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Preface

In recent years it has become apparent that the deep integration of artificial intelli-
gence (AI) methods in product and services is essential for companies in Germany
and world-wide to stay competitive. The use of AI allows large volumes of data to
be analyzed, patterns and trends to be identified, and well-founded decisions to be
made on an informative basis. It also enables the optimization of workflows, the au-
tomation of processes and the development of new services, thus creating potential
for new business models and significant competitive advantages.

The use of AI in industry offers new opportunities to increase productivity, im-
prove quality, reduce costs and generate new, innovative solutions. Customer satisfac-
tion can also be increased through improved customer interaction and personalized
offerings. The use of AI offers significant potential in terms of quality, efficiency and
competitiveness - not only for multinational enterprises but also for the small and
medium-sized enterprises (SME) which are the industrial backbone of the European
economy. On the one hand, the quality of products and services can be increased
through the use of suitable tools and methods, which minimizes the susceptibility to
errors, optimizes processes and thus increases customer satisfaction. The automa-
tion of recurring tasks enables resources to be freed up and can lead to increased
efficiency and productivity. On the other hand, the use of AI enables SMEs to better
implement customer requirements, offer innovative solutions, stand out from the
competition and remain competitive in an increasingly globalized and digitalized
economy.

However, the use of AI in SMEs and industry also brings new requirements, such
as building up specialist knowledge and mastering technological complexity. The
rapid development and the in-depth knowledge required to implement and support
suitable methods and tools currently pose major challenges for SMEs in particular.

To meet the above-mentioned challenges and support the adoption and integration
of AI in industry and SMEs, structural measures are required. One suitable measure,
for example, would be the financing of transfer structures such as the ADA Lovelace
Center. Such a targeted development of transfer structures facilitates the transfer of
knowledge between research institutions and companies and provides industry and
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SMEs with low-threshold access to specialist knowledge and resources in order to
exploit the full potential of these technologies.

The ADA Lovelace Center is a pioneering competence center for AI in Bavaria, the
establishment of which was funded by the Bavarian State Ministry of Economic Af-
fairs, Regional Development and Energy. A central focus of the ADA Lovelace Center
is on the development of AI-based solutions for industrial applications in sectors of
outstanding importance for Bavaria. These include transportation and traffic, produc-
tion and Industry 4.0, rail transport, financial services and insurance, logistics and
healthcare as well as sports. Concepts and solutions for specific issues are researched
and implemented in close cooperation with the application partners. A wide range of
AI skills are applied and further developed to promote the targeted and sustainable
development of AI skills within partner companies. In addition to scientific research,
particular attention is paid to the promotion of young scientists, who are integrated
into industrial research at an early stage. The ADA Lovelace Center bundles and
expands the AI expertise and infrastructure of the Friedrich-Alexander-University
Erlangen-Nürnberg, Ludwig-Maximilians-University Munich, the Fraunhofer Insti-
tute for Integrated Circuits IIS, the Fraunhofer Institute for Integrated Systems and
Device Technology IISB and the Fraunhofer Institute for Cognitive Systems IKS.
Thus, the ADA Lovelace Center has significant expertise in all relevant AI processes.

The center has created an internationally visible network for the Bavarian econ-
omy, which is dedicated to the fundamental issues of data collection and analysis
using AI methods, taking into account data protection and data security. The ADA
Lovelace Center supports companies in the Bavarian economy by researching, devel-
oping and implementing concrete solutions for issues in the field of AI and enables
them to transform their business processes and develop new data-driven business
models. This book presents an excerpt from various application areas and method-
ologies and research areas of AI and explains how those methods and processes can
be used successfully in practice.

Nuremberg, Fürth, Erlangen The Editors
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Chapter 1
Automated Machine Learning

Florian Karl1,2,4, Janek Thomas2, Jannes Elstner1, Ralf Gross3, Bernd Bischl1,2,4

Abstract In the past few years automated machine learning (AutoML) has gained
a lot of traction in the data science and machine learning community. AutoML
aims at reducing the partly repetitive work of data scientists and enabling domain
experts to construct machine learning pipelines without extensive knowledge in
data science. This chapter presents a comprehensive review of the current leading
AutoML methods and sets AutoML in an industrial context. To this extent we present
the typical components of an AutoML system, give an overview over the state-
of-the-art and highlight challenges to industrial application by presenting several
important topics such as AutoML for time series data, AutoML in unsupervised
settings, AutoML with multiple evaluation criteria, or interactive human-in-the-loop
methods. Finally, the connection to Neural Architecture Search (NAS) is presented
and a brief review with special emphasis on hardware-aware NAS is given.

Key words: AutoML, Neural Architecture Search, Black-box Optimization

1.1 Introduction

Machine learning (ML) has achieved remarkable results across a number of domains
in many different applications. However, this success highly depends on the identi-
fication of a good model and its integration with suitable preprocessing procedures,
feature engineering, and other stages within an ML pipeline. Furthermore, even upon
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identifying a suitable model, it still requires precise tuning, as model performance
depends substantially on numerous hyperparameters. In short, ML experts must exert
considerable manual effort and conduct extensive experimentation to achieve success
in ML projects through hyperparameter optimization (HPO) and model selection.

Automated machine learning (AutoML) can help alleviate this issue by automat-
ically identifying suitable models or even pipelines, which in turn frees experts up
to devote themselves to more interesting and relevant work. However, ML projects
should not be viewed merely as the search for an optimal model for a given dataset.
The machine learning workflow CRISP-ML(Q), as outlined in [103], consists of
six phases: (1) business and data understanding, (2) data engineering, (3) model
engineering, (4) model evaluation, (5) model deployment, and (6) model monitoring
and maintenance. While all of the described phases can profit from automation and
reduction of manual effort, some are clearly better suited; in particular those centered
around model development are most attainable as of now [70] and most of current
AutoML research centers around this topic [62]. That is not to say AutoML does not

Fig. 1.1: An overview of what AutoML encompasses in the model engineering and
evaluation of the ML workflow. Most elements can be found in the course of this
chapter and core concepts are explained in the following subsections.

extend to other phases: monitoring of data and models, also a relevant topic in the
area of machine learning operations (MLOps) for example, provides plenty of oppor-
tunities for automation and has also been considered as closely connected to model
building, which led to research in the area of online AutoML [18]. Furthermore, au-
tomated data science (AutoDS) is a movement aiming at automation of stages in the
ML workflow focused around data, like data acquisition or EDA [31]. Independent
of the relevant part of the ML workflow, the overall goal of AutoML is to reduce
tedious tasks to a minimum and make ML engineers increasingly efficient in their
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work. For the reasons outlined above we will in this work focus on automation in the
context of model development. An overview of the steps that can be automated and
the topics related to AutoML in this phase can be found in Figure 1.1.

In the model engineering phase it is usually assumed that a (mostly) clean dataset
is available,1 that a performance measure as well as a validation scheme have been
defined, and that possible constraints for deployment are known.

The result of the model engineering phase is an optimized ML pipeline. An ML
pipeline is a sequence of preprocessing, modeling and postprocessing operations that
is trained on the available data and can be used to predict new observations. Since
many ML algorithms are available, each with their unique hyperparameters, finding
an optimal pipeline is a complex and – since training an ML model can require a lot
of computational effort – expensive black-box optimization problem. This is further
complicated by the fact, that (1) the search space can be mixed (numerical and cat-
egorical) and involve dependencies or hierarchies, (2) observations, i.e., measured
performance of evaluated pipelines, can be inherently noisy and (3) dependencies
between pipeline steps and certain hyperparameters are mostly unknown. A consid-
erable amount of surveys on AutoML exist [121, 36, 126] as well as a textbook [62]
to provide a general introduction into the topic. Additionally, recently surveys on
subtopics of AutoML have been published, including e.g., neural architecture search
(NAS) [115], AutoML for time series forecasting [6] and AutoML for unsupervised
methods [8].

This chapter aims to provide a condensed overview over the domain of AutoML in
the ML workflow phases related to modeling in a practical context, its current appli-
cations, existing solutions and limitations. After this brief introduction, Section 1.2
presents an evaluation on various AutoML components such as search space, opti-
mization methods or ensembling. Section 1.3 highlights several selected topics with
relevance for industrial applications such as AutoML for time series data, AutoML
in low supervision scenarios, multi-objective AutoML and the integration of human
experts. After Section 1.4, which gives a brief introduction to NAS with emphasis
on the topic of hardware-aware NAS, the chapter concludes with a critical look at
challenges and open research topics in the field of AutoML.

1.2 Components of AutoML Systems

In practice, a distinction is made within the field of AutoML between automatically
searching for optimal ML pipelines for “traditional” non deep learning ML methods,
and the search for network architectures in deep learning, NAS. Despite its success
and relevance, NAS is in literature classified as a subfield of AutoML [62]. Most
of this section concerns the former, while in Section 1.4 the use and adaption of
various methods for NAS is discussed. In general, AutoML systems consist of several

1 Data cleaning is technically not a part of AutoML and we will exempt this matter from discussion
here, though automation in this phase is an interesting topic in itself. We assume that standard
procedures (e.g., removal of constant and duplicate features) are always utilized.
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different components: search space, optimization, ensembling, feature engineering
and meta-learning. Different choices for all these components with their advantages
and drawbacks are discussed in the following.

1.2.1 Search Space

The search space Λ defines which algorithms, preprocessing and postprocessing
operations are considered as well as the ranges of required hyperparameters. Usually,
these spaces are defined in a single ML framework, e.g., scikit-learn [90], WEKA [35]
or H2O [53]. Λ can be written as a directed acyclic graph, where each node can
be associated with discrete, continuous and conditional hyperparameters. Numeric
hyperparameters have a finite range defined by a lower and upper bound. It may
not be reasonable to optimize all numeric hyperparameters on a linear scale: The
learning rate of neural networks, for example, is generally tuned on an exponential
scale, e.g., 10−10, . . . , 10−1. Conditional hyperparameters are only active based on
the values of other hyperparameters. For example, the 𝛾 hyperparameter of a Support
Vector Machine (SVM) is only meaningful when the kernel is set to Radial Basis
Functions. For an SVM with Linear Basis Functions, 𝛾 is inactive as it is not used
by the model.

The resulting hierarchical structure of Λ makes optimization with standard tech-
niques challenging. There is also a clear trade-off in the definition of Λ. On the one
hand, a too restrictive search space may exclude the optimal pipeline and thus cannot
be found. On the other hand, a large search space will likely result in difficult and
expensive optimization. Ideally the search space should consist of complementing
operations, i.e., a method that works well if another method does not and vice-versa.
This prevents creation of an unnecessarily vast search space and allocation of too
much budget on several methods that are expected to produce similar results. Unfor-
tunately, it is very hard to learn such an optimal search space in a data-driven way. A
large amount of meta-data is required to learn desirable behavior and general state-
ments are difficult to make over all possible datasets. Notions of transfer learning [91]
and adaptive search spaces [54] exist within black-box optimization, but to the best
of our knowledge, they have not been successfully integrated in AutoML solutions.
Currently, the search space is usually defined in an ad-hoc manner by the developer
of the respective AutoML framework with respect to his or her domain knowledge,
ML expertise and intended applications as well as some benchmark experiments.

1.2.2 Optimization

In addition to the challenges that the structure of Λ pose, despite best design efforts,
the search space can become quite large if many different operations and model
families are considered. The optimization problem is also a black-box optimization
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problem, which means that no derivatives of performance with respect to hyperpa-
rameters are available. In many settings the problem is computationally expensive,
as a single evaluation of the black-box typically requires a full cross-validation.
Lastly, the optimization is also stochastic, as evaluations are only estimates of the
pipeline’s true generalization performance. If those limitations are not taken into
account, issues with overtuning can arise [17, 85].

Simple Optimization methods such as random or grid search can be quite com-
petitive [47, 48], as they are hard to misspecify: These approaches forego the use of
complex algorithms and there is minimal risk for human error. More sophisticated
optimization techniques can break if assumptions, e.g., on the optimization surface,
do not hold. In general, random search is always preferable to grid search, as irrele-
vant hyperparameters do not force identical evaluations [11]. This is also shown in
a benchmark study by Zöller et al. [126].

Bayesian Optimization is a sequential global optimization method [86, 69] that
was developed for expensive black-box problems and is now widely used in HPO
and AutoML [99, 60]. The basic idea is to approximate the optimization surface with
a probabilistic model, most commonly a Gaussian process; this surrogate is cheap to
evaluate and analyze. Optimization is usually initiated by evaluating a certain number
of points in a (pseudo-)random manner after which the surrogate model is fit. An infill
criterion (or acquisition function) is optimized over the surrogate to select the next
optimal point to evaluate; examples include expected improvement or probability of
improvement [99]. Typically, an infill criterion balances exploitation of regions with
high performance and exploration of regions with high uncertainty [99]. The point
obtained through the optimization procedure is then evaluated and the surrogate
model is retrained. Applying the method to AutoML poses a challenge, as Bayesian
optimization in its original formulation requires a fully numeric configuration space.
This is not the case for almost all AutoML systems and applications. A possible
solution is to use an appropriate surrogate like a Random Forest instead of a Gaussian
process and impute inactive hyperparameters [60]; Neural Networks have also shown
promise in combination with a suitable Bayesian treatment like adding a Bayesian
linear regressor to the last hidden layer [100]. Another approach is to use a Gaussian
process surrogate, but learn lower dimensional numeric embeddings [88].

Bayesian optimization is quite flexible and can be extended to optimize multiple
performance measures concurrently [58, 71] as well as to handle the stochasticity of
the underlying AutoML problem [93]. Letham et al. [76] propose a way to handle
noisy or unknown constraints [51], i.e., constraints where it is not (immediately) clear
if the proposed ML pipeline is feasible or not. Local Bayesian optimization has been
implemented by Eriksson et al. [39] to deal with challenging high dimensionality and
large sample budgets. In its original sequential formulation Bayesian optimization is
an iterative algorithm that evaluates one point at a time, which can be problematic
when trying to parallelize it. It is therefore desirable to adapt Bayesian optimization
to generate multi-point or batch proposals, which can be achieved through certain
infill criteria [61, 24].
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Evolutionary Algorithms are population-based and stochastic methods inspired
by evolution in biology. Evolutionary algorithms generally follow the same pro-
cedure: After an initial population is sampled and fitness of each individual (an
ML pipeline constitutes an individual) is assessed, a sub-population is chosen as
parents for the next generation of offspring. Mutation (random perturbation of an
individual) and crossover (combination of attributes of two individuals) operations
are employed to generate offspring. These steps are repeated until a given stopping
condition is met, when the best performing pipeline is returned as the final result.
While requiring a substantial number of evaluations, evolutionary algorithms are a
popular choice due to their ability to handle complex search spaces,2 ease of imple-
mentation, straightforward possibilities for parallelization and the low probability of
getting stuck in local optima [4]. Other population based approaches such as particle
swarm optimization follow a similar idea. In particle swarm optimization, units of a
population of candidate solutions (i.e., particles) traverse the search space based on
information about their own respective known states and the behavior of the entire
population. In general, these population based optimization techniques are not as
efficient as Bayesian optimization and require a larger amount of iterations to find
good solutions.

Multi-Fidelity Approaches aim to optimize budget allocation by stopping poor
performing pipelines or models early, so as to not waste available budget. Instead
of exploiting optimal selection of pipelines to evaluate like the previously presented
methods, multi-fidelity methods attempt to find good solutions by allocating available
budget in an optimal manner. Evaluating ML pipelines (and mainly deep learning
architectures) can be expensive and the underlying assumption is, that with less
budget, i.e., on a lower fidelity, one can already determine with confidence which
pipelines will perform best. Suitable budget types are, for instance, epochs trained,
size of training set, or image resolution.

The simplest implementation of this is successive halving [66]. With successive
halving, an amount of randomly sampled configurations is trained on a low fidelity.
The worse performing half of models is then discarded, while the better performing
half of models is trained on a higher fidelity and the procedure is repeated. Hyper-
band [79] is an extension of successive halving to solve the problem of determining
the amount of sampled pipelines and the initial fidelity by conducting several suc-
cessive halving processes from different starting conditions. It is not entirely clear,
which type of budget (if multiple are a sensible choice) is best for which application
so that high rank correlation between fidelities is achieved [34]; the budget is gen-
erally chosen by the practitioner in an ad-hoc manner. Multi-fidelity approaches can
be used in conjunction with many other optimization methods: The simple random
sampling in Hyperband can, e.g., be upgraded to Bayesian optimization [40].

2 One simply has to define suitable operations for mutation and crossover. While not always trivial,
proper operations have been defined for several elements across the ML pipeline [89].
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While these methods constitute arguably the most popular optimizers for Au-
toML, HPO, and NAS, other methods have been applied successfully to such tasks,
including iterative racing, Monte-Carlo Tree Search (MCTS), and gradient-based op-
timization methods. The interested reader shall be referred to [121, 36, 126, 62, 115]
among others.

1.2.3 Ensembling

An additional tool used by many AutoML frameworks is model ensembling (in the
context of AutoML mostly done through stacking) [16]. In the optimization process,
many candidate pipelines are proposed until the budget is used up or a different
termination criterion is reached. Finally, the best 𝑘 pipelines can be combined in
a powerful ensemble. This can be achieved by simple (weighted) averaging of the
pipeline predictions [16] or by training a model using the predictions of the pipelines
as new features [117, 106]. Some successful AutoML tools include post-hoc stacking
to further boost performance [43], others have ensemble methods as an integral part
of the underlying algorithms [19]. Wistuba et al. [116] even use multiple levels of
this stacking approach of hundreds of pipelines to achieve very strong predictive
performance outperforming 3000 out of 3500 ML expert teams in 12 hours in an ML
competition. Similarly, one of the best-performing AutoML tools [47], AutoGluon,
relies largely on ensembling and stacking of models in multiple layers [38]. While
in many cases ensembling helps boosting the performance of an AutoML tool [52],
considerable drawbacks in terms of model size, inference time and general model
complexity are apparent. The trade-off between complexity of the solution and its
predictive performance needs to be quantified and a conscious decision has to be
made [71].

1.2.4 Feature Selection and Engineering

Feature selection and feature engineering are two important preprocessing steps in
an ML pipeline.

Feature Selection filters relevant features, that are then presented to the ML
model. This serves the purpose of reducing model complexity, reducing costs of data
acquisition and improving performance by eliminating noisy variables. Including
feature selection into AutoML produces the search space {0, 1}𝑝 × Λ, where 𝑝 is
the number of initially available features. While often done in a separate step, there
is a lot of merit in combining feature selection and the remaining parts of the ML
pipeline into one optimization problem [13].

Feature Engineering is the process of extracting features from raw data, i.e.,
multiple data sources. Simple examples of such extractions are sums or averages with
an 𝑛− 1 relation (combining 𝑛 sources into one feature) to the target. The amount of
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possible extractions grows immensely with a growing number of relations and variety
of extractor functions. This space will quickly become impossible to exhaustively
search, so smart search heuristics need to be employed. Kanter et al. [72] propose
a greedy exploration strategy to progressively optimize predictive accuracy. If the
data is stored in entity-relation-entity format, Cheng et al. [23] propose an efficient
way to extract features from the graph that can be used for general ML algorithms.
It should be noted, that if automated feature engineering is included in the AutoML
framework, we see the input not as a single cleaned data source as discussed in the
introduction, but as multiple linked sources.

1.2.5 Meta-Learning

In meta-learning, the information on how machine learning models perform on
many different datasets is used to approach new datasets more efficiently [108].
Many different tasks such as few-shot [9, 112] or multi-task [15] learning are closely
related to meta-learning, but in the context of AutoML a distinction can be made.
Meta-learning can be seen as a fundamental concept of AutoML and refers to
methods that can leverage information from previous tasks and recommend pipelines
or architectures and warm start the AutoML process, thus aiding model selection.
In contrast, methods such as transfer learning or few-shot learning produce a fixed
architecture and improve only model training (see Figure 1.2). To utilize meta-

Fig. 1.2: Meta-learning can be divided into two approaches: Some methods support
model selection, while others produce a fixed architecture and support model train-
ing.

learning for AutoML, it is possible to discretize the search space Λ and create a
matrix of datasets 𝑑 ∈ 𝐷 and ML pipelines 𝜆 ∈ Λ where entries in the matrix
correspond to the estimated generalization performance of 𝜆 on 𝑑; a technique often
utilized in general algorithm selection and configuration. Such data can be collected
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from online ML databases like OpenML [109]. This matrix will most likely be very
sparse, as not all combinations of datasets and pipelines are evaluated. The estimation
of the performance of 𝜆 on a new dataset 𝑑new corresponds to a recommender system
in which datasets are users and ML pipelines are items. Recommender systems like
collaborative filtering can be used as meta-learning AutoML tools to predict which
pipelines to try out next [44, 120].

Additional information about the datasets such as size, number and type of fea-
tures can help to improve the recommendation by calculating the similarity between
datasets. Instead of a random or space filling initialization of the search, the best work-
ing configurations on similar datasets are used, which can speed up the optimization.
Van Rĳn et al. [107] have even used meta-learning to compute symbolic defaults that
work well across a large number of datasets. Many meta-learning approaches are
limited to examining and comparing configurations from the same search space. The
inclusion of transformers however can allow for utilizing information across different
search spaces for meta-learning in the context of HPO and AutoML [22]. Taking the
notion of meta-learning even one step further, recent approaches to AutoML or NAS,
that require a lot of computation on (sometimes synthetic) datasets beforehand, can
produce models or architectures for a variety of datasets [75] or even do inference
for new datasets out of the box and in a “one-shot manner” [57].

1.2.6 A Brief Note on AutoML in the Wild

Various AutoML tools have been developed and published over the last years -
both open source and commercial. However, few success stories of AutoML in real-
world applications and industry are known, even though AutoML often performs
very well on the benchmark data frequently used in scientific publications and ML
competitions. One possible reason for this could be that the application of AutoML is
not necessarily made public by users. Nevertheless, the large amount of commercial
solutions strongly indicates that a market for AutoML tools exists. AutoML has also
been included in major ML platforms from companies such as Microsoft or Amazon.

In general, there is no single AutoML framework that is suitable for all use cases,
since there exists a trade-off between the flexibility and stability of pipeline creation.
Compared to frameworks developed by research groups, most frameworks developed
in industry limit themselves to shorter pipelines as well as simpler search spaces and
optimization strategies, c.f. H2O AutoML. This makes them quite robust and very
desirable for users who are looking to harness the power of ML with limited ML
knowledge, but not as flexible and powerful as some open source alternatives that
offer more functionality. If the ML task at hand becomes more difficult, e.g., by a
larger number of observations, higher dimensionality, or number of classes, some
frameworks will experience crashes or produce unsatisfactory results. In particu-
lar, many AutoML frameworks have issues handling high cardinality categorical
features, i.e., categorical features with an extensive amount of possible values. In
Gĳsberger et al. [48] H2O AutoML was found to be the most stable framework,
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whereas Zöller et al. [126] report crashes as well as memory and time constraint vi-
olations for all considered frameworks. The overall differences between frameworks
can be marginal, and a more complex search space does not necessarily guarantee
improved results. Both benchmarks [48, 126] are limited to specific hardware con-
figurations. Gĳsberger et al. [48] conduct their benchmark on machines with 32 GB
memory and 8 vCPUs with time limits of 1 and 4 hours per run. Zöller et al. [126]
conduct their benchmark on almost identical machines for 1.25 hours per run. A
second iteration of the AutoML benchmark conducted in [48] has recently been
released by Gĳsbers et al. [47]. While this offers up additional insights into various
time limits for AutoML, more benchmarking is required as it remains unclear how
AutoML frameworks behave under different conditions, for example in large scale
distributed systems.

All the referenced benchmarks give an overview over current open source frame-
works and attempt a side-by-side comparison incorporating different criteria, which
present a good resource for further reference. Finally, a recent trend towards targeted
AutoML solutions offers a new trade-off between generalization and functionality by
focusing on certain use cases that share common properties in the data or set-up.
One example is an AutoML tool targeted at predictive maintenance of expensive ma-
chinery that has been introduced by German company Weidmüller [1]. The search
space of such frameworks is designed to include operations that domain experts
deem useful, e.g., certain feature extraction methods for sensor data or proven model
classes. Meta-learning in such a focused domain is also considerably easier, as task
similarity can be assumed to be much higher [62].

1.3 Selected Topics in AutoML

1.3.1 AutoML for Time Series Data

While AutoML approaches are often benchmarked on and targeted towards tabular
data, NAS publications tend to highlight a lot of applications on image data. When
moving to different data types like text data, time series data or even multi-modal
data, AutoML methods are not as proven and may require substantial modifications
or additions.

Time series data is especially prevalent in real-world industry applications, which
is the reason we choose it to highlight why AutoML methods that work on tabular
data can not simply be transferred to other types of data, unique scenarios, and ML
tasks other than classification or regression. In terms of ML solutions for the typical
time series tasks - time series forecasting and time series classification - we can
divide approaches into three groups [6]: Feature engineering in combination with
“traditional” ML approaches, deep learning, and solutions specific to time series. A
more detailed taxonomy can be found in [84]. The sheer number of possible tasks on
time series data and the abundance of available methods to solve them make creating
an appropriate search space a complicated task.
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Feature engineering can be also especially daunting for time series tasks, yet
including it in the AutoML framework can be very helpful for users [26]. Several
popular packages exist to automate feature construction, among the most used are
tsfuse [32] and tsfresh [26].

Despite the popularity of deep learning methods and their successful application to
both time series forecasting [81] and classification [65] it might be better to opt out of
expensive deep learning solutions for several applications in industrial settings such
as anomaly detection or predictive maintenance [7]. However, plenty of applications
are suitable for deep learning; in terms of commercial deep learning tools for time
series tasks, e.g., Amazon Web Services has launched GluonTS, which operates with
probabilistic methods and deep learning [5]. Solutions specific to time series tasks
are quite diverse. One such example, that has garnered some interest in the past years
is the Matrix Profile, which was first introduced by Yeh et al. in [122]. The Matrix
Profile is a metric – essentially achieved by folding a univariate time series with
itself – that indicates for each step in the time series how far the most similar pattern
is located in the series. This information can be leveraged for a variety of time series
and pattern mining tasks like motif detection or anomaly detection among others.
In terms of AutoML, many previously discussed techniques can be carried over to
certain time series tasks. The need to tackle various tasks based on time series data
has led to several tools adapting to support those tasks recently [6]. Specifically, the
AutoML framework Driverless AI from H2O offers specialized time series tools [3]
and AutoGluon from Amazon supports a number of time series applications [2]. NAS
for time series tasks, in particular forecasting, has recently shown some success: Wu
et al. in [118] discuss the importance of hyperparameter tuning in deep learning
approaches for time series and Deng et al. in [34] have developed a NAS framework
that can outperform “traditional” time series approaches on a variety of forecasting
tasks from different application domains.

1.3.2 Unsupervised AutoML

While most research focuses on AutoML for supervised learning, there is a growing
body of work that applies AutoML to unsupervised learning. Unsupervised learning
is a type of ML where algorithms identify patterns and structures within data with-
out the use of labeled examples. The methods for unsupervised ML are also often
highly dependent on critical hyperparameters or even appropriate pre-processing.
The biggest challenge in AutoML for unsupervised tasks is that performance eval-
uation is not as clear as in the supervised case, and defining a single, appropriate
metric to evaluate performance of a model is not straightforward [8]. We aim to
provide a brief introduction to AutoML for unsupervised ML and its challenges
and highlight the important tasks of anomaly detection and clustering. Anomaly
detection deals with detecting data points that differ significantly from the training
distribution, and can be useful for tasks like identifying rare events, e.g., fraud detec-
tion or intrusion detection [8]. Unsupervised anomaly detection methods often use
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meta-learning to learn from other detection models and datasets to build their own
detection model [125], or use human-in-the-loop strategies to train the model [124]
(see also Section 1.3.4). Clustering is a task that especially struggles with appropri-
ate evaluations; often, internal clustering validation criteria are used to ascertain the
quality of a model. Many such metrics exist, it is often hard for users to interpret
these metrics and using these criteria for model selection and tuning is a challenge.
Meta-learning approaches have been shown to utilize these metrics in a meaningful
way and have demonstrated good results in AutoML for clustering [33, 67] (c.f.
Section 1.2.5). Some AutoML frameworks that rely heavily on meta-learning have
been proposed as well [29, 95]. Another AutoML component, that has proven useful
for clustering is ensembling [45, 49, 50] (c.f. Section 1.2.3). For a comprehensive
overview of AutoML methods for unsupervised settings we refer to Bahri et al. [8].

1.3.3 AutoML Beyond a Single Objective

Existing AutoML approaches mainly find an optimal pipeline with respect to one
evaluation criterion. In many real-world applications, however, practitioners are
usually interested in other objectives as well. There can be multiple metrics that
measure the performance of an ML model, and there may also be interest in includ-
ing secondary objectives such as model complexity, energy efficiency, robustness,
interpretability or sparseness, which makes the AutoML problem a multi-objective
optimization problem [71, 87].

