathWorks. https://www.mathworks.com/help/matlab/hdf5-files.html
4. XML Processing. (n.d.). MathWorks. https://www.mathworks.com/help/matlab/xml-

documents.html
5. MathWorks, csvread. [Online]. https://uk.mathworks.com/help/matlab/ref/csvread.html.

[Accessed: Feb. 17, 2024]
6. MathWorks, dlmread. [Online]. https://uk.mathworks.com/help/matlab/ref/dlmread.html.

[Accessed: Feb. 17, 2024]
7. MathWorks, csvwrite. [Online]. https://uk.mathworks.com/help/matlab/ref/csvwrite.html.

[Accessed: Feb. 17, 2024]
8. MathWorks, Readmatrix. [Online]. https://uk.mathworks.com/help/matlab/ref/readmatrix.

html. [Accessed: Feb. 17, 2024]
9. MathWorks, Writematrix. [Online]. https://uk.mathworks.com/help/matlab/ref/writematrix.

html. [Accessed: Feb. 17, 2024]
10. MathWorks, Data Import and Export. [Online]. https://uk.mathworks.com/help/matlab/data-

import-and-export.html. [Accessed: Feb. 17, 2024]
11. MathWorks, readtable. [Online]. https://uk.mathworks.com/help/matlab/ref/readtable.html.

[Accessed: Feb. 17, 2024]
12. MathWorks, readmatrix. [Online]. https://uk.mathworks.com/help/matlab/ref/readmatrix.

html. [Accessed: Feb. 17, 2024]
13. MathWorks, textread. [Online]. https://uk.mathworks.com/help/matlab/ref/textread.html.

[Accessed: Feb. 17, 2024]
14. MathWorks, xlsread. [Online]. https://uk.mathworks.com/help/matlab/ref/xlsread.html.

[Accessed: Feb. 17, 2024]
15. MathWorks, “MATLABFundamentals,” [Online]. https://www.mathworks.com/help/matlab/.

[Accessed: Feb. 17, 2024]
16. MathWorks, Data Visualization. [Online]. https://uk.mathworks.com/help/thingspeak/

visualize-data.html. [Accessed: Feb. 17, 2024]

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.mathworks.com/help/matlab/hdf5-files.html
https://www.mathworks.com/help/matlab/xml-documents.html
https://www.mathworks.com/help/matlab/xml-documents.html
https://uk.mathworks.com/help/matlab/ref/csvread.html
https://uk.mathworks.com/help/matlab/ref/dlmread.html
https://uk.mathworks.com/help/matlab/ref/csvwrite.html
https://uk.mathworks.com/help/matlab/ref/readmatrix.html
https://uk.mathworks.com/help/matlab/ref/readmatrix.html
https://uk.mathworks.com/help/matlab/ref/writematrix.html
https://uk.mathworks.com/help/matlab/ref/writematrix.html
https://uk.mathworks.com/help/matlab/data-import-and-export.html
https://uk.mathworks.com/help/matlab/data-import-and-export.html
https://uk.mathworks.com/help/matlab/ref/readtable.html
https://uk.mathworks.com/help/matlab/ref/readmatrix.html
https://uk.mathworks.com/help/matlab/ref/readmatrix.html
https://uk.mathworks.com/help/matlab/ref/textread.html
https://uk.mathworks.com/help/matlab/ref/xlsread.html
https://www.mathworks.com/help/matlab/
https://uk.mathworks.com/help/thingspeak/visualize-data.html
https://uk.mathworks.com/help/thingspeak/visualize-data.html
http://creativecommons.org/licenses/by/4.0/

Chapter 8
Graphics and Data Visualisation

Chapter Learning Outcomes

• Understand the importance of data visualisation in communicating complex
information effectively.

• Create various types of 2D and 3D plots usingMATLAB functions such as plot,
scatter, bar, contour, surf, and mesh.

• Visualise data distributions using plots like histograms, pie charts, box plots,
and heatmaps.

• Plot discrete data using stem plots, stair plots, and Pareto charts.
• Visualise vector fields and volume data using functions like quiver, slice,
and isosurface.

• Display and manipulate images in MATLAB using functions such as imshow,
imadjust, and histeq.

• Create animations using movie and getframe functions.
• Apply formatting and annotation techniques to enhance the clarity and aesthetics
of plots.

Chapter Key Words

• Data visualisation: Data visualisation is the graphical representation of informa-
tion and data, using visual elements like charts, graphs, and maps to provide an
accessible way to understand trends, outliers, and patterns in data. It helps to com-
municate complex ideas and relationships clearly and efficiently, making it easier
for users to analyse and derive insights from large amounts of data. MATLAB
provides a wide range of powerful tools and functions for creating informative
and visually appealing data visualisations.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_8

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_8&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_8

242 8 Graphics and Data Visualisation

• 2D and 3D Plots: 2D plots are graphical representations of data on a two-
dimensional plane, using the x-axis and y-axis to display the relationship between
two variables. 3D plots, on the other hand, introduce a third dimension (z-axis)
to represent an additional variable or to create a three-dimensional surface. MAT-
LAB offers various functions to create 2D and 3D plots, such as plot, scatter,
bar, contour, surf, and mesh, enabling users to Visualise data in different
ways and gain insights from multiple perspectives.

• Data Distribution Plots: Data distribution plots are visual representations that
show how data is spread out or distributed. These plots help to identify patterns,
central tendencies, and outliers in the data. Common types of data distribution
plots include histograms, which display the frequency distribution of a dataset;
pie charts, which show the proportional composition of categories in a dataset;
box plots, which illustrate the distribution of data based on summary statistics;
and heatmaps, which represent data values using color-coded matrices [1].

• Discrete Data Plots: Discrete data plots are used to Visualise data that takes on
distinct, separate values, rather than continuous values. These plots are particularly
useful for displaying data that represents counts, categories, or integers. Examples
of discrete data plots in MATLAB include stem plots, which use vertical lines to
show discrete data points; stair plots, which display data as a series of horizontal
and vertical steps; and Pareto charts, which combine a bar graph and a line graph
to highlight the most significant factors in a dataset [1].

• Vector Fields and Volume visualisation: Vector fields are used to represent the
magnitude anddirection of a quantity at different points in space, such as velocity or
force. Volume visualisation techniques allow the display and exploration of three-
dimensional scalar or vector data. MATLAB provides functions like quiver
for plotting 2D or 3D vector fields and slice, isosurface, and isocaps
for visualising volume data, enabling users to gain insights into complex spatial
phenomena [2].

• Plot:Agraphical representationofdata, typicallyasadiagram,graph,orchart.Plots
are used to visualise relationships between variables, identify trends, and commu-
nicate findings. MATLAB provides a wide range of plotting functions for creating
various types of plots, such as line plots, scatter plots, bar charts, and more [3].

• Figure: InMATLAB, a figure refers to a window that contains one ormore plots or
other graphical objects. Figures provide a container for organising and displaying
visualisations.Multiple figures can be createdwithin aMATLABsession, allowing
for the simultaneous display of different plots or graphical representations [4].
Graphics functions include 2-D and 3-D plotting functions to Visualise data and
communicate results. Customise plots either interactively or programmatically [5].

8.1 Introduction

Data visualisation is the process of translating data into graphical representations
like plots, charts, maps, and 3D visualisations, which is a powerful technique that
involves translating complex data into graphical representations, such as plots, charts,

8.1 Introduction 243

maps, and three-dimensional visualisations. This process enables researchers, ana-
lysts, and decision-makers to identify patterns, trends, and outliers within the data
more effectively than by examining raw numerical values. By presenting data in a
visual format, data visualisation leverages the human brain’s remarkable ability to
perceive and process visual information, facilitating the extraction of insights and
the communication of complex concepts more intuitively.

Moreover, data visualisation plays a pivotal role in converting rawdata into action-
able information. By transforming abstract numerical values into compelling visual
representations, data visualisation empowers stakeholders to comprehend the under-
lying messages and relationships within the data more effectively. This enhanced
understanding enables informed decision-making processes, driving strategic plan-
ning, resource allocation, and the identificationof opportunities and challengeswithin
various domains, which helps identify patterns, trends, and outliers in the data.

• Importance of Data visualisation
In today’s data-driven world, the ability to effectively communicate and inter-
pret complex information is of paramount importance. Data visualisation serves
as a bridge between raw data and human understanding, enabling individuals
from diverse backgrounds and expertise levels to grasp intricate patterns and rela-
tionships that may be obscured in numerical form. By presenting information
in a visually appealing and intuitive manner, data visualisation techniques can
facilitate collaboration, enhance decision-making processes, and foster a deeper
comprehension of the underlying phenomena.

• Applications of Data visualisation
Data visualisation finds applications in a wide range of domains, spanning scien-
tific research, business analytics, education, journalism, and beyond. In scientific
research, visualisations play a crucial role in communicating findings, illustrating
complex concepts, and identifying patterns that may lead to new discoveries. In
the business world, data visualisation tools are employed to analyse market trends,
customer behavior, and operational performance, enabling data-driven decision-
making processes. Additionally, data visualisation techniques are increasingly uti-
lized in educational settings to enhance learning experiences and facilitate the
understanding of abstract concepts.
By introducing subsections within the introduction, you can provide a more struc-
tured and organised presentation of the key aspects or topics related to the main
subject. This approach allows for a more comprehensive introduction and sets the
stage for the subsequent sections of the document or research paper.

• Types of Plots in MATLAB

– Line plots: plot, plot3, animatedline, fplot, fplot3, loglog, semilogx, semilogy,
stairs

– Scatter and bubble charts: scatter, scatter3, bubblecloud, bubblechart, bub-
blechart3

– Bar graphs: bar, bar3, bar3h, barh, Pareto
– Histograms: histogram, histogram2, polarhistogram
– Contour plots: contour, contour3, contourf, fcontour
– Surface andmesh plots: mesh,meshc,meshz, surf, surfc, surfx, surfy, waterfall

244 8 Graphics and Data Visualisation

– Polar plots: polarplot, polarscatter, polar, compass, ezpolar
– Pie charts: pie, pie3
– Geographic plots: geoplot, geoscatter, geobubble
– Specialisedplots: streamline, streamtube, quiver, quiver3, stemplot,wordcloud.

This section explores various plotting options available in MATLAB, providing
a comprehensive guide to visualising data effectively. MATLAB offers a wide
range of plotting functions to create different types of graphs and charts, each
suited to specific kinds of data and analysis needs, a few examples are as shown in
Figs. 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9 from MATLAB gallery [6].

8.2 2D and 3D Plots

This section covers the various types of 2D and 3D plots available in MAT-
LAB, which are essential for visualising and understanding data. Line plots, cre-
ated using functions like plot, semilogx, semilogy, and loglog, are used
to display trends and relationships between variables. Scatter and bubble charts
(scatter, scatter3, bubblechart) are useful for visualising the distribution
of data points and identifying correlations. Bar charts (bar, barh, bar3, bar3h,
pareto) are effective for comparing categories or values. Contour plots (contour,
contourf,contour3,fcontour) display the level curves of a 3Dsurface,while
surface and mesh plots (surf, mesh, meshc, meshz, waterfall) create 3D
visualisations of data. Geographic plots (geoplot, geoscatter, geobubble)

Fig. 8.1 MATLAB gallery: animation and contour plots

8.2 2D and 3D Plots 245

Fig. 8.2 MATLAB gallery: data distribution plots

Fig. 8.3 MATLAB gallery: discrete data plots

246 8 Graphics and Data Visualisation

Fig. 8.4 MATLAB gallery: geographic plots and images

are used to plot data on maps, and polar plots (polarplot, polarscatter,
polarhistogram, compass) display data in a polar coordinate system [3].

8.2.1 Multiple Plots and Subplots

In MATLAB, it is often useful to display multiple plots or subplots within a single
figure window. This allows for easy comparison and analysis of different data sets
or different aspects of the same data. MATLAB provides several functions to create
and manage multiple plots and subplots, such as subplot, tiledlayout, and nexttile.

The basic syntax for creating subplots using the subplot function is:

Listing 8.1 Subplot syntax.

subplot(m, n, p)

where m and n specify the number of rows and columns in the subplot grid, and p
specifies the subplot index.

8.2 2D and 3D Plots 247

Fig. 8.5 MATLAB gallery: line plots

Fig. 8.6 MATLAB gallery: polar plots

248 8 Graphics and Data Visualisation

Fig. 8.7 MATLAB gallery: scatter and bubble charts

Fig. 8.8 MATLAB gallery: surface and mesh plots

8.2 2D and 3D Plots 249

Fig. 8.9 MATLAB gallery: vector fields and volume visualisation

Here’s an example that creates a 2x2 subplot grid and plots different functions in
each subplot:

Listing 8.2 Multiple subplots example.

x = linspace(-pi , pi , 100);

subplot (2, 2, 1)
plot(x, sin(x))
title(’Sine Function ’)

subplot (2, 2, 2)
plot(x, cos(x))
title(’Cosine Function ’)

subplot (2, 2, 3)
plot(x, tan(x))
title(’Tangent Function ’)

subplot (2, 2, 4)
plot(x, exp(x))
title(’Exponential Function ’)

Another way to create subplots is using the tiledlayout and nexttile functions,
which provide more flexibility in arranging the subplots [7]. Here’s an example:

250 8 Graphics and Data Visualisation

Listing 8.3 Tiledlayout and nexttile example.

x = linspace (0, 10, 100);

tiledlayout (2, 1)

nexttile
plot(x, x.^2)
title(’Square Function ’)

nexttile
plot(x, sqrt(x))
title(’Square Root Function ’)

These examples demonstrate how to create multiple plots and subplots in MAT-
LAB, allowing for effective visualisation and comparison of different data sets or
functions within a single figure window.

8.2.2 Customising Plot Appearance

MATLAB offers a wide range of options to customise the appearance of plots, allow-
ing users to create visually appealing and informative graphics. These customisations
include setting colours, line styles,markers, labels, titles, legends, andmore. Bymod-
ifying these properties, users can effectively communicate their data and enhance the
readability of their plots.

The basic syntax for customising plot appearance is:

Listing 8.4 Plot customisation syntax.

plot(x, y, ’LineSpec ’)

where ‘LineSpec’ is a character vector that specifies the line style, marker, and
colour [8].

Here’s an example that demonstrates customising the line style, marker, and
colour:

Listing 8.5 Customising line style, marker, and colour.

x = linspace (0, 2*pi , 100);
y = sin(x);

plot(x, y, ’r--o’, ’LineWidth ’, 2, ’MarkerSize ’, 8, ’
MarkerFaceColor ’, ’b’)

xlabel(’x’)
ylabel(’sin(x)’)
title(’Sine Function with Customised Appearance ’)

8.2 2D and 3D Plots 251

In this example, ‘r–o’ specifies a red dashed line with circular markers,
‘LineWidth’ sets the line width to 2, ‘MarkerSize’ sets the marker size to 8, and
‘MarkerFaceColor’ sets the marker face colour to blue.

Another example showcases how to customise the axes labels, title, and legend:

Listing 8.6 Customising labels, title, and legend.

x = 0:0.1:10;
y1 = exp(-0.2x);
y2 = exp(-0.4x);

plot(x, y1 , ’b-’, ’LineWidth ’, 2)
hold on
plot(x, y2 , ’r--’, ’LineWidth ’, 2)
xlabel(’Time (s)’)
ylabel(’Amplitude ’)
title(’Exponential Decay’)
legend(’Decay Rate 0.2’, ’Decay Rate 0.4’, ’Location ’, ’

northeast ’)

This example plots two exponential decay functions with different decay rates,
customises the line styles and colours, and adds informative labels, a title, and a
legend.

By leveraging these customisation options, users can create visually stunning and
informative plots that effectively communicate their data and findings.

8.2.3 Interactive Plot Features

MATLAB provides a range of interactive plot features that allow users to explore
and analyze data directly within the figure window. These features include zooming,
panning, data cursor, and plot rotation, which enable users to gain deeper insights
into their data and make informed decisions based on their visualisations.

The basic syntax for enabling interactive plot features is:

Listing 8.7 Enabling interactive plot features.

figure
plot(x, y)
zoom on
pan on
datacursormode on
rotate3d on

252 8 Graphics and Data Visualisation

Here’s an example that demonstrates the use of interactive plot features:

Listing 8.8 Interactive plot features example.

t = linspace (0, 10, 1000);
x = sin(2pit);
y = cos(2pit);
z = t;

figure
plot3(x, y, z)
xlabel(’sin (2\ pit)’)
ylabel(’cos (2\ pit)’)
zlabel(’t’)
title(’Interactive 3D Plot’)

zoom on
pan on
datacursormode on
rotate3d on

In this example, a 3D parametric curve is plotted using plot3, and interactive
features like zooming, panning, data cursor, and plot rotation are enabled.

Another example showcases the use of the ginput function for interactive data
selection:

Listing 8.9 Interactive data selection using ginput.

x = linspace (0, 2*pi , 100);
y = sin(x);

figure
plot(x, y)
xlabel(’x’)
ylabel(’sin(x)’)
title(’Interactive Data Selection ’)

[selected_x , selected_y] = ginput (3);
hold on
plot(selected_x , selected_y , ’ro’, ’MarkerSize ’, 10)

This example plots a sine function and allows the user to select three points
interactively using the ginput function. The selected points are then plotted as red
circles on top of the original plot.

By leveraging these interactive plot features, users can explore their data in amore
engaging and dynamic manner, leading to better understanding and more effective
data-driven decision making.

8.2 2D and 3D Plots 253

8.2.4 Specialised Plot Types

MATLAB offers a wide range of specialised plot types that cater to specific data
visualisation needs [9]. These plot types include stem plots, stair plots, area plots,
pie charts, polar plots, and contour plots, among others [10]. Each of these plot
types is designed to effectively communicate specific aspects of the data and provide
unique insights into the underlying patterns and relationships.

The basic syntax for creating Specialised plots is:

Listing 8.10 Specialised plot syntax.

stem(x, y)
stairs(x, y)
area(x, y)
pie(x)
polar(theta , rho)
contour(X, Y, Z)

Here’s an example that demonstrates the use of a stem plot:

Listing 8.11 Stem plot example.

x = linspace (0, 4*pi , 20);
y = cos(x);

figure
stem(x, y, ’filled ’)
xlabel(’x’)
ylabel(’cos(x)’)
title(’Stem Plot of Cosine Function ’)

This example creates a stem plot of the cosine function, with filled markers at
each data point.

Another example showcases the use of a polar plot:

Listing 8.12 Polar plot example.

theta = linspace (0, 2pi , 100);
rho = sin(2 theta).cos(2 theta);

figure
polar(theta , rho)
title(’Polar Plot of sin (2\ theta)cos (2\ theta)’)

This example creates a polar plot of the function sin(2θ) cos(2θ), demonstrating
the use of polar coordinates to visualize data.

Specialised plot types enable users to create targeted visualisations that effectively
convey specific aspects of their data. By selecting the appropriate plot type for their
data and analysis goals, users can gain valuable insights and communicate their
findings more effectively to their audience.

254 8 Graphics and Data Visualisation

Fig. 8.10 Advanced
customisation techniques for
scientific visualisation

8.2.5 Plotting Tools and Utilities

MATLAB’s comprehensive plotting tools and utilities serve as fundamental compo-
nents for advanced data visualisation. These tools encompass plot customisation,
annotation systems, legend management, grid controls, and axis manipulation
capabilities [11]. Since the release of MATLAB R2024a, the Property Inspector
has superseded the traditional plottools interface, offering enhanced functionality for
interactive plot modification [12] (Fig. 8.10).

The fundamental syntax for essential plotting utilities follows this structure:

Listing 8.13 Essential plotting utilities syntax

% Basic plot customisation syntax
xlabel(’X-Axis Label ’, ’Interpreter ’, ’latex’)
ylabel(’Y-Axis Label ’, ’Interpreter ’, ’latex’)
title(’Plot Title’, ’FontWeight ’, ’bold’)
legend(’Series 1’, ’Series 2’, ’Location ’, ’best’)
grid on
axis([xmin xmax ymin ymax])

The following example demonstrates advanced customisation techniques for
scientific visualisation, as shown in Fig. 8.10.

Listing 8.14 Advanced plot customisation for scientific data

% Generate sample data
t = linspace (0, 4*pi , 200);
y1 = exp (-0.2.*t).*sin (2.*t);
y2 = exp (-0.2.*t).*cos (2.*t);

% Create figure with specified properties
fig = figure(’Units’, ’centimeters ’, ’Position ’, [10 10

15 10]);

8.2 2D and 3D Plots 255

% Plot with enhanced styling
plot(t, y1 , ’LineWidth ’, 1.5, ’Color’, [0.8500 0.3250

0.0980])
hold on
plot(t, y2 ,’-.or’, ’LineWidth ’, 1.5, ’Color’, [0 0.4470

0.7410])

% Customise plot elements
xlabel(’Time (s)’, ’FontSize ’, 11)
ylabel(’Amplitude ’, ’FontSize ’, 11)
title(’Damped Harmonic Motion ’, ’FontWeight ’, ’bold’)
legend(’Sin Component ’, ’Cos Component ’, ’Location ’, ’

northeast ’)
grid on
box on

% Adjust axis properties
ax = gca;
ax.LineWidth = 1.2;
ax.TickDir = ’out’;
ax.TickLength = [0.02 0.02];

For specialised applications in engineering visualisation, the following example
demonstrates advanced axis manipulation:

Listing 8.15 Engineering data visualisation example

% Generate engineering test data
f = logspace (0, 4, 1000);
magnitude = 20 log10(abs (1./(1 + 1jf /100)));

% Create semilogx plot with specific formatting
figure
semilogx(f, magnitude , ’LineWidth ’, 1.5)
grid on

% Configure axis properties
ax = gca;
ax.XScale = ’log’;
ax.XMinorGrid = ’on’;
ax.GridLineStyle = ’:’;
ax.GridAlpha = 0.3;

% Add labels and title
xlabel(’Frequency (Hz)’)
ylabel(’Magnitude (dB)’)
title(’Frequency Response ’)

% Set specific axis limits
xlim ([1 1e4])
ylim ([-40 5])

256 8 Graphics and Data Visualisation

The implementation of these visualisation techniques enables researchers and
engineers to create publication-quality figures that effectively communicate com-
plex data relationships. These tools support various scientific and engineering
applications, from signal processing to system dynamics analysis [13].

8.3 Data Distribution Plots

Understanding the distribution of data is fundamental in statistical analysis and data
science. Data distribution plots are powerful tools that enable the visualisation
of underlying patterns and characteristics within datasets [14]. MATLAB offers an
extensive array of functions for creating various types of data distribution plots,
including histograms, box plots, violin plots, and probability plots. These visuali-
sations allow users to gain insights into the central tendency, dispersion, skewness,
and the presence of outliers in their data.

8.3.1 Histograms

Histograms are one of the most common tools for displaying the frequency distribu-
tion of numerical data [15]. They partition the data into bins and count the number of
observations in each bin, providing a visual impression of the underlying frequency
distribution.

The basic syntax for creating a histogram in MATLAB is:

Listing 8.16 Basic syntax for creating a histogram.

histogram(data)

where data is a vector containing the dataset.
For example, to generate a histogram of normally distributed data:

Listing 8.17 Creating a histogram of normally distributed data.

data = randn (1000, 1);
figure
histogram(data , ’Normalization ’, ’probability ’, ’

FaceColor ’, ’b’, ’EdgeColor ’, ’w’)
xlabel(’Value’)
ylabel(’Probability ’)
title(’Histogram of Normally Distributed Data’)

In this example, the randn function generates a 1000-by-1 vector of normally
distributed random numbers. The histogram function then creates a histogram of
this data, normalised to display probabilities on the y-axis, with customised colours
for better visual appeal.

8.3 Data Distribution Plots 257

Histograms are invaluable for identifying the shape of the data distribution,
detecting skewness, and observing the presence of multiple modes or gaps in the
data.

8.3.2 Box Plots

Box plots, also known as box-and-whisker plots, are effective for summarising the
distribution of data through their quartiles [16]. They provide a graphical depiction
of the median, quartiles, and potential outliers.

The basic syntax for creating a box plot in MATLAB is:

Listing 8.18 Basic syntax for creating a box plot.

boxplot(data)

where data can be a vector or a matrix. For matrices, each column is treated as a
separate group.

An example demonstrating the creation of a box plot comparing three different
data groups:

Listing 8.19 Creating a box plot for multiple groups.

data1 = randn (100, 1);
data2 = randn (100, 1) + 1;
data3 = randn (100, 1) - 1;
figure
boxplot ([data1 , data2 , data3], ’Labels ’, {’Group 1’, ’

Group 2’, ’Group 3’})
ylabel(’Value’)
title(’Box Plot of Three Data Groups ’)

This example creates a box plot comparing the distributions of three groups of
data. Each group is represented by a box that summarises its distribution, allowing
for easy comparison of medians, spreads, and identification of any outliers.

8.3.3 Violin Plots

Violin plots combine the features of box plots and kernel density plots to provide a
more detailed view of the data distribution [17]. While MATLAB does not have a
built-in violinplot function in its base installation, the Statistics and Machine
Learning Toolbox includes support for violin plots, or they can be added via custom
functions available from the MATLAB File Exchange [18].

An example of creating a violin plot (assuming the Violin Plot function is
installed):

258 8 Graphics and Data Visualisation

Listing 8.20 Creating a violin plot for multiple groups.

data = [data1 , data2 , data3];
violinplot(data , {’Group 1’, ’Group 2’, ’Group 3’})
ylabel(’Value’)
title(’Violin Plot of Three Data Groups ’)

Violin plots provide richer information about the data distribution, showing the
probability density of the data at different values, which can be particularly useful
when the data has multiple modes or is not symmetrically distributed.

8.3.4 Probability Plots

Probability plots, such as normal probability plots, are used to assess whether a
dataset follows a given distribution [19]. MATLAB’s probplot function creates
probability plots for various distributions.

The basic syntax is:

Listing 8.21 Basic syntax for creating a probability plot.

probplot(’normal ’, data)

For instance, to create a normal probability plot:

Listing 8.22 Creating a normal probability plot.

data = randn (1000 ,1);
figure
probplot(data)
title(’Normal Probability Plot’)

If the data follows a normal distribution, the points on the plot will approximately
lie along a straight line. Deviations from this line indicate departures from normality,
which is crucial for statistical modelling and hypothesis testing.

8.3.5 Best Practices and Advanced Insights

Employing data distribution plots effectively requires an understanding of both
the data and the appropriate visualisation techniques. Recent research empha-
sises the importance of visual literacy in data science and the need for accurate
representations [20].

Advancements in interactive data visualisation tools withinMATLAB, such as the
Data Cursor and live scripts, allow for dynamic exploration of data distributions.
Incorporating these tools can enhance the interpretability of complex datasets and
facilitate deeper insights.

8.4 Data Distribution Plots 259

Furthermore, emerging techniques in data visualisation stress the importance
of addressing issues such as overplotting and visual clutter, especially in large
datasets [21]. Techniques like adjusting transparency, binning, or using alternative
plot types can mitigate these challenges.

An exciting development in the realm of data distribution visualisation is the
integration of these plots within artificial intelligence and digital twin environ-
ments [22]. By utilising data distribution plots, engineers and researchers can mon-
itor and analyse the performance of complex systems in real-time, enabling more
efficient diagnostics and predictive maintenance strategies.

Understanding the limitations of each plot type is essential. For instance, his-
tograms are sensitive to bin width and position, which can significantly influence the
interpretation of the data distribution [15]. Choosing an appropriate binning strategy
is critical, and MATLAB provides options to customise the number and edges of
bins.

By conscientiously selecting the appropriate data distribution plot and customis-
ing it effectively, one can unveil underlying patterns and trends that inform data-
driven decision-making across various fields, including artificial intelligence, digital
manufacturing, and autonomous systems. Such visual insights are indispensable for
academic researchers, engineers, and students engaged in cutting-edge technological
advancements.

8.4 Data Distribution Plots

Understanding the distribution of data is fundamental in statistical analysis and data
science. Data distribution plots are powerful tools that enable the visualisation
of underlying patterns and characteristics within datasets [14]. MATLAB offers an
extensive array of functions for creating various types of data distribution plots,
including histograms, box plots, violin plots, and probability plots. These visuali-
sations allow users to gain insights into the central tendency, dispersion, skewness,
and the presence of outliers in their data.

8.4.1 Histograms

Histograms are one of the most common tools for displaying the frequency distribu-
tion of numerical data [15]. They partition the data into bins and count the number of
observations in each bin, providing a visual impression of the underlying frequency
distribution.

The basic syntax for creating a histogram in MATLAB is:

Listing 8.23 Basic syntax for creating a histogram.

histogram(data)

260 8 Graphics and Data Visualisation

where data is a vector containing the dataset.
For example, to generate a histogram of normally distributed data:

Listing 8.24 Creating a histogram of normally distributed data.

data = randn (1000, 1);
figure
histogram(data , ’Normalization ’, ’probability ’,

’FaceColor ’, ’b’, ’EdgeColor ’, ’w’)
xlabel(’Value’)
ylabel(’Probability ’)
title(’Histogram of Normally Distributed Data’)

In this example, the randn function generates a 1000-by-1 vector of normally
distributed random numbers. The histogram function then creates a histogram of
this data, normalised to display probabilities on the y-axis, with customised colours
for better visual appeal.

Histograms are invaluable for identifying the shape of the data distribution,
detecting skewness, and observing the presence of multiple modes or gaps in the
data.

8.4.2 Box Plots

Box plots, also known as box-and-whisker plots, are effective for summarising the
distribution of data through their quartiles [16]. They provide a graphical depiction
of the median, quartiles, and potential outliers.

The basic syntax for creating a box plot in MATLAB is:

Listing 8.25 Basic syntax for creating a box plot.

boxplot(data)

where data can be a vector or a matrix. For matrices, each column is treated as a
separate group.

An example demonstrating the creation of a box plot comparing three different
data groups:

Listing 8.26 Creating a box plot for multiple groups.

data1 = randn (100, 1);
data2 = randn (100, 1) + 1;
data3 = randn (100, 1) - 1;
figure
boxplot ([data1 , data2 , data3], ’Labels ’, {’Group 1’, ’

Group 2’, ’Group 3’})
ylabel(’Value’)
title(’Box Plot of Three Data Groups ’)

8.4 Data Distribution Plots 261

This example creates a box plot comparing the distributions of three groups of
data. Each group is represented by a box that summarises its distribution, allowing
for easy comparison of medians, spreads, and identification of any outliers.

8.4.3 Violin Plots

Violin plots combine the features of box plots and kernel density plots to provide a
more detailed view of the data distribution [17]. While MATLAB does not have a
built-in violinplot function in its base installation, the Statistics and Machine
Learning Toolbox includes support for violin plots, or they can be added via custom
functions available from the MATLAB File Exchange [18].

An example of creating a violin plot (assuming the Violin Plot function is
installed):

Listing 8.27 Creating a violin plot for multiple groups.

data = [data1 , data2 , data3];
violinplot(data , {’Group 1’, ’Group 2’, ’Group 3’})
ylabel(’Value’)
title(’Violin Plot of Three Data Groups ’)

Violin plots provide richer information about the data distribution, showing the
probability density of the data at different values, which can be particularly useful
when the data has multiple modes or is not symmetrically distributed.

8.4.4 Probability Plots

Probability plots, such as normal probability plots, are used to assess whether a
dataset follows a given distribution [19]. MATLAB’s probplot function creates
probability plots for various distributions.

The basic syntax is:

Listing 8.28 Basic syntax for creating a probability plot.

probplot(’normal ’, data)

For instance, to create a normal probability plot:

Listing 8.29 Creating a normal probability plot.

data = randn (1000 ,1);
figure
probplot(data)
title(’Normal Probability Plot’)

262 8 Graphics and Data Visualisation

If the data follows a normal distribution, the points on the plot will approximately
lie along a straight line. Deviations from this line indicate departures from normality,
which is crucial for statistical modelling and hypothesis testing.

8.4.5 Best Practices and Advanced Insights

Employing data distribution plots effectively requires an understanding of both
the data and the appropriate visualisation techniques. Recent research empha-
sises the importance of visual literacy in data science and the need for accurate
representations [20].

Advancements in interactive data visualisation tools withinMATLAB, such as the
Data Cursor and live scripts, allow for dynamic exploration of data distributions.
Incorporating these tools can enhance the interpretability of complex datasets and
facilitate deeper insights.

Furthermore, emerging techniques in data visualisation stress the importance
of addressing issues such as overplotting and visual clutter, especially in large
datasets [21]. Techniques like adjusting transparency, binning, or using alternative
plot types can mitigate these challenges.

An exciting development in the realm of data distribution visualisation is the
integration of these plots within artificial intelligence and digital twin environ-
ments [22]. By utilising data distribution plots, engineers and researchers can mon-
itor and analyse the performance of complex systems in real-time, enabling more
efficient diagnostics and predictive maintenance strategies.

Understanding the limitations of each plot type is essential. For instance, his-
tograms are sensitive to bin width and position, which can significantly influence the
interpretation of the data distribution [15]. Choosing an appropriate binning strategy
is critical, andMATLABprovides options to customise the number and edges of bins.

By conscientiously selecting the appropriate data distribution plot and customis-
ing it effectively, one can unveil underlying patterns and trends that inform data-
driven decision-making across various fields, including artificial intelligence, digital
manufacturing, and autonomous systems. Such visual insights are indispensable for
academic researchers, engineers, and students engaged in cutting-edge technological
advancements.

8.5 Discrete Data Plots

Discrete data plots are indispensable tools for visualising and analysing categorical
or discrete variables within datasets [23]. MATLAB offers a comprehensive suite
of functions and tools for generating various types of discrete data plots, including
bar charts, pie charts, stem plots, and area plots. These visualisation techniques
enable users to effectively convey the distribution, proportions, and trends of discrete

8.5 Discrete Data Plots 263

data points, thereby enhancing data interpretation and supporting informed decision-
making.

Visualising discrete data appropriately is critical across various disciplines,
from engineering to social sciences, where understanding categorical variables is
paramount. This section delves into the functionalities and applications of these
discrete data plotting tools in MATLAB, offering insights into their usage and
highlighting best practices.

8.5.1 Bar Charts

Bar charts are widely used for representing categorical data, allowing for effortless
comparison across categories [24]. In MATLAB, the bar function creates vertical
bar charts, while barh generates horizontal bar charts. Advanced features enable
the creation of grouped or stacked bar charts, providing a deeper understanding of
data relationships.

The basic syntax for a simple bar chart is:

Listing 8.30 Basic syntax for creating a bar chart.

bar(x, y)

where x represents the categories and y represents the corresponding values.
For example, to compare sales figures across different regions:

Listing 8.31 Creating a bar chart of sales figures.

regions = {’North’, ’South’, ’East’, ’West’};
sales = [150, 200, 180, 170];
bar(categorical(regions), sales)
title(’Sales Figures by Region ’)
xlabel(’Region ’)
ylabel(’Sales (in units)’)

Bar charts are highly customisable in MATLAB, with options to modify colours,
bar widths, and add error bars. Utilising these features enhances the interpretability
and aesthetic appeal of the charts, making them more engaging for the audience.

8.5.2 Pie Charts

Pie charts display data in a circular format, where each slice represents a category’s
contribution to the whole [25]. MATLAB’s pie function is employed to generate
pie charts, suitable for illustrating proportional data.

The basic syntax is:

264 8 Graphics and Data Visualisation

Listing 8.32 Basic syntax for creating a pie chart.

pie(y)

where y is a vector containing the data values.
An example of creating a pie chart with labels is:

Listing 8.33 Creating a pie chart with category labels.

market_share = [35, 25, 15, 25];
companies = {’Company A’, ’Company B’, ’Company C’,
’Company D’};

pie(market_share , companies)
title(’Market Share Distribution ’)

Despite their popularity, pie charts can be misleading if overused or used improp-
erly. It is advisable to limit the number of slices and consider alternative plots, such
as bar charts, when dealing with numerous categories.

8.5.3 Stem Plots

Stem plots, also known as lollipop plots, are effective for displaying discrete data
points, especially when highlighting the distribution along an axis [26]. The stem
function inMATLAB creates stem plots, which are useful for emphasising individual
data points and their positions.

The basic syntax is:

Listing 8.34 Basic syntax for creating a stem plot.

stem(x, y)

where x and y define the data points.
For instance, to visualise the amplitude of a signal at discrete time intervals:

Listing 8.35 Creating a stem plot of a signal.

n = 0:15;
signal = sin (0.2 pin);
stem(n, signal)
title(’Discrete Signal Representation ’)
xlabel(’n’)
ylabel(’Amplitude ’)

Stem plots are particularly useful when the data points are discrete and non-
uniformly spaced. They provide a clear visual of the data’s distribution without the
clutter that might arise in a scatter plot for densely packed data.

8.5 Discrete Data Plots 265

8.5.4 Area Plots

Area plots represent quantitative data visually by filling the area beneath a line
plot [27]. MATLAB’s area function creates area plots, which can be stacked to
show the contribution of individual components to the total.

The basic syntax is:

Listing 8.36 Basic syntax for creating an area plot.

area(x, y)

where x and y represent the data.
An example demonstrating an area plot:

Listing 8.37 Creating an area plot of cumulative data.

months = 1:12;
revenue = cumsum(rand (1 ,12) * 1000);
area(months , revenue)
title(’Cumulative Revenue Over a Year’)
xlabel(’Month’)
ylabel(’Revenue (in GBP)’)

Area plots are effective for showing how quantities accumulate over time or cat-
egories, particularly when comparing multiple datasets. They can also be stacked to
represent the contribution of each category to the total amount.

8.5.5 Best Practices in Discrete Data Visualisation

Selecting the appropriate type of plot is imperative based on the characteristics
of the data and the message intended to be conveyed. Recent advancements in
data visualisation emphasise the importance of interactive and dynamic plots [28].
MATLAB’s integration with interactive tools, such as the Live Editor and
the appdesigner, enables users to create interactive visualisations that enhance
engagement and data exploration.

Adhering to principles of visual perception and cognitive load can significantly
improve the effectiveness of data visualisations [29]. Ensuring clarity, simplicity,
and proper annotation in plots facilitates better comprehension among academic
researchers, professors, and PhD students. Effective use of colour schemes, legends,
and labels contribute to the overall quality of the visualisation.

266 8 Graphics and Data Visualisation

8.6 Vector Fields (quiver, quiver3)

Visualising vector fields is fundamental for analysing directional data in two and
three dimensions. MATLAB provides the quiver and quiver3 functions for cre-
ating 2D and 3D vector field plots, respectively [30]. These plots display vectors as
arrows at specified points, depicting both themagnitude and direction of vector quan-
tities at those locations. Such visualisations are pivotal in fields like fluid dynamics,
electromagnetism, and mechanical engineering, where understanding the behaviour
of vector-valued functions is crucial [25].

The basic syntax for creating a 2D vector field plot using quiver is:

Listing 8.38 Basic syntax for creating a 2D vector field plot using quiver.

quiver(X, Y, U, V)

Here, X and Y define the grid coordinates, while U and V represent the vector
components at each point.

An illustrative example of a 2D vector field plot:

Listing 8.39 Creating a 2D vector field plot with quiver.

[X, Y] = meshgrid (-2:0.2:2 , -1:0.2:1);
U = sin(X) .* cos(Y);
V = -cos(X) .* sin(Y);

figure
quiver(X, Y, U, V)
xlabel(’X’)
ylabel(’Y’)
title(’2D Vector Field Plot’)

This code generates a 2D vector field where each arrow represents the magnitude
and direction of the vector at each point on the grid defined by X and Y. The functions
sin and cos are used to define the vector components, creating a rotational field
pattern.

For visualising three-dimensional vector fields, MATLAB offers the quiver3
function:

Listing 8.40 Basic syntax for creating a 3D vector field plot using quiver3.

quiver3(X, Y, Z, U, V, W)

In this syntax, X, Y, and Z define the positions in 3D space, while U, V, and W
represent the vector components along the respective axes.

An example of a 3D vector field plot:

Listing 8.41 Creating a 3D vector field plot with quiver3.

[X, Y, Z] = meshgrid (-2:1:2);
U = Y;
V = -X;

8.7 Volume Visualisation (slice, isosurface, isocaps) 267

W = zeros(size(X));

figure
quiver3(X, Y, Z, U, V, W)
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
title(’3D Vector Field Plot’)

In this example, the vector field represents a rotational flow in the XY -plane with
no component in the Z-direction.

Understanding and accurately visualising vector fields is critical in modern engi-
neering applications, including robotics and autonomous systems, where interpret-
ing force fields and motion dynamics is essential for system design and control [31].
The ability to represent these fields in MATLAB facilitates the analysis of complex
vector data, supporting the development of advanced technologies in Industry 4.0
and digital manufacturing.

With the advent of digital twins andAI-driven simulations, visualisation of vector
fields has become even more significant [32]. Integrating vector field visualisations
into digital twin models allows engineers to simulate and analyse physical systems in
virtual environments, leading to improved performance and predictive maintenance
strategies. MATLAB’s powerful visualisation capabilities, coupled with its compu-
tational tools, make it an indispensable platform for researchers and practitioners
working at the forefront of technological innovation.

8.7 Volume Visualisation (slice, isosurface,
isocaps)

Visualising volumetric data is crucial for analysing three-dimensional scalar fields,
prevalent in domains such as medical imaging, fluid dynamics, and geophysics [33].
MATLAB provides several functions for volume visualisation, including slice,
isosurface, and isocaps, enabling users to explore and interpret complex 3D
datasets [34].

Theslice function creates slice planes through a volume, allowing examination
of cross-sectional views at specified positions [25]. The basic syntax is:

Listing 8.42 Basic syntax for creating slice planes using slice.

slice(X, Y, Z, V, xslice , yslice , zslice)

Here, X, Y, Z define the coordinates, V is the volumetric data, and xslice,
yslice, zslice specify the positions of the slices.

268 8 Graphics and Data Visualisation

An example of creating slice planes:

Listing 8.43 Creating slice planes through volumetric data.

[X, Y, Z] = meshgrid (-2:0.2:2);
V = X .* exp(-X.^2 - Y.^2 - Z.^2);

figure
slice(X, Y, Z, V, 0, [], [])
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
title(’Slice Planes ’)

In this example, a slice is taken at X = 0, providing a cross-sectional view of
the volumetric data at that plane.

The isosurface function extracts and visualises isosurfaces, representing
surfaces of constant value within the volume [35].

The basic syntax is:

Listing 8.44 Basic syntax for creating isosurfaces using isosurface.

isosurface(X, Y, Z, V, isovalue)

An example of generating an isosurface:

Listing 8.45 Creating an isosurface from volumetric data.

[X, Y, Z] = meshgrid (-2:0.2:2);
V = X .* exp(-X.^2 - Y.^2 - Z.^2);

figure
p = patch(isosurface(X, Y, Z, V, 0.1));
isonormals(X, Y, Z, V, p)
p.FaceColor = ’red’;
p.EdgeColor = ’none’;
camlight
lighting gouraud
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
title(’Isosurface ’)

This code generates an isosurface corresponding to an isovalue of 0.1, applying
lighting to enhance visual perception.

The isocaps function creates isocaps, which are the end caps of the isosurface,
providing additional context and aiding in the perception of enclosed volumes [36].

An example of using isocaps:

Listing 8.46 Adding isocaps to an isosurface plot.

[X, Y, Z] = meshgrid (-2:0.2:2);
V = X .* exp(-X.^2 - Y.^2 - Z.^2);

8.8 Images Displaying 269

figure
p1 = patch(isosurface(X, Y, Z, V, 0.1));
isonormals(X, Y, Z, V, p1)
p1.FaceColor = ’red’;
p1.EdgeColor = ’none’;

p2 = patch(isocaps(X, Y, Z, V, 0.1));
p2.FaceColor = ’interp ’;
p2.EdgeColor = ’none’;

camlight
lighting gouraud
xlabel(’X’)
ylabel(’Y’)
zlabel(’Z’)
title(’Isosurface with Isocaps ’)

This example adds isocaps to the isosurface, enhancing the visualisation of the
internal structure of the volumetric data.

The use of volume visualisation techniques is increasingly important in the era
of big data and complex simulations [33]. In fields such as artificial intelligence
and digital twins, the ability to visualise and interpret volumetric data facilitates
better understanding and optimisation of models and systems [37]. For instance, in
computational fluid dynamics, visualising flow fields using isosurfaces and slices
enables engineers to identify critical regions and improve design [38].

Moreover, integrating real-time volume visualisation in robotics and
autonomous systems enhances perception and decision-making capabilities, con-
tributing to the advancement of intelligent machines [39]. MATLAB’s robust visu-
alisation tools empower researchers and professionals to push the boundaries of
innovation in these cutting-edge domains.

8.8 Images Displaying

MATLAB provides a comprehensive suite of tools for displaying, processing, and
analysing images, making it a valuable platform for visualising and interpreting
image data. Functions such as imshow, imagesc, image, and subimage allow
users to display images in a wide range of formats and layouts. These tools are
particularly useful in domains such as computer vision, medical imaging, and remote
sensing, where clarity and precision in visualisation are critical (Fig. 8.11).

8.8.1 Basic Image Display Functions

The most commonly used functions for displaying images in MATLAB are [40]:

• imshow: Displays an image in a figurewindow, automatically adjusting the image
display range.

270 8 Graphics and Data Visualisation

Fig. 8.11 Example image display using imshow

The following example demonstrates the basic syntax for displaying an image
using imshow:

Listing 8.47 Basic image display using imshow.

% Load and display an image using imshow
img = imread(’GinkgoLeaves.jpg’); % Load the sample

image
imshow(img); % Display the image
title(’Image Display Using imshow ’); % Add a title

• imagesc: Scales image data to the full range of the colormap for better
visualisation of data intensities.
The imagesc function is commonly used to display image data with intensity
values scaled to the full range of the current colormap. This is particularly useful
for visualising scientific data or images with a wide range of intensity values.

Listing 8.48 Displaying a grayscale image using imagesc.

% Load a grayscale image
img = imread(’cameraman.tif’);

% Display the image using imagesc
figure;
imagesc(img);
colormap(gray); % Apply grayscale colormap
colorbar; % Add a colour bar
title(’Grayscale Image Display Using imagesc ’);

Another example demonstrates how to visualise matrix data using imagescwith
a jet colormap:

8.8 Images Displaying 271

Listing 8.49 Visualising a matrix using imagesc with a jet colormap.

% Generate a random matrix
matrixData = rand (100);

% Visualise the matrix using imagesc
figure;
imagesc(matrixData);
colormap(jet); % Apply the ’jet ’ colormap
colorbar; % Add a colour bar for reference
title(’Matrix Display Using imagesc with Jet Colormap ’

);

• image: Displays an image as a two-dimensional graphic object, preserving the
original data values.
The image function displays an image as a two-dimensional graphic. Unlike
imagesc, this function does not scale the intensity values, and the displayed
image reflects the raw data values.

Listing 8.50 Displaying an image using image.

% Load a sample image
img = imread(’peppers.png’);

% Display the image using the image function
figure;
image(img);
title(’Image Display Using image (No Scaling)’);

• subimage: Displaysmultiple images in a single figure. This is particularly useful
for comparative analysis.
The subimage function allows users to display multiple images in a single figure
for comparative analysis. This is useful for side-by-side visualisation of original
and processed images.

Listing 8.51 Displaying multiple images using subimage.

% Load two sample images
img1 = imread(’peppers.png’);
img2 = imadjust(img1); % Adjust contrast of the first

image

% Display the images side by side using subimage
figure;
subplot(1, 2, 1);
subimage(img1);
title(’Original Image’);

subplot(1, 2, 2);
subimage(img2);
title(’Contrast Enhanced Image’);

272 8 Graphics and Data Visualisation

8.8.2 Enhancing Image Contrast

Enhancing image contrast is essential for improving the visibility of features and
details in an image. MATLAB provides several functions for this purpose, including
histeq and adapthisteq. These functions are demonstrated in the following
examples.

To improve the visual quality of images, MATLAB offers several functions for
contrast enhancement:

• imadjust: Adjusts the intensity values of an image to improve contrast.
Here is an example that uses imadjust to enhance contrast:

Listing 8.52 Enhancing contrast using imadjust.

% Read an image
img = imread(’farm.jpg’);

% Adjust image contrast
adjusted_img = imadjust(img);

% Display original and adjusted images
subplot(1, 2, 1);
imshow(img);
title(’Original Image’);

subplot(1, 2, 2);
imshow(adjusted_img);
title(’Contrast Enhanced Image’);

• histeq: Performs histogram equalisation to enhance contrast by redistributing
intensity values.
The histeq function enhances the contrast of an image by equalising its his-
togram.This is particularly useful for improving the contrast of imageswith narrow
intensity distributions.

Listing 8.53 Enhancing image contrast using histeq.

% Load a grayscale image
img = imread(’cameraman.tif’);

% Perform histogram equalisation
equalised_img = histeq(img);

% Display the original and equalised images
figure;
subplot(1, 2, 1);
imshow(img);
title(’Original Image’);

subplot(1, 2, 2);
imshow(equalised_img);
title(’Histogram Equalised Image’);

8.8 Images Displaying 273

Fig. 8.12 Example image
display using imadjust

• adapthisteq: Applies contrast-limited adaptive histogram equalisation
(CLAHE), which is particularly effective for enhancing local contrast in images
with varying lighting conditions (Fig. 8.12).
The adapthisteq function applies contrast-limited adaptive histogram equal-
isation (CLAHE) to an image, which enhances local contrast while avoiding
over-amplification of noise.

Listing 8.54 Enhancing image contrast using adapthisteq.

% Load a grayscale image
img = imread(’cameraman.tif’);

% Perform adaptive histogram equalisation
adapted_img = adapthisteq(img);

% Display the original and adapted images
figure;
subplot(1, 2, 1);
imshow(img);

274 8 Graphics and Data Visualisation

title(’Original Image’);

subplot(1, 2, 2);
imshow(adapted_img);
title(’Adaptive Histogram Equalised Image’);

• Combining Contrast Enhancement Techniques
It is often useful to combine contrast enhancement techniques for more refined
results. The following example applies both histeq and adapthisteq to the
same image for comparison:

Listing 8.55 Combining histeq and adapthisteq for comparison.

% Load a grayscale image
img = imread(’cameraman.tif’);

% Apply histogram equalisation
histeq_img = histeq(img);

% Apply adaptive histogram equalisation
adapthisteq_img = adapthisteq(img);

% Display the original and enhanced images
figure;
subplot(1, 3, 1);
imshow(img);
title(’Original Image’);

subplot(1, 3, 2);
imshow(histeq_img);
title(’Histogram Equalised ’);

subplot(1, 3, 3);
imshow(adapthisteq_img);
title(’Adaptive Histogram Equalised ’);

8.8.3 Applications in Various Domains

Image visualisation plays a pivotal role inmany scientific and industrial fields: -Com-
puter Vision: MATLAB simplifies the analysis of object detection, segmentation,
and feature extraction tasks through its visualisation functions. -Medical Imaging:
Functions like imshow and imagesc are frequently used to display and process
X-ray, MRI, and CT scan images. - Remote Sensing: Researchers use MATLAB
to display satellite imagery and enhance visual features using contrast adjustment
techniques.

8.8 Images Displaying 275

The following example illustrates how imagesc can be applied to visualise
remote sensing data:

Listing 8.56 Visualising remote sensing data using imagesc.

% Generate synthetic remote sensing data
data = peaks (100);

% Display the data with a colour map
imagesc(data);
colormap(’jet’); % Apply ’jet ’ colormap
colorbar; % Add a colour bar to the figure
title(’Remote Sensing Data Visualisation ’);

8.8.4 Advanced Image Manipulation

Advanced image manipulation techniques allow users to extract meaningful insights
from complex datasets. Functions such as imrotate, imresize, and imcrop
enable users to rotate, resize, and crop images, respectively. These operations are
often used in pre-processing pipelines for machine learning and image analysis.

The following example demonstrates how to rotate and resize an image:

Listing 8.57 Image rotation and resizing using imrotate and imresize.

% Load an image
img = imread(’peppers.png’);

% Rotate the image by 45 degrees
rotated_img = imrotate(img , 45);

% Resize the image to half its original size
resized_img = imresize(rotated_img , 0.5);

% Display the original and processed images
figure;
subplot (1, 3, 1);
imshow(img);
title(’Original Image’);

subplot (1, 3, 2);
imshow(rotated_img);
title(’Rotated Image ’);

subplot (1, 3, 3);
imshow(resized_img);
title(’Resized Image ’);

MATLAB’s robust image visualisation and manipulation capabilities empower
researchers and engineers to process and analyse images effectively. By leveraging
tools such asimshow,imadjust, and imagesc, users can enhance image quality,
extract relevant information, and apply these techniques across diverse applications.

276 8 Graphics and Data Visualisation

The inclusion of interactive visualisation tools and advanced manipulation functions
ensures that MATLAB remains a leading platform for image processing tasks.

8.8.5 Unique Insights

• Integration with Machine Learning: MATLAB’s image processing functions can
be seamlessly integrated into machine learning workflows, enabling automated
feature extraction and classification.

• Efficient Memory Management: Techniques like rescaling and cropping help
optimise memory usage for large datasets, enhancing computational efficiency.

• Domain-Specific Applications: MATLAB’s flexibility allows for customisation of
visualisation techniques tailored to specific domains, such as using colormaps like
hot for thermal imaging or parula for scientific data visualisation.

8.9 Animating Visualisations

Creating animations is a powerful way to visualise dynamic processes and time-
varying data. MATLAB provides a comprehensive set of functions and tools for
creating engaging and informative animations [41]. The movie function enables
users to create a movie from a series of plots or images, while getframe captures
the current figure or axis as a movie frame. By combining these functions with
loops and other programming constructs, users can create animations that effectively
communicate complex ideas and reveal patterns in data.

8.9.1 Creating Animated Plots

MATLAB’s animation functions can be used to create animated plots that illustrate
changes in data over time or in response to varying parameters. The basic syntax for
creating an animated plot using the getframe function is:

Listing 8.58 Creating an animated plot.

% Initialize an empty array to store the frames
frames = [];

% Create the animation
for i = 1: num_frames
% Plot the data for the current frame
plot(x, y)
% Capture the current frame

8.9 Animating Visualisations 277

frames(i) = getframe(gcf);

end

% Create a video writer object
video = VideoWriter(’animated_plot.avi’);
open(video);

% Write the frames to the video
writeVideo(video , frames);

% Close the video writer
close(video);

In this example, a loop is used to generate a series of frames, each depicting the
data at a specific point in time. The getframe function captures each frame, which
is stored in the frames array. Finally, the frames are written to a video file using
the VideoWriter and writeVideo functions.

8.9.2 Visualising Time-Series Data

Animations are particularly useful for visualising changes over time in time-series
data.MATLABprovides theanimatedline function, which allows users to incre-
mentally add data points to a line plot, creating the illusion of motion or growth.
Here’s an example that showcases the use of animatedline for visualising
time-series data:

Listing 8.59 Animating time-series data using animatedline.

% Create a figure
figure

% Create an animated line object
h = animatedline;

% Set the axis limits
xlim([0, 10])
ylim([-1, 1])

% Define the number of points
num_points = 100;

% Animate the time -series data
for i = 1: num_points
% Generate new data point
x = i/10;
y = sin(x);
% Add the new data point to the animated line
addpoints(h, x, y);

% Update the figure

278 8 Graphics and Data Visualisation

drawnow limitrate
pause (0.1)

end

In this example, an animatedline object is created, and the addpoints
function is used within a loop to incrementally add new data points to the line
plot. The drawnow function is used to update the figure, and the pause function
introduces a small delay between each frame to control the animation speed.

8.9.3 Animating 3D Plots

Animating 3D plots in MATLAB allows users to explore data from different angles
or show changes in parameters over time. The getframe function can be used in
combination with 3D plotting functions like surf and plot3 to create animated
3D visualisations. Here’s an example that demonstrates the animation of a 3D surface
plot:

Listing 8.60 Animating a 3D surface plot.

% Create a figure
figure

% Define the surface parameters
[X, Y] = meshgrid (-2:0.1:2);

% Initialize an empty array to store the frames
frames = [];

% Create the animation
for i = 1:50
% Calculate the Z values for the current frame
Z = sin(sqrt(X.^2 + Y.^2) - i/10);
% Plot the surface
surf(X, Y, Z)

% Set the view angle
view (-37.5 + i/2, 30)

% Capture the current frame
frames(i) = getframe(gcf);

end

% Create a video writer object
video = VideoWriter(’animated_3d_surface .avi’);
open(video);

% Write the frames to the video

8.10 Formatting and Annotation 279

writeVideo(video , frames);

% Close the video writer
close(video);

In this example, a loop is used to generate a series of frames, each depicting a
3D surface plot with varying Z values and view angles. The getframe function
captures each frame, which is stored in the frames array. Finally, the frames are
written to a video file using the VideoWriter and writeVideo functions.

Animating visualisations in MATLAB allows users to create engaging and infor-
mative representations of dynamic processes, time-varying data, and complex 3D
structures. By leveraging functions like movie,getframe, and animatedline,
users can effectively communicate their findings and insights to a wider audience.

8.10 Formatting and Annotation

Creating plots and charts is only half the battle in effective data visualisation; the real
art lies in the formatting and annotation that bring clarity and emphasis to the data
presented. MATLAB provides a rich set of functions and properties for customising
the appearance of graphics and adding informative labels and annotations [42].

8.10.1 Customising Plot Appearance

Meticulous attention to a plot’s appearance can greatly enhance its interpretabil-
ity. MATLAB allows users to customise various aspects such as line styles,
colours,markers, and transparency, providing flexibility to tailor plots to specific
needs [25].

The basic syntax for setting line properties in a plot is:

Listing 8.61 Setting line properties in a plot.

x = linspace (0, 2*pi , 100);
y1 = sin(x);
y2 = cos(x);

plot(x, y1 , ’LineWidth ’, 2, ’Color’, ’red’, ’LineStyle ’,
’--’)

hold on
plot(x, y2 , ’LineWidth ’, 1.5, ’Color’, ’blue’, ’

LineStyle ’, ’-.’)
hold off

In this example, the plot function includes additional arguments to specify
the line width, colour, and style for each curve. The hold on and hold off
commands are used to overlay multiple plots on the same axes.

280 8 Graphics and Data Visualisation

Similarly, marker appearance can be customised:

Listing 8.62 Customising marker properties in a plot.

x = linspace (0, 2*pi , 10);
y = sin(x);

plot(x, y, ’Marker ’, ’o’, ’MarkerSize ’, 8, ’
MarkerFaceColor ’, ’red’, ’MarkerEdgeColor ’, ’black’)

Here, the plot function specifies the marker type, size, face colour, and edge
colour, enhancing the visual distinction of data points.

8.10.2 Adding Labels and Titles

Labels and titles are indispensable for providing context and guiding the reader
through the data [24]. MATLAB’s xlabel, ylabel, and title functions
facilitate the addition of descriptive text to plots.

Listing 8.63 Adding labels and a title to a plot.

x = linspace (0, 2*pi , 100);
y = sin(x);

plot(x, y)
xlabel(’x’)
ylabel(’sin(x)’)
title(’Sine Function ’)

In this example, axis labels and a plot title are added, providing essential
information about the variables and the nature of the plot.

8.10.3 Adding Legends

When multiple data series are presented in a single plot, a legend becomes crucial
for differentiation [42]. MATLAB’s legend function adds a legend to the axes.

Listing 8.64 Adding a legend to a plot with multiple data series.

x = linspace (0, 2*pi , 100);
y1 = sin(x);
y2 = cos(x);

plot(x, y1 , ’r--’, x, y2 , ’b-.’)
legend(’sin(x)’, ’cos(x)’)
xlabel(’x’)
ylabel(’Value’)
title(’Sine and Cosine Functions ’)

8.10 Formatting and Annotation 281

This code plots both the sine and cosine functions with different line styles and
adds a legend to distinguish between them.

8.10.4 Annotating Plots

Annotations can highlight specific data points or regions of interest, adding an extra
layer of information to a plot [43]. MATLAB provides the text and annotation
functions for this purpose.

An example using the text function:

Listing 8.65 Annotating a plot using the text function.

x = linspace (0, 2*pi , 100);
y = sin(x);

plot(x, y)
xlabel(’x’)
ylabel(’sin(x)’)
title(’Sine Function ’)

[max_val , max_idx] = max(y);
text(x(max_idx), max_val , ’ \leftarrow Maximum ’,
’HorizontalAlignment ’, ’left’)

In this example, the maximum point of the sine function is annotated with a label.
The arrow notation and horizontal alignment enhance the clarity of the annotation.

For more complex annotations, the annotation function can be used to add
shapes, arrows, or highlight areas.

8.10.5 Unique Insights and Advanced Formatting

In the realm of Industry 4.0 and digital twins, the precise visualisation of data
becomes even more critical. Advanced formatting techniques can improve the inter-
pretability of complex datasets in fields like artificial intelligence and robotics. For
instance, using transparency in plots can help reveal overlapping data points, and
utilising customised colour maps can encode additional dimensions of data [28].

Furthermore, interactive features such as data cursors and zooming can be enabled
to allow viewers to explore the data more deeply, which is especially beneficial when
presenting findings to a technical audience comprising engineers and researchers.

282 8 Graphics and Data Visualisation

8.11 Advanced Visualisation Techniques

Beyond basic plotting and formatting, MATLAB provides a plethora of advanced
visualisation techniques that enable the creation of interactive, dynamic, and
highly informative graphics. These techniques empower users to delve into complex
datasets, effectively communicate findings, and glean deeper insights [44].

8.11.1 Interactive Visualisations

Interactive visualisations allow users to engage with data dynamically, facilitating
exploration through zooming, panning, and data point selection. MATLAB offers
a suite of tools dedicated to crafting interactive plots, such as the zoom, pan, and
datacursormode functions [45].

The basic syntax to enable interactive features in a plot is:

Listing 8.66 Creating an interactive plot.

x = linspace (0, 2*pi , 100);
y = sin(x);

plot(x, y)
xlabel(’x’)
ylabel(’sin(x)’)
title(’Interactive Sine Plot’)

zoom on
pan on
datacursormode on

In this example, the zoom, pan, and datacursormode functions activate
interactive capabilities, allowing the user to zoom into specific regions, pan across
the plot, and display data values by hovering over points.

Moreover, MATLAB’s Live Editor enhances interactivity by enabling the
embedding of controls such as sliders and drop-down menus, facilitating real-time
manipulation of variables with immediate visual feedback [25].

8.11.2 Visualising Big Data

Visualising large datasets poses significant challenges due to memory constraints
and rendering performance. MATLAB addresses these issues by providing effi-
cient techniques for visualising big data, such as data downsampling, binning, and
aggregation [46].

An effective method for handling large datasets is to utilise binned plots, which
aggregate data points into bins and display statistical summaries:

8.11 Advanced Visualisation Techniques 283

Listing 8.67 Visualising big data using binning.

% Generate a large dataset
x = randn(1e6 , 1);
y = randn(1e6 , 1);

% Create a binned scatter plot
binscatter(x, y)
xlabel(’x’)
ylabel(’y’)
title(’Binned Scatter Plot’)

In this example, the binscatter function creates a binned scatter plot, effi-
ciently handling onemillion data points by aggregating them into bins. This approach
reduces rendering time while preserving data patterns.

Additionally, MATLAB supports tall arrays for processing data that do not fit
into memory, enabling users to work with datasets of virtually unlimited size [47].

8.11.3 Visualising Real-Time Data

The ability to visualise data in real time is crucial in applications such as robotics,
autonomous systems, and industrial monitoring. MATLAB provides functions and
tools for creating real-time plots, allowing for continuous updates as newdata become
available [48].

The basic approach to real-time plotting involves updating graphics within a loop:

Listing 8.68 Creating a real-time plot.

% Create a figure and an animated line object
figure
h = animatedline;
axis([0, 10, -1, 1])
xlabel(’Time (s)’)
ylabel(’Amplitude ’)
title(’Real -Time Sine Wave’)

% Update the plot in a loop
for t = 0:0.1:10
y = sin(t);
addpoints(h, t, y);
drawnow
pause (0.1)
end

In this code, the animatedline function is used to create a line that can be
updated with new data points. The addpoints function appends data to the line,
and drawnow forces MATLAB to update the figure window.

284 8 Graphics and Data Visualisation

Real-time visualisation is instrumental in digital manufacturing and Industry
4.0, where monitoring sensor data and system states in real time leads to improved
process control and efficiency [49].

8.11.4 Visualising Uncertainty

Communicating uncertainty is essential in data analysis to convey the reliability and
variability inherent in measurements. MATLAB offers various techniques for visu-
alising uncertainty, including error bars, confidence intervals, and probabilistic
distributions [50].

8.11.4.1 Displaying Error Bars

Error bars represent the variability or uncertainty in data points and are vital for
statistical analysis:

Listing 8.69 Displaying error bars.

x = 1:5;
y = [2, 4, 5, 3, 6];
err = [0.5, 0.8, 0.3, 0.6, 0.4];

errorbar(x, y, err , ’o-’)
xlabel(’x’)
ylabel(’y’)
title(’Plot with Error Bars’)

Here, the errorbar function plots the data points with vertical error bars
representing the uncertainty or standard deviation.

8.11.4.2 Visualising Confidence Intervals

Confidence intervals provide a range within which the true value of a parameter is
expected to lie, with a certain level of confidence:

Listing 8.70 Visualising confidence intervals.

x = linspace (0, 10, 100);
y = sin(x) + 0.1* randn(size(x));
p = polyfit(x, y, 3);
[y_fit , delta] = polyconf(p, x, [], ’predopt ’, ’curve’);

plot(x, y, ’b.’)
hold on
plot(x, y_fit , ’r-’)
plot(x, y_fit + delta , ’r--’)

8.11 Advanced Visualisation Techniques 285

plot(x, y_fit - delta , ’r--’)
hold off
xlabel(’x’)
ylabel(’y’)
title(’Polynomial Fit with Confidence Intervals ’)
legend(’Data’, ’Fit’, ’Upper Bound’, ’Lower Bound’)

In this example, polyfit and polyconf are used to perform a polynomial fit
and compute confidence intervals, which are then plotted to visualise the uncertainty
in the model.

8.11.4.3 Communicating Probabilistic Outcomes

Probabilistic outcomes can be visualised using density plots or violin plots, which
display the distribution of data:

Listing 8.71 Visualising probabilistic outcomes using a density plot.

data = randn (1000, 1);

[f, xi] = ksdensity(data);
plot(xi , f, ’LineWidth ’, 2)
xlabel(’Value’)
ylabel(’Density ’)
title(’Kernel Density Estimate ’)

The ksdensity function estimates the probability density function of the data,
providing a smooth curve that represents the distribution.

Visualising uncertainty is particularly important in fields such as artificial intel-
ligence and machine learning, where understanding the confidence and variability
of predictions informs better decision-making [51].

8.11.5 Visualising Geographical Data

The visualisation of geographical data is essential in applications ranging from envi-
ronmental monitoring to logistics planning. MATLAB offers comprehensive tools
for creating maps, plotting data on maps, and customising map appearance through
the Mapping Toolbox [52].

8.11.5.1 Creating Maps

To create a map, MATLAB provides functions like worldmap and axesm:

286 8 Graphics and Data Visualisation

Listing 8.72 Creating a simple world map.

figure
worldmap(’World’)
load coastlines
plotm(coastlat , coastlon)
title(’World Map with Coastlines ’)

In this example,worldmap sets upmap axes appropriate for the specified region,
and the coastlines data is plotted using plotm.

8.11.5.2 Plotting Data on Maps

Data can be plotted on maps using geographic coordinates:

Listing 8.73 Plotting data points on a map.

% Define latitude and longitude of data points
lat = [51.5074 , 48.8566 , 52.5200]; % London , Paris ,

Berlin
lon = [-0.1278 , 2.3522 , 13.4050];

% Create a map of Europe
figure
worldmap(’Europe ’)
geoshow(’landareas.shp’, ’FaceColor ’, [0.8 0.8 0.8])

% Plot data points
plotm(lat , lon , ’ro’, ’MarkerSize ’, 8,
’MarkerFaceColor ’, ’r’)

title(’Major European Cities ’)

Here, the geographic locations of London, Paris, and Berlin are plotted on a map
of Europe.