A simple solution to this is scalarization, i.e., turning the multi-objective problem
into a single objective problem, for example by instead optimizing a weighted sum
of the objectives [71]. This however not only requires extensive a priori knowledge
about the optimization problem and an idea about possible trade-offs, but one solu-
tion cannot comprehensively describe a multi-objective optimization problem with
conflicting objectives. Therefore, it may be sensible to use multi-objective optimiza-
tion methods, which usually try to approximate the pareto-front, i.e., to find solutions
where no single objective can be further improved without trade-offs in other objec-
tives and thus present a decision maker (DM) with a set of non-dominated options
from which a suitable solution can be chosen.

Several concepts and optimization methods presented in Section 1.2 can be
adapted for the multi-objective case [71],3 but multi-objective AutoML comes with
its own set of challenges. In practice it can be hard to judge if an objective identified
in the business understanding phase should be formulated as an objective or a con-
straint for the ML problem (e.g., should a model be as energy efficient as possible
or should energy consumption lie under a certain threshold). The AutoML problem
can also be alternatively formulated as a quality diversity optimization problem, i.e.,
identifying optimal configurations for each of a set of constrained regions at the same

3 For an introduction to these methods for HPO and AutoML we refer to [71, 87].
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time. This formulation has also shown a lot of promise and presents yet another way
to tackle this issue [97].

It is often unclear which optimization method to choose for such a multi-objective
AutoML problem as benchmarking and evaluation is notoriously hard [71, 42].
Another weakness of multi-objective methods is that approximating the pareto-
front becomes increasingly difficult or even impossible as the number of objectives
increases [77, 64], especially when their interactions are unknown. Yet another
approach, that respects the complexity of real world problems, is to involve a DM
or domain expert to interact with the optimization algorithm. This addresses some
problems, such as objectives that may be hard to quantify or even unknown a priori.
We will explore some of these interactive methods in the next section.

1.3.4 Human-In-The-Loop AutoML

The goal of automation in ML is not to exclude the – often extremely valuable –
human influence altogether, but more so to reduce tedious, manual tasks as much as
possible. How to include domain experts, DMs and ML experts to draw from their
knowledge with minimal manual effort for them is very much a vision for AutoML
and NAS [59]. How to integrate key human stakeholders in the ML process and
specifically into AutoML during the model phase is a key topic in current AutoML
research. Often, trade-offs cannot be specified a priori or it is hard to quantify certain
objectives; there may also be some hidden objectives that are not formulated at all.
Moreover, even if objectives can be specified, it may not be necessary to explore the
entire Pareto-front as is often done in multi-objective optimization, but rather the
search for pipelines should be focused around regions preferred by a DM. In such
situations, including the preferences of the DM in the optimization process is most
often beneficial [78]. Instead of specifying DM preferences in advance, preferences
are best included interactively. This essentially puts humans back into the AutoML
loop, but instead of configuring ML pipelines, they adjust the search process based
on their preferences and expertise.

There are many ways by which to include DM preferences into the search process.
Hakanen et al. [55] show intermediate solutions to the DM and adjust the search
by asking for preferred ranges for the objective functions. Gibson et al. [46] allow
the DM to set aspirational targets in the objective space that the DM would like to
explore. Wang et al. [113] built an interactive visualization tool that allows the DM
to modify search space, budget and model selection in an end-to-end workflow.

Overall, human-in-the-loop AutoML is in some sense contrary to the spirit of Au-
toML, and it is challenging to find the right amount of balance between automation
and human intervention. Human-in-the-loop methods also rely on high quality feed-
back from the DM [78] and the preferences of DMs are always biased to some extent
and can even change over time. This can be especially challenging with approaches
like preferential Bayesian optimization, when a DM may pick one configuration over
another and make a different decision under different circumstances.
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1.4 Neural Architecture Search

As discussed previously, NAS is a sub-field of AutoML solely focusing on the
architectural design of deep neural networks [127]. Deep learning – among other
reasons – has celebrated great success, because it offers end-to-end solutions for ML,
no longer requiring practitioners to build pipelines and carefully select pre-processing
operations. However, the choice of architecture as well as hyperparameters like
learning rate can have great influence on the overall performance of a deep learning
model. One constraint in terms of applicability of NAS is available data for training
and validation. Deep learning itself requires an abundance of data [98] and NAS
even more so.4 Shorten and Khoshgoftaar [98] allude to the lack of sufficient data in
some domains, suggesting that the same may be true for several industrial use cases.

1.4.1 A Brief Overview of the Current State of NAS

The majority of NAS focuses on convolutional neural networks for computer vi-
sion, but approaches for audio [111], video [94], text [101], time series [34], and
tabular [73] data exist. Various architectural designs, such as skip-connections [56],
inception modules [104], and more generally multi-branch networks [37] are em-
ployed frequently. These design choices determine the search space just as the set of
preprocessing operations and model families compose the search space for AutoML.
Commonly, NAS works with cells, i.e., basic building blocks similar to inception
modules that are stacked to make up the network [128], but search spaces are some-
times also hierarchical or chain-structured. The final composition of these cells can
be predefined or searched with meta-architecture optimization to choose the number
of cells and the configuration of their connections. This already creates an additional
hierarchical structure in the optimization procedure by itself [82].

While design choices and their hyperparameters are optimized jointly in Au-
toML, hyperparameters of deep neural networks like regularization, learning rate
and schedules are often not considered in NAS. Joint NAS and HPO exists [123],
but further increases the computational complexity of NAS.

The optimization given the search space is very similar to AutoML and while
early NAS approaches were centered around reinforcement learning, [127] almost all
AutoML optimization techniques introduced so far have been successfully applied
to NAS, including random search [80], Bayesian optimization [68, 114], gradient-
based methods [83], multi-fidelity approaches [74], and evolutionary algorithms [63]
among others. Some adaption in the optimizers is required, though. For Bayesian
optimization, e.g., a suitable distance function or kernel is required to measure simi-
larity of architectures. For evolutionary algorithms, mutation and crossing operations
for architectures need to be defined.

4 This is somewhat emphasized by Cui et al. in [30], who consider CIFAR10 a small dataset in the
context of NAS.
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A big issue in NAS is its enormous computational cost. NAS can require thou-
sands of GPU hours to find state-of-the-art solutions, even for rather simple prob-
lems. With the trend to larger and larger models, e.g., transformers [110], NAS
has become prohibitively expensive [102], which make multi-fidelity methods an
important algorithmic component for utilized optimization procedures. In addition,
many approaches to reduce the computational cost further exist, e.g., by sharing
weights between proposed architectures [92] or by starting from small architectures
and learning how to scale them [105]. Another issue with current NAS methods and
research is that it is often hard to trust published results due to a lack of shared exper-
imental protocols and missing ablation studies [119]. New results oftentimes only
report little performance gain, that could very well be only due to certain “tricks” in
the evaluation protocol [119].

1.4.2 Hardware-aware NAS

In practice, neural networks are deployed on different hardware platforms, including
GPUs, CPUs, mobile phones and other edge devices and are therefore subject to
hardware constraints. Energy efficiency and model size are of special concern when
deploying deep learning models on edge devices. Hardware performance is also
crucial for many real world applications, for example low latency for autonomous
driving [10]. This has inspired the subfield of hardware-aware NAS, which involves
taking into account hardware metrics such as latency, memory footprint, etc. in
the NAS search process [10]. For this, the standard single-objective NAS problem
can, e.g., be altered to a constrained optimization problem or a multi-objective
optimization problem that includes appropriate hardware metrics.

Hardware metrics are either hardware-agnostic such as the number of model pa-
rameters or hardware-dependent such as latency. During the NAS search, hardware-
dependent metrics are usually drawn from look-up tables or estimated using a predic-
tion model [25]. Some hardware-aware NAS methods also jointly optimize hardware
design and architecture [41], for example by including the buffer size of FPGA chips
in their search [20]. One additional challenge for NAS is the fact that efficient ar-
chitectures for one specific hardware are often not necessarily efficient on different
hardware [14]. To solve this, approaches that guarantee optimal performance on a
variety of different platforms have been proposed [27].

1.5 Conclusion and Outlook

While AutoML can be useful in many applications and could help increasing the
efficiency of data scientists, its practical use arises not without its challenges. One
common approach is to apply AutoML tools as a quick and automated baseline to
see if, for a given dataset, any learning progress can be made [120]. However, in
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some benchmarks of open source AutoML systems, it was shown that for many
publicly available datasets the improvement over a simple random forest might be
very small [48] – especially on tasks, that are easy to solve. Furthermore, existing
AutoML solutions are not necessarily usable out-of-the-box for several applications.
For one, most AutoML tools optimize a single performance measure, but for many
real-world problems multiple competing performance measures exist. While we
discussed the current research in this area in Section 1.3.3, it is evident that a lot
of work still needs to be done before these methods can be applied productively on
a wider scale, as existing solutions lack in maturity compared to single-objective
AutoML tools.

A related area of future work is human-in-the-loop AutoML (as discussed in
Section 1.3.4); the utopian vision for (Automated) ML should not exclude human
experts, but rather integrate them into ML processes as efficiently as possible. Along
the same lines, when applying AutoML to real world problems, the flexibility of
AutoML solutions is restricted in the type of problems to which they can be applied.
Many AutoML tools can only solve fully supervised regression and classification
tasks and other data types and ML tasks have only recently been explored. Similarly,
AutoML for unsupervised or semi-supervised learning still holds a lot of potential
for future work.

For many data science projects, the main difficulty is not the modeling itself
but to properly map the underlying business question to a data science problem,
acquire the required (labeled) data as well as the general readiness and capability
for ML [12, 28]. Bringing automation into other stages of the ML workflow seems
daunting as, e.g., business understanding or deployment seem hard to automate, but
at the same time offer great potential for further research. Recent trends to combine
AutoML with Large Language Models have sparked a lot of ideas in this direction,
as these models could provide a good interface to help facilitate automation across
the ML workflow.

Another open challenge for AutoML is budget selection. It is often unclear to
users how much budget to allow for the AutoML process for finding a suitable
pipeline. Stopping the search prematurely could result in a suboptimal pipeline,
whereas prolonging the search excessively may waste resources or, in the worst-
case scenario, lead to overfitting [85]. Some frameworks like H2O AutoML include
rudimentary early stopping mechanisms which help alleviate this problem, but they
have shown to not be optimal [85]. Finally it should be noted that AutoML does
not aim to and for the foreseeable future will not be able to replace ML experts
and researchers: AutoML is not intended to discover new methods or model types.
While publications have played around this idea by showing that an AutoML system
based on a search space only including basic operations can indeed “discover”
deep learning architectures or methods like back-propagation [96], this is not really
feasible for discovery of new methods at the moment – and furthermore is extremely
expensive [96]. A follow-up publication showed that along the same lines, it is
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possible to discover new algorithmic components through this type of procedure like
finding an improved version of the optimization algorithm Adam5 [21].
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Chapter 2
Sequence-based Learning

Christoffer Loeffler1,2, Felix Ott2, Jonathan Ott2, Maximilian P. Oppelt2, Tobias
Feigl2

Abstract Learning from time series data is an essential component in the AI
landscape given the ubiquitous time-dependent data in real-world applications. To
motivate the necessity of learning from time series data, we first introduce different
applications, data sources, and properties. These can be as diverse as irregular and
(non-)continuous time series data as well as streaming and spatio-temporal data. To
introduce the mechanics of learning from time series data, we elaborate on the most
renowned convolutional, recurrent and transformer architectures for learning from
time series. Then, we discuss essential characteristics of learning with time series.
Therefore, we explain deep metric learning, which learns feature representations that
capture the similarity between time series data. We further describe time series simi-
larity learning to extract representations that allow comparison between sequences of
spatio-temporal data. In addition, we discuss the interpretability of learning methods
on time series data that target safety, non-discrimination, and fairness.

Key words: Time series data, classification, regression, forecasting, spatio-temporal
networks, deep metric learning, time series similarity, model interpretability

2.1 Introduction

As humans, we live in a world where (any kind of) events and interactions occur
in a specific causal order. For instance, when we talk to other people, words form
sentences, and sentences form stories. When we walk, run or drive, our position
in space changes depending on our current position and the change over time.
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During physical exercise, our heart and breathing rates increase depending on the
level of exertion. Even during mental stress or cognitive load, the conductivity of
our skin, the variability of our heart rate, or the movement patterns of our pupils
may change over time [44]. If all these sequential changes and past, current, and
future observations were recorded, their data points would not be independent and
identically distributed anymore, a fundamental statistical assumption that simplifies
the application of machine learning. Thus, suitable learning paradigms would require
specialized methods for handling such time series.

Hence, time series analysis describes patterns that occur over time. Research on
this topic has gained momentum in recent years as sensor data streams become
ubiquitously available. Many applications in health [44, 42], industry [39], educa-
tion [49, 48] or entertainment [24, 40] process high-dimensional time series and
raise new and interesting challenges for classical methods. Here, the tasks of clas-
sification, regression, forecasting or anomaly detection of sequential events (time
series) are particularly noteworthy, as they contribute important information with
real-world impact [59]. Historically, methods like autoregressive integrated moving
average (ARIMA) [9] or the vector autoregressive (VAR) model [9] analyze lower-
dimensional time series based on the principle of automatic regression. However,
complex multivariate time series (MTS) with correlated random variables that are
typical for signal processing or economics applications, pose an impossible challenge
for such classic statistical approaches. By contrast, modern methods based on deep
learning (DL) have demonstrated remarkable performance, especially with complex,
high-dimensional data. They model natural stochastic noise to reduce the informa-
tion complexity and can directly predict tasks. Alternatively, they can be combined
with, e.g., Bayesian methods, to form more robust hybrid models [23]. The family
of DL models for time series data include recurrent neural networks (RNNs) [21] or
temporal convolutional networks (TCNs) [3] and are considered revolutionary [29].
Such models can, e.g., automatically learn time dependencies or handle temporal
structures such as trends and seasonality directly from the data. Furthermore, they
can extract patterns over very long periods of time and largely eliminate the need for
manual feature engineering, data scaling and stationary data. Thereby, they provide
more abstract, high-level features for downstream tasks. This holds even if the MTS
is irregular or complex [49].

Throughout this chapter, we use the following notation from [46] to describe an
MTS X = {x1, . . . , x𝑖} ∈ R𝑖× 𝑗 , which is an ordered sequence of 𝑗 ∈ N channels.
Each channel x𝑖 = (𝑥𝑡 ,1, . . . , 𝑥𝑡 , 𝑗 ), where 𝑡 ∈ {1, . . . , 𝑖}, represents a series of
observations with 𝑖 ∈ N being the length of the time series. The training and test sets
for MTS are a subset of the array X = {X1, . . . ,X𝑛} ∈ R𝑛×𝑖× 𝑗 , where 𝑛 represents
the number of time series. We extend our annotation system for the classification
task. We pre-define a label set Θ that contains 𝐻 classes and that is associated with a
label 𝑙. The objective of this task is to determine the unknown class label 𝑙 ∈ Θ for a
given MTS. The training labels L = {l1, . . . , l𝑛} ∈ Θ𝑛×𝐻 correspond to the training
MTS set X. Supervised sequential problems are formulated using input-label pairs
{x𝑖 , y𝑖}.
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2 Sequence-based Learning 29

The rest of this chapter is structured as follows. Section 2.2 introduces time
series processing using examples and explains the typical processing pipeline. Sec-
tion 2.3 then introduces the principles of the popular convolutional and recurrent
architectures. Section 2.4 provides a concise review of the two important perspec-
tives of metric learning and model interpretability for time series analysis. Finally,
Section 2.5 concludes and gives an outlook.

(a) Driver state detection us-
ing sequential data from multi-
ple modalities: (1) electrophys-
iological signals, (2) facial ex-
pression from videos and (3)
eye tracker data. (from [44], li-
censed under CC-BY 4.0)

(b) Hand-held tool measuring
inertial motion, magnetic field
and sound for quality assur-
ances.

(c) Sensor augmented pencil
measures 7 degrees of freedom:
accelerometer, gyroscope, and
pressure.

Fig. 2.1: Applications for time series analysis are diverse. (a) The measurement setup
depicted here is used to analyse cognitive load in a road driving secenario. (b) Qual-
ity assurance can be supported by sensor-augmented smart tools. (c) Handwriting
recognition can be implemented via a sensor-augmented pen.

2.2 Time Series Processing

This section focuses on the signal-processing perspective of time series analysis,
which finds applications in a large variety of real-world use-cases [42, 39, 49, 48, 24,
40]. We consider the type of mining of time series data, that analyzes the shape of
data sequentially sampled over time [22]. In contrast to sample-wise prediction, time
series are captured over time and thus the samples are generally not identically and
independently distributed [11]. Models may exploit that values in sequences may be
correlated [11].
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Fig. 2.2: Time series processing pipeline. Data flow from the left to the right.

We show the different characteristics of time series processing via exemplary
tasks of domain-specific signal-processing in Figure 2.1. First, Figure 2.1a shows a
recording of biosignals, video and eye tracking data used for detecting the cognitive
load of drivers [44]. Here, biosignals may show only short-term signal deformations
and only a combination of sensors allows the detection of long-term variations [45].
In contrast, the application in Figure 2.1b classifies the activity of hand-held tools
from shorter patterns in the sensors’ signal amplitude. The final application example
in Figure 2.1c shows a combination of both characteristics. It predicts letters, words
and whole sentences from spatio-temporal sensor data recorded using a smart pencil.
Still, all applications have their ML pipeline in common. Figure 2.2 presents the
peculiarities, that distinguish the pipeline for time series from other forms of data.
The seasonality of time series data can be identified in the orange curve, outliers in
the blue curve, and autocorrelation between the orange and blue curves of the data
streams.

2.2.1 Time Series Data Streams

For time series processing, a complete description of the data format is fundamental.
The input data may be a continuous stream of several multi-dimensional sensors, for
example, a writer’s force of pressure and a pen’s accelerations, or a hand-held tool’s
vibrations. Time series data may be multi-variate, recorded at different sampling
rates and levels of noise, and have gaps or other issues. Common sensors measure
inertial motion, sound or radio frequencies.

Figure 2.3 explains the data type’s characteristics using a simplified sample of
an inertial measurement unit (IMU) of the activity recognition application from
Fig 2.1b. These properties differentiate them from other types of data. Similarly
to the augmented pen, the hand-held tool’s IMU collects signals from accelerome-
ters, gyroscopes, and a magnetic field sensor. The sensors sample data along three
orthogonal axes. We only show one axis of each.

A recorded sensor data stream may be sampled at different sampling rates, see
Figure 2.3 for a higher and lower rate. This has practical implications on the ob-
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gap gap

Fig. 2.3: Inertial measurements showing accelerometer and gyroscope data. Windows
are shown as dashed rectangles. A window represents an application-specific (pre-
)selected set of data samples over time, which are processed by a learning algorithm
at each inference step. Typically, sliding windows are applied with a specific window
length, which overlap at a specific offset and scroll over the data sequence. The top
figure presents two possible types of data loss: (1) complete loss and (2) partial loss
of sensor data. The middle figure presents two non-overlapping windows and the
bottom figure presents two overlapping windows.

servability of phenomena, comparable to the difference in low and a high-resolution
photography in computer vision tasks. However, it also entails similar costs and
complexity. A higher sampling rate allows handwriting recognition algorithms to
detect smaller movements of the writer and thus may lead to enhanced recognition,
but also requires more processing power.

A second dimension that influences the density of data per unit of time is the di-
mensionality of the sensor streams. It can feature more dimensions and is analogous
to the difference of monochrome and color photography. We simplify the visual-
ization of the recorded data and show only three of the nine recorded dimensions.
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However, for some applications it can be very valuable to add additional views to
enable predictions for its use-case, such as the force sensor to detect the contact
between a digital pen and the writing surface [49].

2.2.2 Pre-Processing

Next, the pre-processing step for time series data of multiple sensors can require a
synchronization of the data that may be streamed from separate sensors. In addition,
raw sensory data can require normalization before any operations such as windowing,
augmenting or even feature extraction can take place. Popular libraries for feature
extraction and other time series specific tasks, such as seglearn [12], are able to extract
generic features like the "mean" for downstream usage. However, Deep Learning
methods may not need such engineering efforts.

We show the effects of generating windows in Figure 2.3. ML models may ingest
a continuous stream of samples or subdivide the time series into windows of different
sizes and with different fractions of overlap between each other. In contrast to sliding
windows, which we show with approximately 50% overlap, tumbling windows have
no overlap with each other. It depends on the model what approach is available, e.g.,
TCNs process fix-sized windows (see Section 2.3.1) and RNNs can process a sample
at a time while memorizing the history internally (see Section 2.3.2). Furthermore,
it may be crucial that window-based sampling captures all relevant features and does
not cut off those that provide the relevant information to perform predictions.

A common problem of time series processing is missing data, e.g., the complete
loss of all sensor axes or only a partial loss of one sensor. A complete loss of data
may not only occur in case of system defects, but could happen if a sensor edge
device with little on-board memory is disconnected from processing in a cloud for a
prolonged amount of time or its perception could be obscured. Some partial loss may
be recovered from orthogonal sensors such as the gyroscope, and forecasting models
may use additional information such as trends or seasonality effects to recover from
imputed or missing data.

2.2.3 Predictive Modelling

In the main processing step, the models may perform predictions for different tasks
based on extracted features or the data itself. For example, a decision tree classifier
may classify the state of the pen for a windowed sub-sequence of input data based
on the mean value of the force sensor as "writing". Upon ingesting character-level
features, a forecasting model could predict the next character, e.g., after seeing the
sequence "experienc_", the model could predict the next character to be an "e".
A regression model could process the acceleration and rotation data of an inertial
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measurement unit in order to predict the pen’s motion over the paper and help
reconstruct its trajectory.

2.2.4 Post-Processing

A complete ML pipeline requires post-processing of the results for robustness.
Post-processing of time series data involves applying additional techniques or trans-
formations to the data after initial analysis or modeling to improve its quality or inter-
pretability. This contains smoothing, filtering, resampling, detrending, differencing,
seasonal adjustment, denoising, scaling, and feature engineering. Some models,
such as softmax-based classification, output their predictive uncertainty besides the
predictions themselves. These likelihoods, together with prediction errors or the
detection of outlier samples may be propagated to downstream processing logic or
reported for review.

2.3 Methods

Time series analysis includes methods for performing inferences from time series
data to predict statistical features and other abstract characteristics such as future
developments. The assumption is that the current values of one or more dependent
time series influence the current value of another time series [58]. As time series data
have a natural temporal order, stochastic regression models assume that observations
that are close in time are more closely related than the ones that are further apart.
In addition, stochastic regression models assume that observations of a certain
period depend on past ones and that future values can be predicted solely from
past observations [58]. This section presents TCNs in Section 2.3.1 and RNNs in
Section 2.3.2.

2.3.1 Temporal Convolutional Networks

Feed forward neural networks (FFNNs) are nonlinear mappings, where each input
is mapped to an output node by matrix multiplication. Although these networks are
theoretically capable of learning any function, they lack this in practical terms due
to their computational inefficiency, as they require matrix multiplication for every
input sample to each output sample. While these FFNNs can process time series data
when the time dimension is flattened and a sequence represents the complete time
series, this has significant disadvantages. FFNNs are not adaptable for sequences of
arbitrary length [21]. Since the architecture only works with complete sequences, the
entire relevant history must always be saved. Also, FFNNs are not computationally



34

Fig. 2.4: The structure of a temporal convolutional network (TCN) consists of layers
of dilated causal convolutions. Each output learns over a large input window of past
time steps.

efficient when the sequence is a rolling window or when prediction is required at
each time step, since the network then has to process the entire input sequence at each
time step [21]. Since FFNNs have no inherent concept of time, time-delayed input
sequences deliver completely different results [21]. Recall the example of cognitive
load detection from Figure 2.1a. There it is essential to take the subjects’ past features
to predict their present cognitive load. However, these biological readings are highly
individual and the sequences of psycho-physiological data are very long. Therefore,
FFNNs become infeasible.

As a simple but effective network architecture, TCNs [3] are based on convolu-
tional operations and learn using a hierarchical representation of the time steps over
several levels. Figure 2.4 shows this temporal structure, that uses dilation to create a
sparse receptive field for the output units, covering the whole fixed time sequence.
With every layer, the receptive field of the output neurons grows. This way, TCNs
can process very long sequences. Due to their simple structure, TCNs can be op-
timized in parallel. They are much more resource-efficient than RNNs and enable
efficient training for very large amounts of data if the time series are short and have a
fixed, predefined length. However, during inference, the feed-forward structure of the
TCNs requires expensive calculations of the entire history of the time series instead
of only one sample at a time. As the sequence length increases, the breadth and depth
of the architecture increases, and the sequence length cannot be changed. This makes
it difficult to perform the calculations on resource-constrained embedded hardware.
In contrast, RNNs [21, 27] compress the history into a fixed-size representation that
requires minimal computation at each time step.

2.3.2 Recurrent Neural Networks

RNNs were proposed by Elman et al. [21] in 1990 and differ from FFNNs as they
employ a special type of neural layer called a recurrent layer that allows the network
to maintain state between layers of the network. This recurrent layer is a hidden
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state vector and memory to store information about the past and current context.
This hidden state is computed by the network at each time step and then fed back as
input for the next time step. The network uses the hidden state to convert the relevant
features from the input history into a more compact representation. This allows
efficient computation of the output at each time step 𝑡 and a representation limited
only by the size of the hidden state vector. The assumption is that the model has a
state and transition function that computes subsequent states from its predecessor
and any model input. Therefore, RNNs are suitable for the processing of time series
data [10].

h

x

y

RNN

Fig. 2.5: Simplified representation of the basic structure of a RNN. RNNs are an
adapted form of FFNNs that adopt a hidden state vector ℎ, a kind of memory, to store
information 𝑥 about the history and the current context. ℎ is computed at each time
step and then passed as input for the next time step. The mesh uses ℎ to compress
relevant features from the input history. This allows efficient computation of the
output 𝑦, limited only by the size of ℎ.

In an RNN, all neurons have both incoming connections, which emanate from all
neurons of the previous layer, and outgoing connections, which lead to all neurons of
the subsequent layer. In contrast to FFNNs, RNNs also have recurring connections
in the recurrent layer, which pass on information between the neurons of the same
layer, including the same neuron of a layer. A recurrent layer with 𝑟 neurons has a
total of 𝑟2 recurrent connections [10].

With RNNs the lifetime of the network entity can be divided into discrete time
steps. At each time step, the model is supplied with the next input sample. The
feed-forward connections in an RNN represent the flow of information from one
neuron to the next, with the transmitted data representing the computed neuronal
activation of the current time step. Figure 2.6 represents the information flow of
recurrent connections, where the data shows the stored neural activation from the
previous time step, i.e., influence from the left and from below. Thus, the activations
of the neurons in an RNN represent the accumulating state of the network entity. The
initial activations of the neurons in the recurrent layer are parameters of the model.
When training RNNs, the optimal weights 𝑤 are sought to approximate the network
output 𝑦 to the training target 𝑦̂, i.e., to minimize the error 𝐸 . With a fixed lifetime,
such as 𝑡 time steps, an RNN instance can be represented as a unrolled irregularly
structured FFNN. [10]
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Fig. 2.6: Simplified representation of the flow of information through an unrolled
RNN, resembles a FFNN. Forward pass: processing a series of inputs 𝑥1 to 𝑥4. A
simplified version of the cells is shown for a better overview.

Vanishing and exploding gradients. To determine the gradient for a longer-term
dependency, backpropagation through time (BPTT) is carried out several times. This
optimization method "unfolds" the recurrent network’s temporal steps into copies of
itself and then propagates the gradients back along the network "through time". This
may lead to exploding or vanishing gradients for large sequences [5]. Both of these
problems prevent learning weight matrices for long-term dependencies as the weight
updates are based on this gradient information. Various methods are proposed to
overcome these problems [4, 27, 70].

The long-short-term memory (LSTM) proposed by Hochreiter and Schmidhu-
ber [27] in 1997 uses a different cell design, developed to account for long-term
dependencies and the problems of vanishing and exploding gradients. The LSTM
cell uses structures called gates to manipulate and control the flow of the hidden
state and is designed in such a way that useful information is effectively preserved
in the memory cell over many time steps [10]. In contrast to the RNN, the LSTM
cell structure enables a separation between this cell and the initial state. This sepa-
ration and the fact that the cell state is not directly affected by a nonlinear activation
function reduces the vanishing gradients.

2.3.3 Transformer

A drawback of training recurrent networks with BPTT is that its graph cannot be
parallelized during training and inference. Due to this, RNNs suffer from a compu-
tational complexity that cannot be optimized by parallelizing gradient operations on
modern GPUs. Recent techniques such as Transformers use the so-called attention
mechanism and combine the strenghts of FFNNs, i.e., extraction of characteristic
features, and of RNNs, i.e., memory of causal relationships over long periods of
time. Transformers are also used in AI frameworks such as ChatGPT [50].

The transformer neural network introduced by Vaswani et al. [67] is an encoder-
decoder architecture. It computes representations of time series solely by making
use of attention layers. Hence, it significantly reduces the training time, compared
to RNNs, by reducing the need for sequential computation. The ability to resolve
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relationships between two distant points depends, among others, on the path between
the position in the output representation and the position in the input sequence [26].

The attention mechanism used in the transformer has comparatively short paths,
resulting in an increased performance for particularly long sequences. However, this
comes at the cost of computational complexity, which grows by𝑂 (𝑛2) as the sequence
length increases. Recent research focuses on optimizing the attention mechanism to-
wards efficiency by either reducing the number of computations [68] or by optimizing
memory access [16]. Furthermore, the architecture requires a large amount of train-
ing data due to its tendency to overfit [69]. As the transformer employs neither
convolutional nor recurrent layers, it is not capable to detect the order of elements in
a sequence. Thus, a positional encoding is added to the time series embedding (see
Figure 2.7), which can be fixed or learned [69]. While the transformer architecture
was originally introduced in the context of sequence transduction, it has been applied
to various time series tasks such as forecasting [74] or classification [73].

Fig. 2.7: Simplified overview of Transformer architecture. Depicted are a single
encoder and a single decoder block. Several operations are neglected to show the
overall concept of the architecture.

The type of attention blocks used in the transformer architecture is called multi-
head attention. It computes multiple representations of the input data, projected via
learned transformations, in parallel. This allows to attend to multiple positions as
well as subspaces in the data. The transformer employs two variants of multi-head
attention: (1) self-attention and (2) encoder-decoder-attention. (1) self attention is
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the first layer in the encoder and decoder blocks. It computes the representation
of a sequence by modeling dependencies in the sequence itself. (2) the decoder
uses encoder-decoder-attention to incorporate the context information provided by
the encoder. Figure 2.7 depicts self-attention as a blue box and encoder-decoder-
attention as an orange box. The final layers in the encoder and decoder blocks are
position-wise feed-forward networks that apply a fully connected layer that shares
its weights for all positions but is only applied to the embedding per position in the
sequence. All layers are bypassed by a residual connection [67].

2.4 Perspectives

The practical use of DL models like the TCNs, RNNs or LSTMs for time series
analysis may quickly run into difficulties, which we explore in this perspectives
section. First, many techniques require a similarity (or distance) metric defined on
the input data space, e.g., on trajectory data. Hence, Section 2.4.1 describes suitable
functions for distance computation. Alternatively, deep metric learning (DML) learns
these functions directly from data (see Section 2.4.1.1). The common issue of domain
shift that appears between training and test data sources affects machine learning
in general. Hence, we summarize the specific domain adaption (DA) techniques
for time series applications in Section 2.4.2. Lastly, safety, non-discrimination and
fairness, and explanations are important but still open questions [18]. Accordingly,
Section 2.4.3 discusses interpretability methods and their limitations for black-box
time series models.

2.4.1 Time Series Similarity
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Fig. 2.9: Ground truth (red) and
reconstructed (blue) trajectories
[47].

In many applications, the distance between two
time series is a crucial measure to compare the
discrepancy. See for example Figure 2.9 where
the goal is to reconstruct a trajectory of the pen
tip of the sensor-enhanced pen of Figure 2.2 by
minimizing the distance between the ground truth
and predicted trajectories. The distance (inverse
of similarity) between two time series is mea-
sured as the cost of transforming one time series
into another using a distance measure or function. The existing similarity measures
can be classified into two classes (see Figure 2.8): (1) Spatial similarity that focuses
on finding time series with similar geometric shapes that ignore the temporal dimen-
sion, and (2) spatio-temporal similarity that takes into account both the spatial and
the temporal dimensions of time series data [41, 33].
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Fig. 2.8: Overview of spatial and spatio-temporal similarity measures [41].

It is well-established to use a sum-of-square-based objective function to measure
the average difference between all samples of two time series. A challenge that arises
is the possibility of a varying number of data points between two time series. Partial
curve mapping (PCM) [72] utilizes a combination of sub time series length and
area to measure the similarity between two time series. The performance of PCM
is adversely affected by the presence of noise in the data, as the noise leads to an
artificial increase in the arc length. The Area method [28] constructs quadrilaterals
between two time series and calculates the area for each quadrilateral. It is necessary
for the two time series to have the same number of points.

The discrete Fréchet (DF) [19] distance preserves the time series order of data
along the series. The DF distance reflects the shortest possible path between two time
series. If we consider a series A with 𝑎 number of points and a series B with 𝑏 number
of points, the DF distance has a fixed quadratic run time of 𝑂 (𝑎𝑏). However, the
Fréchet distance is sensitive to outliers. In contrast, dynamic time warping (DTW) [6]
measures the similarity between to time series with varying time steps. It aligns the
two sequences by warping their respective time axes to find the optimal alignment
that minimizes the distance between corresponding points.

The Hausdorff distance (HD) [65] is a popular dissimilarity metric used to com-
pare sets of points. HD is a max-min distance, which offers an advantage in that it
accounts for the spatial position of each individual point. HD has nearly-linear com-
plexity. For a comparison of trajectory popular distances for handwriting recognition,
see [47], and for certain sports trajectory data, see [56].

Similarity measures

Spatio-temporal similaritySpatial similarity

Movement speed-
based similarity

Time series-based
similarity

DTW-based
approaches

Time warped
distance

Edit distance

Dynamic time 
warping

Edit distance on 
real sequences

Longest common
subsequence

Spatial data
similarity

Geometric
shape-based

similarity

Movement 
direction-based

similarity

Euclidean
distance

Spatial
assembling

distance

Hausdorff
and Fréchet

distance

Angular 
metric for

shape
similarity

Trajectory
match

Edit distance
on movement
pattern strings



40

2.4.1.1 Deep Metric Learning

To learn an optimal representation between data samples or models, DML techniques
are required to compare distances of feature embeddings. DML is a sub-field of ML
that aims to learn a function that maps inputs into a feature space, where distances
between data points correspond to semantic similarities, e.g., the semantic similarity
between two pieces of text or two scenes of football [35] measures how close their
meanings are. DML methods learn a feature by minimizing a loss function that takes
into account the distances between pairs of data points and their corresponding labels.
The main challenge of DML for time series is the variable length of samples, which
can make it challenging to apply DML methods that require fixed-length inputs.
In the following, we summarize the most common DML functions. The Euclidean
loss has been shown to be effective in many tasks. Another commonly used metric
is cross-correlation, which measures the similarity between two signals by sliding
one of the signals over the other and computing the dot product at each position.
Recently well established is maximum mean discrepancy (MMD) [8] that measures
the distance between two probability distributions. MMD is a non-parametric metric
that is able to capture complex patterns in data distributions. MMD has been used in
tasks such as Domain Adaption (DA) and image generation. Correlation alignment
(CORAL) [63] and higher-order moment matching (HoMM) [14] align the higher-
order moments of the features of two data points. The idea is to match the distributions
of the features of two data points. The Sinkhorn [15] distance is based on optimal
transport theory. Sinkhorn has the advantage of being able to handle discrete and
continuous data, and has been applied to time series classification in [20, 46].

2.4.2 Transfer Learning & Domain Adaptation
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Fig. 2.10: Alignment of the source and target domain distributions, 3𝑟𝑑 (before
alignment) and 4𝑡ℎ (after alignment) plot, to align their representations, 1𝑠𝑡 (before)
and 2𝑛𝑑 plot (after) (from [46], licensed under CC-BY 4.0).

For many applications, a domain shift appears between training and test data
sources, for instance, between sensor data of right-handed and left-handed writers
of the application presented in Figure 2.2 [46]. Domain adaption is a sub-category
of transfer learning that adapts a predictive model trained on a source domain to a
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target domain where the distribution of the data may be different. The characteristics
of the time series data may have changed between the source and target domains
(training and application data distributions). Additionally, the distribution of the
time series data may shift over time due to changes in the underlying system or
changes in the measurement process. DA approaches use techniques that focus on
aligning the distributions of the source and target domains and aim to learn a shared
representation of the data that is invariant to the differences between the domains
(see Figure 2.10). The common issue of shifting distributions between training data
and real-world application is especially challenging for time series data, because it
often has complex temporal dependencies that must be captured by the model.

The following methods to mitigate the domain shift between data sources of-
ten make use of DML metrics presented in Section 2.4.1.1. For example, the ap-
proach known as minimum discrepancy estimation for deep DA (MMDA) [51]
employs the minimization of conditional entropy as a means of integrating MMD
and CORAL alignment functions. Deep domain confusion (DDC) [66] is based on
the minimization of the MMD distance between domains. The domain-adversarial
NN (DANN) [25] utilizes a gradient reversal layer to encourage the emergence of
features that are discriminative for the source domain but indiscriminative w.r.t. the
shift between the source and target domains. Further methods are the ones proposed
by [34, 37, 57, 71].

2.4.3 Model Interpretability

Deep Learning can outperform human experts in certain domains. Still, there are
additional criteria besides raw performance [18]: safety, non-discrimination and
fairness, and legal requirements such as the right to explain.1 These criteria are hard
to quantify and thus also difficult to optimize for. One way to explain the reasoning of
a model and verify its predictions is to make it interpretable [18]. This is especially
difficult for time series analysis due to its often unintuitive data compared to, e.g.,
image data.

The literature differentiates methods into three broad categories [13, 43]. "Pre-
model" interpretability inspects the data, "in-model" refers to "intrinsically" inter-
pretable models [52], and "post-model" methods interpret models after training.
These post-model (or post hoc) methods [13, 43] are either "model-specific" or
"model-agnostic", and may be global, local [18, 13, 43] or in between [43]. A global
interpretation may comprehend the entire model at once, whereas a local method
explains a single prediction from a small region of interest.

1 General Data Protection Regulation, Regulation (EU) 2016/679 of the European Parliament and
of the Council of April 27𝑡ℎ 2016, recital 71 https://eur-lex.europa.eu/legal-content/
EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e40-1-1, see also Chapter 5 for a deeper
discussion on the EU AI act.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e40-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e40-1-1
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2.4.3.1 Interpretability for Time Series

Local interpretability methods are popular because widely applicable to many DL
architectures such as TCNs or RNNs, even without intrusive changes, and directly
visualize the relevance of input features for a model’s prediction. We distinguish
gradient-based methods, e.g., Gradient [60], Backpropagation [62], Integrated Gra-
dients [64], SmoothGrad [61] or GradCAM [55], and perturbation-based methods
(model agnostic) methods like LIME [52], that fits an interpretable surrogate to
explain black box models, and Kernel SHAP [38], that uses concepts from Shapley
values.

Extending these approaches to time series data builds on insights of Schlegel et
al. [54], who propose that saliency methods may explain patterns that underlie the
time series data itself, such as temporal correlations. Subsequent work specifies these
ideas further. Kusters et al. [31] propose patterns for a conceptual explanation for
model-agnostic interpretations, that manipulate input data using transformations of
the data, similarly to TCAV [30] that use hypothesis tests of concepts. The time series
specific patterns include offset or trend removal, a moving average, low or high pass
filters, and additive noise, but experts may additionally design more advanced filters.
Similarly, Abanda et al. [1] propose time-dependent perturbations using warp, scale,
noise and slice operations for post hoc perturbation-based explanations to visualize
the relevance of sub-sequences of the input data. For example, warping the duration
of an activity in a dataset can have semantic meaning, e.g., it differentiates the classes
of pulling a gun from its holster from pointing a finger in the GunPoint dataset [17].
Abanda et al. [1] show that the construction of semantic perturbations to create
interpretations of models shows to be valid for simple time series datasets from the
UCR repository [17]. Perturbing important regions changes the prediction of the
models, whereas perturbing unimportant regions has a smaller effect.

2.4.3.2 Trusting Interpretations

Recent studies question the effectiveness of interpretations of time series models
w.r.t. their reliability. Still, no evaluation of interpretations answers all the possible
doubts [36, 64, 32, 7]. On one hand, qualitative metrics are more user-targeted, e.g.,
towards the general public. On the other hand, quantitative metrics provide deeper
insights for experts [53]. Quantitative evaluation metrics forgo a human who performs
a qualitative evaluation of an explanation and uses a proxy metric for evaluation [18].
The faithfulness metric is generally seen as a foundational evaluation concept, and
it was adapted for time series data [2, 54], e.g., it may perturb temporally connected
segments. Faithfulness changes inputs with high relevance w.r.t. saliency, and uses
its influence on the model prediction, i.e., its accuracy, as a proxy for an explanation’s
correctness. A high score in faithfulness means that the saliency is representative of
input features that correlate with the model’s predictive accuracy. Overall, the choice
of visual interpretation methods for time series and the trust in their explanations
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depends on many factors, e.g., the choice of models and the dataset, and there is no
"silver bullet" interpretation method [32].

2.5 Conclusion and Outlook

Time series analysis reaches all aspects of our lives, such as our health, the way we
work or learn, or how we spend time with our families. Our contribution focuses on
a small set of applications that process time-dependent data, and describes essential
properties of commonalities in the data and its differences compared to a generic
machine learning processing pipeline. Additionally, we also described the three DL
models Temporal Convolutional Network, Recurrent Neural Network, and Trans-
formers that are foundational for many other use-cases as well, and have contrasting
benefits and drawbacks. In the remainder, we addressed common difficulties in ap-
plied research. The topic of similarity functions informs many learning approaches,
and Deep Metric Learning specializes this field further. Finally, we discussed expla-
nation and interpretation methods for predictions of black-box time series models
and whether these may be trusted, raising important questions for applied machine
learning.

In this chapter, we have presented an overview of learning from time series data,
covering a variety of data sources and properties such as streaming and spatio-
temporal data. ML models are becoming increasingly adept at capturing complex
temporal patterns, accommodating the intricacies of time series data such as sea-
sonality, trends, and irregularities. Here prominent examples are foundation models
such as ChatGPT for natural language processing. With the increasing importance
of time-dependent data, the discussed methods offer a valuable foundation for fur-
ther exploration and implementation in various domains. With the advancements of
sensor data, IoT devices, and high-frequency trading, the demand for improved time
series forecasting, anomaly detection, and pattern recognition solutions is on the
rise. Moreover, the integration of DL architectures, i.e., RNNs, CNNs, and Trans-
formers, enables the extraction of hierarchical features from sequential data, further
enhancing the accuracy and scalability of time series analysis.
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Chapter 3
Learning from Experience

Christopher Mutschler1, Georgios Kontes1, Sebastian Rietsch1

Abstract Reinforcement Learning (RL) is one of the branches of Machine Learning
(ML) that aims to learn from the interaction with an environment. In contrast to ap-
proaches such as supervised or unsupervised learning, where data samples usually
are assigned to a ground truth label (supervised learning) or where they follow some
stationary distribution (unsupervised learning), in RL, the agent is learning in direct
interaction with the environment. This also defines what data is being collected as
a result of which actions are being executed. The agent is hence learning from ex-
perience. While more traditionally, RL was focused purely on continuously arriving
data, lately also approaches that resort to a given data pool of past environment in-
teractions have gained more and more interest. This chapter covers the basics of RL
and discusses the latest research in interactive environments, learning with available
data or knowledge, and challenges that arise from the actual deployment of agents
to the real world.

Key words: Reinforcement Learning, Markov Decision Processes, Exploration-
Exploitation, Model-based RL, Offline RL, Safe RL.

3.1 Introduction

Sequential decision-making is a fundamental concept in artificial intelligence
(AI) [4], decision theory [41], and operations research (see Chapter 7). It involves
making a sequence of decisions over time, where the outcome of each decision
depends on previous decisions and affects future decisions. This type of decision-
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making is pervasive in many real-world applications, such as game playing [59],
robotics [98], autonomous driving [82, 80], finance [94], and healthcare [108].

Traditionally, the theory behind sequential decision making is studied across many
disciplines, including engineering (optimizing control loops and minimizing costs),
mathematics (simulating and optimizing stochastic processes), economics (e.g., in
game theory is studied how people make decisions considering social, political and
human sciences), psychology (theory of conditioning and behavior) and neuroscience
(dopamine system and the study of how the brain makes decision). Computer science
usually addresses sequential decision making within the field of machine learning.
At least traditionally, supervised and unsupervised ML work on statically available
datasets (e.g., classifying objects, events, or classes, and finding representations for
hidden structures within the data). In contrast, reinforcement learning works with a
trial-and-error scheme: (i) data is acquired using the interaction of a learning agent
with its environment (i.e., the learning process itself enables the agent to draw data
samples from the environment to continue training), (ii) there are no labels (i.e.,
feedback to the agent is only provided by means of reward), and (iii) the reward
might arrive with a large delay and it is not obvious what the causal relationship
between a sequence of actions and a received reward actually is (credit assignment
problem).

As we cannot provide a comprehensive view on the area of RL and sequential
decision making, we try to limit ourselves to topics that are of utmost importance
for the actual deployment and training of such systems in real world applications.
Figure 3.1 proposes a motivation for this chapter (we will not cover topics such as
model-free RL and digital twins as deeply). In order to make RL usable in practice,
we have to consider that we cannot fully leverage the trial-and-error scheme that RL
resorts to, as breakage and damages to material is often not a viable option. Hence,
we will focus on how to leverage offline data (e.g., available through hard-coded
regulators that can be observed), model-based RL (which makes use of available
physics-models that can and should be used to accelerate learning or that learn a
physical approximation of the real world dynamics), and safe RL (to account for
constraints that are given by the actual application). This chapter will not focus on
the area of interpretability and explainabliltiy (although this is a fourth important
factor), as there is a large overlap with the content presented in Chapter 5.

3.2 Concepts of Reinforcement Learning

3.2.1 Markov Decision Processes (MDPs)

The general sequential decision-making framework can be modeled as a Markov de-
cision process (MDP). An MDP is formally defined as a six-tuple (S,A, 𝑃, 𝑅, 𝛾, 𝑠0),
where S defines a set of states the agent may visit, A defines a (fixed) set of actions
the agent may take during an interaction, 𝑃 is a transition probability matrix that
defines how likely it is for the agent to move between two states given a particular



3 Learning from Experience 51

Real World RL

Offline RL

SafeRL Model-based RL

digital twin

to make it work in reality
(as the real world poses constraints)

(to learn with models of reality)

(to train it with data from reality) Model-free RL

Fig. 3.1: The perspective that we will focus on in this chapter: (1) leverarging offline
data, (2) using available information in form of models, and (3) accounting for
unpredictable and uninterpretable behaviour through SafeRL.

action has been executed, 𝑅 is a reward function, 𝛾 is a discount factor that allows
to under-weigh future rewards over immediate rewards, and 𝑠0 is a distribution over
the states that define the starting state of the agent.

Time evolves in discrete time steps. At each time step 𝑡, the agent observes the
current state 𝑠𝑡 (or receives an observation 𝑜𝑡 from the environment), receives a
reward 𝑟𝑡 and then selects an action 𝑎𝑡 according to a policy 𝜋 : S ↦→ A, which
is a function that maps states to actions. The action modifies the environment and
changes its state (given some probability, induced by a random variable P defined
over 𝑃). The goal of reinforcement learning is to learn an optimal policy 𝜋∗ that
maximizes the expected cumulative reward over a finite or infinite time horizon:

𝜋∗ = argmax
𝜋

∞∑︁
𝑡=0

E
𝑎𝑡∼𝜋
𝑠𝑡+1∼P

[
𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠

]
(3.1)

3.2.2 Dynamic Programming

A common way to solve MDPs is dynamic programming (DP). DP computes the
optimal state-value function 𝑉 𝜋 (𝑠) (defining the value of being in state 𝑠, i.e., the
(discounted) reward the agent can expect upon being in state 𝑠 and following its
policy), the optimal state-action-value function 𝑄 𝜋 (𝑠, 𝑎) 1 (defining the value of
being in state 𝑠 and taking action 𝑎, i.e., the (discounted) reward the agent can expect
upon being in state 𝑠, taking action 𝑎, and afterwards following its policy), or an
(explicit) policy 𝜋. The value function represents the expected cumulative reward
starting from a given state and following a given policy. The optimal policy is the

1 While computing the state-action-value function𝑄 requires to estimate |S | × |A | values (instead
of only | (𝑆) | for the state-value-function 𝑉 𝜋 (𝑠) , it is much more convenient to work with 𝑄 in
practice as it directly estimates the value of each action in a state. At the same time, for 𝑉 , we also
need to account for where an action 𝑎 brings us in the environment.
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one that maximizes the value function for each state. All such approaches recursively
evaluate the Bellman equation. The Bellman equation sets up a system of equations
that relates the values of all states to each other; for instance, the Bellman optimality
equation, i.e., the Bellman equation for the optimal 𝑄-function, is given by:

𝑄 𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ·
∑︁
𝑠′∈S

P(𝑠′ |𝑠, 𝑎) · max
𝑎′∈A

𝑄 𝜋 (𝑠′, 𝑎′) (3.2)

However, computing the value function exactly in practice is often infeasible using
dynamic programming. First, large and complex MDPs (which we usually are con-
fronted with in practice) require estimating a large amount of state(-action) values
recursively (several times). Second, DP is model-based and requires a model of
the environment dynamics, the state transition probabilities P, which is usually not
available in real-world applications.

3.2.3 Model-free Reinforcement Learning

A different approach to solving MDPs is through a (model-free) trial-and-error
interaction with the environment. The basic idea is to directly use the experience
samples that the agent receives from the environment and to apply an iterative
approximative update of the 𝑄-function (for instance, using 𝑄-learning):

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 ·
[
𝑅 + 𝛾 · max

𝑎
𝑄(𝑠′, 𝑎) −𝑄(𝑠, 𝑎)

]
, (3.3)

where 𝑄(𝑠, 𝑎) is updated towards a target value using a small learning rate 𝛼. The
state-action-value 𝑄(𝑠, 𝑎) is again recursively described by the sum of the reward
𝑅 that was recently observed and the maximal 𝑄-value that can be selected from
the successive state the agent ends up in. Updating this function as the agent moves
through the environment lets us (in the limit) approximate the optimal 𝑄-function.

3.2.4 General Remarks

Sampling complexity is the key performance indicator (KPI) to optimize. Com-
mon metrics to evaluate the performance of supervised or unsupervised ML algo-
rithms include, for instance, the number of epochs required to learn a model until
convergence or the predictive accuracy of a trained model on the test data set. In
RL, there is no explicit concept of a ground truth label. However, RL still follows an
active learning strategy: the agent is not only tasked to build a model that represents
the value function or the policy directly. In essence, the agent is also tasked to select
the samples to learn from, i.e., through executing the actions that directly correlate
to the samples the agent will observe and use for learning.
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The IID assumption. How the agent collects data and learns from it also influences
model training. A central assumption for training models with ML is violated,
as data is not independent and identically distributed. First, data samples are not
independent. The samples we receive and use to update our model using, e.g., Eq. 3.3
are highly correlated as they constitute and resemble the trajectories that the agent
observes (sequentially). Second, training and test distribution are not identical.2
The distribution that underlies the data-generating process is constantly changing.
Considering our central idea of the expected return from Eq. 3.1, the data we use
within the expectation is based on actions we sample from 𝜋 – but 𝜋 is anything else
than a stationary distribution as it is the central element we keep on training.
The Deadly Triad. Training an RL agent is always prone to instability and diver-
gence, which arise from a combination of elements that make training different from
other ML algorithms, see Sutton et al. [92]:

• Function approximation: usually the number of elements we approximate using
𝑉 or 𝑄 is too large to fit into a computer’s main memory, so we approximate
those functions using neural networks. Those approximators have an error in
their approximation which multiplies within the estimation problem of 𝑉 and 𝑄
itself.

• Bootstrapping: we update targets (e.g., in Eq. 3.3) that include existing estimates
rather than relying exclusively on actual rewards and complete returns. In the
limits, we hope for convergence of all the values.

• Off-policy training: we train on the distribution of transitions that are different
from that produced by the target policy. Sweeping through the state space and
updating all states uniformly, as in dynamic programming, does not respect the
target policy and is an example of off-policy training.

3.3 Learning purely through Interaction

3.3.1 Exploration-Exploitation

The exploration-exploitation-tradeoff [92] is one of the biggest challenges in RL.
In its essence, it is a matter of deciding whether to exploit the knowledge that the
agent has already obtained, i.e., to select actions from which we can expect high
rewards/returns, or to explore the environment by selecting actions that have not
or only rarely been selected to obtain potentially much higher rewards. Modern RL
algorithms that optimize for the best returns can efficiently achieve good exploitation,
while exploration remains an open research topic.

Classic exploration work builds on top of Multi-armed Bandits (MABs). The
idea comes from a casino use-case where you face 𝐾 different slot machines, and
each of them is configured with an unknown probability 𝜉𝑘 of how likely you

2 Note, that while there are no explicit training and test datasets as in the usual ML setting, in RL,
we model P a bit differently between training and test environments.
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can get a reward at one play (i.e., one-time step 𝑡). The question is: What is the best
strategy to achieve the highest long-term rewards? This simple but effective problem
formulation allows for a theoretical analysis of the exploration-exploitation-tradeoff.
More formally, with 𝑄(𝑎𝑡 ) = E(𝑟 |𝑎) = 𝜉 being the expected reward of 𝑎𝑡 (i.e., the
interaction with slot machine 𝑘) and 𝑟𝑡 = R(𝑎𝑡 ), returning 1 with probability𝑄𝑎 and
0 otherwise, we want to maximize the cumulative reward

∑𝑇
𝑡=0 𝑟𝑡 .3 With the optimal

reward probability given as 𝜉∗:

𝜉∗ = 𝑄(𝑎∗) = max
𝑎∈A

𝑄(𝑎) = max
1≤𝑖≤𝐾

𝜉𝑖 = max
1≤𝑖≤𝐾

E [𝑟𝑡 |𝑎𝑡 = 𝑎] , (3.4)

we can formulate the regret:

L𝑇 = E


𝑇∑︁
𝑡=1

( 𝜉∗︸︷︷︸
1

−𝑄(𝑎𝑡 )︸︷︷︸
2

)
 =

∑︁
𝑎∈A

𝑁𝑇 (𝑎)︸ ︷︷ ︸
3

Δ𝑎︸︷︷︸
4

, (3.5)

where (1) is what the agent should have selected (i.e, the maximum rewarding action),
(2) is what the agent actually selected at time 𝑡, (3) is the action selection counter, and
(4) is the per-action regret. Good exploration algorithms minimize the total regret
and maximize the cumulative rewards.

3.3.1.1 Exploration Strategies

As practical real world problems involve using deep RL (and its means to approximate
large or continuous state and action spaces), we want to focus on exploration in deep
RL. Hence, we only briefly cover classic work. Well-known exploration strategies
are:

𝜖-greedy (and variants). This is a simple but often effective method: the agent
exploits the knowledge, i.e., 𝑎𝑡 = arg max𝑎∈A 𝑄𝑡 (𝑎) with probability 1-𝜖 and
occasionally selects a random action (with probability 𝜖). 𝜖-greedy with a constant
𝜖 has a linear expected total regret. In practice, 𝜖 is often set to a high value at
the beginning and then is slowly annealed, resulting in a greedy agent (but the
expected total remains linear).

(Bayesian) Upper Confidence Bounds. The idea is to estimate the upper con-
fidence bound 𝑈𝑡 (𝑎) such that with a high probability, we satisfy 𝑄(𝑎) ≤
𝑄̂𝑡 (𝑎) + 𝑈𝑡 (𝑎) and then select an action that maximizes the upper confidence
bound: 𝑎𝑈𝐶𝐵𝑡 = arg max𝑎∈A [𝑄𝑡 (𝑎) +𝑈𝑡 (𝑎)]. 𝑄̂𝑡 (𝑎) is where the average re-
wards associated with action 𝑎 up to time 𝑡 and 𝑈𝑡 (𝑎) is a function reversely
proportional to how many times action 𝑎 has been taken. Hence, small 𝑈𝑡 (𝑎)
follow from big 𝑁𝑡 (𝑎) and certain/accurate value estimates and vice versa. While
originally, UCB1 [92] only counts the selections and rewards, Bayesian UCB [49]

3 Note that this formulation (in contrast to any other work in RL) explicitly considers the rewards
obtained over the course of training. It quantifies the training performance/progress.
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models 𝑈𝑡 (𝑎) with a Beta-distribution [48] and hence makes use of confidence
intervals. Both UCB1 and Bayesian UCB show logarithmic expected total regret.

Probability Matching: Thompson Sampling (TS). TS [78] uses a Beta distribu-
tion to keep track of the current belief of probabilities and then directly samples
from this distribution. Intuitively, highly rewarding actions become more likely to
be sampled (while low rewarding actions still occasionally keep being selected),
and the observed data is used to update the prior belief. Thompson sampling also
shows logarithmic expected total regret while often being more effective than
UCB and variants (while also being easier to be implemented).