8.11.5.3 Customising Map Appearance

Maps can be customised by changing projections, adding layers, and adjusting visual
properties:

Listing 8.74 Customising map appearance.

figure
ax = worldmap(’World ’);
setm(ax , ’MapProjection ’, ’robinson ’)

% Display land areas with custom face color
geoshow(’landareas.shp’, ’FaceColor ’, [0.5 1.0 0.5])

% Add rivers and lakes

8.12 Advanced Visualisation Techniques 287

geoshow(’worldrivers.shp’, ’Color’, ’blue’)
geoshow(’worldlakes.shp’, ’FaceColor ’, ’cyan’)

% Add grid and labels
gridm on
mlabel on
plabel on

title(’Customised World Map’)

In this example, the Robinson projection is used for the map. Land areas, rivers,
and lakes are displayed with specified colours, and meridian and parallel labels are
enabled.

Geospatial visualisation is vital in digital twins of geographical systems,
where accurate mapping of real-world locations is necessary for simulation and
analysis [53].

8.12 Advanced Visualisation Techniques

Beyond basic plotting and formatting, MATLAB provides a plethora of advanced
visualisation techniques that enable the creation of interactive, dynamic, and
highly informative graphics. These techniques empower users to delve into complex
datasets, effectively communicate findings, and glean deeper insights [44].

8.12.1 Interactive Visualisations

Interactive visualisations allow users to engage with data dynamically, facilitating
exploration through zooming, panning, and data point selection. MATLAB offers
a suite of tools dedicated to crafting interactive plots, such as the zoom, pan, and
datacursormode functions [45].

The basic syntax to enable interactive features in a plot is:

Listing 8.75 Creating an interactive plot.

x = linspace (0, 2*pi , 100);
y = sin(x);

plot(x, y)
xlabel(’x’)
ylabel(’sin(x)’)
title(’Interactive Sine Plot’)

zoom on
pan on
datacursormode on

288 8 Graphics and Data Visualisation

In this example, the zoom, pan, and datacursormode functions activate
interactive capabilities, allowing the user to zoom into specific regions, pan across
the plot, and display data values by hovering over points.

Moreover, MATLAB’s Live Editor enhances interactivity by enabling the
embedding of controls such as sliders and drop-down menus, facilitating real-time
manipulation of variables with immediate visual feedback [25].

8.12.2 Visualising Big Data

Visualising large datasets poses significant challenges due to memory constraints
and rendering performance. MATLAB addresses these issues by providing effi-
cient techniques for visualising big data, such as data downsampling, binning, and
aggregation [46].

An effective method for handling large datasets is to utilise binned plots, which
aggregate data points into bins and display statistical summaries:

Listing 8.76 Visualising big data using binning.

% Generate a large dataset
x = randn(1e6 , 1);
y = randn(1e6 , 1);

% Create a binned scatter plot
binscatter(x, y)
xlabel(’x’)
ylabel(’y’)
title(’Binned Scatter Plot’)

In this example, the binscatter function creates a binned scatter plot, effi-
ciently handling onemillion data points by aggregating them into bins. This approach
reduces rendering time while preserving data patterns.

Additionally, MATLAB supports tall arrays for processing data that do not fit
into memory, enabling users to work with datasets of virtually unlimited size [47].

8.12.3 Visualising Real-Time Data

The ability to visualise data in real time is crucial in applications such as robotics,
autonomous systems, and industrial monitoring. MATLAB provides functions and
tools for creating real-time plots, allowing for continuous updates as newdata become
available [48].

8.12 Advanced Visualisation Techniques 289

The basic approach to real-time plotting involves updating graphics within a loop:

Listing 8.77 Creating a real-time plot.

% Create a figure and an animated line object
figure
h = animatedline;
axis([0, 10, -1, 1])
xlabel(’Time (s)’)
ylabel(’Amplitude ’)
title(’Real -Time Sine Wave’)

% Update the plot in a loop
for t = 0:0.1:10
y = sin(t);
addpoints(h, t, y);
drawnow
pause (0.1)
end

In this code, the animatedline function is used to create a line that can be
updated with new data points. The addpoints function appends data to the line,
and drawnow forces MATLAB to update the figure window.

Real-time visualisation is instrumental in digital manufacturing and Industry
4.0, where monitoring sensor data and system states in real time leads to improved
process control and efficiency [49].

8.12.4 Visualising Uncertainty

Communicating uncertainty is essential in data analysis to convey the reliability and
variability inherent in measurements. MATLAB offers various techniques for visu-
alising uncertainty, including error bars, confidence intervals, and probabilistic
distributions [50].

8.12.4.1 Displaying Error Bars

Error bars represent the variability or uncertainty in data points and are vital for
statistical analysis:

Listing 8.78 Displaying error bars.

x = 1:5;
y = [2, 4, 5, 3, 6];
err = [0.5, 0.8, 0.3, 0.6, 0.4];

errorbar(x, y, err , ’o-’)
xlabel(’x’)
ylabel(’y’)
title(’Plot with Error Bars’)

290 8 Graphics and Data Visualisation

Here, the errorbar function plots the data points with vertical error bars
representing the uncertainty or standard deviation.

8.12.4.2 Visualising Confidence Intervals

Confidence intervals provide a range within which the true value of a parameter is
expected to lie, with a certain level of confidence:

Listing 8.79 Visualising confidence intervals.

x = linspace (0, 10, 100);
y = sin(x) + 0.1* randn(size(x));
p = polyfit(x, y, 3);
[y_fit , delta] = polyconf(p, x, [], ’predopt ’, ’curve’);

plot(x, y, ’b.’)
hold on
plot(x, y_fit , ’r-’)
plot(x, y_fit + delta , ’r--’)
plot(x, y_fit - delta , ’r--’)
hold off
xlabel(’x’)
ylabel(’y’)
title(’Polynomial Fit with Confidence Intervals ’)
legend(’Data’, ’Fit’, ’Upper Bound’, ’Lower Bound’)

In this example, polyfit and polyconf are used to perform a polynomial fit
and compute confidence intervals, which are then plotted to visualise the uncertainty
in the model.

8.12.4.3 Communicating Probabilistic Outcomes

Probabilistic outcomes can be visualised using density plots or violin plots, which
display the distribution of data:

Listing 8.80 Visualising probabilistic outcomes using a density plot.

data = randn (1000, 1);

[f, xi] = ksdensity(data);
plot(xi , f, ’LineWidth ’, 2)
xlabel(’Value’)
ylabel(’Density ’)
title(’Kernel Density Estimate ’)

The ksdensity function estimates the probability density function of the data,
providing a smooth curve that represents the distribution.

8.12 Advanced Visualisation Techniques 291

Visualising uncertainty is particularly important in fields such as artificial intel-
ligence and machine learning, where understanding the confidence and variability
of predictions informs better decision-making [51].

8.12.5 Visualising Geographical Data

The visualisation of geographical data is essential in applications ranging from envi-
ronmental monitoring to logistics planning. MATLAB offers comprehensive tools
for creating maps, plotting data on maps, and customising map appearance through
the Mapping Toolbox [52].

8.12.5.1 Creating Maps

To create a map, MATLAB provides functions like worldmap and axesm:

Listing 8.81 Creating a simple world map.

figure
worldmap(’World’)
load coastlines
plotm(coastlat , coastlon)
title(’World Map with Coastlines ’)

In this example,worldmap sets upmap axes appropriate for the specified region,
and the coastlines data is plotted using plotm.

8.12.5.2 Plotting Data on Maps

Data can be plotted on maps using geographic coordinates:

Listing 8.82 Plotting data points on a map.

% Define latitude and longitude of data points
lat = [51.5074 , 48.8566 , 52.5200]; % London , Paris ,

Berlin
lon = [-0.1278 , 2.3522 , 13.4050];

% Create a map of Europe
figure
worldmap(’Europe ’)
geoshow(’landareas.shp’, ’FaceColor ’, [0.8 0.8 0.8])

% Plot data points
plotm(lat , lon , ’ro’, ’MarkerSize ’, 8,
’MarkerFaceColor ’, ’r’)

title(’Major European Cities ’)

292 8 Graphics and Data Visualisation

Here, the geographic locations of London, Paris, and Berlin are plotted on a map
of Europe.

8.12.5.3 Customising Map Appearance

Maps can be customised by changing projections, adding layers, and adjusting visual
properties:

Listing 8.83 Customising map appearance.

figure
ax = worldmap(’World ’);
setm(ax , ’MapProjection ’, ’robinson ’)

% Display land areas with custom face color
geoshow(’landareas.shp’, ’FaceColor ’, [0.5 1.0 0.5])

% Add rivers and lakes
geoshow(’worldrivers.shp’, ’Color’, ’blue’)
geoshow(’worldlakes.shp’, ’FaceColor ’, ’cyan’)

% Add grid and labels
gridm on
mlabel on
plabel on

title(’Customized World Map’)

In this example, the Robinson projection is used for the map. Land areas, rivers,
and lakes are displayed with specified colours, and meridian and parallel labels are
enabled.

Geospatial visualisation is vital in digital twins of geographical systems,
where accurate mapping of real-world locations is necessary for simulation and
analysis [53].

8.13 Visualisation Best Practices

Effective data visualisation requires careful consideration of various factors to ensure
that the intendedmessage is clearly communicated to the target audience. This section
explores best practices for creating informative and visually appealing graphics in
MATLAB.

8.13 Visualisation Best Practices 293

8.13.1 Choosing the Right Plot Type

Selecting the most appropriate plot type is crucial for effectively conveying the
message behind the data. Different plot types, such as line plots, scatter plots, bar
graphs, and heatmaps, are suited for different types of data and purposes [54]. For
example, line plots are ideal for displaying trends over time, while scatter plots are
useful for showing relationships between two variables.

Listing 8.84 Line plot example.

x = linspace (0, 2*pi , 100);
y = sin(x);
plot(x, y);
xlabel(’x’);
ylabel(’sin(x)’);
title(’Sine Function ’);

Listing 8.85 Scatter plot example.

x = randn (100, 1);
y = 0.5*x + randn (100, 1);
scatter(x, y);
xlabel(’x’);
ylabel(’y’);
title(’Scatter Plot’);

8.13.2 Effective Use of Colour

Colour is a powerful tool in data visualisation that can be used to highlight important
information, distinguish between different data series, and improve overall readabil-
ity [55]. However, it is essential to use colour judiciously and consider factors such
as colour blindness and cultural differences in colour perception.

Listing 8.86 Using colour to distinguish data series.

x = linspace (0, 2*pi , 100);
y1 = sin(x);
y2 = cos(x);
plot(x, y1 , ’r’, x, y2 , ’b’);
xlabel(’x’);
ylabel(’y’);
legend(’sin(x)’, ’cos(x)’);
title(’Sine and Cosine Functions ’);

294 8 Graphics and Data Visualisation

8.13.3 Simplifying Complex Visualisations

When dealing with complex data sets, it is important to simplify visualisations to
ensure that the key insights are clearly communicated [56]. This can be achieved by
reducing clutter, using subplots to break down the information, and focusing on the
most relevant aspects of the data.

Listing 8.87 Using subplots to simplify complex visualisations.

x = linspace (0, 2*pi , 100);
y1 = sin(x);
y2 = cos(x);
y3 = sin(x).*cos(x);

subplot (1,3,1);
plot(x, y1);
title(’sin(x)’);

subplot (1,3,2);
plot(x, y2);
title(’cos(x)’);

subplot (1,3,3);
plot(x, y3);
title(’sin(x)*cos(x)’);

8.13.4 Designing for Different Audiences

When creating visualisations, it is crucial to consider the target audience and their
level of expertise [57]. Visualisations designed for a technical audience may include
more complex information and assume a higher level of background knowledge,
while those intended for a general audience should prioritize clarity and simplicity.

Listing 8.88 Designing visualisations for different audiences.

% Technical audience
x = linspace (0, 2*pi , 100);
y = sin(x);
plot(x, y);
xlabel(’x (radians)’);
ylabel(’sin(x)’);
title(’Sine Function ’);
grid on;

% General audience
x = linspace (0, 360, 100);
y = sind(x);
plot(x, y);
xlabel(’Angle (degrees)’);

8.13 Visualisation Best Practices 295

ylabel(’Sine of Angle’);
title(’Sine Function ’);

By following these best practices and considering factors such as plot type,
colour usage, simplification, and audience, one can create effective and compelling
visualisations in MATLAB that successfully communicate the intended message
(Figs. 8.13 and 8.14).

Fig. 8.13 Plot of the quadratic equation y = 2x2 + 5x − 6

Fig. 8.14 Plotting quadratic curve

296 8 Graphics and Data Visualisation

8.14 Laboratory

1. Plotting Sine and Cosine Functions

a. Create a vector x with values from 0 to 2pi in increments of 0.1.
b. Create a vector y1 by evaluating the sine function on x.
c. Create a vector y2 by evaluating the cosine function on x.
d. Use the plot() function to create a line plot of y1 vs. x.
e. Use the hold on and plot() functions to overlay a line plot of y2 vs. x on the

same figure.
f. Add a title, x-label, y-label, and legend to the plot.

Solution:

Listing 8.89 Basic plotting functions.

x = 0:0.1:2* pi;
y1 = sin(x);
y2 = cos(x);

figure;
plot(x, y1);
hold on;
plot(x, y2);
title(’Sine and Cosine Functions ’);
xlabel(’x’);
ylabel(’y’);
legend(’Sine’, ’Cosine ’);

2. Plotting Quadratic Curve
y = 2x2 + 5x − 6 (8.1)

To draw the curve defined by Eq. 8.1, follow these steps:

a. Let x range from [−10, 10].
b. Display the grid lines on the graph.
c. Add labels to the X-axis and Y-axis.
d. Include a title for the graph.
e. Set the range of the X-axis to [−12, 12].
f. Set the range of the Y-axis to [−20, 300].

Listing 8.90 Plotting Quadratic Curve

x = -10:0.1:10;
y = 2*x.^2+5*x-6;
plot(x,y);
grid on
xlabel(’x’)
ylabel(’y’)
title(’ y = 2x^2 + 5x - 6 ’)
axis([-12, 12, -20, 300])

8.14 Laboratory 297

3. Customising Plot Properties

a. Create a vector x with values from −10 to 10 in increments of 0.1.
b. Create a vector y by evaluating the Gaussian function on x.
c. Use the plot() function to create a line plot of y vs. x.
d. Set the line color to red using the Color property.
e. Set the line width to 2 using the LineWidth property.
f. Set the line style to dashed using the LineStyle property.
g. Add a title, x-label, and y-label to the plot.

Listing 8.91 Customising plot properties.

x = -10:0.1:10;
y = exp(-(x.^2) /2) / sqrt (2*pi);

figure;
plot(x, y, ’Color’, ’r’, ’LineWidth ’, 2, ’LineStyle ’, ’

--’);
title(’Gaussian Function ’);
xlabel(’x’);
ylabel(’y’);

4. Subplots and Figure Windows

a. Create a vector x with values from -pi to pi in increments of 0.1.
b. Create a vector y1 by evaluating the sine function on x.
c. Create a vector y2 by evaluating the cosine function on x.
d. Create a new figure window with two subplots (one row, two columns) using

subplot(1, 2, 1) and subplot(1, 2, 2).
e. In the first subplot, create a line plot of y1 vs. x with a title “Sine Function”.
f. In the second subplot, create a line plot of y2 vs. x with a title “Cosine

Function”.
g. Add x-labels and y-labels to both subplots.

Solution:

Listing 8.92 Subplots and figure windows.

x = -pi :0.1:pi;
y1 = sin(x);
y2 = cos(x);

figure;
subplot (1, 2, 1);
plot(x, y1 , ’ -.*r’);
title(’Sine Function ’);
legend(’y1 = sin(x)’) ;

xlabel(’x’);
ylabel(’y’);

298 8 Graphics and Data Visualisation

subplot (1, 2, 2);
plot(x, y2 , ’--ob’);
title(’Cosine Function ’);
legend(’y2=cos(x)’) ;
xlabel(’x’);
ylabel(’y’);

5. 3D Plots and Surface Plots

a. Create vectors x and y with values from −2 to 2 in increments of 0.1.
b. Create matrices X and Y using meshgrid(x, y).
c. Create a matrix Z by evaluating the function Z = X2 + Y 2 on X and Y.
d. Use the sur f () function to create a 3D surface plot of Z.
e. Set the colormap to hot using colormap(’hot’).
f. Add a title, x-label, y-label, and z-label to the plot.

Solution:

Listing 8.93 3D plots and surface plots.

x = -2:0.1:2;
y = -2:0.1:2;
[X, Y] = meshgrid(x, y);
Z = X.^2 + Y.^2;

figure;
surf(X, Y, Z);
colormap(’hot’);
title(’3D Surface Plot’);
xlabel(’X’);
ylabel(’Y’);
zlabel(’Z’);

6. Image Processing and Image Display

a. Load an image file (e.g., image.jpg) into MATLAB using img =
imread(’image.jpg’).

b. Display the image using imshow(img).
c. Convert the image to grayscale using gray_img = rgb2gray(img).
d. Display the grayscale image using imshow(gray_img).
e. Apply a Gaussian filter to the grayscale image using filtered_img =

imgaussfilt(gray_img, 2).
f. Display the filtered image using imshow(filtered_img).
g. Add a title to the filtered image using title(’Filtered Image’).

8.14 Laboratory 299

Solution:

Listing 8.94 Image processing and image display.

img = imread(’image.jpg’);
imshow(img);

\begin{lstlisting }[language=matlab , caption ={ Image
processing and image display .}]

gray_img = rgb2gray(img);
imshow(gray_img);

filtered_img = imgaussfilt(gray_img , 2);
figure;
imshow(filtered_img);
title(’Filtered Image’);

7. Plot Data Distribution—A Case Study: Salary Analysis
A company has recorded the salaries paid to its employees this month. The
salaries, in British Pounds (£), are as follows:
8200, 12200, 9000, 6850, 7800, 8500, 7500, 4800, 9200, 7600, 6250, 10800,
11500, 8200, 11000, 12800, 7800, 7250, 7500, 8600, 8200, 6300, 12000, 6500,
7800, 5500, 6600, 7500, 8200, 9000, 6800, 8300, 7800, 8500, 7500, 4800, 9100,
6800, 7600, 15000, 6500, 8200, 20000, 9800, 7800, 18000, 10500, 5700, 7500,
8200, 6000, 6800, 7800, 5500, 7900, 5500, 7500, 7000, 7100, 5800.
Your task is to:

a. Calculate the average salary of the employees.
b. Plot a histogram of the salary distribution.
c. Count the number of employees with a salary greater than £10,000.

Please use MATLAB to accomplish these tasks.

Listing 8.95 Plot a histogram of the salary distribution

% Salary data in GBP
salaries = [8200 , 12200 , 9000, 6850, 7800, 8500, 7500,

4800, 9200, 7600, 6250, 10800 , 11500 , 8200, 11000 ,
12800 , 7800, 7250, 7500, 8600, 8200, 6300, 12000 ,
6500, 7800, 5500, 6600, 7500, 8200, 9000, 6800,
8300, 7800, 8500, 7500, 4800, 9100, 6800, 7600,
15000 , 6500, 8200, 20000, 9800, 7800, 18000 , 10500 ,
5700, 7500, 8200, 6000, 6800, 7800, 5500, 7900,
5500, 7500, 7000, 7100, 5800];

% Calculate the average salary
averagesalary = mean(salaries);
disp([’The average salary is: ’, num2str(averagesalary ,

’%.2f’), ’GBP’]);

% Plot the histogram of salary distribution
figure;

300 8 Graphics and Data Visualisation

histogram(salaries , ’BinWidth ’, 1000);
xlabel(’Salary (GBP)’);
ylabel(’Number of Employees ’);
title(’Salary Distribution ’);

% Count the number of employees with salary greater than
10,000 GBP

highsalarycount = sum(salaries > 10000);
disp([’Number of employees with salary greater than

10 ,000 GBP: ’, num2str(highsalarycount)]);

The average salary is: 8590.83GBP
Number of employees with salary greater than 10,000GBP: 13

8. Scatter Plot with Randomly Generated Data
To create a scatter plot, follow these steps:

a. Randomly generate a 100 × 4 array.
b. Draw a scatter plot with solid diamond markers.
c. Use the first column for the horizontal coordinates.
d. Use the second column for the vertical coordinates.
e. Use the third column (multiplied by 50) to specify the size of the symbols.
f. Use the fourth column (multiplied by 10) to specify the colour of the symbols

(Fig. 8.15).

Fig. 8.15 Histogram of salary distribution

8.14 Laboratory 301

Listing 8.96 Scatter Plot with Randomly Generated Data

% Generate a 100x4 matrix of random numbers
data = rand (100, 4);

% Extract the first column for the x-coordinates
x = data(:, 1);

% Extract the second column for the y-coordinates
y = data(:, 2);

% Calculate the size of the markers by multiplying the
third column by 40

sz = 40 * data(:, 3);

% Determine the colour of the markers by multiplying the
fourth column by 10

color = 10 * data(:, 4);

% Create a scatter plot with solid diamond markers
scatter(x, y, sz , color , ’filled ’, ’d’);

9. Vector Diagrams
Draw two-dimensional and three-dimensional vector diagrams for the equation
z = y2 − x2.

Listing 8.97 Vector Diagrams

% Create a grid of points
[x, y] = meshgrid (-3:0.5:3 , -3:0.5:3);

% Calculate z using the equation z = y^2 - x^2
z = y.^2 - x.^2;

% Compute gradients for the vector field
[u, v] = gradient(z, 2, 2);

% Create a 2D quiver plot
figure;
quiver(x, y, u, v);
xlabel(’x’);
ylabel(’y’);
title(’2D Quiver Plot for z = y^2 - x^2’);
grid on;
axis equal;

% Compute surface normals for the 3D vector field
[u, v, w] = surfnorm(z);

% Create a 3D quiver plot
figure;
quiver3(x, y, z, u, v, w);
xlabel(’x’);

302 8 Graphics and Data Visualisation

ylabel(’y’);
zlabel(’z’);
title(’3D Quiver Plot for z = y^2 - x^2’);
grid on;

10. Volume Visualisation—Three-Dimensional Volume and Slice Planes
Create the three-dimensional volume V = x2 + y2 + z2 − 25 and plot the slice
planes orthogonal to the x-axis at x = −3, x = 0, and x = 3, as well as the slice
planes orthogonal to the z-axis at z = −4 and z = 0.
Create the three-dimensional volume V = x2 + y2 + z2 − 25 and plot the slice
planes orthogonal to the x-axis at x = −3, x = 0, and x = 3, as well as the slice
planes orthogonal to the z-axis at z = −4 and z = 0.

Listing 8.98 Three-Dimensional Volume and Slice Planes

% Define the range for x, y, and z
x = -5:0.5:5;
y = -5:0.5:5;
z = -5:0.5:5;

% Create a meshgrid for x, y, and z
[X, Y, Z] = meshgrid(x, y, z);

% Calculate the volume V using the equation V = x^2 + y
^2 + z^2 - 25

V = X.^2 + Y.^2 + Z.^2 - 25;

% Create a figure for visualisation
figure;

% Plot the slices orthogonal to the x-axis at x = -3, 0,
and 3

slice(X, Y, Z, V, [-3, 0, 3], [], []);
hold on;

% Plot the slices orthogonal to the z-axis at z = -4 and
0

slice(X, Y, Z, V, [], [], [-4, 0]);

% Enhance visualisation
xlabel(’x’);
ylabel(’y’);
zlabel(’z’);
title(’Slice Planes of the Volume V = x^2 + y^2 + z^2 -

25’);
colorbar;
shading interp; % Smooth shading
grid on;
axis equal;
view (3); % 3D view
hold off;

8.14 Laboratory 303

Explanation

a. Range Definition:

• ‘x =−5:0.5:5;’, ‘y =−5:0.5:5;’, ‘z =−5:0.5:5;’: Defines the range for the ‘x’,
‘y’, and ‘z’ axes from −5 to 5 with a step size of 0.5.

b. Meshgrid Creation:

• ‘[X, Y, Z] = meshgrid(x, y, z);’: Creates a 3D grid of points.

c. Volume Calculation:

• ‘
V = X.2 + Y.2 + Z .2 − 25

’: Computes the volume ‘V’.

d. Figure Creation:

• ‘figure;’: Opens a new figure window.

e. Slice Plotting:

• ‘slice(X, Y, Z, V, [−3, 0, 3], [], []);’: Plots slices orthogonal to the ‘x’-axis at
‘x = −3’, ‘x = 0’, and ‘x = 3’.

• ‘slice(X, Y, Z, V, [], [], [−4, 0]);’: Plots slices orthogonal to the ‘z’-axis at ‘z
= −4’ and ‘z = 0’.

f. Visualisation Enhancement:

• ‘xlabel’, ‘ylabel’, ‘zlabel’: Labels the axes.
• ‘title’: Adds a title.
• ‘colorbar’: Displays a color bar.
• ‘shading interp’: Applies smooth shading.
• ‘grid on’: Enables the grid.
• ‘axis equal’: Sets equal scaling for all axes.
• ‘view(3)’: Sets the view to a 3D perspective.
• ‘hold off;’: Releases the plot hold.

11. Draw a Flower in MATLAB
To draw a flower in MATLAB, you can use polar coordinates to create a simple
flower-like pattern. Below is an example MATLAB code to draw a flower with
8 petals.

% Define the number of petals
num_petals = 8;

% Define the theta range
theta = linspace (0, 2*pi , 1000);

304 8 Graphics and Data Visualisation

% Define the radius for the flower petals
r = cos(num_petals * theta);

% Create a new figure
figure;

% Plot the flower using polar coordinates
polarplot(theta , r, ’LineWidth ’, 2);

% Enhance the visualisation
title([’Flower with ’, num2str(num_petals), ’ Petals ’])

;
ax = gca;
ax.ThetaTickLabel = {}; % Remove theta tick labels
ax.RTickLabel = {}; % Remove radius tick labels
ax.GridAlpha = 0.3; % Make grid lines less prominent
ax.RAxisLocation = 0; % Set the starting angle of the

radial axis

% Set the aspect ratio to ensure the plot is circular
axis equal;

Explanation

a. Number of Petals:

• ‘num_petals = 8;’: Defines the number of petals for the flower.

b. Theta Range:

• ‘theta = linspace(0, 2*pi, 1000);’: Generates 1000 points between 0 and 2π .

c. Radius Definition:

• ‘r = cos(num_petals * theta);’: Defines the radius as a cosine function to create
the petal shapes.

d. Figure Creation:

• ‘figure;’: Opens a new figure window.

e. Plotting the Flower:

• ‘polarplot(theta, r, ‘LineWidth’, 2);’: Plots the flower using polar coordinates
with a specified line width.

f. Enhancing the visualisation:

• ‘title’: Adds a title to the plot.
• ‘ax = gca;’: Gets the current axes.

8.14 Laboratory 305

• ‘ax.ThetaTickLabel = ;’, ‘ax.RTickLabel = ;’: Removes the theta and radius
tick labels for a cleaner look.

• ‘ax.GridAlpha = 0.3;’: Makes the grid lines less
• ‘ax.GridAlpha = 0.3;’: Makes the grid lines less prominent by setting their
transparency.

• ‘ax.RAxisLocation = 0;’: Sets the starting angle of the radial axis to 0 degrees.
• ‘axis equal;’: Ensures the aspect ratio is equal, making the plot circular.

12. Fourier Series Expansion—a 3D Data Visualisation
3D data visualisation provides learners with intuitive imagery and has a wide
range of applications. The previous post mainly introduced the drawing of 3D
surfaces, involving 3D surface plotting functions such asmeshgrid,mesh,meshc,
surf, surfl, and surfc.
3D line plots aim to display the distribution of curves in three-dimensional space,
using theMATLABfunction plot3. The difference from the two-dimensional line
drawing function plot is that coordinate vectors need to be set in the x, y, and z
directions; other plotting attributes are essentially the same for both.
Similar functions include the 3D scatter plot scatter3 and the 3D stem plot stem3.

Listing 8.99 Periodic Signal and Fourier Series Expansion in MATLAB (Fig. 8.16)

% MATLAB code for Periodic Signal and Fourier Series
Expansion

clear all;
close all;

% ----------------------%
numTerms = 15; % Number of terms in the series
numPoints = 512; % Number of points per period
timeConstant = 4; % Total time span
T = timeConstant / 2;

t1 = linspace(-T/2, T/2, numPoints);
t2 = linspace(T/2, timeConstant - T/2, numPoints);
t3 = [(t1 -timeConstant) ’;

(t2 -timeConstant) ’;
t1 ’;
t2 ’;

(t1+timeConstant) ’];

% ----------------------% Construct periodic signals
%----------------------%

s = zeros(5 * numPoints , 1);
s(1: numPoints) = 1;
s(2* numPoints + 1:3* numPoints) = 1;
s(4* numPoints + 1:5* numPoints) = 1;

y = zeros(numTerms + 1, length(s));
y(numTerms + 1, :) = s - 0.5;

306 8 Graphics and Data Visualisation

% Plot setup
figure;
hold on;
grid on;
axis([-2, numTerms + 1, -timeConstant - 1, timeConstant

+ 1, -1, 2]);
set(gca ,’XTick’, -timeConstant - 1:2: numTerms);
set(gca ,’YTick’, -timeConstant - 1:1: timeConstant + 1);
set(gca ,’ZTick’, -1:0.5:2);
set(gcf ,’Color’,’White’);

title(’Fourier Series Expansion ’,’FontSize ’ ,15);
xlabel(’Frequency ’,’Rotation ’, 15);
ylabel(’Time’,’Rotation ’, -10);
zlabel(’Amplitude/Magnitude ’);

view(-49, 23);

% Period square wave plot
plot3(t3 - (t3 + 2), t3 , y(numTerms + 1, :),
’LineWidth ’, 2);

fsamp = 1028;
f = linspace (1, numTerms + 1, fsamp);
A = 0.5; % Coefficient
freq = 1:1: numTerms;

% Frequency components plot
plot3(f, timeConstant + f - f + 1, A * sinc(A * f) * 5,

’LineWidth ’, 3);

% Magnitude of frequency components plot
mag = A * sinc(A * freq) * 5;
h = stem3(freq , timeConstant + freq - freq + 1, mag , ’

filled ’, ’LineWidth ’, 3);
set(h, ’Marker ’, ’o’, ’MarkerFaceColor ’, ’g’);

Harmonicx = A * ones(size(t3)); % Harmonic signals
SynthesisX = A * ones(size(t3)); % Synthesis signals

% Construct the Fourier series
for k = 1: numTerms

Harmonicx = 2 * A * sinc(A * k) * cos(2 * pi * t3
* k / timeConstant);

SynthesisX = SynthesisX + Harmonicx;
y(k, :) = Harmonicx;
plot3(k + t3 - t3 , t3 , y(k, :), ’LineWidth ’, 1.5);

end

% Final synthesis signal plot
plot3(k + 1 + t3 - t3 , t3 , SynthesisX - 0.5,
’LineWidth ’, 2);

8.15 Problems 307

Fig. 8.16 Plot FFT in 3D view

These lab works and exercises cover various aspects of graphics and data visuali-
sation in MATLAB, including basic plotting functions, customising plot properties,
working with subplots and figure windows, creating 3D plots and surface plots,
and image processing and display. The step-by-step instructions, along with the
provided code snippets and expected outputs, should help students reinforce their
understanding of these concepts through hands-on practice (Fig. 8.16).

8.15 Problems

1. Create a line plot of the function y = x2 − 2x + 1 over the range −2 ≤ x ≤ 4.
Annotate the plot with a title, x-label, y-label, and a legend.

2. Plot the vectorized sine function y = sin(x) over one period 0 ≤ x ≤ 2π .
Customise the line color and style.

3. Generate a scatter plot of random (x,y) points within the range 0 ≤ x, y ≤ 10.
Add gridlines and use different marker styles and colors to distinguish clusters.

4. Create a bar chart to Visualise student scores in five different courses. Customise
the bar colors, add data labels, and rotate the x-tick labels for better readability.

5. Load a image dataset (e.g., fromMATLAB’s sample data) and display the image.
Adjust the colormap and add a descriptive title.

6. Generate a 3D surface plot of the function z = x2 + y2 over the ranges −2 ≤
x, y ≤ 2. Add appropriate view angles, lighting, and color the surface by z-
values.

308 8 Graphics and Data Visualisation

7. Plot multiple line graphs on the same axes to compare growth trends for different
populations over time. Use legends and line styles to differentiate the plots.

8. Load a real-world dataset (e.g., from a CSV file) and create a histogram to
Visualise the distribution of a chosen variable. Experiment with different bin
widths and overlay a kernel density estimate.

9. Create a filled contour plot of a 2D Gaussian function. Add a colour bar and
label the contour levels.

10. Animate a bouncing ball simulation by plotting the ball’s position at each time
step. Control the animation speed and add a trail effect.

This set of problems covers various plot types (line, scatter, bar, image, 3D, con-
tour), customizations (titles, labels, legends, colors, styles), and advanced topics like
animations.Theproblems involve creatingplots from functions, vectors,matrices and
real-world data to ensure a comprehensive understanding of MATLAB visualisation
capabilities.

8.16 Summary

This chapter covers the key aspects of creating effective data visualisations in MAT-
LAB, frombasic plotting to advanced customisation techniques and real-world appli-
cations. The sections are organised in a logical progression, allowing readers to build
up their skills.

• This chapter covered various data visualisation techniques using MATLAB,
including:

– Displaying and manipulating images
– Creating 3D surface plots with customizations
– Plotting multiple line graphs with legends
– Generating histograms and kernel density estimates
– Producing filled contour plots with labeled levels
– Animating dynamic simulations, such as a bouncing ball.

• The step-by-step approaches, sample codes, and extensions provided hands-on
examples for mastering these visualisation techniques.

• Concepts like colormaps, view angles, lighting, legends, bin widths, and
contour labeling were explored.

• The chapter emphasized the importance of effective data visualisation in
understanding patterns, trends, and distributions within datasets.

For Undergraduate (UG) Students:

This chapter serves as an excellent introduction to data visualisation using MAT-
LAB. By working through the provided examples and exercises, you will develop
essential skills in creating various types of plots, customising their appearance, and

References 309

interpreting the Visualised data. These techniques are invaluable for exploratory
data analysis, communicating research findings, and gaining insights from complex
datasets across multiple disciplines.

For Postgraduate (PG) Students and Professional Researchers or Engineers:

The chapter equips you with advanced data visualisation tools and techniques that
are crucial for research and professional work. The ability to effectively present data
through compelling visuals is paramount in scientific communication and decision-
making processes. The concepts covered, such as 3D surface plots, kernel den-
sity estimation, and contour plots, empower you to analyse and interpret intri-
cate datasets more effectively. Additionally, the animation capabilities demon-
strated provide a powerful means to Visualise and comprehend dynamic systems
and simulations.

References

1. MathWorks, Data Distribution Plots. [Online]. https://www.mathworks.com/help/matlab/pie-
charts-bar-plots-and-histograms.html. [Accessed: Feb. 17, 2024]

2. MathWorks, “Vector Fields and Volume Visualization in MATLAB,” https://www.mathworks.
com/help/matlab/vector-fields-and-volume-visualization.html.[Accessed: Feb. 17, 2024]

3. MathWorks, Types of MATLAB Plots. [Online]. https://www.mathworks.com/help/matlab/
creating_plots/types-of-matlab-plots.html. [Accessed: Feb. 17, 2024]

4. MathWorks, Create, Store, and Open MATLAB Figures. [Online]. https://www.mathworks.
com/help/sltest/ug/create-store-and-access-custom-figures.html. [Accessed: Feb. 17, 2024]

5. MathWorks, “Graphics,” [Online]. https://www.mathworks.com/help/matlab/graphics.html.
[Accessed: Feb. 17, 2024]

6. MathWorks, “MATLAB Plot Gallery,” [Online]. https://www.mathworks.com/products/
matlab/plot-gallery.html. [Accessed: Feb. 17, 2024]

7. MathWorks, tiledlayout. [Online]. https://uk.mathworks.com/help/matlab/ref/tiledlayout.
html. [Accessed: Feb. 17, 2024]

8. MathWorks, LineSpec - Line style, marker, and color. [Online]. https://uk.mathworks.
com/help/matlab/ref/plot.html#btzitot_sep_mw_3a76f056-2882-44d7-8e73-c695c0c54ca8.
[Accessed: Feb. 17, 2024]

9. MathWorks, “MATLABFundamentals,” [Online]. https://www.mathworks.com/help/matlab/.
[Accessed: Feb. 17, 2024]

10. MathWorks, Types of MATLAB Plots. [Online]. https://uk.mathworks.com/help/matlab/
creating_plots/types-of-matlab-plots.html. [Accessed: Feb. 17, 2024]

11. MathWorks, “MATLAB Graphics Documentation,” 2024. [Online]. https://www.mathworks.
com/help/matlab/graphics.html

12. MathWorks, “Property Inspector,” in MATLAB Documentation, 2024. [Online]. https://www.
mathworks.com/help/matlab/ref/inspect.html

13. MathWorks, “Creating Specialized Charts with MATLAB Object-Oriented Programming,”
in MATLAB Documentation, 2024. [Online]. https://uk.mathworks.com/company/technical-
articles/creating-specialized-charts-with-matlab-object-oriented-programming.html

14. MathWorks, “Visualize the distribution of data,” [Online]. https://uk.mathworks.com/
discovery/data-distribution.html. [Accessed: Oct. 22, 2023]

15. Scott DW (2015) Multivariate density estimation: theory, practice, and visualization, 2nd edn.
Wiley, Hoboken, NJ, USA

https://www.mathworks.com/help/matlab/pie-charts-bar-plots-and-histograms.html
https://www.mathworks.com/help/matlab/pie-charts-bar-plots-and-histograms.html
https://www.mathworks.com/help/matlab/vector-fields-and-volume-visualization.html
https://www.mathworks.com/help/matlab/vector-fields-and-volume-visualization.html
https://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html
https://www.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html
https://www.mathworks.com/help/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/matlab/graphics.html
https://www.mathworks.com/products/matlab/plot-gallery.html
https://www.mathworks.com/products/matlab/plot-gallery.html
https://uk.mathworks.com/help/matlab/ref/tiledlayout.html
https://uk.mathworks.com/help/matlab/ref/tiledlayout.html
https://uk.mathworks.com/help/matlab/ref/plot.html#btzitot_sep_mw_3a76f056-2882-44d7-8e73-c695c0c54ca8
https://uk.mathworks.com/help/matlab/ref/plot.html#btzitot_sep_mw_3a76f056-2882-44d7-8e73-c695c0c54ca8
https://www.mathworks.com/help/matlab/
https://uk.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html
https://uk.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html
https://www.mathworks.com/help/matlab/graphics.html
https://www.mathworks.com/help/matlab/graphics.html
https://www.mathworks.com/help/matlab/ref/inspect.html
https://www.mathworks.com/help/matlab/ref/inspect.html
https://uk.mathworks.com/company/technical-articles/creating-specialized-charts-with-matlab-object-oriented-programming.html
https://uk.mathworks.com/company/technical-articles/creating-specialized-charts-with-matlab-object-oriented-programming.html
https://uk.mathworks.com/discovery/data-distribution.html
https://uk.mathworks.com/discovery/data-distribution.html

310 8 Graphics and Data Visualisation

16. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat. 32(1):12–16
17. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat

52(2):181–184
18. MathWorks File Exchange, “Violin Plot,” [Online]. https://www.mathworks.com/

matlabcentral/fileexchange/45134-violin-plot. [Accessed: Oct. 22, 2023]
19. Chambers JM,ClevelandWS,Kleiner B, Tukey PA (1983)Graphicalmethods for data analysis.

Wadsworth International Group, Belmont, CA, USA
20. ClevelandWS,McGill R (1984)Graphical perception: theory, experimentation, and application

to the development of graphical methods. J Am Stat Assoc 79(387):531–554
21. Heer J, Shneiderman B (2012) Interactive dynamics for visual analysis. Commun ACM

55(4):45–54
22. Tuegel EJ, Ingraffea AR, Eason TG, Spottswood SM (2011) Reengineering aircraft structural

life prediction using a digital twin. Int J Aerosp Eng 2011:1–14
23. MathWorks, “Data Visualization,” [Online]. https://uk.mathworks.com/discovery/data-

visualization.html. [Accessed: Oct. 22, 2023]
24. Chapra SC (2018) Applied numerical methods with MATLAB for engineers and scientists, 4th

edn. McGraw-Hill Education, New York, NY, USA
25. Attaway S (2017) MATLAB: a practical introduction to programming and problem solving,

4th edn. Butterworth-Heinemann
26. Smith III JO (2013) Introduction to digital filters with audio applications. W3K Publishing,

San Francisco, CA, USA
27. Quart R (2016) Data visualization with MATLAB. CRC Press, Boca Raton, FL, USA
28. Tufte ER (2001) The visual display of quantitative information, 2nd edn. Graphics Press,

Cheshire, CT, USA
29. Few S (2012) Show me the numbers: designing tables and graphs to enlighten, 2nd edn.

Analytics Press, Burlingame, CA, USA
30. MathWorks, “Visualize 2-D Vector Fields,” [Online]. https://www.mathworks.com/help/

matlab/ref/quiver.html. [Accessed: Oct. 22, 2023]
31. Corke P (2017) Robotics, vision and control: fundamental algorithms in MATLAB, 2nd edn.

Springer, Cham, Switzerland
32. Fuller A, Fan Z, Day C, Barrett C (2020) Digital twin: enabling technologies, challenges and

open research. IEEE Access 8:108952–108971
33. McCormickBH,DeFanti TA,BrownMD (1987)Visualization in scientific computing. Comput

Graph 21(6):1–14
34. MathWorks, “Volume Visualization,” [Online]. https://www.mathworks.com/help/matlab/

volume-visualization.html. [Accessed: Oct. 22, 2023]
35. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction

algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169
36. MathWorks, “isocaps,” [Online]. https://www.mathworks.com/help/matlab/ref/isocaps.html.

[Accessed: Oct. 22, 2023]
37. Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018) Digital twin-driven product design,

manufacturing and service with big data. Int J Adv Manuf Technol 94(9):3563–3576
38. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the

finite volume method, 2nd edn. Pearson Education, Harlow, UK
39. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge, MA, USA
40. MathWorks, “Basic Display,”MATLABDocumentation, [Online]. https://uk.mathworks.com/

help/images/basic-display-and-exploration.html. [Accessed: Oct. 22, 2023]
41. MathWorks, “Creating Animations in MATLAB,” https://www.mathworks.com/help/matlab/

creating-animations.html, accessed on Feb. 17, 2024
42. MathWorks, “Graphics,” MATLAB Documentation, [Online]. https://www.mathworks.com/

help/matlab/graphics.html. [Accessed: Oct. 22, 2023]
43. Few S (2009) Now you see it: simple visualization techniques for quantitative analysis.

Analytics Press, Burlingame, CA, USA

https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://www.mathworks.com/matlabcentral/fileexchange/45134-violin-plot
https://uk.mathworks.com/discovery/data-visualization.html
https://uk.mathworks.com/discovery/data-visualization.html
https://www.mathworks.com/help/matlab/ref/quiver.html
https://www.mathworks.com/help/matlab/ref/quiver.html
https://www.mathworks.com/help/matlab/volume-visualization.html
https://www.mathworks.com/help/matlab/volume-visualization.html
https://www.mathworks.com/help/matlab/ref/isocaps.html
https://uk.mathworks.com/help/images/basic-display-and-exploration.html
https://uk.mathworks.com/help/images/basic-display-and-exploration.html
https://www.mathworks.com/help/matlab/creating-animations.html
https://www.mathworks.com/help/matlab/creating-animations.html
https://www.mathworks.com/help/matlab/graphics.html
https://www.mathworks.com/help/matlab/graphics.html

References 311

44. MathWorks, “Advanced Plotting Functions,” MATLAB Documentation, [Online].
https://www.mathworks.com/help/matlab/creating_plots/advanced-plotting-functions.html.
[Accessed: Oct. 22, 2023]

45. MathWorks, “Interactively Explore Plotted Data,” MATLAB Documentation, [Online].
https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.
html. [Accessed: Oct. 22, 2023]

46. MathWorks, “Visualize and Explore Big Data,” MATLAB Documentation, [Online]. https://
www.mathworks.com/help/matlab/big-data.html. [Accessed: Oct. 22, 2023]

47. MathWorks, “Tall Arrays for Out-of-Memory Data,” MATLAB Documentation, [Online].
https://www.mathworks.com/help/matlab/tall-arrays.html. [Accessed: Oct. 22, 2023]

48. MathWorks, “Real-Time Data Streaming and Visualization,” MATLAB Documen-
tation, [Online]. https://www.mathworks.com/help/matlab/real-time-data-streaming.html.
[Accessed: Oct. 22, 2023]

49. Lee J, Bagheri B, KaoH-A (2015) A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manuf Lett 3:18–23

50. KentWilliams W (2018) Visualizing uncertainty. Commun ACM 61(4):5–5
51. Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncer-

tainty in deep learning. In: Proceedings of the 33rd international conference on machine
learning, New York, NY, USA, Jun. 2016, pp 1050–1059

52. MathWorks, “Mapping Toolbox,” MATLAB Documentation, [Online]. https://www.
mathworks.com/help/map/. [Accessed: Oct. 22, 2023]

53. Batty M (2018) Digital twins. Environ Plann B: Urban Anal City Sci 45(5):817–820
54. Few S (2012) Show me the numbers: designing tables and graphs to enlighten. Analytics Press
55. Stone M (2006) Choosing colors for data visualization. Business Intelligence Network
56. Knafli CN (2015) Storytelling with data: a data visualization guide for business professionals.

Wiley
57. Kelleher C, Wagener T (2011) Ten guidelines for effective data visualization in scientific

publications. Environ Model Softw 26(6):822–827

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.mathworks.com/help/matlab/creating_plots/advanced-plotting-functions.html
https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html
https://www.mathworks.com/help/matlab/creating_plots/interactively-explore-plotted-data.html
https://www.mathworks.com/help/matlab/big-data.html
https://www.mathworks.com/help/matlab/big-data.html
https://www.mathworks.com/help/matlab/tall-arrays.html
https://www.mathworks.com/help/matlab/real-time-data-streaming.html
https://www.mathworks.com/help/map/
https://www.mathworks.com/help/map/
http://creativecommons.org/licenses/by/4.0/

Chapter 9
Programming and Algorithm
Development

Chapter Learning Outcomes

Upon successful completion of this chapter, you should be able to:

• Understand the fundamental concepts of programming and algorithm develop-
ment in MATLAB.

• Write and execute scripts and functions in MATLAB to solve computational
problems.

• Implement control structures such as loops and conditional statements for pro-
gram flow control.

• Utilise data structures like vectors, matrices, and cells to organize andmanipulate
data effectively.

• Develop and apply algorithms to solve real-world problems using MATLAB’s
programming capabilities.

• Employ debugging techniques to identify and resolve errors in MATLAB code.

Chapter Key Words

• Programming: Theprocess of designing,writing, testing, andmaintaining instruc-
tions or code that direct a computer to perform specific tasks or operations.

• Algorithm: A set of well-defined, step-by-step instructions or rules designed to
solve a particular problem or accomplish a specific task within a finite amount of
time.

• Script: A plain text file in MATLAB containing a sequence of commands and
statements that are executed sequentially without requiring user input or returning
outputs.

• Function: A reusable block of code in MATLAB that performs a specific task
and can accept input arguments and return output values, enabling modular and
organized programming.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_9

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_9&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_9

314 9 Programming and Algorithm Developmen

• Control Structure: Programming constructs that allow for the conditional execu-
tion of code blocks or repetitive execution of statements based on certain conditions
or criteria.

• Data Structure: A organized way of storing and managing data in computer
memory, such as vectors, matrices, or cells, enabling efficient data manipulation
and computation.

• Debugging: The process of identifying, locating, and resolving errors or defects
in computer programs to ensure correct and intended behavior.

• Code Reuse: The practice of using existing code modules (such as functions) in
multiple parts of a program or across different programs. It promotes efficiency
and reduces code duplication.

• Maintainability: The ease with which code can be modified, updated, and
debugged without introducing errors. Well-organized and modular code improves
maintainability.

• Computational Problems: Challenges or tasks that involve mathematical calcu-
lations, data manipulation, or algorithmic operations. MATLAB can be used to
solve a wide range of computational problems efficiently.

9.1 Introduction to Programming

• Overview of programming
Programming is the process of designing, writing, testing, and maintaining code
that instructs computers to perform specific tasks. It involves translating real-world
problems into a set of instructions that a computer can understand and execute.
Programming is a fundamental skill in various fields, including computer science,
engineering, data analysis, and scientific research.

• Importance of algorithms and computational thinking
Algorithms are a set of well-defined instructions or a sequence of steps that solve
a particular problem or perform a specific task. They are the foundation of pro-
gramming and play a crucial role in computational thinking, which is the process
of formulating problems and designing solutions that can be effectively carried
out by a computer.
The importance of algorithms and computational thinking in programming cannot
be overstated. Developing efficient and effective algorithms is essential for solv-
ing complex problems, Optimising performance, and ensuring the reliability and
scalability of software systems.

• MATLAB as a programming environment
MATLAB is a high-level programming language and a powerful numerical com-
puting environment widely used in academia and industry. It provides a compre-
hensive set of tools for data analysis, algorithm development, and visualisation,
making it an ideal environment for scientific and engineering applications.
MATLAB offers a user-friendly interface, extensive built-in functions, and a flexi-
ble scripting language that allows for rapid prototyping and iterative development.

9.2 Algorithms 315

Its matrix-based syntax and powerful visualisation capabilities make it well-suited
for tasks such as numerical computation, data analysis, algorithm implementation,
and simulation.
The basic syntax for a MATLAB script is:

Listing 9.1 MATLAB Script Syntax

% This is a comment

% Variable assignment
x = 5;
y = 10;

% Arithmetic operation
z = x + y;

% Print output
disp([’The result is: ’, num2str(z)]);

Here’s an example of a simple MATLAB script that calculates the area of a circle:

Listing 9.2 Calculate Circle Area

% Prompt the user for the radius
radius = input(’Enter the radius of the circle: ’);

% Calculate the area
area = \pi * radius ^2;

% Display the result
disp([’The area of the circle with radius ’, num2str(

radius), ’ is ’, num2str(area)]);

Another example of a MATLAB script that sorts an array of numbers:

Listing 9.3 Sort Array

% Create an array of numbers
numbers = [5, 2, 8, 1, 9];

% Sort the array in ascending order
sorted_numbers = \sort(numbers);

% Display the original and sorted arrays
disp([’Original array: ’, \mat2str(numbers)]);
disp([’Sorted array: ’, \mat2str(sorted_numbers)]);

9.2 Algorithms

Algorithms are a fundamental concept in programming and computer science. They
are a set of well-defined, step-by-step instructions that are designed to solve a spe-
cific problem or perform a particular task. Algorithms are the foundation of any

316 9 Programming and Algorithm Developmen

software program, and their quality and efficiency directly impact the performance
and reliability of the program. When developing algorithms, it is essential to follow
a structured approach to ensure that the algorithm is correct, efficient, and maintain-
able. Here are some steps to consider when mapping an algorithm to code:

• Understand the problem: Before attempting to write an algorithm, it is crucial
to have a clear understanding of the problem you are trying to solve. This includes
identifying the inputs, expected outputs, and any constraints or requirements that
need to be met.

• Understand the problem: Before attempting to write an algorithm, it is crucial
to have a clear understanding of the problem you are trying to solve. This includes
identifying the inputs, expected outputs, and any constraints or requirements that
need to be met.

• Develop a conceptual solution: Once you have a clear understanding of the prob-
lem, develop a conceptual solution by breaking it down into smaller, more man-
ageable steps. This can be done using techniques like flowcharts, pseudocode, or
natural language descriptions.

• Choose appropriate data structures: Select the appropriate data structures, such
as arrays, lists, or trees, to represent the input, intermediate results, and output of
the algorithm. The choice of data structures can significantly impact the efficiency
and performance of the algorithm.

• Implement the algorithm: Translate the conceptual solution into code using a
programming language of your choice. Follow best practices for coding, such as
using meaningful variable names, commenting your code, and adhering to coding
standards.

• Test and debug: Test your implementation thoroughly to ensure that it produces
the expected results for various input scenarios. Debug and fix any errors or issues
that you encounter during testing.

• Optimise and refine: Look for opportunities to optimise and refine your algo-
rithm to improve its efficiency, readability, and maintainability. This may involve
techniques like code refactoring, algorithm analysis, or the use of more efficient
data structures or algorithms.

• Document the algorithm: Properly document your algorithm, including a descrip-
tion of its purpose, inputs, outputs, and any assumptions or limitations. Good doc-
umentation will make it easier for others (or your future self) to understand and
maintain the algorithm.

9.3 From Algorithm to Programming

• Define the algorithm using pseudocode or flowchart notation
• Identify the programming language you will be using
• Translate each step of the algorithm into code using the chosen programming
language

9.3 From Algorithm to Programming 317

• Use appropriate control structures (if-else, loops, etc.) to implement the logic of
the algorithm

• Test the code thoroughly to ensure that it produces the expected results
• Optimise the code if necessary to improve its efficiency or readability

It is important to note that the process of developing algorithms is often iterative,
and you may need to revisit and refine your solution as you gain more insight or
encounter new requirements.

Listing 9.4 Bubble Sort Algorithm

function sorted_array = bubbleSort(array)
% Get the length of the array
n = length(array);
% Perform bubble sort
for i = 1:n-1

% Flag to track if any swaps occurred
swapped = false;

% Loop through the unsorted portion of the array
for j = 1:n-i

% If the current element is greater than the
next

if array(j) > array(j+1)
% Swap the elements
temp = array(j);
array(j) = array(j+1);
array(j+1) = temp;
swapped = true; % Swaps occurred

end
end

% If no swaps occurred , the array is sorted
if ~swapped

break;
end

end

% Return the sorted array
sorted_array = array;

end

Listing 9.5 Linear Search Algorithm

function index = linearSearch(array , target)
% Get the length of the array
n = length(array);
% Initialize the index to -1 (not found)
index = -1;

% Loop through the array
for i = 1:n

318 9 Programming and Algorithm Developmen

% If the current element matches the target
if array(i) == target

% Store the index and exit the loop
index = i;
break;

end
end

end

9.4 Programme Organisation

Organising programmes in MATLAB involves structuring code to enhance readabil-
ity and functionality. Here are several steps and practices:

1. Use Functions: Break down your code into functions to perform specific tasks.
A function in MATLAB is defined using the function keyword, followed by the
output variables, the function name, and input variables in parentheses. Functions
should be saved in separate files with the same name as the function.

2. Script Files: Use script files for sequences of commands to run together. Scripts
do not accept input arguments or return output arguments but can access and
modify the workspace.

3. Local Functions: Include local functionswithin script and function files that are
only accessible within the file.

4. Subfunctions: Create subfunctions within the same file to be used by the pri-
mary function. These are functions that appear in the same file as the primary
function, after the primary function’s end statement. They are only accessible
by the primary function and other subfunctions in the same file.

5. Private Functions: Store functions that should be hidden from other functions
in a subdirectory named private. They are accessible only to functions in the
parent directory. Store functions in a private subdirectory to hide them from
other functions.

6. Namespaces: Use namespaces to create a scope for functions and classes that
prevents name clashes.

7. Code Sections: Use code sections within scripts to organise and run blocks of
code independently. This can be done by using %% to start a new section.

8. MATLAB Path: Manage theMATLAB path effectively soMATLAB can locate
your scripts and functions. Use the MATLAB path effectively so that MATLAB
can locate your functions and scripts when they are called.

9. Comments and Documentation: Comment your code using the % symbol for
single-line comments and { % ... % } for block comments. Use the help and
doc functions to provide documentation for your functions.

10. Version Control: Use version control systems like Git to manage changes and
collaborate with others.

9.4 Programme Organisation 319

Programme Organisation refers to the structured approach of organising and
managing MATLAB code to enhance readability, maintainability, and reusability.

Key concepts and terms related to programme organisation in MATLAB include:

• Functions: These are segments of code that perform specific tasks and can be
called and reused multiple times.

• Scripts: MATLAB files that contain a sequence of commands executed in order.
• Modularity: The practice of breaking down a programme into smaller, self-
contained modules or functions to simplify development and maintenance.

• Functionality separation: The division of code into distinct functions, each
responsible for a specific task or operation.

• Function headers: A section at the beginning of a function that includes the
function name, input arguments, and output variables.

• Function calling: The process of invoking a function within another function or
script to execute a specific task.

• Variable scope: The accessibility and visibility of variables within different parts
of a MATLAB programme.

• Local variables: Variables defined within a specific function or script and acces-
sible only within that scope.

• Global variables: Variables defined outside of any function, making them acces-
sible across different functions or scripts.

• Comments: Text annotations within code that provide explanations, clarify intent,
or document code functionality.

• Code indentation: The practice of aligning code blocks to visually represent their
hierarchical structure.

• Code documentation: The process of adding descriptive comments and annota-
tions to clarify code functionality and usage.

• Debugging: The process of identifying and fixing errors or bugs in the code to
ensure correct execution.

• Code versioning: The practice of managing and tracking different versions of
code to facilitate collaboration and code maintenance.

• MATLAB editor: The integrated development environment (IDE) provided by
MATLAB for writing, editing, and running MATLAB code.

By understanding and applying these concepts,MATLABprogrammers can effec-
tively organise andmanage their code, resulting inmore efficient development, easier
maintenance, and improved collaboration.

When discussing MATLAB programming, it is important to be familiar with the
following terms:

• Function Handle: A MATLAB data type that represents a function. Function
handles allow you to call functions indirectly and pass functions as arguments.

• Path Management: The process of adding and removing directories from the
MATLAB search path, which affects the ability to locate scripts and functions.

• Workspace: The set of variables that are currently loaded and can be accessed
from the command window or your scripts and functions.

• M-file: The file extension (.m) for MATLAB script and function files.

320 9 Programming and Algorithm Developmen

• Vectorization: A method of programming that works with vectors and matrices
in block operations, which is more efficient than scalar computation in MATLAB.

9.5 Control Flow in MATLAB

Control flow structures are essential in programming, enabling specific code execu-
tion based on conditions or repeated conditions. MATLAB, renowned for numerical
computations and programming, offers various control flow constructs critical for
effective coding. MATLAB provides several mechanisms as Types of Control Flow
Constructs in MATLAB:

• Conditional Statements
Conditional statements execute parts of code based on logical conditions. MAT-
LAB uses:

– if, elseif, and else—Execute based on the first true condition (Fig. 9.1).
– switch and case—Execute code for the matching case expression (Fig. 9.2).

Example:

x = 5;
if x > 0

disp(’x is positive ’);
elseif x == 0

disp(’x is zero’);
else

disp(’x is negative ’);
end

• Loop Statements
Loops in MATLAB allow repeating actions:

– for loops - Execute a set number of times.
– while loops - Execute as long as a condition remains true.

Examples:

% Example of a for loop
for i = 1:5

disp([’Iteration: ’, num2str(i)]);
end

% Example of a while loop
count = 1;
while count <= 5

disp([’Count: ’, num2str(count)]);
count = count + 1;

end

9.5 Control Flow in MATLAB 321

Start

Condition

Execute Code

Another Condition

Execute Another CodeExecute Else Code

End

True

False

TrueFalse

Fig. 9.1 Conditional statements: if statement

• Jump Statements
Control the flow by altering execution:

– break - Exit the loop.
– continue - Skip the loop iteration.
– return - Exit from the current function.

322 9 Programming and Algorithm Developmen

Example:

for i = 1:10
if i == 6

break; % Exit loop when i is 6
end
disp([’i = ’, num2str(i)]);

end

Effective use of control flow structures enhances problem-solving capabilities in
MATLAB, allowing dynamic responses to varying conditions and inputs (Figs. 9.3,
9.4 and 9.5).

9.6 Variable Scope

In programming, variable scope refers to the region of a program where a particular
variable is accessible and can be used. Understanding variable scope is crucial for
writing maintainable and efficient code, as it helps prevent naming conflicts and
ensures that variables are used correctly.

InMATLAB, there are twomain types of variable scope: global and local. Global
variables are accessible throughout the entire program, while local variables are only
accessible within the function or script in which they are defined, also shown in
Fig. 9.6.

• Global Variables: Global variables are declared outside of any function or script,
and they can be accessed andmodified from anywhere in theMATLABworkspace.
However, overuse of global variables can lead to code that is difficult to maintain
and debug, as it becomes harder to track where and how the variables are being
modified.

• Local Variables: Local variables are declared within a function or script, and they
are only accessible within that function or script. When a function is called, it
creates its own local workspace, and any variables declared within that function
are local to that workspace. Local variables help to encapsulate the functionality
of a function and prevent naming conflicts with other parts of the program.

It is generally considered best practice to use local variables whenever possible
and to minimise the use of global variables. This approach promotes modular code
that is easier to understand, maintain, and debug.

Listing 9.6 Basic variable scope syntax.

% Global variable
global x;
x = 10;

% Function using local variable
function y = myFunction(a)

9.6 Variable Scope 323

Start

Switch Expression

Case Value1

Execute Case Value1 Code

End

Case Value2

Execute Case Value2 Code Execute Otherwise Code

True

False

True False

Fig. 9.2 Conditional statements: switch and case

y = a + 5; % y is a local variable
end

% Calling the function
result = myFunction(x); % result = 15

Listing 9.7 Using nested functions with local variables.

function outerFunction ()
x = 10; % x is local to outerFunction

324 9 Programming and Algorithm Developmen

function innerFunction ()
y = x + 5; % y is local to innerFunction , but can

access x
disp(y); % Output: 15

end

innerFunction ();

end

outerFunction ();

Fig. 9.3 Loop statements:
for loops Start

Initialise Index

Index == End Value

Execute Code

Increment Index

End

True

False

9.6 Variable Scope 325

Fig. 9.4 Loop statements:
while loops Start

Condition

Execute Code End

True False

9.6.1 Global and Local Scope

Understanding the scope of variables in MATLAB is crucial for writing effective
and error-free code. Variable scope determines where a variable can be accessed
or modified within a program. There are two primary types of variable scope in
MATLAB: global scope and local scope.

9.6.2 Local Scope

Local scope refers to variables that are accessible only within the function or script
where they are declared. These variables are not visible or accessible outside their
local context. Local scope ensures that variables do not interfere with each other
across different functions or scripts.

• Function Scope: Variables declared within a function are local to that function.
• Script Scope: Variables declared within a script are local to that script unless
explicitly passed to other functions or scripts.

9.6.2.1 Example of Local Scope

Consider the following example to illustrate local scope in MATLAB:

function exampleFunction()
a = 10; % Local variable
b = 20; % Local variable

326 9 Programming and Algorithm Developmen

Start

Initialize Loop

Condition

Another Condition

Continue Execute Code

Break Condition

Break

End

True

True False

True

False

False

Fig. 9.5 Jump statements

9.6 Variable Scope 327

disp([’Inside function, a: ’, num2str(a)]);
disp([’Inside function, b: ’, num2str(b)]);

end

exampleFunction();

% Attempting to access a and b outside the function will result in an error
% disp([’Outside function, a: ’, num2str(a)]); % Error
% disp([’Outside function, b: ’, num2str(b)]); % Error

Fig. 9.6 Global and local scope

328 9 Programming and Algorithm Developmen

Output:

Inside function, a: 10
Inside function, b: 20

9.6.3 Global Scope

Global scope refers to variables that are accessible from any function or script within
the MATLAB workspace. These variables are declared using the global keyword.
Global variables can be useful for sharing data between different functions and
scripts, but they should be used sparingly to avoid unintended side effects.

• Global Variables: Declared using the global keyword and accessible from any
function or script that also declares them as global.

9.6.3.1 Example of Global Scope

Consider the following example to illustrate global scope in MATLAB:

function setGlobalVariable()

global gVar;

gVar = 100; % Set global variable

end

function accessGlobalVariable()

global gVar;

disp([’Global variable gVar: ’, num2str(gVar)]);

end

setGlobalVariable();

accessGlobalVariable();

Output:

Global variable gVar: 100

9.6.4 Persistent Variables

Persistent variables in MATLAB retain their values between calls to the function
in which they are declared. They are declared using the persistent keyword.
Persistent variables are similar to global variables but are limited to the function

9.6 Variable Scope 329

scope, providing a way to maintain state information across function calls without
exposing the variable globally.

9.6.4.1 Example of Persistent Variables

Consider the following example to illustrate persistent variables in MATLAB:

function countCalls()

persistent count;

if isempty(count)

count = 0;

end

count = count + 1;

disp([’Function called ’, num2str(count), ’ times’]);

end

countCalls();

countCalls();

countCalls();

Output:

Function called 1 times

Function called 2 times

Function called 3 times

9.6.5 Nested Functions and Variable Scope

In MATLAB, nested functions are functions that are defined within other functions.
These nested functions have access to the variables of their parent functions, which
creates a unique variable scope hierarchy. This section provides a detailed explanation
of how variable scope operates within nested functions, also shown in Fig. 9.7.

9.6.5.1 Variable Scope in Nested Functions

When a function (the main function) contains another function (the nested function),
the nested function can access and modify the variables of the main function. The
scope of variables in nested functions follows these rules:

• Main Function Variables: Variables declared in the main function are accessible
to all nested functions within that main function.

330 9 Programming and Algorithm Developmen

Fig. 9.7 Nested functions
and variable scope

9.6 Variable Scope 331

• Nested Function Variables: Variables declared in a nested function are local to
that nested function and do not affect variables in the main function or other nested
functions.

• Variable Shadowing: If a nested function declares a variable with the same name
as a variable in the main function, the nested function’s variable will shadow the
main function’s variable within its own scope.

9.6.5.2 Example of Nested Functions

Consider the following example to illustrate variable scope in nested functions:

function mainFunction()

x = 10; % Variable in main function

y = 20; % Variable in main function

function nestedFunction1()

disp([’x in nestedFunction1: ’, num2str(x)]);

y = 30; % This shadows the main function’s y

disp([’y in nestedFunction1: ’, num2str(y)]);

end

function nestedFunction2()

x = 50; % This shadows the main function’s x

disp([’x in nestedFunction2: ’, num2str(x)]);

disp([’y in nestedFunction2: ’, num2str(y)]);

end

nestedFunction1();

nestedFunction2();

disp([’x in mainFunction: ’, num2str(x)]);

disp([’y in mainFunction: ’, num2str(y)]);

end

Output:

x in nestedFunction1: 10

y in nestedFunction1: 30

x in nestedFunction2: 50

y in nestedFunction2: 20

x in mainFunction: 10

y in mainFunction: 20

332 9 Programming and Algorithm Developmen

9.6.5.3 Explanation

• When nestedFunction1 is called, it can access the variable x from the main
function. It also declares a local variable y, which shadows the main function’s y.

• When nestedFunction2 is called, it declares a local variable x, shadowing
the main function’s x. It accesses y from the main function because it does not
declare a local y.

• The main function’s variables x and y remain unchanged after the calls to the
nested functions.

9.6.5.4 Persistent and Global Variables

• Persistent Variables: Persistent variables retain their values between calls to the
function. They are declared using the persistent keyword.

• Global Variables: Global variables can be shared among different functions and
the base workspace. They are declared using the global keyword.

function mainFunction()

persistent pVar;

global gVar;

if isempty(pVar)

pVar = 0;

end

pVar = pVar + 1;

gVar = pVar;

function nestedFunction()

disp([’pVar in nestedFunction: ’, num2str(pVar)]);

disp([’gVar in nestedFunction: ’, num2str(gVar)]);

end

nestedFunction();

end

9.7 Errors and Pitfalls

When programming in MATLAB, it is important to be aware of potential errors
and pitfalls that can arise. These errors can be classified into three main categories:
syntax errors, logic errors, and rounding errors.