3.3.1.2 Exploration in Deep RL

Exploration in Deep RL is more difficult than in small MDPs not only because the
state space becomes larger. While exploration research on small MDPs as before
can be theoretically well-grounded (we can, in principle, know the best strategy,
define the total regret and benchmark the algorithm, and define upper and lower
bounds on its mistakes), this is not possible when working with deep neural networks
approximating the state and policy in deep RL. In addition to that, especially for more
recent deep RL research, there are two descriptive problems on which exploration
methods are being evaluated: (1) the hard-exploration problem and (2) the Noisy-
TV-problem.

The hard exploration problem is presented in environments with very sparse or
even deceptive rewards. In those environments, a random exploration is likely prone
to failure as it will rarely find successful states or obtain meaningful feedback from the
environment. One such example is Montezuma’s Revenge, where an agent traverses
several rooms and looks for keys and treasures. The noisy-TV-problem [19] is a
hypothetical scenario where a novelty-seeking agent solves a 3D-maze environment
(in first-person perspective) and encounters a TV that shows uncontrollable and
unpredictable white noise – novelty-seeking agents usually then become a couch
potato and keep looking at the TV forever.

The key idea is that we count the number of times we visited a state or a state-
action-pair (instead of counting the number of arms in the bandit). In other words,
we use 𝑁 (𝑠) (or 𝑁 (𝑠, 𝑎)) and add an exploration bonus to the reward that is provided
by the environment:

𝑟+ (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛽 · B(𝑁 (𝑠)), (3.6)

where 𝛽 is a hyperparameter that adjusts the balance between exploration and ex-
ploitation. Generally speaking, the first component 𝑟𝑒𝑡 = 𝑟 (𝑠, 𝑎) is often called the
extrinsic reward (i.e., provided by the environment) and 𝑟 𝑖𝑡 = B(𝑁 (𝑠)) is called
the intrinsic reward (i.e., an exploration bonus added by the agent that decreases
with larger 𝑁 (𝑠)). The intrinsic component rewards discovering novel states and,
hence, possibly gaining knowledge about the environment. Recent research can be
grouped into different categories: (1) Count-based Exploration, (2) Prediction-based
Exploration, and (3) Memory-based Exploration.
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(1) Count-based Exploration deals with the problem of counting states in high-
dimensional state spaces. Encountering the same state (e.g., in manipulation tasks) is
unlikely, but some states are similar to others, and exactly this relationship should be
represented in the bonus that is calculated. Density Models [13] approximate the fre-
quency of visits using a parametric model 𝑝(𝑠; 𝜃) and derive a pseudo count from the
model. As the agent observes new data, the density models are incrementally updated.
As the density model only needs to correlate high density with large visitation counts
(we do not need to sample from the model), we can resort to a large variety of models
such as context switching trees [14, 13], PixelCNNs [65, 101], GMMs [112], etc.
Another idea is to use hashing such as Locality-Sensitive Hashing (LSH) [95, 21].
The idea is to find or learn a hash function that maps the high-dimensional state
space into lower-dimensional hash codes that preserve distance information between
states, i.e., similar states will have similar hash codes. Simple distance metrics such
as the angular distance work reasonably well for low-dimensional state spaces. For
larger state spaces, LSH proposes to learn a compression using autoencoders with
a regularized loss function that enforces a special representation in the bottleneck
(i.e., the hash code).

(2) Prediction-based Exploration follows the concept of curiosity and intrinsic
motivation instead of just counting state visitations [79]. The key idea is to learn
about the environment, e.g., its reward structure or dynamics. In the easiest case, the
agent uses all the experiences (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) seen so far and learns a forward prediction
model 𝑓𝜃 : (𝑠𝑡 , 𝑎𝑡 ) ↦→ 𝑠𝑡+1 and derives an extrinsic reward 𝑟𝑒𝑡 (𝑠𝑡 , 𝑎𝑡 ) = | | 𝑓 (𝑠𝑡 , 𝑎𝑡 ) −
𝑠𝑡+1 | |22, i.e., large prediction errors result in a high bonus (i.e., a high intrinsic
reward) and vice versa. While early approaches such as Intelligent Adaptive Curiosity
(IAC) [66] resort to feature-engineering state representations, recent work such as
Deep Predictive models [89] learn such forward dynamics models end-to-end using
autoencoders. However, in many applications and environments, the observations
change without being explicitly affected by the agent’s actions. Consider, for instance,
a tree with leaves that move due to wind – such factors are not affected by the
actions and cannot be controlled by the agent. Hence, those elements should not
be encoded in the state space and not targeted to being predicted. The Intrinsic
Curiosity Module (ICM) [68, 19] jointly learns an inverse dynamics model 𝑔 :
(𝜙(𝑠𝑡 ), (𝜙(𝑠𝑡+1))) ↦→ 𝑎𝑡 , where 𝜙(𝑠𝑡 ) is a lower-dimensional embedding of the state
observation, i.e., 𝑔 enforces a bottleneck representation from which an action 𝑎𝑡 can
be inferred, hence focusing on the crucial information contained in the state space.
The forward prediction, the inverse dynamics models, and the policy are then jointly
optimized. Self-Supervised Exploration via Disagreement [69] combines a policy
network with an ensemble of neural networks (whose disagreement is the bonus) that
predict forward predictions and learn all networks end-to-end (as 𝑟 𝑖𝑡 is differentiable).
However, for all previous approaches, the prediction errors still remain large if (i)
the prediction target remains stochastic, or information is missing and (ii) if the
model class or capacity of the predictor is too limited to fit the complexity of the
target function [34]. Hence, Random Network Distillation (RND) [19, 18] predicts
something different from the actual task using two neural networks: (1) a randomly
initialized but fixed network 𝑓 (𝑠𝑡 ; 𝜃) that transforms a state into a feature space, and
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(2) a network 𝑓 (𝑠𝑡 ; 𝜃) that is trained to predict the same features as the first network,
i.e., 𝑓 (𝑠𝑡 ; 𝜃) = 𝑓 (𝑠𝑡 ; 𝜃); the exploration bonus is 𝑟 𝑖 (𝑠𝑡 ) = | | 𝑓 (𝑠𝑡 ; 𝜃) − 𝑓 (𝑠𝑡 ; 𝜃 | |22. The
intuition is that similar states have similar features, and if the agent has already seen
them, it should also have a lower error in predicting them. RND makes the prediction
target deterministic and ensures that the target is within the class of functions that
can be represented.

(3) Memory-based Exploration uses external memories to address a problem
that remains present in previous approaches: the exploration bonus is non-stationary
(i.e., it drops for a particular state when visiting it several times). As a result, intrinsic
rewards will vanish and no longer provide a signal for the agent.4 Never Give Up
(NGU) [9] combines an RND (for lifelong learning) with an episodic novelty module
for rapid in-episode adaptation. Hence, visiting the same states within one episode is
rapidly discouraged while revisiting states that have been visited many times across
episodes is only slowly discouraged. Agent57 [8] enhances NGU using a population
of policies (that all have their exploration parameters, encouraging exploration either
more towards the beginning or the end of the training course) and using a separate
estimation of 𝑄-values that decompose the influence of the extrinsic and intrinsic
rewards. Agent57 has been the first general-purpose algorithm that outperforms the
standard human benchmark on all 57 Atari games. While there are much more
approaches in that area, methods such as Go-Explore [31] present a complementary
solution. The idea is to especially address the detachment and derailment problems,
i.e., that intrinsic rewards are consumed and vanish and that interesting states should
be revisited, respectively. The idea is to use goal-conditioned policies through self-
imitation learning [32] or through a trajectory-conditioned policy based on a memory
of demonstrations [37] that enable an agent to revisit a point (through a sequence
of low-intrinsic rewards) to keep exploring other areas of the state space (e.g., keep
exploring the tree at the end of the maze in the example before).

3.4 Learning with Data or Knowledge

3.4.1 Model-based RL with continuous Actions

In Model-based RL (MBRL – sometimes also referred to as model-assisted rein-
forcement learning), the idea is to learn an estimator/model 𝑓𝜙 : S × A → S from
data for the transition dynamics that would assist the search for the optimal policy.
In several cases, a model of the reward can also be learned. Model training follows
the supervised learning paradigm and utilizes standard loss functions such as MSE.
The field of MBRL is quite diverse [60], including different types of algorithms that

4 Consider, e.g., long sequences within a maze where the agent traverses a tunnel where at the end,
the agent might again take several different decisions/ways. However, the intrinsic rewards that lead
the agent to enter the tunnel in the first place will vanish, the agent will not enter the tunnel again,
and the tree that spans up at the end of the tunnel remains mostly unexplored.
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Fig. 3.2: The high-level concept of Model-based Reinforcement Learning

operate in different representations of the state, like features [61], full observations
like images [33] or event latent states [105, 39]).

The way the learned model is used is also diverse. For example, algorithms
like Dyna [91] or Model-based Policy Optimization (MBPO) [46] augment the
real data (that is actually collected using the policy in the actual environment) with
“imaginary” data (that is generated by running a model of the environment for several
time steps from selected initial states).

Other approaches use the model as a look-ahead approximator. Here, imaginary
rollouts are performed from an initial state using the model, and either a policy
is trained to select good actions or an open-loop optimization routine (called the
planner) is utilized to generate a sequence of actions to be applied in the next time-
steps. Several types of planners can be used, spanning from well-established planners
from control engineering practice like the iterative-linearization and trajectory opti-
mization iLQR planner [96], to population-based approaches that leverage modern
parallel computation capabilities to iteratively simulate several trajectories using the
model and select the most promising ones to be applied in the real system [106, 28].

One of the downsides of MBRL is that since the model is learned from data,
it will always fail to capture the complexity of the environment perfectly. There
will always be errors due to the uncertainty of the measurements and the underlying
process/dynamics, as well as model extrapolation errors due to a lack of data. Modern
MBRL algorithms try to alleviate this problem in two ways (often combined):

• Online Re-planning: Following the paradigm of Model Predictive Control
(MPC) [20], only the first action of the action sequence generated by an open-loop
planner is applied in the environment, and the planning process re-initiates from
the new environment state.

• Uncertainty Estimation: The idea is that probabilistic models can be utilized
to capture both aleatory uncertainty, i.e., the uncertainty that is inevitable due
to inherent noise in the process or measurements, and epistemic uncertainty due
to the lack of training data in some regions of the state-action space. Here, as
modeling errors can compound with longer rolling horizons, the uncertainty is
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propagated since the policy/planner that utilizes the model takes into account the
model’s confidence of each next state prediction. Various models and policies have
been utilized to achieve this, from analytical Gaussian Processes with end-to-end
closed-loop policy learning [29] to ensembles of probabilistic neural networks
with population-based online planners [24, 61].

MBRL algorithms have been utilized in a variety of tasks, often leading to impres-
sive results [61]. On one hand, one of their downsides is related to the complexity
of the (uncertainty-informed) online planner, which could potentially hinder the
real-time application. On the other hand, they offer a way of safe exploration and
operation [15, 42], as the model can prevent unsafe actions from execution. In con-
trast, the model’s uncertainty level in sampled states indicates that the model can be
unreliable for prediction in these instances.

3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search

The availability of an environment model allows us to view many decision-making
problems as a simple search problem over potential future trajectories. Generally
speaking, it permits us to simulate the outcome of possible action sequences and,
therefore, estimate the optimal value function by building a search tree. Considering
a problem with 𝑏 possible actions (breadth) and a maximum episode length of 𝑑
(depth), we must scan over 𝑏𝑑 possible action sequences, which quickly becomes
infeasible to compute in practice. To subdue the computational complexity of the
search, Monte Carlo Tree Search (MCTS) has evolved into one of the go-to methods
in the field. Instead of an exhaustive search, MCTS uses a combination of Monte
Carlo simulation and tree search as a heuristic search algorithm.

MCTS executes four recurring steps: Selection, expansion, simulation, and back-
propagation. In the first step, MCTS selects a node by traversing the tree until an
unexpanded leaf node is reached. It expands the selected leaf node by adding one
or more child nodes to it, and simulates one or more trajectories until a terminal
state is reached, also called rollouts. This way, an initial value estimate of the state
is created. Finally, the results of the simulation phase are backpropagated, updating
the statistics of all nodes traversed during the iteration (typically the empirical state
return and state visit count).

MCTS must sufficiently balance exploration and exploitation during selection to
achieve robust estimates. A widespread method is Upper Confidence bounds applied
to Trees (UCT) [52], which treats selection as a multi-armed bandit problem and uses
the UCB1 formula for action selection, i.e., 𝑎𝑡 = argmax𝑎 𝑄(𝑠𝑡 , 𝑎) + 𝑐

√︃
ln𝑁 (𝑠𝑡 )
𝑁 (𝑠𝑡 ,𝑎) ,

where𝑄(𝑠𝑡 , 𝑎) is the empirical reward for taking action 𝑎 in state 𝑠𝑡 , 𝑁 (𝑠𝑡 ) is the total
number of trajectories explored from 𝑠𝑡 and 𝑁 (𝑠𝑡 , 𝑎) the number of times action 𝑎
was explored, and 𝑐 is a hyperparameter. Intuitively, UCB1 favors exploration when
estimates are uncertain but leans towards exploitation once more information has
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been gathered. It can be shown that this strategy achieves regret that grows only
logarithmic in the number of iterations [6].

An important scientific breakthrough was achieved when AlphaGo [84] became
the first computer program to defeat a professional human Go player. In essence,
AlphaGo employs MCTS with a value network to assess the value of a board position
and a policy network to bias the action selection, thereby lifting the requirement for
accurately simulating rollouts and focusing the search on promising actions. For
the latter, a modified version of PUCT [76] is employed, 𝑎𝑡 = argmax𝑎 𝑄(𝑠𝑡 , 𝑎) +
𝑐𝑝𝑢𝑐𝑡𝑃(𝑠𝑡 , 𝑎)

√
𝑁 (𝑠𝑡 )

1+𝑁 (𝑠𝑡 ,𝑎) , where 𝑃(𝑠𝑡 , 𝑎) is the output of the policy network. Further,
Dirichlet noise is added to the prior estimates to stimulate exploration. Due to the
two-player nature of many board games, another key technique is self-play, where
recent model versions compete as similarly skilled opponents during training.

From AlphaGo, a whole line of work has evolved, intending to remove more and
more prior assumptions from the method. Whereas AlphaGo initializes value and
policy networks through pre-training on an expert game dataset, AlphaGo Zero [86]
can surpass its ancestor’s performance without resorting to expert data (learning "tab-
ula rasa"). At the same time, AlphaGo Zero drops hand-engineered features, uses
a simplified neural network structure, and removes MCTS rollout simulations by
entirely relying on value network estimates. In AlphaZero [85], the method is gener-
alized to the game of Chess and Shogi. Another vital breakthrough was achieved with
MuZero [83], which learns the environment model and employs it for planning with
MCTS. This means MuZero does not require access to a resettable simulator, i.e.,
providing the game’s rules to the learning method. They also generalized the method
to the single-player Atari domain with intermediate rewards. EfficientZero [107]
reduces the sample complexity of MuZero and shows promising performance in
the limited training data regiment. The latest improvement is Gumbel MuZero and
Gumbel AlphaZero [27], which replaces adding Dirichlet noise by sampling actions
without replacement using the Gumbel-Top-k trick and sequential halving, allow-
ing for an effective reduction of the number of required MCTS iterations without
degrading performance.

3.4.3 Offline Reinforcement Learning

In many real-world use cases, an extensive trial-and-error procedure as required by
traditional (online) RL is not feasible. This might be due to ethical reasons (such as
medical treatment or autonomous driving) or simply because it would take too long
for an agent to learn some reasonable behavior. The idea of Offline RL is to resort
to existing rollouts (from other agents/policies, collected by observing humans, or
by traditionally implemented controllers) and to learn a policy based on this offline
data.

Figure 3.3 (top left) and (top right) both illustrate the online RL setup, where the
agent either follows the policy it is optimizing (on-policy) or where the agent is using
data from different (earlier versions of the current) policies to optimize its policy
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Fig. 3.3: Offline RL in context: On-Policy RL (top left), Off-Policy RL (top right),
Offline RL (bottom), based on [56].

(usually realized by maintaining a buffer of transitions that have been collected under
different policies at earlier stages of learning). Figure 3.3 (bottom) shows the Offline
RL setup: as in off-policy RL, we maintain data from a variety of policies from
which we want to learn a unified policy (instead of iterating/updating new policies)
that can be deployed into the environment. In contrast to Behavioral Cloning [56],
which requires data D from a single expert policy 𝜋𝛽 to get good results and which is
prone to failure due to poor generalization in unexpected situations, the expectation
of Offline RL is to outperform all the individual policies 𝜋𝑖 from which it learned
from.

Figure 3.4 motivates where Offline RL should do a better job. Assume that D
contains two trajectories, one from A to B and one from B to C, each trajectory takes
several time-steps, and the agent gets penalty of -1 per time-step. Given the data
present in the dataset we expect an agent trained on D to come up with a policy
shown on the right, which takes the direct route from A to C (which is supposed to
be the optimal solution here).

Interestingly, a simple naive example already fails. Consider a dataset with expert
demonstrations and successful task completions. Training in an off-policy setting,
iterating on the transitions from the dataset does not converge to a usable policy;

A

B

C A

B

C

Fig. 3.4: Stitching.
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in some settings, even Q-values start to diverge (i.e., take overly large values). The
problem arises during training from bootstrapping the value function on Q-values
under a slight distribution shift, i.e., in each state, the policy is deemed to bootstrap
from the best (= 𝑚𝑎𝑥) action available in a particular state, which is prone to
approximation errors (as data might be incomplete). This max-term over-estimates
the real Q-value and, while being corrected in an online setting (by actually taking
this route and getting grounded), we will get no feedback about this error in the
offline setting and hence take routes through the state space that are different from
what the data covers.

Existing solutions to Offline RL can be subdivided into methods that either (1)
constrain the policy to stay in a region of trust, i.e., where we have knowledge from
the dataset (which covers that regions), or (2) that estimate the state-value function
conservatively based on confidence (from what we can infer from the dataset).

Policy-constrained methods tackle the problem in the policy improvement step,
i.e., they try to keep 𝜋 close to 𝜋𝛽 . Batch-constrained Q-Learning (BCQ) [36] restricts
the action space to force the agent to behave close to on-policy concerning the subset
of the given data, hence keeping the extrapolation error of the bootstrapped actions
low. While this works reasonably well, it is overly restrictive as BCQ implements
a distribution matching strategy (i.e., it also tries to minimize the KL-divergence
between 𝜋 and 𝜋𝛽) and hence, if the behavior policy is e.g. uniform, the learned
policy is also required to be uniform. Instead, Bootstrapping Error Accumulation
Reduction (BEAR) [53] only requires 𝜋 to lie in the support of 𝜋𝛽 , i.e., 𝜋𝛽 : 𝜋(𝑎 |𝑠) >
0 ⇒ 𝜋𝛽 (𝑎 |𝑠) > 𝜖 .

Conservative methods tackle the problem in the policy evaluation step by being
conservative in the state(-action)-value estimation in areas of high uncertainty (i.e.,
for transitions that are not in the dataset), which implicitly then keeps the policy away
from out-of-distribution actions. Conservative Q-Learning (CQL) [54] learns a value
function that minimizes 𝑄(𝑠, 𝑎) on 𝑠 ∈ D, 𝑎 ∼ (𝑠), and additionally maximizes for
cases where 𝑎 ∼ 𝜋𝛽 (𝑠) (as in those cases there is no need to be conservative). It is
proven that the return estimate of the resulting policy from CQL is lower than the
actual policy performance. Model-based Offline Policy Optimization (MOPO) [110]
estimates 𝑟 (𝑠, 𝑎) and 𝑝(𝑠′ |𝑠, 𝑎) from D and applies online RL to the learned model.
As still the model can be queried in unknown regions if 𝜋 diverges from 𝜋𝛽 , MOPO
learns an uncertainty estimate 𝑢(𝑠, 𝑎) and provides a pessimistic reward to the
agent 𝑟 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) − 𝜆𝑢(𝑠, 𝑎). However, as a correct estimation of 𝑢(𝑠, 𝑎) is
difficult (especially with neural networks), Conservative Offline Model-Based Policy
Optimization (COMBO) [109] combines the idea of MOPO (using rollouts from a
model) with CQL: it samples transitions either from D or from the model. but
assigns more trust to those state-action pairs that are observed in D. As a result,
COMBO uses more data than CQL (i.e., added data from the model), and the data is
correlated with the policy.

Decision Transformers [22] are an alternative way of solving the Offline RL
problem by positing the sequential decision-making problem as a language or se-
quence modeling task. The idea is to use strong and advanced neural network ar-
chitectures (such as Transformers [102], due to their ability to capture long-horizon



3 Learning from Experience 63

goal , ... , ,

start start

goal start goalgoal

0

-1 -2

-3

-4-5 -2-3

-1

0

goalstart

-1

-3

Fig. 3.5: Decision Transformers, based on [22].

dependencies) instead of algorithmic frameworks that make use of Bellman back-
ups: the (return, state, action) tuples are processed in a sequence and learned in an
autoregressive fashion, where the task is to predict the next tuple from a hidden
state that represents the past sequence (i.e., the Markov state). With regard to the
principle of Decision Transformers consider Figure 3.5. Working on a fixed graph
and observing/training on random rollouts (the edges show the accumulated reward),
the decision transformer can be conditioned on a desired performance and produces
a sequence of actions that satisfies the condition, i.e., that delivers the requested per-
formance. A very related but less noticed approach is Trajectory Transformer [47],
which additionally uses discretization and employs beam search for trajectory plan-
ning.

3.4.4 Hierarchical RL

As the name suggests, Hierarchical Reinforcement Learning (HRL) has a hierarchy
of policies. Lower-level policies are responsible for solving a sub-task of the problem
(for example, they might implement specific motor skills), while higher-level poli-
cies (also called master policies) implement a “strategy” that combines lower-level
policies to solve a given task. The idea is that this decomposition can help with
problems like exploration (since the high-level policy can enable data gathering for
under-represented sub-tasks), data efficiency (since combining low-level policies can
converge faster compared to end-to-end training), and generalization (since a large
number of tasks can potentially be solved by learning to combine an available library
of sub-policies). Figure 3.6 illustrates the high-level concept of HRL.

More formally, in the simple case where we have only a two-level hierarchy, we
assume 𝑀 low-level policies parameterized with (𝜋𝜔1 , 𝜋𝜔2 , 𝜋..., 𝜋𝜔𝑀

) and a higher-
level, coordinating policy 𝜋𝜃 . There are two important questions: i) how are the
low-level policies provided or trained, and ii) how does the high-level policy learn
to utilize and combine the low-level ones efficiently.

One of the earliest and most elegant ideas to formalize this problem is the options
framework [93]. Here, an option 𝜔 ∈ Ω is defined by:

• an intra-option policy 𝜋𝜔 , which is the policy to be used when the specific option
is selected;
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• a termination function 𝛽𝜔 : S → [0, 1] that indicates the probability of termi-
nating (stop using) the option in the current state;

• an initiation set I ⊆ S, indicating in which states each option can be se-
lected/activated (even though in many practical problems, this is the entire state
space S).

It has been shown [93] that augmenting MDPs with options results in Semi-MDPs,
which in turn have optimal V and Q functions (𝑉∗

Ω
(𝜔) and 𝑄∗

Ω
(𝑠, 𝜔), respectively).

When an option is activated, the intra-option policy 𝜋𝜔 is utilized to select actions
in each environment time-step. Once the action is executed and the next state and the
reward are acquired, the option terminates with probability 𝛽𝜔 (𝑠′). If the option is
terminated at state 𝑠′, one of all available options is activated according to𝑄Ω (𝑠′, ·).

The options framework has been extended to methods that learn both the optimal
𝑄-function over options and the intra-option policies in an end-to-end manner [7],
as well as to approaches that support an arbitrary number of hierarchy levels [74].
One of their main limitations is defining the number of options a-priori.

Of course, there are also successful HRL approaches that do not follow the
options framework. In [35], a combination of Meta Learning and hierarchical policy
structure is proposed. Here, several low-level policies are selectively activated by a
master policy, with the latter being called within fixed time intervals. The low-level
and master policies are trained sequentially over several episodes. Still, in low-level
training, the reward of a specific episode is considered, while in the master policy,
the collective reward from all training episodes is utilized. Apart from the proper
tuning of the master policy call time interval, also in this approach, the “correct”
number of low-level policies has to be selected beforehand.

In a different line of thought, [103] proposes using FeUdal Networks for HRL.
In the simplest case, a “Manager” implements a high-level policy that generates a
set of sub-goals (in the form of specific states) in the latent space that a “Worker”
must learn how to reach. Through training, the Manager learns to select sub-goals
that lead to solving the task. Even though there is no need for pre-selection of the
number of low-level policies, selecting proper sub-goals from the Manager policy is
an open-ended task on its own that can hinder the scalability of the algorithm.
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In several cases, HRL is a design choice to enable safe and/or interpretable
solutions to a given task. For example, in [55], a safe and reliable vehicle obstacle
avoidance strategy is learned by combining a set of MPC low-level policies with
a high-level DQN selection policy. In [81], utilizing low-level driving “primitives”
allows distilling the master policy to a binary decision tree, thus allowing a certain
level of interpretability.

3.5 Challenges for Agent Deployment

Besides astounding progress and movement in the field of RL, several key chal-
lenges remain open for this machine learning technology to be easily and widely
applicable in the real world. In this section, we will cover the aspects of safety, policy
generalizability, and the issue of defining reward signals.

3.5.1 Safety through Policy Constraints

In many applications, an agent has to behave safely in the sense that it should
not put itself or entities of its environment at risk. This is especially true for real-
world applications, where RL-controlled robots and machines could cause financial
damage or risk human health or lives. At the same time, safety concerns should not
disturb reward performance too much, as this would undermine the benefits of RL in
contrast to less performant but provably safe traditional methods. This consideration
motivates the field of Safe RL, which aims at providing methods that bring about
optimal reward performance while satisfying safety constraints.

Constrained Markov Decision Processes (CMDPs) are a widespread formalism
to model safe RL as a constraint optimization problem. The CMDP problem is an
extension of the standard MDP M with a constraint set C = {(𝑐𝑖 , 𝑏𝑖)}𝑚𝑖=0, where
𝑐𝑖 (𝑠, 𝑎) is a cost function that returns a cost value for a state and action pair 𝑠, 𝑎, and
𝑏𝑖 is the safety constraint bound, and we have𝑚 such cost constraints. In many cases,
constraints are defined as discounted cumulative cost constraints, i.e., the expression
𝐶𝑖 (𝜋) = E𝜋 [

∑inf
𝑡=0 𝛾

𝑡𝑐𝑖 (𝑠𝑡 , 𝑎𝑡 )] ≤ 𝑏𝑖 must hold for all 𝑖 ∈ {0, . . . , 𝑚}, where𝐶𝑖 is the
expected cost. However, mean valued, probabilistic, and other constraint formulations
are also utilized in the literature [58].

Different theoretical constructs to analyze and solve CMDPs have been proposed
in the literature. One such category are Lagrangian approaches, which translate the
CMDP formulation into a primal-dual optimization problem,

(𝜋∗, 𝜆∗) = arg min
𝜆≥0

max
𝜋∈Π

{𝐽 (𝜋𝜃 ) − 𝜆𝑇 (𝑐(𝜋) − 𝑏)},

with 𝐽 (𝜋𝜃 ) = E𝑠∼𝑝0 [𝑉𝜋 (𝑠)] being the original RL objective to maximize. Besides
Lagrangian-PPO and Lagrangian-TRPO [2], a highly influential method of this
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family is Reward Constrained Policy Optimization (RCPO) [97], which incorporates
the constraint as a penalty signal into the reward function into a multi-timescale
approach. Further, it has recently been shown that the primal-dual formulation has
zero duality gap [67].

Another line of work are trust-region methods, which aim to improve the policy
through a local policy search while enforcing the constraints in every update. Among
them are Constrained Policy Optimization (CPO) [3], Projected-based Constrained
Policy Optimization (PCPO) [62] and other derivative works.

3.5.2 Generalizability of Policies

A central reason for the growing interest in ML lies in the ability to train models that
adapt properly to new, previously unseen data. Even though this is not necessarily
true for all RL applications, e.g., learning a policy that behaves optimally inside
the training environment could be all that we want, it is of vital importance for the
applicability of RL in the real world, where agents will need to be robust to variations
in their environments or capable of handling even harder forms of generalization [51].
This starkly contrasts with typical RL benchmarks like Atari and MuJoCo [99],
where policies are evaluated directly inside the training environment, making it an
often-overlooked algorithmic characteristic in the RL literature.

More technically, generalization in RL requires an agent to deploy successfully
across various tasks or environment instances. This encompasses variations in the
state space, for example, due to changes in the initial state distribution, the envi-
ronment dynamics, visual aspects for image-based observation spaces, the reward
function, etc. Contextual MDPs [40] is one construct to formalize this. They add
a context distribution that, loosely speaking, allows for modeling distributions over
MDPs. Analogous to supervised learning, the need for generalization emerges for
differing train and test context sets. Depending on the distribution of the varying
environmental factors, policies must learn to interpolate and/or extrapolate from the
training experience to close the train-test performance gap.

An important distinction can be made based on the occurring type of distribution
shift. Training and testing are often assumed to be IID, i.e., the MDP contexts
are samples of one mutual distribution. The opposite case of out-of-distribution
(OOD) test environments, termed domain generalization [57], is especially hard to
accomplish. Because today’s state-of-the-art RL methods typically have low sample
efficiency, agents are trained in simulation even though their deployment domain is
a real-world environment. Transferring agents to a physical environment, or sim-to-
real transfer, requires OOD generalization if no additional measures are employed
because camera inputs, actuator feedback, etc. can typically be simulated accurately
only to some degree [113]. The issue is often alleviated by highly randomizing the
simulation dynamics [70] or visuals [100] (domain randomization), or closing the
visual domain gap through image-to-image GAN models [73]. Further, the field
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of Robust RL aims to tackle specific forms of environment model misspecification
through worst-case optimization [111].

We can also characterize approaches by how much target domain data they can
access. This paints a spectrum from zero-shot generalization, where no explicit target
domain data is available [51], to online adaptation, which often assumes access to
at least a few training episodes in the test environment (often addressed through
methods of Meta RL [12])), to Continual RL, where MDP components are assumed
non-stationary and the agent must continually learn to adapt to this property [50]. In
the following, we will give a more detailed view of zero-shot transfer, which can be
seen as the most general and straightforward form of generalization.

Zero-Shot Transfer. Similar to methods stated for sim-to-real transfer, a common
technique is to increase the similarity between source and target domain data. This
can be achieved through data augmentation, as done by UCB-DrAC [72], or domain
randomization techniques, like ADR [63]. A line of work aims to optimally sample
from the set of randomized MDPs with approaches like POET [104] and PAIRED
[30]. The latter trains an adversarial agent that designs the environment levels to
guarantee solvability and maximize generalization.

Analogous to data alignment, another field aims to learn more robust features
not specific to the training domains. One method is encoding inductive biases, for
example, by encouraging internal features that are not predictive of time within an
episode, as has been done in IDAAC [71], when we know that optimal policies
should not have time-dependence. Also, techniques like 𝐿2 weight decay and policy
entropy regularization have improved generalization [26], as simple models can be
expected to generalize the best. Finally, methods that aim to learn invariant, context-
independent feature representations like IPO [88] have proved successful.

More fundamental work is done to optimize the RL objective without overfit-
ting. Iterated Relearning (ITER) [43] introduces repeated knowledge distillation of
the policy to counteract the memory effects of neural-network caused by the non-
stationarity of RL training. Phasic Policy Gradients (PPG) [25] splits the policy and
value heads training regiment into two separate phases. Finally, initial investigations
have recently shown that MBRL might inherently facilitate better generalizability [5]
and might be an interesting future research direction in this area.

3.5.3 Lack of a Reward Function

Unlike in RL applications in games, designing a reward function for most real-world
problems is a complex task, requiring extensive domain knowledge and experience,
as well as a significant amount of fine-tuning. There are voices in the community [87]
that firmly state that the reward function should be representative of the problem,
even if the reward signal is sparse (meaning the reward is a rare event and a significant
amount of exploration is required), to avoid inducing bias in the way the policy is
designed. Nevertheless, designing a more rich reward signal can lead to high-quality
solutions with less training data/iterations [38].
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Fig. 3.7: The Dagger algorithm.

There are several ways to make a reward signal mode dense, but the two main
variants differ on the explicit knowledge of a goal/terminal state, that is assumed to
hold positive reward for the agent. If we know the goal state, we can easily create
an inverse curriculum and progressively learn to reach the goal from further initial
states [44]. If we don’t know the terminal state, we could augment the reward function
with auxiliary rewards that encourage exploration [45].

In several real-world problem cases, we are not required to define a reward
function. Here, demonstrations of successful interactions with the system (e.g., from
human operators) are available in the form of state-action trajectories 𝜉 ∈ Ξ and the
task is to learn to replicate the actions of the expert in similar states. This problem
can be formulated as a typical supervised learning problem:

𝜋𝜃 = argmin
𝜃

∑︁
𝜉 ∈Ξ

∑︁
𝑠∈ 𝜉

L(𝜋𝜃 (𝑠), 𝜋∗ (𝑠)), (3.7)

where 𝜋𝜃 is the policy to be learned, 𝜉 ∈ Ξ are the available expert trajectories, L
is a loss function (e.g., MSE for continuous actions and cross-entropy for discrete)
and 𝜋∗ is the expert policy that generated the logged actions.

This setup, even though conceptually and implementation-wise simple, rarely
works in practice without some form of data augmentation [16, 10], because of
compounding errors due to the different data distribution between training and
application settings/environments. Here, Imitation Learning (IL) [64] can address the
problem. In its most simplest form, the Dataset Aggregation (DAgger) algorithm [77],
it consists of the following steps repeating until convergence (illustrated also in
Figure 3.7):

1. Train a policy using supervised learning, to predict the selected action for all
state-action pairs in the available expert trajectories;

2. Use the policy to interact with the system and collect new data;
3. Query the expert (a more complex algorithm or a human labeler) for the optimal

actions in the newly visited states;
4. Aggregate the dataset with the new state / optimal action pairs and re-train the

policy using supervised learning;

Note here that IL can be a way to distill an optimal policy of type A (e.g., a
complex neural network) to a policy type B (e.g, an interpretable Binary Decision
Tree as in the case of [11]). This gives the possibility to learn a complex policy to
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Step 1: Collect comparison data and train a reward model 

Step 2: Optimize a policy against the reward model using any RL algorithm.
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Fig. 3.8: Reinforcement Learning from Human Feedback.

solve a given problem, which can be in turn distilled to a simpler, interpretable (and
even verifiable in some cases [11]) policy that could be deployed in devices with
stringent memory or real-time execution requirements.

Finally, in some cases, approximating the policy that generated the provided
demonstration trajectories might not be enough, as this expert policy might not be
the optimal one. Here, a line of work called Inverse Reinforcement Learning (IRL)
attempts to learn the reward function from the available data.

Classical algorithms [1, 114, 75] use only the available data from the demonstra-
tion trajectories 𝜉. Recently, through the success stories of ChatGPT and GPT-4 [17]
a reinforcement learning approach, called Reinforcement Learning from Human
Feedback (RLHF) [23, 90], that incorporates an interactive reward learning method
has been popularized.

The high-level concept is shown in Figure 3.8. The current policy generates
different outputs/action sequences for the same input and a human labeler is tasked
to sort these in a specific order, depending on their quality. This creates a number of
pair-wise reward combinations (i.e., action/output A is better than action/output B),
based on which a reward model is learned. This reward model is in turn used as the
reward function in a “classical” RL algorithm, aiming to improve the policy.

3.6 Conclusion and Outlook

In this chapter we outlined some challenges and avenues in the application of RL to
the real world. Hence, we focused on particular aspects. After a general introduction
to the topic, we first focuse don methods that employ available models, called model-
based RL. Next, we focused on a more recent trend, which uses available offline data
to learn a policy. Finally, we also presented current research and trends in the area
of safe reinforcement learning.
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Contemporary research into reinforcement learning (RL) in the real world poses a
variety of challenges, ranging from theoretical considerations to practical implemen-
tations. In the field of offline RL, the search for effective learning algorithms without
continuous interaction with the environment remains an important challenge. Meth-
ods that utilize historical data while ensuring stability and convergence are promising
to overcome this challenge. Furthermore, safe RL introduces a critical dimension
that requires the development of algorithms that balance exploration and exploitation
while ensuring safety compliance. Finding safe strategies in unsafe environments re-
quires innovative approaches that integrate risk-aware decision-making frameworks.
In addition, model-based RL is a cornerstone for improving the efficiency and gen-
eralization of sampling. The integration of learned models into decision-making
processes provides opportunities for robust and adaptive behavior in complex do-
mains. The research landscape in real-world RL faces significant advances driven
by interdisciplinary collaboration and the convergence of theoretical insights and
practical applications.
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Chapter 4
Learning with Limited Labelled Data

Christoffer Loeffler1,2, Rasmus Hvingelby2, Jann Goschenhofer2

Abstract Modern machine and deep learning require large amounts of training
data. Yet, even if the data itself is abundantly available, the fraction of annotated data
may still be proportionally small or missing. Hence, learning with limited labeled
data is an important research field. Two streams of research attack this problem
from opposite directions [64]. On the one hand, semi-supervised learning aims to
leverage all information by directly incorporating unlabeled data. On the other hand,
active learning finds unlabeled data for that annotations would be most beneficial for
learning, and queries humans-in-the-loop of model training. This chapter discusses
both concepts and their essential principles, methodological overlaps, and strengths
and weaknesses. Furthermore, we elaborate on possible combinations and their
advantages ands disadvantages. Finally, the conclusion refers to recent state-of-the-
art and provides an outlook into the future of learning with few labeled data.

Key words: semi-supervised learning, active learning

4.1 Introduction

One main hurdle in the design and training of machine learning models is their need
for large amounts of labeled training data. This labeling process also referred to as
the annotation process, can be very time consuming as it requires the knowledge and
involvement of domain experts that add annotated input data 𝑋 with their respective
labels 𝑌 . Despite this abundance of labeled training data, there often exists a large
amount of unlabeled data that was (not yet) annotated by domain experts. Due to

1Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
2Fraunhofer Institute for Integrated Circuits IIS, Fraunhofer IIS, Nuremberg, Germany

Corresponding author: Christoffer Löffler
e-mail: christoffer.loffler@pucv.cl

77© The Author(s) 2024 

C. Mutschler et al. (eds.), Unlocking Artificial Intelligence,  

https://doi.org/10.1007/978-3-031-64832-8_4 

 

 

    

mailto:christoffer.loffler@pucv.cl
https://doi.org/10.1007/978-3-031-64832-8_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64832-8_4&domain=pdf


78

(a) Intial imprecise decision boundary. (b) Exact decision boundary.

Fig. 4.1: In limited labeled data scenarios, only a subset of samples is annotated
(orange and green data points) while the majority is unlabeled (grey data points). (a)
shows the resulting imprecise and wrong decision boundary of an exemplary linear
binary classifier trained on the labeled data only. As shown in (b), semi-supervised
learning assumes that unlabeled samples are of the same class if they are close in
proximity in the feature space. Semi-supervised methods such as label propagation,
see upper part of (b), exploit this proximity to propagate the class information of
the labeled samples. On the other hand, active learning aims to improve the learned
model by selecting the most informative samples to annotate. Here, the annotator
is queried with the most uncertain samples, i.e., those that are close to the decision
boundary as depicted in the lower part of (b).

this, machine learning experts often face the situation of "learning with limited
labeled data" where a small dataset of labeled data exists next to a large dataset
of unlabeled data. Both semi-supervised and active learning try to leverage the
information given in the unlabeled dataset next to the labeled dataset to train strong-
performing machine learning models. Thereby, semi-supervised learning focuses on
the direct incorporation of unlabeled data in the training process. Active learning on
the other hand aims at finding those unlabeled samples that would support model
training the most and presents them to a (human) oracle that iteratively annotates
subsets of the unlabeled dataset in a model-driven way. Both approaches thereby
"attack the same problem from opposite directions" [64] as illustrated in Figure 4.1.
While semi-supervised methods exploit what the model thinks it knows about the
unlabeled data, active methods attempt to explore the unknown aspects.

In the following, we provide an overview of both approaches and discuss their
methodological overlaps, strengths, and weaknesses to give the reader a comprehen-
sive understanding of both fields.

Throughout the chapter, we make use of the following notation. We define an
input space X and use 𝑦 (𝑖) ∈ Y to denote a categorical variable in the target space
Y with a cardinality of 𝐾 = |Y|. Further, we define a labeled dataset D𝑙 consisting
of 𝑛𝑙 tuples of samples and their respective labels (𝑥𝑖 , 𝑦𝑖), ..., (𝑥𝑙 , 𝑦𝑙) ∈ D𝑙 as well
as an unlabeled dataset D𝑢 which consists of 𝑛𝑢 samples 𝑥𝑙+1, ..., 𝑥𝑢 ∈ D𝑢. The
goal of semi-supervised learning is to train a prediction model 𝑓 : X ↦→ Y on a
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dataset D = (D𝑙 ,D𝑢) which consists of an labeled dataset D𝑙 = {(𝑥 (𝑖) , 𝑦 (𝑖) )}𝑛𝑙
𝑖=1

and an unlabeled dataset D𝑢 = {𝑥 (𝑖) }𝑛
𝑖=𝑛𝑙+1 where 𝑛 = 𝑛𝑙 + 𝑛𝑢. Model predictions

are denoted as 𝑦̂ (𝑖) = 𝑓 (𝑥 (𝑖) |𝜃) where 𝑦̂ (𝑖) is a class probability vector of dimension
𝐾 , 𝑦̂ (𝑖𝑘 ) denotes the predicted probability for class 𝑘 ∈ 0, ..., 𝐾 for input sample 𝑥 (𝑖)
and 𝜃 refers to the model parameters. We consider the case where 𝑛𝑙 ≪ 𝑛𝑢, as usual
in SSL. Further, we define one batch of data as B ⊂ D, where B𝑙 ⊆ D𝑙 contains
the labeled samples and B𝑢 ⊆ D𝑢 the unlabeled samples in that batch such that
B = (B𝑙 ,B𝑢).

4.2 Semi-Supervised Learning

The goal and promise of semi-supervised learning, at the intersection of unsupervised
and supervised learning, is to leverage both labeled and unlabeled data for machine
learning tasks. The expanding research in this field is mainly driven by the sometimes
prohibitively high effort involved in annotating large labeled datasets on the one side
and the abundance of unlabeled data on the other. Hence, semi-supervised methods
mainly focus on settings with few labeled and many unlabeled training data. While
there exists research on semi-supervised learning for a broad variety of learning
tasks, we focus on semi-supervised classification for which most research exists.

Semi-supervised learning relies on three interconnected assumptions [72].

1. Smoothness assumption: two samples 𝑥𝑖 , 𝑥 𝑗 that are close to each other in a
high-density region of the input space should have similar labels 𝑦𝑖 , 𝑦 𝑗 .

2. Low-density assumption: the decision boundary of model 𝑓 should go through
low-density areas where 𝑝(𝑥) is low, so-called low-density regions. This adds
another perspective to assumption 1) as placing the decision boundary in a high-
density region would violate this smoothness assumption.

3. Manifold assumption: high-dimensional data should lie on lower-dimensional
manifolds, subspaces that are locally Euclidean. Hence, two samples 𝑥𝑖 , 𝑥 𝑗 that lie
on the same manifold are assumed to have similar labels 𝑦𝑖 , 𝑦 𝑗 . This assumption
mainly targets the curse of dimensionality and allows for the translation of the
previous assumptions to high-dimensional settings.

Furthermore, semi-supervised algorithms can be distinguished in inductive and
transductive methods. Inductive learning algorithms aim at learning a mapping
𝑓 : 𝑋 → 𝑌 from the data to the input space. After the learning phase at inference time,
these models along their estimated model parameters can be used to assign predicted
labels from𝑌 to newly, unseen data 𝑋 . Contrary to this, transductive methods merely
aim at annotating the unlabeled 𝐷𝑢 using the 𝐷𝑙 such that 𝑓 : 𝑋𝑢 → 𝑌 without the
learning of a general decision rule. In that sense, induction is more general as it aims
at learning general decision rules while transduction tries to reason from the labeled
cases to the specific unlabeled cases.
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Following this introduction, we next provide an overview of classical semi-
supervised learning methods and then focus on recent developments in deep semi-
supervised learning and the different concepts applied therein.

4.2.1 Classical Semi-Supervised Learning

This section gives a rough overview of classical machine learning approaches de-
veloped for semi-supervised classification. Following the taxonomy developed in
the standard textbook [13], we distinguish these models into four model classes: 1)
Generative models such as the EM-algorithm for incomplete data [18] that aim
at learning the class-conditional density 𝑝(𝑥 |𝑦) and use the unlabeled data 𝐷𝑢 to
improve its estimation. 2) Approaches that follow the Low-Density Separation ra-
tionale try to direct the decision boundary through low-density areas following the
low-density assumption using the latent information in 𝐷𝑢 to identify these areas.
This mainly involves max-margin estimators such as the transductive SVM [17]. 3)
Graph-based methods that exploit the neighborhood of labeled and unlabeled sam-
ples defined via a metric (e.g. defined via a kernel function following the manifold
assumption). These neighborhood relationships are then used to propagate class la-
bels from the labeled to their neighboring unlabeled samples. Most of these methods
are transductive and Label Propagation [78] is one prominent method in this model
class. 4) Change of Representation: two-step approaches that e.g. use 𝐷𝑢 in the
first step to learn a meaningful data representation which is then tailored towards the
learning task using 𝐷𝑙 in the second step.

4.2.2 Deep Semi-Supervised Learning

In a more recent overview, [72] extended this taxonomy further towards the use of
neural networks along the dimensions of transduction and induction. Under trans-
duction, they collect mainly Graph-based models that leverage joint neighborhood
structures in 𝐷 = (𝐷𝑙 , 𝐷𝑢). With that, they follow the structure of Chapelle et
al. [13] but extend it towards deep graph-based methods such as Deep Label Propa-
gation [32].

They further differentiate different learning paradigms that mainly aim at extend-
ing existing supervised inductive methods, toward using additional unlabeled data
𝐷𝑢 next to the labeled data 𝐷𝑙 .

1) Self-training methods, also referred to as "Wrapper methods" or "Pseudo-
Labeling", use a supervised model 𝑓 trained on𝐷𝑙 to iterative pseudo-label additional
unlabeled samples from 𝐷𝑢 to augment the training data set and then re-train on this
expanded 𝐷𝑙∗.

2) Unsupervised preprocessing methods that use 𝐷𝑢 to aid the generation of
a meaningful representation of the data in an unsupervised manner. This includes
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the extraction of meaningful features from the raw data to find an embedding that is
favorable for the initial learning task. Such approaches contain but are not limited
to dimensionality reduction techniques such as PCA or autoencoders, again related
to the manifold assumption. Further, cluster-then-label approaches use clustering
techniques over 𝐷 or 𝐷𝑢 only to facilitate the initial supervised learning task.
The final sub-branch of methods mainly targeted at neural-network-based methods
summarizes pre-training algorithms that use 𝐷𝑢 to initialize the model architecture
which is then fine-tuned on 𝐷𝑙 .

3) Inherently semi-supervised approaches that extend supervised loss functions
defined over 𝐷𝑙 with tailored loss functions that allow the inclusion of 𝐷𝑢 in the
training process to enable a semi-supervised model training.

Recent strong-performing semi-supervised learning methods follow at least one
of these paradigms or are combinations of them. In the remainder of this chapter, we
will focus on 1) Self-training and 3) intrinsically semi-supervised learning as these
are the most active research areas at the time of writing.

4.2.2.1 Self-training

Self-training, also referred to as Pseudo-labeling or Self-learning, is one of the oldest
approaches to semi-supervised learning [62, 22, 2]. It follows the idea that the model
trains itself by iteratively annotating parts of the unlabeled data. The procedure
usually alternates between a training and a pseudo-labeling step. After the training
step, the model selects unlabeled samples via a selection criterion such as model
confidence. These selected samples are then assigned the predicted label and added
from 𝐷𝑢 to the now updated labeled dataset 𝐷𝑙∗. The model is then trained on
this (pseudo-) labeled dataset and this self-training cycle continues until a stopping
criterion, such as the fact that no unlabeled data is left, is reached. This concept
relates to Active Learning replacing the there often-used (human) oracle with the
model 𝑓 .

Self-training was transferred to deep learning by [40] and since then has sparked
the creation of numerous variants. For instance, [3] investigate the confirmation bias
that can occur when the model is overconfident but wrong on unlabeled samples
𝐷𝑢. This then leads to wrong pseudo-labels which confuses model training. They
use Mixup [77] and the injection of label noise to overcome this issue. In a simi-
lar realm, [60] successfully use a combination of prediction confidence and model
uncertainty with two distinct thresholds as a pseudo-label selection criterion to over-
come this issue. [11] take in another perspective and combine Curriculum Learning
with Pseudo-Labeling. This enables the model to use adaptive thresholds in the
selection criterion and leads to on-par performance with more advanced and com-
plex semi-supervised learning techniques. Next to these extensions, pseudo-labeling
remains a crucial component in recent semi-supervised models.
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4.2.2.2 Unsupervised Regularization

Alternative inherently semi-supervised methods create additional loss functions 𝐿𝑢
defined over𝐷𝑢 or𝐷 which are combined with the initial, supervised loss function 𝐿𝑙
to allow joint model training over both datasets via the combined loss 𝐿 = 𝐿𝑙 +𝜆𝐿𝑢,
where hyperparameter 𝜆 controls the impact of 𝐷𝑢. This has a regularizing effect
and has the benefit that samples from 𝐷𝑢 can be inherently integrated into model
training. One early approach in this context is Minimum Entropy Regularization
(MER) [27] where the prediction entropy serves as unsupervised regularization term
such that 𝐿𝑢 ( 𝑓 , 𝑥𝑖) = 𝐻 ( 𝑓 (𝑥𝑖)) for 𝑥𝑖 ∈ 𝐷𝑢 leading to the final loss function

𝐿 ( 𝑓 , 𝐵𝑙 , 𝐵𝑢) = −
∑︁

(𝑥 (𝑖) ,𝑦 (𝑖) ) ∈B𝑙

𝐾∑︁
𝑘=1

𝑦 (𝑖𝑘 ) log( 𝑦̂ (𝑖𝑘 ) ) − 𝜆
∑︁

(𝑥 (𝑖) ) ∈B𝑢

𝐾∑︁
𝑘=1

𝑦̂ (𝑖𝑘 ) log( 𝑦̂ (𝑖𝑘 ) )

(4.1)
This forces the model to create low entropy predictions, i.e., sharp predictions,

over the entire dataset. MER was developed following the observation that unlabeled
data does not contribute to the maximum-likelihood estimation of discriminative,
supervised models. Thus, it introduces the regularization term as a prior adding an
inductive bias to the model driven by the unlabeled data. The penalization of the
model for high-entropy predictions over the unlabeled data potentially pushes the
model’s decision boundary towards low-density regions, following the low-density
assumption. Originally developed for logistic regression, MER can also be used for
neural-network-based classifiers.

The rationale of unsupervised regularization was further extended within models
that use Consistency Regularization, also termed perturbation-based methods.
These build up on the smoothness assumption such that a slightly perturbed version
𝑥 (𝑖) = 𝑥 (𝑖) of the input sample 𝑥 (𝑖) is expected to have the similar class the clean,
non-perturbed version 𝑥 (𝑖) , assuming 𝑥 (𝑖) lies in a high-density region. This expected
consistency in model predictions lends this branch of research its name. In recent
years, different perturbation methods have been developed from the simple addition
of random noise to inputs to the use of more elaborate methods which we will cover
in the following.

Noise Perturbation. With the Ladder-Net, [55] introduced an Autoencoder-based
approach that injects additive gaussian noise at different intermediate representations
of the input samples and calculates a regularization term over changes in these
representations. This allows them to a) robustify the model representations and b)
train the model on the joint 𝐷 using both the reconstruction loss of the autoencoder
as well as the noise-regularization term. The encoder part of the architecture is used
at inference time. Instead of random noise, [51] propose to add directed adversarial
noise to the unlabeled input samples as a regularization mechanism. In contrast to
the addition of noise to the input sample, the Π-Model adds noise in the form of
dropout layers to the model architecture. The regularization term is then calculated
over different model prediction samples via the MCDropout algorithm [23] which
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simulates an ensemble of models and enforces consistent model predictions across
those.

Temporal Consistency. Another branch of research leverages predictions from
different training stages as a perturbation mechanism following the rationale that
the model should produce temporally consistent model predictions during training.
Within the Temporal Ensembling Model, [38] maintain an exponential moving av-
erage of model predictions over stochastically augmented, unlabeled input samples
from past training epochs. In the current training epoch, these serve as an auxiliary
target and the squared distance between those past model predictions is used as
an unsupervised loss function 𝐿𝑢. [70] follow this rationale as well in their Mean
Teacher architecture. Instead of storing past model predictions of 𝐷𝑢, they maintain
a teacher version of the initial student model whose weight parameters are updated
via exponential moving averaging of the student model’s weights that are directly
optimized via gradient descent. Model predictions over 𝐷𝑢 from the teacher model
here serve as auxiliary targets in the unsupervised loss part 𝐿𝑢. This concept remains
an important training paradigm for semi-supervised learning and was used in the
Unbiased Teacher architecture for semi-supervised object detection [44].

4.2.3 Self-Training and Consistency Regularization

The use of elaborate data augmentation strategies as perturbation methods in con-
sistency regularization sparked a more recent line of research in this area. Within
MixMatch [9], the authors combine a) data augmentation with the different estab-
lished semi-supervised techniques b) Pseudo-Labeling and Entropy Regularization
via a Sharpening function, and c) Mixup [77] in one holistic approach to semi-
supervised learning. Model prediction vectors over differently augmented versions
of an unlabeled sample 𝑥 (𝑖)𝑢 ) are averaged, sharpened via a temperature scaling
mechanism, and then used as pseudo-labels. Subsequently, a batch of labeled and
pseudo-labeled data are combined via MixUp to create synthetic training samples
with are then fed into a Brier-Score as an unsupervised loss function 𝐿𝑢. This com-
bination of different semi-supervised learning paradigms allows MixMatch to yield
impressive predictive performance given low levels of supervision. With FixMatch,
[68] improve upon these results by introducing the strong- and weak- augmentation
scheme: pseudo-labels from weakly augmented samples 𝑥 (𝑖)𝑢 are selected based on a
prediction confidence criterion and serve as training targets in the auxiliary loss 𝐿𝑢.
Model predictions over exaggeratedly strong augmented versions of these samples
are then used as input to this loss function, allowing model training on both 𝐷𝑢 and
𝐷𝑙 . This idea has sparked a lot of further research such as FeatMatch [37] which
uses data augmentation in the manifold space or FlexMatch [76] which combines
this concept with Curriculum Learning.
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4.3 Active Learning

Active Learning (AL) algorithms select the most valuable samples and query an
annotator with them [64]. This means that models can learn more quickly from a
subset of annotated samples and that the intelligent choice of such samples can be
better than randomly subsampling a data stream or dataset. This choice can be based
on, e.g., insights about the model, the dataset, or on a heuristic.

Cost. The reduction of cost is one of the primary reasons to use Active Learning.
The costs arise from different sources, e.g., the annotation task’s difficulty and the
associated expensive expertise of the annotators. Similarly, creating well-curated,
representative datasets may become a financial roadblock for ML projects. A typical
example of these issues is the medical field [7], where Active Learning may decrease
the time (and money) spent on generating labels.

Active Learning Loop. The human-in-the-loop, that is also called the "oracle",
is at the center of the AL loop [64]. Figure 4.2 shows the loops components: the ML
model, a pool of labeled training data, and a pool of unlabeled data from which the
Active Learner constructs queries to the annotator. A common assumption is that
the oracle initially annotates a small subset for a first model training. Next, an AL
strategy selects one or more unlabeled samples using an acquisition function. The
expectation is that the ML model would learn faster from these than from randomly
sampled data. Finally, the expert is queried and the labeled data is added to the
labeled pool. The stop condition may be the depletion of some budget or an accuracy
threshold.

labeled
pool

unlabeled
Pool

 query  annotate 

 train   select 

human-in-the-loop

model

Fig. 4.2: The Active Learning loop has a human-in-the-loop at its center, that serves
as the label oracle. The AL method acquires samples to query the oracle with, and
the subsequent labels are added to a training pool.

Scenarios. The literature distinguishes how the unlabeled data is made avail-
able [64]. In pool-based Active Learning, all unlabeled data is available in a database,
and any of these can be selected for the construction of a query. Alternatively, in
stream-based scenarios samples may stream into the AL loop over time, and the
method incrementally selects queries. Besides the delivery mode of the dataset, the
number of simultaneously selected samples further differentiates what acquisition
functions can achieve and how queries can be selected. Querying the oracle one sam-
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ple at a time may choose a best sample but requires frequent re-fitting of the model,
whereas batch-mode AL samples whole batches at once and thus speeds up the AL
loop considerably. This is especially important when using DNNs as models [4].

Acquisition Functions. The method of how the AL algorithm chooses which
unlabeled samples an oracle is queried with is a crucial part of the AL loop.
A typical example of an acquisition functions for classification tasks is querying
the least confident prediction [41]. These are 𝑥 = argmax𝑥 (1 − 𝑃( 𝑦̂ |𝑥)), where
𝑦̂ = argmax𝑦 (𝑃(𝑦 |𝑥)) is the most likely label 𝑦̂ for an unlabeled sample 𝑥. This
uncertainty-based acquisition function selects samples that the model is least certain
about.