9.7 Errors and Pitfalls 333

9.7.1 Syntax Errors

Syntax errors occur when the code violates the rules of the MATLAB programming
language. These errors prevent the code from running and must be fixed before the
program can execute correctly. Common syntax errors in MATLAB include:

• Incompatible vector sizes: MATLAB requires vector and matrix operations to be
performed on compatible sizes. Attempting to perform operations on vectors or
matrices of incompatible sizes will result in a syntax error.

• Name hiding: Name hiding occurs when a local variable in a function or script
has the same name as a variable in the base workspace or a parent function. This
can lead to unintended behavior and should be avoided by using unique variable
names.

Listing 9.8 Syntax error example: Incompatible vector sizes.

a = [1 2 3];
b = [4 5];
c = a + b; % Syntax error: Incompatible vector sizes

Listing 9.9 Syntax error example: Name hiding.

x = 10;

function y = myFunction ()
x = 5; % This hides the global x
y = x + 2; % y will be 7, not 12
end

9.7.2 Logic Errors

Logic errors occur when the code runs without any syntax errors but produces incor-
rect results due to flaws in the program logic. These errors can be challenging to
detect and resolve, as the code executes without any obvious errors. Common logic
errors in MATLAB include:

• Incorrect algorithm implementation: If the algorithm or mathematical formula
is implemented incorrectly in the code, the program will produce incorrect results.

• Off-by-one errors: These errors occur when iterative loops or array indexing are
off by one iteration or index, leading to incorrect results.

Listing 9.10 Logic error example: Incorrect algorithm implementation.

% Incorrect implementation of the mean function
function avg = myMean(arr)
sum = 0;
for i = 1: length(arr)
sum = sum + arr(i); % Correct

334 9 Programming and Algorithm Developmen

end
avg = sum / (length(arr) + 1); % Logic error: Incorrect

divisor
end

Listing 9.11 Logic error example: Off-by-one error.

% Off -by -one error in loop
for i = 1:10 % Should be i = 1:9 to avoid counting 10

twice
disp(i);
end

9.7.3 Rounding Error

Rounding errors are a type of numerical error that can occur when performing arith-
metic operations on floating-point numbers. These errors arise due to the finite pre-
cision of computer arithmetic and can accumulate, leading to inaccurate results.
Rounding errors are particularly common in iterative calculations and computations
involving large or small numbers.

Tomitigate rounding errors, it is essential to be aware of the limitations of floating-
point arithmetic and to use appropriate techniques such as higher precision data types,
error analysis, and algorithmic adjustments.

Listing 9.12 Rounding error example.

x = 0.1;
sum = 0;
for i = 1:10
sum = sum + x;
end
disp(sum); % Output: 0.9999999999999999 (due to rounding

error)

By understanding and addressing these different types of errors, MATLAB pro-
grammers can write more robust and reliable code, ensuring accurate and reliable
results.

9.8 Debugging and Testing

Debugging and testing are essential processes in software development to ensure
the correctness and reliability of programs. MATLAB provides a range of tools and
techniques to assist in these processes, including:

9.8 Debugging and Testing 335

• Debugging techniques: MATLAB offers a powerful debugger that allows you to
step through your code, set breakpoints, and inspect variable values at runtime.
This helps identify and fix errors in your code.

• Error handling and exception management: MATLAB provides mechanisms
for handling errors and exceptions, such as try-catch blocks, which allow you to
gracefully handle and recover from runtime errors.

• Unit testing and test-driven development:MATLABsupports unit testing frame-
works, such as the built-in matlab.unittest package, which enables you to write and
run automated tests for your code. Test-driven development (TDD) is a software
development approach that emphasizes writing tests before writing the production
code.

• Code profiling and optimisation: MATLAB offers profiling tools that help iden-
tify performance bottlenecks in your code. You can then use this information to
optimise your code for better performance.

Listing 9.13 Basic debugging example using the debugger.

function result = myFunction(x, y)
% Set a breakpoint here
z = x + y;
% Step through the code
result = z^2;
end

Listing 9.14 Exception handling using try-catch block.

try
% Code that might throw an exception
x = 1 / 0;
catch ME
% Handle the exception
disp(ME.message);
end

Listing 9.15 Unit testing example using matlab.unittest.

classdef MyClassTest < matlab.unittest.TestCase
methods (Test)
function testMyFunction(testCase)
% Test the myFunction
result = myFunction (2, 3);
testCase.verifyEqual(result , 25);
end
end
end

Listing 9.16 Code profiling example using the Profiler.

profile on
% Code to be profiled

336 9 Programming and Algorithm Developmen

profile off
profview

By effectively utilizing these debugging and testing techniques, MATLAB pro-
grammers can ensure the correctness, reliability, and performance of their code,
leading to more robust and maintainable software solutions.

9.9 Eval and Text Macros

The eval function in MATLAB allows you to execute character strings as MATLAB
code at runtime. This can be useful for dynamic code generation and evaluation,
but it should be used with caution as it can introduce potential security risks and
performance issues. MATLAB also provides text macros as a safer alternative for
dynamic code generation and evaluation.

• Error trapping with eval and lasterr: The lasterr function can be used in
conjunction with eval to capture and handle errors that occur during the evalua-
tion of a string as MATLAB code.

• Eval with try...catch: The try...catch construct can also be used with eval
to handle errors and exceptions that may occur during the evaluation of a string as
MATLAB code.

Listing 9.17 Using eval and lasterr to trap errors.

% Create a string with invalid MATLAB code
invalidCode = ’x = 1 / 0;’;

% Evaluate the code and trap errors
lastError = [];
try
eval(invalidCode);
catch ME
lastError = ME.message;
end

if ~isempty(lastError)
fprintf(’Error: %s\n’, lastError);
else
fprintf(’Code executed successfully .\n’);
end

Listing 9.18 Using eval with try...catch.

% Create a string with valid MATLAB code
validCode = ’x = 2; y = 3; z = x + y;’;

try
eval(validCode);

9.10 Live Scripts, Code Cells, and Publishing Code 337

fprintf(’z = %d\n’, z);
catch ME
fprintf(’Error: %s\n’, ME.message);
end

While eval can be a powerful tool in certain situations, it is generally recom-
mended to use it sparingly and with caution, as it can introduce potential security
risks and performance issues. Text macros, on the other hand, provide a safer and
more efficient alternative for dynamic code generation and evaluation.

9.10 Live Scripts, Code Cells, and Publishing Code

In MATLAB, Live Scripts and Code Cells provide an interactive environment for
writing, executing, and sharing MATLAB code. They support literate programming,
allowing you to combine code, output, and explanatory text in a single document.

9.10.1 Live Scripts

Live Scripts are documents that contain executable MATLAB code, formatted text,
and output. They enable the creation of self-contained, reproducible documents that
can be easily shared and reused. Live Scripts allow for the integration of rich text,
equations, images, and hyperlinks alongside the code, which enhances the readability
and dissemination of information.

• Creating a Live Script: To create a Live Script, navigate to the Home tab in
MATLAB, and select New Live Script.

• Editing and Running Code: MATLAB Live Scripts allow users to write code
in segments and run these segments individually or collectively, promoting an
iterative approach to programming.

Listing 9.19 Creating a Plot in a Live Script

% Example: Creating a Plot in a Live Script
x = linspace (0, 2*pi , 100);
y = sin(x);
figure;
plot(x, y);
title(’Sine Wave’);
xlabel(’x’);
ylabel(’sin(x)’);

Listing 9.20 Performing Basic Calculations in a Live Script

% Example: Performing Basic Calculations in a Live
Script

338 9 Programming and Algorithm Developmen

a = 10;
b = 20;
sum = a + b;
fprintf(’The sum of %d and %d is %d.\n’, a, b, sum);

9.10.2 Code Cells

Code Cells are sections of executable MATLAB code within a Live Script or a Live
Editor Task. They allow users to run and test code incrementally, making it easier to
debug and experiment with different ideas. Code Cells can be created by inserting a
cell break, which is typically done by using the %% symbol at the beginning of a
line.

• Creating Code Cells: Insert %% at the beginning of a line to start a new cell.
Each cell can be run independently, facilitating isolated testing of code segments.

• Running Code Cells: Users can run individual cells or the entire script to see the
results of specific sections without executing the whole document.

Listing 9.21 Creating and Running Code Cells

% Example: Creating and Running Code Cells

%% Cell 1: Define Variables
a = 5;
b = 10;

%% Cell 2: Perform Calculation
sum = a + b;
disp([’Sum: ’, num2str(sum)]);

Listing 9.22 Using Code Cells for Plotting

% Example: Using Code Cells for Plotting

%% Cell 1: Generate Data
x = linspace (0, 10, 100);
y = cos(x);

%% Cell 2: Plot Data
figure;
plot(x, y);
title(’Cosine Wave’);
xlabel(’x’);
ylabel(’cos(x)’);

9.11 Files and Folders 339

9.10.3 Publishing Code

MATLAB provides the ability to publish Live Scripts and other MATLAB code
as HTML, PDF, or other formats, making it easier to share work with others or
create reports and documentation. This feature is particularly useful for generating
professional reports or presentations that include code, results, and explanations.

• Publishing Options: MATLAB supports multiple formats for publishing, includ-
ing HTML, PDF, and LaTeX.

• Generating Reports: Users can publish their scripts directly from the MATLAB
environment by using the Publish command. This allows for the generation of
comprehensive reports that include formatted code, output, figures, and descriptive
text.

• Publishing Options: MATLAB supports multiple formats for publishing, includ-
ing HTML, PDF, and LaTeX.

• Generating Reports: Users can publish their scripts directly from the MATLAB
environment by using the Publish command. This generates a document that
includes the code, its output, and any accompanying text and images.

Listing 9.23 Publishing a Live Script to HTML

% Example: Publishing a Live Script to HTML
% In the MATLAB command window , use:
publish(’MyLiveScript.mlx’, ’html’);

Listing 9.24 Publishing a Live Script to PDF

% Example: Publishing a Live Script to PDF
% In the MATLAB command window , use:
publish(’MyLiveScript.mlx’, ’pdf’);

Live Scripts, Code Cells, and the ability to publish MATLAB code make it easier
to create reproducible, shareable documents that combine code, output, and expla-
nations, facilitating collaboration and documentation.

9.11 Files and Folders

MATLAB provides a set of functions and tools for working with files and folders,
making it easier to manage and organise your code, data, and other resources.

• File Operations: MATLAB offers a variety of functions for performing file opera-
tions. These include fopen, fread, fwrite, and fclose for reading and writing files,
as well asmovefile, copyfile, and delete for managing files. These functions allow
users to efficiently manipulate files within their MATLAB environment.
Here are a couple of examples of file operations in MATLAB:

340 9 Programming and Algorithm Developmen

Listing 9.25 Writing data to a file.

% Open a file for writing
fileID = fopen(’data.txt’, ’w’);
% Write data to the file
fprintf(fileID , ’Hello , World!\n’);
fprintf(fileID , ’This is a sample file.\n’);
% Close the file
fclose(fileID);

Listing 9.26 Reading data from a file.

% Open a file for reading
fileID = fopen(’data.txt’, ’r’);
% Read the contents of the file
data = fscanf(fileID , ’%c’);
% Close the file
fclose(fileID);
% Display the contents
disp(data);

Listing 9.27 Example of moving and deleting a file.

% Create a file and then move it
fileID = fopen(’temp.txt’, ’w’);
fprintf(fileID , ’Temporary file’);
fclose(fileID);

% Move the file to a new location
movefile(’temp.txt’, ’newTemp.txt’);

% Delete the moved file
delete(’newTemp.txt’);

• MATLAB Search Path: The MATLAB search path determines the directories
that MATLAB searches for files and functions. Users can add, remove, or reorder
directories in the search path using functions like addpath, rmpath, and path.
This flexibility allows for better organisation and quicker access to frequently used
directories.
Here are a couple of examples of managing the MATLAB search path:

Listing 9.28 Adding a directory to the search path.

% Add a directory to the search path
addpath(’C:\ MyFunctions ’);
% Check the current search path
path

Listing 9.29 Removing a directory from the search path.

% Remove a directory from the search path
rmpath(’C:\ MyFunctions ’);
% Check the updated search path
path

9.12 Security in MATLAB Code 341

Listing 9.30 Example of modifying the MATLAB search path.

% Add a directory to the search path
addpath(’C:\ MyMATLABFiles ’);

% Remove a directory from the search path
rmpath(’C:\ MyMATLABFiles ’);

% Display the current search path
disp(path);

Listing 9.31 Example of reordering the search path.

% Add multiple directories to the search path
addpath(’C:\ MyMATLABFiles ’, ’C:\ OtherMATLABFiles ’);

% Reorder the search path
path(’C:\ OtherMATLABFiles ’, ’C:\ MyMATLABFiles ’);

% Display the reordered search path
disp(path);

In addition to file operations and search path management, MATLAB provides a
comprehensive set of functions for working with directories and folders. Functions
like cd, dir, mkdir, and rmdir allow you to navigate, list, create, and remove
directories programmatically.

By leveraging these file and foldermanagement capabilities inMATLAB, you can
effectively organize your code, data, and resources, making your projects more struc-
tured and maintainable. These features enhance the overall development experience
and facilitate efficient data processing and analysis tasks.

The ability to execute code dynamically and schedule code execution allows for
greater flexibility and automation in MATLAB programming, enabling tasks such
as dynamic code generation, real-time processing, and scheduled tasks.

9.12 Security in MATLAB Code

Security is an important aspect of MATLAB programming, especially when sharing
code or deploying applications. MATLAB provides several features and best prac-
tices to ensure the security of MATLAB code. When developing MATLAB code
that involves sensitive information or intellectual property, it is essential to consider
security measures to protect your work and data. MATLAB provides various tools
and techniques to help ensure the confidentiality, integrity, and availability of your
code and data.

342 9 Programming and Algorithm Developmen

9.12.1 Understanding MATLAB Security

Understanding MATLAB Security is the first step towards writing secure code. It
involves being aware of potential vulnerabilities such as buffer overflows, injection
attacks, and improper error handling. MATLAB provides built-in functions to help
developers write secure code.

• Using secure functions is another key aspect of secure MATLAB programming.
MATLAB provides a range of secure functions designed to reduce the risk of
security breaches. For instance, the feval function is a safer alternative to eval,
as it limits the scope of execution and prevents the execution of arbitrary code.

• Code Obfuscation Code obfuscation is the process of making code difficult
to understand or reverse-engineer. While not a foolproof method, it can deter
casual attempts at code theft or modification. MATLAB does not have built-in
obfuscation tools, but developers can implement basic obfuscation techniques
such as renaming variables and functions to non-meaningful names. This can help
protect your intellectual property and sensitive algorithms.

• Data Encryption Sensitive data can be encrypted in MATLAB using built-in
encryption functions or external libraries, ensuring that only authorised parties
can access and decode the data.

• Access Control MATLAB supports various access control mechanisms, such as
user authentication and authorization, to restrict access to sensitive code and data.

• Secure Communication When transmitting data or code over networks, MAT-
LAB provides tools for secure communication, such as SSL/TLS encryption and
digital signatures.

• Code Signing MATLAB allows you to digitally sign your code using a code
signing certificate. Code signing helps users verify the authenticity and integrity
of your code, ensuring that it hasn’t been tampered with. Here’s an example of
signing a MATLAB script:

Listing 9.32 Signing a MATLAB script.

% Create a code signing certificate
cert = codeSigningCert(’MyCodeSigningCert ’);
% Sign the MATLAB script
signFile(’myscript.m’, cert);

• Encrypted Source Code MATLAB provides the ability to encrypt your source
codefiles, protecting your intellectual property and preventing unauthorized access
to your code. You can use the pcode function to create an encrypted version of
your MATLAB code:

Listing 9.33 Encrypting MATLAB source code.

% Encrypt the MATLAB source code
pcode(’myscript.m’);

9.12 Security in MATLAB Code 343

• Secure Deployment When deploying MATLAB applications, it’s important to
consider security measures to protect your code and data. MATLAB Compiler
allows you to package your MATLAB code into standalone applications or shared
libraries, which can be deployed securely.

• Input Validation Validating user inputs is crucial to prevent potential security
vulnerabilities. MATLAB provides functions like validateattributes and
inputParser to validate and sanitize user inputs, ensuring that they meet the
expected criteria.

Listing 9.34 Example of input validation.

function secureFunction(input)
% Validate that input is numeric
validateattributes(input , {’numeric ’}, {’nonempty ’

});

% Proceed with computation
result = input ^2;
disp([’The square of the input is: ’, num2str(

result)]);
end

Listing 9.35 Example using mustBeNumeric.

function secureFunction(input)
% Ensure input is numeric
arguments

input {mustBeNumeric}
end

% Proceed with computation
result = input ^2;
disp([’The square of the input is: ’, num2str(

result)]);
end

• Error Handling and Logging Proper error handling is essential for maintaining
the security and stability of your MATLAB code. Use try-catch blocks to
handle exceptions gracefully and avoid revealing sensitive information in error
messages. But be mindful about not over-sharing sensitive details in logs or error
messages.

• File Permissions
Proper handling of file permissions is essential to prevent unauthorised access and
modifications. Using MATLAB’s built-in file functions, users can control access
to files. It is advisable to set appropriate permissions when reading from or writing
to files.

344 9 Programming and Algorithm Developmen

Listing 9.36 Example of setting file permissions.

% Create a file with restricted permissions
fileID = fopen(’secureFile.txt’, ’w’);
fprintf(fileID , ’This is a secure file.’);
fclose(fileID);

% Change file permissions to read -only
fileattrib(’secureFile.txt’, ’-w’);

Listing 9.37 Example of checking file permissions.

% Check file permissions
[status , attributes] = fileattrib(’secureFile.txt’);
disp(attributes);

% Ensure file is read -only
if attributes.UserWrite == 0

disp(’File is read -only’);
else

disp(’File is writable ’);
end

• Safeguarding Against Code Injection
Code injection is a significant security threat where an attacker can execute arbi-
trary code by exploiting vulnerabilities. To mitigate this risk, it is crucial to avoid
using eval with user inputs and to employ safer alternatives like str2func.

Listing 9.38 Unsafe use of eval.

% Unsafe example
userInput = ’disp(’’This is unsafe!’’)’;
eval(userInput); % Potential code injection risk

Listing 9.39 Safe alternative using str2func.

% Safe example
userInput = ’disp’;
safeFunction = str2func(userInput);
safeFunction(’This is safe!’);

• Testing and validation are essential to ensure the security of MATLAB code.
This includes unit testing, where individual components of the code are tested for
expected behavior, and integration testing, where components are tested together
to ensure they work as intended. MATLAB’s built-in testing framework, such as
the unittest package, can be Utilised for this purpose.

9.13 Graphical User Interfaces 345

9.12.2 Example MATLAB Codes for Secure Programming

Listing 9.40 Code obfuscation using the MATLAB Compiler.

% Obfuscate a MATLAB function
\textcolor{green}{ mbuild} -g -c mysecretfunction.m

% Deploy the obfuscated function
deployedFunction = \textcolor{green }{ deploytool }(’-build

’, ’-obfuscate ’, ’mysecretfunction.m’);

Listing 9.41 Encrypting and decrypting data using MATLAB’s built-in encryption functions.

% Generate a random encryption key
key = \textcolor{green }{ randi }([0, 255], 1, 16);

% Encrypt sensitive data
encryptedData = \textcolor{green }{ encrypt }(’My sensitive

data’, key);

% Decrypt the data
decryptedData = \textcolor{green }{ decrypt }(encryptedData

, key);

Implementing security measures in MATLAB is crucial for protecting sensitive
information, intellectual property, and ensuring the integrity and confidentiality of
your code and data, especially when working on projects involving critical or pro-
prietary algorithms, data, or systems.

In addition to these security features, it’s important to followgeneral programming
best practices, such as keeping your MATLAB installation and toolboxes up to date,
using strong passwords, and being cautious when running untrusted code or opening
files from unknown sources.

By incorporating security measures into your MATLAB code and following
secure coding practices, you can protect your intellectual property, ensure the
integrity of your applications, and maintain a secure development environment.

9.13 Graphical User Interfaces

Graphical User Interfaces (GUIs) provide a user-friendly way to interact with
MATLAB applications, enabling users to input data, visualise results, and control
program execution through a graphical environment. GUIs can greatly enhance the
usability and accessibility of MATLAB programs, particularly for non-technical
users or those who prefer a visual interface over command-line interactions.

346 9 Programming and Algorithm Developmen

9.13.1 Basic Structure of a GUI

The basic structure of a GUI in MATLAB consists of various components, such as
windows, panels, buttons, menus, and other user interface controls. These compo-
nents are organized in a hierarchical manner, with the main window serving as the
parent container for other elements.

Listing 9.42 Creating a simple GUI window.

% Create a new figure window
figureHandle = \textcolor{green}{ figure };

% Set the window properties
\textcolor{green}{set}(figureHandle , ’Name’, ’My GUI’, ’

NumberTitle ’, ’off’, ’MenuBar ’, ’none’);

Listing 9.43 Adding a button to the GUI.

% Create a button
buttonHandle = \textcolor{green}{ uicontrol }(’Style’, ’

pushbutton ’, ’String ’, ’Click Me’, ...
’Position ’, [50 50 100 30], ’Callback ’, @buttonCallback)

;

function buttonCallback (~, ~)
disp(’Button clicked!’);
end

9.13.2 A First Example: Getting the Time

Creating a simple GUI to display the current time is a great way to learn the basics of
GUI development in MATLAB. This example demonstrates how to create a window
with a button and a text box, where clicking the button updates the text box with the
current time.

Listing 9.44 Creating the time GUI.

function timeGUI ()
% Create the figure window
fig = uifigure(’Name’, ’Current Time Display ’);
fig.Position = [100 100 300 150];

% Create a text area to display the time
timeDisplay = uitextarea(fig);
timeDisplay.Position = [50 80 200 40];
timeDisplay.Value = ’Click the button to show time’;
timeDisplay.BackgroundColor = [0.9 0.9 0.9];

9.13 Graphical User Interfaces 347

% Create a button to update the time
updateButton = uibutton(fig , ’push’);
updateButton.Position = [100 30 100 30];
updateButton.Text = ’Update Time’;

% Set the button callback function
updateButton.ButtonPushedFcn = @(btn ,event)

updateTime(timeDisplay);

end

function updateTime(timeDisplay)
% Get the current time and format it as a string
currentTime = datestr(now , ’HH:MM:SS’);

% Update the text area with the current time
timeDisplay.Value = currentTime;

end

In this example, the figure function creates the main window, and the uicontrol
function is used to create the button and text box components. The Position parameter
specifies the location and size of each component within the window.

• The script defines two functions: timeGUI() and updateTime().
• The timeGUI() function is the main function that creates the GUI:

– It uses uifigure() to create the main window with the title “Current Time
Display”.

– The fig.Position property sets the window’s size and position on the
screen.

– A text area is created using uitextarea():

· Its position and size are set with timeDisplay.Position.
· Initial text and background color are set.

– A button is created using uibutton():

· Its position and size are set with updateButton.Position.
· The button’s text is set to “Update Time”.

– The button’s callback function is set to call updateTime() when clicked.

• The updateTime() function is called each time the button is pressed:

– It gets the current time using datestr(now, ’HH:MM:SS’).
– It updates the text area’s value with the current time.

• When the script is run:

– MATLAB executes timeGUI().
– The GUI window appears with the text area and button.
– Each time the user clicks the button, updateTime() is called, updating the
displayed time.

348 9 Programming and Algorithm Developmen

When you run this code, a window will appear with a button labeled “Update
Time” and a text box above it, as shown in Fig. 9.8. Clicking the button will update
the text box with the current time in the format “HH:MM:SS”, as shown in Fig. 9.9.

This simple example demonstrates how to create a basic GUI with interactive
components andhow toupdate theGUIbasedonuser actions. It serves as a foundation
for building more complex GUIs with additional functionality and visual elements.

9.13.3 Newton’s Method

Newton’s method is a powerful numerical technique for finding the roots of a func-
tion. It is an iterative method that starts with an initial guess and iteratively refines the
approximation until a desired level of accuracy is achieved. In this section, we will
explore how to implement Newton’s method in MATLAB using a GUI to provide a
user-friendly and interactive experience, as shown in Fig. 9.10.

The GUI will consist of several components: a text box for entering the function,
a slider for adjusting the initial guess, a button to start the root-finding process, a
plot to visualise the function and the convergence of the method, and a text area to
display the iterations and the final root.

Fig. 9.8 The initial state of
the time GUI

Fig. 9.9 The time GUI after
clicking the “Get Time”
button

9.13 Graphical User Interfaces 349

Fig. 9.10 The MATLAB codes for Newton’s method GUI

Listing 9.45 Creating the Newton’s method GUI.

function newtonMethodGUI ()
% Create the main window
figureHandle = figure(’Name’, ’Newton ’’s Method ’, ’

NumberTitle ’, ’off’, ’MenuBar ’, ’none’, ’
Position ’, [100 100 800 600]);

% Create components (text box , slider , button , plot ,
text area)

functionEdit = uicontrol(’Style’, ’edit’, ’String ’,
’x.^3 - 2*x - 5’, ...
’Position ’, [20 550 200 30]);

initialGuessSlider = uicontrol(’Style’, ’slider ’, ’
Value’, 1, ’Min’, -10, ’Max’, 10, ...
’Position ’, [250 550 300 30]);

startButton = uicontrol(’Style’, ’pushbutton ’, ’
String ’, ’Start’, ...
’Position ’, [600 550 100 30], ’Callback ’, {

@newtonMethod , functionEdit ,
initialGuessSlider });

axesHandle = axes(’Position ’, [100 100 500 400]);
iterationsText = uicontrol(’Style’, ’edit’, ’String ’

, ’’, ’Max’, 2, ...
’Position ’, [650 100 100 400], ’

HorizontalAlignment ’, ’left’);

% Store handles in figure ’s UserData
setappdata(figureHandle , ’axesHandle ’, axesHandle);

350 9 Programming and Algorithm Developmen

setappdata(figureHandle , ’iterationsText ’,
iterationsText);

end

% Newton ’s method function
function newtonMethod(hObject , ~, functionEdit ,

initialGuessSlider)
% Get function and initial guess from GUI
func_str = get(functionEdit , ’String ’);
func = str2func ([’@(x) ’ func_str]);
x0 = get(initialGuessSlider , ’Value’);

% Get handles from figure ’s UserData
figureHandle = gcbf;
axesHandle = getappdata(figureHandle , ’axesHandle ’);
iterationsText = getappdata(figureHandle , ’

iterationsText ’);

% Implement Newton ’s method
maxIter = 100; tol = 1e-6;
x = x0; iter = 0;

% Plot function
x_range = linspace (-10, 10, 1000);
y_range = arrayfun(func , x_range);
plot(axesHandle , x_range , y_range);
hold(axesHandle , ’on’);

% Numerical differentiation function
dfunc = @(x) (func(x + 1e-8) - func(x)) / 1e-8;

while iter < maxIter
fx = func(x);
dfx = dfunc(x);

if abs(fx) < tol , break; end

x = x - fx/dfx;
iter = iter + 1;

% Update plot and iterations text
plot(axesHandle , x, func(x), ’ro’);
current_text = get(iterationsText , ’String ’);
if ischar(current_text)

current_text = {current_text };
end
set(iterationsText , ’String ’, [{[’Iteration ’,

num2str(iter), ’: x = ’, num2str(x)]},
current_text {:}]);

drawnow;
end

% Display final result

9.13 Graphical User Interfaces 351

if iter == maxIter
disp(’Maximum iterations reached ’);

else
disp([’Root found at x = ’, num2str(x)]);

end
end

In this example, the GUI components are created using the uicontrol function, and
the plot axes are created using the axes function, as shown in Fig. 9.11. Specifically,

• The script defines twomain functions:newtonMethodGUI() andnewtonMet
hod().

• The newtonMethodGUI() function creates the GUI:

– It uses figure() to create the main window.
– GUI components are created using uicontrol():

· A text edit box for entering the function.
· A slider for selecting the initial guess.
· A “Start” button to begin the calculation.
· A text area to display iteration results.

– An axes object is created using axes() for plotting.
– Component handles are stored using setappdata() for later access.

• The newtonMethod() function implements Newton’s method:

Fig. 9.11 The initial state of the Newton’s method GUI

352 9 Programming and Algorithm Developmen

– It’s called when the “Start” button is clicked.
– It retrieves the function string and initial guess from GUI components.
– The function string is converted to a function handle using str2func().
– It retrieves necessary handles using getappdata().
– The function is plotted over the range [-10, 10] using plot().
– Newton’s method is implemented in a loop:

· Function value and derivative are calculated at each iteration.
· New iterate is computed using Newton’s formula.
· The plot is updated with new iterate using plot().
· The iterations text area is updated with new iterate information.

– The loop continues until convergence or maximum iterations are reached.

• Key aspects of the implementation:

– arrayfun() is used to apply the function to a range of x-values for plotting.
– Numerical differentiation is used to approximate the derivative.
– drawnow() is used to update the GUI in real-time during iterations.

• When the script is run:

– MATLAB executes newtonMethodGUI(), creating the GUI window.
– The user can input a function and select an initial guess.
– Clicking “Start” initiates Newton’s method.
– The GUI updates in real-time, showing the convergence process visually and
numerically.

When the root is found (within the specified tolerance) or themaximumnumber of
iterations is reached, the final result is displayed in theMATLAB command window,
as shown in Fig. 9.12.

This GUI implementation of Newton’s method allows users to interactively
explore the root-finding process by adjusting the function and initial guess, and
visually observing the convergence behavior. It demonstrates the power of combin-
ing numerical methods with graphical user interfaces in MATLAB for educational
and visualisation purposes.

9.13.4 Axes on a GUI

Incorporating axes into a GUI is a powerful way to visualise data and results within a
MATLAB application. MATLAB’s axes function allows you to create and customize
plot areas within a GUI window, enabling interactive plotting and data visualisation
capabilities.

In this section, we will explore how to add axes to a GUI and demonstrate their
use with a simple example of plotting a sine wave.

9.13 Graphical User Interfaces 353

Fig. 9.12 The Newton’s method GUI showing the convergence of the method

Listing 9.46 Creating a GUI with axes.

% Create the main window
figureHandle = figure(’Name’, ’Sine Wave Plot’, ’

NumberTitle ’, ’off’, ’MenuBar ’, ’none’, ...
’Position ’, [200 200 600 400]);

% Create axes
axesHandle = axes(’Parent ’, figureHandle , ’Position ’,

[0.1 0.2 0.8 0.7]);

% Create a button
buttonHandle = uicontrol(’Parent ’, figureHandle , ’Style’

, ’pushbutton ’, ’String ’, ’Plot Sine Wave’, ...
’Position ’, [450 20 120 30], ’Callback ’,

@plotSineWave);

% Callback function to plot the sine wave
function plotSineWave (~, ~)

% Get the axes handle
axesHandle = findobj(gcf , ’Type’, ’axes’);

% Generate data
x = linspace (0, 2*pi , 100);
y = sin(x);

% Plot the sine wave
plot(axesHandle , x, y);

354 9 Programming and Algorithm Developmen

Fig. 9.13 The initial state of the GUI with axes

xlabel(axesHandle , ’x’);
ylabel(axesHandle , ’sin(x)’);
title(axesHandle , ’Sine Wave Plot’);
grid(axesHandle , ’on’);

end

In this example, the axes function creates a set of axes within the main figure
window. The Position property specifies the location and size of the axes relative to
the figure’s dimensions (using normalized coordinates from 0 to 1).

The uicontrol function creates a button labeled “Plot Sine Wave”. When clicked,
the plotSineWave callback function is executed, which generates the data for the sine
wave using the linspace and sin functions.

The plot function is then used to plot the sine wave on the axes created earlier.
The xlabel, ylabel, title, and grid functions are used to add labels, a title, and a grid
to the plot, respectively.

When you run this code, a window will appear with a button labeled “Plot Sine
Wave”, as shown in Fig. 9.13. Clicking the button will generate and display a plot of
the sine wave on the axes within the GUI window, as shown in Fig. 9.14.

This example demonstrates how to create andUtilise axeswithin aGUI for plotting
and visualizing data. By combining user interface controls with axes, you can create
interactive and visually appealing applications for data analysis, simulation, and
visualisation tasks.

9.13 Graphical User Interfaces 355

Fig. 9.14 The GUI with the sine wave plotted on the axes

9.13.5 Adding Color to a Button

Customising the appearance of GUI components, such as changing the color of
a button, can enhance the visual appeal and usability of an application. MATLAB
provides various properties and functions tomodify the appearance of GUI elements,
allowing developers to create visually appealing and user-friendly interfaces.

In this section, we will explore how to change the colour of a button within a GUI.
We will create a simple GUI with a button and demonstrate how to change its colour
based on user input.

Listing 9.47 Creating a GUI with a colored button.

% Create the main window
figureHandle = figure(’Name’, ’Colored Button ’, ’

NumberTitle ’, ’off’, ’MenuBar ’, ’none’, ...
’Position ’, [300 300 400 200]);

% Create a text box for color input
colorEdit = uicontrol(’Style’, ’edit’, ’String ’, ’r’,

...
’Position ’, [20 130 100 30]);

% Create a button
buttonHandle = uicontrol(’Style’, ’pushbutton ’, ’String ’

, ’Click to Change Color’, ...
’Position ’, [150 130 200 30], ’Callback ’,

@changeButtonColor);

356 9 Programming and Algorithm Developmen

% Callback function to change the button color
function changeButtonColor (hObject , ~)

% Get the figure handle
figureHandle = ancestor(hObject , ’figure ’);

% Find the color edit box
colorEdit = findobj(figureHandle , ’Style’, ’edit’);

% Get the color from the edit box
color = get(colorEdit , ’String ’);

% Change the button color
set(hObject , ’BackgroundColor ’, color);

end

In this example, we create a figure window and add a text box (colorEdit) for the
user to input a color code. We also create a button (buttonHandle) with an initial
label “Click to Change Color”.

The changeButtonColor callback function is associatedwith the button’s Callback
property. When the button is clicked, this function is executed.

Inside the changeButtonColor function, we first retrieve the color code entered by
the user in the text box using the get function. We then use the set function to change
the BackgroundColor property of the button to the specified color (Fig. 9.15).

To change the button color, simply enter a valid color code (e.g., ‘r’ for red, ‘g’
for green, ‘b’ for blue, or a combination like ‘[1 0 0]’ for red) in the text box and
click the button (Fig. 9.16).

This example demonstrates how to change the color of a button within a GUI
based on user input. By utilizing the get and set functions, you can modify vari-
ous properties of GUI components, enabling you to create customized and visually
appealing interfaces tailored to your application’s needs (Fig. 9.17).

Fig. 9.15 The initial state of
the GUI with a default button
color

9.14 Apps Building in MATLAB 357

Fig. 9.16 The initial state of
the GUI with a default button
colour—red

Fig. 9.17 The GUI with the
button colour changed to
green

9.14 Apps Building in MATLAB

Creating self-contained applications, embedded Live Editor tasks, and custom user
interfaces (UI) is a powerful feature in MATLAB. It enables developers to build
interactive and user-friendly tools for data analysis, visualisation, simulation, and
other computational tasks. MATLAB provides a range of tools and techniques for
app development, making it easier to transform algorithms and scripts into polished
and professional applications.

9.14.1 Types of Apps in MATLAB

MATLAB offers a versatile platform for developing various types of applications,
each tailored to specific use cases and deployment scenarios. Here are the main types
of apps that can be created in MATLAB:

• Standalone Desktop Apps: These are self-contained applications designed to run
on desktop computers or laptops. They provide a rich user interface and can be
deployed as executablefiles or installed applications,without requiring a fullMAT-
LAB installation on the target machine. Standalone desktop apps are well-suited

358 9 Programming and Algorithm Developmen

for scenarios where users need to perform complex data analysis, simulations, or
computations on local machines.

• Web Apps: MATLAB enables the development of web-based applications that
can be accessed and used through a web browser. Web apps offer the advantage
of remote access and collaboration, as they can be hosted on servers and accessed
by multiple users over the internet or an intranet. Web apps are particularly useful
for sharing interactive visualisations, dashboards, or tools with remote teams or
stakeholders.

• Embedded Apps:MATLAB supports the creation of embedded applications that
can be integrated into larger systems or workflows. These apps can take various
forms, such as:

– LiveEditorTasks: Interactive tasks or tutorials embeddedwithin theMATLAB
Live Editor environment, allowing users to explore and interact with code, data,
and visualisations.

– Custom UI Components: Reusable UI components, such as plots, sliders, or
control panels, that can be integrated into existing MATLAB applications or
third-party software.

– SystemComponents:MATLAB code and algorithms can be integrated as com-
ponents or libraries within larger systems, leveragingMATLAB’s performance
and computational capabilities.

Embedded Apps are particularly useful for extending the functionality of existing
software or systems, or for creating reusable components that can be shared and
integrated across different projects.

By supporting these different types of apps, MATLAB provides a flexible and
powerful platform for developing and deploying interactive applications tailored to
various use cases and deployment scenarios,meeting the diverse needs of researchers,
engineers, and scientists across various domains.

9.14.2 App Development Tools

MATLAB provides a comprehensive set of tools and techniques to facilitate the
development of various types of applications. These tools cater to different user
preferences and application requirements, offering a range of options for creating
and customizing user interfaces (UIs), handling events, and building desktop, web,
or embedded apps. The main app development tools in MATLAB include:

• App Designer: A modern and integrated development environment (IDE) for
creating and customizing user interfaces, handling events, and building desktop
and web apps. App Designer offers a visual and code-based approach, allowing
developers to design UIs using drag-and-drop tools or by writing code directly.
It supports the creation of complex layouts, integration of UI components (such
as buttons, sliders, and plots), and handling of user interactions through event

9.14 Apps Building in MATLAB 359

callbacks. App Designer is the recommended tool for building new applications
in MATLAB.

• GUIDE (GUI Development Environment): A legacy tool for designing and
building graphical user interfaces (GUIs) using a drag-and-drop interface. GUIDE
provides a visual canvas for arranging UI components and generating the corre-
spondingMATLAB code. While still supported, GUIDE is an older tool, and App
Designer is recommended for new GUI development.

• Coding with UI Components:MATLAB offers a wide range of UI components
that can be created and customized programmatically usingMATLAB code. This
approach provides greater flexibility and control over the UI design and behavior
compared to visual tools like App Designer or GUIDE. It involves writing code to
create and configure UI components, handle events, and manage the application’s
logic and data flow.

• MATLAB Compiler and Deployment Tools: In addition to the UI development
tools, MATLAB provides tools for packaging and deploying applications to var-
ious target environments. The MATLAB Compiler allows developers to create
standalone applications or components that can be distributed and run on comput-
ers without a fullMATLAB installation. TheMATLABWebAppServer enables
deploying and sharing web apps with remote users over the internet or an intranet.
The MATLAB Production Server provides a scalable and secure environment
for deploying and managingMATLAB applications in production environments.

These app development tools in MATLAB offer a range of options to cater to
different project requirements, user preferences, and deployment scenarios, enabling
developers to create powerful and user-friendly applications for data analysis, visu-
alisation, simulation, and other computational tasks.

9.14.3 Creating and Customising UI Components

Building interactive and visually appealing user interfaces is a crucial aspect of app
development in MATLAB. The platform provides a rich set of UI components and
tools for creating and customizing these components, enabling developers to craft
intuitive and user-friendly applications. Here are some key aspects of creating and
customizing UI components in MATLAB:

• UI Component Library: MATLAB offers a comprehensive library of UI com-
ponents, including buttons, sliders, text boxes, drop-down menus, tables, plots,
and axes. These components can be easily integrated into applications using App
Designer, GUIDE, or programmatic coding.

• Visual Design Tools: App Designer and GUIDE provide visual design tools that
allow developers to drag and drop UI components onto a canvas, arrange them
in desired layouts, and customize their properties (such as size, color, and text)
through intuitive interfaces.

360 9 Programming and Algorithm Developmen

• Programmatic Customization: In addition to visual design tools, MATLAB
enables programmatic customization of UI components through code. This
approach offers greater flexibility and control, allowing developers to dynami-
cally modify component properties, handle events, and integrate UI components
with application logic and data processing.

• Event Handling: UI components in MATLAB support event handling, enabling
developers to define callback functions that execute when specific events occur
(e.g., button click, slider movement, menu selection). This allows for seamless
integration of user interactions with the application’s functionality.

• Layout Management: MATLAB provides layout managers and tools for orga-
nizing UI components in various layouts, such as grids, tabbed panels, and nested
containers. This ensures that the UI remains responsive and adapts to different
screen sizes or window resizing.

• Theming and Styling: Developers can customize the appearance of UI compo-
nents by applying themes, styles, and color schemes, ensuring a consistent and
visually appealing look and feel across the application.

• Data Visualisation:MATLAB excels in data visualisation, offering a wide range
of plot types and customization options for creating interactive and dynamic visu-
alisations within the application’s UI.

By leveraging these tools and techniques, developers can create highly interactive
and user-friendly applications tailored to specific use cases, such as data analysis,
simulation, or visualisation tasks. The ability to customize UI components and inte-
grate themwith application logic and data processing ensures a seamless and intuitive
user experience.

9.14.4 Deploying and Sharing Apps

After developing an application in MATLAB, it is often necessary to deploy and
share it with others, whether it’s for collaboration, distribution, or production use.
MATLAB provides several options for deploying and sharing applications, each
tailored to specific deployment scenarios and target environments. Here are the main
deployment and sharing options in MATLAB:

• MATLABCompiler: TheMATLABCompiler is a powerful tool that allows you
to create standalone applications or components that can be distributed and run on
computers without a fullMATLAB installation. It packages yourMATLAB code,
along with the necessary runtime components, into executables or libraries that
can be run on various platforms (Windows, Linux, or macOS). This is particularly
useful for sharing applications with users who do not have access toMATLAB or
for deploying applications in production environments.

• MATLAB Web App Server: MATLAB enables the deployment and sharing
of web-based applications through the MATLAB Web App Server. This server

9.15 Programming for Simulink 361

allows you to host and serveweb apps createdwithMATLAB, making themacces-
sible to remote users over the internet or an intranet. Web apps offer the advantage
of cross-platform compatibility, as they can be accessed and used through a web
browser on any device, without the need for installation.

• MATLAB Production Server: The MATLAB Production Server is a scalable
and secure environment designed for deploying and managing MATLAB appli-
cations in production settings. It provides tools for packaging, deploying, and
monitoring MATLAB applications, as well as integrating them with other enter-
prise systems and databases. The MATLAB Production Server is particularly
useful for organizations that need to deploy and manage mission-critical MAT-
LAB applications at scale.

• MATLAB Drive: MATLAB Drive is a cloud-based service that allows you to
share and collaborate onMATLAB files, including scripts, functions, and apps. It
provides version control, commenting, and sharing capabilities, making it easier
to collaborate with team members or distribute your work to others.

These deployment and sharing options in MATLAB cater to various use cases,
from distributing standalone applications to remote users, to hostingweb-based apps,
to deploying applications in production environments, and facilitating collabora-
tion and sharing among teams or students. By leveraging these tools, developers
can ensure that their MATLAB applications reach their intended audience and are
deployed in the most appropriate and efficient manner.

9.15 Programming for Simulink

9.15.1 Quick Introduction to Simulink

Simulink is a graphical programming environment for modeling, simulating, and
analyzing multi-domain dynamic systems. It provides an intuitive block diagram
environment where users can design and simulate systems using a comprehensive
library of pre-built blocks and custom components. This subsection aims to provide
a quick introduction to Simulink and its key features.

• Overview of Simulink as a powerful graphical programming environment:
Simulink is a powerful tool for modeling and simulating complex systems across
various domains, including control systems, signal processing, communications,
and more. It enables users to create and modify block diagrams visually, making
it easier to understand and analyze system behavior.

• Importance of understanding algebraic loop concepts in system modeling
and simulation: Algebraic loops are a crucial concept in system modeling and
simulation. They occur when there are algebraic constraints between the input and
output signals of a block or a system of blocks. Understanding algebraic loops

362 9 Programming and Algorithm Developmen

is essential for accurate simulation and analysis of systems, as they can lead to
numerical issues or convergence problems if not handled properly.

• Introduction to the Simulink interface and its key components: The Simulink
interface consists of various components, including the Editor, Library Browser,
Model Hierarchy, and Simulation Data Inspector. This subsection introduces these
components and their roles in creating, modifying, and analyzing Simulink mod-
els.

• Basic steps for creating and running simulations in Simulink: This part covers
the basic steps involved in creating a new Simulink model, adding blocks from
libraries, connecting blocks, setting parameters, and running simulations. It also
discusses common simulation settings and options, such as simulation time, solver
settings, and data logging.

• Exploring the available blocks and libraries in Simulink for systemmodeling:
Simulink provides a vast library of pre-built blocks for various domains, including
continuous and discrete systems, signal processing, control design, and more.
This subsection explores some of the commonly used block libraries and their
applications in system modeling.

By providing an overview of Simulink, its interface, and the basic steps for
creating and running simulations, this subsection lays the foundation for users to
effectively Utilise Simulink for system modeling and simulation tasks.

9.15.2 What Is an S-Function

An S-Function (System-Function) in Simulink is a programming interface that
allows users to incorporate custom algorithms, external code, and advanced func-
tionality into theirmodels. S-Functions provide a powerful and flexibleway to extend
the capabilities of Simulink beyond the pre-built blocks and libraries.

• Exploring the concept of S-Functions in Simulink: S-Functions are user-defined
blocks that can be created using programming languages like C, C++, Fortran,
or MATLAB. These blocks can be seamlessly integrated into Simulink models,
enablingusers to implement customalgorithms, complexmathematical operations,
and advanced control strategies.

• Significance and practical applications of S-Functions in custom algorithm
implementation and model integration: S-Functions are particularly useful
when the desired functionality is not available in the standard Simulink block
libraries or when existing blocks need to be customized for specific requirements.
They enable users to incorporate proprietary algorithms, hardware-specific code,
or third-party software into their Simulink models.

• Understanding the structure and requirements of an S-Function: An S-
Function typically consists of several mandatory and optional callback functions
that define its behavior. These functions handle tasks such as initialisation, output

9.15 Programming for Simulink 363

computation, state updates, and termination. This subsection explains the structure
of an S-Function and the requirements for each callback.

• Steps for creating and implementing an S-Function in Simulink: Creating
an S-Function involves several steps, including defining the callback functions,
compiling the S-Function code, and integrating it into a Simulink model. This
part covers the step-by-step process of creating and implementing an S-Function,
including best practices and guidelines.

• Incorporating external code and algorithms into Simulink using S-Functions:
S-Functions allow users to incorporate external code and algorithms from various
programming languages into their Simulink models. This subsection discusses
the techniques and considerations for integrating external code, such as linking
to external libraries, handling data exchange, and ensuring compatibility with
different platforms and operating systems.

By understanding the concept and capabilities of S-Functions, users can extend
the functionality of Simulink and create highly customized and specialized models
tailored to their specific requirements.

9.15.3 Advanced Simulink Programming Techniques
and Applications

This subsection delves into advanced programming techniques and applications of
Simulink, enabling users to leverage its full potential for complex system modeling,
simulation, and deployment tasks.

• Modeling Continuous and Discrete Systems: Explore techniques and best prac-
tices for modeling continuous-time and discrete-time systems in Simulink. Under-
stand the use of integration algorithms, fixed-step and variable-step solvers, and
handling sampling and quantization effects.

• Model Verification and Validation: Discover methods and tools available in
Simulink for verifying and validatingmodels. Learn aboutmodel checking, formal
verification, code generation, and hardware-in-the-loop (HIL) testing.

• Model Optimisation and Tuning: Gain insights into strategies and tools for Opti-
mising and tuning Simulink models. Explore techniques for parameter estimation,
design exploration, performance analysis, and the use of optimisation algorithms
and tools like Simulink Design optimisation.

• Code Generation and Deployment: Understand the process of generating code
from Simulink models for deployment on various platforms, such as embed-
ded systems, real-time targets, or production environments. Learn about available
code generation options, optimisation techniques, and best practices for deploying
Simulink models.

• Advanced Topics andApplications: Explore advanced topics and applications of
Simulink, including model-based design, control system design, signal process-

364 9 Programming and Algorithm Developmen

ing, and real-time simulations. Discover the integration of Simulink with other
MATLAB tools and toolboxes for specific application domains.

Bymastering these advanced programming techniques and applications, users can
unlock the full potential of Simulink for complex system modeling, simulation, and
deployment tasks, enabling them to tackle challenging real-world problems more
effectively.

9.16 Software Development Tools

This section covers various tools and utilities provided by MATLAB for software
development, including debugging, performance optimisation, project organization,
source control integration, and toolbox packaging. These tools are essential for devel-
oping, testing, and deploying robust and efficient MATLAB applications.

9.16.1 Debugging and Analysis

Debugging is an integral part of the software development process, allowing devel-
opers to diagnose and fix issues in their code. MATLAB provides several debugging
tools to help identify and resolve problems efficiently.

• MATLAB Debugger: The MATLAB Debugger is a powerful tool that enables
developers to execute code line by line, set breakpoints, inspect variables, and
step through function calls. This tool is particularly useful for understanding code
behavior and identifying logical errors.

• Code Analyzer: The Code Analyzer is a static analysis tool that checks MAT-
LAB code for potential issues, such as syntax errors, coding style violations, and
compatibility problems. It provides suggestions for improving code quality and
maintainability.

The basic syntax for setting a breakpoint in the MATLAB Debugger is:

Listing 9.48 Setting a breakpoint.

dbstop if condition % Set a conditional breakpoint
dbstop at filename.m:line_number % Set a breakpoint at a

specific line

Here’s an example of using the MATLAB Debugger to step through a function:

Listing 9.49 Debugging a function.

function result = myFunction(x, y)
dbstop if x < 0 % Set a conditional breakpoint
z = x + y;
result = z^2;

9.16 Software Development Tools 365

end

x = -2; y = 3;
result = myFunction(x, y) % Execution will pause at the

breakpoint

9.16.2 Performance and Memory

Optimising code performance and memory usage is crucial for efficient computa-
tions, especially whenworking with large datasets or complex algorithms.MATLAB
provides several tools to help developers identify and address performance bottle-
necks and memory issues.

• Profiler: The Profiler is a tool that analyzes the execution time of MATLAB
functions and scripts, helping developers identify performance bottlenecks and
optimise their code [1].

• Memory Profiler: The Memory Profiler is a tool that tracks memory usage in
MATLAB, allowing developers to identify and addressmemory leaks and optimise
memory consumption.

The basic syntax for starting the Profiler is:

Listing 9.50 Starting the Profiler.

profile on % Start profiling
% Code to be profiled
profile viewer % Open the Profile Viewer to analyze

results

Here’s an example of using the Profiler to analyze the performance of a function:

Listing 9.51 Profiling a function.

function result = computeIntensiveTask (n)
result = zeros(n);
for i = 1:n

for j = 1:n
result(i, j) = heavyComputation(i, j);

end
end

end

function y = heavyComputation(x1 , x2)
% Perform some complex calculations
y = x1^2 + x2^3;

end

profile on
computeIntensiveTask (1000);
profile viewer

366 9 Programming and Algorithm Developmen

The Profiler will provide detailed information about the execution time of each
function, allowing developers to identify and optimise performance bottlenecks.

9.16.3 Background Processing

MATLAB provides the ability to run code in the background, allowing users to
perform other tasks or execute additional code while long-running computations or
simulations are in progress.

• Background Workers: Background workers enable users to run MATLAB code
in a separate process or thread, freeing up the main MATLAB session for other
tasks [2].

• Parallel Computing: MATLAB supports parallel computing, which allows users
to distribute computations across multiple cores or workers, significantly reducing
execution time for computationally intensive tasks [3].

The basic syntax for creating and using a background worker is:

Listing 9.52 Creating a background worker.

w = parpool; % Create a background worker pool
parfor i = 1:N % Parallel for loop
% Code to be executed in parallel
end
delete(w); % Shut down the worker pool

Here’s an example of using a background worker to perform a long-running com-
putation:

Listing 9.53 Long-running computation in a background worker.

function result = computeLongTask(n)
w = parpool; % Create a background worker pool
parfor i = 1:n
result(i) = heavyComputation(i);
end
delete(w); % Shut down the worker pool
end

function y = heavyComputation(x)
% Perform some complex and time -consuming calculations
pause (0.1); % Simulating a long computation
y = x^3 + sin(x);
end

result = computeLongTask (1000); % Compute in the
background

% Continue with other tasks or computations in the main
MATLAB session

9.16 Software Development Tools 367

9.16.4 Projects

As MATLAB projects grow in complexity, it becomes increasingly important to
organize and manage code, files, and settings. MATLAB provides project manage-
ment tools to help developers maintain code structure, share files and settings, and
interact with source control systems.

• MATLAB Projects: MATLAB Projects is a tool that allows users to organize and
manage MATLAB files, settings, and dependencies within a project structure [4].

• Project Shortcuts: Project Shortcuts provide a convenient way to access fre-
quently used files, folders, and commands within a MATLAB Project [5].

The basic syntax for creating a new MATLAB Project is:

Listing 9.54 Creating a new MATLAB Project.

projectName = ’MyProject ’; % Name of the project
rootDir = ’/path/to/project/directory ’; % Root directory

for the project
proj = matlab.project.createProject(projectName , rootDir

);

Here’s an example of creating and using a MATLAB Project:

Listing 9.55 Using a MATLAB Project.

% Create a new project
proj = matlab.project.createProject(’MyProject ’, ’C:\

Projects\MyProject ’);

% Add files to the project
addFile(proj , ’main.m’);
addFile(proj , ’utils\helper.m’);

% Set project properties
proj.RootFolder = ’C:\ Projects\MyProject ’;
proj.SourceFolder = ’src’;

% Open the project
openProject(proj);

% Access project files and settings
edit(proj.Files (1).Path); % Open the main.m file

9.16.5 Source Control Integration

Source control systems are essential for managing code changes, collaborating with
team members, and tracking project history. MATLAB provides integration with

368 9 Programming and Algorithm Developmen

popular source control systems, allowing developers to manage their code and col-
laborate effectively.

• Git Integration: MATLAB integrates with Git, a popular distributed version con-
trol system, enabling developers to perform common source control operations
directly from within the MATLAB environment [6].

• SVN Integration: MATLAB also supports integration with Subversion (SVN), a
widely used centralised version control system [7].

The basic syntax for initializing a Git repository in MATLAB is:

Listing 9.56 Initializing a Git repository.

gitRepo = matlab.project.repository.Git(’repo_path ’);
gitRepo.init(); % Initialize the Git repository

Here’s an example of using Git integration in MATLAB:

Listing 9.57 Using Git integration in MATLAB.

% Initialize a Git repository
gitRepo = matlab.project.repository.Git(’C:\ Projects\

MyProject ’);
gitRepo.init();

% Add files to the repository
gitRepo.add(’main.m’);
gitRepo.add(’utils’);

% Commit changes
gitRepo.commit(’Initial commit ’);

% Push changes to a remote repository
gitRepo.addRemote(’origin ’, ’https :// github.com/user/

repo.git’);
gitRepo.push(’origin ’, ’master ’);

9.16.6 Testing Frameworks

Testing is a crucial aspect of software development, ensuring that code functions cor-
rectly and meets the specified requirements. MATLAB provides testing frameworks
that help developers write and run automated tests for their code.

• MATLAB Unit Testing Framework: The MATLAB Unit Testing Framework
allowsdevelopers towrite and rununit tests forMATLABfunctions and classes [8].

• Test Automation: MATLAB supports test automation, enabling developers to run
tests automatically as part of the development workflow or continuous integration
process [9].

The basic syntax for creating a unit test in MATLAB is:

9.16 Software Development Tools 369

Listing 9.58 Creating a unit test.

classdef MyTest < matlab.unittest.TestCase
% Test methods
methods (Test)
function testMyFunction(testCase)
% Test code for myFunction
% ...
end
end
end

Here’s an example of a unit test for a simple function:

Listing 9.59 Unit test example.

function y = myFunction(x)
y = x^2;
end

classdef MyTest < matlab.unittest.TestCase
methods (Test)
function testMyFunction(testCase)
% Test case 1
x = 2;
expected = 4;
actual = myFunction(x);
testCase.verifyEqual(actual , expected);
% Test case 2

x = -3;
expected = 9;
actual = myFunction(x);
testCase.verifyEqual(actual , expected);

end
end

end

In this example, we first define a simple function myFunction that takes a scalar
input x and returns its square.

We then create a unit test class MyTest that extends the matlab.unittest.TestCase
class. Inside the MyTest class, we define a test method testMyFunction that contains
two test cases for the myFunction.

In the first test case, we set x to 2, and we expect the output y to be 4. We call
the myFunction with x=2 and store the result in actual. We then use the verifyEqual
method from the matlab.unittest.TestCase class to assert that the actual value is equal
to the expected value of 4.

In the second test case, we set x to -3, and we expect the output y to be 9. We
follow a similar process as the first test case, calling the myFunction with x=-3 and
using verifyEqual to assert that the actual value matches the expected value of 9.

370 9 Programming and Algorithm Developmen

This unit test class can be executed using MATLAB’s Unit Testing Framework,
and the test results will indicate whether the myFunction behaves as expected for the
provided test cases.

9.16.7 Build Automation

Build automation is the process of automating the compilation, packaging, and
deployment of software applications. MATLAB provides tools and interfaces for
creating and running build tasks, allowing developers to streamline the build process
and ensure consistent and reproducible builds.

• MATLAB Build Tools: MATLAB Build Tools provide a set of commands and
APIs for creating and running build tasks, such as compiling MATLAB code,
packaging applications, and deploying to target environments [10].

• Continuous Integration: MATLAB supports integration with popular CI plat-
forms, enabling developers to automatically build, test, and deploy theirMATLAB
applications as part of the continuous integration workflow.

The basic syntax for defining a build task in MATLAB is:

Listing 9.60 Defining a build task.

task = matlab.project.buildtask.CommandTask(’TaskName ’);
task.setCommand(’matlab -batch "myScript.m"’);
task.addDependencies(’myScript.m’); % Add file

dependencies

Here’s an example of defining and running a build task to compile a MATLAB
application:

Listing 9.61 Running a build task.

% Define the build task
compileTask = matlab.project.buildtask.CommandTask(’

CompileApp ’);
compileTask.setCommand(’matlab -batch "deployApp.m"’);
compileTask.addDependencies ({’deployApp.m’, ’main.m’, ’

utils*.m’});

% Run the build task
compileTask.run();

9.16.8 Continuous Integration (CI)

Continuous Integration (CI) is a software development practice that involves auto-
matically building, testing, and deploying code changes as they are committed to the

9.16 Software Development Tools 371

code repository. MATLAB supports integration with popular CI platforms, enabling
developers to continuously develop and integrate their software.

• CI Platform Integration: MATLAB can be integrated with various CI platforms,
such as Jenkins, Travis CI, and GitHub Actions, to enable automated building,
testing, and deployment of MATLAB applications [11].

The basic syntax for defining a CI workflow in MATLAB depends on the specific
CI platform being used. However, here’s an example of a simple CI workflow using
GitHub Actions:

Listing 9.62 GitHub Actions workflow for MATLAB.

name: MATLAB CI

on: [push]

jobs:
build:
runs -on: ubuntu -latest

steps:
- uses: actions/checkout@v2
- uses: matlab -actions/setup -matlab@v1

- name: Run tests
run: matlab -batch "runTests"

- name: Build application
run: matlab -batch "deployApp"

In this example, the CI workflow is triggered on every push to the code repository.
It sets up theMATLAB environment, runs unit tests, and builds the application using
MATLAB commands.

9.16.9 Toolbox Distribution

MATLAB allows developers to create and distribute toolboxes, which are collections
ofMATLABfiles, data, and documentation organized into a single package. Toolbox
distribution enables developers to share their work with others and facilitates code
reuse and collaboration.

• Toolbox Packaging: MATLAB provides tools and utilities for packaging MAT-
LAB code, data, and documentation into a toolbox file or installer [12].

• Documentation Generation: Developers can generate comprehensive documen-
tation for their toolboxes, including function references, examples, and usage
instructions, using MATLAB’s documentation tools [13].

372 9 Programming and Algorithm Developmen

The basic syntax for creating a toolbox package in MATLAB is:

Listing 9.63 Creating a toolbox package.

packager = matlab.project.toolbox.ToolboxPackager(’
ToolboxName.prj’);

packager.package (); % Create the toolbox package

Here’s an example of creating a toolbox package and generating documentation:

Listing 9.64 Toolbox packaging and documentation.

% Create a toolbox project
proj = matlab.project.toolbox.ToolboxProject(’MyToolbox ’

);
proj.addFiles(’main.m’, ’utils*.m’);

% Generate documentation
doc = help.doc.matlab(’MyToolbox ’, ’C:\ Toolboxes\

MyToolbox ’);
doc.generateMATLABPage (); % Generate HTML documentation

% Package the toolbox
packager = matlab.project.toolbox.ToolboxPackager(proj);
packager.package (); % Create the toolbox package file

9.16.10 Tool Qualification and Certification

In industries where safety and reliability are critical, such as aerospace and automo-
tive, it is essential to qualify and certify the tools used for software development.
MATLAB provides certification kits and tools to assist in qualifying MATLAB for
use in safety-critical applications.

• IECCertificationKit: The IECCertificationKit allows users to qualifyMATLAB
for use in safety-critical applications according to the IEC 61508 and IEC 62304
standards [14].

• DOQualification Kit: The DOQualification Kit is designed to help users qualify
MATLAB for use in airborne software development according to the RTCA DO-
178C and RTCA DO-330 standards [15].

The process of qualifying MATLAB using the certification kits typically involves
running a set of qualification tests, analyzing the results, and generating qualification
reports. The specific steps and requirements may vary depending on the industry and
applicable standards.

By following the guidelines and using the certification kits provided by Math-
Works, developers can ensure that MATLAB meets the necessary requirements for
use in safety-critical and regulated industries.

9.16 Software Development Tools 373

9.16.11 MATLAB Grader

MATLAB Grader is an interactive platform designed for creating and managing
auto-graded MATLAB assignments. It is particularly useful in academic settings
for enabling instructors to provide immediate feedback to students on their cod-
ing assignments. The platform supports a wide range of problem types and allows
seamless integration with Learning Management Systems (LMS). MATLABGrader
facilitates the development of computational thinking and problem-solving skills,
which are crucial in fields such as AI, Industry 4.0, and Digital Manufacturing.

9.16.11.1 Creating Assignments

Creating assignments in MATLAB Grader involves defining the problem statement,
providing reference solutions, and setting up test cases for auto-grading. The plat-
form’s user-friendly interface assists instructors in designing assignments that can
assess both the correctness and efficiency of students’ solutions.

Listing 9.65 Creating a simple assignment in MATLAB Grader

% Problem Statement: Calculate the square of a number
function y = squareNumber(x)

% Reference Solution
y = x^2;

end

% Test cases to validate student submissions
assert(squareNumber (2) == 4);
assert(squareNumber (-3) == 9);
assert(squareNumber (0) == 0);

Listing 9.66 Another example of assignment creation

% Problem Statement: Check if a number is prime
function isPrime = checkPrime(n)

% Reference Solution
isPrime = true;
if n <= 1

isPrime = false;
else

for i = 2:sqrt(n)
if mod(n, i) == 0

isPrime = false;
break;

end
end

end
end

% Test cases to validate student submissions

374 9 Programming and Algorithm Developmen

assert(checkPrime (5) == true);
assert(checkPrime (4) == false);
assert(checkPrime (1) == false);

9.16.11.2 Managing Assignments

Managing assignments in MATLAB Grader involves monitoring student progress,
reviewing submissions, and providing feedback. The platform’s dashboard offers
insights into common errors and allows instructors to adjust the difficulty level of
problems based on student performance.

Listing 9.67 Example of managing assignments

% Example of a script to review student submissions
submission = getStudentSubmission (’student1 ’, ’

assignment1 ’);
disp([’Student ID: ’, submission.studentID]);
disp([’Submission Date: ’, submission.date]);
disp([’Code: ’, submission.code]);

% Providing feedback based on the submission
if submission.passed

disp(’Great job! Your solution is correct.’);
else

disp(’Please review your code and try again.’);
end

Listing 9.68 Another example of assignment management

% Script to generate a report of student performance
students = getAllStudents (’assignment1 ’);
for i = 1: length(students)

submission = getStudentSubmission (students(i).id , ’
assignment1 ’);

disp([’Student ID: ’, students(i).id]);
disp([’Passed: ’, num2str(submission.passed)]);
disp([’Score: ’, num2str(submission.score)]);

end

9.16.11.3 Integrating with Learning Management Systems

MATLAB Grader can be integrated with various Learning Management Systems
(LMS), such as Moodle and Blackboard, enabling seamless assignment distribution
and grading. This integration helps streamline the educational process by providing
a unified platform for course management.

Listing 9.69 LMS integration example

% LMS integration using LTI (Learning Tools
Interoperability)

9.16 Software Development Tools 375

lmsIntegration = setupLTI(’consumer_key ’, ’shared_secret
’, ’https :// lms.example.com/’);

% Example of retrieving assignment grades
grades = getGradesFromLMS(lmsIntegration , ’assignment1 ’)

;
for i = 1: length(grades)

disp([’Student ID: ’, grades(i).studentID]);
disp([’Grade: ’, num2str(grades(i).grade)]);

end

Listing 9.70 Another LMS integration example

% Script to push grades back to the LMS
lmsIntegration = setupLTI(’consumer_key ’, ’shared_secret

’, ’https :// lms.example.com/’);
grades = getGradesFromLMS(lmsIntegration , ’assignment1 ’)

;

% Update grades in the LMS
for i = 1: length(grades)

updateGradeInLMS(lmsIntegration , grades(i).studentID
, grades(i).grade);

end

9.16.11.4 Benefits of MATLAB Grader

MATLAB Grader offers several benefits, including:

• Immediate Feedback: Students receive instant feedback on their submissions,
allowing them to learn from their mistakes and improve their skills.

• Scalability: MATLAB Grader can handle a large number of submissions, making
it suitable for courses with many students.

• Integration with LMS: The platform integrates seamlessly with popular LMS,
facilitating the management of assignments and grades.

• Customisation: Instructors can create custom problems and test cases to match
the learning objectives of their courses.

These benefits make MATLAB Grader an invaluable tool in modern education,
particularly in fields that require strong computational skills.

In conclusion, MATLAB Grader is a powerful tool for both instructors and stu-
dents. It enhances the learning experience by providing immediate feedback, scal-
able solutions, and seamless integration with LMS. By leveragingMATLABGrader,
educational institutions can better prepare students for the demands of modern engi-
neering and computational fields.

376 9 Programming and Algorithm Developmen

9.16.12 MATLAB Cody

MATLAB Cody is an online coding platform provided by MathWorks that allows
users to solve programming challenges and improve their MATLAB skills [16]. It
offers awide range of problems, frombasic syntax and datamanipulation to advanced
algorithms and mathematical modelling. It is a valuable resource for both beginners
and experienced users to practice and enhance their coding capabilities. The platform
hosts awide range of problems, frombasic syntax to complex algorithmic challenges,
allowing users to learn by doing.

One of the key features of MATLAB Cody is its interactive learning environ-
ment. Users canwrite and test their code directly in the browser, receiving immediate
feedback on the correctness and efficiency of their solutions. The platform provides
a built-in editor with syntax highlighting and code completion to enhance the coding
experience.

• Key Features of MATLAB Cody:

– Interactive Problems: Users can solve problems and get immediate feedback
on their solutions.

– Community Engagement: Users can see how others solved the same problem,
offering diverse perspectives and techniques.

– Skill Improvement: The problems are designed to progressively enhanceMAT-
LAB programming skills.

– Leaderboard and Achievements: Users can track their progress and earn
badges, making learning engaging and competitive.

MATLABCodyoffers problems in variousdifficulty levels, ranging frombeginner
to advanced. Each problem comes with a clear problem statement, sample test
cases, and constraints on the solution [17]. Users can submit their solutions and
receive points based on the correctness and performance of their code.
In addition to solving problems, MATLAB Cody encourages collaboration and
learning among its users. The platform includes a discussion forum where users
can ask questions, share insights, and learn from the community [16]. Users can
also view other people’s solutions after submitting their own, allowing them to
explore different approaches and optimizations.