Before the recent success of DL, a multitude of acquisition functions was pro-
posed [64], such as uncertainty-based sampling, queries by committees of models,
based on the expected model change, the expected error reduction, on variance
reduction or based on density. The following sections explain the fundamental con-
cepts of Deep Active Learning, such as uncertainty and diversity sampling, and their
combination.

4.3.1 Deep Active Learning (DAL)

Deep Neural Networks require large amounts of data to generalize well [58]. This
becomes an issue in supervised learning settings that, unlike self-, semi- or un-
supervised learning, need annotations to fit models. Using AL may seem the natural
choice to reduce the costs for generating training datasets. However, DAL faces
challenges that arise from their use of DNNs. Traditional heuristics like discussed
in [64] and one-by-one querying showed to be ineffective when used with DNNs [63].
Hence, this section introduces the fundamentals of AL with a focus on models from
Deep Learning. The research on DAL [58] developed families of methods that
broadly parallel traditional AL strategies [64], but adapted them to DL. Hence, the
following sections explain the more traditional AL strategies. See Section 4.5 for an
outlook on more recent literature that extends the fundamentals.

4.3.2 Uncertainty Sampling

Selecting those samples for queries, that a model is least certain about [41], intuitively
should provide most information on the dataset. For probabilistic models this is
a feasible approach [64]. However, depending on the task, obtaining predictive
uncertainty for DNNs is unavailable or of lower quality. In classification tasks, the
softmax activation tends to quantify uncertainty with overconfidence, and regression
usually is not accompanied by an uncertainty measure at all. Obtaining a more reliable
uncertainty measure is important to select those samples, that are really informative.
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DNNs predictive uncertainty can be interpreted as having two components: on
the one hand of aleatoric or data uncertainty, and on the other of epistemic or model
uncertainty [31]. The model uncertainty can be reduced via Active Learning by
selecting samples for that the model is least certain. While approaches like Bayesian
neural networks provide a well-calibrated uncertainty estimation that may be used
for AL, they are intractable for larger problem instances.

Recently, Gal et al. [24] proposed a first tractable and efficient approach for
estimating a DNN’s uncertainty that is implemented as a Bayesian Convolutional
Network. This approach provides better calibrated uncertainty by implementing an
ensemble- or vote-agreement scheme [39] based on a Monte-Carlo simulation of a
model ensemble using the Dropout connections of the DNN. This trick allows to
interpret each MC pass as a separate model and thus the epistemic uncertainty is
measured more efficiently.

Beluch et al. [7] proposed to use the power of ensembles for AL, and show that
this source of uncertainty is better calibrated than relying on Dropout connections
within a single network. However, this observation was only valid in the few data
domain. Interestingly, they show that AL with an ensemble still leads to increases in
accuracy in larger problem sizes.

These two uncertainty-based Active Learners provide measures of uncertainty
that different acquisition functions use to select queries. We present the three most
common functions. The first is based on Shannon’s information theory [65]. The
Max Entropy function selects those points, that maximize the predictive entropy as
follows

𝐻 [𝑦 |𝑥𝐷𝑙] = −
∑︁

(𝑝(𝑦 = 𝑘) |𝑥, 𝐷𝑙)log(𝑝(𝑦 = 𝑘 |𝑥, 𝐷𝑙) (4.2)

This is then adapted for ensembles and MC Dropout, in that the probabilities
𝑝(·|·) are summed and averaged over the number of networks in the ensemble [7] or
over the number of forward passes [24].

The Variation Ratio acquisition function selects those samples, whose predicted
classes have the lowest agreement in an ensemble, see Eq. 4.3, or in its Bayesian
formulation, whose probability is more dispersed to others, see Eq. 4.4:

variation-ratio(𝑥) = 1 − 𝑚

𝑁
, (4.3)

= 1 − 𝑚𝑎𝑥𝑦 𝑝(𝑦 |𝑥, 𝐷) (4.4)

4.3.3 Diversity Sampling

Another parallel between classical and Deep Active Learning is the notion of query-
ing the oracle with a diverse set of examples, so that the model learns from a
representative training dataset. The selection of a diverse batch seems especially
promising for batch-mode learning, because it can help avoiding biased training.
Compared to a simple random down-sampling of the training data pool, AL strate-
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gies, such as the core-set selection proposed by Sener and Sevarese [63] aim to find
an optimal (unbiased) subset. Uncertainty-based sampling generally is also more
affected by outliers [64]. Additionally, Sener and Savarese empirically show the
limitations of uncertainty-based AL when used with larger datasets.

In traditional optimization, algorithms for selecting a core-set were already used
for k-center clustering and other applications [1], and also already for AL, e.g.,
with Support Vector Machines [71]. However, the extension of this idea to a deep
model, such as CNNs, was only recently pioneered [63]. The authors use the DNN
to generate an embedding of the pool, and then solve the k-center problem to select
a batch query. In addition, Yehuda et al. [74] recently proposed a diversity sampling
approach that maximizes Probability Coverage, and that is designed specifically for
the low-budget regime.

4.3.4 Balanced Criteria

The combination of multiple selection criteria lends itself especially well to DAL,
because model training is most often performed via mini-batches and stochastic
gradient descent, and the selection of samples within such a batch enables it. This
section explains BALD [29] and BatchBALD [35] as examples for the variety of AL
strategies that combine uncertainty-sampling with selecting more diverse batches.

Houlsby et al. [29] propose BALD, that measures the mutual information between
the model’s parameters and its predictions, which points out whether learning about
the true label would provide new information on the parameters as well. BALD uses
the following equation at its core:

𝐼 (𝑦;𝑤 |𝑥, 𝐷𝑙) = 𝐻 (𝑦 |𝑥, 𝐷𝑙) − 𝐸𝑝 (𝑤 |𝐷𝑙 ) [𝐻 (𝑦 |𝑥, 𝑤, 𝐷𝑙)] . (4.5)

The first term measures the prediction’s entropy and is high for uncertain predic-
tions. The second term is the expectation of the prediction, given the model and its
parameters, and is low if the model is certain. Maximizing the information 𝐼 leads to
choosing samples with a high uncertainty in the prediction, but a low uncertainty in
the learned model. However, this does not select for diverse samples and performs
bad with larger batch sizes [35].

BALD

Batch
BALD

Fig. 4.3: The idealized acquisition of BatchBALD [35] selects a more diverse query
compared to BALD [29], that selects the most informative samples, even if they
repeat.
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Kirsch et al. [35] propose BatchBALD as an extension to BALD, that finds
batches of informative data. They extend Eq. 4.7 by estimating the joint of multiple
data points 𝑥1, ..., 𝑥𝑏:

𝐼 (𝑦1, ..., 𝑦𝑏;𝑤 |𝑥1, ..., 𝑥𝑏, 𝐷
𝑙) =𝐻 (𝑦 |𝑥1:𝑏, 𝐷

𝑙)
− 𝐸𝑝 (𝑤 |𝐷𝑙 ) [𝐻 (𝑦 |𝑥1:𝑏, 𝑤, 𝐷

𝑙)] .
(4.6)

Kirsch et al. argue that BALD overestimates the joint mutual information of
pairs of prediction 𝑦𝑖 and sample 𝑥𝑖 , whereas the formulation of 𝐼 for BatchBALD
measures the overlap between multiple variables 1 to 𝑏 from a batch, and thus tends
to acquire more diverse queries. Figure 4.3 visualizes this with BALD ignoring the
repetitiveness of similar 𝑥𝑖 within a batch, whereas BatchBALD considers 𝑥1:𝑏 in
calculating Entropy 𝐻.

4.4 Active Semi-Supervised Learning

Both AL and SSL aim to improve learning with limited labeled data. They tackle the
problem from two different perspectives, where SSL assumes a static setting where
the set of labeled data is fixed, AL assumes a dynamic setting where expanding the
labeled data pool is possible. In the AL setting the model will be trained every time
new labeled data is available, i.e., in between each of the query iterations. Most AL
approaches only use the labeled data for training the model. However, in a pool-based
AL setting, both labeled data and unlabeled data are available to the model. Thus it
would be a natural idea to use SSL techniques that do not only use labeled data but
also unlabeled data for training.

As AL and SSL are compatible, several works have combined them and we will
look at how this can be done. First, we will give an example of how AL and SSL
can be combined using concepts introduced in previous sections. Second, we will
discuss the mutual benefits of SSL and AL based on recent advancements in SSL.

4.4.1 How can SSL and AL Work Together?

Following the AL loop depicted in Figure 4.2 a pool of unlabeled data and a pool of
labeled data is available. This data will be used for training a model by minimizing
an objective loss function L. Commonly in AL the loss for training the model is
only the supervised loss L = L𝑠𝑢𝑝 , which could be standard cross-entropy loss for
classification. When integrating SSL into the AL loop we utilize the unlabeled data as
well by combining the supervised loss with an unsupervised lossL = L𝑠𝑢𝑝+L𝑢𝑛𝑠𝑢𝑝 .
As seen previously, there exists a variety of different loss functions for the SSL loss
which can be combined with any AL acquisition function.
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Gao et al. [25] suggested to combine SSL and AL and used consistency reg-
ularization as basis for their SSL loss. They experimented with multiple acqui-
sition functions such as random sampling, the uncertainty-based max-entropy and
diversity-based k-center clustering. However, they note that choosing the right acqui-
sition function is crucial when combining SSL and AL. As they are using consistency
regularization as their unsupervised loss L𝑢𝑛𝑠𝑢𝑝 that enforces consistency of pre-
dictions over augmented versions of the sample, they hypothesize that labeling the
samples with the most inconsistent predictions should be the most beneficial to the
model. This is based on the intuition that these samples must be hard to classify for
the model. They propose the following simple metric for acquisition

𝜀(𝑥 (𝑖) ) =
𝐾∑︁
𝑘

Var
[
𝑝(𝑦 (𝑖𝑘 ) = 𝑘 |𝑥 (𝑖) ), 𝑝(𝑦 (𝑖𝑘 ) = 𝑘 |𝑥 (𝑖)1 ), . . . , 𝑝(𝑦𝑖𝑘 = 𝑘 |𝑥 (𝑖)

𝑁
)
]
,

(4.7)
where 𝑁 is the number of different data augmentations applied.

Combining consistency regularization and a maximum inconsistency acquisition
function [25] show that SSL benefits AL and outperforms other AL methods from
the literature. They also show that their specific choice of SSL method and AL
acquisition function performs better than other combinations.

4.4.2 Are SSL and AL Always Mutually Beneficial?

The recent advances in Deep Semi-Supervised Learning have shown impressive
performance in utilizing the unlabeled data together with a small amount of labels
[69]. This progress has raised the question of whether the human annotations are
beneficial when SSL is able to utilize the unlabeled data so efficiently and therefore
questioning the relevance of AL [50, 12, 8].

Utilizing consistency regularization-based SSL in the AL loop, [50] showed
that for image classification the combination of SSL and random sampling works
better than using AL for sampling. Similarly, [12] do not observe any additional
benefit of using more advanced AL algorithms when combined with both SSL and
self-supervised methods. [8] experimented with self-supervised models and active
learning and demonstrated that self-supervised learning in itself is more efficient
than AL at reducing the labeling effort. They also observe that the combination of
self-supervised learning and AL is only beneficial only when the labeling budget is
high which goes against the purpose of using AL.

Although these recent critiques of AL show the impressive performance of SSL,
more research is needed to understand if this is also the case in real-world scenarios.
The comparisons between AL and SSL [50, 12, 8] are based on experimental results
on well-established benchmark datasets such as CIFAR10 and CIFAR100 where it is
well-known what data augmentations and hyperparameters work well. This is not the
case in real-world settings where it is hard to find optimal hyperparameters as well
as design data augmentations that are label preserving and beneficial to the model.
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As semi-supervised methods rely on assumptions it cannot be guaranteed that they
will perform well in case these assumptions are broken. Therefore it is important
to analyze a real-world scenario and conduct experiments to see if SSL is actually
beneficial [72].

In this context, [53] formulated a critique on the evaluation of semi-supervised
learning techniques. Among other issues, they observed that the multitude of hy-
perparameters such as weighting factors, thresholds, or perturbation ratios, require
heavy hyperparameter tuning. This in turn requires the presence of reasonably large
labeled validation data sets whose size is often magnitudes higher than that of the
labeled training dataset – which increases the required amount of labeled training
data for practical scenarios. While semi-supervised learning promises the effective
use of unlabeled data for model training, its final benefit in practical scenarios heav-
ily depends on the final setting – semi-supervised learning can help alleviate the
problem of limited labeled data but is no silver bullet to it.

4.5 Conclusion and Outlook

Semi-supervised learning tries to tackle the limited labeled data problem by using
the latent information provided in a large, unlabeled dataset 𝐷𝑢 next to a smaller la-
beled dataset 𝐷𝑙 . The field has been around from the early days of Machine Learning
research and spans various approaches and related research fields. While recent deep
semi-supervised learning approaches yield impressive gains on benchmark datasets,
their applicability to practical real-world scenarios depends on the respective task
and cannot be taken for granted. For instance, the heavy use of tailored data augmen-
tation strategies in modern, strong-performing semi-supervised learning methods
requires strong domain knowledge of the underlying task which could also be used
to annotate more training data. These approaches also mainly target scenarios with
a balanced class distribution and assume that both 𝐷𝑙 and 𝐷𝑢 follow the same data
distribution, i.e. the absence of any distribution shifts. Further, the design and train-
ing of these partially highly elaborate algorithms require intense engineering and
modeling efforts which could alternatively be used to annotate more high-quality
training data.

Despite this critique, semi-supervised learning offers a high potential for low-
label scenarios which fuels evermore increasing research activity in this field. Recent
algorithmic development merges the concept of semi-supervision with connected re-
search fields such as contrastive learning. With S4L, semi-supervised self-supervised
learning, [75] introduced a self-supervised training scheme building up on contrastive
learning for model training in a semi-supervised fashion. Furthermore, [14] suc-
cessfully combined self-supervised pretraining on unlabeled data via the SimCLR
architecture with subsequent semi-supervised fine-tuning and showed impressive
classification performance on the ImageNet benchmark with a small 1% fraction of
labeled examples. Similarly, [46] leverage self-supervised learning to extend Fix-
Match towards barely supervised learning scenarios, where as little as 4 labeled
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samples per class are provided. With the advent of multi-purpose and multi-modal
models [54], we can expect the use of these large pretrained models also for the
generation of pseudo-labels in semi-supervised image classification tasks, similar to
their use in Natural Language Processing.

In summary, Active Learning is a method to increase the number of annotated
samples in the most cost-efficient manner [64]. Two of the fundamental strategies are
sampling according to an uncertainty measure of the model [7, 24] or according to a
representative measure of the underlying data distribution [63]. A combination [35]
of such concepts balances the classical explore/exploit dilemma.

Most recent research on modern Deep Learning [59] can be broadly categorized
as learning to active learning. For example, the underlying data distributions can be
learned with generative models and this representation exploited [67, 48, 66, 34].
AL can be understood as an optimization problem and solved using Reinforcement
Learning [73, 5, 36, 10, 19, 57, 45, 28], by imitating experts [61, 43, 47], or by
simply selecting the most suitable strategy from a diverse set of heuristics [6, 30, 16]
In closely related fields, AL can be cast as Meta-Learning of learning quickly with
few samples [56, 15, 20, 52, 33, 21, 49, 42] or even as a Neural Architecture Search
problem [26].

The future of Active Learning and Semi-Supervised Learning could be a com-
bination that leverages both methods’ strengths (active sampling) to reduce their
weaknesses (cost, uncertainty). When combining the two paradigms, it is important
that the chosen acquisition functions are designed to benefit an SSL method where
the SSL method is unable to utilize the unlabeled data.
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Chapter 5
The Role of Uncertainty Quantification for
Trustworthy AI

Jessica Deuschel1, Andreas Foltyn1, Karsten Roscher2, Stephan Scheele1 ,†

Abstract The development of AI systems involves a series of steps, including data
acquisition and preprocessing, model selection, training, evaluation, and deployment.
However, each of these steps involves certain assumptions that introduce inherent
uncertainty, which can result in inaccurate outcomes and reduced confidence in the
system. To enhance confidence and comply with the EU AI Act, we recommend
using Uncertainty Quantification methods to estimate the belief in the correctness of
a model’s output. To make these methods more accessible, we provide insights into
the possible sources of uncertainty and offer an overview of the different available
methods. We categorize these methods based on when they are used in the process,
accounting for various application requirements. We distinguish between three types:
data-based, architecture-modifying and post-hoc methods, and share our personal
experiences with each.

Key words: Trustworthy AI, Uncertainty Quantification, Machine Learning, Safety
Critical Systems

5.1 Introduction

Artificial Intelligence (AI) systems are increasingly ubiquitous in modern life, easily
accessible to commercial and non-technical users, and capable of outperforming
humans in various tasks. In particular, data-intensive machine learning approaches
such as deep learning [45, 21] have achieved a remarkable success in a wide range
of applications, from image and speech recognition to natural language processing

1 Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
2 Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany

Corresponding author: Stephan Scheele
e-mail: stephan.scheele@uni-bamberg.de

95© The Author(s) 2024 

C. Mutschler et al. (eds.), Unlocking Artificial Intelligence,  

https://doi.org/10.1007/978-3-031-64832-8_5 

 

 

    

mailto:stephan.scheele@uni-bamberg.de
https://doi.org/10.1007/978-3-031-64832-8_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64832-8_5&domain=pdf


96 Jessica Deuschel et al.

and recently large language transformer models such as OpenAI’s ChatGPT [57],
generative imaging technology based on stable diffusion [65] or biomedical appli-
cations such as AlphaFold [39]. Their success is mainly based on their ability to
automatically learn complex features and patterns from large amounts of data that
are difficult or impossible to investigate and implement manually.

However, a major challenge with deep learning models is their lack of trans-
parency and explainability [1, 46, 51], which makes it difficult to assess their
trustworthiness. Understanding the reasoning behind an AI model’s decisions and
assessing the reliability and certainty of its predictions can be challenging in com-
plex and uncertain situations. This lack of transparency makes it challenging to
identify a model’s limitations, evaluate its reliability across various application
domains, assess potential risks, and ultimately trust its results. This is especially
striking when we adopt Machine Learning (ML) methods for safety-critical appli-
cation scenarios to enable higher autonomy by solving complex tasks related to
perception and planning [8, 3, 77]. Particularly, ensuring the safety and trustworthi-
ness [71, 73, 47, 40, 40, 36] of ML is considered one of the key obstacles to their
extensive adoption in high-stakes applications where systems may infringe on our
rights or human lives may be at stake. Moreover, deep learning models are limited
in their ability to reliably handle data not covered in the training phase, which is
particularly problematic in mission-critical systems, where unknown situations can
pose significant risks and lead to serious consequences [87].

To get a good introduction to this topic, the structure of this chapter is as follows.
In Section 5.2, we will examine the current challenges related to trust in AI systems,
particularly in the context of the political landscape. We especially emphasize the
potential of uncertainty quantification to increase trust in deep learning. Section 5.3
outlines the various sources of uncertainty in AI systems and provides an overview
of the latest uncertainty quantification methods. Finally, in Section 5.4, we discuss
the limitations of existing uncertainty quantification methods and suggest potential
directions for future research to build more trustworthy AI.

5.2 Towards Trustworthy AI

Ensuring trust in AI systems is essential to promote their reliability and acceptance,
both from a practical and legal standpoint. The EU AI Act [11], for instance, mandates
that AI systems used in high-risk applications comply with strict rules to ensure their
trustworthiness and transparency.

While Explainable AI (XAI) has made significant strides in providing some level
of reasoning for AI decisions, the topic of uncertainty in its various forms is not
adequately represented in the context of enhancing trust.

We argue that qualitative analysis and understanding of various sources of uncer-
tainty, along with their quantification, hold the potential to offer valuable insights on
the confidence and limitations of AI predictions. Ultimately, this understanding can
contribute to enhancing the reliability and transparency of AI systems.
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5.2.1 The EU AI Act

Numerous countries and governments are advocating for regulatory guidelines to
advance the creation of reliable and trustworthy AI. Notable examples include the
"Blueprint for an AI Bill of Rights" by the US government [34], the ongoing devel-
opment of a "National AI Strategy" in the UK [68], and the Artificial Intelligence
Act (the "AI Act"), which passed the European Parliament on June 14, 2023 [11].

The EU AI Act as proposed in April 2021 aims to lay the foundation for the
development and use of AI systems in the European Union. One of its main objec-
tives is to increase transparency and trust in AI systems. The AI Act is a layered
risk-based approach to assess and enforce product safety, divided into the risk classes
unacceptable, high, and limited & low risk, i.e., stricter rules are enforced as the risk
increases. These range from voluntary and self-regulatory impact assessments com-
bined with codes of conduct to strict and externally audited compliance obligations
covering the entire life-cycle of AI applications.

AI systems falling into the first category of unacceptable risk are prohibited be-
cause they are considered a threat to safety, health, human rights, ethics or livelihood.
Systems belonging to the second category of high risk concern the area of safety-
critical systems. Such AI systems are subject to stringent requirements before they
can be placed on the market as a product, such as risk assessment, quality assurance
of the AI pipeline in terms of data and prediction quality, compliance with tech-
nical documentation requirements, a high level of robustness, safety and accuracy,
and human oversight and transparency measures to minimise risk. The categories
of limited & low risk refer to AI systems that must comply to minor transparency
obligations.

In particular, Chapter 2 [11] of the AI Act introduces compliance requirements
such as risk-management, data-governance, book-keeping, transparency and human-
oversight on AI providers. The transparency obligations require to identify and
quantify known and unknown risks, and accordingly to implement risk mitigation
procedures and controls. Transparency requirements demand explanations for the
cause-effect relationship of complex machine learning models that are beyond intu-
itive human understanding, so that “[. . . ] their operation is sufficiently transparent to
enable users to interpret the system’s output and use it appropriately”. Particularly,
this includes the identification and communication of limitations of a machine learn-
ing model to its users. Furthermore, the act imposes the identification and assessment
of uncertainty factors of an AI system, as well as explainability and human super-
vision [11, 25], incorporating “human-machine interface tools”. Moreover, the EU
parliament identified the need to address uncertainty [20] in AI systems, particularly
in the healthcare domain, putting forward that “Future AI solutions for healthcare
should be implemented by integrating uncertainty estimation [. . . ] to provide clini-
cians with clinically useful indications on the degree of confidence in AI predictions”.
By addressing these fields, the EU regulation scheme aims to ensure that AI systems
are developed and deployed in a way that is trustworthy, ethical and in line with
EU legislation. Besides the AI Act, there exist further legal acts and regulations like
the General Data Protection Regulation (GDPR) that imposes further transparency



98 Jessica Deuschel et al.

requirements to mitigate the risk potential of automated decision-making systems
and governs the processing and movement of personal data within the EU.

While the AI Act places a strong emphasis on transparency and explainability
requirements, the topic of uncertainty quantification is not explicitly mentioned but
only implicitly subsumed under the key requirement of robustness. In our view,
the relevancy of uncertainty quantification for trustworthy AI should be represented
more prominently and explicitly in the AI Act.

5.2.2 From Uncertainty to Trustworthy AI

AI-based systems follow a typical pipeline that involves the steps of data collection
and pre-processing, selection of a model and a learning algorithm, model training and
tuning and drawing inferences in the final step. However, each step inserts inherent
uncertainties, where for instance one possible source of uncertainty is related to the
collection and representation of real-world data. Furthermore, uncertainty may also
concern the pre-processing of data, including cleaning and labeling. Additionally,
machine learning models are abstractions of the real world and its learning algorithms
may introduce modeling and inferential uncertainties by an oversimplification of
their assumptions. Such uncertainties can affect the accuracy and reliability of an AI
system’s predictions.

We argue that uncertainty quantification is essential to increase trust in AI sys-
tems, as outlined in the EU AI Act. Trust is an essential prerequisite for high-stakes
and safety-critical applications where the reliability and acceptance of an AI sys-
tem is critical. Lack of trust in AI systems can lead to users either refusing to use
them or abusing them in ways compromising their effectiveness. Trust is particularly
important in applications where the stakes are high, such as healthcare, finance or
autonomous systems, where errors or biases can have serious consequences. For
instance, in healthcare, medical misdiagnosis can lead to incorrect treatment and
potentially harmful consequences for a patient. In finance, there is a risk of financial
losses when using erroneous AI systems in domains like fraud detection or algo-
rithmic trading. AI systems deployed in autonomous systems such as transportation
or robotics pose a safety risk, which may result in severe accidents or even loss of
lives. Further examples include privacy risks, when AI systems process personal
data, where errors can cause exposure of personal data due to data breaches, or
infrastructure failures that can jeopardise the safe operation of critical infrastructure
systems such as power grids or water supply systems. Thus, it is important to develop
and deploy AI systems carefully to minimize these risks.

Uncertainty quantification can identify and quantify uncertainties in data, mod-
els and algorithms, and can also be used as a tool to audit the trustworthiness of
an AI system. AI predictions are affected by such uncertainties, which highlights
the need for reliable uncertainty estimates, to provide diagnostic assistance for both
developers and end-users of an AI system, and to better understand its limitations.
These estimates can help developers to identify areas for improvement, such as the
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data representation process, the need to extend data collection or necessary model
tuning and refinement. By revealing the system’s internal workings, uncertainty
quantification methods can identify potential sources of bias, errors, or inconsisten-
cies in the system’s decision-making process. Furthermore, in high-risk applications
where explanation support with a high confidence becomes mandatory, quantifying
uncertainties of explanations is a prerequisite as well [10].

While uncertainty quantification is crucial in tracking performance insufficiencies
of an ML-based system during operation, additional sources of uncertainty within
the life cycle of such systems have been recognized [9]. On one end of this spectrum,
Machine learning is usually employed when complex tasks cannot be described by
a precise algorithmic specification due to their inherent complexity, variability, or
lack of deterministic rules. The very nature of such tasks defines a straightforward,
rule-based solution, making it challenging to explicitly follow a traditional algorith-
mic approach. Instead, to address such tasks, utilizing machine learning is necessary,
with data essentially serving as the specification and giving rise to what we term
’specification uncertainty’. On the other end of the spectrum, even with machine
learning models in place, the evaluation of their performance is not straightforward.
The input space is often high-dimensional, and the behavior of continuously grow-
ing neural networks is inherently unpredictable, requiring advanced techniques for
comprehensive validation and testing. It is therefore important for developers of
trustworthy AI components to qualitatively and quantitatively argue certain model
properties, such as robustness, limited bias, and absence of known failure modes.
However, those arguments are seldom a complete formal proof and include some leap
of faith in the process. Therefore, a lack of trust in the collected evidence and derived
arguments gives rise to assurance uncertainty. All of those types of uncertainty have
to be taken into account by standardization activities and practitioners bringing AI
into high-stake applications. Uncertainty quantification can be an effective tool to
identify ambiguous inputs providing a direct link to specification uncertainty, i.e., in
cases where the boundary between two classes is neither specified nor very clear. Its
role towards assurance is less clear. While it is definitely one building block, it is no
silver bullet towards reliable and safe systems either [32, 67].

For end-users, accurately specified uncertainties, combined with effective com-
munication and explainability, are essential for better decision-making and hereby
can increase the transparency and trust in an AI system. Hence, uncertainty quan-
tification can provide users not only with insights into the decision-making process,
but also with an understanding of the uncertainties that can affect the accuracy of an
AI system’s predictions.

5.3 Uncertainty Quantification

While it’s important to acknowledge that deep learning models may not achieve per-
fect predictive accuray, integrating a reliable measure of uncertainty into the deep
learning system can significantly enhance its transparency and acceptance. This is
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particularly crucial in safety-critical domains, such as credit card fraud detection [26],
predicting molecular properties [66], or classifying tissues in histopathology. Infor-
mation on a method’s uncertainty can be useful even in non-critical situations,
saving time and costs. For example, in an automatic brake disc check at a production
plant, the algorithm can confidently detect flawless (cf. Figure 5.1-A) or broken (C)
discs. Uncertain cases (B) require human inspection to avoid accidentally discarding
functional brake discs.

In classification tasks, deep learning models typically generate a pseudo-
probability for each class using the softmax function, where the maximum softmax
output is commonly considered as a measure of certainty. However, this output tends
to be overly confident and does not accurately reflect the true probability of each
class. To obtain a credible measure of certainty, the predicted class probability should
align with the true likelihood, meaning that samples with an 80% certainty measure
should yield an accuracy of 80%.

Fig. 5.1: Necessity of uncertainty measures in distinguishing flawless vs. damaged
brake discs. A and C show examples of intact or clearly broken brake discs, respec-
tively. The examples in B cannot be clearly assigned to one of the two classes. The
supposed artifacts in B may possibly only be a hair or a shadow (taken from [12],
licensed under CC-BY 4.0).