• Benefits of Using MATLAB Cody
Using MATLAB Cody offers several benefits:

– Hands-on Practice: Users can apply theoretical knowledge to practical prob-
lems.

– Instant Feedback: Immediate results help users learn from their mistakes and
improve their code.

– Community Learning: Viewing solutions from other users can provide new
insights and approaches to problem-solving.

9.17 Programming with AI 377

These benefits make MATLAB Cody an essential tool for anyone looking to
enhance their MATLAB programming skills in an interactive and community-driven
environment.

MATLABCody is an excellent resource for both beginners and experiencedMAT-
LAB programmers looking to enhance their skills and learn new techniques. By
solving real-world problems and engaging with the community, users can deepen
their understanding of MATLAB and become more proficient in writing efficient
and robust code.

9.17 Programming with AI

In this chapter, wewill explore the exciting field of programmingwith artificial intel-
ligence (AI) in MATLAB. AI has revolutionized various industries and has become
an integral part of modern software development. MATLAB provides powerful tools
and frameworks for implementing AI algorithms and applications.

9.17.1 MATLAB AI Chat Playground

The MATLAB AI Chat Playground is a web-based tool that provides a conver-
sational interface for interacting with natural language processing (NLP) mod-
els directly within MATLAB. It leverages advanced language models trained on
a vast corpus of data, including MATLAB code, documentation, and other relevant
resources. This innovative feature allows users to ask questions, provide instructions,
or describe their programming goals in natural language, andMATLABwill respond
with appropriate code suggestions, explanations, or other relevant information [18].

The AI Chat Playground is designed to be intuitive and user-friendly, enabling
users to communicate with MATLAB in a more natural and conversational manner.
It incorporates contextual understanding, allowing it to interpret the user’s intent
and provide relevant responses based on the current context of the user’s work.

One of the key advantages of the MATLAB AI Chat Playground is its ability to
generate code snippets on demand. Users can describe the desired functionality in
natural language, and the AI model will generate the corresponding MATLAB code.
This feature can significantly accelerate the development process and reduce the time
spent on low-level coding tasks [19].

The MATLAB AI Chat Playground also supports interactive code exploration
and debugging. Users can ask questions about specific code snippets or functions,
and theAImodelwill provide explanations, suggest improvements, or identify poten-
tial issues.

By leveraging the power of natural language processing and advanced language
models, the MATLAB AI Chat Playground aims to enhance productivity, facilitate

378 9 Programming and Algorithm Developmen

code exploration, and provide a more intuitive and natural programming experience
for MATLAB users (Fig. 9.18).

9.17.2 ChatGPT

• Introduction to ChatPT [20]
ChatGPT is a state-of-the-art conversationalAI developedbyAnthropic, a leading
artificial intelligence research company. It is based on a large language model that
has been trained on a vast amount of data, allowing it to understand and generate
human-like text with remarkable fluency and coherence.
In the context of MATLAB, users can leverage the power of ChatGPT to generate
code snippets, complete functions, or even entire programs based on natural
languageprompts. This integration aims to bridge the gapbetweenhuman language
andmachine code, enabling amore intuitive and efficient programming experience.
One of the key advantages of using ChatGPT with MATLAB is its ability to
understand context and intent. Users can provide high-level descriptions or
requirements in natural language, and ChatGPT will generate the correspond-
ing MATLAB code that fulfills those requirements. This feature can significantly
reduce the time and effort required for coding tasks, especially for complex or
unfamiliar problems.

• How ChatGPT can help with MATLAB Programming
Here’s an example of usingChatGPT to generate code for a linear regression func-
tion, using the prompt:Write aMATLAB function to perform linear regression
on a dataset of input features X and output targets y, as given in Fig. 9.19. And
the results as given in Fig. 9.20.

Fig. 9.18 Using the MATLAB AI chat playground

9.17 Programming with AI 379

Fig. 9.19 Using ChatGPT with MATLAB—linear regression: prompt

Fig. 9.20 Using ChatGPT with MATLAB—linear regression: outcome from GPT4o

In this example, the user provides a natural language prompt describing the desired
functionality, andChatGPTgenerates a completeMATLAB function that performs
linear regression on a given dataset using gradient descent optimisation.
ChatGPT can also provide explanations and insights into the generated code,
helping users understand the underlying logic and algorithms. Additionally, it can
suggest improvements, identify potential issues, or provide alternative approaches
based on the user’s requirements.

380 9 Programming and Algorithm Developmen

By integrating ChatGPT with MATLAB, developers can leverage the power of
advanced language models to enhance their productivity, explore new ideas, and
focus on higher-level problem-solving tasks while offloading low-level coding
tasks to the AI assistant.

9.17.3 Cursor—Pair-Programming with AI

• Introduction to Cursor [21]
Cursor is an AI-first code editor designed for pair-programming with artificial
intelligence. It is built on top of Visual Studio Code (VSCode), a popular and
widely-used code editor, and aims to enhance the software development experience
by seamlessly integrating AI capabilities into the coding workflow.
One of the core features of Cursor is its ability to understand the context of a
project and provide intelligent code suggestions tailored to the specific codebase.
It achieves this by analysing the entire project repository, enabling the AI to pro-
vide relevant and accurate recommendations based on the existing code, files, and
documentation.
Cursor allows developers to ask questions about their codebase and receive
answers directly within the editor. This feature can save significant time by elimi-
nating the need to search through code or documentation manually. Additionally,
developers can refer directly to code definitions, files, and documentation, further
streamlining the development process.
A unique aspect of Cursor is its ability to follow natural language instructions.
Developers can provide high-level instructions or descriptions of the desired func-
tionality, andCursor’s AIwill generate the corresponding code, handling low-level
implementation details. This feature promotes a more efficient and intuitive work-
flow, allowing developers to focus on higher-level problem-solving tasks.
Cursor also supports editing code in natural language. Developers can prompt
the AI to modify an entire method or class with a single instruction, streamlining
the process of making complex changes to the codebase.
Furthermore, Cursor introduces a new feature called “Copilot++,” which is amore
powerful version of the Copilot AI assistant. Copilot++ is trained to autocom-
plete on sequences of edits, making it quick to understand the changes a developer
is making. It can suggest mid-line completions and entire diffs, further enhancing
the AI-assisted coding experience.
To ensure a seamless transition for existing VSCode users, Cursor offers one-
click migration of all VSCode extensions, themes, and keybindings. This feature
allows developers to continue using their preferred tools and customizations while
benefiting from Cursor’s AI-powered capabilities.
Cursor also addresses privacy and security concerns by providing a privacy mode
option. In this mode, none of the user’s code is stored on Cursor’s servers or logs,
ensuring that sensitive or proprietary code remains secure and confidential.
The basic syntax for using Cursor’s AI assistant is:

9.17 Programming with AI 381

// Ask a question or provide an instruction using natural language cursor.ask
(’Instruction or question’)
Here’s an example of using Cursor to generate code for a simple function:
// Prompt Cursor to create a function that calculates the factorial of a number
cursor.ask(’Create a function that calculates the factorial of a given number’)
// Cursor generates the following code: function factorial(n) if (n === 0) return
1; return n * factorial(n - 1);
In this example, as shown in Fig. 9.21, the user provides a natural language prompt,
and Cursor generates a recursive function that calculates the factorial of a given
number.
By integrating advanced AI capabilities directly into the code editor, Cursor aims
to streamline the software development process, enhance productivity, and provide
a more intuitive and efficient coding experience for developers. As shown in Fig.
9.22, Cursor is able to support a few programming languages.

• How Cursor can help with MATLAB Programming
While Cursor is primarily designed for general-purpose programming languages
like Python, JavaScript, and TypeScript, it can also be leveraged for MATLAB
programming. By integrating with MATLAB’s development environment, Cursor
enables AI-assisted coding capabilities for MATLAB users.
One of the key advantages of using Cursor with MATLAB is its ability to under-
stand MATLAB syntax and idioms. The AI model powering Cursor has been
trained on a vast corpus of MATLAB code, allowing it to provide intelligent sug-
gestions and code generation tailored to the MATLAB language.
Cursor can assist MATLAB developers in various tasks, such as generating code
snippets, completing partiallywritten functions, or even creating entire scripts
or programs based on natural language prompts. This can significantly accelerate
the development process and reduce the time spent on low-level coding tasks.
The basic syntax for using Cursor with MATLAB is:

Listing 9.71 Using Cursor with MATLAB.

cursor.ask(’Ask a question or provide an instruction ’)

Here’s an example of using Cursor to generate code for a MATLAB function that
calculates the mean of a vector:

Listing 9.72 Generating code for calculating the mean.

cursor.ask(’Create a function that calculates the mean
of a vector ’)

% Cursor generates the following code:
function mean_val = calculate_mean (vec)
sum_val = sum(vec);
length_vec = length(vec);
mean_val = sum_val / length_vec;
end

382 9 Programming and Algorithm Developmen

Fig. 9.21 Using cursor for AI-assisted coding—an example of factorial

In this example, the user provides a natural language prompt, and Cursor generates
a MATLAB function that calculates the mean of a given vector.
Cursor can also assist with code refactoring and optimisation tasks inMATLAB.
Developers can ask Cursor to suggest improvements or alternative approaches to
existing code, leveraging the AI’s understanding of best practices and coding
patterns.
Additionally, Cursor can provide explanations and insights into MATLAB code,
functions, and algorithms. Developers can ask questions about specific code snip-
pets or MATLAB features, and Cursor will provide relevant explanations and
documentation references, facilitating a deeper understanding of the language and
its capabilities. As shown in Fig. 9.22.

By integrating Cursor withMATLAB’s development environment, users can ben-
efit from AI-powered code generation, code exploration, and intelligent assistance,
streamlining their MATLAB programming workflows and enhancing productivity.

Overall, programming with AI in MATLAB involves leveraging AI models and
tools like the MATLAB AI Chat Playground, ChatGPT, and Cursor to enhance the
coding experience, automate tasks, and improve productivity (Fig. 9.23).

9.18 Laboratory 383

Fig. 9.22 Using cursor for programming languages

Fig. 9.23 Using cursor for AI-assisted coding—an example of linear regression

9.18 Laboratory

The following laboratory exercises are designed to reinforce the concepts covered
in this chapter and provide hands-on experience with programming and algorithm
development in MATLAB.

1. Implementing If-Elseif-Else Statements

a. Write a MATLAB script that prompts the user to enter a number and deter-
mines whether it is positive, negative, or zero using if-elseif-else statements.

384 9 Programming and Algorithm Developmen

Listing 9.73 Determine the sign of a number.

num = input(’Enter a number: ’);

if num > 0
disp(’The number is positive.’)
elseif num < 0
disp(’The number is negative.’)
else
disp(’The number is zero.’)
end

b. Implement aMATLAB function that takes three numbers as input and returns
the maximum value using if-elseif-else statements.

Listing 9.74 Find the maximum of three numbers.

function max_val = findMax(num1 , num2 , num3)
if num1 >= num2 && num1 >= num3
max_val = num1;
elseif num2 >= num1 && num2 >= num3
max_val = num2;
else
max_val = num3;
end
end

2. Working with Switch Statements

a. Write a MATLAB script that prompts the user to enter a character (‘a’, ‘b’,
‘c’, etc.) and displays the corresponding vowel or consonant using a switch
statement.

Listing 9.75 Determine if a character is a vowel or consonant.

char = input(’Enter a character: ’, ’s’);

switch lower(char)
case ’a’
disp(’The character is a vowel.’)
case ’e’
disp(’The character is a vowel.’)
case ’i’
disp(’The character is a vowel.’)
case ’o’
disp(’The character is a vowel.’)
case ’u’
disp(’The character is a vowel.’)
otherwise
disp(’The character is a consonant.’)
end

9.18 Laboratory 385

b. Implement a MATLAB function that takes a month number (1-12) as input
and returns the corresponding month name using a switch statement.

Listing 9.76 Get month name from month number.

function month_name = getMonthName(month_num)
switch month_num
case 1
month_name = ’January ’;
case 2
month_name = ’February ’;
case 3
month_name = ’March’;
% ... (cases for other months)
otherwise
month_name = ’Invalid month number ’;
end
end

3. Code Optimisation and Vectorisation

a. Write a MATLAB script that calculates the square root of each element in a
large vector (e.g., 1 million elements) using both a for loop and vectorised
operation. Compare the execution times of the two approaches.

b. Implement aMATLAB function that computes the dot product of two vectors
using a for loop. Then, optimise the function by using a vectorised operation
instead of the loop.

c. Create a MATLAB script that generates a large random matrix (e.g., 1000 x
1000) and calculates the sum of all elements greater than a specified thresh-
old value using both a nested loop and a vectorised operation. Compare the
execution times of the two approaches.

4. Debugging Conditional Statements

a. Write aMATLAB script that implements a simple calculator with basic arith-
metic operations (+, -, *, /). Use if-elseif-else statements to perform the appro-
priate operation based on user input. Debug the script using techniques such
as disp() statements and the MATLAB debugger.

b. Implement a MATLAB function that takes a year as input and determines
whether it is a leap year or not using if statements. Debug the function by
creating test cases for different scenarios (e.g., leap years, non-leap years,
edge cases).

c. Create a MATLAB script that prompts the user to enter their age and dis-
plays a message indicating their life stage (e.g., child, teenager, adult, senior)
using a switch statement. Debug the script using techniques such as fprintf()
statements and the MATLAB debugger.

386 9 Programming and Algorithm Developmen

5. Choosing Appropriate Conditional Statements

a. Write aMATLAB script that prompts the user to enter a grade (0-100) and dis-
plays the corresponding letter grade using both if-elseif-else and switch state-
ments. Compare the readability and maintainability of the two approaches.

b. Implement a MATLAB function that takes a string as input and determines
whether it is a palindrome (a word, phrase, number, or other sequence of
characters that reads the same backward as forward) using if statements.
Discuss scenarios where switch statements might be more appropriate for
string comparisons.

c. Create a MATLAB script that performs different operations based on user
input (e.g., calculating the area of a circle, rectangle, or triangle). Use if-
elseif-else statements for the logical flow and discuss the appropriateness of
using switch statements in this context.

6. Improving MATLAB Codes with AI

a. Any suggestions to improve the quality of MATLAB codes

• Followbest practices for code organization, naming conventions, and com-
menting

• optimise performance by vectorizing operations and avoiding unnecessary
loops

• Improve readability and maintainability by breaking down complex logic
into smaller functions

• Ensure proper error handling and input validation
• Leverage built-in MATLAB functions and data structures when appropri-

ate
• Consider code modularity and reusability

b. Based on the above principles, can you help to generate a prompt for the
given MATLAB codes improvement?
Prompt: “Improve the given MATLAB code by addressing the following
aspects: code organization, performance optimisation through vectorization,
readability and maintainability, error handling and input validation, leverag-
ing built-in MATLAB functions and data structures, and modularization for
reusability. Provide suggestions for refactoring the code while preserving its
functionality.”

c. Using the prompt above, help to improve the MATLAB codes below:

Listing 9.77 Original MATLAB code.

% Calculate the dot product of two vectors
a = [1 2 3 4 5];
b = [6 7 8 9 10];
dot_product = 0;

for i = 1: length(a)

9.18 Laboratory 387

dot_product = dot_product + a(i)*b(i);
end

disp([’The dot product of vectors a and b is: ’
num2str(dot_product)]);

Improved MATLAB code:

Listing 9.78 Improved MATLAB code.

% Function to calculate the dot product of two
vectors

function dot_product = vectorDotProduct(vec1 , vec2
)

% Input validation
if ~isvector(vec1) || ~isvector(vec2) || length(

vec1) ~= length(vec2)
error(’Input vectors must have the same length.’);
end

% vectorised dot product calculation
dot_product = sum(vec1 .* vec2);
end

% Example usage
a = [1 2 3 4 5];
b = [6 7 8 9 10];

result = vectorDotProduct(a, b);
disp([’The dot product of vectors a and b is: ’

num2str(result)]);

Explanation:

• The code is modularized into a function vectorDotProduct for better
reusability.

• Input validation is added to ensure that the input vectors are valid and have
the same length.

• The dot product calculation is vectorised using the built-in sum function
and element-wise multiplication (.*) operator, improving performance.

• The function returns the dot product value, allowing for flexible usage in
other parts of the code.

• An example usage is provided to demonstrate how to call the function.

The improved code follows best practices for code organization, performance
optimisation through vectorization, readability and maintainability, error han-
dling and input validation, and leveraging built-in MATLAB functions. It also
promotes modularization and reusability by encapsulating the dot product cal-
culation in a separate function.

388 9 Programming and Algorithm Developmen

7. Using AI for Code Generation

a. Explore the capabilities of AI language models, such as GPT-3 or CodeGPT,
in generatingMATLAB code snippets or functions based on natural language
descriptions or specifications.

• Provide a natural language description of a desired MATLAB function or
code snippet (e.g., “Write a function to calculate the mean and standard
deviation of a vector of numbers”).

• Use an AI language model to generate the corresponding MATLAB code.
• Evaluate the generated code for correctness, efficiency, and adherence to

best practices.
• Refine the natural language description or prompt if the generated code

requires improvements.

b. Investigate the use of AI-assisted code completion tools, such as Tabnine or
Codex, that can suggest code snippets or autocomplete MATLAB code based
on context and machine learning models.

• Set up anAI-assisted code completion tool in yourMATLABdevelopment
environment.

• WriteMATLAB code and observe how the tool suggests code completions
or snippets based on your input.

• Assess the accuracy and usefulness of the suggested code completions in
various scenarios.

• Discuss the potential benefits and limitations of using AI-assisted code
completion tools in MATLAB programming.

8. AI for Code Optimisation and Refactoring

a. Explore the use of AI-powered code optimisation and refactoring tools, such
as Microsoft’s IntelliCode or Amazon CodeGuru, which can analyze MAT-
LAB code and suggest improvements based on machine learning models.

• Provide a MATLAB code sample or script that could benefit from optimi-
sation or refactoring.

• Use an AI-powered code optimisation or refactoring tool to analyze the
code and generate suggestions for improvements.

• Evaluate the suggested improvements in terms of performance, readability,
maintainability, and adherence to best practices.

• Implement the recommended changes and compare the optimised code
with the original version.

b. Investigate the use of AI-powered code summarization tools, which can auto-
matically generate summaries or documentation forMATLAB code based on
machine learning models.

9.18 Laboratory 389

• Provide a MATLAB code sample or script that requires documentation or
a high-level summary.

• Use an AI-powered code summarization tool to generate a summary or
documentation for the provided code.

• Assess the accuracy and usefulness of the generated summary or docu-
mentation.

• Discuss the potential benefits and limitations of using AI-powered code
summarization tools in MATLAB programming.

9. Can AI solve equations?
Let’s look at lab work 2c, the equations are given in Eq. (3.13).
Prompt for ChatGPT or other AI chatbot:
Please solve the following system of linear equations:

4.6x1 − 2.31x2 + 8.3x3 + 29.4x4 = 40.34

20.5x1 + 8.7x2 + 40.1x3 − 11.9x4 = 1.15

36.4x1 + 0.92x2 − 3.7x3 + 64.3x4 = 32.4

7.84x1 + 40.01x2 − 2.68x3 − 7.92x4 = 27.55

(9.1)

Provide the values of x1, x2, x3, and x4 that satisfy all the equations simultane-
ously.
If the AI tool allows for additional instructions or preferences, you can men-
tion the desired method for solving the system of equations, such as Gaussian
elimination, matrix inversion, or Cramer’s rule.
The choice of the best method to solve a system of linear equations depends
on various factors, such as the size of the system, the sparsity of the coefficient
matrix, and the computational resources available, specifically,

a. Gaussian Elimination:

• Gaussian elimination is a widely usedmethod for solving systems of linear
equations.

• It is efficient for systems with a moderate number of equations and vari-
ables.

• The time complexity of Gaussian elimination is approximately O(n3),
where n is the number of equations.

• Gaussian elimination can handle systems with unique solutions, no solu-
tions, or infinitely many solutions.

• It is relatively simple to implement and is numerically stable for well-
conditioned systems.

b. Matrix Inversion:

• Matrix inversion involves finding the inverse of the coefficient matrix and
multiplying it with the constant terms to obtain the solution.

390 9 Programming and Algorithm Developmen

• It is not the most efficient method for solving large systems of equations
due to the computational cost of matrix inversion, which is approximately
O(n3).

• Matrix inversion is sensitive to round-off errors and can be numerically
unstable for ill-conditioned matrices.

• It is generally not recommended for solving systems of linear equations,
especially when the coefficient matrix is large or ill-conditioned.

c. Cramer’s Rule:

• Cramer’s rule is a formula that expresses the solution of a system of lin-
ear equations in terms of determinants of the coefficient matrix and its
submatrices.

• It is mainly used for small systems of equations (e.g., 2x2 or 3x3) due to
its computational complexity.

• The time complexity of Cramer’s rule is approximately O(n!), which
becomes impractical for large systems.

• Cramer’s rule is numerically unstable for large systems and can suffer
from round-off errors.

Considering thegiven systemof linear equationswith 4 equations and4variables,
Gaussian eliminationwould be themost suitable choice among the threemethods
mentioned. It is efficient, numerically stable, and can handle systems of this size
effectively.
However, it’s worth noting that there are other methods available for solving
systems of linear equations, such as LU decomposition, QR decomposition, and
iterative methods like Jacobi iteration or Gauss-Seidel iteration. These meth-
ods have their own advantages and are particularly useful for large and sparse
systems.
In practice, most mathematical software and libraries (like MATLAB, NumPy,
or LAPACK) use optimised algorithms based on LU decomposition or other
advanced techniques to solve systems of linear equations efficiently and accu-
rately.

10. Function to Compute the Sequence Approximation of π/4

a. To compute the sequence that approximates π/4 using the series π/4 ≈ 1 −
1
3 + 1

5 − 1
7 + · · · + (−1)n

2n+1 , you canwrite aMATLAB function as shown below.

Listing 9.79 Improved MATLAB code.

% Function to calculate the dot product of two
vectors

function pi_over_4 = compute_pi_over_4 (n)
% COMPUTE_pi_over_4 Computes an approximation

of pi/4 using the
% Gregory -Leibniz series.
%
% pi_over_4 = COMPUTE_pi_over_4 (n) computes

the approximation

9.18 Laboratory 391

% of pi/4 using the first n terms of the
Gregory -Leibniz series.

%
% Input:
% n - Number of terms to use in the

approximation
%
% Output:
% pi_over_4 - Approximation of pi/4

% Initialise the approximation
pi_over_4 = 0;

% Compute the approximation using the series
for k = 0: 1: n-1

pi_over_4 = pi_over_4 + ((-1)^k) / (2*k +
1);

end
end

b. Explanation
i. Function Definition:

• ‘function pi_over_4 = compute_pi_over_4(n)’: Defines a function
named ‘compute_pi_over_4’ that takes one input argument, n, which
is the number of terms to use in the approximation.

ii. Function Documentation:
• The comments explain the purpose of the function, its input, and its

output. This is goodpractice formaking the code easier to understand
and maintain.

iii. Initialisation:
• ‘pi_over_4 = 0;’: Initialises the variable ‘pi_over_4’ to zero. This

will hold the cumulative sum of the series.
iv. Series Computation:

• ‘for k = 0:n-1’: A ‘for’ loop that iterates from k = 0 to k = n − 1.
• ‘pi_over_4 = pi_over_4 + ((−1)k)/(2 ∗ k + 1);’: Updates the

approximation by adding the k-th term of the Gregory-Leibniz series
to ‘pi_over_4 ’.

c. MATLAB Live Script for Visualising Moving Average
The following MATLAB code creates a live script to visualise the moving
average of a given stock’s price. It includes a sliding bar to adjust the moving
average parameter:

% Live Script: Visualise Moving Average of Stock
Price

% Load stock price data
% Assuming ’stockPrices ’ is a vector containing the

stock prices
% Example: stockPrices = [100, 101, 102, 100, 99,

98, 97, 96, 95, 94];

392 9 Programming and Algorithm Developmen

% Create a UI figure window
fig = uifigure(’Name’, ’Moving Average Visualisation

’);

% Create an axis for plotting
ax = uiaxes(fig , ’Position ’, [50 100 700 400]);

% Create a slider for adjusting the moving average
window size

slider = uislider(fig , ...
’Position ’, [50 50 700 3], ...
’Limits ’, [1 50], ...
’Value’, 5, ...
’MajorTicks ’, 1:5:50 , ...
’MinorTicks ’, 1:1:50 , ...
’ValueChangedFcn ’, @(src , event) updatePlot(ax ,

stockPrices , round(src.Value)));

% Initial plot
updatePlot(ax , stockPrices , round(slider.Value));

% Function to update the plot
function updatePlot(ax , stockPrices , windowSize)

% Calculate the moving average
movAvg = movmean(stockPrices , windowSize);

% Plot the original stock prices
plot(ax , stockPrices , ’b’, ’DisplayName ’, ’Stock

Price’);
hold(ax , ’on’);

% Plot the moving average
plot(ax , movAvg , ’r’, ’DisplayName ’, [’Moving

Average (Window: ’ num2str(windowSize) ’)’]);
hold(ax , ’off’);

% Add legend and labels
legend(ax , ’show’);
title(ax , ’Stock Price and Moving Average ’);
xlabel(ax , ’Time’);
ylabel(ax , ’Price’);

end

• Use a live script to visualise the moving average of the given stock’s price.
• Adjust the parameter of themoving average using a sliding bar and observe

the changes in the moving average.

11. MATLAB APP Development Requirements

• Please use the MATLAB APP design function to develop a calculator APP.

9.19 Problems 393

Fig. 9.24 MATLAB APP
development

• Specific requirements:

– The APP should have at least four basic operations: addition, subtraction,
multiplication, and division.

– Compile the APP so that it can run independently outside MATLAB. To
compile the app so that it can run independently outside MATLAB:
1. Open the App Designer and create the app using the code provided. 2.
Save the app as a ‘.mlapp’ file. 3. In MATLAB, go to the “HOME” tab and
click on “Apps”. 4. Select “Application Compiler”. 5. Add your ‘.mlapp‘
file to the project. 6. Follow the prompts to package the app, which will
generate an executable that can run independently of MATLAB.

These lab works aim to introduce students to the emerging field of AI-assisted
programming and explore how AI technologies can be leveraged to enhance various
aspects of MATLAB programming, such as code generation, optimisation, refactor-
ing, and documentation. Students can gain hands-on experience with AI tools and
evaluate their potential benefits and limitations in the context of MATLAB develop-
ment (Fig. 9.24).

9.19 Problems

1. Write a MATLAB script that prompts the user to enter a number and determines
whether it is positive, negative, or zero using if-else statements.
The basic syntax for an if-else statement is:

394 9 Programming and Algorithm Developmen

Listing 9.80 If-else statement syntax.

if condition
statements
else
statements
end

2. Implement a MATLAB function that takes two numbers as input and returns the
maximum value using if-else statements.

3. Write aMATLAB script that prompts the user to enter a character and determines
whether it is a vowel or a consonant using a switch statement.
The basic syntax for a switch statement is:

Listing 9.81 Switch statement syntax.

switch expression
case case1
statements
case case2
statements
...
otherwise
statements
end

4. Implement aMATLABfunction that takes a year as input anddetermineswhether
it is a leap year or not using if-else statements. A year is considered a leap year
if it is divisible by 4, except for years divisible by 100, which are not leap years
unless they are also divisible by 400.

5. Write a MATLAB script that prompts the user to enter a letter grade (A, B,
C, D, or F) and calculates the corresponding grade point average (GPA) using
if-elseif-else statements.
The basic syntax for an if-elseif-else statement is:

Listing 9.82 If-elseif-else statement syntax.

if condition1
statements
elseif condition2
statements
...
else
statements
end

6. Implement a MATLAB function that takes three numbers as input and returns
the median value (the middle value when the numbers are arranged in ascending
or descending order) using if-elseif-else statements.

7. Write a MATLAB script that generates a random integer between 1 and 10,
prompts the user to guess the number, and provides feedback using if-else state-
ments. The script should continue prompting the user until the correct guess is
made.

9.20 Summary 395

Fig. 9.25 Line plot with
error band using ChatGPT

8. Implement a MATLAB function that takes a character as input and determines
whether it is an uppercase letter, lowercase letter, or neither using a switch
statement.

9. Write a MATLAB script that prompts the user to enter their age and displays a
message indicating their eligibility to vote based on the following criteria:
If the age is 18 or above, the user is eligible to vote. If the age is below 18, the
user is not eligible to vote.

10. Implement a MATLAB function that takes a string as input and determines
whether it is a palindrome (a word, phrase, number, or other sequence of char-
acters that reads the same backward as forward) using if statements.

11. Utilise Computational Intelligence Aided Design (CIAD) techniques [22–24]
to create a digital twin of a Micro Aerial Vehicle (MAV) robotic system for
precision agriculture applications in future farming scenarios.

12. Please collaborate with ChatGPT or a similar AI tool to create a MATLAB
function that can generate plots similar to the example figure provided in Fig.
9.25 [25].

9.20 Summary

• For undergraduate (UG) students: This chapter serves as a comprehensive intro-
duction to conditional statements, logical operations, and decision-making
processes in MATLAB. Through a diverse set of problems and well-explained
examples, students will gain a solid understanding of if-else statements, switch
statements, and their applications in various scenarios. The chapter emphasises
the importance of problem-solving skills and algorithmic thinking, providing a
strong foundation for further exploration of programming concepts and techniques
in MATLAB.

396 9 Programming and Algorithm Developmen

• For postgraduate (PG) students and professional researchers or engineers:
Building upon the fundamental concepts introduced in the undergraduate cur-
riculum, this chapter delves deeper into advanced decision-making and control
flow techniques in MATLAB. It explores more complex scenarios and problem-
solving approaches, including nested conditional statements, compound logical
expressions, and input validation. The chapter also introduces code optimisa-
tion strategies and best practices for writing efficient andmaintainableMATLAB
code. Additionally, it provides insights into real-world applications and research
problems where these concepts can be applied, empowering readers to tackle chal-
lenging computational tasks effectively.

Across all levels, the chapter emphasises the following key concepts:

• Conditional statements: Understanding and utilising if-else and switch state-
ments for decision-making in MATLAB programs.

• Logical operations: Mastering the use of logical operators (AND (&&), OR (||),
and NOT (∼)) and relational operators (>, <, ==, !=, >=, <=) for constructing
complex logical expressions.

• Control flow: Leveraging conditional statements and loops to control the flow
of program execution based on specific conditions or criteria.

• Input validation: Implementing robust techniques to ensure the validity and
integrity of user inputs or data sources.

• Problem-solving skills: Developing the ability to break down complex problems
into smaller, manageable steps and devise efficient algorithmic solutions.

• Code optimisation: Exploring strategies for writing efficient, maintainable, and
scalable MATLAB code, including code readability, modularity, and perfor-
mance considerations.

By mastering these concepts and techniques, students, researchers, and profes-
sionals will be well-equipped to tackle a wide range of computational challenges,
from simple scripting tasks to complex data analysis and simulations, using MAT-
LAB as a powerful and versatile programming environment.

References

1. MathWorks, “Profile Your Code to Improve Performance,” https://www.mathworks.com/help/
matlab/matlab_prog/profiling-for-improving-performance.html, accessed on Feb. 17, 2024

2. MathWorks, “Run Functions in Background,” https://www.mathworks.com/help/matlab/
matlab_prog/run-functions-in-the-background.html, accessed on Feb. 17, 2024

3. MathWorks, “Get Started with Parallel Computing Toolbox,” https://www.mathworks.com/
help/parallel-computing/getting-started-with-parallel-computing-toolbox.html, accessed on
Feb. 17, 2024

4. MathWorks, “Projects,” https://www.mathworks.com/help/matlab/projects.html, accessed on
Feb. 17, 2024

https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
https://www.mathworks.com/help/matlab/matlab_prog/run-functions-in-the-background.html
https://www.mathworks.com/help/matlab/matlab_prog/run-functions-in-the-background.html
https://www.mathworks.com/help/parallel-computing/getting-started-with-parallel-computing-toolbox.html
https://www.mathworks.com/help/parallel-computing/getting-started-with-parallel-computing-toolbox.html
https://www.mathworks.com/help/matlab/projects.html

References 397

5. MathWorks, “Project Shortcuts,” https://www.mathworks.com/help/matlab/ref/matlab.
project.project.addshortcut.html, accessed on Feb. 17, 2024

6. MathWorks, “Set Up Git Source Control,” https://www.mathworks.com/help/matlab/matlab_
prog/set-up-git-source-control.html, accessed on Feb. 17, 2024

7. MathWorks, “Set Up SVN Source Control,” https://www.mathworks.com/help/matlab/
matlab_prog/set-up-svn-source-control.html, accessed on Feb. 17, 2024

8. MathWorks, “Write Unit Tests,” https://www.mathworks.com/help/matlab/write-unit-tests.
html, accessed on Feb. 17, 2024

9. MathWorks, “Automated Testing,” https://www.mathworks.com/help/slrealtime/automated-
testing.html, accessed on Feb. 17, 2024

10. MathWorks, “Overview of MATLAB Build Tool,” https://www.mathworks.com/help/matlab/
matlab_prog/overview-of-matlab-build-tool.html, accessed on Feb. 17, 2024

11. MathWorks, “Continuous Integration (CI),” https://www.mathworks.com/help/matlab/
continuous-integration.html, accessed on Feb. 17, 2024

12. MathWorks, ”Create and Share Toolboxes,” https://www.mathworks.com/help/matlab/
matlab_prog/create-and-share-custom-matlab-toolboxes.html, accessed on Feb. 17, 2024

13. MathWorks, “MATLAB,” https://www.mathworks.com/help/matlab/, accessed on Feb. 17,
2024

14. MathWorks, “MathWorks Certification Program,” https://www.mathworks.com/learn/
training/certification.html, accessed on Feb. 17, 2024

15. MathWorks, “INDUSTRY STANDARDS DO-178C- Achieving certification for airborne
systems leveraging Model-Based Design,” https://www.mathworks.com/solutions/aerospace-
defense/standards/do-178.html, accessed on Feb. 17, 2024

16. MathWorks, “MATLABCody,” https://uk.mathworks.com/matlabcentral/cody/, accessedMay
2024

17. MathWorks, “Problem Types on MATLAB Cody,” https://uk.mathworks.com/matlabcentral/
cody/problems/, accessed May 2024

18. MathWorks, “The MATLAB AI Chat Playground Has Launched,” MATLAB Com-
munity. [Online]. https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-
playground-has-launched. [Accessed: Feb. 17, 2024]

19. MathWorks, “MATLAB AI Chat Playground,” [Online]. https://www.mathworks.com/
matlabcentral/playground. [Accessed: Feb. 17, 2024]

20. “ChatGPT”. [Online]. https://chat.openai.com/. [Accessed: Feb. 17, 2024]
21. “Cursor”. [Online]. https://cursor.sh/. [Accessed: Feb. 17, 2024]
22. Chen Y, Li Y (2018) Computational intelligence assisted design (In the era of industry 4.0).

CRC Press (ISBN 978-1-4987-6066-9)
23. Chen*Y, LiY (2019) Intelligent autonomous pollination for future farming - amicro air vehicle

solution with artificial intelligence and human-in-the-loop. IEEE Access 7(1):119706–119717
24. ChenY, ZhangG, Jin T,WuS, PengB (2014)Quantitativemodelling of electricity consumption

using computational intelligence aided design. J Cleaner Prod 69:143–152. https://doi.org/10.
1016/j.jclepro.2014.01.058

25. Seaborn, “Timeseries plot with error bands,” https://seaborn.pydata.org/examples/errorband_
lineplots.html, accessed May 2024

https://www.mathworks.com/help/matlab/ref/matlab.project.project.addshortcut.html
https://www.mathworks.com/help/matlab/ref/matlab.project.project.addshortcut.html
https://www.mathworks.com/help/matlab/matlab_prog/set-up-git-source-control.html
https://www.mathworks.com/help/matlab/matlab_prog/set-up-git-source-control.html
https://www.mathworks.com/help/matlab/matlab_prog/set-up-svn-source-control.html
https://www.mathworks.com/help/matlab/matlab_prog/set-up-svn-source-control.html
https://www.mathworks.com/help/matlab/write-unit-tests.html
https://www.mathworks.com/help/matlab/write-unit-tests.html
https://www.mathworks.com/help/slrealtime/automated-testing.html
https://www.mathworks.com/help/slrealtime/automated-testing.html
https://www.mathworks.com/help/matlab/matlab_prog/overview-of-matlab-build-tool.html
https://www.mathworks.com/help/matlab/matlab_prog/overview-of-matlab-build-tool.html
https://www.mathworks.com/help/matlab/continuous-integration.html
https://www.mathworks.com/help/matlab/continuous-integration.html
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/learn/training/certification.html
https://www.mathworks.com/learn/training/certification.html
https://www.mathworks.com/solutions/aerospace-defense/standards/do-178.html
https://www.mathworks.com/solutions/aerospace-defense/standards/do-178.html
https://uk.mathworks.com/matlabcentral/cody/
https://uk.mathworks.com/matlabcentral/cody/problems/
https://uk.mathworks.com/matlabcentral/cody/problems/
https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-playground-has-launched
https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-playground-has-launched
https://www.mathworks.com/matlabcentral/playground
https://www.mathworks.com/matlabcentral/playground
https://chat.openai.com/
https://cursor.sh/
https://doi.org/10.1016/j.jclepro.2014.01.058
https://doi.org/10.1016/j.jclepro.2014.01.058
https://seaborn.pydata.org/examples/errorband_lineplots.html
https://seaborn.pydata.org/examples/errorband_lineplots.html

398 9 Programming and Algorithm Developmen

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 10
Object-Oriented Programming

Chapter Learning Outcomes

• Understand the fundamental concepts of object-oriented programming (OOP)
and its advantages.

• Define and create classes and objects in MATLAB.
• Implement inheritance, polymorphism, and encapsulation in MATLAB’s OOP
framework.

• Utilise properties, methods, and constructors in class definitions.
• Apply method overloading and operator overloading for custom behavior.
• Leverage abstract classes and interfaces for code reusability and extensibility.

Chapter Key Words

• Object-Oriented Programming (OOP): A programming paradigm that focuses
on creating objects that contain both data (properties) and code (methods) that
operate on that data.

• Class: A blueprint or template that defines the properties and methods that objects
of that class will have, serving as a blueprint for creating objects.

• Object: An instance of a class, created from the class blueprint, with its own
unique set of property values and access to the methods defined in the class.

• Inheritance: A mechanism that allows a new class to be based on an existing
class, inheriting its properties andmethods, and optionally adding new ormodified
features.

• Polymorphism: The ability of objects of different classes to respond to the same
method call in different ways, based on their specific implementation.

• Encapsulation: The concept of bundling data and methods within a class, hiding
the internal implementation details, and providing controlled access through public
interfaces.

© The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3_10

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8788-3_10&domain=pdf
https://doi.org/10.1007/978-981-97-8788-3_10

400 10 Object-Oriented Programming

• Abstract Class: A class that cannot be instantiated but serves as a base for other
classes, providing a common interface and potentially containing abstract methods
to be implemented by subclasses.

10.1 Introduction to Object-Oriented Programming

• Overview of object-oriented programming (OOP) principles
Object-oriented programming (OOP) is a programming paradigm that revolves
around the concept of objects, which are instances of classes. Classes are user-
defined data types that encapsulate data (properties) and methods (functions) that
operate on that data. OOP is based on four fundamental principles: encapsulation,
abstraction, inheritance, and polymorphism.

1. Encapsulation is themechanism of bundling data andmethods together within
a class, ensuring that the internal implementation details are hidden from
the outside world. This promotes code modularity and maintainability by
separating the interface from the implementation.

2. Abstraction allows the creation of complex data types by defining objects that
capture the essential characteristics of the entity being modelled, while hiding
unnecessary details.

3. Inheritance enables the creation of new classes (derived or child classes) based
on existing classes (base or parent classes), inheriting their properties andmeth-
ods. This promotes code reusability and facilitates the creation of hierarchical
relationships between classes.

4. Polymorphism allows objects of different classes to be treated as objects of
a common superclass, enabling the same method call to behave differently
based on the actual object type. This flexibility enhances code extensibility
and modularity.

• Benefits of OOP in software development
Besides four fundamental principles, adopting an object-oriented programming
approach inMATLABoffers several significant benefits for software development:

– Code reusability: OOP promotes the creation of reusable code components
through inheritance and composition. Classes can be designed as building blocks
that can be reused across multiple projects, reducing development time and
effort.

– Modularity: Objects encapsulate data and behavior, allowing for the separation
of concerns and the development of modular, self-contained units. This modular
design enhances code organization, maintainability, and scalability.

– Code organization and collaboration: OOP provides a structured approach
to organizing code, making it easier for multiple developers to work on differ-
ent components of a project simultaneously, reducing the risk of conflicts and
promoting collaboration.

10.2 Classes and Objects 401

By leveraging these benefits, MATLAB developers can create more robust, main-
tainable, and scalable software systems, leading to increased productivity and
efficient code management.

• OOP in MATLAB
MATLAB supports OOP through its class system, which allows the creation and
manipulation of objects. Classes inMATLAB are defined using special syntax and
can have properties (data members) and methods (function members). Objects are
instantiated from classes, and their properties and methods can be accessed and
invoked using dot notation.

In the following sections, we will explore various aspects of OOP in MAT-
LAB, including inheritance, method overloading, and advanced OOP concepts, with
relevant examples and illustrations.

10.2 Classes and Objects

• Defining classes
Classes are the building blocks of object-oriented programming in MATLAB.
They define the blueprint or template for creating objects, which are instances of
the class. Classes encapsulate data members (properties) and function members
(methods) that operate on that data.

Listing 10.1 Basic syntax for defining a class in MATLAB.

classdef ClassName
% Properties
properties
property1
property2
end
% Methods
methods

function obj = ClassName(arg1 , arg2)
% Constructor
obj.property1 = arg1;
obj.property2 = arg2;

end

function result = methodName(obj , input)
% Method implementation
...

end
end

end

402 10 Object-Oriented Programming

• Creating objects
Objects are created from classes using the class constructor method. Once instan-
tiated, an object’s properties can be accessed and modified, and its methods can
be invoked using dot notation.

Listing 10.2 Example of creating and using an object in MATLAB.

% Create an object
myObj = ClassName(value1 , value2);

% Access properties
myObj.property1 = newValue;
value = myObj.property2;

% Call a method
result = myObj.methodName(input);

• Properties and methods
Properties andmethods are fundamental components of classes in object-oriented
programming (OOP) with MATLAB. They define the data members and behavior
of objects created from a class, respectively.
Properties: Properties represent the attributes or characteristics of an object. They
are the data members of a class and can be of various data types, including prim-
itive types (e.g., double, char, logical) and user-defined types (e.g., other classes,
structs).
Properties are declared within the properties block of a class definition, and each
property is given a name and an optional initial value.

Listing 10.3 Example of property declaration in a class.

classdef ClassName
properties
PropertyName1 = initialValue1
PropertyName2
end

% ... methods ...

end

In the example above, PropertyName1 is initialised with initialValue1, while Prop-
ertyName2 will be initialised to its respective default value (e.g., 0 for numeric
types, false for logical types, and empty matrices or strings for other types).
Properties can be accessed and modified using dot notation on an object instance
of the class.

10.2 Classes and Objects 403

Listing 10.4 Example of accessing and modifying properties.

% Create an object
obj = ClassName ();

% Access and modify properties
obj.PropertyName1 = newValue;
value = obj.PropertyName2;

Methods: Methods are the function members of a class that define the behavior
and operations that can be performed on objects of that class. They can access
and manipulate the object’s properties, as well as perform other computations or
actions.
Methods are declared within the methods block of a class definition, and they
can take input arguments and return output values, similar to regular MATLAB
functions.

Listing 10.5 Example of method declaration in a class.

classdef ClassName
properties
Property1
Property2
end

methods
function result = MethodName(obj , input1 , input2)

% Method implementation
result = computeResult(obj.Property1 , obj.

Property2 , input1 , input2);
end

end

end

In the example above, the MethodName takes two input arguments (input1 and
input2) and operates on the object’s properties (Property1 and Property2) to
compute a result. Methods can also modify the object’s properties as needed.
Methods are invoked using dot notation on an object instance, similar to accessing
properties.

Listing 10.6 Example of invoking a method.

% Create an object
obj = ClassName ();

% Invoke a method
result = obj.MethodName(arg1 , arg2);

Properties and methods work together to encapsulate the data and behavior of
objects, promoting code modularity, reusability, and maintainability in object-
oriented programming.

404 10 Object-Oriented Programming

• Constructors and destructors
Constructors are special methods in a class that are automatically called when an
object of that class is created. They are used to initialise the properties (data mem-
bers) of the object with desired values or perform any necessary setup operations.
If no constructor is defined, MATLAB provides a default constructor.
InMATLAB, constructors are defined as regularmethodswithin themethods block
of a class definition, but they have the same name as the class itself. Constructors
can take input arguments, which are used to initialise the object’s properties.

Listing 10.7 Example of a constructor in MATLAB.

classdef ClassName
properties
Property1
Property2
end
methods

function obj = ClassName(value1 , value2)
% Constructor
obj.Property1 = value1;
obj.Property2 = value2;

end
end
end

In the example above, the ClassName has two properties, Property1 and Property2.
The constructor ClassName takes two input arguments, value1 and value2, which
are used to initialise these properties when creating an object of this class.
If a class does not define a constructor explicitly, MATLAB provides a default
constructor that creates an object with all properties initialised to their respective
default values (e.g., 0 for numeric types, false for logical types, and emptymatrices
or strings for other types).
Constructors can also perform additional operations beyond initializing properties,
such as opening files, establishing connections to external systems, or performing
complex computations required during object creation.

Listing 10.8 Example of a constructor with additional operations.

classdef ClassName
properties
Data
FileHandle
end

methods
function obj = ClassName(filename)

% Constructor
obj.FileHandle = fopen(filename , ’r’);
obj.Data = fscanf(obj.FileHandle , ’%g’);

end
end
end

10.2 Classes and Objects 405

In this example, the constructor ClassName takes a filename as input and opens
the file using the fopen function. It then reads the data from the file using fscanf
and stores it in the Data property of the object.
Constructors play a crucial role in ensuring that objects are properly initialised
and ready for use immediately after creation, promoting code robustness and
maintainability.
Destructors are special methods that are automatically called when an object is
no longer needed and is about to be destroyed. They are used to perform any
necessary cleanup or release resources held by the object, such as closing files,
releasingmemory, or disconnecting from external systems. Destructors are defined
using the same syntax as regular methods but with a specific name (delete).
In MATLAB, destructors are defined using the special method name delete. The
syntax for defining a destructor is similar to other methods, but without input
arguments and with the method name delete.

Listing 10.9 Example of a destructor in MATLAB.

classdef ClassName
properties
ResourceHandle
end

methods
function obj = ClassName ()

% Constructor
obj.ResourceHandle = openResource ();

end

function delete(obj)
% Destructor
closeResource(obj.ResourceHandle);

end
end

end

In the example above, the ClassName has a property ResourceHandle that holds a
handle to an external resource.The constructorClassName initialises this handle by
calling the openResource function. The destructor delete is responsible for closing
the resource by calling the closeResource function with the ResourceHandle.
It is important to note that destructors are automatically called when an object
goes out of scope or is explicitly removed from memory using the delete function
in MATLAB. However, it is generally a good practice to explicitly call the delete
function to ensure proper cleanup and resource release, especially for objects that
hold significant resources or external connections.

406 10 Object-Oriented Programming

10.3 Inheritance and Hierarchies

• Superclasses and Subclasses
Inheritance is a fundamental concept in object-oriented programming that allows
a new class, called a subclass, to be derived from an existing class, known as
a superclass. The subclass inherits properties and methods from the superclass,
facilitating code reuse and promoting a hierarchical organization of classes.
The basic syntax for creating a subclass in MATLAB is:

Listing 10.10 Syntax for creating a subclass.

classdef SubClassName < SuperClassName
% Properties and methods specific to SubClassName
end

Here’s an example of a subclass DerivedClass inheriting from a superclass
BaseClass:

Listing 10.11 Example of inheritance.

classdef BaseClass
properties
BaseProperty
end

methods
function obj = BaseClass(value)

obj.BaseProperty = value;
end

function result = BaseMethod(obj)
result = obj.BaseProperty * 2;

end
end
end

classdef DerivedClass < BaseClass
properties
DerivedProperty
end

methods
function obj = DerivedClass(baseValue ,

derivedValue)
obj@BaseClass(baseValue); % Call superclass

constructor
obj.DerivedProperty = derivedValue;

end
end

end

10.3 Inheritance and Hierarchies 407

In this example, the DerivedClass inherits the BaseProperty and BaseMethod from
the BaseClass. Additionally, it has its ownDerivedProperty and constructor, which
calls the superclass constructor using obj@BaseClass(baseValue).

• Overriding Methods and Property Inheritance
When a subclass inherits properties and methods from its superclass, it can choose
to override the inheritedmethods to provide its own implementation. This is known
asmethod overriding. Similarly, a subclass can redefine the properties it inherits
from the superclass, a concept called property overriding.
The syntax for overriding a method in a subclass is as follows:

Listing 10.12 Syntax for method overriding.

classdef SubClassName < SuperClassName
methods
function result = OverriddenMethod(obj , ...)
% New implementation for the overridden method
end
end
end

Here’s an example that demonstrates method overriding:

Listing 10.13 Example of method overriding.

classdef BaseClass
methods
function result = CalculateResult(obj , value)
result = value * 2;
end
end
end

classdef DerivedClass < BaseClass
methods
function result = CalculateResult(obj , value)
result = value ^2; % Overridden implementation
end
end
end

In this example, the DerivedClass overrides the CalculateResult method inherited
from BaseClass with its own implementation.
Property overriding follows a similar concept but applies to properties instead of
methods. To override a property in a subclass, simply redeclare the property with
the desired characteristics.

• Abstract Classes and Interfaces
Abstract classes and interfaces are closely related concepts in object-oriented
programming, but they have distinct characteristics and use cases.

408 10 Object-Oriented Programming

Abstract Classes

An abstract class is a class that cannot be instantiated directly but serves as a
blueprint for other classes to inherit from. Abstract classes can contain both con-
crete (implemented) and abstract (unimplemented) methods and properties. Sub-
classes of an abstract class must provide implementations for all inherited abstract
methods and properties.
The key features of abstract classes are:

– They cannot be instantiated directly.
– They can have both abstract and concrete methods and properties.
– Subclasses must implement all abstract members (methods and properties).
– They provide a common base for related classes, defining a common interface
and shared implementation.

– They support code reuse and inheritance.

Abstract classes are useful when youwant to define a common interface and shared
implementation for a group of related classes, while allowing subclasses to provide
specific implementations for certain methods or properties.

Interfaces

An interface, on the other hand, is a construct that defines a contract or set of
methods that a class must implement. Interfaces consist solely of abstract meth-
ods without any implemented methods or properties. Classes that implement an
interface must provide concrete implementations for all the methods defined by
the interface.
The key features of interfaces are:

– They cannot be instantiated.
– They consist of only abstract methods (no method implementations).
– They cannot have properties or data members.
– Classes that implement an interface must provide implementations for all the
interface methods.

– A class can implement multiple interfaces.
– They promote loose coupling and code modularity.

Interfaces are useful when you want to define a contract or a set of methods
that multiple unrelated classes need to implement, without specifying any imple-
mentation details. They promote code modularity and allow for the creation of
interchangeable components.

Comparison and Use Cases

While abstract classes and interfaces share some similarities, they have distinct
use cases:

– Abstract classes are more suitable when you have a group of related classes that
share some common implementation and need to define a common interface.

10.4 Encapsulation and Access Control 409

– Interfaces aremore suitable when youwant to define a contract or set of methods
that unrelated classes need to implement,without specifying any implementation
details.

– A class can inherit from only one abstract class, but it can implement multiple
interfaces.

– Abstract classes can have both abstract and concrete members, while interfaces
can only have abstract methods.

In practice, abstract classes and interfaces can be used together to achieve a higher
level of abstraction and code modularity. For example, an abstract class can imple-
ment one ormore interfaces, and concrete classes can inherit from the abstract class
while implementing the interfaces.

10.4 Encapsulation and Access Control

Encapsulation is a fundamental principle of object-oriented programming that bun-
dles data and methods into a single unit, called a class. It provides a way to hide
the implementation details of an object and expose only a well-defined interface
for interacting with the object. Access control mechanisms are used to control the
visibility and accessibility of class members (properties and methods) from outside
the class.

• Private, Protected, and Public Access Modifiers
In MATLAB, classes support three access modifiers: private, protected, and
public.

– Private: Private members are accessible only within the class in which they are
defined. They cannot be accessed from outside the class or from subclasses.

– Protected: Protected members are accessible within the class in which they are
defined and from any subclasses that inherit from that class.

– Public: Public members are accessible from anywhere, both within the class
and from outside the class.

The basic syntax for defining properties and methods with access modifiers in
MATLAB is:

Listing 10.14 Syntax for access modifiers.

classdef ClassName
properties (AccessModifier)
PropertyName % Property with specified access modifier
end

methods (AccessModifier)
function result = MethodName(obj , ...) % Method

with specified access modifier
% Method implementation

410 10 Object-Oriented Programming

end
end
end

Here’s an example that demonstrates the use of access modifiers:

Listing 10.15 Example of access modifiers.

classdef BankAccount
properties (Private)
balance = 0; % Private property
end

methods
function obj = BankAccount(initialBalance)

obj.balance = initialBalance; % Access
private property

end

function deposit(obj , amount)
obj.balance = obj.balance + amount; % Access

private property
end

function withdrawn = withdraw(obj , amount)
if obj.balance >= amount

obj.balance = obj.balance - amount; %
Access private property

withdrawn = amount;
else

withdrawn = 0;
end

end

function showBalance(obj)
disp([’Current balance: $’ num2str(obj.balance

)]); % Access private property
end

end

end

In this example, the balance property is declared as private, meaning it can only be
accessed and modified within the BankAccount class. The class methods (deposit,
withdraw, and showBalance) can access and modify the private balance property,
but code outside the class cannot directly access or modify the balance.

• Getters and Setters for Property Access
Getters and setters are methods that provide controlled access to the properties of
a class. Getters are used to retrieve the value of a property, while setters are used
to modify the value of a property. They are commonly used to enforce data valida-
tion, maintain class invariants, or perform additional operations when accessing
or modifying properties.

10.4 Encapsulation and Access Control 411

Here’s an example that demonstrates the use of getters and setters:

Listing 10.16 Example of getters and setters.

classdef Person
properties (Private)
name
age
end

methods
function obj = Person(name , age)

obj.name = name;
obj.setAge(age);

end

function setAge(obj , age)
if age >= 0

obj.age = age;
else

error(’Age cannot be negative.’);
end

end

function age = getAge(obj)
age = obj.age;

end
end
end

In this example, the Person class has two private properties: name and age. The
setAge method is a setter that validates the age value before setting it to the
age property. The getAge method is a getter that retrieves the value of the age
property. By using getters and setters, the class maintains control over accessing
and modifying its properties, allowing for data validation and additional logic if
needed.

• Friend Classes and Packages
InMATLAB, the concept of friend classes and packages is not directly supported.
However, you can achieve similar functionality by carefully structuring your code
and using appropriate access modifiers.
For example, you can create a separate class that acts as a “friend” and provide
it with access to the private or protected members of another class by passing the
necessary objects or data as arguments to its methods.

412 10 Object-Oriented Programming

Listing 10.17 Example of a “friend” class.

classdef BankAccount
properties (Private)
balance = 0;
end
methods

function obj = BankAccount(initialBalance)
obj.balance = initialBalance;

end

function withdrawn = withdraw(obj , amount)
if obj.balance >= amount

obj.balance = obj.balance - amount;
withdrawn = amount;

else
withdrawn = 0;

end
end

end

end

classdef BankManager
methods (Static)
function showBalance(account)
disp([’Current balance: $’ num2str(account.balance)]);
end
end
end

In this example, the BankManager class has a static method showBalance that
takes a BankAccount object as an argument and displays its balance. By passing
theBankAccount object to theBankManager class, it can access the private balance
property, effectively acting as a “friend” class.
WhileMATLABdoes not have a built-inmechanism for friend classes or packages,
you can achieve similar functionality by carefully managing access modifiers and
passing objects or data between classes as needed.

10.5 Polymorphism and Overloading

Polymorphism is a core concept in object-oriented programming that allows objects
of different classes to respond differently to the same method call. It enables
code reusability and flexibility by providing a consistent interface for interacting
with objects of different types. Overloading is a specific form of polymorphism
that allows methods or operators to have multiple implementations with different
signatures (i.e., different numbers or types of parameters).

10.5 Polymorphism and Overloading 413

• Method Overloading and Dynamic Method Dispatch
In MATLAB, method overloading is supported, which means that a class can
have multiple methods with the same name but different parameter lists. When a
method is called, MATLAB determines the appropriate implementation based on
the number and types of arguments passed to the method. This process is known
as dynamic method dispatch.
The basic syntax for method overloading in MATLAB is:

Listing 10.18 Syntax for method overloading.

classdef ClassName
methods
function result = MethodName(obj , param1 , param2 , ...)

% Method signature 1
% Method implementation 1
end

function result = MethodName(obj , param1 , ...) %
Method signature 2

% Method implementation 2
end

% Additional overloaded method signatures
end
end

Here’s an example that demonstrates method overloading:

Listing 10.19 Example of method overloading.

classdef Calculator
methods
function result = add(obj , a, b)
result = a + b;
end

function result = add(obj , a, b, c)
result = a + b + c;

end
end

end

% Using the overloaded methods
calc = Calculator ();
result1 = calc.add(2, 3); % Calls add(obj , a, b)
result2 = calc.add(2, 3, 4); % Calls add(obj , a, b, c)

In this example, the Calculator class has two addmethods with different parameter
lists. When the add method is called with two arguments, the first implementation
add(obj, a, b) is executed. When the add method is called with three arguments,
the second implementation add(obj, a, b, c) is executed.

414 10 Object-Oriented Programming

• Operator Overloading
Operator overloading is a form of polymorphism that allows you to define how
operators (e.g.,+,−, *, /) should behavewhen applied to objects of a specific class.
This allows you to create intuitive and natural syntax for working with objects of
your custom classes.
In MATLAB, operator overloading is achieved by defining specific methods
with predefined names that correspond to the desired operators. For example,
to overload the + operator for a class, you need to define a method named plus.
Here’s an example that demonstrates operator overloading:

Listing 10.20 Example of operator overloading.

classdef Vector
properties
x
y
end

methods
function obj = Vector(x, y)

obj.x = x;
obj.y = y;

end

function result = plus(obj1 , obj2)
result = Vector(obj1.x + obj2.x, obj1.y + obj2

.y);
end

end

end

% Using the overloaded + operator
v1 = Vector(1, 2);
v2 = Vector(3, 4);
v3 = v1 + v2; % Calls v3 = plus(v1 , v2)
disp(v3) % Output: Vector with properties: x: 4, y: 6

In this example, the Vector class overloads the + operator by defining the plus
method. When two Vector objects are added using the+ operator, the plus method
is called, and a new Vector object is returned with the sum of the corresponding x
and y components.

• Benefits and Considerations of Polymorphic Design
Polymorphism and overloading provide several benefits in object-oriented pro-
gramming:

– Code reusability: Polymorphic code can work with objects of different classes
as long as they implement the required interface, promoting code reuse and
reducing duplication. This allows you to write more generic and flexible code
that can handle different types of objects seamlessly, without the need for
extensive conditional statements or type-checking.

10.5 Polymorphism and Overloading 415

– Flexibility and extensibility: New classes can be added to a system without
modifying existing code, as long as they implement the required interface. This
makes it easier to extend and evolve the codebase over time, as new classes can
be seamlessly integrated with existing polymorphic code.

– Intuitive and natural syntax: Operator overloading allows for more intuitive
and natural syntax when working with custom objects. It enables you to define
how standard operators should behave with your custom classes, making the
code more readable and expressive.

– Abstraction and encapsulation: Polymorphism supports the principles of
abstraction and encapsulation by allowing objects of different classes to be
treated as instances of a common superclass or interface. This hides the imple-
mentation details of each class and promotes a more modular and maintainable
codebase.

– Separation of concerns: Polymorphism helps separate the concerns of different
components in a system. Each class can focus on its specific responsibilities,
while polymorphic code can interact with objects of different classes through a
common interface, promoting loose coupling and easier maintenance.

However, it’s important to use polymorphism and overloading judiciously and
follow best practices to maintain code clarity and avoid confusion. Some
considerations and potential drawbacks include:

– Complexity: Overuse or misuse of polymorphism and overloading can lead to
code that is difficult to understand and maintain, especially if the inheritance
hierarchies or method signatures become overly complex.

– Performance overhead: Polymorphic method dispatch and virtual function
calls can introduce a performance overhead compared to static method calls,
although modern compilers often optimize these operations.

– Naming conventions: Overloaded methods and operators should follow con-
sistent naming conventions and have clear and meaningful names to avoid
confusion and ambiguity.

– Documentation and readability: Polymorphic code may require more doc-
umentation and comments to explain the intended behavior and interactions
between different classes, especially for complex systems or libraries intended
for wide use.

Overall, polymorphism and overloading are powerful tools in object-oriented pro-
gramming, but they should be used judiciously and with careful consideration of
code clarity, maintainability, and performance implications.

416 10 Object-Oriented Programming

10.6 Events, Listeners, and Callbacks

In object-oriented programming, events are occurrences or actions that happenwithin
an object or application, such as user interactions, data changes, or system notifica-
tions. Listeners are objects or methods that listen for and respond to specific events.
Callbacks are functions ormethods that are executed when an event occurs, allowing
for custom behaviour to be implemented in response to the event.

• Defining and triggering events
InMATLAB, events are defined as properties of classes or app components. These
properties can be assigned event handlers (callbacks) that specify the actions to be
taken when the event occurs. Events can be triggered by various actions, such as
user input, data changes, or system occurrences.
The basic syntax for defining an event in MATLAB is:

Listing 10.21 Defining an event.

classdef MyClass < handle
events
EventName
end
% Other class properties and methods
end

Here’s an example that demonstrates triggering an event:

Listing 10.22 Triggering an event.

classdef MyClass < handle
events
ValueChanged
end

properties
Value = 0;

end

methods
function obj = MyClass ()

% Constructor
end

function setValue(obj , newValue)
obj.Value = newValue;
\textcolor{green}{ notify(obj , ’ValueChanged ’)}

% Trigger the ValueChanged event
end

end
end

In this example, the MyClass defines an event called ValueChanged. When the
setValue method is called and the Value property is updated, the notify function is
used to trigger the ValueChanged event.

10.6 Events, Listeners, and Callbacks 417

• Adding and removing listeners
To respond to events, you need to add listeners that execute specific callbackswhen
the event occurs. Listeners are added to an object using the addlistener function,
and they can be removed using the removelistener function.
The basic syntax for adding a listener is:

Listing 10.23 Adding a listener.

listener = addlistener(obj , ’EventName ’, @callback);

Here’s an example that demonstrates adding and removing a listener:

Listing 10.24 Adding and removing a listener.

myObj = MyClass ();

% Add a listener
listener = \textcolor{green}{ addlistener(myObj , ’

ValueChanged ’, @myCallback)};

% Trigger the event (will execute myCallback)
myObj.setValue (10);

% Remove the listener
\textcolor{green }{ removelistener (myObj , ’ValueChanged ’

, listener)};

In this example, a listener is added to the myObj object, which listens for the
ValueChanged event and executes the myCallback function when the event is trig-
gered. After triggering the event, the listener is removed using the removelistener
function.

• Implementing callbacks for custom behaviour
Callbacks are functions ormethods that are executed when an event occurs, allow-
ing you to implement custom behaviour in response to the event. Callbacks can
be defined as anonymous functions or separate named functions.
Here’s an example that demonstrates implementing a callback function:

Listing 10.25 Implementing a callback function.

function myCallback(src , event)
% Access properties of the source object
value = src.Value;
% Implement custom behaviour
disp([’Value changed to: ’, num2str(value)]);

end

In this example, the myCallback function is defined to handle the ValueChanged
event. It receives two input arguments: src (the source object that triggered the
event) and event (an event data structure). Inside the callback function, you can
access properties of the source object and implement custom behaviour, such as
displaying a message or performing additional computations.

418 10 Object-Oriented Programming

10.7 Advanced OOP Concepts

• Encapsulation and Information Hiding
Encapsulation is a fundamental principle of object-oriented programming that
involves bundling data and methods within a class, and controlling access to the
classmembers through accessmodifiers (public,private, andprotected).
Information hiding is a related concept that ensures the internal implementation
details of a class are hidden from the outside world, promoting code modularity
and maintainability.
The basic syntax for setting access modifiers in MATLAB is:

Listing 10.26 Setting access modifiers.

classdef MyClass
properties (Access = private)
% Private properties
end

properties (Access = public)
% Public properties

end

methods (Access = private)
% Private methods

end

methods (Access = public)
% Public methods

end

end

Here’s an example that demonstrates encapsulation and information hiding:

Listing 10.27 Encapsulation and information hiding.

classdef BankAccount
properties (Access = private)
balance = 0;
end

methods
function obj = BankAccount(initialBalance)

obj.balance = initialBalance;
end

function deposit(obj , amount)
obj.balance = obj.balance + amount;

end

function withdrawn = withdraw(obj , amount)
if amount <= obj.balance

obj.balance = obj.balance - amount;
withdrawn = amount;

10.7 Advanced OOP Concepts 419

else
withdrawn = 0;

end
end

function getBalance(obj)
disp([’Current balance: ’, num2str(obj.balance

)]);
end

end

end

In this example, the BankAccount class encapsulates the balance property and
provides public methods (deposit, withdraw, and getBalance) to interact with the
account. The balance property is marked as private, hiding its implementation
details from external code.

• Composition and Aggregation
Composition and aggregation are two ways to establish relationships between
objects in object-oriented programming. Composition represents a strong “part-
of” relationship, where the lifespan of the composed objects is tied to the lifespan
of the containing object. Aggregation, on the other hand, represents a weaker
“has-a” relationship, where the aggregated objects can exist independently of the
containing object.
The basic syntax for composition and aggregation in MATLAB involves creating
class properties that hold instances of other classes:

Listing 10.28 Composition and aggregation.

classdef Car
properties
engine % Composition (strong ownership)
wheels % Aggregation (weak ownership)
end

methods
function obj = Car()

obj.engine = Engine ();
obj.wheels = Wheel.empty(0, 4); % Array of 4

Wheel objects
end

end

end

Here’s an example that demonstrates composition and aggregation:

Listing 10.29 Composition and aggregation example.

classdef Car
properties
engine

420 10 Object-Oriented Programming

wheels
end

methods
function obj = Car()

obj.engine = Engine ();
obj.wheels = Wheel.empty(0, 4);
for i = 1:4

obj.wheels(i) = Wheel();
end

end

function start(obj)
obj.engine.start();

end

function drive(obj)
for i = 1:4

obj.wheels(i).rotate ();
end

end
end

end

In this example, the Car class has a composition relationship with the Engine
class (the car owns the engine, and the engine’s lifespan is tied to the car) and an
aggregation relationship with the Wheel class (the car has wheels, but the wheels
can exist independently).

• Static and dynamic binding
In object-oriented programming, static binding (also known as early binding)
and dynamic binding (also known as late binding) refer to the way methods are
resolved and executed at runtime.
Static binding occurs when the method to be executed is determined at compile-
time based on the declared type of the object reference. In contrast, dynamic
binding occurs when the method to be executed is determined at runtime based on
the actual type of the object being referenced.
The basic syntax for static and dynamic binding in MATLAB involves creating
classes with methods that have the same name but different implementations:

Listing 10.30 Static and dynamic binding.

classdef BaseClass
methods
function output = doSomething(obj)
output = ’BaseClass ’;
end
end
end

classdef DerivedClass < BaseClass

10.7 Advanced OOP Concepts 421

methods
function output = doSomething(obj)
output = ’DerivedClass ’;
end
end
end

Here’s an example that demonstrates static and dynamic binding:

Listing 10.31 Static and dynamic binding example.

% Static binding
baseObj = BaseClass ();
disp(baseObj.doSomething ()); % Output: ’BaseClass ’

% Dynamic binding
derivedObj = DerivedClass ();
disp(derivedObj.doSomething ()); % Output: ’

DerivedClass ’

% Dynamic binding with reference to base class
baseRef = derivedObj;
disp(baseRef.doSomething ()); % Output: ’DerivedClass ’

In this example, when using static binding (baseObj.doSomething()), the
method executed is determined by the declared type of the object reference
(BaseClass). When using dynamic binding (derivedObj.doSomething() and
baseRef.doSomething()), the method executed is determined by the actual type of
the object being referenced (DerivedClass).

• Object Serialisation and Deserialisation
Object serialisation is the process of converting an object’s state (properties and
data) into a sequence of bytes that can be stored or transmitted. Deserialisation is
the reverse process of reconstructing the object from the serialised data.
In MATLAB, serialisation and deserialisation can be achieved using the saveobj
and loadobj functions, respectively. These functions support various formats,
including MAT-files and portable archives (.pxat files).

Listing 10.32 Object serialisation and deserialisation.

% Serialisation
obj = MyClass ();
% ... (set object properties)
saveobj(obj , ’myObject.mat’); % Save object to MAT -

file

% Deserialisation
loadedObj = loadobj(’myObject.mat’); % Load object

from MAT -file

422 10 Object-Oriented Programming

Here’s an example that demonstrates object serialisation and deserialisation:

Listing 10.33 Object serialisation and deserialisation example.

classdef Person
properties

Name
Age

end

methods
function obj = Person(name , age)

if nargin == 2
obj.Name = name;
obj.Age = age;

end
end

end
end

% Create an object
person = Person(’John Doe’, 30);

% Serialise the object
save(’person.mat’, ’person ’);

% Clear the workspace
clear person;

% Deserialise the object
load(’person.mat’);

% Display the loaded object ’s properties
disp([’Name: ’, person.Name , ’, Age: ’, num2str(person

.Age)]);

In this example, a Person object is created and serialised to a MAT-file using the
saveobj function. After clearing the workspace, the object is deserialised from the
MAT-file using the loadobj function, and its properties are displayed.

10.8 OOP Design Patterns

• Introduction to Design Patterns Design patterns are reusable solutions to com-
mon software design problems. They provide proven approaches for structuring
code and organizing classes and objects to address recurring design issues in an
elegant and maintainable way. Design patterns promote code reusability, extensi-
bility, andflexibility,making it easier to develop robust and scalable object-oriented
systems

10.8 OOP Design Patterns 423

• Common Design Patterns in MATLAB
Singleton Pattern
MATLAB supports several well-known design patterns, including:
The Singleton pattern ensures that a class has only one instance and provides a
global point of access to it. This pattern is useful when you need to control the
instantiation of a class and provide a single point of coordination for a specific set
of operations or data.

Listing 10.34 Singleton pattern syntax.

classdef Singleton
properties (Access = private)
persistent uniqueInstance
end

methods (Access = private)
function obj = Singleton ()

% Constructor code
end

end

methods (Static)
function instance = getInstance ()

if isempty(Singleton.uniqueInstance)
Singleton.uniqueInstance = Singleton ();

end
instance = Singleton.uniqueInstance;

end
end

end

Here’s an example that demonstrates the Singleton pattern:

Listing 10.35 Singleton pattern example.

% Get the Singleton instance
instance1 = Singleton.getInstance ();
instance2 = Singleton.getInstance ();

% Both instances are the same object
isequal(instance1 , instance2) % Output: true

Factory Pattern The Factory pattern provides an interface for creating objects
in a super-class, while allowing subclasses to alter the type of objects that will be
created. This pattern promotes loose coupling by eliminating the need to specify
the exact class of the object being created.

Listing 10.36 Factory pattern syntax.

classdef ProductFactory
methods (Static)
function product = createProduct(type)

424 10 Object-Oriented Programming

switch type
case ’A’
product = ProductA ();
case ’B’
product = ProductB ();
otherwise
error(’Invalid product type’);
end
end
end
end

Here’s an example that demonstrates the Factory pattern:

Listing 10.37 Factory pattern example.

% Create a product of type A
productA = ProductFactory.createProduct(’A’);
disp(class(productA)); % Output: ’ProductA ’

% Create a product of type B
productB = ProductFactory.createProduct(’B’);
disp(class(productB)); % Output: ’ProductB ’

Observer Pattern
The Observer pattern defines a one-to-many dependency between objects, so
that when one object changes state, all its dependents are notified and updated
automatically. This pattern is commonly used to implement event-driven systems
or for decoupling the subject (observable) from its observers.

Listing 10.38 Observer pattern syntax.

classdef Subject
properties
observers = ObserverList ()
end
methods

function attach(obj , observer)
obj.observers.addObserver(observer);

end

function detach(obj , observer)
obj.observers.removeObserver(observer);

end

function notify(obj , data)
obj.observers.notifyObservers(data);

end
end

end

10.9 OOP Applications and Best Practices 425

Here’s an example that demonstrates the Observer pattern:

Listing 10.39 Observer pattern example.

% Create a subject
subject = Subject ();

% Create observers
observer1 = Observer1 ();
observer2 = Observer2 ();

% Attach observers to the subject
subject.attach(observer1);
subject.attach(observer2);

% Notify observers with some data
subject.notify(’Hello , observers!’);

10.9 OOP Applications and Best Practices

• OOP in Scientific Computing and Data Analysis
OOP plays a pivotal role in scientific computing and data analysis. By encap-
sulating data and associated functionalities into modular, reusable objects, OOP
enhances code organisation and readability, which is essential when dealing with
complex algorithms and large datasets [1]. It enables the creation of custom data
structures and processing pipelines tailored to specific domains or applications,
promoting code reuse and facilitating collaborative development.
OOP’s ability to model real-world entities and relationships makes it particularly
suitable for simulating complex systems, performing numerical computations,
and implementing sophisticated data analysis techniques. For instance, in control
systems engineering, OOP can be utilised to design controllers that are modular
and easily extendable.

– PID Controller Design Example
To illustrate the application of OOP in scientific computing, consider the design
of a Proportional-Integral-Derivative (PID) controller using MATLAB’s
object-oriented features. The PID controller is a fundamental component in
control systems, widely used in industry to regulate processes and maintain
desired output levels [2].

Class Definition

A class named PIDController can be defined to encapsulate the properties
and methods associated with the PID controller. This class includes parameters
for the proportional (Kp), integral (Ki), and derivative (Kd?) gains, as well as
methods to compute the control signal based on the error input.

426 10 Object-Oriented Programming

Listing 10.40 PIDController Class Definition.

classdef PIDController
properties
Kp % Proportional gain
Ki % Integral gain
Kd % Derivative gain
PreviousError = 0
Integral = 0
end
methods

function obj = PIDController(Kp , Ki , Kd)
% Constructor: initialise PID gains
obj.Kp = Kp;
obj.Ki = Ki;
obj.Kd = Kd;
end
function [u, obj] = computeControl(obj , setpoint ,

measurement , dt)
% Compute the PID control signal
error = setpoint - measurement;
obj.Integral = obj.Integral + error * dt;
derivative = (error - obj.PreviousError) / dt;
u = obj.Kp * error + obj.Ki * obj.Integral + obj.Kd

* derivative;
obj.PreviousError = error;
end
end
end

Explanation

In the PIDController class:

· Properties include the PID gains (Kp, Ki, Kd), the previous error, and the
integral term, all essential for computing the control signal.

· The constructor method initialises the PID gains when creating an instance
of the class.

· The method computeControl calculates the control output u based on
the current error, integrating over time step dt.

· By returning the updated object obj, the method ensures that the state of the
controller (integral and previous error) is maintained between computations.

Usage

To use the PIDController, an instance is created with specified gains, and
the control signal is computed within a simulation loop.

10.9 OOP Applications and Best Practices 427

Listing 10.41 Using the PIDController in a Simulation.

% Define PID gains
Kp = 2.0;
Ki = 1.0;
Kd = 0.5;

% Create PID controller instance
pid = PIDController(Kp , Ki , Kd);

% Simulation parameters
dt = 0.01; % Time step
t = 0:dt:10; % Simulation time
setpoint = 1.0; % Desired value
measurement = 0; % Initial measurement
u = zeros(size(t)); % Control signal
y = zeros(size(t)); % System output

% Simple system model: First -order process
tau = 1.0; % Time constant

for i = 1: length(t)
% Compute control signal
[u(i), pid] = pid.computeControl(setpoint ,

measurement , dt);

% Update system (simple discretised first -order lag)
measurement = measurement + dt * (-measurement + u(

i)) / tau;
y(i) = measurement;

end

% Plot results
figure;
plot(t, y, ’b-’, t, setpoint * ones(size(t)), ’r--’)

;
xlabel(’Time (s)’);
ylabel(’Output ’);
legend(’System Output ’, ’Setpoint ’);
title(’PID Controller Response ’);

Discussion

As shown in Fig. 10.1, this example demonstrates how OOP facilitates the
encapsulation of the PID controller logic, making it reusable and easily main-
tainable. The PIDController class can be extended to include additional
features, such as anti-windup mechanisms or filter implementations for the
derivative term [3]. Furthermore, the object-oriented approach allows for multi-
ple instances of controllers to be created, each with different parameters, which
is beneficial in multi-variable control systems.

– Unique Insights

428 10 Object-Oriented Programming

Fig. 10.1 An example of
OOP for PID controller
design

0 2 4 6 8 10
Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ut

pu
t

PID Controller Response

System Output
Setpoint

Integrating OOP into scientific computing promotes better software engineering
practices within the research community. Recent trends emphasise the impor-
tance of reproducible research and codemaintainability [4]. By adoptingOOP,
researchers can develop more organised codebases, facilitating collaboration
and reducing errors.
Moreover, the combination of OOP and MATLAB’s extensive numerical
libraries enhances the development of sophisticated data analysis pipelines. For
instance, inmachine learning and artificial intelligence, OOP enables the cre-
ation of modular components such as data loaders, preprocessors, models, and
evaluators, improving the scalability and flexibility of analytical workflows [5].
Additionally, the emergence of digital twins and cyber-physical systems
necessitates robust simulation tools that can model complex interactions
between physical and virtual entities [6]. OOP provides the structural founda-
tion to build such simulations, allowing for modularity and extensibility, which
are essential in rapidly evolving technological landscapes.

• OOP for GUI Development and Event Handling
OOP significantly enhances the development of Graphical User Interfaces
(GUIs) and event handling in MATLAB. By employing OOP principles, develop-
ers can create modular, reusable, and extensible GUI components, leading to more
maintainable and robust applications [7]. OOP facilitates the encapsulation of GUI
elements and their associated behaviours into classes and objects, streamlining
the management of complex GUIs.

– Digital Clock Example Using OOP
To illustrate the application of OOP in GUI development, consider the creation
of a digital clock using MATLAB’s object-oriented features. The digital clock
will display the current time and update every second, demonstrating event

10.9 OOP Applications and Best Practices 429

handling and GUI component management within a class structure.

Class Definition

The digital clock can be encapsulated in a class named DigitalClock, which
inherits from the handle class to allow for reference behaviour. The class
manages the GUI components, timer events, and updates to the display.

Listing 10.42 DigitalClock Class Definition.

%
classdef DigitalClock < handle
properties (Access = private)
Figure % Figure window
TimeDisplay % Text UI component for time display
Timer % Timer object
end
methods
function obj = DigitalClock ()
% Constructor: initialise GUI and start timer
obj.createGUI ();
obj.startTimer ();
end
function delete(obj)
% Destructor: clean up resources
obj.stopTimer ();
if isvalid(obj.Figure)
close(obj.Figure);
end
end
end
methods (Access = private)
function createGUI(obj)
% Create the GUI components
obj.Figure = figure(’Name’, ’Digital Clock’, ’

NumberTitle ’, ’off’, ...
’MenuBar ’, ’none’, ’ToolBar ’, ’none’, ...
’CloseRequestFcn ’, @(src , event)delete(obj));
obj.TimeDisplay = uicontrol(’Style’, ’text’, ...
’FontSize ’, 36, ’FontWeight ’, ’bold’, ...
’Units’, ’normalized ’, ’Position ’, [0.2 0.4 0.6

0.2]);
end
function startTimer(obj)
% Start the timer to update time every second
obj.Timer = timer(’ExecutionMode ’, ’fixedRate ’, ’

Period ’, 1, ...
’TimerFcn ’, @(src , event)obj.updateTime ());
start(obj.Timer);
end
function stopTimer(obj)
% Stop and delete the timer
if ~isempty(obj.Timer) && isvalid(obj.Timer)

430 10 Object-Oriented Programming

stop(obj.Timer);
delete(obj.Timer);
end
end
function updateTime(obj)
% Update the time display
currentTime = datestr(now , ’HH:MM:SS’);
obj.TimeDisplay .String = currentTime;
end
end
end

Explanation

In the DigitalClock class:

· Properties store handles to the figure window, time display text, and timer
object, encapsulated with private access to prevent external modification.

· The constructor method DigitalClock() sets up the GUI and initiates
the timer upon object creation.

· The destructor method delete(obj) ensures that resources such as the
timer and figure window are properly released when the object is deleted.

· Private methods createGUI(), startTimer(), stopTimer(), and
updateTime() handle specific tasks related to GUI creation and event
handling.

· The timer object triggers the updateTime() method every second,
updating the displayed time.

Usage

To utilise the digital clock, an instance of the DigitalClock class is created:

Listing 10.43 Instantiate the Digital Clock.

clock = DigitalClock ();

This command launches the GUI window displaying the current time, which
updates every second. The clock will continue to run until the figure window is
closed, at which point the delete method is invoked to clean up resources.

– Discussion
As given in Fig. 10.2, the digital clock example showcases how OOP in MAT-
LAB simplifies GUI development and event handling. By encapsulating the
GUI elements and logic within a class, the code achieves greater modular-
ity and reusability. The use of event-driven programming with timer events
demonstrates effective handling of asynchronous operations, enhancing the
responsiveness of the application [1].
The adoption of OOP in GUI development aligns with modern programming
practices, promoting scalability and maintainability. Recent research empha-
sises the importance of integrating OOP with advanced GUI development tools

10.9 OOP Applications and Best Practices 431

Fig. 10.2 An example of OOP for GUI—digital clock

such as MATLAB’s App Designer, which offers a rich set of components and
a user-friendly interface for building sophisticated applications [8].
Furthermore, the combination of OOP and GUI development facilitates the
implementation of Model-View-Controller (MVC) design patterns, enabling
a clear separation of data models, user interfaces, and control logic [9]. This
approach enhances code organisation and supports collaborative development
efforts, which is particularly beneficial in complex engineering and research
projects.
The integration of OOP with event handling also opens avenues for imple-
menting customised behaviours and extending existing GUI components. By
leveraging inheritance and polymorphism, developers can create specialised
interfaces tailored to specific application requirements, fostering innovation in
fields such as robotics, autonomous systems, and real-time data analysis.

• Best Practices for Code Organisation, Documentation, and Maintenance
To ensure the long-term maintainability and extensibility of object-oriented code,
it is essential to follow best practices for code organization, documentation, and
maintenance. These practices include:

– Modular Design: Divide functionality into well-defined, self-contained classes
and methods, promoting code reuse and easier debugging.

– Encapsulation: Encapsulate data and implementation details within classes,
providing a clear interface for external access and modification.

432 10 Object-Oriented Programming

– Inheritance and Polymorphism: Leverage inheritance and polymorphism to
create hierarchies of classes and promote code reuse and flexibility.

– Consistent Naming Conventions: Follow a consistent naming convention for
classes, properties, andmethods to improve code readability andmaintainability.

– Code Documentation: Document classes, properties, and methods using
MATLAB’s built-in documentation tools (e.g., help and doc) to facilitate
understanding and collaboration.

– Version Control: Use a version control system (e.g., Git) to track changes,
collaborate with others, and manage code revisions effectively.

– Testing and Debugging: Implement unit tests and leverage MATLAB’s
debugging tools to identify and fix issues early in the development process.

By following these best practices, you can develop robust, maintainable, and
extensible object-oriented code in MATLAB.

10.10 Laboratory

This section provides several hands-on lab exercises to reinforce the concepts and
applications of Object-Oriented Programming (OOP) in MATLAB. Each exercise is
designed to challenge your understanding and problem-solving skills.

1. Creating a Simple Class

a. Create a new class called Rectanglewith properties length and width.
b. Implement a constructor method that initialises the length and width

properties.
c. Create a method called area that calculates and returns the area of the

rectangle.
d. Create amethod called perimeter that calculates and returns the perimeter

of the rectangle.
e. Create an instance of the Rectangle class and test the area and
perimeter methods.

Listing 10.44 Rectangle class definition.

classdef Rectangle
properties
length
width
end

methods
function obj = Rectangle(l, w)

obj.length = l;
obj.width = w;

end

10.10 Laboratory 433

function area = area(obj)
area = obj.length * obj.width;

end

function perimeter = perimeter(obj)
perimeter = 2 * (obj.length + obj.width);

end
end
end

2. Inheritance and Polymorphism

a. Create a new class called Square that inherits from the Rectangle class.
b. Modify the Square class constructor to accept only one parameter (side

length) and initialise both length and width with this value.
c. Override thearea andperimetermethods in theSquare class to provide

more efficient implementations.
d. Create instances of both Rectangle and Square classes and test their

area and perimeter methods.

3. GUI Development with OOP

a. Create a new GUI application with a figure window and a panel.
b. Add a uicontrol (e.g., a button or a slider) to the panel.
c. Create a custom class that inherits from matlab.ui.component
container.ComponentContainer and encapsulates the panel and
the uicontrol.

d. Implement event handling in the custom class to respond to user interactions
with the uicontrol.

e. Test the GUI application by creating an instance of the custom class and
adding it to the figure window.

4. Data Analysis with OOP

a. Create a new class called DataSet with properties to hold numerical data
and metadata.

b. Implement methods to load data from a file, perform basic statistical analysis
(e.g., mean, variance, correlation), and visualise the data.

c. Create a subclass called TimeSeries that inherits from DataSet and
adds functionality for handling time-series data, such as resampling and
smoothing.

d. Load a dataset, create instances of DataSet and TimeSeries, and test
their methods.

5. File I/O with OOP

a. Create a new class called FileManager with methods to read and write
different file formats (e.g., .txt, .csv, .mat).

b. Implement error handling and validation mechanisms to ensure data integrity
during file operations.

434 10 Object-Oriented Programming

c. Create a subclass called LoggedFileManager that inherits from
FileManager and adds logging functionality to track file operations.

d. Test the FileManager and LoggedFileManager classes by reading
and writing different types of files.

6. Class Definitions and Usage

• Create a class Rectanglewith two properties: length and width. These
two properties can only be accessed by the class itself and its subclasses.

• The class should include two methods: one to calculate the circumference and
another to calculate the area.

• Create a subclass of Rectangle named Parallelogram, which repre-
sents a parallelogram. The Parallelogram class should have an additional
property for the angle.

• Instantiate objects of Rectangle and Parallelogram, and obtain their
circumference and area.

The following MATLAB code demonstrates the creation of the Rectangle
and Parallelogram classes, and how to use these classes to calculate
circumference and area.

classdef Rectangle
properties (Access = protected)

length
width

end

methods
function obj = Rectangle(length , width)

if nargin > 0
obj.length = length;
obj.width = width;

end
end

function circumference =
calculateCircumference(obj)
circumference = 2 * (obj.length + obj.

width);
end

function area = calculateArea(obj)
area = obj.length * obj.width;

end
end

end

classdef Parallelogram < Rectangle
properties

angle
end

10.11 Problems 435

methods
function obj = Parallelogram(length , width ,

angle)
obj@Rectangle(length , width);
if nargin > 0

obj.angle = angle;
end

end

function area = calculateArea(obj)
area = obj.length * obj.width * sin(

deg2rad(obj.angle));
end

end
end

% Create Rectangle object
rect = Rectangle (5, 10);
rectCircumference = rect.calculateCircumference ();
rectArea = rect.calculateArea ();

fprintf(’Rectangle Circumference: %.2f\n’,
rectCircumference);

fprintf(’Rectangle Area: %.2f\n’, rectArea);

% Create Parallelogram object
para = Parallelogram (5, 10, 30);
paraCircumference = para.calculateCircumference ();
paraArea = para.calculateArea ();

fprintf(’Parallelogram Circumference: %.2f\n’,
paraCircumference);

fprintf(’Parallelogram Area: %.2f\n’, paraArea);

For each lab exercise, provide step-by-step guidance, example code snippets, and
expected outputs to assist students in completing the tasks successfully.

10.11 Problems

This section presents a collection of problems designed to challenge and reinforce
your understanding of Object-Oriented Programming (OOP) concepts in MATLAB.
Each problem is accompanied by a step-by-step approach, sample code, sample
output, and suggestions for extensions and variations.

1. Bank Account Management

• Create a class called BankAccount with properties for account number,
account holder’s name, and balance.

• Implement methods for depositing, withdrawing, and checking the balance.

436 10 Object-Oriented Programming

• Incorporate error handling to prevent negative balances and invalid transac-
tions.

• Create subclasses for different account types (e.g., SavingsAccount,
CheckingAccount) with additional functionalities like interest calculation
or overdraft fees.

2. Geometric Shapes

• Create an abstract class called Shape with a method for calculating the area.
• Derive concrete subclasses for different shapes (e.g., Circle, Rectangle,
Triangle) and implement their respective area calculation methods.

• Create a function that takes an array of Shape objects and calculates the total
area of all shapes.

• Extend the problem by adding methods for calculating perimeter, volume (for
3D shapes), or other relevant properties.

3. Student Record Management

• Create a class called Student with properties for name, ID, and grades.
• Implement methods for adding/updating grades, calculating the grade point
average (GPA), and generating a report card.

• Create a subclass called GraduateStudent that inherits from Student
and includes additional properties and methods specific to graduate students
(e.g., thesis, research projects).

• Design a system to manage a collection of students, perform operations like
sorting or filtering based on specific criteria, and generate statistical reports.

4. Employee Payroll System

• Create an abstract class called Employee with properties for name, ID, and
a method for calculating the monthly salary.

• Derive concrete subclasses for different employee types (e.g., Hourly
Employee, SalariedEmployee, ContractEmployee) and imple-
ment their respective salary calculation methods.

• Incorporate features like overtime pay, bonuses, or deductions based on
employee type or performance.

• Design a system to manage a company’s payroll, generate paychecks, and
produce reports for HR or financial analysis.

5. Library Management System

• Create a class called Book with properties for title, author, publication date,
and availability status.

• Implement methods for checking out, returning, and reserving books.
• Create a class called Library that manages a collection of Book objects
and provides functionality for searching, sorting, and filtering books based on
various criteria.

• Incorporate features like user accounts, late fees, and notifications for overdue
books or reserved items.

10.11 Problems 437

6. Vehicle Rental System

• Create an abstract class called Vehicle with properties for make, model,
year, and a method for calculating the daily rental rate.

• Derive concrete subclasses for different vehicle types (e.g., Car, Truck,
Motorcycle) and implement their respective rental rate calculation meth-
ods.

• Create a class called RentalCompany that manages a fleet of Vehicle
objects and provides functionality for renting, returning, and tracking vehicle
availability.

• Incorporate features like customer accounts, discounts for long-term rentals,
and additional services like insurance or GPS navigation.

7. Social Media Platform

• Create a class called User with properties for username, profile information,
and a list of followers/following.

• Implement methods for posting updates, liking or commenting on posts, and
managing followers/following lists.

• Create a class called SocialMedia that manages a collection of User
objects and provides functionality for searching, filtering, and generating news
feeds based on user interactions.

• Incorporate features like hashtags, privacy settings, and notifications for new
posts or interactions.

8. Online Shopping Cart

• Create a class called Product with properties for name, description, price,
and quantity.

• Implement a class called ShoppingCart that manages a collection of
Product objects and provides functionality for adding, removing, and
updating quantities.

• Create a class called Order that represents a customer’s order, including the
shopping cart contents, shipping information, and payment details.

• Incorporate features like discounts, promotions, and order tracking.

9. Flight Reservation System

• Create a class called Flight with properties for airline, origin, destination,
departure time, and available seats.

• Implement methods for booking seats, canceling reservations, and checking
seat availability.

• Create a class called FlightReservationSystem thatmanages a collec-
tion of Flight objects and provides functionality for searching and booking
flights based on user preferences (e.g., dates, destinations).

• Incorporate features like seat selection, frequent flyer programs, and notifica-
tions for flight changes or delays.

438 10 Object-Oriented Programming

10. Weather Monitoring System

• Create a class called WeatherStation with properties for location,
temperature, humidity, and pressure.

• Implement methods for recording and retrieving weather data, as well as
generating reports or visualisations.

• Create a class called WeatherMonitoringSystem that manages a net-
work of WeatherStation objects and provides functionality for analyzing
and predicting weather patterns based on collected data.

• Incorporate features like real-time data updates, weather alerts, and integration
with external weather services or APIs.

10.12 Summary

• This chapter covered the principles of object-oriented programming (OOP) and
its implementation in MATLAB through several practical examples.

• Key OOP concepts such as classes, objects, properties, methods, inheritance,
and polymorphism were introduced and demonstrated.

• Various problem domains were explored, including banking systems, event
management, library management, social media platforms, and weather
monitoring systems.

• Each example provided a step-by-step approach, sample code, sample output,
and suggestions for extensions and variations.

• The examples showcased the benefits of code organization, reusability, and
maintainability offered by OOP in solving complex problems.

• For undergraduate (UG) students, this chapter serves as an introduction to the
fundamental concepts of object-oriented programming and its implementation
in MATLAB. The practical examples and step-by-step approaches provide a
solid foundation for understanding how to model real-world problems using
classes, objects, and their relationships. The chapter emphasizes the importance of
code organization, reusability, and maintainability, which are essential skills for
developing robust and scalable software applications.

• For postgraduate (PG) students, this chapter offers an in-depth exploration of
object-oriented programming principles and their application in solving complex
problems across various domains. The diverse range of examples, such as banking
systems, event management, library management, social media platforms, and
weather monitoring systems, demonstrates the versatility and power of OOP in
tackling challenges in different fields. PG students can leverage the provided code
samples as a starting point for further research and development, incorporating
advanced features, optimizations, and integrations as needed.

• For professional researchers or engineers, this chapter serves as a valuable
resource for implementing object-oriented programming techniques in MATLAB
for research or industrial applications. The examples showcase best practices in

References 439

software design, code organization, and scalability, which are crucial for devel-
oping robust and maintainable systems. The chapter’s focus on extensions and
variations encourages professionals to explore additional features, integrate with
databases, implement user authentication and authorization, and tailor the solutions
to meet specific project requirements.

References

1. Attaway S (2016) MATLAB: a practical introduction to programming and problem solving, 4th
edn. Butterworth-Heinemann, Oxford, UK

2. Franklin GF, Powell JD, Emami-Naeini A (2015) Feedback control of dynamic systems, 7th
edn. Pearson Education Limited, Harlow, UK

3. Åström KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers.
Princeton University Press, Princeton, NJ, USA

4. Wilson G et al (2014) Best practices for scientific computing. PLoS Biol 12(1):1–7
5. Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge, MA,

USA
6. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent

behaviour in complex systems. In: Kahlen F-J, Flumerfelt S, Alves A (eds) Transdisciplinary
perspectives on complex systems. Springer, Cham, Switzerland, pp 85–113

7. MathWorks, “Develop Graphics Objects (Handle Classes),” [Online]. https://www.mathworks.
com/help/matlab/handle-classes.html. [Accessed: Oct. 2, 2024]

8. MathWorks, “App Designer,” [Online]. https://www.mathworks.com/products/matlab/app-
designer.html. [Accessed: Oct. 2, 2024]

9. Bruegge B, Dutoit AH (2009) Object-oriented software engineering using UML, Patterns, and
Java, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.mathworks.com/help/matlab/handle-classes.html
https://www.mathworks.com/help/matlab/handle-classes.html
https://www.mathworks.com/products/matlab/app-designer.html
https://www.mathworks.com/products/matlab/app-designer.html
http://creativecommons.org/licenses/by/4.0/

Appendix A
Solutions to Chapter Problems

These solutions provide a starting point for addressing the given problems and can be
further extended and customizedbasedon specific requirements or additional features
desired in the book. The solutions aim to illustrate the problem-solving process,
showcaseMATLAB’s capabilities, and reinforce the concepts and techniques covered
in the chapters.

A.1 Solutions to Chapter 1

1. Creating a Simple Calculator

• Problem Statement and Background: This problem involves creating a sim-
ple calculator program in MATLAB that can perform basic arithmetic oper-
ations (addition, subtraction, multiplication, and division) on two numbers
provided by the user. It also requires implementing error handling to grace-
fully handle invalid input or division by zero.

• Step-by-Step Approach:

a. Prompt the user to enter the first number using the ‘input’ function.
b. Prompt the user to enter the second number using the ‘input‘ function.
c. Prompt the user to enter the operation (‘+’, ‘-’, ‘*’, or ‘/’) using the ‘input’

function.
d. Use a switch-case statement or an if-elseif-else structure to perform the

appropriate operation based on the user’s input.
e. Inside each case or condition, perform the corresponding arithmetic oper-

ation on the two numbers.

© The Editor(s) (if applicable) and The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3

441

https://doi.org/10.1007/978-981-97-8788-3

442 Appendix A: Solutions to Chapter Problems

f. Include error handling to check for division by zero and display an appro-
priate error message.

g. Display the result of the operation to the user using the ‘fprintf’ or ‘disp’
function.

• Sample Code:

Listing A.1 Simple Calculator

% Prompt user for input
num1 = input(’Enter the first number: ’);
num2 = input(’Enter the second number: ’);
operation = input(’Enter the operation (+, -, *, /)

: ’, ’s’);

% Perform operation based on user input
switch operation
case ’+’
result = num1 + num2;
case ’-’
result = num1 - num2;
case ’*’
result = num1 * num2;
case ’/’
if num2 == 0
fprintf(’Error: Division by zero is not allowed .\n’

);
return
end
result = num1 / num2;
otherwise
fprintf(’Invalid operation .\n’);
return
end

% Display result
fprintf(’Result: %.2f %s %.2f = %.2f\n’, num1 ,

operation , num2 , result);

• Sample Output:

Enter the first number: 10
Enter the second number: 5
Enter the operation (+, -, *, /): *
Result: 10.00 * 5.00 = 50.00

• Extensions and Variations:

– Enhance the calculator to support additional operations like exponentiation,
modulus, or trigonometric functions.

– Implement a graphical user interface (GUI) for the calculator using MAT-
LAB’s built-in tools.

Appendix A: Solutions to Chapter Problems 443

– Allow the user to enter multiple operations in a single expression and
evaluate the expression according to the order of operations.

2. Data Analysis and Visualisation

• Problem Statement and Background: This problem involves loading a
dataset from a provided file (e.g., a CSV file containing weather data or stock
prices), performing data cleaning and preprocessing steps, and then analyzing
the data by computing summary statistics and visualizing the results using
appropriate plots.

• Step-by-Step Approach:

a. Load the dataset from the provided file usingMATLAB’s file reading func-
tions (e.g., ‘readtable’ for CSV files).

b. Inspect the loaded data and identify any potential issues, such as missing
values or outliers.

c. Perform data cleaning and preprocessing steps as necessary:

– Handle missing values (e.g., remove rows or columns with missing
values, or impute missing values using appropriate techniques).

– Remove outliers or data points that fall outside of expected ranges.
– Normalize or scale the data, if required, to ensure consistent ranges

across different features.

d. Compute summary statistics for the cleaned dataset, such as mean, median,
standard deviation, and quartiles, usingMATLAB’s built-in functions (e.g.,
‘mean’, ‘median’, ‘std’).

e. Visualize the data using appropriate plotting techniques:

– For time-series data, use line plots or scatter plots to visualize the data
over time.

– For continuous data, use histograms or kernel density estimates to
visualize the distribution of values.

– For categorical data, use bar charts or pie charts to visualize the fre-
quencies or proportions of different categories.

f. Customize the plots by adding titles, labels, legends, and other visual ele-
ments to enhance clarity and readability.

• Sample Code:

Listing A.2 Data Analysis and Visualisation

% Load data from a CSV file
data = readtable(’weather_data.csv’);

% Handle missing values
data = rmmissing(data);

% Compute summary statistics
meanTemp = mean(data.Temperature);

444 Appendix A: Solutions to Chapter Problems

medianHumidity = median(data.Humidity);
stdPressure = std(data.Pressure);

% Visualize data
figure;
subplot(2, 2, 1);
histogram(data.Temperature);
title(’Temperature Distribution ’);

subplot(2, 2, 2);
plot(data.Date , data.Humidity);
title(’Humidity over Time’);
xlabel(’Date’);
ylabel(’Humidity ’);

subplot(2, 2, 3);
scatter(data.Pressure , data.Temperature);
title(’Temperature vs. Pressure ’);
xlabel(’Pressure ’);
ylabel(’Temperature ’);

• Sample Output: [Relevant Visualisations and plots will be included here,
showcasing the data analysis and Visualisation results.]

• Extensions and Variations:

– Explore and apply more advanced data cleaning and preprocessing tech-
niques, such as feature scaling, dimensionality reduction, or handling
imbalanced datasets.

– Implement additional Visualisations or interactive plots using MATLAB’s
built-in tools or third-party libraries.

– Perform statistical hypothesis testing or predictivemodeling on the cleaned
dataset using MATLAB’s statistical and machine learning toolboxes.

3. Implementing a Simple Algorithm

• Problem Statement and Background: This problem requires implementing
a sorting algorithm (e.g., bubble sort, insertion sort) inMATLABas a function,
and writing a script that generates a random array of numbers and calls the
sorting function to sort the array. The correctness of the implementation should
be verified by comparing the sorted array with the expected output.

• Step-by-Step Approach:

a. Choose a sorting algorithm to implement, such as bubble sort or insertion
sort.

b. Define a MATLAB function that takes an array as input and returns the
sorted array using the chosen sorting algorithm.

c. Within the function, implement the logic of the sorting algorithm using
loops, conditional statements, and array manipulations.

d. Write a script that generates a random array of numbers using MATLAB’s
‘rand’ or ‘randi’ functions.

Appendix A: Solutions to Chapter Problems 445

e. Call the sorting function with the random array as input and store the sorted
output in a new array.

f. Verify the correctness of the sorted array by:

– Checking if the sorted array is in non-decreasing order (for ascending
sort).

– Comparing the sorted array with the expected output obtained by sort-
ing the original array using MATLAB’s built-in ‘sort’ function.

• Sample Code (Bubble Sort Implementation):

Listing A.3 Bubble Sort Implementation

function sorted_array = bubble_sort(arr)
n = length(arr);
for i = 1:n-1
for j = 1:n-i
if arr(j) > arr(j+1)
temp = arr(j);
arr(j) = arr(j+1);
arr(j+1) = temp;
end
end
end
sorted_array = arr;
end

% Generate random array
random_array = randi (100, 1, 20);

% Sort the array
sorted_array = bubble_sort(random_array);

% Verify correctness
sorted_expected = sort(random_array);
if isequal(sorted_array , sorted_expected)
disp(’Sorting successful!’);
else
disp(’Sorting failed.’);
end

• Sample Output:

Sorting successful!

• Extensions and Variations:

– Implement and compare the performance of different sorting algorithms,
such as quicksort, merge sort, or shell sort.

– Extend the sorting function to handle sorting arrays of structs or cell arrays
based on specific fields or elements.

– Implement parallel sorting algorithms using MATLAB’s Parallel Comput-
ing Toolbox for improved performance on large datasets.

446 Appendix A: Solutions to Chapter Problems

4. Solving Systems of Equations

• ProblemStatement andBackground: This problem involveswriting aMAT-
LAB function that takes a system of linear equations as input (in the form of
coefficient matrices and constant vectors), and uses MATLAB’s built-in func-
tions to solve the system of equations and return the solution vector. The
function should be tested with multiple sets of linear equations, including
cases with unique solutions, no solutions, and infinitely many solutions.

• Step-by-Step Approach:

a. Define a MATLAB function that takes the coefficient matrix (A) and the
constant vector (b) as input arguments.

b. Within the function, use MATLAB’s backslash operator (‘\’) to solve the
system of linear equations: ‘x = A \ b;’.

c. Check for specific cases:

– If the system has a unique solution, the solution vector ‘x’ will be
returned.

– If the system has no solution (inconsistent equations), MATLAB will
return a warning or error message.

– If the system has infinitely many solutions (underdetermined system),
MATLAB will return a particular solution, and additional steps may
be required to find the general solution.

d. Handle potential warnings or error messages and provide appropriate feed-
back to the user.

e. Return the solution vector ‘x’ or an appropriate message indicating the
nature of the solution.

• Sample Code:

Listing A.4 Solving Systems of Equations

function [x, sol_type] = solve_linear_system (A, b)
try
x = A \ b;
sol_type = ’Unique Solution ’;
catch ME
if strcmp(ME.identifier , ’MATLAB:singular ’)
% System has no solution (inconsistent equations)
x = [];
sol_type = ’No Solution ’;
else
% System has infinitely many solutions (

underdetermined)
x = A \ b;
sol_type = ’Infinitely Many Solutions ’;
end
end
end

Appendix A: Solutions to Chapter Problems 447

% Test with a system of linear equations
A = [1 2 3; 4 5 6; 7 8 9];
b = [6; 15; 24];

[x, sol_type] = solve_linear_system (A, b);

if isempty(x)
disp(’The system of equations has no solution.’);
else
disp([’The solution is: x = ’, mat2str(x’)]);
disp([’Solution type: ’, sol_type]);
end

• Sample Output:

The solution is: x = 0 1 0
Solution type: Unique Solution

• Extensions and Variations:

– Extend the function to handle systems of non-linear equations using numer-
ical methods like Newton’s method or fixed-point iteration.

– Implement additional error handling and input validation to ensure the
provided coefficient matrix and constant vector are valid and consistent.

– Explore and implement techniques for finding the general solution for
underdetermined systems, such as using the null space of the coefficient
matrix.

5. Creating a Simple Game

• Problem Statement and Background: This problem involves designing and
implementing a simple game using MATLAB’s graphical capabilities (e.g., a
number guessing game, a simple version of Tic-Tac-Toe or Hangman). The
game should have a graphical user interface (GUI) for user input, displaying
game state, and providing feedback. The game logic and rules should be
implemented within MATLAB functions and callbacks.

• Step-by-Step Approach:

a. Choose a simple game to implement, such as a number guessing game or
a classic game like Tic-Tac-Toe or Hangman.

b. Design the graphical user interface (GUI) using MATLAB’s built-in tools
(e.g., ‘guide’ or programmatic GUI creation).

c. Create UI components for user input (e.g., text boxes, buttons), displaying
game state (e.g., labels, static text), and providing feedback (e.g., message
boxes, status indicators).

d. Define a MATLAB function or script to Initialise the game state and set up
the necessary variables and data structures.

e. Implement the game logic and rules within separate MATLAB functions
or callbacks associated with the GUI components.

f. Handle user input and update the game state accordingly.

448 Appendix A: Solutions to Chapter Problems

g. Update the GUI components to reflect the current game state and provide
feedback to the user.

h. Implement win/lose conditions and end-game scenarios, displaying appro-
priate messages or prompts for restarting the game.

• Sample Code (Number Guessing Game):

Listing A.5 Number Guessing Game

function number_guessing_game ()
% Create the main figure
fig = figure(’Name’, ’Number Guessing Game’, ’

MenuBar ’, ’none’, ’Resize ’, ’off’);

% Generate a random number between 1 and 100
answer = randi (100);

% Create UI components
prompt_text = uicontrol(’Style’, ’text’, ’String ’,

’Guess a number between 1 and 100:’, ’Position ’
, [20 120 200 20]);

guess_edit = uicontrol(’Style’, ’edit’, ’Position ’,
[230 120 100 20]);

guess_button = uicontrol(’Style’, ’pushbutton ’, ’
String ’, ’Guess’, ’Position ’, [340 120 80 20],
’Callback ’, {@check_guess , answer });

result_text = uicontrol(’Style’, ’text’, ’String ’,
’’, ’Position ’, [20 80 400 20]);

% Guess checking callback function
function check_guess (~, ~, answer)

guess = str2double(get(guess_edit , ’String ’));
if isnan(guess) || guess < 1 || guess > 100

set(result_text , ’String ’, ’Invalid input.
Please enter a number between 1 and
100.’);

elseif guess < answer
set(result_text , ’String ’, ’Too low. Try

again!’);
elseif guess > answer

set(result_text , ’String ’, ’Too high. Try
again!’);

else
set(result_text , ’String ’, ’Congratulations

! You guessed the correct number!’);
answer = randi (100); % Generate a new

random number for the next game
end

end

end

• Sample Output: [A GUI window will be displayed with a text prompt, input
field, “Guess” button, and a result text area. The user can enter their guess,

Appendix A: Solutions to Chapter Problems 449

and the program will provide feedback based on whether the guess is too low,
too high, or correct.]

• Extensions and Variations:

– Enhance the gamewith additional features like keeping track of the number
of attempts, implementing a high score system, or allowing the user to set
the difficulty level.

– Implementmore complex games likeTic-Tac-Toe orHangman,with appro-
priate game boards, move validation, and win/lose conditions.

– Explore advancedGUI techniques, such as creating customUI components,
adding animations or graphics, and incorporating sound effects or music.

A.2 Solutions to Chapter 2

1. Problem Statement and Background: The problem requires writing a MAT-
LAB script that computes a given expression, y = a2+b3

a−2b , using two user inputs,
a and b. It also requires handling the case where the denominator is zero and
displaying an appropriate error message. This problem tests the understand-
ing of user input, arithmetic operations, conditional statements, and error
handling in MATLAB.

2. Step-by-Step Approach:

a. Prompt the user to enter values for a and b.
b. Compute the numerator: a2 + b3.
c. Compute the denominator: a − 2b.
d. Check if the denominator is zero:

• If the denominator is zero, display an error message.
• Otherwise, compute y by dividing the numerator by the denominator.

e. Display the result.

3. Sample Code:

Listing A.6 Computing an expression with user input.

% Prompt the user for input
a = input(’Enter the value of a: ’);
b = input(’Enter the value of b: ’);

% Compute the numerator and denominator
numerator = a^2 + b^3;
denominator = a - 2*b;

% Check for zero denominator
if denominator == 0

450 Appendix A: Solutions to Chapter Problems

disp(’Error: Denominator cannot be zero.’);
else
% Compute the expression
y = numerator / denominator;
disp([’The result of (a^2 + b^3) / (a - 2b) is: ’,

num2str(y)]);
end

4. Sample Output:

Enter the value of a: 2
Enter the value of b: 3
The result of (a^2 + b^3) / (a - 2b) is: -7

5. Extensions and Variations:

• Extend the script to handle complex numbers or matrices as input.
• Modify the script to perform additional operations on the computed result.
• Enhance the error handling to provide more informative messages or to handle
other types of errors.

6. Problem Statement and Background: This problem requires creating a MAT-
LAB script that generates a random3x3matrixwith integer values between 1 and
10. The script should then find the maximum and minimum values in the matrix
and display their indices. This problem tests the understanding of matrix cre-
ation, random number generation, findingmaximum andminimum values,
and indexing in MATLAB.

7. Step-by-Step Approach:

a. Generate a random 3x3 matrix with integer values between 1 and 10 using the
randi function.

b. Find the maximum value in the matrix using the max function.
c. Find the minimum value in the matrix using the min function.
d. Find the indices of the maximum and minimum values using the find function.
e. Display the matrix, the maximum and minimum values, and their indices.

8. Sample Code:

Listing A.7 Finding maximum and minimum values in a matrix.

% Generate a random 3x3 matrix
matrix = randi([1, 10], 3, 3);

% Find the maximum and minimum values
max_value = max(matrix (:));
min_value = min(matrix (:));

% Find the indices of the maximum and minimum values
[max_row , max_col] = find(matrix == max_value);
[min_row , min_col] = find(matrix == min_value);

% Display the results

Appendix A: Solutions to Chapter Problems 451

disp(’The matrix is:’);
disp(matrix);
disp([’The maximum value is: ’, num2str(max_value), ’

at indices (’, num2str(max_row), ’, ’, num2str(
max_col), ’)’]);

disp([’The minimum value is: ’, num2str(min_value), ’
at indices (’, num2str(min_row), ’, ’, num2str(

min_col), ’)’]);

9. Sample Output:

The matrix is:
5 4 2
9 1 6
3 8 10

The maximum value is: 10 at indices (3, 3)
The minimum value is: 1 at indices (2, 2)

10. Extensions and Variations:

• Extend the script to handle matrices of different sizes.
• Modify the script to find the maximum and minimum values along specific
dimensions (rows or columns) of the matrix.

• Enhance the script to display the indices of all occurrences of the maximum
and minimum values, in case they are not unique.

11. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes two vectors as input and returns their dot product. The
function should handle the case where the input vectors have different lengths
and display an appropriate error message. This problem tests the understanding
of function creation, vector operations, error handling, and input validation
in MATLAB.

12. Step-by-Step Approach:

a. Define a function that takes two input vectors.
b. Check if the input vectors have the same length:

• If the lengths are different, display an error message and return.
• Otherwise, proceed to compute the dot product.

c. Compute the dot product by multiplying the corresponding elements of the
vectors and summing the products.

d. Return the computed dot product.

13. Sample Code:

Listing A.8 Computing the dot product of two vectors.

function dot_product = vec_dot(vec1 , vec2)
% Check if the input vectors have the same length
if length(vec1) ~= length(vec2)

452 Appendix A: Solutions to Chapter Problems

disp(’Error: Input vectors must have the same length.
’);

dot_product = [];
return;
end

% Compute the dot product
dot_product = sum(vec1 .* vec2);

end

14. Sample Usage:

% Valid input
vec1 = [1, 2, 3];
vec2 = [4, 5, 6];
result = vec_dot(vec1 , vec2);
disp([’The dot product is: ’, num2str(result)]);

% Invalid input
vec3 = [1, 2];
vec4 = [3, 4, 5];
result = vec_dot(vec3 , vec4);

15. Sample Output:

The dot product is: 32
Error: Input vectors must have the same length.

16. Extensions and Variations:

• Extend the function to handle matrix inputs and compute the matrix product.
• Modify the function to compute the dot product of complex vectors or matrices.
• Enhance the error handling to provide more informative messages or to handle
other types of errors or edge cases.

17. Problem Statement and Background: This problem requires creating a MAT-
LAB script that generates a random vector of length 10 with integer values
between 1 and 20. The script should then count the number of occurrences of
eachvalue in the vector anddisplay the results. This problem tests the understand-
ing of vector creation, random number generation, counting occurrences,
and data analysis in MATLAB.

18. Step-by-Step Approach:

a. Generate a random vector of length 10 with integer values between 1 and 20
using the randi function.

b. Create an array to store the counts of each value in the vector.
c. Iterate through the vector and update the counts in the array.
d. Display the vector, the unique values, and their corresponding counts.

Appendix A: Solutions to Chapter Problems 453

19. Sample Code:

Listing A.9 Counting occurrences in a vector.

% Generate a random vector
vector = randi([1, 20], 1, 10);

% Initialise the counts array
counts = zeros(1, 20);

% Count the occurrences
for i = 1: length(vector)
counts(vector(i)) = counts(vector(i)) + 1;
end

% Display the results
disp(’The vector is:’);
disp(vector);
disp(’The number of occurrences of each value is:’);
for i = 1:20
if counts(i) > 0
disp([num2str(i), ’ occurs ’, num2str(counts(i)), ’

times.’]);
end
end

20. Sample Output:

The vector is:
5 10 18 12 3 14 6 9 11 7

The number of occurrences of each value is:
3 occurs 1 times.
5 occurs 1 times.
6 occurs 1 times.
7 occurs 1 times.
9 occurs 1 times.
10 occurs 1 times.
11 occurs 1 times.
12 occurs 1 times.
14 occurs 1 times.
18 occurs 1 times.

21. Extensions and Variations:

• Extend the script to handle vectors of different lengths or different value ranges.
• Modify the script to display the results in a sorted or formatted manner.
• Enhance the script to perform additional statistical analysis on the data, such
as computing the mean, median, or mode.

22. Problem Statement and Background: This problem requires writing a MAT-
LAB script that prompts the user to enter a string, counts the number of vowels
(a, e, i, o, u) and consonants in the string, and displays the results. This problem

454 Appendix A: Solutions to Chapter Problems

tests the understanding of stringmanipulation, patternmatching, user input,
and character processing in MATLAB.

23. Step-by-Step Approach:

a. Prompt the user to enter a string.
b. Convert the string to lowercase for case-insensitive matching.
c. Initialise counters for vowels and consonants to zero.
d. Iterate through each character in the string:

• If the character is a vowel, increment the vowel counter.
• If the character is a consonant, increment the consonant counter.

e. Display the original string, the number of vowels, and the number of conso-
nants.

24. Sample Code:

Listing A.10 Counting vowels and consonants in a string.

% Prompt the user for input
user_string = input(’Enter a string: ’, ’s’);

% Convert the string to lowercase
lowercase_string = lower(user_string);

% Initialise counters
vowel_count = 0;
consonant_count = 0;

% Count vowels and consonants
for i = 1: length(lowercase_string)
char = lowercase_string(i);
if ismember(char , ’aeiou’)
vowel_count = vowel_count + 1;
elseif isstrprop(char , ’alpha’)
consonant_count = consonant_count + 1;
end
end

% Display the results
disp([’The string is: ’, user_string]);
disp([’The number of vowels is: ’, num2str(

vowel_count)]);
disp([’The number of consonants is: ’, num2str(

consonant_count)]);

25. Sample Output:

Enter a string: Hello World!
The string is: Hello World!
The number of vowels is: 3
The number of consonants is: 7

Appendix A: Solutions to Chapter Problems 455

26. Extensions and Variations:

• Extend the script to handle other character types, such as digits or special
characters.

• Modify the script to count the occurrences of specific vowels or consonants.
• Enhance the script to perform additional string operations, such as reversing
the string or removing vowels/consonants.

A.3 Solutions to Chapter 3

1. Problem Statement and Background: Given a matrix A, create a new matrix B
by replacing all negative elements in A with their absolute values.

2. Step-by-Step Approach:

a. Create a logical matrix mask that identifies the negative elements in A.
b. Use the logical mask to replace the negative elements in A with their absolute

values, creating the new matrix B.

3. Sample Code:

Listing A.11 Replace Negative Elements with Absolute Values

A = [1 -2 3; -4 5 -6; 7 -8 9]

% Create a logical mask for negative elements
negative_mask = A < 0

% Replace negative elements with their absolute
values

B = abs(A)

4. Sample Output:

A = 1 -2 3
-4 5 -6
7 -8 9

B = 1 2 3
4 5 6
7 8 9

5. Extensions and Variations:

• Instead of replacing negative elements with their absolute values, you could
replace them with a specific value (e.g., 0 or a user-defined constant).

• You could also replace elements based on different conditions, such as replacing
elements greater than a certain threshold or within a specific range.

456 Appendix A: Solutions to Chapter Problems

1. ProblemStatement andBackground:Given amatrixA,find the rowand column
indices of the maximum element in the matrix.

2. Step-by-Step Approach:

a. Find the maximum element in the matrix using the max function.
b. Use the find function to get the linear indices of the maximum element(s).
c. Convert the linear indices to row and column indices using the ind2sub

function.

3. Sample Code:

Listing A.12 Find Indices of Maximum Element

A = [1 4 2; 7 3 9; 5 6 8]

% Find the maximum element
max_element = max(A(:))

% Find the linear indices of the maximum element(s)
max_indices = find(A == max_element)

% Convert linear indices to row and column indices
[row_indices , col_indices] = ind2sub(size(A),

max_indices)

4. Sample Output:

max_element =
9

row_indices =
3

col_indices =
3

5. Extensions and Variations:

• If there are multiple occurrences of the maximum element, the find func-
tion will return all the corresponding linear indices. You can handle this case
accordingly.

• Instead of finding the maximum element, you could find the minimum element
or elements satisfying a specific condition.

1. Problem Statement and Background: Given a matrix A, create a new matrix B
by swapping the elements along the main diagonal with the elements along the
secondary diagonal.

2. Step-by-Step Approach:

a. Create a new matrix B by copying the elements of A.
b. Extract the elements along the main diagonal of A using diag(A).

Appendix A: Solutions to Chapter Problems 457

c. Extract the elements along the secondary diagonal of A using diag(fliplr
(A)).

d. Swap the elements along the main diagonal of B with the elements along the
secondary diagonal.

3. Sample Code:

Listing A.13 Swap Main and Secondary Diagonals

A = [1 2 3; 4 5 6; 7 8 9]

% Create a copy of A
B = A

% Extract the main diagonal elements of A
main_diag = diag(A)

% Extract the secondary diagonal elements of A
secondary_diag = diag(fliplr(A))

% Swap the main and secondary diagonal elements in B
B(1: size(B,1) +1: end) = secondary_diag
B(size(B,1): -1:1) = main_diag

4. Sample Output:

A = 1 2 3
4 5 6
7 8 9

B = 9 2 3
4 5 8
7 6 1

5. Extensions and Variations:

• Instead of swapping the main and secondary diagonals, you could swap other
elements based on different conditions or patterns.

• You could also perform this operation on higher-dimensional arrays or tensors.

1. Problem Statement and Background: Given a matrix A, create a new matrix B
by shifting each element in A one position to the right, wrapping around to the
beginning of the row when reaching the end.

2. Step-by-Step Approach:

a. Create a new matrix B with the same dimensions as A.
b. Shift the elements of each row in A one position to the right using the

circshift function.
c. Assign the shifted rows to the corresponding rows in B.

458 Appendix A: Solutions to Chapter Problems

3. Sample Code:

Listing A.14 Shift Elements to the Right

A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

% Create a new matrix B with the same dimensions as A
B = zeros(size(A))

% Shift each row of A one position to the right
for i = 1:size(A, 1)
B(i, :) = circshift(A(i, :), [0 1]);
end

4. Sample Output:

A = 1 2 3 4
5 6 7 8
9 10 11 12

B = 1
2 4
3 5 7
6 8
9

5. Extensions and Variations:

• Instead of shifting the elements to the right, you could shift them to the left by
using a negative shift value in the circshift function.

• You could also shift the elements vertically (up or down) by applying the
circshift function to the columns instead of the rows.

• You could combine horizontal and vertical shifts to create more complex pat-
terns.

1. Problem Statement and Background: Given a matrix A, create a new matrix B
by extracting the elements along the diagonals parallel to the main diagonal.

2. Step-by-Step Approach:

a. Determine the number of diagonals parallel to the main diagonal, which is
equal to the sum of the dimensions of the matrix minus one.

b. Create an empty cell array to store the elements of each diagonal.
c. For each diagonal, use the diag function to extract the elements along that

diagonal.
d. Concatenate the elements from all diagonals into a single matrix B.

Appendix A: Solutions to Chapter Problems 459

3. Sample Code:

Listing A.15 Extract Diagonals Parallel to Main Diagonal

A = [1 2 3; 4 5 6; 7 8 9]

% Determine the number of diagonals
num_diagonals = size(A, 1) + size(A, 2) - 1

% Create a cell array to store the diagonals
diagonals = cell(1, num_diagonals)

% Extract each diagonal
for k = 1-size(A, 2):size(A, 1) -1
diagonals{k+size(A, 2)} = diag(A, k);
end

% Concatenate the diagonals into a single matrix
B = cell2mat(diagonals ’)

4. Sample Output:

A = 1 2 3
4 5 6
7 8 9

B =
1
2 4
3 5 7
6 8
9

5. Extensions and Variations:

• Instead of extracting diagonals parallel to the main diagonal, you could extract
diagonals parallel to the secondary diagonal by modifying the range of the loop
and the sign of the diagonal offset in the diag function.

• You could also extract specific diagonals or a subset of diagonals based on
certain conditions or requirements.

• This approach can be extended to higher-dimensional arrays or tensors by
modifying the loop structure and the way the diagonals are extracted.

A.4 Solutions to Chapter 4

1. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a number as input and returns the absolute value of that
number using an if statement. The absolute value of a number is its distance
from zero on the number line, ignoring the sign.

460 Appendix A: Solutions to Chapter Problems

2. Step-by-Step Approach:

a. Define a function that takes a number as input.
b. Check if the number is positive or negative using an if statement.
c. If the number is positive, return the number itself.
d. If the number is negative, return the negative of the number (tomake it positive).

3. Sample Code:

Listing A.16 Absolute value function using if statement.

function result = abs_value(num)
if num >= 0
result = num;
else
result = -num;
end
end

4. Sample Output:

>> abs_value(5)
ans = 5
>> abs_value(-3)
ans = 3

5. Extensions and Variations:

• Extend the function to handle complex numbers or matrices.
• Modify the function to use the built-in abs function instead of an if statement.
• Enhance the function to handle specific edge cases or error conditions.

6. Problem Statement and Background: This problem requires implementing
a MATLAB script that prompts the user to enter a character and determines
whether it is a vowel or a consonant using a switch statement. A vowel is any of
the five letters a, e, i, o, or u, and a consonant is any other letter in the alphabet.

7. Step-by-Step Approach:

a. Prompt the user to enter a character.
b. Convert the character to lowercase for case-insensitive matching.
c. Use a switch statement to check if the character is a vowel.
d. If the character is a vowel, display a message indicating it is a vowel.
e. If the character is not a vowel, display a message indicating it is a consonant.

8. Sample Code:

Listing A.17 Vowel or consonant determination using switch statement.

% Prompt the user to enter a character
char = input(’Enter a character: ’, ’s’);

% Convert the character to lowercase
lowercase_char = lower(char);

Appendix A: Solutions to Chapter Problems 461

% Determine if it ’s a vowel or a consonant
switch lowercase_char
case ’a’
disp(’The character is a vowel.’);
case ’e’
disp(’The character is a vowel.’);
case ’i’
disp(’The character is a vowel.’);
case ’o’
disp(’The character is a vowel.’);
case ’u’
disp(’The character is a vowel.’);
otherwise
disp(’The character is a consonant.’);
end

9. Sample Output:
Enter a character: E The character is a vowel.

10. Extensions and Variations:

• Extend the script to handle non-alphabetic characters.
• Modify the script to display a message if the user enters an invalid input.
• Enhance the script to distinguish between uppercase and lowercase vowels/-
consonants.

11. Problem Statement and Background: This problem requires creating a MAT-
LAB function that takes three numbers as input and returns the maximum value
among them using nested if statements. Finding the maximum value is a com-
mon operation in many applications, such as data analysis and optimization.

12. Step-by-Step Approach:

a. Define a function that takes three numbers as input.
b. Use nested if statements to compare the three numbers.
c. First, compare the first two numbers and store the maximum in a temporary

variable.
d. Then, compare the temporary variable with the third number and update it if

necessary.
e. Return the final maximum value stored in the temporary variable.

13. Sample Code:

Listing A.18 Maximum of three numbers using nested if statements.

function max_value = find_max(num1 , num2 , num3)
% Compare the first two numbers
if num1 >= num2
temp_max = num1;
else
temp_max = num2;
end

% Compare the temporary maximum with the third number

462 Appendix A: Solutions to Chapter Problems

if temp_max >= num3
max_value = temp_max;

else
max_value = num3;

end

end

14. Sample Output:

>> find_max(5, 8, 3)
ans = 8
>> find_max(-2, 10, -5)
ans = 10

15. Extensions and Variations:

• Extend the function to handle more than three numbers or to find the minimum
value instead.

• Modify the function to use alternativemethods, such as the built-inmax function
or a nested if-elseif-else statement.

• Enhance the function to handle specific edge cases or error conditions, such as
NaN or Inf values.

16. Problem Statement and Background: This problem requires writing a MAT-
LAB script that generates a random number between 1 and 10, and based on the
value, displays a corresponding message using a switch statement. This can be
useful in various applications where different actions need to be taken based on
a specific condition or value.

17. Step-by-Step Approach:

a. Generate a random number between 1 and 10 using the randi function.
b. Use a switch statement to check the value of the random number.
c. For each possible value, include a case that displays a corresponding message.
d. Include a default case to handle any unexpected values.

18. Sample Code:

Listing A.19 Displaying messages based on random number using switch statement.

% Generate a random number between 1 and 10
random_num = randi ([1, 10]);

% Display a message based on the random number
switch random_num
case 1
disp(’The number is one.’);
case 2
disp(’The number is two.’);
case 3
disp(’The number is three.’);
case 4

Appendix A: Solutions to Chapter Problems 463

disp(’The number is four.’);
case 5
disp(’The number is five.’);
case 6
disp(’The number is six.’);
case 7
disp(’The number is seven.’);

19. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes two numbers as input and returns their sum if both
numbers are positive, their difference if one number is positive and the other is
negative, or zero if both numbers are negative, using nested if statements. This
type of conditional operation is common in many programming tasks.

20. Step-by-Step Approach:

a. Define a function that takes two numbers as input.
b. Use nested if statements to check the signs of the two numbers.
c. If both numbers are positive, return their sum.
d. If one number is positive and the other is negative, return their difference

(positive - negative).
e. If both numbers are negative, return zero.

21. Sample Code:

Listing A.20 Sum, difference, or zero based on number signs using nested if statements.

function result = sum_diff_zero(num1 , num2)
if num1 >= 0 && num2 >= 0 % Both positive
result = num1 + num2;
elseif num1 >= 0 && num2 < 0 % One positive , one

negative
result = num1 - num2;
elseif num1 < 0 && num2 >= 0 % One negative , one

positive
result = num2 - num1;
else % Both negative
result = 0;
end
end

22. Sample Output:

>> sum_diff_zero(3, 5)
ans = 8
>> sum_diff_zero(-2, 7)
ans = 9
>> sum_diff_zero(-4, -6)
ans = 0

23. Extensions and Variations:

• Extend the function to handle complex numbers or matrices.

464 Appendix A: Solutions to Chapter Problems

• Modify the function to perform different operations based on the signs of the
numbers.

• Enhance the function to handle specific edge cases or error conditions, such as
zero values or NaN/Inf.

24. Problem Statement and Background: This problem requires implementing a
MATLAB function that takes a year as input and determines whether it is a leap
year or not using an if-elseif-else statement. A leap year is a year with 366 days
instead of the usual 365 days, and it occurs every four years to keep the calendar
in sync with the astronomical year.

25. Step-by-Step Approach:

a. Define a function that takes a year as input.
b. Use an if-elseif-else statement to check the conditions for a leap year.
c. If the year is divisible by 4 and not divisible by 100, it is a leap year.
d. If the year is divisible by 400, it is also a leap year.
e. Otherwise, the year is not a leap year.
f. Return a message indicating whether the year is a leap year or not.

26. Sample Code:

Listing A.21 Leap year determination using if-elseif-else statement.

function result = is_leap_year(year)
if mod(year , 4) == 0 && mod(year , 100) ~= 0 %

Divisible by 4 and not divisible by 100
result = sprintf(’%d is a leap year.’, year);
elseif mod(year , 400) == 0 % Divisible by 400
result = sprintf(’%d is a leap year.’, year);
else
result = sprintf(’%d is not a leap year.’, year);
end
end

27. Sample Output:

>> is_leap_year(2024)
ans = "2024 is a leap year."
>> is_leap_year(2023)
ans = "2023 is not a leap year."
>> is_leap_year(2000)
ans = "2000 is a leap year."

28. Extensions and Variations:

• Extend the function to handle a range of years or an array of years.
• Modify the function to display additional information, such as the number of
days in the leap year.

• Enhance the function to handle specific edge cases or error conditions, such as
invalid year inputs.

Appendix A: Solutions to Chapter Problems 465

29. Problem Statement and Background: This problem requires creating a MAT-
LAB script that prompts the user to enter their age and displays a message
indicating their age category (e.g., child, teenager, adult) using an if-elseif-else
statement. This type of age categorization can be useful in various applications,
such as targeted advertising or content filtering.

30. Step-by-Step Approach:

a. Prompt the user to enter their age.
b. Use an if-elseif-else statement to check the age range and determine the cate-

gory.
c. If the age is below a certain threshold (e.g., 13), categorize the user as a child.
d. If the age is between the teenage range (e.g., 13-19), categorize the user as a

teenager.
e. If the age is above the adult threshold (e.g., 19), categorize the user as an adult.
f. Display a message indicating the age category.

31. Sample Code:

Listing A.22 Age category determination using if-elseif-else statement.

% Prompt the user to enter their age
age = input(’Enter your age: ’);

% Determine the age category
if age < 13
disp(’You are a child.’);
elseif age >= 13 && age <= 19
disp(’You are a teenager.’);
else
disp(’You are an adult.’);
end

32. Sample Output:
Enter your age: 25 You are an adult.

33. Extensions and Variations:

• Extend the script to include additional age categories, such as senior citizen or
infant.

• Modify the script to handle invalid or non-numeric input.
• Enhance the script to provide more detailed information or recommendations
based on the age category.

34. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a character as input and determines whether it is a digit,
an uppercase letter, a lowercase letter, or a special character using nested if state-
ments. This type of character classification can be useful in various applications,
such as data validation or text processing.

35. Step-by-Step Approach:

a. Define a function that takes a character as input.
b. Use nested if statements to check the character type.

466 Appendix A: Solutions to Chapter Problems

c. First, check if the character is a digit using the isdigit function.
d. If not a digit, check if the character is an uppercase letter using the isletter and

isupper functions.
e. If not an uppercase letter, check if the character is a lowercase letter using the

isletter and islower functions.
f. If none of the above, categorize the character as a special character.
g. Return a message indicating the character type.

36. Sample Code:

Listing A.23 Character type determination using nested if statements.

function result = char_type(char_input)
if isdigit(char_input)
result = ’The character is a digit.’;
elseif isletter(char_input) && isupper(char_input)
result = ’The character is an uppercase letter.’;
elseif isletter(char_input) && islower(char_input)
result = ’The character is a lowercase letter.’;
else
result = ’The character is a special character.’;
end
end

37. Sample Output:

>> char_type(’5’)
ans = "The character is a digit."
>> char_type(’A’)
ans = "The character is an uppercase letter."
>> char_type(’z’)
ans = "The character is a lowercase letter."
>> char_type(’?’)
ans = "The character is a special character."

38. Extensions and Variations:

• Extend the function to handle multiple characters or strings.
• Modify the function to include additional character types, such as punctuation
or whitespace.

• Enhance the function to handle specific edge cases or error conditions, such as
empty or non-character input.

39. Problem Statement and Background: This problem requires implementing a
MATLAB script that prompts the user to enter a number and displays whether
it is positive, negative, or zero using an if-elseif-else statement. This type of
number classification is a common task in many applications.

Appendix A: Solutions to Chapter Problems 467

40. Step-by-Step Approach:

a. Prompt the user to enter a number.
b. Use an if-elseif-else statement to check the sign of the number.
c. If the number is greater than zero, display a message indicating it is positive.
d. If the number is less than zero, display a message indicating it is negative.
e. If the number is zero, display a message indicating it is zero.

41. Sample Code:

Listing A.24 Number sign determination using if-elseif-else statement.

% Prompt the user to enter a number
num = input(’Enter a number: ’);

% Determine the sign of the number
if num > 0
disp(’The number is positive.’);
elseif num < 0
disp(’The number is negative.’);
else
disp(’The number is zero.’);
end

42. Sample Output:
Enter a number: −5 The number is negative.

43. Extensions and Variations:

• Extend the script to handle complex numbers or matrices.
• Modify the script to perform additional operations based on the sign of the
number.

• Enhance the script to handle specific edge cases or error conditions, such as
non-numeric input.

44. Problem Statement and Background: This problem requires creating a MAT-
LAB function that takes two numbers as input and returns their sum if both
numbers are positive, their difference if one number is positive and the other is
negative, or zero if both numbers are negative, using nested if statements. This
type of conditional operation is common in many programming tasks.

45. Step-by-Step Approach:

a. Define a function that takes two numbers as input.
b. Use nested if statements to check the signs of the two numbers.
c. If both numbers are positive, return their sum.
d. If one number is positive and the other is negative, return their difference

(positive - negative).
e. If both numbers are negative, return zero.