5.3.1 Sources of Uncertainty

In the literature, sources of uncertainty are generally divided into two types of
uncertainty: aleatoric and epistemic uncertainty.
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Fig. 5.2: Sources of uncertainty in histopathology. A: Distribution shift when using a
different scanner for the same slide, B: Stronger distribution shift by different clinics
(different staining process and different scanner of the slides which results in different
appearances), C: Label noise: The blue marked patches do not contain enough class
specific information to be classified correctly, D: Typical artefacts (within the blue
marked regions) that might be present in a histological tissue section and should be
recognized as out-of-distribution data.

5.3.1.1 Aleatoric Uncertainty

Aleatoric uncertainty, also called data uncertainty, refers to the statistical uncer-
tainty. It is related to randomness, comparable with flipping a coin where a larger
amount of data cannot reduce the randomness of the outcome [35, 24]. This type of
uncertainty can stem from various origins, including measurement errors like ran-
dom noise, as well as from limited information, such as low resolution or imperfect
measurements [19]. Another possible source of aleatoric uncertainty is the labeling
process, where label noise may arise due to factors such as fuzziness or the inability
to achieve a clear separation between classes. For instance, in the context of tissue
classification in histopathology (as illustrated in Figure 5.2-C), the classification of
a large whole slide image is typically based on smaller image patches. Although the
blue patches in image C belong to the same tissue class as the surrounding patches,
they offer barely any information about the tissue.

Aleatoric uncertainty in the labeling process can also occur when there is no
specific true label as in the case of a soft property. For instance, in cognitive load
detection, the question arises as to which aspect serves as the most accurate ground
truth: the task itself, the person’s performance on the task, or their self-assessment
of their cognitive load [58].
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5.3.1.2 Epistemic Uncertainty

Epistemic or model uncertainty refers to the uncertainty arising from deficient knowl-
edge. This type of uncertainty is reducible by more evidence, which means in the
field of machine and deep learning by more data. Epistemic uncertainty can stem
from multiple sources, either from a data or modeling perspective.

Epistemic uncertainty from the data perspective can arise due to dataset shifts,
also known as distribution shifts. Distribution shifts refer to the change in real-world
data compared to the training data, violating the default assumption in machine
learning that the train and test data are independently and identically distributed
(i.i.d.) [24, 62]. This can be caused by changes in the environment over time, such
as changing weather conditions or variations in the appearance of spam emails but
also from the high variability and inherent complexity of real-world environments.
The training data may not adequately cover this total variability, which can result in
an imbalance in the training data due to unknown sampling selection bias where not
all populations are equally represented. Two possible kinds of distribution shifts are
depicted in Figure 5.2: the appearance of the slides differs when using a different
scanner (A) or when moving to another clinic (B), where the slides are prepared and
scanned in a different way. Both kinds of shifts would need to be taken into consider-
ation already during the data collection process, which would mean that all scanners
and clinics have to be included for minimal uncertainty. Although it is possible to
account for a limited amount of the changes using data augmentation methods to
simulate different lighting conditions or enhancing robustness by adding noise, it is
impossible to account for all possible variations in advance. As a result, the training
data distribution may not exactly match the test distribution, leading to epistemic un-
certainty [19]. More extremely, a model might encounter out-of-distribution (OOD)
data during testing. OOD data refers to valid samples that a model can potentially
process but that do not belong to the task the model addresses, for example new
classes that were not present during training [19], but also adversarial examples, that
are designed to trick a model into making wrong predictions. Figure 5.2 shows an
example of OOD samples. The blue boxes mark artefacts in the slides that do not
represent a tissue class.

From a modeling and learning perspective, uncertainty can also arise from the
design choices, also called inductive bias, of the deep learning model, such as the
size and structure of the model architecture and the hyperparameters of the learning
process. Large models commonly lead to overconfident softmax outputs, which can
result in poor uncertainty estimates. On the other hand, small models can lead to
underfitting and high epistemic uncertainty [23, 19].
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5.3.2 Methods for Quantification of Uncertainty and Calibration

In the following we want to give an overview of methods that are designed to give a
reliable uncertainty estimation. These methods either provide an uncertainty estimate
directly or re-calibrate the softmax output.

We begin by presenting a mathematical setup. We only consider supervised
learning, specifically the task of classification. However, most approaches are also
applicable for regression problems. For all of the following models let (x𝑖 , 𝑦𝑖) ∈
(𝑋,𝑌 ) be a data-label pair from the set of all training data 𝑋 and labels 𝑌 . Let
𝑋 = {x𝑖}𝑁𝑖 be the set of 𝑁 training data points with corresponding class labels
𝑌 = {y𝑖}𝑁𝑖 , 𝑦𝑖 ∈ {1, . . . , 𝐾} for 𝐾 classes. Further let 𝑓𝜃 : 𝑋 → R𝐾 be a (deep)
learning function with learnable weights 𝜃 mapping to a 𝐾-dimensional logit space.
Thus, for a sample x𝑖 ∈ 𝑋 we obtain logits z𝑖 = 𝑓𝜃 (x𝑖) from which we can derive the
probability for each class 𝑘 ∈ 𝐾: The application of the softmax function 𝜎 returns
probability values p̂(𝑘 )

𝑖
for each class 𝑘 .

p̂(𝑘 )
𝑖

= 𝜎(z𝑖) (𝑘 ) =
exp(z(𝑘 )

𝑖
)∑𝐾

𝑗=1 exp(z( 𝑗 )
𝑖

)
(5.1)

The maximum class probability

𝑝𝑖 = max
𝑘∈{1...𝐾 }

p̂(𝑘 )
𝑖

(5.2)

can be interpreted as the confidence of the sample. We refer to it as vanilla or
softmax confidence. The prediction is simply 𝑦̂𝑖 = arg max𝑘 p(𝑘 )

𝑖
. Generally, the

softmax confidence does not necessarily represent the true certainty. Most deep
learning networks tend to produce overconfident predictions.

The following methods either aim to improve the calibration of the softmax
confidence or they propose other means to estimate the confidence of a sample. We
categorize these methods based on the stage of the process at which they approach
the task, in order to account for different application requirements.
1. Data-based methods operate on the data perspective and aim to smooth the

transition between classes, thereby improving calibration.
2. Architecture modification methods involve adjusting the architecture or learning

process of a model to provide uncertainty estimates or improve calibration.
3. In cases where the model cannot be modified, post-hoc methods can adjust the

model’s calibration. To achieve enhanced calibration, the methods can also be
combined.

5.3.2.1 Data-based Methods

On a data level we can exploit regularization techniques such as data augmentation
methods to smooth the input space which can provide a better calibration. One
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such approach is Mixup [84]. Mixup augments the training data by creating convex
combinations between random samples and their labels. For two random data-label
pairs (x𝑖 , y𝑖), (x 𝑗 , y 𝑗 ) ∈ (𝑋,𝑌 ), where y𝑖 , y 𝑗 are the one-hot encoded labels we
calculate

x̃ = 𝜆x𝑖 + (1 − 𝜆)x 𝑗
ỹ = 𝜆y𝑖 + (1 − 𝜆)y 𝑗

(5.3)

with interpolation weight 𝜆 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼) and 𝛼 ≥ 1 to generate the augmented
training samples and soft labels. Thulasidasan et. al. [72] have shown that the regu-
larization and label smoothing of Mixup significantly improve calibration on image
data and the model is less prone to making overconfident predictions on OOD and
noisy data [72]. Follow-up work investigated the method and proved that Mixup
training is approximately a regularized loss minimization [85]. There are multi-
ple variants of Mixup such as CutMix [82], Puzzle Mix [42], Adversarial Mixup
Resynthesis [4], PixMix [31] and [86] to improve the calibration of imbalanced data.
Each of these variants uses a different approach of mixing the data. Cutmix, for
instance, motivated from the perspective of dropout regularization, works on image
data and cuts and pastes image patches among different image samples and gener-
ates soft labels accordingly. PixMix aims to improve robustness to safety measures
like calibration and anomalies by adding structures to images and increasing their
complexity.

The application of Mixup methods can be extended beyond the input data and
onto the feature space: Manifold Mixup, as suggested by [76], creates a linear
interpolation on the feature vectors before the classification layer which can provide
a smoother decision boundary. From [15, 14] we conclude that Mixup alone might
not be sufficient as an uncertainty method but it provides small improvements in
terms of calibration over the baseline and might be useful in combination with other
methods as it is easy to implement and cheap to apply.

5.3.2.2 Architecture-Modifying Methods

On the modelling perspective there are multiple methods that either aim to improve
the overall calibration or provide a separate uncertainty estimation.

One solution with well-established theoretical foundations is to estimate uncer-
tainty in neural networks from a Bayesian perspective [55, 33]: instead of learning
the neural network’s weights directly, Bayesian deep learning places a (Gaussian)
distribution on the weights and learns its parameters. Sampling from those weights
provides different perspectives on the solution space; in other words we can sample
infinitely many valid networks.

More formally the theory is built on Bayes’ theorem

𝑝(𝜃 |x, 𝑦) = 𝑝(𝑦 |x, 𝜃)𝑝(𝜃)
𝑝(𝑦 |x) ∝ 𝑝(𝑦 |x, 𝜃)𝑝(𝜃) (5.4)
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where (x, 𝑦) is an input-label pair and 𝜃 represents the learning weights of the model.
The theorem states that the posterior distribution 𝑝(𝜃 |x, 𝑦), that we are looking for,
is calculated from the likelihood 𝑝(𝑦 |x, 𝜃), the prior 𝑝(𝜃) and a constant marginal
distribution or evidence 𝑝(𝑦 |x). Assuming that the posterior is known, we can obtain
a prediction for a new sample x∗ by

𝑝(𝑦∗ |x∗, x, 𝑦) =
∫

𝑝(𝑦∗ |x∗, 𝜃)𝑝(𝜃 |x, 𝑦)𝑑𝜃. (5.5)

The calculation of the posterior is usually intractable. Therefore the inference of
Bayesian neural networks usually requires approximations such as sampling ap-
proaches like Markov Chain Monte Carlo sampling [55], a Laplace approximation of
the log-posterior [13, 64], or (stochastic) variational inference [33, 22]. Techniques
such as Bayes by Backprop [5] or VOGN [41], which are specifically proposed
for deep learning, leverage variational inference approximation to approximate the
true posterior with a simpler distribution. However, the complexity of inference in
Bayesian deep learning approaches usually becomes computationally expensive. It
is primarily due to high-dimensional and non-convex weight spaces, necessitating
intricate and computationally demanding methods to approximate or sample from
the posterior distribution over the weights of the model, not only during training
but also at test time. These techniques are therefore rarely put into practice [59].
We experienced that Bayes by Backprop and VOGN do not scale well with large
networks and require too much computational time. On top, they do not necessarily
improve upon simple softmax baselines in our experience.

A more recent approach, SWAG [50], proposes to use the weights of multiple
stages of the learning process as samples from the posterior distribution and approx-
imates the posterior by learning a multivariate Gaussian distribution with a low-rank
approximation of the covariance matrix over the weights from those samples. As
another approximation, Gal and Ghahramani proposed Monte Carlo Dropout (MC
Dropout) where a more robust network is learned by randomly dropping neurons
from the network both during training and during testing [18]. While SWAG and MC
Dropout may successfully capture the details of one mode within the posterior distri-
bution, they are incapable of accommodating multiple modes simultaneously [37].

Ensemble methods make this possible. Ensembles, which refer to the combination
of multiple machine learning models, have been widely used to make more accurate
and robust predictions. By mitigating the impact of individual model weaknesses and
relying on the diversity of the predictors, ensembles can improve overall accuracy
and uncertainty estimation. This simple technique has become a popular choice in
various applications and has evolved over time to take on different forms. Classical
machine learning often employs ensembles using methods like bagging and boost-
ing [6, 17]. In the context of neural networks, deep ensembles are often composed of
multiple individually trained models, whose probabilistic outputs are averaged for
inference [44]. They have become a gold standard for accurate and well-calibrated
predictive distributions, outperforming other popular approaches like Bayesian neu-
ral networks or MC Dropout [60]. A possible reason for this is that ensembles explore
more diverse modes in the function space and thus create more diverse hypotheses
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for the data than Bayesian approaches, which oftentimes sample hypotheses around
a single mode [16, 81].

While naive ensembling offers substantial benefits to single models, further im-
provements can be achieved in several ways. One important line of research focuses
on improving the diversity of ensembles, which can be achieved by diversifying
hyperparameters [79], focusing on different feature subsets [63], or using different
architectures for each ensemble member [83]. Another challenge is the parameter-
and time-complexity of ensembles. Multiple independent networks must be trained
and applied for inference, which can result in high computational demands. Al-
though the inference time can be reduced by parallelization, the training effort can
be significant in some applications. One common approach to address these chal-
lenges involves weight sharing between ensemble members, as proposed in several
studies [78, 27]. Ensembles have also been combined with Bayesian approaches to
combine the mode exploration of ensembles with the within-mode exploration of
Bayesian approaches. For example, MultiSWAG is an ensemble of multiple inde-
pendently trained Stochastic Weight Averaging (SWAG) approximations [81].

While all of the above methods require several forward passes, other methods
only need one forward pass at test time. Evidential deep learning [69] approaches
uncertainty estimation from a Dempster–Shafer Theory of Evidence point of view.
They utilize a Dirichlet distribution on the class probabilities as different opinions,
which allows them to derive belief masses and an overall uncertainty.

Other methods express uncertainty, specifically in order to reject OOD samples,
by distances to class prototypes [75, 49]. DUQ [75], for instance, uses an RBF kernel
to measure the distance or uncertainty of an embedded sample to a class centroid or
prototype. Samples located too far from the prototype are rejected as OOD. Despite
being a sound concept, DUQ resulted in stability issues during our experiments
which was also noted in the author’s follow-up paper [74].

A new and highly effective method, called SNGP (spectral normalized Gaussian
process) [48] also builds on the idea of distance awareness within the network for
a meaningful feature representation. They ensure this distance awareness by weight
normalizations and by modelling the last layer of the neural network as a Gaussian
process. By utilizing a Laplace approximation technique, a more cost-effective sam-
pling can be performed during test time with a single forward pass. This is possible
because the samples are drawn from a closed-form posterior. Conveniently, Tensor-
flow provides an implementation and tutorial for SNGP but also for MC Dropout
and Deep Ensembles [70, 53].

5.3.2.3 Post-Hoc Methods

Up to this point, we have only examined techniques that require substantial changes
in the architecture and training procedure. However, in some cases, making these
substantial modifications during the training process of a machine learning model
may not be feasible due to practical considerations such as time or cost, for example
due to the requirement of sampling at inference. Post-hoc approaches can enhance the
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calibration performance of a model after training has already taken place. A simple
but effective approach to improve the post-hoc calibration of a model is temperature
scaling [61, 23]. The objective of temperature scaling is to determine a value 𝑇 > 0
that scales the predicted logits before the softmax calculation, resulting in a more
faithful representation of the true confidence. The confidence is estimated as

𝑝𝑖 = max
𝑘
𝜎(z𝑖/𝑇) (𝑘 ) . (5.6)

for logits z𝑖 ∈ R𝐾 and softmax function 𝜎. The temperature parameter 𝑇 is typically
obtained through the minimization of the negative log likelihood with respect to 𝑇
on a validation set:

min
𝑇

𝑁 val∑︁
𝑖=1

log𝜎(z𝑖/𝑇) (𝑦𝑖 ) , (5.7)

where 𝑁val denotes the size of the validation set. The predicted confidence de-
creases if 𝑇 > 1, and increases for 𝑇 < 1. As temperature scaling only conducts
a re-calibration and does not rearrange the order of classes, the prediction remains
unchanged.

The effectiveness of temperature scaling calibration has been assessed across a
range of scenarios. The findings of Ovadia et al. [60] indicate that temperature scal-
ing can offer accurate calibration of uncertainty estimates in cases involving i.i.d.
data or data that is only slightly shifted from the training distribution. However, as the
shift increases, its effectiveness decreases [30] and ensembling methods outperform
temperature scaling in calibration performance [60]. The combination of both has
shown promising results in a facial analysis scenario with artificially induced dis-
criminatory biases [14], where the optimal value of 𝑇 was determined on a balanced
validation set.

Several variations of this method adopt a recalibration model to learn the temper-
ature in a post-hoc manner following the training phase, e.g. [43, 38].

5.3.3 Evaluation Metrics for Uncertainty Estimation

Researchers employ a variety of metrics for evaluating uncertainty estimates. In this
section, we will focus on the most commonly used metrics in current publications.
Understanding the behaviour and the limitations of these metrics is crucial for making
better decisions. It is important to note that no single metric measures all the desirable
properties of uncertainty estimates obtained by a model of interest. Moreover, the
appropriate metric depends on the use cases and specifications of a given task. For
instance, in a use case where we have the opportunity to set a confidence threshold,
we might accept predictions above this threshold while the remainder is classified
by a human expert, e.g. in the case of the brake-disc example shown in Figure 5.1.
In such cases, it may not be necessary to have perfect calibration, but rather a strong
correlation between uncertainty and misclassification rate may suffice. In this case,
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we are mainly interested in rejection-based metrics. This can also be the case for
possible OOD samples, as shown in Figure 5.2 D, where we could use a threshold on
the uncertainty estimates to filter out possible artifacts. In the following, the metrics
are presented for multiclass classification.

Overconfidence

Underconfidence

Fig. 5.3: Reliability diagram for evaluating the calibration of a classification model.
Points lying on the diagonal line indicate perfect calibration, while points above or
below the line indicate areas of under and overconfidence, respectively.

5.3.3.1 Negative Log-Likelihood

Negative Log-Likelihood (NLL) is a widely used evaluation metric for probabilistic
models, as it also serves as a loss function for classification tasks. It measures the
likelihood of the observed data given the predicted probabilities. A lower NLL
indicates better uncertainty estimates. Mathematically, the negative log-likelihood is
defined as:

𝑁𝐿𝐿 =
1
𝑁

𝑁∑︁
𝑖=1

(− log 𝑝(𝑦 = 𝑦𝑖 |x𝑖)), (5.8)

for input-label pairs (x𝑖 , 𝑦𝑖), 𝑖 ∈ {1, . . . , 𝑁}.However, maximizing the confidence
of a prediction to minimize the NLL can lead to overconfident models that exhibit
higher accuracy. Consequently, comparing the quality of uncertainty between models
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with varying levels of accuracy using NLL can be misleading, as it may favor models
with higher accuracy [2].

5.3.3.2 Expected Calibration Error

The Expected Calibration Error (ECE) [54] is a metric used to estimate the calibration
error of a model’s uncertainty estimates based on a reliability diagram (Figure
5.3). This diagram shows the deviation of estimated probabilities from the observed
accuracy. It does this by dividing the probability interval into fixed bins and assigning
each predicted probability to its corresponding bin and calculating the accuracy per
bin. A model with good calibration will have the calibration curve close to the
diagonal line. The ECE is calculated by taking the difference between the accuracy
and the confidence of each bin, weighted by the number of predictions in each bin,
and averaged across all bins. In a multiclass setting, the maximum probability score
is used for this calculation. Formally it is defined as

𝐸𝐶𝐸 =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

|𝑎𝑐𝑐(𝐵𝑚) − 𝑐𝑜𝑛 𝑓 (𝐵𝑚) |, (5.9)

where 𝑀 is the number of bins, 𝐵𝑚 is the 𝑚-th bin and |𝐵𝑚 | is the number
of samples in bin 𝐵𝑚. The total number of samples is described by 𝑁 , 𝑎𝑐𝑐(𝐵𝑚)
is the accuracy of bin 𝐵𝑚, and 𝑐𝑜𝑛 𝑓 (𝐵𝑚) is the confidence of bin 𝐵𝑚. The ECE
only measures calibration in contrast to metrics like NLL, which is influenced by
the accuracy. However, it is sensitive to the number of bins and the thresholding.
Therefore, other approaches such as Adaptive Calibration Error [56] were introduced,
which spaces the bins such that an equal number of predictions contribute to each
bin.

5.3.3.3 Rejection-based Measures

An alternative perspective for utilizing uncertainty estimates involves using them to
reject certain data points. This can take various forms, such as setting a confidence
threshold and accepting only predictions above it while manually classifying the
remaining ones or differentiating between out-of-distribution and in-distribution
data. As this task involves binary separation, binary classification measures like the
area under the receiver operating characteristic curve (AUROC) can be used or other
commonly used metrics for out-of-distribution detection. Another approach is to use
accuracy-rejection curves [52], which are functions that represent the accuracy of a
classifier as a function of its rejection rate.



110 Jessica Deuschel et al.

5.4 Conclusion and Outlook

Trustworthy AI is a prerequisite for any responsible deployment of AI-based systems
in almost all domains. While AI’s recent successes and the speed of its development
are impressive, our understanding of the inner workings of such systems is falling
behind. A reliable estimation of the uncertainty associated with a model’s output is
necessary to understand when to trust an AI system and when not. This is a first step
towards transparency and a tool to avoid certain kinds of – potentially hazardous
– errors. It is crucial for uncertainty estimation to be integrated into every stage
of the modeling process of an AI system. This includes providing developers with
feedback on the model, identifying potential biases in the data, and enabling control
over how the model handles out-of-distribution data. For end-users, having access to
a solution for uncertainty estimation and explainability is essential for building trust
and increasing acceptance of AI algorithms. A completely error-free algorithm is
not required, as long as the machine learning model can provide a reliable estimation
of its own uncertainty, indicating its limits and why it returns a certain decision.

Nonetheless, uncertainty estimation alone will not lead to Trustworthy AI. None
of the methods available today are perfect. They introduce additional complexity
and may lead to new and potentially more subtle errors that need to be understood
and addressed as well. Furthermore, developers of AI systems need to guarantee
or at least reason about certain properties – such as robustness, fairness, privacy –
depending on the application domain and specific context. AI is most successfully
applied where the nature of the task is too complex to develop a standard algorithm,
making this a very challenging endeavor. Unfortunately, established methods from
software testing cannot be directly transferred to AI systems either - for a number
of reasons: 1) Specification by examples instead of a formal description leads to
specification uncertainty. 2) High-dimensional input spaces lead to a state-space
explosion. 3) The unpredictable behavior of (large) neural networks given small
input changes makes it impossible to perform representative tests of the entire input
space with a limited number of test cases. Therefore, any argumentation around
trustworthiness and safety of an AI system will require qualitative and quantitative
reasoning as well as an iterative process incorporating an improved understanding
of the mechanisms at play over time [7].

Future work should address the shortcomings of existing uncertainty quantifi-
cation methods as well as complementary contributions towards trustworthy AI.
While the accuracy of the uncertainty estimation itself could obviously be improved,
our understanding of its limits appears to be the more important challenge, i.e.,
when can we trust those estimates, what are underlying assumptions and how to
test them. As an example, deep ensembles are a well established method to estimate
uncertainty but they rely on the assumption that there is enough diversity among
the ensemble members. However, it is still an open research question which kind
of diversity is required for optimal performance and robustness [29]. Nevertheless,
ensuring trustworthiness for AI systems will require a holistic approach combining
methods from different fields such as explainable AI, formal verification methods,
out-of-distribution detection and classical system monitoring. However, the individ-
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ual contribution of each building block towards trustworthy and safe AI has to be well
understood. Looking at the current research landscape in machine learning, there is
an abundance of proposed methods and metrics with their number increasing by the
day. Unfortunately, most of them are evaluated on artificial benchmarks and with
simplistic evaluation metrics leaving a large gap towards real world applications.
Furthermore, it is important to acknowledge that most of those methods introduce
additional sources of uncertainty that have to be accounted for as well.

In addition to an exhaustive set of trustworthy AI tools and methods, the cor-
responding development and testing processes have to reflect this requirement as
well. More suitable testing and evaluation strategies have to be developed. They
should focus on task-specific failure modes and their importance instead of aggre-
gate metrics that heavily rely on a representative test data set. While some high-level
proposals already exist [28], there is a strong need for a continuous development and
deployment cycle for AI systems similar to the well known DevOps in the IT world.
The main challenge here is that deep neural networks can change in unpredictable
ways with each additional training step rendering every test and analysis done on
a previous version meaningless. Ideas borrowed from incremental certification [80]
may pave the way for building trustworthy AI systems step-by-step leveraging the
work already done while enabling flexibility to further improve performance and
functionality based on new data and insights.
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Chapter 6
Process-aware Learning

Christian M.M. Frey1, Simon Rauch12, Oliver Stritzel1, Moike Buck1

Abstract Processes in companies are diverse and complex. The production of
different products, inter- or intra-company logistic processes, or other serial event
sequences within companies have one thing in common: they can be traced on
the basis of a documentation of the individual process steps. Usually, companies
have domain experts for each department’s processes who use their experience and
knowledge to plan and control these steps. However, with increasing complexity
and diversity of processes, efficient planning and control is becoming more difficult
or even impossible for human decision makers. In the the focus of Process-aware
Learning, information documented on the data side, which is contained in the flow
and execution of any process, should be integrated into AI-enhanced models. This
should be accomplished in a way that is useful and as interpretable as possible for
non-expert users. These models are used to identify important factors influencing
the process, various process key figures, or anomalies in the process, and, based
on these insights, to make forecasts or recommendations for action tailored to the
process flows.

Key words: Process-aware Learning, Machine Learning, Bayesian statistics, Pre-
dictive Analysis, Process Mining, Process Analytics, Industry 4.0, Process AI

6.1 Introduction

The integration of process information into explainable Machine Learning models
is generally associated with a high conceptual effort. Therefore, additional efforts of
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the Process-aware Learning deal with the realization of an automated algorithmic
generation of interpretable models for process prognosis and the thereby possible
predictive support of process planning and control. The objective is to create ap-
proaches that enable the automatic acquisition of causal network structures from
process data. Various disciplines from the field of Process Mining [34, 36, 37],
in particular the data-driven creation of process models (’Process Discovery’), are
generally analyzed for their ability to extract causal relationships between process
steps and other process parameters from the input data. The added value of such a
procedure is an enormous reduction in the manual effort required to convert process
data into models while preserving the comprehensibility and interpretability of the
forecasts and model-generated suggestions for process optimization.

An important requirement towards the application of Process Mining and Machine
Learning is a qualitatively and quantitatively sufficient basis of training data which is
even more important for leveraging Deep Learning models. In the area of processing
time series, cross-sectional data or text and image processing, as well as in the field of
sequential data on processes, it is of utter utility to explore AI-enhanced methods for
highly granular, diverse and, above all, incorporating the sequential characteristics
of process data sets. This chapter is primarily dedicated to this research on processes.
Over the recent years, a trend in the research community emerged that explores novel
models facing the challenges of real world business processes. From a practical point
of view, the digitization and digitalization of business concepts underpin the digital
transformation, where the analysis and optimization of an institution’s operations,
strategic decisions and value propositions are decisive factors.

Fig. 6.1: Positioning of (Predictive) Process Mining

Process Mining is a technique designed to analyze and improve business processes
as they actually are, not as you think they are. It applies data science to discover,
validate, and improve workflows by combining data mining and process analytics.
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The process data is extracted from readily available information sources, such as log
files, databases or data warehouses, and then analyzed to identify process inefficien-
cies, bottlenecks, and potential improvements. Using Process Mining, organizations
can gain insights into the as-is processes, monitor them in real-time, and optimize
them to improve efficiency and quality while reducing costs and resources.

As information systems continue to capture an increasing amount of data about
business processes, event logs have become a primary source for Process Mining.
Despite the prevalence of event data, organizations often lack a comprehensive un-
derstanding of their actual processes. Rather than relying on thorough analysis of
event data, management decisions are often influenced by intuitive analysis and
judgement of domain experts. While data mining has greatly improved the ability
to extract insights from large datasets and support complex decision-making, classi-
cal data mining techniques such as classification, clustering, regression, association
rule learning, and sequence/episode mining origin from other areas than handling
sequential process data (cf. Figure 6.1). Process data is specific to the data gener-
ated within a particular process or system, while classical datasets refer to general
collections of data used for analysis. As a result, data mining techniques used out of
the box might not be effective in uncovering new information within event logs.

Process Mining aims to compare event data, which is actually the observed be-
havior, with process models that can be created manually or generated automatically.
This technology has become available in recent years, and it can be applied to any
type of operational process, spanning across various organizations or enterprise-wide
systems. It can be utilized for analyzing processes, such as a hospital’s treatment pro-
cesses or material flows in the automotive industry, enhancing the customer service
processes of multinational companies, gauging the browsing behavior of individuals
while making reservations, diagnosing failures of airline baggage handling systems,
or improving the user experience of medical devices, like X-ray machines. These
applications usually require dynamic behavior to be linked to process models.

This chapter will provide a starting point and a general overview of Process Mining
in Section 6.2. A more thorough discussion on the advances and insights of Process
Intelligence is given in Section 6.3. A summary and outlook on the challenges of
ongoing research conclude this chapter in Section 6.4.