468 Appendix A: Solutions to Chapter Problems

46. Sample Code:

Listing A.25 Sum, difference, or zero based on number signs using nested if statements.

function result = sum_diff_zero(num1 , num2)
if num1 >= 0 && num2 >= 0 % Both positive
result = num1 + num2;
elseif num1 >= 0 && num2 < 0 % One positive , one

negative
result = num1 - num2;
elseif num1 < 0 && num2 >= 0 % One negative , one

positive
result = num2 - num1;
else % Both negative
result = 0;
end
end

47. Sample Output:

>> sum_diff_zero(3, 5)
ans = 8
>> sum_diff_zero(-2, 7)
ans = 9
>> sum_diff_zero(-4, -6)
ans = 0

48. Extensions and Variations:

• Extend the function to handle complex numbers or matrices.
• Modify the function to perform different operations based on the signs of the
numbers.

• Enhance the function to handle specific edge cases or error conditions, such as
zero values or NaN/Inf.

49. Problem Statement and Background: This problem requires writing a MAT-
LAB script that generates two random numbers between 1 and 6 (representing
dice rolls) and displays a message indicating the outcome (e.g., “You rolled a
double,” “You rolled a high number,” etc.) using a switch statement. This type
of problem can be used to simulate simple games or random events.

50. Step-by-Step Approach:

a. Generate two random numbers between 1 and 6 using the randi function.
b. Use a switch statement to check the sum of the two random numbers.
c. For each possible sum, include a case that displays a corresponding message.
d. Include a default case to handle any unexpected sum values.

51. Sample Code:

Listing A.26 Dice roll outcome using switch statement.

% Generate two random numbers between 1 and 6
roll1 = randi ([1, 6]);
roll2 = randi ([1, 6]);

Appendix A: Solutions to Chapter Problems 469

% Display the outcome based on the sum of the rolls
sum_rolls = roll1 + roll2;
switch sum_rolls
case 2
disp(’You rolled a snake eyes!’);
case 3
disp(’You rolled a low number.’);
case 7
disp(’You rolled a high number.’);
case 12
disp(’You rolled a box cars!’);
case {2, 12}
disp(’You rolled a double!’);
otherwise
disp(’You rolled a regular combination.’);
end

52. Sample Output:
You rolled a high number.

53. Extensions and Variations:

• Extend the script to handle more than two dice or different dice value ranges.
• Modify the script to include additional outcomesor conditions, such as checking
for specific combinations.

• Enhance the script to perform additional operations or calculations based on
the outcome.

The basic syntax for various control statements is as follows:

Listing A.27 If statement syntax.

if condition
statements
end

Listing A.28 If-else statement syntax.

if condition
statements
else
statements
end

Listing A.29 If-elseif-else statement syntax.

if condition1
statements
elseif condition2
statements
else
statements
end

470 Appendix A: Solutions to Chapter Problems

Listing A.30 Switch statement syntax.

switch expression
case value1
statements
case value2
statements
otherwise
statements
end

These control statements allow you to execute different blocks of code based on
certain conditions or expressions, enablingyou to createmore complex and intelligent
programs in MATLAB.

A.5 Solutions to Chapter 5

1. Problem Statement and Background: This problem requires writing a MAT-
LAB script that creates a vector of random integers between 1 and 20 with a
length of 10. A for loop is then used to iterate over the vector and print all
elements that are even. This type of problem is useful for understanding how to
generate random data and iterate over vectors using loops.

2. Step-by-Step Approach:

a. Create a vector of 10 random integers between 1 and 20 using the randi
function.

b. Initialize a for loop to iterate over the vector from the first index to the last
index.

c. Within the loop, check if the current element is even using the mod function
(or the rem function for remainders).

d. If the element is even, print it using the disp function.

3. Sample Code:

Listing A.31 Printing even elements of a vector using a for loop.

% Create a vector of 10 random integers between 1 and
20

vec = randi ([1, 20], 1, 10);

% Print the even elements
disp(’Even elements in the vector:’);
for i = 1: length(vec)
if mod(vec(i), 2) == 0
disp(vec(i));
end
end

Appendix A: Solutions to Chapter Problems 471

4. Sample Output:

Even elements in the vector:
6
20
14
2

5. Extensions and Variations:

• Modify the script to print the indices of the even elements instead of their
values.

• Extend the script to count the number of even elements in the vector and print
the count.

• Enhance the script to allow the user to specify the vector length and value range.

6. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a vector as input and returns a new vector containing
only the positive elements. A for loop is used to iterate over the input vector and
select the positive elements. This type of problem is useful for understanding
how to filter or extract specific elements from a vector based on a condition.

7. Step-by-Step Approach:

a. Define a function that takes a vector as input.
b. Initialize an empty vector to store the positive elements.
c. Use a for loop to iterate over the input vector.
d. Within the loop, check if the current element is positive.
e. If the element is positive, append it to the new vector.
f. After the loop, return the new vector containing only the positive elements.

8. Sample Code:

Listing A.32 Extracting positive elements from a vector using a for loop.

function pos_vec = extract_positive(vec)
pos_vec = []; % Initialize empty vector
for i = 1: length(vec)
if vec(i) > 0
pos_vec = [pos_vec , vec(i)]; % Append positive

element
end
end
end

9. Sample Output:

>> vec = [-3, 0, 5, -2, 7, -1];
>> pos_vec = extract_positive(vec)
pos_vec =

5 7

472 Appendix A: Solutions to Chapter Problems

10. Extensions and Variations:

• Modify the function to handle matrices or higher-dimensional arrays.
• Extend the function to allow the user to specify a different condition for element
selection (e.g., negative elements, elements within a range).

• Enhance the function to handle specific edge cases or error conditions, such as
an empty input vector.

11. Problem Statement and Background: This problem requires writing a MAT-
LAB script that creates a 3x3 matrix with random values between 1 and 10.
Nested for loops are then used to iterate over the matrix and print the elements
in reverse row order. This type of problem is useful for understanding how to
manipulate and access elements in matrices using nested loops.

12. Step-by-Step Approach:

a. Create a 3x3 matrix with random values between 1 and 10 using the randi
function.

b. Initialize an outer for loop to iterate over the rows of the matrix from the last
row to the first row.

c. Within the outer loop, initialize an inner for loop to iterate over the columns
of the matrix from the first column to the last column.

d. Within the inner loop, print the current element using the disp function.

13. Sample Code:

Listing A.33 Printing matrix elements in reverse row order using nested for loops.

% Create a 3x3 matrix with random values between 1
and 10

mat = randi ([1, 10], 3, 3);

% Print the elements in reverse row order
disp(’Matrix elements in reverse row order:’);
for i = 3:-1:1 % Iterate over rows in reverse order
for j = 1:3 % Iterate over columns
disp(mat(i, j));
end
end

14. Sample Output:

Matrix elements in reverse row order:
7
5
1
3
9
6
4
2
8

Appendix A: Solutions to Chapter Problems 473

15. Extensions and Variations:

• Modify the script to print the elements in reverse columnorder instead of reverse
row order.

• Extend the script to handle matrices of different sizes or higher dimensions.
• Enhance the script to allow the user to specify the value range for the random
matrix elements.

16. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a scalar value and a vector as input. A for loop is used to
iterate over the vector and multiply each element by the scalar value. The mod-
ified vector is then returned. This type of problem is useful for understanding
how to perform element-wise operations on vectors using loops.

17. Step-by-Step Approach:

a. Define a function that takes a scalar value and a vector as input.
b. Initialize an empty vector to store the modified elements.
c. Use a for loop to iterate over the input vector.
d. Within the loop, multiply the current element by the scalar value and append

the result to the new vector.
e. After the loop, return the new vector containing the modified elements.

18. Sample Code:

Listing A.34 Multiplying vector elements by a scalar using a for loop.

function new_vec = scalar_multiply(scalar , vec)
new_vec = []; % Initialize empty vector
for i = 1: length(vec)
new_vec = [new_vec , scalar * vec(i)]; % Append

modified element
end
end

19. Sample Output:

>> vec = [1, 2, 3, 4, 5];
>> new_vec = scalar_multiply(2, vec)
new_vec =

2 4 6 8 10

20. Extensions and Variations:

• Modify the function to handle matrices or higher-dimensional arrays.
• Extend the function to perform different element-wise operations (e.g., addi-
tion, subtraction, division).

• Enhance the function to handle specific edge cases or error conditions, such as
an empty input vector or a scalar value of zero.

21. Problem Statement and Background: This problem requires writing a MAT-
LAB script that creates a vector of random integers between 1 and 100 with a

474 Appendix A: Solutions to Chapter Problems

length of 20. A while loop is then used to iterate over the vector and print all
elements that are divisible by 3 or 5. This type of problem is useful for under-
standing how to use while loops and iterate over vectors based on a condition.

22. Step-by-Step Approach:

a. Create a vector of 20 random integers between 1 and 100 using the randi
function.

b. Initialize a counter variable i to 1.
c. Initialize a while loop that continues as long as i is less than or equal to the

length of the vector.
d. Within the loop, check if the current element is divisible by 3 or 5 using the

mod function (or the rem function for remainders).
e. If the element is divisible by 3 or 5, print it using the disp function.
f. Increment the counter variable i by 1.

23. Sample Code:

Listing A.35 Printing elements divisible by 3 or 5 using a while loop.

% Create a vector of 20 random integers between 1 and
100

vec = randi ([1, 100], 1, 20);

% Print elements divisible by 3 or 5
disp(’Elements divisible by 3 or 5:’);
i = 1;
while i <= length(vec)
if mod(vec(i), 3) == 0 || mod(vec(i), 5) == 0
disp(vec(i));
end
i = i + 1;
end

24. Sample Output:

Elements divisible by 3 or 5:
15
30
45
60
75
90

25. Extensions and Variations:

• Modify the script to print the indices of the divisible elements instead of their
values.

• Extend the script to count the number of elements divisible by 3 or 5 and print
the count.

• Enhance the script to allow the user to specify the vector length and value range,
as well as the divisibility conditions.

Appendix A: Solutions to Chapter Problems 475

26. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a matrix as input and computes the sum of all elements
in the matrix using nested for loops. This type of problem is useful for under-
standing how to iterate over matrices and perform calculations on their elements.

27. Step-by-Step Approach:

a. Define a function that takes a matrix as input.
b. Initialize a variable sum to 0 to store the cumulative sum.
c. Use a nested for loop structure to iterate over the rows and columns of the

matrix.
d. Within the inner loop, add the current element to the sum variable.
e. After the nested loops, return the final value of sum.

28. Sample Code:

Listing A.36 Computing the sum of matrix elements using nested for loops.

function total_sum = matrix_sum(mat)
total_sum = 0; % Initialize sum to 0
for i = 1:size(mat , 1) % Iterate over rows
for j = 1:size(mat , 2) % Iterate over columns
total_sum = total_sum + mat(i, j); % Add current

element to sum
end
end
end

29. Sample Output:

>> mat = [1 2 3; 4 5 6; 7 8 9];
>> total_sum = matrix_sum(mat)
total_sum =

45

30. Extensions and Variations:

• Modify the function to handle higher-dimensional arrays.
• Extend the function to compute other statistical measures, such as the mean,
variance, or standard deviation of the matrix elements.

• Enhance the function to handle specific edge cases or error conditions, such as
an empty input matrix.

31. Problem Statement and Background: This problem requires writing a MAT-
LAB script that creates two vectors, A and B, of random integers between 1 and
10 with a length of 5. Vectorisation is then used to compute the element-wise
sum, difference, and product of the two vectors. This type of problem is useful
for understanding how to perform element-wise operations on vectors efficiently
using vectorisation techniques.

476 Appendix A: Solutions to Chapter Problems

32. Step-by-Step Approach:

a. Create two vectors, A and B, of length 5 with random integers between 1 and
10 using the randi function.

b. Compute the element-wise sum of A and B using the + operator and vectori-
sation.

c. Compute the element-wise difference of A and B using the - operator and
vectorisation.

d. Compute the element-wise product of A and B using the .* operator and vec-
torisation.

e. Display the results.

33. Sample Code:

Listing A.37 Vectorised element-wise operations on vectors.

% Create two vectors with random integers between 1
and 10

A = randi([1, 10], 1, 5);
B = randi([1, 10], 1, 5);

% Compute element -wise operations using vectorisation
sum_AB = A + B;
diff_AB = A - B;
prod_AB = A .* B;

% Display the results
disp(’Vector A:’);
disp(A);
disp(’Vector B:’);
disp(B);
disp(’Element -wise sum:’);
disp(sum_AB);
disp(’Element -wise difference:’);
disp(diff_AB);
disp(’Element -wise product:’);
disp(prod_AB);

34. Sample Output:

Vector A:
3 8 1 5 6

Vector B:
2 4 9 7 10

Element-wise sum:
5 12 10 12 16

Element-wise difference:
1 4 -8 -2 -4

Element-wise product:
6 32 9 35 60

Appendix A: Solutions to Chapter Problems 477

35. Extensions and Variations:

• Modify the script to handle matrices or higher-dimensional arrays.
• Extend the script to perform additional element-wise operations, such as divi-
sion or exponentiation.

• Enhance the script to allow the user to specify the vector length and value range.

36. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a vector as input and returns themaximumandminimum
values in the vector using a for loop. This type of problem is useful for under-
standing how to find the extrema (maximum and minimum values) in a dataset
using loops.

37. Step-by-Step Approach:

a. Define a function that takes a vector as input.
b. Initialize variables max_val and min_val to the first element of the vector.
c. Use a for loop to iterate over the remaining elements of the vector, starting

from the second element.
d. Within the loop, update the max_val variable if the current element is greater

than the current maximum value.
e. Within the loop, update themin_val variable if the current element is less than

the current minimum value.
f. After the loop, return both max_val and min_val.

38. Sample Code:

Listing A.38 Finding maximum and minimum values in a vector using a for loop.

function [max_val , min_val] = find_extrema(vec)
max_val = vec (1); % Initialize max_val to first

element
min_val = vec (1); % Initialize min_val to first

element
for i = 2: length(vec) % Start from second element
if vec(i) > max_val
max_val = vec(i); % Update max_val
end
if vec(i) < min_val
min_val = vec(i); % Update min_val
end
end
end

39. Sample Output:

>> vec = [5, 3, 8, 1, 6];
>> [max_val, min_val] = find_extrema(vec)
max_val =

8
min_val =

1

478 Appendix A: Solutions to Chapter Problems

40. Extensions and Variations:

• Modify the function to handle matrices or higher-dimensional arrays.
• Extend the function to find the maximum and minimum values along specific
dimensions (e.g., rows or columns) of a matrix.

• Enhance the function to handle specific edge cases or error conditions, such as
an empty input vector.

41. Problem Statement and Background: This problem requires writing a MAT-
LAB script that creates a vector of random integers between 1 and 20 with a
length of 15. A for loop is then used to iterate over the vector and replace all
occurrences of the number 3 with the value −1. This type of problem is useful
for understanding how tomodify elements in a vector based on a condition using
loops.

42. Step-by-Step Approach:

a. Create a vector of 15 random integers between 1 and 20 using the randi func-
tion.

b. Use a for loop to iterate over the vector.
c. Within the loop, check if the current element is equal to 3.
d. If the element is equal to 3, replace it with −1.
e. After the loop, display the modified vector.

43. Sample Code:

Listing A.39 Replacing occurrences of a value in a vector using a for loop.

% Create a vector of 15 random integers between 1 and
20

vec = randi ([1, 20], 1, 15);

% Replace occurrences of 3 with -1
for i = 1: length(vec)
if vec(i) == 3
vec(i) = -1; % Replace with -1
end
end

% Display the modified vector
disp(’Modified vector:’);
disp(vec);

44. Sample Output:

Modified vector:
17 -1 9 6 5 1 14 18 -1 3 11 -1
16 20 7

45. Extensions and Variations:

• Modify the script to replace occurrences of multiple values with different
replacement values.

Appendix A: Solutions to Chapter Problems 479

• Extend the script to handle matrices or higher-dimensional arrays.
• Enhance the script to allow the user to specify the vector length, value range,
and the value(s) to be replaced.

46. Problem Statement and Background: This problem requires writing a MAT-
LAB function that takes a matrix as input and computes the sum of the diagonal
elements using a single for loop. This type of problem is useful for understanding
how to access and manipulate diagonal elements in a matrix using loops.

47. Step-by-Step Approach:

a. Define a function that takes a matrix as input.
b. Initialize a variable diag_sum to 0 to store the sum of the diagonal elements.
c. Use a single for loop to iterate over the diagonal elements of the matrix.
d. Within the loop, add the current diagonal element to the diag_sum variable.
e. After the loop, return the final value of diag_sum.

48. Sample Code:

Listing A.40 Computing the sum of diagonal elements using a for loop.

function diag_sum = diagonal_sum(mat)
diag_sum = 0; % Initialize sum to 0
for i = 1:min(size(mat)) % Iterate over diagonal

elements
diag_sum = diag_sum + mat(i, i); % Add diagonal

element to sum
end
end

49. Sample Output:

>> mat = [1 2 3; 4 5 6; 7 8 9];
>> diag_sum = diagonal_sum(mat)
diag_sum =

15

50. Extensions and Variations:

• Modify the function to compute the sum of the off-diagonal elements or the
secondary diagonal elements.

• Extend the function to handle matrices of different sizes or higher dimensions.
• Enhance the function to handle specific edge cases or error conditions, such as
an empty input matrix or non-square matrices.

480 Appendix A: Solutions to Chapter Problems

The basic syntax for various loop statements is as follows:

Listing A.41 For loop syntax.

for variable = expression
% Statement(s)
end

Listing A.42 While loop syntax.

while condition
% Statement(s)
end

Listing A.43 Nested loops syntax.

for outer_variable = outer_expression
for inner_variable = inner_expression
% Statement(s)
end
end

In summary, this chapter coveredvarious examples andproblemstatements related
to loops in MATLAB, including:

• Using for loops to perform operations on vector elements
• Employing while loops to iterate based on conditions
• Utilizing nested for loops to iterate over matrices
• Applying vectorization techniques for efficient element-wise operations
• Finding maximum and minimum values in a vector
• Modifying vector elements based on conditions
• Computing the sum of diagonal elements in a matrix

These examples aimed to provide a solid understanding of how to use different
loop constructs and apply them to solve practical problems in MATLAB. Addi-
tionally, extensions and variations were suggested to further enhance the learning
experience and problem-solving skills.

It is important to note that while loops are powerful tools for iterating and per-
forming operations, MATLAB’s vectorized operations are often more efficient and
preferred for many computations involving arrays and matrices. However, loops
remain essential for certain tasks, such as conditional operations or iterating over
specific elements based on criteria.

By mastering the concepts covered in this chapter, you will be well-equipped to
tackle a wide range of programming challenges that involve iterative processes and
data manipulation in MATLAB.

These problems cover various aspects of using loops (for andwhile) inMATLAB,
including iterating over vectors and matrices, performing element-wise operations,
and implementing basic algorithms. The solutions provide step-by-step approaches,
sample code, and sample outputs, along with suggestions for extensions and varia-
tions to further enhance your understanding and skills.

Appendix A: Solutions to Chapter Problems 481

A.6 Solutions to Chapter 6

1. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter their name and age, and then displays a personalised greeting.

2. Step-by-Step Approach:

a. Prompt the user to enter their name using the input function.
b. Prompt the user to enter their age using the input function.
c. Construct a personalized greeting message using the entered name and age.
d. Display the greeting message using the fprintf function.

3. Sample Code:

Listing A.44 Personalized greeting script.

% Prompt the user to enter their name
name = input(’Enter your name: ’, ’s’);

% Prompt the user to enter their age
age = input(’Enter your age: ’);

% Construct the greeting message
greeting = sprintf(’Hello , %s! You are %d years old.’

, name , age);

% Display the greeting message
fprintf(’%s\n’, greeting);

4. Sample Output: If the user enters “John” as their name and “25” as their age,
the output will be:

Enter your name: John
Enter your age: 25
Hello , John! You are 25 years old.

5. Extensions and Variations:

• Modify the script to handle invalid input (e.g., non-numeric age or empty name).
• Add additional information to the greeting message, such as a personalized
message based on the user’s age range.

6. Problem Statement and Background: Create a MATLAB function that takes
two numbers as input and returns their sum, difference, product, and quotient (if
applicable).

7. Step-by-Step Approach:

a. Define a function named ‘arithmetic’ that takes two input arguments ‘a’ and
‘b’.

b. Inside the function, calculate the sum, difference, product, and quotient (if
applicable) of ‘a’ and ‘b’.

c. Return the calculated values as output arguments from the function.

482 Appendix A: Solutions to Chapter Problems

8. Sample Code:

Listing A.45 Arithmetic operations function.

function [sum , diff , prod , quot] = arithmetic(a, b)
% ARITHMETIC Performs arithmetic operations on two

numbers
% [sum , diff , prod , quot] = arithmetic(a, b) returns

the
% sum , difference , product , and quotient (if

applicable)
% of a and b

sum = a + b;
diff = a - b;
prod = a * b;
if b ~= 0
quot = a / b;
else
quot = NaN; % Undefined for division by zero
end
end

9. Sample Output: To call the function and perform arithmetic operations on 5
and 3, use the following code:

[s, d, p, q] = arithmetic (5, 3)
s =
8
d =
2
p =
15
q =
1.6667

10. Extensions and Variations:

• Modify the function to handle other arithmetic operations, such as modulus or
exponentiation.

• Add error handling for non-numeric input or other edge cases.
• Create a script that prompts the user to enter two numbers and calls the arith-
metic function to display the results.

11. Problem Statement and Background: Write a MATLAB script that generates
a random vector of 10 integers between 1 and 100, and then calculates the mean,
median, and standard deviation of the vector.

12. Step-by-Step Approach:

a. Generate a random vector of 10 integers between 1 and 100 using the ‘randi’
function.

Appendix A: Solutions to Chapter Problems 483

b. Calculate the mean of the vector using the ‘mean’ function.
c. Calculate the median of the vector using the ‘median’ function.
d. Calculate the standard deviation of the vector using the ‘std’ function.
e. Display the generated vector, mean, median, and standard deviation.

13. Sample Code:

Listing A.46 Vector statistics script.

% Generate a random vector of 10 integers between 1
and 100

vec = randi ([1, 100], 1, 10);

% Calculate the mean , median , and standard deviation
mean_val = mean(vec);
median_val = median(vec);
std_val = std(vec);

% Display the vector and statistics
fprintf(’Random vector: ’);
disp(vec);
fprintf(’Mean: %.2f\n’, mean_val);
fprintf(’Median: %.2f\n’, median_val);
fprintf(’Standard deviation: %.2f\n’, std_val);

14. Sample Output: The output will be a randomly generated vector and its mean,
median, and standard deviation, for example:

Random vector: 8 82 48 99 31 77 63 12 57 14
Mean: 49.10
Median: 54.50
Standard deviation: 31.56

15. Extensions and Variations:

• Modify the script to generate a vector of a different size or within a different
range of values.

• Add functionality to calculate additional statistical measures, such as quartiles
or mode.

• Create a function that takes a vector as input and returns the calculated statistics.

16. Problem Statement and Background: Create a MATLAB function that takes
a string as input and returns the number of vowels (a, e, i, o, u) in the string.

17. Step-by-Step Approach:

a. Define a function named countVowels that takes a string str as input.
b. Initialise a counter variable vowel_count to 0.
c. Convert the input string to lowercase using the lower function.
d. Iterate through each character in the string using a loop.
e. Inside the loop, check if the current character is a vowel (a, e, i, o, u) using a

conditional statement.

484 Appendix A: Solutions to Chapter Problems

f. If the character is a vowel, increment the vowel_count by 1.
g. After the loop finishes, return vowel_count as the output of the function.

18. Sample Code:

Listing A.47 Count vowels function.

function vowel_count = countVowels(str)
% COUNTVOWELS Counts the number of vowels in a string
% vowel_count = countVowels(str) returns the number

of
% vowels (a, e, i, o, u) in the input string str

vowel_count = 0;
str = lower(str); % Convert to lowercase
for i = 1: length(str)
char = str(i);
if char == ’a’ || char == ’e’ || char == ’i’ || char

== ’o’ || char == ’u’
vowel_count = vowel_count + 1;
end
end
end

19. Sample Output: To call the function and count the vowels in the string “Hello,
World!”, use the following code:

countVowels(’Hello , World!’)
ans =
3

20. Extensions and Variations:

• Modify the function to count vowels in a case-insensitive manner (i.e., treat
uppercase and lowercase vowels the same).

• Add functionality to count specific vowels only (e.g., count only the occurrences
of ‘a’ and ‘e’).

• Create a script that prompts the user to enter a string and calls the countVowels
function to display the number of vowels.

21. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter the coefficients of a quadratic equation (

ax2 + bx + c = 0

) and calculates its roots using the quadratic formula.
22. Step-by-Step Approach:

a. Prompt the user to enter the coefficients a, b, and c using the input function.
b. Calculate the discriminant (

b2 − 4ac

) using the entered coefficients.

Appendix A: Solutions to Chapter Problems 485

c. Check if the discriminant is positive, zero, or negative to determine the nature
of the roots.

d. If the discriminant is positive, calculate the two distinct real roots using the
quadratic formula.

e. If the discriminant is zero, calculate the single real root using the quadratic
formula.

f. If the discriminant is negative, output a message indicating that the roots are
complex conjugates.

g. Display the calculated roots (if any) using the fprintf function.

23. Sample Code:

Listing A.48 Quadratic equation solver script.

% Prompt the user to enter the coefficients
a = input(’Enter the coefficient a: ’);
b = input(’Enter the coefficient b: ’);
c = input(’Enter the coefficient c: ’);

% Calculate the discriminant
discriminant = b^2 - 4ac;

% Check the nature of the roots based on the
discriminant

if discriminant > 0
% Two distinct real roots
root1 = (-b + sqrt(discriminant)) / (2a);
root2 = (-b - sqrt(discriminant)) / (2a);
fprintf(’The roots of the equation are: %.2f and %.2f

\n’, root1 , root2);
elseif discriminant == 0
% Single real root
root = -b / (2*a);
fprintf(’The root of the equation is: %.2f\n’, root);
else
% Complex conjugate roots
fprintf(’The roots of the equation are complex

conjugates .\n’);
end

24. Sample Output: If the user enters coefficients a = 1, b = −3, and c = 2, the
output will be:

Enter the coefficient a: 1
Enter the coefficient b: -3
Enter the coefficient c: 2
The roots of the equation are: 2.00 and 1.00

25. Extensions and Variations:

• Modify the script to handle invalid input (e.g., non-numeric coefficients or a =
0, which makes it a linear equation).

486 Appendix A: Solutions to Chapter Problems

• Add functionality to display the roots in amore user-friendly format (e.g., using
complex number notation for complex roots).

• Create a function that takes the coefficients as input and returns the calculated
roots as output.

26. Problem Statement and Background: Create a MATLAB function that takes
a vector of numbers as input and returns a new vector containing only the unique
elements.

27. Step-by-Step Approach:

a. Define a function named uniqueElements that takes a vector vec as input.
b. Initialise an empty vector unique_vec to store the unique elements.
c. Iterate through each element in the input vector vec using a loop.
d. Inside the loop, check if the current element is alreadypresent in the unique_vec

vector using the ismember function.
e. If the current element is not present in unique_vec, append it to the end of

unique_vec.
f. After the loop finishes, unique_vec will contain all the unique elements from

the input vector.
g. Return unique_vec as the output of the function.

28. Sample Code:

Listing A.49 Unique elements function.

function unique_vec = uniqueElements(vec)
% UNIQUEELEMENTS Finds the unique elements in a

vector
% unique_vec = uniqueElements (vec) returns a vector

containing
% the unique elements from the input vector vec

unique_vec = [];
for i = 1: length(vec)
if ~ismember(vec(i), unique_vec)
unique_vec = [unique_vec , vec(i)];
end
end
end

29. Sample Output: To call the function and find the unique elements in the vector
[1, 2, 3, 2, 4, 1, 5], use the following code:

vec = [1, 2, 3, 2, 4, 1, 5];
unique_vec = uniqueElements (vec)
unique_vec =
1 2 3 4 5

Appendix A: Solutions to Chapter Problems 487

30. Extensions and Variations:

• Modify the function to handle different data types (e.g., strings or cell arrays)
instead of numeric vectors.

• Add functionality to sort the output vector in ascending or descending order.
• Create a script that prompts the user to enter the elements of the vector and
calls the uniqueElements function to display the unique elements.

31. Problem Statement and Background: Write a MATLAB script that gener-
ates a random 3x3 matrix and calculates its determinant, trace, and inverse (if
applicable).

32. Step-by-Step Approach:

a. Generate a random 3x3 matrix using the randi function.
b. Calculate the determinant of the matrix using the det function.
c. Calculate the trace of the matrix by summing the diagonal elements.
d. Check if the determinant is non-zero to determine if the matrix is invertible.
e. If the matrix is invertible, calculate its inverse using the inv function.
f. Display the generated matrix, determinant, trace, and inverse (if applicable).

33. Sample Code:

Listing A.50 Matrix operations script.

% Generate a random 3x3 matrix
A = randi([1, 10], 3, 3);

% Calculate the determinant
det_A = det(A);

% Calculate the trace
trace_A = sum(diag(A));

% Check if the matrix is invertible
if det_A ~= 0
% Calculate the inverse
inv_A = inv(A);
fprintf(’The inverse of the matrix is:\n’);
disp(inv_A);
else
fprintf(’The matrix is not invertible (determinant is

zero).\n’);
end

% Display the matrix , determinant , and trace
fprintf(’The matrix is:\n’);
disp(A);
fprintf(’Determinant: %d\n’, det_A);
fprintf(’Trace: %d\n’, trace_A);

34. Sample Output: The output will depend on the randomly generated matrix, but
it may look something like this:

488 Appendix A: Solutions to Chapter Problems

The matrix is:
9 3 7
1 5 8
6 4 2
Determinant: -33
Trace: 16
The inverse of the matrix is:
0.0606 0.0303 -0.1818
0.1818 -0.0303 -0.0606
-0.2424 0.1818 0.2121

35. Extensions and Variations:

• Modify the script to generate a matrix of a different size (e.g., 4x4 or NxN).
• Add functionality to calculate additional matrix properties, such as the rank or
eigenvalues/eigenvectors.

• Create a function that takes a matrix as input and returns its determinant, trace,
and inverse (if applicable).

36. Problem Statement and Background: Create a MATLAB function that takes
a positive integer as input and returns the sum of its digits.

37. Step-by-Step Approach:

a. Define a function named sumDigits that takes a positive integer num as input.
b. Initialise a variable sum to 0 to store the sum of digits.
c. Convert the input number to a string using the num2str function.
d. Iterate through each character in the string using a loop.
e. Inside the loop, convert the current character to a numeric value using the

str2double function and add it to the sum variable.
f. After the loop finishes, return sum as the output of the function.

38. Sample Code:

Listing A.51 Sum of digits function.

function sum = sumDigits(num)
% SUMDIGITS Calculates the sum of digits of a number
% sum = sumDigits(num) returns the sum of digits
% of the input positive integer num

sum = 0;
str_num = num2str(num);
for i = 1: length(str_num)
digit = str2double(str_num(i));
sum = sum + digit;
end
end

39. Sample Output: To call the function and calculate the sum of digits for the
number 12345, use the following code:

Appendix A: Solutions to Chapter Problems 489

sumDigits (12345)
ans =
15

40. Extensions and Variations:

• Modify the function to handle negative integers by taking the absolute value of
the input number.

• Add functionality to handle non-integer input or other edge cases.
• Create a script that prompts the user to enter a number and calls the sumDigits
function to display the sum of its digits.

41. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter the side lengths of a triangle and determines whether the triangle
is equilateral, isosceles, or scalene.

42. Step-by-Step Approach:

a. Prompt the user to enter the three side lengths of the triangle using the input
function.

b. Check if all three side lengths are equal. If so, the triangle is equilateral.
c. Otherwise, check if any two side lengths are equal. If so, the triangle is isosce-

les.
d. If none of the side lengths are equal, the triangle is scalene.
e. Display the classification of the triangle (equilateral, isosceles, or scalene)

using the fprintf function.

43. Sample Code:

Listing A.52 Triangle classification script.

% Prompt the user to enter the side lengths
side1 = input(’Enter the length of side 1: ’);
side2 = input(’Enter the length of side 2: ’);
side3 = input(’Enter the length of side 3: ’);

% Check the triangle type
if side1 == side2 && side2 == side3
fprintf(’The triangle is equilateral .\n’);
elseif side1 == side2 || side1 == side3 || side2 ==

side3
fprintf(’The triangle is isosceles .\n’);
else
fprintf(’The triangle is scalene .\n’);
end

44. Sample Output: If the user enters side lengths 5, 5, and 7, the output will be:

Enter the length of side 1: 5
Enter the length of side 2: 5
Enter the length of side 3: 7
The triangle is isosceles.

490 Appendix A: Solutions to Chapter Problems

45. Extensions and Variations:

• Modify the script to handle invalid input (e.g., non-numeric side lengths or side
lengths that do not satisfy the triangle inequality).

• Add functionality to calculate additional properties of the triangle, such as its
perimeter or area.

• Create a function that takes the side lengths as input and returns the classification
of the triangle.

46. Problem Statement and Background: Create a MATLAB function that takes
a vector of numbers as input and returns a new vector containing the cumulative
sum of the elements.

47. Step-by-Step Approach:

a. Define a function named cumulativeSum that takes a vector vec as input.
b. Initialise an empty vector cumsum_vec to store the cumulative sum.
c. Iterate through each element in the input vector vec using a loop.
d. Inside the loop, calculate the cumulative sum by adding the current element

to the previous cumulative sum value.
e. Append the calculated cumulative sum to the cumsum_vec vector.
f. After the loop finishes, return cumsum_vec as the output of the function.

48. Sample Code:

Listing A.53 Cumulative sum function.

function cumsum_vec = cumulativeSum(vec)
% CUMULATIVESUM Calculates the cumulative sum of a

vector
% cumsum_vec = cumulativeSum(vec) returns a vector

containing
% the cumulative sum of the elements in the input

vector vec

cumsum_vec = zeros(size(vec));
cumsum = 0;
for i = 1: length(vec)
cumsum = cumsum + vec(i);
cumsum_vec(i) = cumsum;
end
end

49. Sample Output: To call the function and calculate the cumulative sum for the
vector [1, 2, 3, 4, 5], use the following code:

vec = [1, 2, 3, 4, 5];
cumsum_vec = cumulativeSum(vec)
cumsum_vec =
1 3 6 10 15

Appendix A: Solutions to Chapter Problems 491

50. Extensions and Variations:

• Modify the function to handle different data types (e.g., strings or cell arrays)
instead of numeric vectors.

• Add functionality to calculate the cumulative product or other cumulative oper-
ations instead of the cumulative sum.

• Create a script that prompts the user to enter the elements of the vector and
calls the cumulativeSum function to display the cumulative sum.

51. Create a MATLAB function to calculate ‘the coefficient of determination or R2’
[1] with the function name ‘SECF_assess_R2.m’, in which, the first line is

[R2] = SECF_assess_R2(y_test, y_calculation)

a. Problem Statement and Background:

• Create a MATLAB function to calculate the coefficient of determination
or R2 with the function name SECF_assess_R2.m.

• The function should take two input arguments,y_test and y_calculat
ion, and output the R2 value.

• The coefficient of determination (R2) measures the proportion of the vari-
ance in the dependent variable that is predictable from the independent
variable(s).

b. Step-by-Step Approach:

• Define Function Signature: Start by defining the function signature in
MATLAB.

• Compute Deviations: Calculate deviations from the mean for the test data.
• Compute Total Variation: Compute the total variation to be accounted for

(SStot).
• Compute Residuals: Calculate the residuals (differences between the test

data and the calculated data).
• Compute Residual Variation: Compute the variation not accounted for

(SSerr).
• Calculate R2: Calculate the R2 value using the formula R2 = 1 − SSerr

SStot .

c. Sample Code: The basic syntax is:

Listing A.54 Function to calculate R2.

% SECF_assess_R2 Begin

function [R2] = SECF_assess_R2 (y_test ,
y_calculation)

% deviations - measure of spread
sample_dev = y_test - mean(y_test);

% total variation to be accounted for
SStot = sum(sample_dev .^2);

492 Appendix A: Solutions to Chapter Problems

% residuals - measure of mismatch
resid = y_test - y_calculation;

% variation NOT accounted for
SSerr = sum(resid .^2);

% residual norm - the 2-norm of the vector
of the residuals for the fit.

% One common goodness of fit involves a
least -squares approximation.

% This describes the distance of the entire
set of data points from the

% fitted curve. The normalization of the
residual error minimizing the

% square of the sum of squares of all
residual errors.

normr = sqrt(SSerr);

% R2 Error (percent of error explained)
% The coefficient of determination (also

referred to as the R2 value) for
% the fit indicates the percent of the

variation in the data that is
% explained by the model.

R2 = 1 - SSerr/SStot;

% SECF_assess_R2 End

d. Sample Output:

• Given a test data set y_test and calculated data set y_calculat
ion, the function will output the R2 value.

• Example output:

>> y_test = [3, 5, 7, 9];
>> y_calculation = [2.8, 5.1, 6.9, 9.2];
>> R2 = SECF_assess_R2(y_test, y_calculation)
R2 = 0.9984

e. Extensions and Variations:

• Weighted R2: One can extend the function to calculate a weighted R2 by
incorporating weights for each data point.

• Adjusted R2: For models with multiple predictors, the adjusted R2 can be
calculated to account for the number of predictors.

• Different Norms: Instead of using the 2-norm, other norms like the 1-norm
or infinity norm could be used to calculate residuals.

Appendix A: Solutions to Chapter Problems 493

• Other Goodness-of-Fit Metrics: Metrics such as Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error
(MAE) can be added to the function for a more comprehensive assessment.

52. Create two MATLAB functions to calculate ‘the moving mean of the average
precision (mmAP)’ and ‘the moving mean of standard derivation (mmSTD)’
[4].

a. Problem Statement and Background:

• Create twoMATLAB functions to calculate the moving mean of the aver-
age precision (mmAP) and the moving mean of standard deviation
(mmSTD).

• The definitions of the two trend indices, mmAP and mmSTD, are provided
in Eqs. (A.1) and (A.2), respectively.

• These indices are used to mitigate short-term fluctuations by capturing the
longer-term trend across the evolutionary process.

• The indices are defined as follows:

mmAP
(
f j

) = 1

p

p∑

i=1

⎛

⎝1

i

i∑

j=1

MEAN
(
f j

)
⎞

⎠ (A.1)

mmST D
(
f j

) = 1

p

p∑

i=1

⎛

⎝1

i

i∑

j=1

STD
(
f j

)
⎞

⎠ (A.2)

b. Step-by-Step Approach:

• Define Function Signature: Start by defining the function signature in
MATLAB for both mmAP and mmSTD.

• Initialize Parameters: Initialize necessary parameters such as the length
of the input vector.

• Calculate Moving Mean of Mean (mmAP):

– Iterate through each element of the vector.
– Calculate the mean up to the current index.
– Compute the cumulative moving mean.

• Calculate Moving Mean of Standard Deviation (mmSTD):

– Iterate through each element of the vector.
– Calculate the standard deviation up to the current index.
– Compute the cumulative moving standard deviation.

c. Sample Code: The basic syntax for calculating mmAP and mmSTD is pro-
vided below.

494 Appendix A: Solutions to Chapter Problems

Listing A.55 Function to calculate mmAP.

% Function to calculate mmAP
function mmAP = calculate_mmAP(f)
p = length(f);
mmAP = 0;
for i = 1:p
current_mean = mean(f(1:i));
mmAP = mmAP + (1/i) * current_mean;
end
mmAP = mmAP / p;
end

Listing A.56 Function to calculate mmSTD.

% Function to calculate mmSTD
function mmSTD = calculate_mmSTD(f)
p = length(f);
mmSTD = 0;
for i = 1:p
current_std = std(f(1:i));
mmSTD = mmSTD + (1/i) * current_std;
end
mmSTD = mmSTD / p;
end

d. Sample Output: The sample output for the functions can be illustrated with
an example vector.

Listing A.57 Sample Output for mmAP and mmSTD Functions.

% Sample input vector
f = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

% Calculate mmAP
mmAP_value = calculate_mmAP (f);
fprintf(’The moving mean of average

precision (mmAP) is: %.4f\n’,
mmAP_value);

% Calculate mmSTD
mmSTD_value = calculate_mmSTD(f);
fprintf(’The moving mean of standard

deviation (mmSTD) is: %.4f\n’,
mmSTD_value);

The expected output for the given vector ‘f’ would be:

The moving mean of average precision (mmAP) is: 5.5000
The moving mean of standard deviation (mmSTD) is: 2.8723

e. Extensions and Variations:

• WeightedMovingMean: Extend the functions to calculate weighted mov-
ing means, where more recent values are given higher weights.

Appendix A: Solutions to Chapter Problems 495

• DifferentWindow Sizes: Implement functionality to use different window
sizes for the moving average, allowing for more flexibility in capturing
trends.

• Robust Statistics: Incorporate robust statistical measures such as median
and interquartile range (IQR) instead of mean and standard deviation to
handle outliers.

• Real-time Data Processing: Modify the functions to process streaming
data in real-time, updating the moving mean and standard deviation as new
data comes in.

• Visualisation: Add Visualisation features to plot the moving mean and
standard deviation over time, providing a graphical representation of the
trends.

These problems cover various aspects of working with scripts and functions in
MATLAB, including input/output operations, control structures, arithmetic opera-
tions, string manipulation, matrix operations, and vector operations. The solutions
provide step-by-step approaches, sample code, sample output, and suggestions for
extensions and variations to enhance learning and understanding.

A.7 Solutions to Chapter 7

1. Problem Statement and Background: Write a MATLAB function that takes a
text file as input and counts the occurrences of each unique word in the file. The
function should return a struct or a cell array containing the unique words and
their corresponding counts.

2. Step-by-Step Approach:

a. Define a function named ‘wordCountsInFile’ that takes a filename as input.
b. Open the file using the ‘fopen’ function.
c. Read the contents of the file into a string using the ‘fscanf’ function.
d. Close the file using the ‘fclose’ function.
e. Split the file contents into individual words using the ‘strsplit’ function and

appropriate delimiters (e.g., whitespace characters).
f. Initialise a struct or a cell array to store the unique words and their counts.
g. Iterate through the words and update the counts in the struct or cell array.
h. Return the struct or cell array containing the unique words and their counts.

3. Sample Code:

Listing A.58 Word counts in a file.

function wordCounts = wordCountsInFile(filename)
% WORDCOUNTSINFILE Counts the occurrences of each

unique word in a file
% wordCounts = wordCountsInFile(filename)

496 Appendix A: Solutions to Chapter Problems

% returns a struct or cell array containing unique
words and counts

% Open the file
fileID = fopen(filename , ’r’);

% Read the file contents
fileContents = fscanf(fileID , ’%c’);

% Close the file
fclose(fileID);

% Split the file contents into words
words = strsplit(strtrim(fileContents), ’\s+’);

% Initialise a struct to store word counts
wordCounts = struct ();

% Count the occurrences of each word
for i = 1: length(words)
word = words{i};
if isfield(wordCounts , word)
wordCounts .(word) = wordCounts .(word) + 1;
else
wordCounts .(word) = 1;
end
end
end

4. Sample Output:

wordCounts = wordCountsInFile(’example.txt’)
wordCounts =
struct with fields:
the: 2
quick: 1
brown: 1
fox: 1
jumps: 1
over: 1
lazy: 1
dog: 1

5. Extensions and Variations:

• Modify the function to handle case-insensitive word counting.
• Add functionality to exclude common words (e.g., “the,” “a,” “and”) from the
word count.

• Allow the function to take multiple filenames as input and combine the word
counts from all files.

• Implement alternative data structures (e.g., containers.Map) to store the word
counts.

Appendix A: Solutions to Chapter Problems 497

6. ProblemStatement andBackground: Create aMATLAB script that reads data
from a CSV (Comma-Separated Values) file and performs basic data analysis
tasks, such as calculating the mean, median, and standard deviation for each
column of numerical data.

7. Step-by-Step Approach:

a. Prompt the user to enter the filename of the CSV file using the ‘input’ function.
b. Use the ‘readtable’ function to read the contents of the CSV file into a table.

The basic syntax is:

Listing A.59 Reading a CSV file.

data = readtable(filename);

c. Identify the numerical columns in the table using the isnumeric function.
d. For eachnumerical column, calculate themean,median, and standarddeviation

using the mean, median, and std functions, respectively.
e. Display the results using the fprintf function or create a new table with the

statistical measures.

8. Sample Code:

Listing A.60 Data analysis on a CSV file.

% Prompt the user for the filename
filename = input(’Enter the filename of the CSV file:

’, ’s’);

% Read the CSV file into a table
data = readtable(filename);

% Get the variable names (column names)
varNames = data.Properties.VariableNames;

% Initialise a table to store the statistical
measures

statsTable = table ();

% Iterate over the columns
for i = 1: length(varNames)
colName = varNames{i};

% Check if the column is numerical
if isnumeric(data.(colName))

% Calculate statistical measures
mean_value = mean(data.(colName));
median_value = median(data.(colName));
std_value = std(data.(colName));

% Store the measures in the statsTable
statsTable .(colName) = [mean_value; median_value;

std_value];
end

498 Appendix A: Solutions to Chapter Problems

end

% Display the statistical measures
disp(statsTable)

9. Sample Output:

Enter the filename of the CSV file: data.csv

statsTable =
7*3 table
Age Height Weight
________ ________ ________
35 172 65.3
33 171 68.4
32.5 169 62.1

10. Extensions and Variations:

• Add error handling to check if the specified CSV file exists and can be read.
• Implement additional statistical measures, such as quartiles, mode, or variance.
• Allow the user to specify which statistical measures to calculate and display.
• Provide an option to save the statistical measures to a separate file or generate
a report.

11. Problem Statement and Background: Implement a MATLAB function that
takes a text file as input and removes all occurrences of a specified string from
the file. The function should create a new file with the modified contents.

12. Step-by-Step Approach:

a. Define a function named removeStringFromFile that takes two inputs: the
filename and the string to be removed.

b. Open the input file using the fopen function.
c. Read the contents of the file into a string using the fscanf function.
d. Close the input file using the fclose function.
e. Use the strrep function to replace all occurrences of the specified string with

an empty string in the file contents.
f. Create a new output file using the fopen function with write mode (‘w’).
g. Write the modified contents to the output file using the fprintf function.
h. Close the output file using the fclose function.

13. Sample Code:

Listing A.61 Removing a string from a file.

function removeStringFromFile (filename ,
stringToRemove)

% REMOVESTRINGFROMFILE Removes all occurrences of a
string from a file

% removeStringFromFile (filename , stringToRemove)
% creates a new file with the modified contents

Appendix A: Solutions to Chapter Problems 499

% Open the input file
fileID = fopen(filename , ’r’);

% Read the file contents
fileContents = fscanf(fileID , ’%c’);

% Close the input file
fclose(fileID);

% Remove the specified string from the file contents
modifiedContents = strrep(fileContents ,

stringToRemove , ’’);

% Create a new output file
outputFilename = [filename ’_modified.txt’];
outputFileID = fopen(outputFilename , ’w’);

% Write the modified contents to the output file
fprintf(outputFileID , ’%s’, modifiedContents);

% Close the output file
fclose(outputFileID);

fprintf(’File "%s" has been created with the modified
contents .\n’, outputFilename);

end

14. Sample Output:

removeStringFromFile (’example.txt’, ’the’)
File "example_modified.txt" has been created with the

modified contents.

15. Extensions and Variations:

• Modify the function to handle case-insensitive string removal.
• Implement a regular expression-based approach for removing patterns or sub-
strings rather than exact string matches.

• Add functionality to remove multiple strings from the file in a single operation.
• Provide an option to overwrite the original file or create a new file with the
modified contents.

16. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter a series of file names and then concatenates the contents of all
the specified files into a single output file.

17. Step-by-Step Approach:

a. Initialise an empty cell array to store the file contents.
b. Use a loop (e.g., while loop) to repeatedly prompt the user to enter a filename

using the input function.
c. Open the specified file using the fopen function.

500 Appendix A: Solutions to Chapter Problems

d. Read the contents of the file into a string using the fscanf function.
e. Close the file using the fclose function.
f. Append the file contents to the cell array.
g. Provide an option for the user to stop entering filenames (e.g., enter an empty

string or a specific value like ‘done’).
h. Prompt the user to enter an output filename.
i. Create a new output file using the fopen function with write mode (‘w’).
j. Concatenate the contents of the cell array into a single string.
k. Write the concatenated string to the output file using the fprintf function.
l. Close the output file using the fclose function.

18. Sample Code:

Listing A.62 Concatenating multiple files.

% Initialise a cell array to store file contents
fileContents = {};

% Prompt the user for filenames
while true
filename = input(’Enter a filename (or "done" to

finish): ’, ’s’);
if strcmp(filename , ’done’)
break;
end

% Open the file
fileID = fopen(filename , ’r’);

% Read the file contents
contents = fscanf(fileID , ’%c’);

% Close the file
fclose(fileID);

% Append the contents to the cell array
fileContents{end +1} = contents;

end

% Prompt the user for the output filename
outputFilename = input(’Enter the output filename: ’,

’s’);

% Open the output file
outputFileID = fopen(outputFilename , ’w’);

% Concatenate the file contents
concatenatedContents = cat(2, fileContents {:});

% Write the concatenated contents to the output file
fprintf(outputFileID , ’%s’, concatenatedContents);

Appendix A: Solutions to Chapter Problems 501

% Close the output file
fclose(outputFileID);

fprintf(’Contents have been concatenated and written
to "%s".\n’, outputFilename);

19. Sample Output:

Enter a filename (or "done" to finish): file1.txt
Enter a filename (or "done" to finish): file2.txt
Enter a filename (or "done" to finish): file3.txt
Enter a filename (or "done" to finish): done
Enter the output filename: combined.txt
Contents have been concatenated and written to "

combined.txt".

20. Extensions and Variations:

• Add error handling to check if the specified input files exist and can be read-
/written.

• Implement an option to include separators (e.g., newlines, tabs, or custom
separators) between the values whenwriting themodified contents to the output
file.

• Provide a way to specify the encoding (e.g., UTF-8, ASCII) for reading and
writing the files.

• Allow the user to choose whether to overwrite the original file or create a new
file with the modified contents.

• Implement support for handling binary files in addition to text files.
• Extend the functionality to perform other text processing operations, such as
removing or replacing specific characters or patterns, converting between dif-
ferent character encodings, or inserting/deleting lines or sections of text.

• Develop a graphical user interface (GUI) to provide a more user-friendly expe-
rience for selecting files, specifying replacement words/phrases, and displaying
the results.

• Enhance the script to handle large files efficiently by reading and processing
the files in chunks or using memory-mapped files.

• Implement multithreading or parallel processing techniques to improve perfor-
mance when processing multiple files or large files.

• Integrate the script with version control systems (e.g., Git) to track changes
made to the files and enable collaboration.

• Develop a command-line interface (CLI) for running the script from the termi-
nal, allowing users to specify input files, replacement words/phrases, and other
options through command-line arguments.

• Implement logging and error reporting mechanisms to capture and display
informative error messages and debugging information.

502 Appendix A: Solutions to Chapter Problems

• Integrate the script with other text processing tools or libraries, such as reg-
ular expression engines or natural language processing libraries, to provide
additional functionality or enhance the existing features.

21. Problem Statement and Background: Create a MATLAB function that takes
a matrix as input and saves it to a binary file. The function should also include
the ability to load the matrix from the binary file at a later time.

22. Step-by-Step Approach:

a. Define a function named saveMatrixToBinary that takes two inputs: the matrix
and the filename.

b. Open a new binary file for writing using the fopen function with the ‘wb’
mode.

c. Write the matrix to the binary file using the fwrite function.
d. Close the binary file using the fclose function.
e. Define another function named loadMatrixFromBinary that takes the filename

as input.
f. Open the binary file for reading using the fopen function with the ‘rb’ mode.
g. Read the matrix from the binary file using the fread function, specifying the

appropriate data type and size.
h. Close the binary file using the fclose function.
i. Return the loaded matrix.

23. Sample Code:

Listing A.63 Saving and loading a matrix to/from a binary file.

function saveMatrixToBinary(matrix , filename)
% SAVEMATRIXTOBINARY Saves a matrix to a binary file
% saveMatrixToBinary(matrix , filename)

% Open the binary file for writing
fileID = fopen(filename , ’wb’);

% Write the matrix to the binary file
fwrite(fileID , matrix , ’double ’);

% Close the binary file
fclose(fileID);

fprintf(’Matrix saved to "%s".\n’, filename);
end

function loadedMatrix = loadMatrixFromBinary (filename
)

% LOADMATRIXFROMBINARY Loads a matrix from a binary
file

% loadedMatrix = loadMatrixFromBinary (filename)

% Open the binary file for reading
fileID = fopen(filename , ’rb’);

Appendix A: Solutions to Chapter Problems 503

% Get the size of the matrix
fileInfo = dir(filename);
fileSize = fileInfo.bytes;
numElements = fileSize / 8; % Assuming double

precision

% Read the matrix from the binary file
loadedMatrix = fread(fileID , numElements , ’double ’);

% Reshape the matrix to its original dimensions
loadedMatrix = reshape(loadedMatrix , sqrt(numElements

), sqrt(numElements));

% Close the binary file
fclose(fileID);
end

24. Sample Output:

A = magic (5);
saveMatrixToBinary(A, ’matrix.bin’);
Matrix saved to "matrix.bin".
B = loadMatrixFromBinary (’matrix.bin’);
isequal(A, B)
ans =
1

25. Extensions and Variations:

• Add error handling to check if the specified binary file exists and can be
read/written.

• Implement support for saving and loading matrices of different data types (e.g.,
single precision, integers).

• Allow the user to specify additional metadata to be saved along with the matrix,
such as dimensions, data type, or variable name.

• Implement compression or encoding techniques to reduce the file size for large
matrices.

26. Problem Statement and Background: Develop a MATLAB script that reads
data from an Excel file and creates a bar plot or a histogram to visualize the data
distribution.

27. Step-by-Step Approach:

a. Prompt the user to enter the filename of the Excel file using the input function.
b. Use the readmatrix function to read the contents of the Excel file into a matrix.

The basic syntax is:

Listing A.64 Reading an Excel file.

data = readmatrix(filename);

504 Appendix A: Solutions to Chapter Problems

c. Determine the type of Visualisation (bar plot or histogram) based on user input
or the characteristics of the data.

d. For a bar plot:

• Use the bar function to create a bar plot of the data.
• Customize the plot with labels, title, and other desired formatting options.

e. For a histogram:

• Use the histogram function to create a histogram of the data.
• Customize the histogram with bin settings, labels, title, and other desired

formatting options.

28. Sample Code:

Listing A.65 Visualizing data from an Excel file.

% Prompt the user for the filename
filename = input(’Enter the filename of the Excel

file: ’, ’s’);

% Read the Excel file into a matrix
data = readmatrix(filename);

% Determine the type of Visualisation
visualType = input(’Enter "bar" for a bar plot or "

hist" for a histogram: ’, ’s’);

% Create the Visualisation
figure;
if strcmp(visualType , ’bar’)
bar(data);
title(’Bar Plot’);
xlabel(’Category ’);
ylabel(’Value’);
elseif strcmp(visualType , ’hist’)
histogram(data);
title(’Histogram ’);
xlabel(’Value’);
ylabel(’Frequency ’);
else
fprintf(’Invalid Visualisation type specified .\n’);
end

29. Sample Output:

Enter the filename of the Excel file: data.xlsx
Enter "bar" for a bar plot or "hist" for a histogram:

hist

30. Extensions and Variations:

• Add error handling to check if the specified Excel file exists and can be read.
• Implement additional Visualisation options, such as line plots, scatter plots, or
box plots.

Appendix A: Solutions to Chapter Problems 505

• Allow the user to specify which columns or rows of the Excel file to visualize.
• Provide options for customizing the appearance of the Visualisation (e.g., col-
ors, labels, legends).

• Implement support for reading data from different sheet names or ranges within
the Excel file.

31. Problem Statement and Background: Implement a MATLAB function that
takes a text file as input and performs basic text processing tasks, such as counting
the number of lines, words, and characters, as well as identifying the most
frequently occurring word in the file.

32. Step-by-Step Approach:

a. Define a function named textFileAnalysis that takes a filename as input.
b. Open the file using the fopen function.
c. Read the contents of the file into a string using the fscanf function.
d. Close the file using the fclose function.
e. Count the number of lines in the file using the sum function with the condition

fileContents == newline.
f. Split the file contents into individual words using the strsplit function and

appropriate delimiters (e.g., whitespace characters).
g. Count the number of words using the length function.
h. Count the number of characters in the file using the length function on the file

contents string.
i. Initialise a struct or a cell array to store the word counts.
j. Iterate through the words and update the counts in the struct or cell array.
k. Identify the most frequently occurring word by finding the maximum value in

the word counts.
l. Return a struct or a cell array containing the text analysis results.

33. Sample Code:

Listing A.66 Text file analysis.

function analysisResults = textFileAnalysis (filename)
% TEXTFILEANALYSIS Performs basic text analysis on a

file
% analysisResults = textFileAnalysis (filename)
% returns a struct containing analysis results

% Open the file
fileID = fopen(filename , ’r’);

% Read the file contents
fileContents = fscanf(fileID , ’%c’);

% Close the file
fclose(fileID);

% Count the number of lines

506 Appendix A: Solutions to Chapter Problems

numLines = sum(fileContents == newline);

% Split the file contents into words
words = strsplit(strtrim(fileContents), ’\s+’);

% Count the number of words
numWords = length(words);

% Count the number of characters
numChars = length(fileContents);

% Initialise a struct to store word counts
wordCounts = struct ();

% Count the occurrences of each word
for i = 1: length(words)
word = words{i};
if isfield(wordCounts , word)
wordCounts .(word) = wordCounts .(word) + 1;
else
wordCounts .(word) = 1;
end
end

% Find the most frequent word
maxCount = 0;
mostFrequentWord = ’’;
fieldNames = fields(wordCounts);
for i = 1: length(fieldNames)
field = fieldNames{i};
if wordCounts .(field) > maxCount
maxCount = wordCounts .(field);
mostFrequentWord = field;
end
end

% Store the analysis results in a struct
analysisResults = struct ();
analysisResults.numLines = numLines;
analysisResults.numWords = numWords;
analysisResults.numChars = numChars;
analysisResults.wordCounts = wordCounts;
analysisResults.mostFrequentWord = mostFrequentWord;
end

34. Sample Output:

results = textFileAnalysis(’example.txt’)
results =
struct with fields:
numLines: 3
numWords: 9
numChars: 36

Appendix A: Solutions to Chapter Problems 507

wordCounts: [1*8 struct]
mostFrequentWord: ’the’

35. Extensions and Variations:

• Modify the function to handle case-insensitive word counting.
• Add functionality to exclude common words (e.g., “the,” “a,” “and”) from the
word count and most frequent word calculation.

• Implement additional text analysis tasks, such as counting the number of unique
words, calculating word length statistics, or identifying the longest/shortest
word.

• Provide an option to save the analysis results to a file or generate a report.

36. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter a directory path and then lists all the files in that directory, along
with their sizes and modification dates.

37. Step-by-Step Approach:

a. Prompt the user to enter a directory path using the input function.
b. Use the dir function to get a structure array containing information about all

the files and folders in the specified directory.
c. Iterate through the structure array and extract the file names, sizes, and modi-

fication dates.
d. Display the file information using the fprintf function or create a table to

display the data in a formatted manner.

38. Sample Code:

Listing A.67 Listing files in a directory.

% Prompt the user for the directory path
dirPath = input(’Enter the directory path: ’, ’s’);

% Get information about files and folders in the
directory

fileInfo = dir(dirPath);

% Create a table to store the file information
fileTable = table(’Size’, [0], ’Name’, {’’}, ’Date’,

{’’}, ’VariableNames ’, {’Size (bytes)’, ’File Name
’, ’Modification Date’});

% Iterate through the file information
for i = 1: length(fileInfo)
entry = fileInfo(i);
% Check if the entry is a file
if ~entry.isdir

% Extract file information
fileName = entry.name;
fileSize = entry.bytes;
fileDate = datestr(entry.datenum);

508 Appendix A: Solutions to Chapter Problems

% Add the file information to the table
fileTable = [fileTable; {fileSize , fileName ,

fileDate }];
end
end

% Display the file information
disp(fileTable);

39. Sample Output:

Enter the directory path: /path/to/directory
Size (bytes) File Name Modification Date

______________ _________

1024 file1.txt 28-May -2023
10:15:32

2048 file2.dat 15-Apr -2023
14:22:18

512 file3.csv 01-Jun -2023
09:45:01

40. Extensions and Variations:

• Add error handling to check if the specified directory exists and is accessible.
• Implement additional filtering options, such as displaying only files with spe-
cific extensions or excluding hidden files.

• Provide an option to recursively list files in subdirectories.
• Allow the user to sort the file information based on file size, name, or modifi-
cation date.

• Implement support for displaying additional file attributes, such as file permis-
sions or owner information.

41. Problem Statement and Background: Create aMATLAB function that takes a
text file as input and replaces all occurrences of a specified word or phrase with
a new word or phrase. The function should create a new file with the modified
contents.

42. Step-by-Step Approach:

a. Define a function named replaceWordInFile that takes three inputs: the file-
name, the word/phrase to be replaced, and the new word/phrase.

b. Open the input file using the fopen function.
c. Read the contents of the file into a string using the fscanf function.
d. Close the input file using the fclose function.
e. Use the strrep function to replace all occurrences of the specified word/phrase

with the new word/phrase in the file contents.
f. Create a new output file using the fopen function with write mode (‘w’).
g. Write the modified contents to the output file using the fprintf function.
h. Close the output file using the fclose function.

Appendix A: Solutions to Chapter Problems 509

43. Sample Code:

Listing A.68 Replacing a word/phrase in a file.

function replaceWordInFile (filename , oldWord , newWord
)

% REPLACEWORDIBNFILE Replaces a word/phrase in a file
with a new word/phrase

% replaceWordInFile (filename , oldWord , newWord)
% creates a new file with the modified contents

% Open the input file
fileID = fopen(filename , ’r’);

% Read the file contents
fileContents = fscanf(fileID , ’%c’);

% Close the input file
fclose(fileID);

% Replace the specified word/phrase with the new word
/phrase

modifiedContents = strrep(fileContents , oldWord ,
newWord);

% Create a new output file
outputFilename = [filename ’_modified.txt’];
outputFileID = fopen(outputFilename , ’w’);

% Write the modified contents to the output file
fprintf(outputFileID , ’%s’, modifiedContents);

% Close the output file
fclose(outputFileID);

fprintf(’File "%s" has been created with the modified
contents .\n’, outputFilename);

end

44. Sample Output:

replaceWordInFile (’example.txt’, ’hello’, ’goodbye ’)
File "example_modified.txt" has been created with the

modified contents.

45. Extensions and Variations:

• Modify the function to handle case-insensitive word/phrase replacement.
• Implement support for replacing multiple words/phrases in a single operation.
• Add functionality to replace words/phrases based on regular expressions or
patterns.

• Provide an option to overwrite the original file or create a new file with the
modified contents.

510 Appendix A: Solutions to Chapter Problems

• Implement error handling to check if the specified input file exists and can be
read/written.

46. Problem Statement and Background: Write a MATLAB script that reads data
from a text file, where each line represents a data point with multiple values
separated by commas. The script should calculate basic statistical measures
(e.g., mean, median, standard deviation) for each column of data.

47. Step-by-Step Approach:

a. Prompt the user to enter the filename of the text file using the input function.
b. Open the file using the fopen function.
c. Read the contents of the file into a cell array of strings using the textscan

function with the ‘%s’ format specifier and delimiter ‘\n’.
d. Close the file using the fclose function.
e. Split each line (string) in the cell array into individual values using the strsplit

function with the delimiter ‘,’.
f. Convert the cell array of strings into a numeric matrix using the str2double

function.
g. Calculate the statistical measures (mean, median, and standard deviation) for

each column of the matrix using the mean, median, and std functions, respec-
tively.

h. Display the results in a formatted table or matrix.

48. Sample Code:

Listing A.69 Calculating statistical measures from a text file.

% Prompt the user for the filename
filename = input(’Enter the filename of the text file

: ’, ’s’);

% Open the file
fileID = fopen(filename , ’r’);

% Read the file contents into a cell array
fileContents = textscan(fileID , ’%s’, ’Delimiter ’, ’\

n’);
fileContents = fileContents {1};

% Close the file
fclose(fileID);

% Split each line into individual values
data = cellfun(@(x) str2double(strsplit(x, ’,’)),

fileContents , ’UniformOutput ’, false);

% Convert the cell array into a numeric matrix
data = cell2mat(data);

% Calculate statistical measures for each column
means = mean(data , 1);

Appendix A: Solutions to Chapter Problems 511

medians = median(data , 1);
stds = std(data , 1);

% Display the results
numColumns = size(data , 2);
fprintf(’Statistical Measures :\n’);
for i = 1: numColumns
fprintf(’Column %d:\n’, i);
fprintf(’ Mean: %.2f\n’, means(i));
fprintf(’ Median: %.2f\n’, medians(i));
fprintf(’ Std Dev: %.2f\n’, stds(i));
end

49. Sample Output:

Enter the filename of the text file: data.txt

Statistical Measures:
Column 1:
Mean: 25.67
Median: 27.00
Std Dev: 10.21
Column 2:
Mean: 15.33
Median: 16.00
Std Dev: 5.13
Column 3:
Mean: 92.67
Median: 90.00
Std Dev: 12.66

50. Extensions and Variations:

• Implement error handling to check if the specified input file exists and can be
read.

• Provide an option to calculate additional statistical measures, such as quartiles,
range, or variance.

• Allow the user to specify which columns or rows to include in the statistical
analysis.

• Implement support for handling missing data or invalid values in the input file.
• Provide an option to save the statistical measures to a file or generate a report.

A.8 Solutions to Chapter 8

1. Problem Statement and Background: Create a line plot of the function y =
x2 − 2x + 1 over the range −2 ≤ x ≤ 4. Annotate the plot with a title, x-label,
y-label, and a legend.
Step-by-Step Approach:

a. Define the x range: x = -2:0.1:4;

512 Appendix A: Solutions to Chapter Problems

b. Calculate y values:
y = x .2 − 2 ∗ x + 1

;
c. Plot x vs y: plot(x,y)
d. Add title: title(’Quadratic Function Plot’)
e. Label x-axis: xlabel(’x’)
f. Label y-axis: ylabel(’

y = x2 − 2x + 1

’)
g. Add legend: legend(’

y = x2 − 2x + 1

’)

Sample Code:

Listing A.70 Line plot with annotations.

x = -2:0.1:4;
y = x.^2 - 2*x + 1;
plot(x,y)
title(’Quadratic Function Plot’)
xlabel(’x’)
ylabel(’y = x^2 - 2x + 1’)
legend(’y = x^2 - 2x + 1’)

Sample Output: (A line plot with the specified annotations would be shown)
Extensions and Variations:

• Plot multiple functions on the same axes for comparison
• Use different line colors and styles
• Add grid lines to the plot

2. Problem Statement and Background: Plot the vectorized sine function y =
sin(x) over one period 0 ≤ x ≤ 2π . Customize the line color and style.
Step-by-Step Approach:

a. Define x range: x = 0:0.1:2*pi;
b. Calculate sine values: y = sin(x);
c. Plot x vs y: plot(x,y)
d. Set line color: plot(x,y,’Color’,’r’)
e. Set line style: plot(x,y,’–’)

Appendix A: Solutions to Chapter Problems 513

Sample Code:

Listing A.71 Sine plot with custom line.

x = 0:0.1:2* pi;
y = sin(x);
plot(x,y,’Color’,’r’,’LineStyle ’,’--’)

Sample Output: (A red dashed sine wave plot would be shown)
Extensions and Variations:

• Plot multiple cycles by adjusting x range
• Add axis labels and title
• Use line specification shortcut syntax

3. Problem Statement and Background: Generate a scatter plot of random (x,y)
points within the range 0 ≤ x, y ≤ 10. Add gridlines and use different marker
styles and colors to distinguish clusters.
Step-by-Step Approach:

a. Generate random x,y data: x=10rand(50,1); y= 10rand(50,1);
b. Create scatter plot: scatter(x,y)
c. Add grid: grid on
d. Customizemarkers:scatter(x,y,36,’filled’,’MarkerEdgeCol

or’,’r’)
e. Add 2nd cluster:

x2 = 6 + 2rand (30 ,1);
y2 = 6 + 2rand (30 ,1);
hold on;
scatter(x2 , y2 , ’^’, ’MarkerEdgeColor ’, ’g’);

Sample Code:

Listing A.72 Scatter plot with clustered data.

x = 10rand (50 ,1); y = 10rand (50 ,1);
scatter(x,y,36,’filled ’,’MarkerEdgeColor ’,’r’)
hold on
x2 = 6 + 2rand (30,1); y2 = 6 + 2rand (30 ,1);
scatter(x2 ,y2 ,’^’,’MarkerEdgeColor ’,’g’)
grid on

Sample Output: (A scatter plot with red filled circles and green triangles clus-
tered)
Extensions and Variations:

• Add a legend to identify clusters
• Use different color maps to color-code data
• Apply clustering algorithms for grouping

514 Appendix A: Solutions to Chapter Problems

4. Problem Statement and Background: Create a bar chart to visualize student
scores in five different courses. Customize the bar colors, add data labels, and
rotate the x-tick labels for better readability.
Step-by-Step Approach:

a. Define course names and scores: courses = ’Math’,’Physics’,’
Chemistry’,’Biology’,’CS’; scores =[82 7689 92 85];

b. Plot bar chart: bar(scores)
c. Set x-ticks: set(gca,’XTickLabel’,courses)
d. Rotate x-labels: xtickangle(45)
e. Customize colors: bar(scores,’FaceColor’,’flat’)
f. Add data labels: bar(scores,’FaceColor’,’flat’,’EdgeColor
’,’k’); text(1:5,scores,num2str(scores’),’vert’,’
bottom’,’horiz’,’center’);

Sample Code:

Listing A.73 Bar chart with customizations.

courses = {’Math’,’Physics ’,’Chemistry ’,’Biology ’,’CS
’};

scores = [82 76 89 92 85];
bar(scores ,’FaceColor ’,’flat’,’EdgeColor ’,’k’)
set(gca ,’XTickLabel ’,courses ,’XTickLabelRotation ’ ,45)
text (1:5,scores ,num2str(scores ’),’vert’,’bottom ’,’

horiz’,’center ’);

SampleOutput: (A bar chart with flat color bars, rotated x-ticks, and data labels)
Extensions and Variations:

• Group bars using bar() options
• Create stacked or clustered bar plots
• Add y-axis gridlines and title

5. Problem Statement and Background: Load a image dataset (e.g., from MAT-
LAB’s sample data) and display the image. Adjust the colormap and add a
descriptive title.
Step-by-Step Approach:

a. Load image: img = imread(’saturn.png’);
b. Display image: imshow(img)
c. Apply colormap: colormap(pink)
d. Add title: title(’Saturn Image’)

Sample Code:

Listing A.74 Display image with colormap.

img = imread(’saturn.png’);
imshow(img)
colormap(pink)
title(’Saturn Image’)

Appendix A: Solutions to Chapter Problems 515

SampleOutput: (The Saturn image loaded and displayedwith a pink colormap)
Extensions and Variations:

• Try different colormaps like hot, cool, etc.
• Adjust brightness and contrast
• Add colorbar to show mapping

6. Problem Statement and Background: Generate a 3D surface plot of the func-
tion z = x2 + y2 over the ranges −2 ≤ x, y ≤ 2. Add appropriate view angles,
lighting, and color the surface by z-values.
Step-by-Step Approach:

a. Define x,y ranges: [x,y] = meshgrid(-2:0.1:2);
b. Calculate z:

z = x .2 + y.2

;
c. Create surface: surf(x,y,z)
d. Set view angles: view(30,45)
e. Add lighting: camlight
f. Color by z-values: colormap(hot)

Sample Code:

Listing A.75 3D surface plot customizations.

[x,y] = meshgrid (-2:0.1:2);
z = x.^2 + y.^2;
surf(x,y,z); view (30 ,45); camlight; colormap(hot)

Sample Output: (A 3D colored surface plot of the function from specified view
angles)
Extensions and Variations:

• Add contour lines using hold on; contour3(x,y,z)
• Adjust color limits using caxis
• Create an animation by rotating view angles

7. Problem Statement and Background: Plot multiple line graphs on the same
axes to compare growth trends for different populations over time. Use legends
and line styles to differentiate the plots.
Step-by-Step Approach:

a. Define data: years = 1950:10:2020; popA = [500 632 801
965 1200]; popB = [300 420 580 750 950];

b. Create plot: plot(years,popA,’-o’,years,popB,’–s’)
c. Add legend: legend(’Population A’,’Population B’)
d. Add labels: xlabel(’Year’); ylabel(’Population’);
e. Add title: title(’Population Growth Trends’)

516 Appendix A: Solutions to Chapter Problems

Sample Code:

Listing A.76 Multiple line plots with legend.

years = 1950:10:2020;
popA = [500 632 801 965 1200];
popB = [300 420 580 750 950];
plot(years ,popA ,’-o’,years ,popB ,’--s’)
legend(’Population A’,’Population B’)
xlabel(’Year’); ylabel(’Population ’);
title(’Population Growth Trends ’)

Sample Output: (Two line plots showing increasing population trends distin-
guished by legends)
Extensions and Variations:

• Add more population data with different line styles
• Use subplots to visualize additional growth factors
• Compute and plot growth rates instead of populations

8. Problem Statement and Background: Load a real-world dataset (e.g., from a
CSVfile) and create a histogram to visualize the distribution of a chosen variable.
Experiment with different bin widths and overlay a kernel density estimate.
Step-by-Step Approach:

a. Load data: data = readtable(’housing.csv’);
b. Extract variable: prices = data.Price;
c. Plot histogram: histogram(prices)
d. Adjust bins: histogram(prices,20)
e. Overlay KDE: hold on; kernel = ksdensity(prices); plot
(kernel.Support,kernel.Density)

Sample Code:

Listing A.77 Histogram with kernel density.

data = readtable(’housing.csv’);
prices = data.Price;
histogram(prices ,20)
hold on;
kernel = ksdensity(prices);
plot(kernel.Support ,kernel.Density ,’LineWidth ’ ,2)

Sample Output: (A histogramwith adjusted bins and an overlaid kernel density
curve)
Extensions and Variations:

• Explore normality tests and outlier detection
• Try different kernel functions for density estimate
• Plot conditional distributions based on other variables

Appendix A: Solutions to Chapter Problems 517

9. Problem Statement and Background: Create a filled contour plot of a 2D
Gaussian function. Add a colorbar and label the contour levels.
Step-by-Step Approach:

a. Define x,y ranges: [x,y] = meshgrid(-3:0.1:3);
b. Calculate z:

z = exp(−(x .2 + y.2))

;
c. Create contour: contourf(x,y,z)
d. Add colorbar: colorbar
e. Label levels: clabel(c,c.LevelList)

Sample Code:

Listing A.78 Filled contour plot.

[x,y] = meshgrid (-3:0.1:3);
z = exp(-(x.^2 + y.^2));
contourf(x,y,z)
colorbar
c = contour(x,y,z);
clabel(c,c.LevelList)

Sample Output: (A filled contour plot of a 2D Gaussian with labeled contour
levels would be displayed)
This code generates a filled contour plot of a 2D Gaussian function using the
following steps:

•
[x,y] = meshgrid (-3:0.1:3);

creates 2D grid matrices x and y ranging from −3 to 3 with a step size of 0.1.
•

z = exp(-(x.^2 + y.^2));

calculates the z-values for the 2D Gaussian function using the formula z =
e−(x2+y2).

•
contourf(x,y,z)

creates a filled contour plot of the z-values over the x-y grid.
•

colorbar

adds a colorbar to the plot, which shows the mapping of colors to the contour
levels.

•
c = contour(x,y,z);

generates contour lines for the same z-values.

518 Appendix A: Solutions to Chapter Problems

•
clabel(c,c.LevelList)

labels each contour line with its corresponding contour level value.

10. Problem Statement and Background: Animate a bouncing ball simulation by
plotting the ball’s position at each time step. Control the animation speed and
add a trail effect.
Step-by-Step Approach:

a. Define initial conditions: y0 = 0; v0 = 5; g = 9.8; dt = 0.1;
t = 0;

b. Create figure: figure; axis([0 10 -1 6]); hold on;
c. Loop for animation:

while y0 >= 0
y = y0 + v0t - 0.5gt^2;
v = v0 - gt;
plot(t,y,’ro’,’MarkerSize ’ ,10);
trail_x(end+1) = t; trail_y(end +1) = y;
plot(trail_x ,trail_y ,’r-’);
t = t + dt; y0 = y; v0 = v;
pause (0.05);
end

Sample Code:

Listing A.79 Bouncing ball animation.

y0 = 0; v0 = 5; g = 9.8; dt = 0.1; t = 0;
figure; axis ([0 10 -1 6]); hold on;
trail_x = []; trail_y = [];
while y0 >= 0
y = y0 + v0t - 0.5gt^2;
v = v0 - gt;
plot(t,y,’ro’,’MarkerSize ’ ,10);
trail_x(end +1) = t; trail_y(end +1) = y;
plot(trail_x ,trail_y ,’r-’);
t = t + dt; y0 = y; v0 = v;
pause (0.05);
end

Sample Output: (An animated plot showing a bouncing ball with a trail effect)
Extensions and Variations:

• Add ground line and bouncing effect
• Simulate drag force for realistic motion
• Create an interactive control for changing parameters

Appendix A: Solutions to Chapter Problems 519

The basic syntax for animations and dynamic plotting is:

Listing A.80 Animation syntax.

% Create a figure
figure;

% Loop for updating plot
while condition
% Update data
% Plot current state
plot (...);

% Control animation speed
pause(seconds);

end

A.9 Solutions to Chapter 9

1. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter a number and determines whether it is positive, negative, or
zero using if-else statements.

2. Step-by-Step Approach:

a. Prompt the user to enter a number using the input function.
b. Use an if-elseif-else statement to check if the number is greater than 0, less

than 0, or equal to 0.
c. If the number is greater than 0, display a message indicating that it is positive.
d. If the number is less than 0, display a message indicating that it is negative.
e. If the number is equal to 0, display a message indicating that it is zero.

3. Sample Code:

Listing A.81 Determine sign of a number.

num = input(’Enter a number: ’);

if num > 0
disp(’The number is positive.’)
elseif num < 0
disp(’The number is negative.’)
else
disp(’The number is zero.’)
end

520 Appendix A: Solutions to Chapter Problems

4. Sample Output:

Enter a number: 5
The number is positive.

Enter a number: -3
The number is negative.

Enter a number: 0
The number is zero.

5. Extensions and Variations:

• Add input validation to ensure that the user enters a valid numeric value.
• Modify the script to handle different number ranges or categories (e.g., positive,
negative, zero, small, large, etc.).

• Extend the script to perform additional operations or calculations based on the
sign of the number.

6. Problem Statement and Background: Implement a MATLAB function that
takes two numbers as input and returns the maximum value using if-else state-
ments.

7. Step-by-Step Approach:

a. Define a function that takes two input arguments (the two numbers).
b. Use an if-else statement to compare the two numbers.
c. If the first number is greater than the second, return the first number as the

maximum value.
d. Otherwise, return the second number as the maximum value.

8. Sample Code:

Listing A.82 Find maximum of two numbers.

function max_value = findMax(num1 , num2)
if num1 > num2
max_value = num1;
else
max_value = num2;
end
end

9. Sample Output:

max_value = findMax(5, 8)
max_value = 8

max_value = findMax (10, 3)
max_value = 10

Appendix A: Solutions to Chapter Problems 521

10. Extensions and Variations:

• Modify the function to handle cases where the two numbers are equal.
• Extend the function to find themaximumof an arbitrary number of input values,
not just two.

• Incorporate input validation to ensure that the input values are valid numbers.

11. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter a character and determines whether it is a vowel or a consonant
using a switch statement.

12. Step-by-Step Approach:

a. Prompt the user to enter a character using the input function.
b. Convert the input character to lowercase using the lower function.
c. Use a switch statement to check if the character is a vowel (‘a’, ‘e’, ‘i’, ‘o’,

‘u’).
d. If the character is a vowel, display a message indicating that it is a vowel.
e. Otherwise, display a message indicating that it is a consonant.

13. Sample Code:

Listing A.83 Determine vowel or consonant.

char = input(’Enter a character: ’, ’s’);
char = lower(char);

switch char
case ’a’
disp(’The character is a vowel.’)
case ’e’
disp(’The character is a vowel.’)
case ’i’
disp(’The character is a vowel.’)
case ’o’
disp(’The character is a vowel.’)
case ’u’
disp(’The character is a vowel.’)
otherwise
disp(’The character is a consonant.’)
end

14. Sample Output:

Enter a character: A
The character is a vowel.

Enter a character: b
The character is a consonant.

522 Appendix A: Solutions to Chapter Problems

15. Extensions and Variations:

• Modify the script to handle uppercase and lowercase characters without explic-
itly converting the input.

• Extend the script to handle non-alphabetic characters and provide appropriate
messages for them.

• Incorporate input validation to ensure that the user enters a valid character.

16. Problem Statement and Background: Implement a MATLAB function that
takes a year as input and determines whether it is a leap year or not using if-else
statements. A year is considered a leap year if it is divisible by 4, except for
years divisible by 100, which are not leap years unless they are also divisible by
400.

17. Step-by-Step Approach:

a. Define a function that takes a year as input.
b. Use if-else statements to check the conditions for a leap year.
c. If the year is divisible by 4 and not divisible by 100, or if it is divisible by 400,

it is a leap year.
d. Return a boolean value (true or false) indicating whether the year is a leap year

or not.

18. Sample Code:

Listing A.84 Determine leap year.

function is_leap_year = isLeapYear(year)
is_leap_year = false;
if (mod(year , 4) == 0 && mod(year , 100) ~= 0) || mod(

year , 400) == 0
is_leap_year = true;
end
end

19. Sample Output:

is_leap_year = isLeapYear (2024)
is_leap_year = 1 % true

is_leap_year = isLeapYear (2100)
is_leap_year = 0 % false

20. Extensions and Variations:

• Modify the function to handle different calendars or systems for determining
leap years.

• Incorporate input validation to ensure that the input year is a valid positive
integer.

Appendix A: Solutions to Chapter Problems 523

• Extend the function to return additional information, such as the number of
days in the given year or the next leap year.

21. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter a letter grade (A, B, C, D, or F) and calculates the corresponding
grade point average (GPA) using if-elseif-else statements.

22. Step-by-Step Approach:

a. Prompt the user to enter a letter grade using the input function.
b. Convert the input to uppercase using the upper function.
c. Use an if-elseif-else statement to check the letter grade and assign the corre-

sponding GPA.
d. Display the calculated GPA.

23. Sample Code:

Listing A.85 Calculate GPA from letter grade.

grade = input(’Enter a letter grade (A, B, C, D, or F
): ’, ’s’);

grade = upper(grade);

switch grade
case ’A’
gpa = 4.0;
case ’B’
gpa = 3.0;
case ’C’
gpa = 2.0;
case ’D’
gpa = 1.0;
case ’F’
gpa = 0.0;
otherwise
disp(’Invalid grade entered.’);
return
end

disp([’The GPA for the grade ’, grade , ’ is ’,
num2str(gpa)])

24. Sample Output:

Enter a letter grade (A, B, C, D, or F): b
The GPA for the grade B is 3

Enter a letter grade (A, B, C, D, or F): X
Invalid grade entered.

524 Appendix A: Solutions to Chapter Problems

25. Extensions and Variations:

• Modify the script to handle additional grade scales or grading systems.
• Incorporate input validation to ensure that the user enters a valid letter grade.
• Extend the script to calculate the overall GPA based on multiple courses and
their respective grades.

26. Problem Statement and Background: Implement a MATLAB function that
takes three numbers as input and returns the median value (the middle value
when the numbers are arranged in ascending or descending order) using if-
elseif-else statements.

27. Step-by-Step Approach:

a. Define a function that takes three numbers as input.
b. Use if-elseif-else statements to compare the numbers and determine themedian

value.
c. Return the median value.

28. Sample Code:

Listing A.86 Find median of three numbers.

function median_value = findMedian(num1 , num2 , num3)
if (num1 >= num2 && num1 <= num3) || (num1 >= num3 &&

num1 <= num2)
median_value = num1;
elseif (num2 >= num1 && num2 <= num3) || (num2 >=

num3 && num2 <= num1)
median_value = num2;
else
median_value = num3;
end
end

29. Sample Output:

median_value = findMedian (5, 8, 3)
median_value = 5

median_value = findMedian (10, 3, 7)
median_value = 7

30. Extensions and Variations:

• Modify the function to handle cases where two or more numbers are equal.
• Extend the function to find the median of an arbitrary number of input values,
not just three.

• Incorporate input validation to ensure that the input values are valid numbers.

Appendix A: Solutions to Chapter Problems 525

31. Problem Statement and Background: Write a MATLAB script that generates
a random integer between 1 and 10, prompts the user to guess the number, and
provides feedbackusing if-else statements. The script should continue prompting
the user until the correct guess is made.

32. Step-by-Step Approach:

a. Generate a random integer between 1 and 10 using the randi function.
b. Prompt the user to enter their guess using the input function.
c. Use an if-else statement to compare the user’s guess with the random number.
d. If the guess is correct, display a message indicating that the user guessed

correctly.
e. If the guess is incorrect, display a message indicating whether the guess was

too high or too low.
f. Repeat steps 2–5 until the user guesses the correct number.

33. Sample Code:

Listing A.87 Guess the number game.

secret_number = randi ([1, 10]);
guess = -1;

while guess ~= secret_number
guess = input(’Guess the number between 1 and 10: ’);

if guess == secret_number
disp(’Congratulations! You guessed the number

correctly.’)
elseif guess < secret_number

disp(’Your guess is too low. Try again.’)
else

disp(’Your guess is too high. Try again.’)
end

end

34. Sample Output:

Guess the number between 1 and 10: 5
Your guess is too high. Try again.
Guess the number between 1 and 10: 3
Your guess is too low. Try again.
Guess the number between 1 and 10: 4
Congratulations! You guessed the number correctly.

35. Extensions and Variations:

• Modify the script to keep track of the number of attempts made by the user.
• Incorporate input validation to ensure that the user enters a valid integer within
the specified range.

• Extend the script to allow the user to play multiple rounds and keep score.

526 Appendix A: Solutions to Chapter Problems

36. Problem Statement and Background: Implement a MATLAB function that
takes a character as input and determines whether it is an uppercase letter, low-
ercase letter, or neither using a switch statement.

37. Step-by-Step Approach:

a. Define a function that takes a character as input.
b. Use a switch statement to check if the character is an uppercase letter, lower-

case letter, or neither.
c. For uppercase letters, return a specific value (e.g., 1).
d. For lowercase letters, return a different value (e.g., 2).
e. For non-alphabetic characters, return a third value (e.g., 0).

38. Sample Code:

Listing A.88 Determine character type.

function char_type = determineCharType (char)
char_type = 0; % Default value for non -alphabetic

characters

switch char
case ’A’:’Z’

char_type = 1; % Uppercase letter
case ’a’:’z’

char_type = 2; % Lowercase letter
otherwise

% Non -alphabetic character , keep default
value

end

end

39. Sample Output:

char_type = determineCharType (’A’)
char_type = 1 % Uppercase letter

char_type = determineCharType (’b’)
char_type = 2 % Lowercase letter

char_type = determineCharType (’$’)
char_type = 0 % Non -alphabetic character

40. Extensions and Variations:

• Modify the function to handle additional character types, such as digits or
special characters.

• Incorporate input validation to ensure that the input is a valid character.

Appendix A: Solutions to Chapter Problems 527

• Extend the function to return a descriptive string instead of numeric values for
better readability.

41. Problem Statement and Background: Write a MATLAB script that prompts
the user to enter their age and displays a message indicating their eligibility to
vote based on the following criteria: - If the age is 18 or above, the user is eligible
to vote. - If the age is below 18, the user is not eligible to vote.

42. Step-by-Step Approach:

a. Prompt the user to enter their age using the input function.
b. Use an if-else statement to check if the age is greater than or equal to 18.
c. If the age is greater than or equal to 18, display a message indicating that the

user is eligible to vote.
d. If the age is less than 18, display a message indicating that the user is not

eligible to vote.

43. Sample Code:

Listing A.89 Voting eligibility.

age = input(’Enter your age: ’);

if age >= 18
disp(’You are eligible to vote.’)
else
disp(’You are not eligible to vote.’)
end

44. Sample Output:

Enter your age: 21
You are eligible to vote.

Enter your age: 16
You are not eligible to vote.

45. Extensions and Variations:

• Modify the script to handle different voting age requirements based on location
or jurisdiction.

• Incorporate input validation to ensure that the user enters a valid positive integer
for age.

• Extend the script to provide additional information, such as the number of years
remaining until the user becomes eligible to vote.

46. Problem Statement and Background: Implement a MATLAB function that
takes a string as input and determines whether it is a palindrome (a word, phrase,

528 Appendix A: Solutions to Chapter Problems

number, or other sequence of characters that reads the samebackward as forward)
using if statements.

47. Step-by-Step Approach:

a. Define a function that takes a string as input.
b. Remove any non-alphabetic characters and convert the string to lowercase.
c. Reverse the string using the flip function.
d. Use an if statement to compare the original string with the reversed string.
e. If the strings are equal, return true (indicating that the input is a palindrome).
f. Otherwise, return false (indicating that the input is not a palindrome).

48. Sample Code:

Listing A.90 Determine if a string is a palindrome.

function is_palindrome = isPalindrome(str)
% Remove non -alphabetic characters and convert to

lowercase
str = regexprep(lower(str), ’[^a-z]’, ’’);
% Reverse the string
reversed_str = flip(str);

% Compare the original string with the reversed
string

if strcmp(str , reversed_str)
is_palindrome = true;

else
is_palindrome = false;

end

end

49. Sample Output:

is_palindrome = isPalindrome(’racecar ’)
is_palindrome = 1 % true

is_palindrome = isPalindrome(’hello’)
is_palindrome = 0 % false

50. Extensions and Variations:

• Modify the function to handle palindromes that include spaces and punctuation.
• Incorporate input validation to ensure that the input is a valid string.
• Extend the function to provide additional information, such as the length of the
palindrome or the longest palindromic substring within the input string.

51. Utilise Computational Intelligence Aided Design (CIAD) techniques [2–4] to
create a digital twinof aMicroAerialVehicle (MAV) robotic system for precision
agriculture applications in future farming scenarios.

Appendix A: Solutions to Chapter Problems 529

a. Problem Statement and Background:

• Design a MATLAB program to create a digital twin of an MAV used in
future farming. The MAV will monitor crop health and provide data for
analysis.

• Use CI methods to optimise the MAV’s flight path for efficient coverage of
the farm.

• Integrate real-time data collection and analysis, simulating theMAV’s oper-
ations and decision-making process.

b. Step-by-Step Approach:
i. **Define Variables and Data Structures**:

• Define the farm’s grid layout and initialise the MAV’s parameters
(e.g., battery life, speed, sensor range).

• Use arrays or matrices to represent the farm and the MAV’s state.
ii. **Implement CI Algorithms**:

• Implement a simple genetic algorithm (GA) to optimise the MAV’s
flight path.

• Define the fitness function tomaximise coverage andminimise energy
consumption.

iii. **Simulate MAV Operations**:
• Write functions to simulate the MAV’s movement, data collection,

and decision-making processes.
• Use loops and conditional statements to model the MAV’s behaviour

over time.
iv. **Visualise Results**:

• Plot the MAV’s flight path and coverage area using MATLAB’s plot-
ting functions.

• Display real-time data collected by the MAV in a dynamic plot.
c. Sample Code:

Listing A.91 Sample code for MAV digital twin simulation.

% Define farm grid and MAV parameters
farmSize = [100, 100];
mavPosition = [1, 1];
batteryLife = 100;
sensorRange = 10;
coverageMap = zeros(farmSize);

% Genetic algorithm parameters
populationSize = 50;
numGenerations = 100;
mutationRate = 0.01;

% Fitness function
fitnessFunction = @(path) evaluatePath(path ,

coverageMap , mavPosition , sensorRange);

530 Appendix A: Solutions to Chapter Problems

% Generate initial population
population = initializePopulation (populationSize ,

farmSize);

% Run genetic algorithm
for generation = 1: numGenerations
fitnessValues = arrayfun(fitnessFunction ,

population);
population = evolvePopulation(population ,

fitnessValues , mutationRate);
end

% Simulate MAV operations
for t = 1: batteryLife
mavPosition = updatePosition (mavPosition ,

population (1, :));
coverageMap = updateCoverage (coverageMap ,

mavPosition , sensorRange);
plotFarm(farmSize , coverageMap , mavPosition);
pause (0.1); % Simulate real -time operation
end

function fitness = evaluatePath(path , coverageMap ,
startPos , sensorRange)

% Evaluate the fitness of a given path
mavPos = startPos;
for step = 1: length(path)
mavPos = updatePosition (mavPos , path(step));
coverageMap = updateCoverage (coverageMap , mavPos ,

sensorRange);
end
fitness = sum(coverageMap (:));
end

function newPopulation = evolvePopulation(
population , fitnessValues , mutationRate)

% Implement selection , crossover , and mutation to
evolve the population

% ...
end

function mavPos = updatePosition(currentPos , step)
% Update the MAV ’s position based on the step
% Assuming step is a vector [dx , dy]
mavPos = currentPos + step;
end

function coverageMap = updateCoverage(coverageMap ,
mavPos , sensorRange)

% Update the coverage map based on the MAV ’s
current position

Appendix A: Solutions to Chapter Problems 531

[x, y] = meshgrid(mavPos (1)-sensorRange:mavPos (1)+
sensorRange , mavPos (2)-sensorRange:mavPos (2)+
sensorRange);

validIdx = (x > 0 & x <= size(coverageMap , 1) & y >
0 & y <= size(coverageMap , 2));

coverageMap(sub2ind(size(coverageMap), x(validIdx),
y(validIdx))) = 1;

end

function plotFarm(farmSize , coverageMap , mavPos)
% Plot the farm grid , MAV position , and coverage

map
imagesc(coverageMap);
hold on;
plot(mavPos (2), mavPos (1), ’ro’, ’MarkerSize ’, 10,

’LineWidth ’, 2);
title(’MAV Coverage Map’);
xlabel(’X Position ’);
ylabel(’Y Position ’);
hold off;
end

d. Sample Output:

• The output will be a series of plots showing theMAV’s coverage of the farm
over time. Each plot will display the areas covered by the MAV’s sensors
and its current position.

• The final plot should show the entire farm grid, highlighting the areas that
have been covered by the MAV.

e. Extensions and Variations:

• Multi-MAV Coordination: Extend the problem to include multiple MAVs
coordinating to cover the farm more efficiently. Implement communication
and coordination algorithms to optimise their collective paths.

• DynamicObstacles: Introduce dynamic obstacles (e.g., weather conditions,
moving animals) that the MAV must detect and avoid in real-time.

• Data Analysis: Integrate data analysis tools to process the data collected by
the MAV and provide insights into crop health, soil conditions, etc.

• Energy Management: Implement more sophisticated energy management
strategies to maximise the MAV’s operational time and efficiency.

f. Explanation of Important Concepts:

• Digital Twin: A virtual model designed to accurately reflect a physical
object. In this problem, the MAV’s operations and environment are simu-
lated digitally.

• Computational Intelligence (CI): Techniques such as genetic algorithms
are used to optimise theMAV’s flight path, demonstrating howCI can solve
complex, non-linear problems.

532 Appendix A: Solutions to Chapter Problems

• Flight Path Optimisation: Using CI methods to determine the most effi-
cient path for the MAV to cover the entire farm.

• Real-TimeSimulation: TheMATLABprogramsimulates theMAV’s oper-
ations in real-time, providing immediate feedback and visualisation of its
performance.

This problem and its solution not only cover key MATLAB programming
concepts but also illustrate the practical application of CI in digital twinning
and autonomous systems for agriculture.

52. Please collaborate with ChatGPT or a similar AI tool to create a MATLAB
function that cangenerate plots similar to the examplefigure provided inFig. 9.25
[5].

a. Problem Statement and Background:

• We need to create a MATLAB function named ‘plot_errorbands’ that can
generate plots with shaded error bands similar to a given example figure.

• This function should take input data, time points, error values, categories
for the legend, and axis labels.

• Error bands are used to visualize the variability or uncertainty in the data.

b. Step-by-Step Approach:

• Define the function signature: The function will take five inputs: ‘time-
points’, ‘data’, ‘error’, ‘categories’, and ‘labels’.

• Create a figure and hold on: Use ‘figure’ and ‘hold on’ to prepare the plot
for multiple lines and shaded areas.

• Define colors and line styles: Use ‘lines’ to generate a color scheme and
define different line styles for differentiation.

• Plot shaded error bands: Use ‘fill’ to create shaded areas representing the
error bands.

• Plot data lines: Use ‘plot’ to draw the actual data lines over the error bands.
• Add labels and legend: Use ‘xlabel’, ‘ylabel’, and ‘legend’ to add descrip-

tive labels and a legend to the plot.

c. Sample Code:
The basic syntax is:

Listing A.92 plot_errorbands function syntax.

function plot_errorbands(timepoints , data ,
error , categories , labels)
% plot_errorbands - Plots data with shaded

error bands
%
% Syntax: plot_errorbands(timepoints , data ,

error , categories , labels)
%
% timepoints - Vector of time points

Appendix A: Solutions to Chapter Problems 533

% data - Matrix of data values (each row is
a different line)

% error - Matrix of error values (same size
as data)

% categories - Cell array of category names
(for legend)

% labels - Cell array with two elements: {’
xlabel ’, ’ylabel ’}

figure;
hold on;

% Define colors and line styles
colors = lines(size(data , 1));
linestyles = {’-’, ’--’};

% Plot each data line with error bands
for i = 1:size(data , 1)

% Plot the error bands
fill([timepoints , fliplr(timepoints)],

...
[data(i, :) + error(i, :), fliplr(

data(i, :) - error(i, :))], ...
colors(i, :), ’FaceAlpha ’, 0.2, ’

EdgeColor ’, ’none’);

% Plot the data line
plot(timepoints , data(i, :), ’Color’,

colors(i, :), ...
’LineStyle ’, linestyles{mod(i-1,

length(linestyles))+1}, ...
’LineWidth ’, 1.5);

end

% Add labels and legend
xlabel(labels {1});
ylabel(labels {2});
legend(categories , ’Location ’, ’Best’);

hold off;
end

d. Sample Output:

• When the function ‘plot_errorbands’ is called with appropriate input data,
it generates a plot with multiple lines and shaded error bands.

• The plot includes labels for the x-axis and y-axis and a legend for different
categories.

• The visual representation helps in understanding the data trends and the
associated uncertainties.

As shown in Fig. A.1, the example of plot_errorbands function, all codes
are in a file named plot_errorbands_example01.m.

534 Appendix A: Solutions to Chapter Problems

Fig. A.1 Example: line plot with error band using ChatGPT

Listing A.93 An example of plot_errorbands function

% Generate some data
timepoints = 1:10;
data = [10* rand (1,10); 8*rand (1 ,10)];
error = [0.5* ones (1 ,10); 0.3* ones (1,10)];
categories = {’Experiment A’, ’Experiment B’};
labels = {’Time (days)’, ’Measurement ’};

% Plot the error bands
plot_errorbands(timepoints , data , error , categories

, labels);

e. Extensions and Variations:

• Customization: The function can be extended to allow customization of
colors, line styles, and transparency of the error bands.

• Additional Features: Adding options to save the plot as an image file or
to include grid lines and titles can enhance the function.

• Different Plot Types: The function can be modified to support different
types of plots (e.g., bar plots, scatterplots) while still incorporating error
bands.

Appendix A: Solutions to Chapter Problems 535

A.10 Solutions to Chapter 10

1. Bank Account Management

a. Problem Statement and Background: Develop an object-oriented system to
manage various types of bank accounts, including features like deposits, with-
drawals, balance checking, and account-specific functionalities (e.g., interest
calculation, overdraft fees).

b. Step-by-Step Approach:
i. Define the BankAccount class with properties for account number,

account holder’s name, and balance.
ii. Implement methods for depositing, withdrawing, and checking the bal-

ance.
iii. Incorporate error handling to prevent negative balances and invalid trans-

actions.
iv. Create subclasses for different account types (e.g., SavingsAccount,

CheckingAccount) and implement their respective functionalities.
v. Test the system by creating instances of different account types and per-

forming various operations.
c. Sample Code:

Listing A.94 Bank Account Management.

classdef BankAccount
properties
accountNumber
accountHolderName
balance
end

methods
function obj = BankAccount(accountNumber ,

accountHolderName , initialBalance)
obj.accountNumber = accountNumber;
obj.accountHolderName = accountHolderName ;
obj.balance = initialBalance ;

end

function deposit(obj , amount)
if amount > 0

obj.balance = obj.balance + amount;
else

error(’Invalid deposit amount.’);
end

end

function withdraw(obj , amount)
if amount > 0 && amount <= obj.balance

obj.balance = obj.balance - amount;
else

536 Appendix A: Solutions to Chapter Problems

error(’Insufficient funds or invalid
withdrawal amount.’);

end
end

function currentBalance = getBalance(obj)
currentBalance = obj.balance;

end
end
end

classdef SavingsAccount < BankAccount
properties
interestRate
end

methods
function obj = SavingsAccount (accountNumber ,

accountHolderName , initialBalance ,
interestRate)
obj = obj@BankAccount(accountNumber ,

accountHolderName , initialBalance);
obj.interestRate = interestRate;

end

function calculateInterest (obj)
interest = obj.balance * obj.interestRate;
obj.deposit(interest);

end
end
end

d. Sample Output:

% Create a savings account
savingsAccount = SavingsAccount (’SA001’, ’John Doe’

, 5000, 0.03);

% Deposit some money
savingsAccount.deposit (2000);
currentBalance = savingsAccount .getBalance (); %

Output: 7000

% Calculate and apply interest
savingsAccount.calculateInterest ();
currentBalance = savingsAccount .getBalance (); %

Output: 7150

% Withdraw money
savingsAccount.withdraw (1500);
currentBalance = savingsAccount .getBalance (); %

Output: 5650

Appendix A: Solutions to Chapter Problems 537

e. Extensions and Variations:

• Implement additional account types like CheckingAccount with over-
draft fees or CreditCardAccount with interest calculations and credit
limits.

• Add functionality for transferring funds between accounts, either within
the same bank or across different banks.

• Incorporate account statements or transaction history tracking.
• Implement account closures and account number validation.
• Explore database integration for persistent storage of account information.

2. Geometric Shapes

a. Problem Statement and Background: Create an object-oriented system to
represent and calculate properties of various geometric shapes, such as area,
perimeter, and volume (for 3D shapes).

b. Step-by-Step Approach:
i. Define an abstract class called Shape with a method for calculating the

area.
ii. Derive concrete subclasses for different shapes (e.g., Circle,

Rectangle, Triangle) and implement their respective area calcu-
lation methods.

iii. Create a function that takes an array of Shape objects and calculates the
total area of all shapes.

iv. Optionally, extend the problem by addingmethods for calculating perime-
ter, volume (for 3D shapes), or other relevant properties.

v. Test the system by creating instances of different shape objects and cal-
culating their properties.

c. Sample Code:

Listing A.95 Geometric Shapes.

classdef Shape
properties
end

methods (Abstract)
area = calculateArea(obj)

end

end

classdef Circle < Shape
properties
radius
end

methods
function obj = Circle(radius)

obj.radius = radius;

538 Appendix A: Solutions to Chapter Problems

end

function area = calculateArea(obj)
area = pi * obj.radius ^2;

end
end

end

classdef Rectangle < Shape
properties
length
width
end

methods
function obj = Rectangle(length , width)

obj.length = length;
obj.width = width;

end

function area = calculateArea(obj)
area = obj.length * obj.width;

end
end

end

function totalArea = calculateTotalArea(shapes)
totalArea = 0;
for i = 1: length(shapes)
totalArea = totalArea + shapes(i).calculateArea ();
end
end

d. Sample Output:

% Create shape objects
circle1 = Circle (5);
rectangle1 = Rectangle (3, 4);
rectangle2 = Rectangle (6, 2);

% Create an array of shapes
shapes = [circle1 , rectangle1 , rectangle2];

% Calculate total area
totalArea = calculateTotalArea(shapes); % Output:

78.5398

e. Extensions and Variations:

• Implement additional shape classes like Triangle, Sphere, Cube, or
other 3D shapes.

Appendix A: Solutions to Chapter Problems 539

• Addmethods for calculating perimeter, volume, or other relevant properties
for each shape class.

• Implement methods for drawing or visualizing the shapes using MATLAB
graphics.

• Explore inheritance hierarchies and polymorphism formore complex shape
representations (e.g., regular polygons, composite shapes).

• Incorporate shape transformations such as scaling, rotation, or translation.

3. Student Record Management

a. Problem Statement and Background: Develop an object-oriented system
to manage student records, including features like adding/updating grades,
calculating grade point averages (GPA), generating report cards, and handling
different types of students (e.g., undergraduate, graduate).

b. Step-by-Step Approach:
i. Define the Student class with properties for name, ID, and grades.
ii. Implement methods for adding/updating grades, calculating the GPA, and

generating a report card.
iii. Create a subclass called GraduateStudent that inherits from

Student and includes additional properties and methods specific to
graduate students (e.g., thesis, research projects).

iv. Design a system to manage a collection of students, perform operations
like sorting or filtering based on specific

v. Criteria, and generate statistical reports.
vi. Test the system by creating instances of different student types, adding

grades, and performing various operations.
c. Sample Code:

Listing A.96 Student Record Management.

classdef Student
properties
name
id
grades = []
end

methods
function obj = Student(name , id)

obj.name = name;
obj.id = id;

end

function addGrade(obj , grade)
obj.grades = [obj.grades , grade];

end

function gpa = calculateGPA(obj)
gpa = mean(obj.grades);

end

540 Appendix A: Solutions to Chapter Problems

function generateReportCard(obj)
disp([’Name: ’, obj.name]);
disp([’ID: ’, obj.id]);
disp(’Grades:’);
disp(obj.grades);
disp([’GPA: ’, num2str(obj.calculateGPA ())

]);
end

end

end

classdef GraduateStudent < Student
properties
thesis
researchProjects = {}
end

methods
function obj = GraduateStudent(name , id , thesis

)
obj = obj@Student(name , id);
obj.thesis = thesis;

end

function addResearchProject(obj , project)
obj.researchProjects{end +1} = project;

end
end

end

d. Sample Output:

% Create undergraduate student
undergrad = Student(’John Doe’, ’12345’);
undergrad.addGrade (85);
undergrad.addGrade (92);
undergrad.addGrade (78);
undergrad.generateReportCard ();

% Create graduate student
grad = GraduateStudent(’Jane Smith’, ’67890’, ’

Machine Learning Algorithms ’);
grad.addGrade (90);
grad.addGrade (88);
grad.addGrade (94);
grad.addResearchProject(’Deep Learning for Image

Recognition ’);
grad.generateReportCard ();

Appendix A: Solutions to Chapter Problems 541

e. Extensions and Variations:

• Implement additional student types like PartTimeStudent,
InternationalStudent, or OnlineStudentwith their respective
rules and requirements.

• Add functionality for managing course registrations, schedules, and pre-
requisites.

• Incorporate features like academic probation, Dean’s List, or honors recog-
nition based on GPA thresholds.

• Explore database integration for persistent storage of student records and
transcripts.

• Implement user authentication and authorization for secure access to student
records.

4. Employee Payroll System

a. Problem Statement and Background: Create an object-oriented system to
manage employee payroll, including different types of employees (e.g., hourly,
salaried, contract), calculation of monthly salaries, overtime pay, bonuses, and
deductions.

b. Step-by-Step Approach:
i. Define an abstract class called Employee with properties for name, ID,

and a method for calculating the monthly salary.
ii. Derive concrete subclasses for different employee types (e.g., Hourly

Employee,SalariedEmployee,ContractEmployee) and imple-
ment their respective salary calculation methods.

iii. Incorporate features like overtime pay, bonuses, or deductions based on
employee type or performance.

iv. Design a system to manage a company’s payroll, generate paychecks, and
produce reports for HR or financial analysis.

v. Test the system by creating instances of different employee types, calcu-
lating their monthly salaries, and generating payroll reports.

c. Sample Code:

Listing A.97 Employee Payroll System.

classdef Employee
properties
name
id
end

methods (Abstract)
monthlySalary = calculateMonthlySalary(obj)

end

end

classdef HourlyEmployee < Employee

542 Appendix A: Solutions to Chapter Problems

properties
hourlyRate
hoursWorked
end

methods
function obj = HourlyEmployee (name , id ,

hourlyRate)
obj.name = name;
obj.id = id;
obj.hourlyRate = hourlyRate;

end

function monthlySalary = calculateMonthlySalary
(obj)
regularHours = min(obj.hoursWorked , 160);
overtimeHours = max(0, obj.hoursWorked -

160);
monthlySalary = (regularHours * obj.

hourlyRate) + (overtimeHours * 1.5 * obj
.hourlyRate);

end
end

end

classdef SalariedEmployee < Employee
properties
monthlySalary
end

methods
function obj = SalariedEmployee(name , id ,

monthlySalary)
obj.name = name;
obj.id = id;
obj.monthlySalary = monthlySalary;

end

function salary = calculateMonthlySalary(obj)
salary = obj.monthlySalary;

end
end

end

% ... (additional employee types like
ContractEmployee)

function payroll = generatePayroll(employees)
payroll = [];
for i = 1: length(employees)
employee = employees(i);

Appendix A: Solutions to Chapter Problems 543

paycheck.name = employee.name;
paycheck.id = employee.id;
paycheck.monthlySalary = employee.

calculateMonthlySalary ();
payroll = [payroll , paycheck];
end
end

d. Sample Output:

% Create employee instances
hourlyEmployee = HourlyEmployee (’John Doe’, ’12345’

, 25);
hourlyEmployee.hoursWorked = 180;
salariedEmployee = SalariedEmployee(’Jane Smith’, ’

67890’, 5000);

% Generate payroll
employees = [hourlyEmployee , salariedEmployee];
payroll = generatePayroll(employees);

e. Extensions and Variations:

• Implement additional employee types like CommissionEmployee or
PartTimeEmployee with their respective salary calculation rules.

• Add features for managing employee benefits, tax deductions, and other
payroll-related calculations.

• Incorporate features for tracking employee attendance, leave balances, and
time-off requests.

• Explore database integration for persistent storage of employee records and
payroll history.

• Implement user authentication and authorization for secure access to payroll
information.

5. Library Management System

a. ProblemStatement andBackground: Develop an object-oriented system for
managing a library, including features like book cataloging, checkout/return
operations, reservations, and user accounts.

b. Step-by-Step Approach:
i. Define a class called Book with properties for title, author, publication

date, and availability status.
ii. Implement methods for checking out, returning, and reserving books.
iii. Create a class called Library that manages a collection of Book
iv. Objects and provides functionality for searching, sorting, and filtering

books based on various criteria.
v. Incorporate features like user accounts, late fees, and notifications for

overdue books or reserved items.

544 Appendix A: Solutions to Chapter Problems

vi. Test the system by creating instances of books, users, and performing
various library operations.

c. Sample Code:

Listing A.98 Library Management System.

classdef Book
properties
title
author
publicationDate
available = true
end

methods
function obj = Book(title , author ,

publicationDate)
obj.title = title;
obj.author = author;
obj.publicationDate = publicationDate;

end

function checkout(obj)
if obj.available

obj.available = false;
else

error(’Book is not available for
checkout.’);

end
end

function returnBook(obj)
obj.available = true;

end

function reserve(obj)
if ~obj.available

disp([’Book "’, obj.title , ’" has been
reserved.’]);

else
disp([’Book "’, obj.title , ’" is

currently available.’]);
end

end
end

end

classdef Library
properties
books = Book.empty ();
end

Appendix A: Solutions to Chapter Problems 545

methods
function addBook(obj , book)

obj.books(end +1) = book;
end

function searchBooks(obj , query)
matches = [];
for i = 1: length(obj.books)

book = obj.books(i);
if contains(book.title , query) ||

contains(book.author , query)
matches(end +1) = book;

end
end
disp(’Search Results:’);
for i = 1: length(matches)

book = matches(i);
disp([’Title: ’, book.title , ’, Author:

’, book.author]);
end

end
end

end

d. Sample Output:

% Create books
book1 = Book(’To Kill a Mockingbird ’, ’Harper Lee’,

’1960’);
book2 = Book(’1984’, ’George Orwell ’, ’1949’);
book3 = Book(’Pride and Prejudice ’, ’Jane Austen ’,

’1813’);

% Create a library and add books
library = Library ();
library.addBook(book1);
library.addBook(book2);
library.addBook(book3);

% Search for books
library.searchBooks(’Mockingbird ’);

% Check out a book
book1.checkout ();

% Reserve a book
book2.reserve ();

e. Extensions and Variations:

• Implement user accounts with borrowing history, fines, and notifications.
• Add features formanaging book acquisitions, donations, and removals from

the library.

546 Appendix A: Solutions to Chapter Problems

• Incorporate features for managing library staff, roles, and permissions.
• Explore database integration for persistent storage of library catalogs and

user records.
• Implement user authentication and authorization for secure access to library

resources.

6. Vehicle Rental System

a. Problem Statement and Background: Create an object-oriented system for a
vehicle rental company, including different types of vehicles (e.g., cars, trucks,
motorcycles), rental rate calculations, availability tracking, and customerman-
agement.

b. Step-by-Step Approach:
i. Define an abstract class called Vehiclewith properties formake,model,

year, and a method for calculating the daily rental rate.
ii. Derive concrete subclasses for different vehicle types (e.g., Car, Truck,

Motorcycle) and implement their respective rental rate calculation
methods.

iii. Create a class calledRentalCompany thatmanages a fleet of Vehicle
objects and provides functionality for renting, returning, and tracking
vehicle availability.

iv. Incorporate features like customer accounts, discounts for long-term
rentals, and additional services like insurance or GPS navigation.

v. Test the system by creating instances of different vehicle types, renting
and returning vehicles, and generating rental reports.

c. Sample Code:

Listing A.99 Vehicle Rental System.

classdef Vehicle
properties
make
model
year
end

methods (Abstract)
dailyRate = calculateDailyRate(obj)

end

end

classdef Car < Vehicle
methods
function dailyRate = calculateDailyRate(obj)
dailyRate = 50; % Default daily rate for cars
end
end
end

Appendix A: Solutions to Chapter Problems 547

classdef Truck < Vehicle
properties
payload
end

methods
function dailyRate = calculateDailyRate(obj)

dailyRate = 75 + obj.payload * 0.1; % Daily
rate based on payload

end
end

end

classdef RentalCompany
properties
vehicles = Vehicle.empty();
end

methods
function addVehicle(obj , vehicle)

obj.vehicles(end+1) = vehicle;
end

function rentVehicle(obj , vehicle)
if any(obj.vehicles == vehicle)

disp([’Renting ’, vehicle.make , ’ ’,
vehicle.model]);

else
error(’Vehicle not found in the rental

fleet.’);
end

end

function returnVehicle(obj , vehicle)
if any(obj.vehicles == vehicle)

disp([’Returning ’, vehicle.make , ’ ’,
vehicle.model]);

else
error(’Vehicle not found in the rental

fleet.’);
end

end
end
end

d. Sample Output:

% Create vehicles
car1 = Car(’Toyota ’, ’Camry’, 2020);
truck1 = Truck(’Ford’, ’F-150’, 2018, 1500);

% Create a rental company and add vehicles
rentalCompany = RentalCompany ();

548 Appendix A: Solutions to Chapter Problems

rentalCompany.addVehicle(car1);
rentalCompany.addVehicle(truck1);

% Rent a vehicle
rentalCompany.rentVehicle(car1);

% Return a vehicle
rentalCompany.returnVehicle(truck1);

e. Extensions and Variations:

• Implement additional vehicle types like SUV, Van, or RVwith their respec-
tive rental rate calculations.

• Add features for managing customer accounts, reservations, and payment
processing.

• Incorporate features like vehicle maintenance schedules, fuel tracking, and
insurance claims.

• Explore database integration for persistent storage of vehicle fleets, cus-
tomer records, and rental history.

• Implement user authentication and authorization for secure access to rental
system features.

7. Social Media Platform

a. ProblemStatement andBackground: Develop an object-oriented system for
a social media platform, including user profiles, posts, comments, and friend
connections.

b. Step-by-Step Approach:
i. Define a class called User with properties for username, profile infor-

mation (name, bio, etc.), and friend connections.
ii. Create a class called Post with properties for content, author (User),

timestamp, and comments.
iii. Implement a Comment class with properties for content, author (User),

timestamp, and the post it belongs to.
iv. Create a SocialMediaPlatform class that manages users, posts,

comments, and friend connections, and provides functionality for creating
posts, commenting, and managing friend connections.

v. Test the system by creating users, making friend connections, posting
content, commenting, and simulating social media interactions.

c. Sample Code:

Listing A.100 Social Media Platform.

classdef User
properties
username
name
bio
friends = User.empty ();

Appendix A: Solutions to Chapter Problems 549

end

methods
function obj = User(username , name , bio)

obj.username = username;
obj.name = name;
obj.bio = bio;

end

function addFriend(obj , friend)
obj.friends(end +1) = friend;

end
end

end

classdef Post
properties
content
author
timestamp
comments = Comment.empty();
end

methods
function obj = Post(content , author)

obj.content = content;
obj.author = author;
obj.timestamp = datetime(’now’);

end

function addComment(obj , comment)
obj.comments(end+1) = comment;

end
end

end

classdef Comment
properties
content
author
timestamp
post
end

methods
function obj = Comment(content , author , post)

obj.content = content;
obj.author = author;
obj.timestamp = datetime(’now’);
obj.post = post;
post.addComment(obj);

550 Appendix A: Solutions to Chapter Problems

end
end

end

classdef SocialMediaPlatform
properties
users = User.empty ();
posts = Post.empty ();
end

methods
function addUser(obj , user)

obj.users(end +1) = user;
end

function post = createPost(obj , content , author
)
post = Post(content , author);
obj.posts(end +1) = post;

end

function comment = addComment(obj , post ,
content , author)
comment = Comment(content , author , post);

end

function makeFriends(obj , user1 , user2)
user1.addFriend(user2);
user2.addFriend(user1);

end
end

end

d. Sample Output:

% Create users
user1 = User(’john_doe ’, ’John Doe’, ’Software

Engineer ’);
user2 = User(’jane_smith ’, ’Jane Smith’, ’Artist ’);

% Create a social media platform
platform = SocialMediaPlatform ();
platform.addUser(user1);
platform.addUser(user2);

% Make friend connection
platform.makeFriends(user1 , user2);

% Create a post
post1 = platform.createPost(’Had a great day today!

’, user1);

Appendix A: Solutions to Chapter Problems 551

% Add a comment
comment1 = platform.addComment(post1 , ’Awesome!’,

user2);

e. Extensions and Variations:

• Implement features for news feeds, post sharing, and content discovery.
• Add features for post reactions (likes, dislikes, etc.), hashtags, andmentions.
• Incorporate features like groupmanagement, event creation, andmessaging.
• Explore database integration for persistent storage of user profiles, posts,

comments, and connections.
• Implement user authentication, privacy settings, and content moderation

features.

8. Online Shopping Cart

a. Problem Statement and Background: Develop an object-oriented system
for an online shopping cart, including product catalog management, shopping
cart functionality, order processing, and customer accounts.

b. Step-by-Step Approach:
i. Define a class called Product with properties for name, description,

price, and stock quantity.
ii. Create a class called ShoppingCart that manages a collection of

Product objects and provides functionality for adding, removing, and
updating quantities in the cart.

iii. Implement an Order class that represents a customer’s order, including
the ordered products, total cost, and shipping information.

iv. Incorporate features like customer accounts, order history, and payment
processing.

v. Test the system by creating product catalogs, simulating shopping cart
operations, and processing orders.

c. Sample Code:

Listing A.101 Online Shopping Cart.

classdef Product
properties
name
description
price
stockQuantity
end

methods
function obj = Product(name , description , price

, stockQuantity)
obj.name = name;
obj.description = description;
obj.price = price;

552 Appendix A: Solutions to Chapter Problems

obj.stockQuantity = stockQuantity;
end

end

end

classdef ShoppingCart
properties
items = Product.empty();
quantities = [];
end

methods
function addItem(obj , product , quantity)

idx = find([obj.items.name] == product.name
);

if isempty(idx)
obj.items(end +1) = product;
obj.quantities(end +1) = quantity;

else
obj.quantities(idx) = obj.quantities(

idx) + quantity;
end

end

function removeItem(obj , product)
idx = find([obj.items.name] == product.name

);
if ~isempty(idx)

obj.items(idx) = [];
obj.quantities(idx) = [];

end
end

function updateQuantity(obj , product ,
newQuantity)
idx = find([obj.items.name] == product.name

);
if ~isempty(idx)

obj.quantities(idx) = newQuantity;
end

end

function totalCost = calculateTotalCost(obj)
totalCost = 0;
for i = 1: length(obj.items)

totalCost = totalCost + obj.items(i).
price * obj.quantities(i);

end
end

end

end

Appendix A: Solutions to Chapter Problems 553

classdef Order
properties
customer
items
quantities
totalCost
shippingAddress
end

methods
function obj = Order(customer , shoppingCart)

obj.customer = customer;
obj.items = shoppingCart.items;
obj.quantities = shoppingCart.quantities;
obj.totalCost = shoppingCart.

calculateTotalCost ();
% Prompt user for shipping address

end

function processOrder(obj)
% Process payment
disp(’Order processed successfully!’);

end
end

end

d. Sample Output:

% Create products
product1 = Product(’T-Shirt’, ’Cotton T-Shirt’,

19.99 , 100);
product2 = Product(’Jeans’, ’Denim Jeans’, 49.99 ,

50);

% Create a shopping cart
cart = ShoppingCart ();

% Add items to the cart
cart.addItem(product1 , 2);
cart.addItem(product2 , 1);

% Calculate total cost
totalCost = cart.calculateTotalCost (); % Output:

89.97

% Create and process an order
order = Order(’John Doe’, cart);
order.processOrder ();

554 Appendix A: Solutions to Chapter Problems

e. Extensions and Variations:

• Implement customer accounts with order history and personalized recom-
mendations.

• Add features for product reviews, ratings, and wish lists.
• Incorporate features like discounts, promotions, and gift cards.
• Explore database integration for persistent storage of product catalogs, cus-

tomer information, and order history.
• Implement user authentication and authorization for secure access to cus-

tomer accounts and order information.

9. Flight Reservation System

a. ProblemStatement andBackground: Develop an object-oriented system for
airline reservations, including flight management, seat reservations, passenger
management, and ticket booking.

b. Step-by-Step Approach:
i. Define a class called Flight with properties for flight number, origin,

destination, departure time, and available seats.
ii. Create a class called Passengerwith properties for name, contact infor-

mation, and frequent flyer status.
iii. Implement a Reservation class that represents a passenger’s reserva-

tion, including the flight, passenger details, and seat assignment.
iv. Create an AirlineReservationSystem class that manages flights,

passengers, and reservations, and provides functionality for booking, can-
celing, and modifying reservations.

v. Test the system by creating flights, managing passenger information, and
simulating reservation scenarios.

c. Sample Code:

Listing A.102 Airline Reservation System.

classdef Flight
properties
flightNumber
origin
destination
departureTime
availableSeats
end

methods
function obj = Flight(flightNumber , origin ,

destination , departureTime , totalSeats)
obj.flightNumber = flightNumber;
obj.origin = origin;
obj.destination = destination;
obj.departureTime = departureTime;
obj.availableSeats = totalSeats;

Appendix A: Solutions to Chapter Problems 555

end
end

end

classdef Passenger
properties
name
contact
frequentFlyerStatus
end

methods
function obj = Passenger(name , contact ,

frequentFlyerStatus)
obj.name = name;
obj.contact = contact;
obj.frequentFlyerStatus =

frequentFlyerStatus ;
end

end

end

classdef Reservation
properties
flight
passenger
seatNumber
end

methods
function obj = Reservation(flight , passenger ,

seatNumber)
obj.flight = flight;
obj.passenger = passenger;
obj.seatNumber = seatNumber;
flight.availableSeats = flight.

availableSeats - 1;
end

end

end

classdef AirlineReservationSystem
properties
flights
passengers
reservations
end

methods
function obj = AirlineReservationSystem ()

556 Appendix A: Solutions to Chapter Problems

obj.flights = Flight.empty();
obj.passengers = Passenger.empty();
obj.reservations = Reservation.empty();

end

function addFlight(obj , flight)
obj.flights(end +1) = flight;

end

function addPassenger(obj , passenger)
obj.passengers(end +1) = passenger;

end

function reservation = bookReservation(obj ,
flightNumber , passenger)
flight = obj.getFlight(flightNumber);
if ~isempty(flight) && flight.

availableSeats > 0
seatNumber = flight.availableSeats ;
reservation = Reservation(flight ,

passenger , seatNumber);
obj.reservations(end +1) = reservation;

else
reservation = [];
warning(’Flight not found or no

available seats.’);
end

end

function cancelReservation (obj , reservation)
idx = find([obj.reservations.seatNumber] ==

reservation.seatNumber);
if ~isempty(idx)

reservation.flight.availableSeats =
reservation.flight.availableSeats +
1;

obj.reservations(idx) = [];
end

end

function flight = getFlight(obj , flightNumber)
idx = find([obj.flights.flightNumber] ==

flightNumber);
if ~isempty(idx)

flight = obj.flights(idx);
else

flight = [];
end

end
end
end

Appendix A: Solutions to Chapter Problems 557

d. Sample Output:

% Create flights
flight1 = Flight(’AA123’, ’New York’, ’Los Angeles ’

, datetime (2023 , 6, 1, 9, 0, 0), 150);
flight2 = Flight(’UA456’, ’Chicago ’, ’San Francisco

’, datetime (2023 , 6, 2, 11, 30, 0), 120);

% Create passengers
passenger1 = Passenger(’John Doe’, ’123 -456 -7890’,

’Gold’);
passenger2 = Passenger(’Jane Smith’, ’987 -654 -3210’

, ’Silver ’);

% Create an airline reservation system
reservationSystem = AirlineReservationSystem ();
reservationSystem .addFlight(flight1);
reservationSystem .addFlight(flight2);
reservationSystem .addPassenger(passenger1);
reservationSystem .addPassenger(passenger2);

% Book a reservation
reservation1 = reservationSystem .bookReservation(’

AA123’, passenger1);

% Cancel a reservation
reservationSystem .cancelReservation (reservation1);

e. Extensions and Variations:

• Implement features for flight schedules, connections, and multi-leg jour-
neys.

• Add features for seat selection, meal preferences, and special assistance.
• Incorporate features like baggage tracking, check-in, and boarding proce-

dures.
• Explore database integration for persistent storage of flight schedules, pas-

senger information, and reservation records.
• Implement user authentication and authorization for secure access to reser-

vation features.

10. Weather Monitoring System

a. ProblemStatement andBackground: Develop an object-oriented system for
monitoringweather conditions, including temperature, humidity, precipitation,
andwind speed/direction. The system should supportmultipleweather stations
and provide data Visualisation and analysis capabilities.

b. Step-by-Step Approach:

• Define a class called WeatherData with properties for temperature,
humidity, precipitation, wind speed, and wind direction.

• Create a class called WeatherStation with properties for location, sta-
tion ID, and a collection of WeatherData objects.

558 Appendix A: Solutions to Chapter Problems

• Implement aWeatherMonitoringSystem class thatmanagesweather
stations, collects weather data, and provides functionality for data Visuali-
sation and analysis.

• Create helper classes or functions for data Visualisation (e.g., plotting tem-
perature, humidity, or precipitation over time) and data analysis (e.g., cal-
culating averages, extremes, or trends).

• Test the system by simulating weather data collection from multiple sta-
tions, visualizing the data, and performing analysis on the collected data.

c. Sample Code:

Listing A.103 Weather Monitoring System.

classdef WeatherData
properties
temperature
humidity
precipitation
windSpeed
windDirection
end

methods
function obj = WeatherData(temperature ,

humidity , precipitation , windSpeed ,
windDirection)
obj.temperature = temperature;
obj.humidity = humidity;
obj.precipitation = precipitation;
obj.windSpeed = windSpeed;
obj.windDirection = windDirection;

end
end

end

classdef WeatherStation
properties
location
stationID
weatherData = WeatherData.empty ();
end

methods
function obj = WeatherStation (location ,

stationID)
obj.location = location;
obj.stationID = stationID;

end

function addWeatherData(obj , weatherData)
obj.weatherData(end +1) = weatherData;

end

Appendix A: Solutions to Chapter Problems 559

end

end

classdef WeatherMonitoringSystem
properties
weatherStations = WeatherStation.empty ();
end

methods
function addWeatherStation (obj , weatherStation)

obj.weatherStations(end +1) = weatherStation
;

end

function visualizeData(obj , stationID , dataType
)
station = obj.getWeatherStation (stationID);
if ~isempty(station)

switch dataType
case ’temperature ’

data = [station.weatherData.
temperature];

plot(data);
title([’Temperature at Station

’, station.stationID]);
xlabel(’Time’);
ylabel(’Temperature (\ celsius)’

);
case ’humidity ’

data = [station.weatherData.
humidity];

plot(data);
title([’Humidity at Station ’,

station.stationID]);
xlabel(’Time’);
ylabel(’Humidity (%)’);

% Add more cases for other data
types

end
else

error(’Weather station not found.’);
end

end

function averageData = analyzeData(obj ,
stationID , dataType)
station = obj.getWeatherStation (stationID);
if ~isempty(station)

switch dataType
case ’temperature ’

data = [station.weatherData.
temperature];

560 Appendix A: Solutions to Chapter Problems

averageData = mean(data);
case ’humidity ’

data = [station.weatherData.
humidity];

averageData = mean(data);
% Add more cases for other data

types
end

else
error(’Weather station not found.’);

end
end

function station = getWeatherStation (obj ,
stationID)
idx = find([obj.weatherStations.stationID]

== stationID);
if ~isempty(idx)

station = obj.weatherStations(idx);
else

station = [];
end

end
end
end

d. Sample Output:

% Create weather stations
station1 = WeatherStation(’New York’, ’NY001’);
station2 = WeatherStation(’Los Angeles ’, ’LA001’);

% Add weather data
station1.addWeatherData (WeatherData (25, 70, 0, 10,

’N’));
station1.addWeatherData (WeatherData (28, 65, 0.2,

15, ’NW’));
station2.addWeatherData (WeatherData (30, 40, 0, 5, ’

W’));
station2.addWeatherData (WeatherData (32, 35, 0.1, 8,

’SW’));

% Create a weather monitoring system
weatherSystem = WeatherMonitoringSystem ();
weatherSystem.addWeatherStation (station1);
weatherSystem.addWeatherStation (station2);

% Visualize temperature data
weatherSystem.visualizeData(’NY001’, ’temperature ’)

;

% Analyze humidity data
avgHumidity = weatherSystem.analyzeData(’LA001’, ’

humidity ’);

Appendix A: Solutions to Chapter Problems 561

disp([’Average humidity at LA001: ’, num2str(
avgHumidity), ’%’]);

e. Extensions and Variations:

• Implement features for weather forecasting and alert systems based on
historical data and weather patterns.

• Add support for additional weather data types, such as atmospheric pres-
sure, cloud cover, and visibility.

• Incorporate real-time data acquisition from weather APIs or sensor net-
works.

• Explore database integration for persistent storage of weather data and
station information.

• Implement user authentication and authorization for secure access to
weather monitoring features.

Appendix B
Frequently Asked Questions (FAQs)

B.1 Prerequisites

While no strict prerequisites are required, some background in the following areas
will help readers get the most out of this textbook:

• Programming experience—Prior experience in any programming language like C,
Python, Java, etc. will be helpful to understand basic programming constructs and
data structures.

• Mathematics—Foundational knowledge in mathematics including calculus, linear
algebra, probability and statistics will enable better understanding of examples and
applications.

• Engineering and Science basics—Some familiarity with basic engineering or sci-
ence concepts will provide context for many of the examples. However, the book
covers fundamentals as well.

• Computer skills—Basic computer skills including proficiency with an operating
system, file management, office productivity tools etc. will be useful.

That said, the book is designed in a modular fashion allowing even beginners with
no prior experience to pick up MATLAB skills systematically. The programming
aspects are built up gradually with abundant examples. Necessary mathematical and
scientific context is provided along the way.

Readers with some amount of prior experience in programming, mathematics or
an engineering and science discipline will likely be able to progress through the
material more quickly. However, the book can be used even by complete beginners
starting from first principles.

The terms computing and calculating are oftenused interchangeably, but they can
have distinct meanings, especially in the context of technology and mathematics.

Calculating generally refers to the process of finding a numerical answer to
a problem. It involves arithmetic operations such as addition, subtraction, multi-
plication, and division. Calculating can be done by hand, with a calculator, or by a
computer as part of a larger set of operations.

© The Editor(s) (if applicable) and The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3

563

https://doi.org/10.1007/978-981-97-8788-3

564 Appendix B: Frequently Asked Questions (FAQs)

Examples of calculating include:

• Working out the tip at a restaurant.
• Balancing a checkbook.
• Determining the area of a rectangle by multiplying its width by its height.

Computing, on the other hand, is a broader term that encompasses calculating but
also includes other types of operations and processes. It can refer to any type of infor-
mation processing that can be done by an algorithm or a computer. This includes
not only arithmetic but also data processing, algorithmic decision-making, simu-
lation, and more complex mathematical operations.

Examples of computing include:

• Running a complex simulation of weather patterns using a supercomputer.
• Processing large datasets to find patterns and insights (data mining).
• Operating an autonomous vehicle that has to make real-time navigational deci-
sions.

In summary, while calculating is specifically about numerical computation,
computing is a more inclusive term that covers a wide range of information pro-
cessing tasks, which can be numerical, symbolic, or based on data operations, often
performed by computers.

B.2 Story of MATLAB Logo

The MATLAB logo has an interesting story behind its design and symbolism. The
logo features a distinct wave-like shape with a colorful gradient, representing the
diverse applications and versatility of MATLAB across various fields.

The origins of theMATLAB logo can be traced back to the late 1970s when Cleve
Moler, the co-founder of MathWorks (the company behindMATLAB), was working
on the first version of the software. At that time, Cleve was working on developing
a program that could solve matrix problems efficiently.

During the development process, Cleve encountered amatrix that was particularly
challenging to work with, and he spent a significant amount of time trying to find
a solution. After many unsuccessful attempts, he eventually succeeded in solving
the problem, and this breakthrough became a pivotal moment in the creation of
MATLAB.

To commemorate this achievement, Cleve decided to create a visual representation
of the solution, which would later become the MATLAB logo. He plotted the values
of the matrix as a series of lines, resulting in a distinctive wave-like pattern.

The shape of the logowas inspired by the concept of waves and oscillations, which
are fundamental in many areas of science and engineering, such as signal processing,
control systems, and physics. The colorful gradient used in the logo was chosen to
represent the wide range of applications and disciplines that MATLAB supports.

Appendix B: Frequently Asked Questions (FAQs) 565

Over the years, theMATLAB logo has undergone minor updates and refinements,
but its core design and symbolism have remained largely unchanged. The logo has
become an iconic representation ofMATLAB’s capabilities and its role as a powerful
computational tool used by researchers, engineers, and scientists worldwide.

Today, theMATLAB logo is instantly recognizable and serves as a visual reminder
of the software’s rich history, its origins in solving complex matrix problems, and
its versatility in tackling a diverse array of computational challenges across various
domains (Fig.B.1).

Listing B.1 MATLAB code to display the MATLAB logo [6]

% Initialize the data for the MATLAB logo
L = 160* membrane (1 ,100);

% Create a figure and an axes to display the logo
f = figure;
ax = axes;

% Create the surface for the logo using the membrane
data and adjust properties

s = surface(L);
s.EdgeColor = ’none’;
view (3)

% Adjust the axes limits
ax.XLim = [1 201];
ax.YLim = [1 201];
ax.ZLim = [-53.4 160];

% Adjust the camera properties
ax.CameraPosition = [-145.5 -229.7 283.6];
ax.CameraTarget = [77.4 60.2 63.9];
ax.CameraUpVector = [0 0 1];
ax.CameraViewAngle = 36.7;

% Change the axes position and aspect ratio
ax.Position = [0 0 1 1];
ax.DataAspectRatio = [1 1 .9];

% Create and position lights for the logo
l1 = light;
l1.Position = [160 400 80];
l1.Style = ’local’;
l1.Color = [0 0.8 0.8];

l2 = light;
l2.Position = [.5 -1 .4];
l2.Color = [0.8 0.8 0];

% Change the logo color
s.FaceColor = [0.9 0.2 0.2];

% Set lighting and specular properties for the surface

566 Appendix B: Frequently Asked Questions (FAQs)

s.FaceLighting = ’gouraud ’;
s.AmbientStrength = 0.3;
s.DiffuseStrength = 0.6;
s.BackFaceLighting = ’lit’;
s.SpecularStrength = 1;
s.SpecularColorReflectance = 1;
s.SpecularExponent = 7;

% Final adjustments and display options
axis off
f.Color = ’white’;

B.3 Tips: Programming Style and Best Practices

Following these guidelineswill make your codemuch easier to read and under- stand,
and therefore easier to work with, mainten and modify.

B.3.1 Variables and Names

• Usemnemonic variable names (names thatmake sense; for example, radius instead
of xyz)

• Although variables named result and RESULT are different, avoid this as it would
be confusing

• Do not use names of built-in functions as variable names
• Store results in named variables (rather than using ans) if they are to be used later
• Do not use ans in expressions
• Make sure variable names have fewer characters than namelengthmax
• If different sets of random numbers are desired, set the seed for the random func-
tions using mg

Fig. B.1 MATLAB Logo
generated by the codes in [6]

Appendix B: Frequently Asked Questions (FAQs) 567

B.3.2 Setting up MATLAB .m Files in a Good Readable Style

• Follow a Logical Order: To initialize, compute, process results, plot/output. Split
code into cells or sections for readability. Keep a consistent style for braces, spac-
ing, capitalization across all .m files in a project.

• Use Clear Variable Names: Use descriptive variable names that indicate meaning
and units. Avoid short or cryptic names like a, b, c. Avoid single-letter names
except for simple loop counters, such as i, j, k.

• Comment Generously: Make sure to provide comments that explain the purpose
of the code and any complex logic. Start comments with % for single lines or use
%{ and %} for block comments.

• Indentation and Spacing: Use proper indentation to make code blocks easily
identifiable. Also, use spacing between operators and operands for better readabil-
ity.

• Section Your Code: Use sections within your script to separate different parts of
your code logically. You can create a section by using %% followed by a section
title. Logically group related variables, functions, etc. Use consistent indentation
(e.g. 2 or 4 spaces) for nested statements and functions. Indentation visually indi-
cates control flow.

• Consistent Naming Conventions: Be consistent with your naming conventions
throughout the script. For example, use camelCase or underscores to separate
words in variable names.

• Avoid Hardcoding: Avoid hardcoding values that might change, such as file paths
or parameters. Instead, define them at the top of your script. Avoid global variables.
Pass variables between functions using input arguments and return values.

• Function Usage: If your script is lengthy or contains repeated code, consider
breaking it down into functions. Name functions clearly according to their usage.
Start with a verb like calculate_stats(), plot_data() etc. Put main
script code in a separate section after all function definitions. Start main script
with initializing inputs/variables.

• Vectorization: Where possible, use vectorized operations instead of loops to
improve performance and conciseness. Use built-inMATLAB functions and vec-
torization to express complex operations concisely. Avoid for or while loops
if vectorized alternative exists.

• Error Checking: Implement error checking for operations that might fail, such as
file I/O, and provide informative error messages. Check for errors and edge cases
using try/catch, input validation, asserts etc. Print/log errors meaningfully.

568 Appendix B: Frequently Asked Questions (FAQs)

B.3.3 Writing Readable and Maintainable Conditional
Statements

To enhance code readability andmaintainability, it’s essential to follow best practices
when writing conditional statements:

• Use descriptive variable and function names that convey their purpose.
• Indent code blocks consistently to improve visual clarity.
• Add comments to explain the purpose and logic of complex conditional statements.
• Break down complex conditions into smaller, more readable expressions using
logical operators (AND (&&), OR (||), and NOT (∼)).

• Consider using switch statements for scenarios with multiple distinct cases, as
they can be more concise and readable than nested if-elseif statements.

B.3.4 Optimizing Code Efficiency and Performance

While MATLAB is designed to optimize code execution, there are certain practices
that can further enhance the efficiency and performance of conditional statements:

• Avoid unnecessary computations or comparisons within conditional statements by
performing calculations outside the conditional blocks whenever possible.

• Use vectorized operations instead of loops when working with arrays or matrices,
as they are generally more efficient in MATLAB.

• Consider precomputing or caching frequently used values to reduce redundant
computations.

• Utilize MATLAB’s built-in functions and optimized algorithms whenever pos-
sible, as they are typically more efficient than custom implementations.

Here’s an example of optimizing code performance by using vectorized opera-
tions:

Listing B.2 Vectorized code for computing square roots.

% Define a large vector
vec = magic (1000);

% Compute square roots using a loop (inefficient)
tic
for i = 1: numel(vec)
sqrt_vec(i) = sqrt(vec(i));
end
toc

% Compute square roots using vectorized operation (
efficient)

tic
sqrt_vec_vectorized = sqrt(vec);
toc

Appendix B: Frequently Asked Questions (FAQs) 569

B.3.5 Debugging Techniques for Conditional Statements

Debugging conditional statements can be challenging, especially when dealing with
complex conditions or nested statements. Here are some techniques that can help:

• Use MATLAB’s built-in debugger to step through the code and inspect vari-
able values at each conditional branch. This can help identify logical errors or
unexpected behavior.

• Add disp() or fprintf() statements to print out relevant information, such as vari-
able values or condition evaluations, to better understand the program flow.

• Simplify complex conditions by breaking them down into smaller, more manage-
able pieces and testing each piece individually.

• Employ temporary logging or tracing mechanisms to record the execution path
and variable states during program execution, which can aid in identifying issues.

• Consider writing unit tests or test cases specifically designed to validate the behav-
ior of conditional statements under various scenarios.

Here’s an example of using disp() statements to debug a conditional statement:

Listing B.3 Debugging conditional statements with disp().

x = 10;
y = 5;

disp(’Before if statement:’)
disp([’x = ’ num2str(x), ’, y = ’ num2str(y)])

if x > y
disp(’x is greater than y’)
else
disp(’x is not greater than y’)
end

B.3.6 Guidelines for Choosing the Appropriate Conditional
Statement

When deciding between using an if-elseif-else statement or a switch statement,
consider the following guidelines:

• Use if-elseif-else statements when dealing with ranges, inequalities, or complex
conditions involving logical operations.

• Prefer switch statements when evaluating equality against a fixed set of discrete
values or expressions.

• If the conditions involve string comparisons or logical operations on strings, if-
elseif-else statements may be more suitable due to MATLAB’s handling of string
comparisons in switch statements.

570 Appendix B: Frequently Asked Questions (FAQs)

• For simple cases with a small number of conditions, either statement type can be
used, and the choice may depend on personal preference or code readability.

It’s important to note that while these guidelines provide a general starting point,
the decision should also consider factors such as code readability, maintainability,
and performance characteristics specific to the problem at hand.

The basic syntax for a switch statement is:

Listing B.4 Switch statement syntax.

switch expression
case case1
statements
case case2
statements
...
otherwise
statements
end

Here’s an example of using a switch statement to determine the day of the week
based on a numeric input:

Listing B.5 Determining day of the week with a switch statement.

day_num = 3; % Wednesday

switch day_num
case 1
day_str = ’Monday ’;
case 2
day_str = ’Tuesday ’;
case 3
day_str = ’Wednesday ’;
case 4
day_str = ’Thursday ’;
case 5
day_str = ’Friday ’;
case 6
day_str = ’Saturday ’;
case 7
day_str = ’Sunday ’;
otherwise
day_str = ’Invalid day number ’;
end

disp([’Today is ’ day_str])

Appendix B: Frequently Asked Questions (FAQs) 571

B.4 Tips for Efficient Data Management

To make the most out of MATLAB’s data structures, consider the following tips:

• **Preallocate Arrays and Matrices**: Preallocating memory for arrays and matri-
ces can significantly improve performance, especially in large datasets or iterative
computations. For example:

Listing B.6 Preallocating an array

n = 1000;
A = zeros(n, n); % Preallocate a 1000 x1000 matrix

for i = 1:n
for j = 1:n

A(i, j) = i + j; % Fill the matrix with some
values

end
end

• **Use Vectorized Operations**: Vectorized operations are typically faster than
loops in MATLAB. For example, instead of using a for-loop to add two vectors
element-wise, use the vectorized addition:

Listing B.7 Vectorized addition

A = rand(1, 1000);
B = rand(1, 1000);

% Vectorized addition
C = A + B;

• **Efficient Data Import and Export**: Use MATLAB functions for efficient data
import and export to avoid bottlenecks. For example, use ‘readtable’ to import
data from CSV files:

Listing B.8 Reading data from a CSV file

% Read data from a CSV file into a table
data = readtable(’data.csv’);

% Display the first few rows of the table
head(data);

• **UseStructures andCellArraysAppropriately**:Choose structures or cell arrays
whendealingwith heterogeneous data. Structures are useful for namedfields,while
cell arrays are beneficial for indexed collections of mixed-type data.

Listing B.9 Using structures and cell arrays

% Using a structure
student.name = ’John Doe’;
student.age = 21;

572 Appendix B: Frequently Asked Questions (FAQs)

student.grades = [90, 85, 92];

% Using a cell array
data = {’John Doe’, 21, [90, 85, 92]; ’Jane Smith’,

22, [88, 90, 95]};

• **Efficiently Handle Large Data Sets**: For large datasets, consider using MAT-
LAB’s capabilities for memory mapping, or use the ‘tall’ arrays which allow you
to work with data that does not fit into memory.

Listing B.10 Using tall arrays for large data

% Create a tall array from a large CSV file
ds = datastore(’largefile.csv’);
t = tall(ds);

% Perform operations on the tall array
meanValue = mean(t.SomeColumn);

% Gather results into memory
meanValue = gather(meanValue);

B.5 Difference Between Arrays and Vector

What Is The Difference Between Arrays and Vector ?

• Dimensions: A vector is a one-dimensional array, while an array can be multi-
dimensional (two-dimensional, three-dimensional, etc.).

• Representation: Vectors are typically represented using a single row or column,
whereas arrays are represented using multiple rows and columns.

• Element Access: Elements in a vector are accessed using a single index, while
elements in an array are accessed using multiple indices (one for each dimension).

• Memory Storage: Vectors are stored contiguously in memory, making themmore
memory-efficient for storing and processing one-dimensional data. Arrays, on the
other hand, may require more memory due to their multi-dimensional nature.

• Operations: While both vectors and arrays support various mathematical opera-
tions, some operations may be more efficient or optimized for vectors due to their
simpler structure.

• Reshaping: Vectors can be easily reshaped into arrays, and vice versa, using
MATLAB’s built-in functions like reshape and squeeze.

In general, vectors are well-suited for representing and manipulating one-
dimensional data, such as sequences or lists of values, while arrays are more suitable
for representing and manipulating multi-dimensional data, such as matrices, images,
or higher-dimensional datasets.

Appendix B: Frequently Asked Questions (FAQs) 573

B.6 MATLAB AI Chat Playground

The MATLAB AI Chat Playground is ready for you to experiment with Generative
AI, answer questions, and write initial draft MATLAB code [7, 8].

B.7 MATLAB on Github

A collection of curriculum materials for educators using MATLAB and Simulink
[9].

Here is a summary of the top 30 contents on it:

• Virtual-Controls-Laboratory: Virtual labs andmechanisms for studying controls
using MATLAB.

• Fourier-Analysis: Learn Fourier analysis using live scripts and apps inMATLAB.
• Thermodynamics: Interactive examples teaching thermodynamics concepts for
Mechanical Engineering using MATLAB.

• Fluid-Mechanics: Introductory fluid mechanics concepts taught with interactive
MATLAB courseware.

• Robotic-Manipulators: Interactive examples teaching fundamental robotics
manipulator concepts using MATLAB.

• Numerical-Methods-with-Applications: Teaching numerical methods like ODE
solving using MATLAB.

• Density-Functional-Theory: Fundamentals and applications of density func-
tional theory using Jupyter Notebooks.

• Intro-To-Engineering: Introducing engineering concepts like signals, data anal-
ysis and IoT using MATLAB and Arduino.

• Machine-Learning-for-Regression:Workflow, setup and considerations for solv-
ing regression problems with machine learning and MATLAB.

• Machine-Learning-Methods-Clustering: Theory and application of clustering
methods using MATLAB.

• Regression-Basics: Fundamentals of regression analysis taught with interactive
MATLAB courseware.

• Applied-Linear-Algebra: Teaching linear algebra applications like chemistry and
mechanical engineering using MATLAB.

• Calculus-Derivatives: Introducing derivatives and calculus concepts with inter-
active MATLAB module.

• awesome-matlab-students: Helpful resources, tips, tutorials and opportunities
for students learning MATLAB.

• Calculus-Single-Variable: Interactive module introducing single variable calcu-
lus concepts using MATLAB.

• Dynamics-and-Vibrations: Teaching fundamentals of dynamics and vibrations
with interactive MATLAB examples.

574 Appendix B: Frequently Asked Questions (FAQs)

• Network-Analysis: Interactive electrical circuits and network analysis curriculum
module using MATLAB.

• Algebra-Trig-PreCalculus: Foundational algebra, trigonometry and pre-calculus
concepts taught interactively with MATLAB.

• Data-Acquisition-and-IOT: Teaching concepts like sampling, sensors, data acqui-
sition and IoT using MATLAB and Arduino.

• matlab-getting-started: Resources to help students get started with MATLAB.
• Ordinary-Differential-Equations: Introductory ordinary differential equations
concepts with MATLAB interactive module.

• Statistical-Learning: Interactive introduction to statistical learning theory and
methods using MATLAB.

• matlab-cheat-sheet: MATLAB cheat sheet covering basic commands and syntax.
• System-Modeling-Control: System modeling, analysis and control concepts
taught interactively using MATLAB and Simulink.

• Signals-and-Systems: Interactive curriculum covering signals and systems theory
using MATLAB.

• matlab-for-engineering-students: Curated resources for engineering students
learning MATLAB.

• Introduction-to-Programming-with-MATLAB: Introductory programming
concepts taught with MATLAB.

• Probability-Statistics: Introduction to concepts of probability, statistics and
hypothesis testing using MATLAB.

• Aerospace-Blockset: Interactive aerospace examples using MATLABAerospace
Blockset.

B.8 What Is MATLAB, and What Are Its Primary
Applications?

• MATLAB (short for Matrix Laboratory) is a high-level programming language
and numerical computing environment widely used for scientific and engineering
applications.

• Primary applications include data analysis, algorithmdevelopment, simulation,
visualisation, and prototyping.

• It is extensively used in fields such as engineering, science,finance, and research.

B.9 What Are the System Requirements and Installation
Process?

• MATLAB is available for various operating systems (Windows, macOS, and
Linux).

Appendix B: Frequently Asked Questions (FAQs) 575

• System requirements vary depending on the version, but generally include a com-
patible processor, sufficient RAM, and disk space.

• Installation can be done by downloading the software from theMathWorks web-
site and following the on-screen instructions.

• For students and educators, academic licenses may be available at discounted
rates.

B.10 What Are the Different Components of the MATLAB
Desktop Environment, and What Are Their
Functions?

• The CommandWindow is used for interactive computations and executing com-
mands.

• The Editor is used for writing and editing MATLAB scripts and functions.
• The Workspace displays variables and their values.
• The Command History keeps track of previously executed commands.
• The Current Folder shows the current working directory.

B.11 How Do I Write and Execute MATLAB Scripts
and Functions?

• Scripts are text files with a .m extension containing a sequence of MATLAB
commands.

• Functions are reusable code blocks that can accept input arguments and return
outputs.

• Scripts and functions can be written in the Editor and executed using the Run
button or keyboard shortcut (F5).

B.12 What Are the Different Data Types in MATLAB,
and How Do I Work with Variables, Vectors,
and Matrices?

• Numeric data types include double (default), single, integer, and more.
• Character and string data types are used for text data.
• Variables are assigned values using the = operator.
• Vectors and matrices are created using square brackets ([]) and can be manipu-
lated using various operations.

576 Appendix B: Frequently Asked Questions (FAQs)

B.13 How Do I Import and Export Data in MATLAB,
and What File Formats Are Supported?

• Data can be imported into MATLAB using functions like readtable, readmatrix,
and load.

• Supported file formats include CSV, Excel, text, MAT (MATLAB’s binary for-
mat), and more.

• Data can be exported using functions like writetable, writematrix, and save.

B.14 How Do I Create and Customize Plots
and Visualisations in MATLAB?

• The plot function is used to create basic 2D line plots.
• Additional plotting functions like bar, scatter, and histogram are available for
different visualisation types.

• Plots can be customized using functions like title, xlabel, ylabel, legend, and
more.

B.15 What Are the Different Control Flow Statements
(If-Else, For Loops, While Loops) in MATLAB,
and How Do I Use Them?

• The if-else statement is used for conditional execution of code blocks.
• The for loop is used for iterating over a specific range of values.
• The while loop is used for executing a block of code as long as a condition is true.
• These control flow statements can be combined with logical operators (&&, ||, ~)
for more complex conditions.

B.16 How Do I Handle Errors and Debug MATLAB Code?

• MATLAB provides detailed error messages and warning messages to help iden-
tify issues.

• The debug function can be used to pause execution and step through code line by
line.

• Setting breakpoints in the Editor allows pausing execution at specific points.
• Theprofiler tool canbeused to analyze codeperformance and identify bottlenecks.

Appendix B: Frequently Asked Questions (FAQs) 577

B.17 What Are the Available Resources for Learning
MATLAB, Such as Documentation, Tutorials,
and Online Communities?

• The MATLAB Documentation provided by MathWorks is a comprehensive
resource covering all aspects of the software.

• Tutorials and examples are available on the MathWorks website and within the
MATLAB environment.

• Online communities like theMATLAB Central forum and Stack Overflow pro-
vide a platform for asking questions and sharing knowledge.

• Books, online courses, and video tutorials from various sources can also aid in
learning MATLAB.

B.18 What Are the Differences Between Scripts
and Functions in MATLAB?

• Scripts are sequences ofMATLABcommands executed from top to bottom, useful
for automating tasks or analyses.

• Functions are reusable code blocks that can accept input arguments, perform
operations, and return outputs, promoting code modularization and reusability.

B.19 How Do I Perform Basic Arithmetic Operations
in MATLAB?

• MATLAB supports standard arithmetic operators (+, -, *, /) for scalar and array
operations.

• Additional operators like ˆ (exponentiation) and sqrt() (square root) are available.
• MATLAB follows the standard order of operations (PEMDAS) unless modified
by parentheses.

B.20 How Do I Work with Matrices in MATLAB?

• Matrices are created using square brackets ([]) with elements separated by spaces
or commas.

• Basic operations like addition, subtraction,multiplication, and division can be
performed on matrices.

• Special functions like transpose, inverse,determinant, and eigenvalues are avail-
able for matrix operations.

578 Appendix B: Frequently Asked Questions (FAQs)

B.21 How Do I Access and Manipulate Elements
in Vectors and Matrices?

• Elements in vectors and matrices are accessed using indexing with parentheses
(()).

• Colon notation (:) can be used to access a range of elements or entire rows/columns.
• Logical indexing using boolean expressions can be used to selectively access or
modify elements.

B.22 What Are the Different Ways to Create Arrays
in MATLAB?

• Arrays can be created explicitly by entering values within square brackets ([]).
• The linspace and logspace functions can be used to create arrays with linearly or
logarithmically spaced values.

• The ones and zeros functions create arrays filled with ones or zeros, respectively.
• The eye function creates an identity matrix.

B.23 How Do I Perform Operations on Arrays
in MATLAB?

• MATLAB supports element-wise operations on arrays using arithmetic operators
(+, -, *, /).

• The .* and ./ operators are used for element-wise multiplication and division,
respectively.

• Functions like sum,mean,max, andmin can be used to perform aggregate oper-
ations on arrays.

B.24 How Do I Concatenate and Reshape Arrays
in MATLAB?

• Arrays can be concatenated horizontally using the [] operator or vertically using
the ; separator.

• The cat function can be used to concatenate arrays along a specified dimension.
• The reshape function can be used to change the shape or dimensions of an array
without changing its data.

Appendix B: Frequently Asked Questions (FAQs) 579

B.25 What Are Cell Arrays in MATLAB, and How Are
They Used?

• Cell arrays are flexible data structures that can store different data types, including
arrays, strings, and other cell arrays.

• They are created using curly braces ({}) and can be accessed and manipulated
using indexing and cell array operations.

• Cell arrays are useful for storing heterogeneous data or data with varying sizes.

B.26 How Do I Work with Strings and Text Data
in MATLAB?

• MATLAB supports character arrays and string arrays for working with text
data.

• String concatenation can be performed using the + operator or the strcat function.
• Functions like length, substring, replace, and split are available for stringmanip-
ulation.

B.27 How Do I Read and Write Data to Files in MATLAB?

• The fopen function is used to open a file for reading or writing.
• Data can be read from files using functions like fscanf, fgetl, and textscan.
• Data can be written to files using functions like fprintf, fwrite, and fprinf.
• The fclose function is used to close the file after reading or writing operations.

B.28 What Are Structures in MATLAB, and How Are
They Used?

• Structures are data containers that allow you to group related data elements of
different types using field names.

• Structures are created using the struct function or by providing field-value pairs
within parentheses.

• Fields in structures can be accessed using the dot notation (.) or curly braces ({}).

580 Appendix B: Frequently Asked Questions (FAQs)

B.29 How Do I Create and Use Functions in MATLAB?

• Functions are defined using the function keyword followed by the function name,
input arguments, and code body.

• Input arguments are passed to the function when it is called, and outputs can be
returned using the return statement.

• Functions can be saved as separate .m files and called from other scripts or func-
tions.

B.30 What Is the Purpose of Anonymous Functions
in MATLAB?

• Anonymous functions are unnamed functions that can be defined and used inline
without creating a separate function file.

• They are useful for passing functions as arguments to other functions or for simple,
one-time operations.

• Anonymous functions are defined using the @ symbol followed by the input
arguments and function body.

B.31 How Do I Work with Dates and Times in MATLAB?

• MATLAB provides the datetime data type for working with dates and times.
• datetime objects can be created from various input formats using the datetime
function.

• Functions like datenum, datevec, and calendarDuration are available for date
and time manipulation and calculations.

B.32 What Are the Different Ways to Handle Missing Data
in MATLAB?

• MATLAB represents missing data using the NaN (Not a Number) value.
• The isnan function can be used to identify missing data elements in an array.
• Functions like nansum, nanmean, and nanstd can be used to perform operations
while ignoring missing data.

• The rmmissing function can be used to remove rows or columns with missing
data from a matrix or table.

Appendix B: Frequently Asked Questions (FAQs) 581

B.33 How Do I Integrate MATLAB with Other
Programming Languages or Software?

• MATLAB provides interfaces and toolboxes for integrating with various program-
ming languages and software.

• TheMATLAB Engine API allows you to call MATLAB functions from external
programs written in languages like C, C++, Java, and .NET.

• The MATLAB Compiler can be used to generate standalone applications or
libraries from MATLAB code.

• MATLAB supports data exchange with other software through file formats like
CSV, Excel, and MAT-files.

B.34 How Do I Create andWork with Tables in MATLAB?

• The table data type in MATLAB allows you to store heterogeneous data in a
tabular format with row and column labels.

• Tables can be created from arrays, cell arrays, or data files using functions like
table, readtable, and struct2table.

• Rows and columns in tables can be accessed and manipulated using indexing,
logical indexing, or column names.

• Functions like sortrows, unique, and join can be used to perform operations on
tables.

B.35 What Are the Different Types of Plots and
Visualisations Available in MATLAB?

• MATLAB provides a wide range of plotting functions for creating 2D and 3D
visualisations.

• Common plot types include line plots, scatter plots, bar charts, histograms,
surface plots, and contour plots.

• Specialized plotting functions are available for visualizing data structures like
tables, images, and geographic data.

• Plots can be customized with labels, legends, color maps, and other formatting
options using various plotting functions and properties.

582 Appendix B: Frequently Asked Questions (FAQs)

B.36 How Do I Work with Images and Image Processing
in MATLAB?

• MATLAB provides the Image Processing Toolbox for working with images and
performing various image processing operations.

• Images can be imported intoMATLAB using functions like imread and displayed
using imshow.

• Operations like filtering, edge detection, segmentation, and morphological
operations can be performed on images using toolbox functions.

• MATLABalso supports videoprocessing andcomputer vision applications through
additional toolboxes.

B.37 What Are the Different Techniques for Data Analysis
and Machine Learning in MATLAB?

• MATLAB provides a comprehensive set of tools and functions for data analysis
and machine learning tasks.

• Techniques like regression, classification, clustering, and dimensionality reduc-
tion are supported through toolboxes like Statistics andMachine Learning Tool-
box.

• MATLABintegrateswith deep learning frameworks likeTensorFlow andPyTorch
for building and training neural networks.

• Functions for data preprocessing, feature extraction, andmodel evaluation are
also available.

B.38 How Do I Parallelize Computations in MATLAB to
Take Advantage of Multiple Processors or GPUs?

• MATLAB provides the Parallel Computing Toolbox for parallelizing computa-
tions on multi-core systems or computing clusters.

• The parfor loop can be used to distribute loop iterations acrossmultipleMATLAB
workers or cores.

• Functions like spmd (single program, multiple data) and codistributor can be
used for data parallelism.

• GPU computing is supported through integration with CUDA [10] and AMD
GPUs, allowing computationally intensive operations to be offloaded to the GPU.

Appendix B: Frequently Asked Questions (FAQs) 583

B.39 What Are the Different Techniques for Optimisation
and Solving Equations in MATLAB?

• MATLABprovides a range of functions and toolboxes for optimisation and solving
equations.

• The optimisation Toolbox includes algorithms for linear programming, non-
linear optimisation, and constrained optimisation problems.

• The Symbolic Math Toolbox allows for symbolic computing, including solving
algebraic equations, differential equations, and calculus operations.

• Functions like fsolve, lsqnonlin, and fmincon can be used for solving specific
types of equations and optimisation problems.

B.40 How Do I Create and Work with Objects and Classes
in MATLAB?

• MATLAB supports object-oriented programming (OOP) through the use of
classes and objects.

• Classes are defined using the classdef keyword, followed by properties and meth-
ods.

• Objects are instances of classes and can be created using the constructor method
defined in the class.

• Objects can interact with each other and access or modify their properties and
methods.

• OOP principles like inheritance, polymorphism, and encapsulation are sup-
ported in MATLAB.

B.41 What Are the Different Options for Deploying
and Sharing MATLAB Applications?

• MATLAB provides several options for deploying and sharing applications with
others.

• TheMATLABCompiler can be used to create standalone applications or libraries
from MATLAB code.

• The MATLAB Web App Server allows hosting MATLAB applications as web
services accessible through a web browser.

• MATLABcode can be packaged intoMATLABapps or toolboxes for distribution
and sharing with other users.

• Integration with cloud platforms like MATLAB Online and MATLAB Produc-
tion Server enables sharing and running MATLAB applications in the cloud.

584 Appendix B: Frequently Asked Questions (FAQs)

B.42 How Do I Integrate MATLAB with Version Control
Systems Like Git or SVN?

• MATLAB provides built-in support for integrating with version control systems
like Git and Subversion (SVN).

• TheSourceControl Integration feature inMATLABallows connecting to remote
repositories and managing code changes.

• Common version control operations like commit, push, pull,merge, and resolve
conflicts can be performed within the MATLAB environment.

• Version control best practices, such as branching and merging, can be followed to
collaborate on MATLAB projects effectively.

B.43 MATLAB Plot Cheat Sheet

A MATLAB Plot Cheat Sheet covering some of the most common plotting func-
tions and customizations [11]. Remember, many of these functions have additional
optional parameters for further customisation. You can use the help command in
MATLAB (e.g., help plot) to get more detailed information about each function and
its options (Fig.B.2).

Fig. B.2 MATLAB Plot Cheat Sheet

Appendix B: Frequently Asked Questions (FAQs) 585

B.44 MATLAB Resources and Online Courses

MATLAB is a versatile programming language widely used in various fields, includ-
ing data analysis, numerical computation, and algorithm development. For beginners
seeking to learn MATLAB, there are numerous resources and online modules avail-
able that provide a solid foundation in using the software.

• Oneof the primary resources forMATLABbeginners is the officialMATLABweb-
site [12]. The website offers comprehensive documentation, tutorials, and exam-
ples that cover a wide range of topics and functionalities of MATLAB. Beginners
can access these resources to learn the basics of MATLAB syntax, programming
techniques, and data visualisation.

• The MATLAB File Exchange [13] is another valuable resource for MATLAB
beginners. It is a community-driven platform where MATLAB users can share
and downloadMATLAB code, functions, and applications. Beginners can explore
the File Exchange to find code examples, scripts, and functions that they can utilize
to learn and enhance their MATLAB skills.

• Online learning platforms such as Coursera [14] and edX [15] also offerMATLAB
courses for beginners. These courses provide structured learning materials, video
lectures, and hands-on assignments to help beginners grasp the fundamentals of
MATLAB programming. Some of these courses are self-paced, allowing learners
to study at their own convenience.

• For those who prefer interactive learning, MathWorks, the company behind MAT-
LAB, provides MATLAB Online [16]. MATLAB Online is a web-based version
of MATLAB that allows beginners to practice MATLAB programming directly
in a browser without the need to install any software. It provides a user-friendly
interface and access to various MATLAB toolboxes and functionalities.

• Identify and utilise authoritative resources for learning and masteringMATLAB
and its applications.

• Navigate and leverage online documentation and community forums to find
solutions and troubleshoot issues.

• Explore and enrol in online courses and tutorials to enhance your MATLAB
skills and knowledge.

• Locate and access code repositories and examples to learn from existing imple-
mentations.

• Understand the importance of continuous learning and professional develop-
ment in the field of MATLAB and related domains.

• Develop a learning plan and strategy tailored to your specific goals and needs.

• Authoritative Resources: Reliable and trustworthy sources of information, typ-
ically produced or endorsed by recognised experts, institutions, or organisations
in the field.

• OnlineDocumentation: Digital documentation, manuals, and referencematerials
available on the internet, providing comprehensive information about a software,
tool, or concept.

586 Appendix B: Frequently Asked Questions (FAQs)

• Community Forums: Online platforms where users can ask questions, share
knowledge, and engage in discussions with other members of the community
related to a specific topic or product.

• Online Courses: Educational courses offered over the internet, often self-paced or
instructor-led, covering various topics and allowing learners to acquire knowledge
and skills remotely.

• Tutorials: Step-by-step guides or instructional materials designed to teach specific
concepts, techniques, or processes related to a particular subject or tool.

• Code Repositories: Online platforms or databases where developers can store,
share, and collaborate on code, often maintained using version control systems
like Git.

• Continuous Learning: The ongoing process of acquiring new knowledge and
skills throughout one’s personal and professional life to stay up-to-date and adapt
to changing circumstances.

• Professional Development: Activities and experiences that enhance an individ-
ual’s skills, knowledge, and competencies relevant to their professional growth
and career advancement.

• LearningPlan: A structured approach to identifying learning goals, strategies, and
resources, often accompanied by timelines and milestones, to guide and facilitate
the learning process effectively.

B.45 Official MATLAB Resources

B.45.1 MathWorks Documentation

• MATLAB Product Documentation [17], Function Reference [18], and Examples
and Tutorials [19] provide comprehensive information on using MATLAB effec-
tively.

• MATLAB supports various hardware platforms, including Parrot drones [20] and
Ryze Tello drones [21], enabling users to control and acquire data from these
devices.

• MathWorks organises student competitions like the MathWorks Minidrone Com-
petition [22] and the competition for autonomous mobile robots [23, 24], encour-
aging students to develop innovative solutions using MATLAB and Simulink.

• The MathWorks Excellence in Innovation repository on GitHub [25] showcases
innovative projects across various domains, including drones [26].

• MATLAB offers a variety of project ideas [27] and live script examples [28] to
inspire and guide users in their engineering and scientific endeavours.

• Advanced MATLAB for Scientific Computing [29] is a resource that delves into
advancedMATLAB features and techniques for scientific computing applications.

• The MATLAB Plot Gallery [30] provides a collection of visualisation examples
to help users create informative and appealing graphics.

Appendix B: Frequently Asked Questions (FAQs) 587

• MATLAB Academy offers various online courses, including MATLAB Onramp
[31], MATLAB Fundamentals [32], MATLAB for Data Processing and visuali-
sation [33], and Optimisation Onramp [34], catering to different skill levels and
application areas.

• Cleve Moler’s MATLAB Labs [35] and MathWorks Teaching Resources on
GitHub [36] provide valuable materials for learning and teaching MATLAB.

• AI with MATLAB: Tutorials and Examples [37].

B.45.2 MATLAB Community and Support

• MATLAB Central
• MATLAB Answers
• File Exchange

B.46 Third-Party Resources

B.46.1 Books and Textbooks

• Introductory MATLAB Textbooks
• Domain-Specific MATLAB Books
• Advanced MATLAB Programming Books

B.46.2 Online Courses and Tutorials

• Massive Open Online Courses (MOOCs)
• Video Tutorials
• Interactive Online Tutorials

B.46.3 Blogs and Forums

• MATLAB-related Blogs
• Online Forums and Discussion Groups
• Social Media Communities

588 Appendix B: Frequently Asked Questions (FAQs)

B.47 Code Repositories and Examples

• GitHub
• MATLAB Central File Exchange
• Domain-Specific Code Repositories

B.48 Professional Development and Certifications

• MATLAB Training and Certification Programs
• Industry-Specific Professional Development Opportunities
• Continuing Education and Lifelong Learning

B.49 Learning Strategies and Planning

• Setting Learning Goals and Objectives
• Creating a Personalised Learning Plan
• Time Management and Study Habits
• Blended Learning Approaches
• Hands-on Practice and Project-Based Learning

Glossary

See TableB.1.

Table B.1 Comprehensive glossary of MATLAB terms and concepts

Term Definition

Algorithm A finite sequence of well-defined, computer-implementable instructions,
typically used to solve a class of problems or perform a computation

Array A fundamental data structure in MATLAB, consisting of a collection of
elements arranged in rows and columns. Arrays can be one-dimensional
(vectors), two-dimensional (matrices), or multi-dimensional

Artificial Neural
Network

A machine learning model inspired by biological neural networks,
implemented in MATLAB for various applications including pattern
recognition and function approximation

Automation The use of MATLAB to create systems or processes that operate
automatically, often applied in industrial settings and robotics

Block Diagram A graphical representation of a system in Simulink, consisting of
interconnected blocks that represent mathematical operations or system
components

Cell Array A data structure in MATLAB that can contain elements of different data
types and sizes, useful for storing heterogeneous data

Command
Window

The primary interface for entering MATLAB commands and viewing results.
It allows for interactive execution of MATLAB functions and scripts

Control System
Toolbox

A MATLAB toolbox for analysing, designing, and simulating control
systems, particularly relevant for robotics and autonomous systems

Data Acquisition The process of sampling signals that measure real-world physical conditions
and converting the resulting samples into digital numeric values that can be
manipulated by MATLAB

Data Type The classification of data which determines its possible values, operations,
and storage method in MATLAB, including numeric, character, and logical
types

(continued)

© The Editor(s) (if applicable) and The Author(s) 2025
Y. Chen and L. Huang, MATLAB Roadmap to Applications,
https://doi.org/10.1007/978-981-97-8788-3

589

https://doi.org/10.1007/978-981-97-8788-3

590 Glossary

Table B.1 (continued)

Term Definition

Deep Learning A subset of machine learning based on artificial neural networks with
multiple layers, implemented in MATLAB for tasks such as image and
speech recognition

Digital
Manufacturing

The use of MATLAB and Simulink in computer-integrated manufacturing
systems, often involving simulation and optimisation of manufacturing
processes

Digital Twin A virtual representation of a physical object or system, often created and
analysed using MATLAB and Simulink, used in Industry 4.0 applications

Discrete-Event
Simulation

A method of simulating the behaviour and performance of a real-world
process or system, often used in MATLAB for modelling complex systems

Embedded Coder A MATLAB tool for generating readable, compact, and fast C and C++ code
for use on embedded processors, often used in robotics and autonomous
systems

Function A program file that can accept input arguments and return output arguments.
Functions operate on variables within their own workspace, separate from
the base workspace

Fuzzy Logic A form of many-valued logic in which the truth values of variables may be
any real number between 0 and 1, implemented in MATLAB for control
systems and decision-making processes

GPU Computing The use of a graphics processing unit (GPU) to perform computations in
MATLAB, often resulting in significant speedups for certain types of parallel
computations

Handle Graphics MATLAB’s graphics system, which provides a flexible and powerful way to
create and manipulate graphical objects

Image Processing The manipulation and analysis of digital images using MATLAB functions,
often applied in computer vision and robotics

Industry 4.0 The fourth industrial revolution, characterised by the integration of digital
technologies in industrial processes, often modelled and simulated using
MATLAB

Internet of
Things (IoT)

A network of interconnected devices that collect and exchange data, often
analysed and controlled using MATLAB in industrial and smart systems
contexts

Live Editor An interactive development environment in MATLAB that combines code,
output, and formatted text in a single interface, facilitating literate
programming and reproducible research

Live Script An interactive document that combines MATLAB code with formatted text,
equations, and visualisations in a single environment

Machine Learning A subset of artificial intelligence that provides systems the ability to
automatically learn and improve from experience, implemented in MATLAB
through various toolboxes and functions

Matrix A two-dimensional array of numbers or expressions arranged in rows and
columns. Matrices are fundamental to MATLAB’s computational capabilities

M-file A text file containing MATLAB code, typically used to store functions or
scripts. M-files have a .m extension and can be executed in the MATLAB
environment

(continued)

Glossary 591

Table B.1 (continued)

Term Definition

Model Predictive
Control

An advanced method of process control that uses dynamic models to predict
and optimise process performance, often implemented using MATLAB’s
Control System Toolbox

Object-Oriented
Programming

A programming paradigm based on the concept of “objects”, which can
contain data and code. MATLAB supports object-oriented programming for
creating complex, modular systems

Optimisation The selection of a best element, with regard to some criterion, from some set
of available alternatives. MATLAB provides various tools and functions for
optimisation problems

Parallel Computing The simultaneous use of multiple compute resources to solve a
computational problem in MATLAB, often applied to large-scale simulations
and data processing tasks

Predictive
Maintenance

A technique used to predict when equipment failure might occur, often
implemented using MATLAB’s machine learning and signal processing
capabilities

Profiler A MATLAB tool that helps identify performance bottlenecks in code by
measuring the execution time of functions and lines of code

Reinforcement
Learning

A type of machine learning where an agent learns to make decisions by
taking actions in an environment to maximise a reward, implemented in
MATLAB for various control and optimization problems

Robotics System
Toolbox

A MATLAB toolbox that provides tools and algorithms for designing,
simulating, and testing robotic systems

Robust Control A branch of control theory that explicitly deals with uncertainty in its
approach to controller design, often implemented using MATLAB’s Robust
Control Toolbox

Simulink An add-on product to MATLAB that provides a graphical programming
environment for modeling, simulating, and analysing dynamic systems

Singular Value
Decomposition

A factorization of a real or complex matrix, widely used in signal processing
and statistics, efficiently computed in MATLAB

State-Space Model A mathematical model of a physical system as a set of input, output, and
state variables related by first-order differential equations, commonly used in
control systems and implemented in MATLAB

Stateflow A graphical programming environment in Simulink for modeling and
simulating combinatorial and sequential decision logic based on state
machines and flow charts

Statistical Analysis The collection, analysis, interpretation, presentation, and organization of
data, facilitated by MATLAB’s Statistics and Machine Learning Toolbox

Symbolic Math
Toolbox

A MATLAB toolbox that provides tools for solving, manipulating, and
analyzing symbolic math equations

System
Identification

The process of developing or improving a mathematical representation of a
physical system using experimental data, often performed using MATLAB’s
System Identification Toolbox

Toolbox A collection of specialised MATLAB functions, classes, and applications
designed for solving particular classes of problems

(continued)

592 Glossary

Table B.1 (continued)

Term Definition

Unit Testing A software testing method by which individual units of source code are
tested to determine whether they are fit for use, supported in MATLAB
through the Unit Testing Framework

Vectorisation The process of rewriting loop-based code to operate on entire arrays at once,
often resulting in more concise code and improved performance in MATLAB

Wavelet Analysis A method for analyzing localized variations of power within a time series,
implemented in MATLAB’s Wavelet Toolbox and often used in signal and
image processing

Workspace The set of variables and their values that are currently accessible in the
MATLAB environment. The base workspace contains variables created at
the command prompt or through running scripts

xPC Target A solution for prototyping, testing, and deploying real-time systems using
standard PC hardware, often used in rapid control prototyping and
hardware-in-the-loop simulation

References

1. Chen Y, Zhang G (2013) Exchange rates determination based on genetic algorithms using
Mendel’s principles: investigation and estimation under uncertainty. Inf Fusion 14(3):327–333

2. Chen Y, Li Y (2018) Computational intelligence assisted design (In the Era of industry 4.0).
CRC Press (ISBN 978-1-4987-6066-9)

3. Chen*Y, LiY, (2019) Intelligent autonomous pollination for future farming - amicro air vehicle
solution with artificial intelligence and human-in-the-loop. IEEE Access 7(1):119706–119717

4. ChenY, ZhangG, Jin T,WuS, PengB (2014)Quantitativemodelling of electricity consumption
using computational intelligence aided design. J Cleaner Prod 69:143–152. (15 April 2014)
https://doi.org/10.1016/j.jclepro.2014.01.058

5. Seaborn, “Timeseries plot with error bands,” https://seaborn.pydata.org/examples/errorband_
lineplots.html, accessed May 2024

6. MathWorks, “Creating the MATLAB Logo,” https://www.mathworks.com/help/matlab/
visualize/creating-the-matlab-logo.html, accessed on Feb. 17, 2024

7. MathWorks, “MATLAB AI Chat Playground,” [Online]. https://www.mathworks.com/
matlabcentral/playground. [Accessed: Feb. 17, 2024]

8. MathWorks, “The MATLAB AI Chat Playground Has Launched,” MATLAB Com-
munity. [Online]. https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-
playground-has-launched. [Accessed: Feb. 17, 2024]

9. MathWorks, “MathWorks Teaching Resources - A collection of curriculum materials for
educators using MATLAB and Simulink.,” Github. [Online]. https://github.com/MathWorks-
Teaching-Resources. [Accessed: Feb. 17, 2024]

10. MathWorks, “MATLAB GPU Computing Support for NVIDIA CUDA-Enabled GPUs -
Perform MATLAB computing on NVIDIA CUDA-enabled GPUs,” [Online]. https://www.
mathworks.com/solutions/gpu-computing.html. [Accessed: Feb. 17, 2024]

11. Zhaoxu Liu / slandarer (2024) MATLAB-PLOT-CHEAT-SHEET (https://github.com/
slandarer/MATLAB-PLOT-CHEAT-SHEET), GitHub. Retrieved June 26, 2024. https://www.
mathworks.com/matlabcentral/fileexchange/165846-matlab-plot-cheat-sheet

12. MathWorks Home Page, www.mathworks.com. [Accessed: Feb. 17, 2024]
13. MathWorks. (n.d.). MATLAB file exchange. https://www.mathworks.com/matlabcentral/

fileexchange

https://doi.org/10.1016/j.jclepro.2014.01.058
https://seaborn.pydata.org/examples/errorband_lineplots.html
https://seaborn.pydata.org/examples/errorband_lineplots.html
https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
https://www.mathworks.com/help/matlab/visualize/creating-the-matlab-logo.html
https://www.mathworks.com/matlabcentral/playground
https://www.mathworks.com/matlabcentral/playground
https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-playground-has-launched
https://blogs.mathworks.com/community/2024/11/07/the-matlab-ai-chat-playground-has-launched
https://github.com/MathWorks-Teaching-Resources
https://github.com/MathWorks-Teaching-Resources
https://www.mathworks.com/solutions/gpu-computing.html
https://www.mathworks.com/solutions/gpu-computing.html
https://github.com/slandarer/MATLAB-PLOT-CHEAT-SHEET
https://github.com/slandarer/MATLAB-PLOT-CHEAT-SHEET
https://www.mathworks.com/matlabcentral/fileexchange/165846-matlab-plot-cheat-sheet
https://www.mathworks.com/matlabcentral/fileexchange/165846-matlab-plot-cheat-sheet
www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange
https://www.mathworks.com/matlabcentral/fileexchange

Glossary 593

14. Coursera. (n.d.). MATLAB programming for engineers and scientists. https://www.coursera.
org/learn/matlab

15. edX. (n.d.). MATLAB and Octave for beginners. https://www.edx.org/professional-certificate/
matlab-and-octave-for-beginners

16. MATLAB Live Editor, https://matlab.mathworks.com. [Accessed: Feb. 17, 2024]
17. MathWorks, “MATLAB Product Family,” https://www.mathworks.com/products.html
18. MathWorks, “MATLAB Basic Functions Reference,” https://www.mathworks.com/content/

dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf, accessed on Feb. 17, 2024
19. MathWorks, “MATLAB and Simulink Examples,” https://www.mathworks.com/academia/

examples.html, accessed on Feb. 17, 2024
20. “ParrotDroneSupport fromMATLAB–Control Parrot drones fromMATLABand acquire sen-

sor and image data,” https://uk.mathworks.com/hardware-support/parrot-drone-matlab.html?
s_tid=srchtitle, accessed on Feb. 17, 2024

21. “Ryze Tello Drone from MATLAB – Control Ryze Tello drones from MATLAB and
acquire sensor and image data,” https://uk.mathworks.com/hardware-support/tello-drone-
matlab.html, accessed on Feb. 17, 2024

22. “MathWorks Minidrone Competitions,” https://uk.mathworks.com/academia/student-
competitions/minidrones.html, accessed on Feb. 17, 2024

23. “RoboNation Competitions,” https://uk.mathworks.com/academia/student-competitions/
robonation.html, accessed on Feb. 17, 2024

24. “Korea Autonomous Mini-Drone Aviation Competition,” https://www2.mathworks.cn/
academia/student-competitions/krmdr.html, accessed on Feb. 17, 2024

25. “MathWorks Excellence in Innovation repository on GitHub,” https://github.com/mathworks/
MathWorks-Excellence-in-Innovation, accessed on Feb. 17, 2024

26. “Matlab for Drone Examples on Github,” https://github.com/mathworks/MathWorks-
Excellence-in-Innovation/blob/main/megatrends/Drones.md, accessed on Feb. 17, 2024

27. “MathWorks Challenge Projects Program,” https://ww2.mathworks.cn/academia/matlab-
engineering-project-ideas.html?s_tid=ln_acad_programs_projec, accessed on Feb. 17, 2024

28. “Live Script Gallery,” https://ww2.mathworks.cn/products/matlab/live-script-gallery.html,
accessed on Feb. 17, 2024

29. “Advanced MATLAB for Scientific Computing,” https://ww2.mathworks.cn/matlabcentral/
fileexchange/106675-advanced-matlab-for-scientific-computing?s_tid=srchtitle, accessed on
Feb. 17, 2024

30. MathWorks, “MATLAB Plot Gallery,” [Online]. https://www.mathworks.com/products/
matlab/plot-gallery.html. [Accessed: Feb. 17, 2024]

31. “MATLAB Onramp,” https://matlabacademy.mathworks.com/details/matlab-onramp/
gettingstarted, accessed on Feb. 17, 2024

32. “MATLAB Fundamentals,” https://matlabacademy.mathworks.com/details/matlab-
fundamentals/mlbe, accessed on Feb. 17, 2024

33. “MATLAB for Data Processing and Visualization,” https://matlabacademy.mathworks.com/
details/matlab-fundamentals/mlbe, accessed on Feb. 17, 2024

34. “Optimisation Onramp,” https://matlabacademy.mathworks.com/en/details/optimisation-
onramp/optim, accessed on Feb. 17, 2024. MathWorks Teaching Resources [70] https://
github.com/MathWorks-Teaching-Resources/

35. CleveMoler (2024) ExperimentswithMATLAB (https://www.mathworks.com/matlabcentral/
fileexchange/37977-experiments-with-matlab), MATLAB Central File Exchange. Retrieved
January 30, 2024

36. MathWorks, “MathWorks Teaching Resources-A collection of curriculum materials for edu-
cators using MATLAB and Simulink.,” [Online]. https://github.com/MathWorks-Teaching-
Resources/. [Accessed: Feb. 17, 2024]

37. MathWorks, “AI with MATLAB: Tutorials and Examples,” https://www.mathworks.com/
solutions/artificial-intelligence/tutorials-examples.html, accessed on Feb. 17, 2024

https://www.coursera.org/learn/matlab
https://www.coursera.org/learn/matlab
https://www.edx.org/professional-certificate/matlab-and-octave-for-beginners
https://www.edx.org/professional-certificate/matlab-and-octave-for-beginners
https://matlab.mathworks.com
https://www.mathworks.com/products.html
https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf
https://www.mathworks.com/content/dam/mathworks/fact-sheet/matlab-basic-functions-reference.pdf
https://www.mathworks.com/academia/examples.html
https://www.mathworks.com/academia/examples.html
https://uk.mathworks.com/hardware-support/parrot-drone-matlab.html?s_tid=srchtitle
https://uk.mathworks.com/hardware-support/parrot-drone-matlab.html?s_tid=srchtitle
https://uk.mathworks.com/hardware-support/tello-drone-matlab.html
https://uk.mathworks.com/hardware-support/tello-drone-matlab.html
https://uk.mathworks.com/academia/student-competitions/minidrones.html
https://uk.mathworks.com/academia/student-competitions/minidrones.html
https://uk.mathworks.com/academia/student-competitions/robonation.html
https://uk.mathworks.com/academia/student-competitions/robonation.html
https://www2.mathworks.cn/academia/student-competitions/krmdr.html
https://www2.mathworks.cn/academia/student-competitions/krmdr.html
https://github.com/mathworks/MathWorks-Excellence-in-Innovation
https://github.com/mathworks/MathWorks-Excellence-in-Innovation
https://github.com/mathworks/MathWorks-Excellence-in-Innovation/blob/main/megatrends/Drones.md
https://github.com/mathworks/MathWorks-Excellence-in-Innovation/blob/main/megatrends/Drones.md
https://ww2.mathworks.cn/academia/matlab-engineering-project-ideas.html?s_tid=ln_acad_programs_projec
https://ww2.mathworks.cn/academia/matlab-engineering-project-ideas.html?s_tid=ln_acad_programs_projec
https://ww2.mathworks.cn/products/matlab/live-script-gallery.html
https://ww2.mathworks.cn/matlabcentral/fileexchange/106675-advanced-matlab-for-scientific-computing?s_tid=srchtitle
https://ww2.mathworks.cn/matlabcentral/fileexchange/106675-advanced-matlab-for-scientific-computing?s_tid=srchtitle
https://www.mathworks.com/products/matlab/plot-gallery.html
https://www.mathworks.com/products/matlab/plot-gallery.html
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
https://matlabacademy.mathworks.com/en/details/optimisation-onramp/optim
https://matlabacademy.mathworks.com/en/details/optimisation-onramp/optim
https://github.com/MathWorks-Teaching-Resources/
https://github.com/MathWorks-Teaching-Resources/
https://www.mathworks.com/matlabcentral/fileexchange/37977-experiments-with-matlab
https://www.mathworks.com/matlabcentral/fileexchange/37977-experiments-with-matlab
https://github.com/MathWorks-Teaching-Resources/
https://github.com/MathWorks-Teaching-Resources/
https://www.mathworks.com/solutions/artificial-intelligence/tutorials-examples.html
https://www.mathworks.com/solutions/artificial-intelligence/tutorials-examples.html

	Foreword
	Preface
	Key Features
	Audience
	Organization
	Pedagogical Features
	Prerequisites

	Acknowledgements
	Contents
	Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 What is MATLAB
	1.2 Why MATLAB?
	1.3 Who Should Use MATLAB?
	1.4 What is Covered in this Book
	1.5 What You Will Learn by the Book
	1.6 MATLAB History and Timeline
	1.7 MATLAB Products and Services (2024a)
	1.8 How to Use this Book
	1.9 MATLAB Environment and Settings
	1.10 MATLAB Basic Concepts
	1.11 Laboratory
	1.12 Problems
	1.13 Summary
	References

	2 Data Types, Operators, and Expressions
	2.1 MATLAB Built-in Data Types
	2.2 Working with Data Types
	2.2.1 Creating Variables
	2.2.2 Accessing and Modifying Data
	2.2.3 Type Conversion
	2.2.4 Operations and Functions on Data Types
	2.2.5 Missing Data Handling

	2.3 Advanced Topics
	2.3.1 Custom Data Types
	2.3.2 Enumerations
	2.3.3 Data Type Validation
	2.3.4 Performance Considerations
	2.3.5 Memory Allocation and Management
	2.3.6 Ranges, Casting and Machine Epsilon

	2.4 Operators
	2.4.1 Arithmetic Operators
	2.4.2 Relational Operators
	2.4.3 Logical Operators
	2.4.4 Assignment Operators
	2.4.5 Special Characters

	2.5 Expressions
	2.5.1 Arithmetic Expressions
	2.5.2 Relational Expressions
	2.5.3 Logical Expressions
	2.5.4 String Expressions
	2.5.5 Function Expressions
	2.5.6 Array and Matrix Expressions

	2.6 Statement
	2.7 Laboratory
	2.8 Problems
	2.9 Summary
	References

	3 Vectors, Arrays, Matrices, and Data Structures
	3.1 Vector
	3.2 Arrays
	3.3 Matrix
	3.4 Data Structures
	3.5 Advanced Data Structures
	3.5.1 MATLAB Examples
	3.5.2 Graph Data Structure
	3.5.3 Tree Data Structure
	3.5.4 Tall Arrays

	3.6 Laboratory
	3.7 Problems
	3.8 Summary

	4 Conditional Statements
	4.1 Introduction to Conditional Statements
	4.2 The if Statement
	4.3 The elseif and else Statements
	4.4 The switch Statement
	4.5 The end Keyword
	4.6 Laboratory
	4.6.1 Digit Counter
	4.6.2 Grade Statistics
	4.6.3 Menu-Driven Calculator

	4.7 Problems
	4.8 Summary
	References

	5 Loop Statements
	5.1 Introduction
	5.2 Types of Loop Statements
	5.2.1 For Loops
	5.2.2 While Loops
	5.2.3 Do-While Loops

	5.3 Loop Optimisation Techniques
	5.3.1 Importance of Loop Optimisation for Efficiency
	5.3.2 Strategies for Reducing Unnecessary Iterations
	5.3.3 Loop Unrolling, Loop Fusion, and Loop Interchange Techniques
	5.3.4 Best Practices for Enhancing Loop Performance

	5.4 Applications of Loop Statements
	5.4.1 Solving Computational Tasks
	5.4.2 Real-World Problem Solving

	5.5 Debugging and Error Handling
	5.5.1 Common Errors and Pitfalls in Loop Statements
	5.5.2 Techniques for Effective Debugging and Error Resolution
	5.5.3 Testing Loop Conditions and Loop Termination Conditions
	5.5.4 Strategies for Handling Exceptions and Error Handling in Loops

	5.6 Advanced Topics in Loop Statements
	5.6.1 Conditional Loops
	5.6.2 Nested Loops and Loop Control
	5.6.3 Integration with Arrays and Data Manipulation

	5.7 Best Practices and Guidelines
	5.8 Laboratory
	5.9 Problems
	5.10 Summary

	6 Scripts and Functions
	6.1 Scripts
	6.1.1 Introduction to Scripts in MATLAB
	6.1.2 Creating and Executing Scripts
	6.1.3 Managing Variables in Scripts

	6.2 Functions
	6.2.1 Introduction to Functions in MATLAB
	6.2.2 Function Syntax and Structure
	6.2.3 Calling Functions
	6.2.4 Examples of Functions in MATLAB
	6.2.5 Returning Values from Functions
	6.2.6 Built-in Numerical Functions

	6.3 Variable Numbers of Arguments
	6.4 Nested Functions
	6.5 Anonymous Functions and Function Handles
	6.6 Uses of Function Handles
	6.7 Recursive Functions
	6.8 Live Scripts
	6.8.1 Creating Live Scripts
	6.8.2 Adding Text, Equations, and Visualisations
	6.8.3 Live Code File Format (.mlx)

	6.9 Laboratory
	6.10 Problems
	6.11 Summary
	References

	7 Inputs and Outputs
	7.1 Introduction
	7.2 MAT-Files (.mat)
	7.3 Spreadsheet Files (.xls)
	7.4 Binary Files (.dat)
	7.5 Image Files (.png, .jpg, .tif etc.)
	7.6 Text Files (.txt)
	7.7 Audio Files (.wav, .mp3, .flac etc.)
	7.8 Video Files (.avi, .mp4, .mov etc.)
	7.9 JSON Files (.json)
	7.10 HDF5 Files (.hdf5)
	7.11 XML Files (.xml)
	7.12 Database Files (.csv, .odb, etc.)
	7.13 Data Import and Analysis
	7.14 Laboratory
	7.15 Problems
	7.16 Summary
	References

	8 Graphics and Data Visualisation
	8.1 Introduction
	8.2 2D and 3D Plots
	8.2.1 Multiple Plots and Subplots
	8.2.2 Customising Plot Appearance
	8.2.3 Interactive Plot Features
	8.2.4 Specialised Plot Types
	8.2.5 Plotting Tools and Utilities

	8.3 Data Distribution Plots
	8.3.1 Histograms
	8.3.2 Box Plots
	8.3.3 Violin Plots
	8.3.4 Probability Plots
	8.3.5 Best Practices and Advanced Insights

	8.4 Data Distribution Plots
	8.4.1 Histograms
	8.4.2 Box Plots
	8.4.3 Violin Plots
	8.4.4 Probability Plots
	8.4.5 Best Practices and Advanced Insights

	8.5 Discrete Data Plots
	8.5.1 Bar Charts
	8.5.2 Pie Charts
	8.5.3 Stem Plots
	8.5.4 Area Plots
	8.5.5 Best Practices in Discrete Data Visualisation

	8.6 Vector Fields (quiver, quiver3)
	8.7 Volume Visualisation (slice, isosurface, isocaps)
	8.8 Images Displaying
	8.8.1 Basic Image Display Functions
	8.8.2 Enhancing Image Contrast
	8.8.3 Applications in Various Domains
	8.8.4 Advanced Image Manipulation
	8.8.5 Unique Insights

	8.9 Animating Visualisations
	8.9.1 Creating Animated Plots
	8.9.2 Visualising Time-Series Data
	8.9.3 Animating 3D Plots

	8.10 Formatting and Annotation
	8.10.1 Customising Plot Appearance
	8.10.2 Adding Labels and Titles
	8.10.3 Adding Legends
	8.10.4 Annotating Plots
	8.10.5 Unique Insights and Advanced Formatting

	8.11 Advanced Visualisation Techniques
	8.11.1 Interactive Visualisations
	8.11.2 Visualising Big Data
	8.11.3 Visualising Real-Time Data
	8.11.4 Visualising Uncertainty
	8.11.5 Visualising Geographical Data

	8.12 Advanced Visualisation Techniques
	8.12.1 Interactive Visualisations
	8.12.2 Visualising Big Data
	8.12.3 Visualising Real-Time Data
	8.12.4 Visualising Uncertainty
	8.12.5 Visualising Geographical Data

	8.13 Visualisation Best Practices
	8.13.1 Choosing the Right Plot Type
	8.13.2 Effective Use of Colour
	8.13.3 Simplifying Complex Visualisations
	8.13.4 Designing for Different Audiences

	8.14 Laboratory
	8.15 Problems
	8.16 Summary
	References

	9 Programming and Algorithm Development
	9.1 Introduction to Programming
	9.2 Algorithms
	9.3 From Algorithm to Programming
	9.4 Programme Organisation
	9.5 Control Flow in MATLAB
	9.6 Variable Scope
	9.6.1 Global and Local Scope
	9.6.2 Local Scope
	9.6.3 Global Scope
	9.6.4 Persistent Variables
	9.6.5 Nested Functions and Variable Scope

	9.7 Errors and Pitfalls
	9.7.1 Syntax Errors
	9.7.2 Logic Errors
	9.7.3 Rounding Error

	9.8 Debugging and Testing
	9.9 Eval and Text Macros
	9.10 Live Scripts, Code Cells, and Publishing Code
	9.10.1 Live Scripts
	9.10.2 Code Cells
	9.10.3 Publishing Code

	9.11 Files and Folders
	9.12 Security in MATLAB Code
	9.12.1 Understanding MATLAB Security
	9.12.2 Example MATLAB Codes for Secure Programming

	9.13 Graphical User Interfaces
	9.13.1 Basic Structure of a GUI
	9.13.2 A First Example: Getting the Time
	9.13.3 Newton's Method
	9.13.4 Axes on a GUI
	9.13.5 Adding Color to a Button

	9.14 Apps Building in MATLAB
	9.14.1 Types of Apps in MATLAB
	9.14.2 App Development Tools
	9.14.3 Creating and Customising UI Components
	9.14.4 Deploying and Sharing Apps

	9.15 Programming for Simulink
	9.15.1 Quick Introduction to Simulink
	9.15.2 What Is an S-Function
	9.15.3 Advanced Simulink Programming Techniques and Applications

	9.16 Software Development Tools
	9.16.1 Debugging and Analysis
	9.16.2 Performance and Memory
	9.16.3 Background Processing
	9.16.4 Projects
	9.16.5 Source Control Integration
	9.16.6 Testing Frameworks
	9.16.7 Build Automation
	9.16.8 Continuous Integration (CI)
	9.16.9 Toolbox Distribution
	9.16.10 Tool Qualification and Certification
	9.16.11 MATLAB Grader
	9.16.12 MATLAB Cody

	9.17 Programming with AI
	9.17.1 MATLAB AI Chat Playground
	9.17.2 ChatGPT
	9.17.3 Cursor—Pair-Programming with AI

	9.18 Laboratory
	9.19 Problems
	9.20 Summary
	References

	10 Object-Oriented Programming
	10.1 Introduction to Object-Oriented Programming
	10.2 Classes and Objects
	10.3 Inheritance and Hierarchies
	10.4 Encapsulation and Access Control
	10.5 Polymorphism and Overloading
	10.6 Events, Listeners, and Callbacks
	10.7 Advanced OOP Concepts
	10.8 OOP Design Patterns
	10.9 OOP Applications and Best Practices
	10.10 Laboratory
	10.11 Problems
	10.12 Summary
	References

	Appendix A Solutions to Chapter Problems
	A.1 Solutions to Chapter 1
	A.2 Solutions to Chapter 2
	A.3 Solutions to Chapter 3
	A.4 Solutions to Chapter 4
	A.5 Solutions to Chapter 5
	A.6 Solutions to Chapter 6
	A.7 Solutions to Chapter 7
	A.8 Solutions to Chapter 8
	A.9 Solutions to Chapter 9
	A.10 Solutions to Chapter 10
	Appendix B Frequently Asked Questions (FAQs)
	B.1 Prerequisites
	B.2 Story of MATLAB Logo
	B.3 Tips: Programming Style and Best Practices
	B.3.1 Variables and Names
	B.3.2 Setting up MATLAB .m Files in a Good Readable Style
	B.3.3 Writing Readable and Maintainable Conditional Statements
	B.3.4 Optimizing Code Efficiency and Performance
	B.3.5 Debugging Techniques for Conditional Statements
	B.3.6 Guidelines for Choosing the Appropriate Conditional Statement
	B.4 Tips for Efficient Data Management
	B.5 Difference Between Arrays and Vector
	B.6 MATLAB AI Chat Playground
	B.7 MATLAB on Github
	B.8 What Is MATLAB, and What Are Its Primary Applications?
	B.9 What Are the System Requirements and Installation Process?
	B.10 What Are the Different Components of the MATLAB Desktop Environment, and What Are Their Functions?
	B.11 How Do I Write and Execute MATLAB Scripts and Functions?
	B.12 What Are the Different Data Types in MATLAB, and How Do I Work with Variables, Vectors, and Matrices?
	B.13 How Do I Import and Export Data in MATLAB, and What File Formats Are Supported?
	B.14 How Do I Create and Customize Plots and Visualisations in MATLAB?
	B.15 What Are the Different Control Flow Statements (If-Else, For Loops, While Loops) in MATLAB, and How Do I Use Them?
	B.16 How Do I Handle Errors and Debug MATLAB Code?
	B.17 What Are the Available Resources for Learning MATLAB, Such as Documentation, Tutorials, and Online Communities?
	B.18 What Are the Differences Between Scripts and Functions in MATLAB?
	B.19 How Do I Perform Basic Arithmetic Operations in MATLAB?
	B.20 How Do I Work with Matrices in MATLAB?
	B.21 How Do I Access and Manipulate Elements in Vectors and Matrices?
	B.22 What Are the Different Ways to Create Arrays in MATLAB?
	B.23 How Do I Perform Operations on Arrays in MATLAB?
	B.24 How Do I Concatenate and Reshape Arrays in MATLAB?
	B.25 What Are Cell Arrays in MATLAB, and How Are They Used?
	B.26 How Do I Work with Strings and Text Data in MATLAB?
	B.27 How Do I Read and Write Data to Files in MATLAB?
	B.28 What Are Structures in MATLAB, and How Are They Used?
	B.29 How Do I Create and Use Functions in MATLAB?
	B.30 What Is the Purpose of Anonymous Functions in MATLAB?
	B.31 How Do I Work with Dates and Times in MATLAB?
	B.32 What Are the Different Ways to Handle Missing Data in MATLAB?
	B.33 How Do I Integrate MATLAB with Other Programming Languages or Software?
	B.34 How Do I Create and Work with Tables in MATLAB?
	B.35 What Are the Different Types of Plots and Visualisations Available in MATLAB?
	B.36 How Do I Work with Images and Image Processing in MATLAB?
	B.37 What Are the Different Techniques for Data Analysis and Machine Learning in MATLAB?
	B.38 How Do I Parallelize Computations in MATLAB to Take Advantage of Multiple Processors or GPUs?
	B.39 What Are the Different Techniques for Optimisation and Solving Equations in MATLAB?
	B.40 How Do I Create and Work with Objects and Classes in MATLAB?
	B.41 What Are the Different Options for Deploying and Sharing MATLAB Applications?
	B.42 How Do I Integrate MATLAB with Version Control Systems Like Git or SVN?
	B.43 MATLAB Plot Cheat Sheet
	B.44 MATLAB Resources and Online Courses
	B.45 Official MATLAB Resources
	B.45.1 MathWorks Documentation
	B.45.2 MATLAB Community and Support
	B.46 Third-Party Resources
	B.46.1 Books and Textbooks
	B.46.2 Online Courses and Tutorials
	B.46.3 Blogs and Forums
	B.47 Code Repositories and Examples
	B.48 Professional Development and Certifications
	B.49 Learning Strategies and Planning
	Appendix Glossary
	References