6.2 Overview of Process Mining

This chapter provides an entry point to the main aspects and challenges in the
field of Process Mining. In Section 6.2.1, we first provide the basic concepts of
Process Mining. In the scientific literature, the research works are traditionally
divided into three main categories (Process Discovery, Conformance Checking,
Model Enhancement) which are presented in more detail in Section 6.2.2. To get a
better insight into the procedure of data-centered processes, the characterization of
event logs are given in Section 6.2.3 which are mainly used in the field of Process
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Mining. In order to evaluate process models, we can define four criteria which are
presented in Section 6.2.4 and give examples of processes in Section 6.2.5 to further
discuss the challenges.

6.2.1 Process Mining - Basic Concept

Process Mining, which uses techniques to extract knowledge from event logs found in
current information systems, offers innovative ways to explore, oversee, and enhance
processes across various application fields. Increasing interest in Process Mining
stems from two major factors:

1. More and more events are being recorded, thus, providing detailed information
about the history of processes;

2. There is a need to improve and support business processes in competitive and
rapidly changing environments.

Process Mining serves as a significant connector between Business Intelligence,
Business Process Management, Data Mining, and Workflow. It encompasses au-
tomated process discovery, conformance checking, organizational/social network
mining, construction of simulation models, model extension, model repair, case pre-
diction, and history-based recommendations by extracting process models from an
event log as well as monitoring deviations by comparing models and logs [34, 37].

6.2.2 Process Mining - Types

In general, there are three main types of Process Mining [34] as illustrated in Figure
6.2:

1. Process Discovery. Here, the task is to output a model by applying discovery
techniques on the input event log without any a priori information. A well-known
heuristic is provided by the Alpha algorithm [35] which takes an event log as
input and produces a process model reflecting the behavior that is stored in the
log.

2. Conformance Checking. An existing process model is checked if it validates an
input event log of the assumed process. Therefore, conformance checking is used
to evaluate if the reality, i.e. records in the log, are depicted in the model and vice
versa.

3. Model Enhancement. Generally, the task is to extend or to further improve
an existing process model using the information provided by some event log. In
contrast to conformance checking which measures the alignment of the model
and the input data, model enhancement focuses on changing or extending the a
priori model, e.g., an extension of the model to disclose potential bottlenecks.



6 Process-aware Learning 121

Fig. 6.2: Three types of Process Mining

In the scientific literature, there are also other types of process mining being
orthogonal to the ones mentioned above, e.g.:

• The control-flow perspective, which focuses on the ordering of activities to find
a good characterization of all possible paths.

• The organizational perspective, which rather focuses on the resources which are
potentially provided within the event log. Here, the goal is to either structure the
organization by classifying people in terms of roles and organizational units or to
examine the social network underneath.

• The case perspective, which focuses on properties of cases.
• The time perspective, which focuses on the timing and frequency of events. A

sophisticated throughput time analysis provides insight into potential bottlenecks,
measures service levels, or can be used to monitor the utilization of resources and
predict the remaining processing time of running cases.

6.2.2.1 Process Discovery

Process discovery is one of the three main categories of Process Mining techniques,
which use event data to show what people, machines, and organizations are really
doing in operational processes. Process discovery involves using event log data to
create a process model [35, 43, 42, 12, 15, 38] that describes the actual behavior of
the system as recorded in the logs. The goal of process discovery is to find a good
process model that best fits the event log data, which can then be used to analyze
and improve the operational process. This can provide novel insights that can be
used to identify the executional path taken by operational processes and address
their performance and compliance problems. Process discovery is essential for any
organization that wants to gain a better understanding of their operational processes
and find opportunities to optimize them.
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6.2.2.2 Conformance Checking

Conformance checking [36, 3] is a technique within the field of Process Mining
that compares event logs of a discovered process with an existing reference model
to check for compliance. It is a crucial Process Mining technique used to optimize
business processes and ensures they are running as efficiently as possible. There are
several measures used for conformance checking, such as fitness, precision, general-
ization, and simplicity as described in Section 6.2.4. Conformance checking plays a
significant role in identifying discrepancies between an actual process and a reference
model, allowing organizations to make necessary adjustments to improve efficiency
and compliance. The technique has been widely used in the field of data science
and process management to support the analysis of operational processes based on
event logs. For conformance checking, various techniques have been proposed in the
literature: rule-based [23, 41], token replay-based [23], and alignment-based tech-
niques [3, 30, 31, 39]. Overall, the aim of conformance checking is to ensure that
operational processes are running smoothly and in tune with reference models.

6.2.2.3 Model Enhancement

Model enhancement [36, 4] is a category of Process Mining techniques that compares
discovered process models to standard models to identify any errors or deviations.
The goal is improve the accuracy and effectiveness of the process models. The
heuristics applied for Model Enhancement operate on event data, which is used to
discover and analyze operational processes. The discovered process models are then
checked against standard models to identify any discrepancies. Based on the result
of the checking, the process models can be enhanced with the identified improve-
ments. Generally, model enhancement approaches define a continuous improvement
endeavor that strives to enhance the efficiency and effectiveness of operational pro-
cesses.

6.2.3 Event Log

The basis of the research field of process analysis is data in a special form, so-called
event logs. These differ from conventional data structures such as cross-sectional or
time series data in that there are usually irregularly distributed data points in the form
of executed activities. This makes it difficult to apply classic analysis and forecasting
algorithms, however, it offers the opportunity to use methods such as Process Mining
to extract process knowledge available on the data side.

Event Logs are a collection of cases, where each element refers to a case, an
activity and a point in time (timestamps). Event data sources can be found in various
places, such as database systems, transaction logs, ERP systems (Enterprise Resource
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Planning like SAP or Oracle), message logs, APIs that provide data from websites
or social media.

When extracting event logs, a model potentially has to handle one or more of the
challenges:
Correlation. Events in an event log are grouped per case. This simple requirement
can be quite challenging as it requires event correlation, i.e., events need to be related
to each other.
Chronological Ordering. Events belonging to a case need to be chronologically
ordered. Typical problems that arise are inaccurate records (only dates), different
time zones or delayed logging.
Snapshots. Cases may have a lifetime extending beyond the recorded period, e.g.,
a case was started before the beginning of the event log.
Scoping. With the execution of processes distributed over different departments,
areas or people in an enterprise we need to specify the range of the process analysis
and decide which areas and what information, i.e., tables of data, we want to incor-
porate.
Granularity. The events in the event log are at a different level of granularity than
the activities relevant for end users.
Noise. Event logs that have not undergone pre-processing often contain infrequent
and rare behavior that is not representative of the typical behavior of the process
captured in the event log.
Incompleteness. Logs may contain too few events to discover some of the un-
derlying (control-flow) structures or information in the latent space. Data cleansing
methods such as filtering and data mining techniques can be used to extract useful
data and alleviate these issues.

Every event log contains certain fields, without which traditional techniques from
the field of Process Mining will be impossible. These are:

• Case ID - instances (objects) being arranged as a sequence of events
• Activity name - actions performed within the event log
• Timestamp - date and time of recorded events

Optionally, a log file contains additional information which further specifies
events:

• Resource - additional information about an event’s resource
• Attributes - additional attributes being recorded for events

Process Mining techniques rely on the assumption that events are recorded se-
quentially, with each event being associated with a specific activity, or a defined step
in a given process that relates to a particular case or process instance. Event logs may
also contain supplementary information, such as the resource executing or initiating
the activity, or any relevant data elements associated with the event, such as the size
of an order, which worker or machine processed a given order or what the outcome
of a specific activity was. Such additional information is commonly leveraged by
Process Mining techniques whenever possible.
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# case_id activity timestamp costs resource

0 3 register request 2010-12-30 14:32:00 50 Pete
1 3 examine casually 2010-12-30 15:06:00 400 Mike
2 3 check ticket 2010-12-30 16:34:00 100 Ellen
3 3 decide 2011-01-06 09:18:00 200 Sara
4 3 reinitiate request 2011-01-06 12:18:00 200 Sara
5 3 examine thoroughly 2011-01-06 13:06:00 400 Sean
6 3 check ticket 2011-01-08 11:43:00 100 Pete
7 3 decide 2011-01-09 09:55:00 200 Sara
8 3 pay compensation 2011-01-15 10:45:00 200 Ellen
9 2 register request 2010-12-30 11:32:00 50 Mike
. . . . . . . . . . . . . . . . . .

Table 6.1: Running example of an event log

Example. Table 6.1 shows an example of an event log, where the columns [case_id,
activity, timestamp, resource] refer to the various fields described above. For the
case_id 3 there are in total 8 unique activities. Suppose that these activities also
hold for all other case_ids in the event log. The column resource yields additional
information, in this example, the person who accomplished a certain activity at which
time. The task of process discovery as described in Section 6.2.2 is to construct a
valid process model w.r.t. certain quality criteria as will be discussed in Section 6.2.4.
Figure 6.3 shows the process model in the Business Process Modeling Notation
(BPMN) [34] of the event log where activities are shown as rectangles whereas
specific gateway operations used in BPMN are illustrated as diamonds (here: ’+’
denote a parallel gateway; ’×’ denotes an exclusive gateway). The green (orange)
markers are used to denote the start (end) of the process.

Fig. 6.3: Visualization of the running example shown Table 6.1 in Business Process
Modeling Notation (BPMN)
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6.2.4 Four Quality Criteria

Completeness and noise refer to qualities of the event log and do not say much
about the quality of the discovered model. In fact, there are four competing quality
dimensions [36]:

• Fitness. The model discovered should be capable of reproducing the behavior
observed in the event log. A model with high fitness is able to accommodate most
of the behavior observed in the log. A model achieves perfect fitness if it can
replay all traces in the log from start to finish.

• Precision. The model derived from the event logs must only allow for behavior
that is consistent with what was observed in the logs, and should avoid any
behavior that is not related to the logs (i.e., underfitting). Underfitting can occur
if the model is too general and allows for behavior that is significantly different
from what was observed in the logs.

• Generalization. How can the discovered model generalize the example behavior
seen in the event logs while avoiding overfitting? Overfitting occurs when the
model is too specific and only explains the particular sample log given, rather
than accounting for the potential variability that may exist in different runs of the
same process. This means that the model may not be useful for predicting the
behavior of future event logs.

• Simplicity. The discovered model should be as simple as possible.

It can be difficult to strike a balance between fitness, simplicity, precision, and
generalization when discovering processes. This is why many advanced process
discovery techniques offer multiple parameters. To achieve optimal results, it is
important to develop enhanced algorithms that can effectively balance these four
dimensions of quality. Additionally, any parameters utilized must be user-friendly
and easily understood by end-users.

6.2.5 Types of Processes

This chapter concludes with high-level characterization of two different types of
processes [37]: Lasagna Processes (Section 6.2.5.1) and Spaghetti Processes (Sec-
tion 6.2.5.2).

The spectrum of process types ranges from structured, semi-structured to unstruc-
tured. The characteristic of a structured process (i.e., Lasagna Process) encompass
work flows where all activities are repeatable and have a well-defined input and
output. In semi-structured processes, the requirements of a process are known, and it
is possible to sketch the general procedure. However, depending on the specific cases
being handled, the work flows might deviate from each other to be more appropri-
ate for the individual case characteristics. In unstructured processes (i.e., Spaghetti
Processes) the major challenge is to identify proper pre- and post-conditions for the



126 Christian M.M. Frey et al.

activities being stored in an event log. In practice, the latter is often driven purely by
experience, intuition, or trial-and-error routines from domain experts.

6.2.5.1 Lasagna Processes

A process can be classified as a Lasagna Process if it is possible to create an
established process model with minimal effort, achieving a fitness level of 0.8 or
higher, which means that more than 80% of the events occur as intended, and the
stakeholders validate the model’s correctness. Hence, Lasagna Processes are easy
to discover, but suffer a loss of information to show the real process as it rather
mimics the expectation. Noteworthy, a wide range of heuristics and techniques from
the research field of Process Mining can be applied on Lasagna Processes where
insightful information is predominantly discovered in more sophisticated models
aligning the event log and model.

6.2.5.2 Spaghetti Processes

Spaghetti Processes are less structured than Lasagna Processes, i.e., only some
Process Mining techniques can be applied. For example, techniques examining the
operational support activities yield less insights whenever the underlying process
inherits too much variability. There are different approaches to get valuable analysis
from such kind of processes. As opposed to the imperative paradigm that describes
the concrete process flow, we gain more insights into less structured processes by
applying tools following the declarative paradigm that describe processes by a set
of rules. Another approach would be to leverage divide-and-conquer approaches by
clustering cases or showing only the most frequent paths and activities.

6.3 Process-Awareness from Theory to Practice

In the following, we present process-aware machine learning (ML) techniques for
predictive analysis. For that, Section 6.3.1 provides an entry point into predictive
analysis in the scope of Process Mining. The chapter continues with Bayesian Mod-
eling in Section 6.3.2 for solving tasks like activity prediction. In Section 6.3.3, we
coin the term of Process AI encompassing next to traditional (ML) techniques also
state-of-the-art deep learning architectures for solving various downstream tasks.
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6.3.1 Predictive Analysis in Process Mining

In practice, information systems provide a more thorough insight into the real work-
flow of a business process execution. A key challenge is the proper analysis of
the performance-monitoring, which uncovers potential execution patterns. Hence,
we can ask questions like ’What activity is the likeliest to follow given a specific
historical pattern?’. From a theoretical point of view, we can model process pat-
tern uncertainty by employing models like Bayesian Networks to determine which
patterns cause a particular kind of process flow.

Generally, these questions arise in the field of Predictive Analytics, i.e., the prac-
tice of extracting information from existing data sets in order to determine patterns
and predict future outcomes and trends [16, 18, 25, 32, 40]. To generate predictions,
existing mining and learning approaches are applied in a business context. Further-
more, predictive analytics is related to business analytics and business intelligence.

Fig. 6.4: Predictive Process Mining compared to traditional Process Mining

The incorporation of ML-enhanced models used in the scope of Predictive Pro-
cess Mining is illustrated in Figure 6.4. Potentially generated insights from the appli-
cation of Predictive Process Mining are the prediction of future activities, remaining
execution times or other key performance indicators of business processes. The pre-
dictive models can aid practitioners in better understanding their processes via the
incorporation of Process Mining techniques into the prediction process. Moreover,
the assessment of potential uncertainties in processes is aided by (possibly proba-
bilistic) predictions and can be augmented by various recommendations of actions
that could nudge running processes towards a more efficient, faster or qualitatively
more satisfying result.
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6.3.2 Predictive Process Mining with Bayesian Statistics

6.3.2.1 Preliminaries for Bayesian Modeling

First, this section recaps on the general definition of a Bayesian Network (BN).
Formally, a Bayesian Network is defined as a directed acyclic graph (DAG) 𝐺 of
tuple (𝑉, 𝐴, 𝑃), with 𝑉 = {𝑣1, . . . , 𝑣𝑛} being a set of vertices of the graph, and
𝐴 ⊆ {𝑎𝑖 𝑗 |𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉} representing the interactions among various entities within the
graph. Let 𝑋 = {𝑋1, . . . , 𝑋𝑛} be a set of random variables such that 𝑋𝑖 is a random
variable of vertex 𝑣𝑖 in the graph. Due to the unidirectional connections of a DAG,
we define 𝑃𝑎(𝑋𝑖) = {𝑋𝑖1, . . . , 𝑋𝑖,𝑠𝑖 } to be the parent set, i.e., the predecessors, of
the random variable 𝑋𝑖 . By applying the chain rule, the joint probability density is
defined as

𝑃(𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑃(𝑋𝑖 |𝑃𝑎(𝑋𝑖)), (6.1)

completing our tuple (𝑉, 𝐴, 𝑃). Suppose a case in the event logs is given as the
sequence < 𝐴, 𝐵, 𝐶, 𝐷 >. By construction, we define a random variable for each
event in the log, i.e., 𝑋𝐴, 𝑋𝐵, 𝑋𝐶 , 𝑋𝐷 . Since a case 𝑐 in the event log contains a
sequential process execution, we assume an ordering on the data in the event log.
Therefore, we can define the parent relationship 𝑃𝑎(𝑋𝐴) = ∅, 𝑃𝑎(𝑋𝐵) = {𝑋𝐴}, and
so on.

It is well-known that learning the graphical structure of a Bayesian Network from
a given dataset is an NP-hard problem [6]. Moreover, the computational complexity
of the structure learning process for analyzing process event logs is additionally com-
plicated by the sequential nature of the processes themselves. This renders existing
score-based [10, 7] as well as constraint-based [24, 26] structure learning algorithms
less applicable to an automatic structure learning process that is causally feasible
and therefore intuitive and interpretable. To ensure causally feasible graphical struc-
tures, we can leverage Process Mining techniques like process discovery and use the
extracted activity orderings as input for the structure learning process, as discussed
in the following.

6.3.2.2 Quality Criteria for Bayesian Modeling

Having identified or modeled the Bayesian Network according to the given input
data, there are further analysis scenarios coming up:

• Causal Inference. This type of inference can be used to perform root cause
analysis, e.g., investigate the causes of a working delay. Due to the sequential
behavior of processes, a single delay in an event can cause a higher throughput
time of the overall process (lateness inference).

• Backward Inference. With backward inference we can find the probability of
the cause’s random variable where the affected random variable is known. It is
the opposite of causal inference.
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• Explaining-away Inference. The task of the explaining-away inference is to
infer any possible patterns influenced by each state(s) of random variable(s).

6.3.2.3 Context-Aware Structure Learning for Probabilistic Process
Prediction

Processes in various domains like manufacturing, customer care, healthcare, or
business management processes in general tend to show uncertainties regarding the
apparent control-flow [17, 22]. Specific activities might only be occurring in some
specific cases or process categories and are absent for the remaining cases. For
further analyses and predictions of cases, e.g. the remaining time of a process or the
quality of a produced good, it is therefore required to know which process steps have
already occurred and which are most likely to be executed in the future. By that,
the growing research field of Next Activity Prediction [5, 11, 33, 28] is a crucial
step towards feasibly predicting process KPIs for processes with high amounts of
uncertainty w.r.t. control-flow. Our current work makes use of Bayesian Networks in
combination with process discovery for generating probabilistic graphical process
models.

The generation of the Bayesian Network structure does not rely on the existing
structure learning algorithms but is achieved by extracting the order of activities di-
rectly from the event log. The (directly) following relations between activities – those
come into play for different process discovery algorithms like the Alpha Miner [35]
or Heuristics Miner [42] – are translated into a DAG that represents a graphical repre-
sentation of the control-flow similar to a Petri-Net. However, the Bayesian structure
needs to infer an ordering that is free of cycles. This is crucial especially for process
event log data as cycles can often occur in the recorded activity patterns. The final
structure of the Bayesian Network consists of the nodes represented by the activities
executed along the process. The connections and transitions between the activities
are represented by the edges between the nodes inside the structure.

After the generation of the underlying structural model, the parameters of the
model are represented by conditional transition probabilities between the connected
activities. The Bayesian model is able to predict the occurrence of all potential
activities, the order of the occurring activities (see Figure 6.5) as well as their
execution time (see Figure 6.6) in a probabilistic manner.

Possible questions that can be answered by such a context-aware prediction model
given the process data at hand are:

...which are the most probable remaining activities of a case given a set of already
executed activities?

...what is the remaining execution time of a case given a set of already executed
activities?

...which activities can or should be executed to keep the remaining execution time
of a case in a certain range with a certain probability?
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Making use of backward inference – also known as What-If analyses – as formu-
lated in the latter question is one of the significant benefits of Bayesian methods. The
Bayesian inference mechanism can be used to generate various recommendations
for practitioners that want to control the performance, i.e., execution time of their
running processes.

Fig. 6.5: Probabilistic forecast for process activities in a running process for a given
trace where the first two activities and their occurrence are known (act_0, act_1).
The most probable ordering (Place) of the remaining activities is inferred in form of
occurrence probabilities at the respective places inside the remaining process trace,
where NO stands for no occurrence.

Challenges that have to be overcome in the modeling of a feasible structure
with Bayesian Networks are the occurrence of activity cycles in process traces, e.g.,
partial traces like < ..., 𝐴, 𝐵, 𝐶, 𝐴, ... >, and highly complex logs with long traces
and many intertwined activities. As Bayesian Network structures need to be free of
cycles, multiple occurrences of individual activities would need to be accounted for.
There are approaches that are concerned with loop-elimination in Bayesian Networks
that could be applied [27, 20]. Also, more complex 1 : 𝑁 relationships of activities
drastically increase the overall complexity of the conditional probability tables that
need to be calculated for Bayesian inference and prediction for that activity. This
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Fig. 6.6: Probabilistic duration prediction based on predicted activities corresponding
to the predicted occurrences from Fig. 6.5. The probabilistic occurrence forecast
allows for sampling distributions of possible activity durations where either no
duration is recorded (for NO, i.e. non-occurrence) or a non-zero duration is sampled
from the respective activity duration distribution.

displays a potential threat to scalability of the approach which has to be tackled for
the applicability of larger and more complex event logs.

6.3.3 Process AI

Process Mining aims at using techniques that focus on both data-driven and process-
centric approaches. As described in Section 6.2.2, the techniques are typically
grouped into categories such as process discovery, conformance checking, and en-
hancement. However, one of the major challenges in Process Mining is working with
an ever-increasing amount of available data (Big Data) accompanied by a high num-
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ber of dimensions. Real-life event logs may present large amounts of cases, which
can represent a diverse set of unique event sequences, as well as contain information
on resources and a variety of other event- or case-related attributes. This makes it
difficult to featurize event data, or in other words, to extract structured instances from
raw event logs, for tasks such as trace clustering or predictive process monitoring
being handled with traditional Machine Learning techniques. As a result, such learn-
ing tasks can suffer from dimensionality issues and often rely on an ad-hoc method
for defining input features.

Fig. 6.7: Research sphere of Process AI.

In parallel to other disciplines, like natural language processing (NLP), graph
analysis, image recognition, tools and techniques from the scope of representation
learning have gained a lot of attention outside the NLP community. The essence
of representational learning is leveraging the power of neural network models to
automatically learn vector representations containing the (contextual) information
of the input data in an embedding space. Due to their success in areas such as NLP,
image recognition, and graph AI, recent pioneering works employ deep learning
architectures also in the scope of business process management [8].

In predictive analytics, neural network-enhanced models have shown superior
performance compared to traditional monitoring techniques. The authors of [9] used
a recurrent neural network (RNN) to capture the sequential patterns in an event
log. In [29], the authors employed a model using Long Short-Term Memory (LSTM)
capturing the inherent sequential characteristics of an activity sequence to predict the
next event. An extension has been proposed to also predict its timestamp, enabling
to predict the remaining time of a partially observed trace. A similar model setup has
been employed in [19] for time series classification in the scope of process planning.
In [21], the authors propose BINet, a recurrent neural network architecture for real-
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time multivariate anomaly detection in business process event logs. The model is
trained to predict the next event and its attributes.

We coin the terminology of Process AI to encompass various AI techniques
for solving a diverse set of downstream tasks. As shown in Figure 6.7, Process AI
pays attention to Process-aware learning heuristics. The tools being leveraged for
an AI-accelerated learning from complex and high dimensional input data stem
from traditional machine learning techniques and range to state-of-the-art deep
learning techniques, providing meaningful insights into the behavioral characteristics
of processes. Naturally, event logs provide a contextual view of activity sequences
and, therefore, provide connected features that are used as input for a deep learning
model. Explainable Process AI (XPAI) plays a crucial role in the practical application
and success of Process AI by examining the inference steps of a model in light of the
underlying process characteristics. The components focusing on the explainability
of models can be further fanned out into descriptive, prescriptive [14, 2, 1], and
predictive [9, 29, 19, 21] (cf. Figure 6.4) factors.

In an ever-increasing connected world with highly complex processes, Process
AI has great potential for gaining a more in-depth understanding of processes whilst
providing the necessary information for enhanced decision-making.

6.4 Conclusion and Outlook

In modern organizations that manage complex operational processes, the discipline
of Process Mining (PM) has emerged as an area providing valuable tools for enhanced
analyses of processes. Techniques from the scope of Data Mining are used to analyze
historical data to gain insights into processes, but they tend to be limited in their level
of analysis and lack a process-centric approach. PM, on the other hand, uses factual
event data rather than relying solely on models. This generates a bridge between
Business Process Management (BPM) and Data Mining. Moreover, PM goes beyond
Process Discovery and allows for the connection between event logs and process
models, which leads to new ways of analysis. This can result in the extension of
an existing process model by incorporating insights from various perspectives, or to
check whether an existing event log is conforming with a process model. In the era of
rising AI tools, one of our main focuses is on Process AI incorporating AI-enhanced
modeling tools ranging from traditional machine learning heuristics to modern deep
learning heuristics in order to solve a whole range of diverse downstream tasks like
predictive analysis. For the latter, we provide an overview into predictive analysis by
leveraging the power of Bayesian modeling.

Naturally, log event data provide sequential characteristics where a more in-depth
analysis of additional attributive information can improve the accuracy of a down-
stream task, e.g., the next activity in an incomplete trace. Whereas log events only
provide positive samples, i.e., samples that have been observed by the system, there
is great potential to look further into negative samples to improve the robustness of
process models. A major characteristic of event logs is their temporal annotations.
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Therefore, identifying concept drifts in various dimensions (temporal, attributive) in
order to optimize business management is essential from a practical point of view in
order to adapt to new situations as efficiently as possible. To solve predictive process
analysis, Bayesian modeling is of great importance for both, the research commu-
nity and practitioners. It opens the world for an in-depth analysis of distributional
behavior within a process. As the explainable component is of great interest for the
practical usage, we focus on XPAI (EXplainable Process AI) in our modeling in
order to improve the usability and explainability for non-experts. As practical sys-
tems vary tremendously in their scale, another research interest lies on Small Sample
Learning (SSL) [13] (a.k.a. Few-shot learning (FSL), or Low-shot learning (LSL))
to potentially adapt pre-learned features most efficiently in a new environment. This
raises questions of monotonicity properties, i.e., of the relation between the size of
a model and its behavior.
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Chapter 7
Combinatorial Optimization

Jan Krause1, Tobias Kuen2, Christopher Scholl2

Abstract Optimization is a fundamental topic in mathematics that deals with finding
the best solution to a problem from a set of possible solutions. This chapter provides
an overview of mathematical optimization, its main objectives, and the methods
used to solve optimization problems. It also introduces basic problems such as the
modeling of binary decision trees, the pooling problem, the clique problem, and
flow models. It concludes with an outlook on online optimization and learning
optimization methods, which represent promising areas of research in the field.
Overall, this chapter serves as a useful introduction to mathematical optimization,
its basic problems, and their practical applications. The chapter is based on a white
paper from Bärmann et al. [2].

Key words: optimization, mixed-integer programming, branch-and-bound, tree
classifiers, pooling problem, graph theory, cliques, maximum flow problem

7.1 Introduction

While the colloquial use of the word "optimization" is often used for "doing some-
thing better" or, in early phases of problem understanding, simply for "doing some-
thing differently", mathematical optimization means the targeted search for an op-
timal solution to a well-defined problem. For this purpose, the planning rules and
objectives valid in the company are translated into a mathematical model that takes
into account all conceivable solutions for the task at hand. The solution of this model
then requires, on the one hand, the availability of data that is considered as a basis
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for decision-making (e.g., data on raw material availability or expected customer
demand). On the other hand, powerful algorithms are needed that can solve the
optimization problem within the required response time.

A mathematical optimization model as described above consists of one or more
objective criteria (so-called objective functions), decision variables and constraints,
and is usually based on a concrete planning decision that has to be made in the
company. The decision variables describe the adjusting screws of the planning.
They often represent small, individual decisions that, when put together, result in the
whole plan for the issue. The constraints describe operational, legal or other rules that
must apply to a valid overall plan. In particular, they exclude undesirable solutions
and effects and describe the interaction and interdependence of the different atomic
decisions. Finally, the objective function evaluates a solution according to specified
criteria and thus makes different solutions comparable: Solution A is better, worse
or equally good as solution B. Based on such a model, a mathematical optimization
procedure is able to search for the best possible solution to the posed problem.

While the basic direction of the optimization problem is based on the planning
problem, the available data often have a decisive influence on the detailed design of
the concrete modeling. On the one hand, the availability, quality and completeness
of data influence the speed with which a software solution can be developed; on the
other hand, these three criteria significantly determine how trustworthy the solution
to the optimization problem is. In practice, the lack of decision-relevant and well-
prepared data is often one of the biggest obstacles. Therefore, clean data management
is significantly responsible for the success of an optimization project.

If data is available in sufficient quantity and quality for the optimization problem,
an optimization algorithm is needed to solve the model. Not all optimization models
can be solved in practice on the first try. Therefore, it is often useful to involve
experts in mathematical optimization who can advise on the modeling as well as on
the selection or, if necessary, the tailored design of solution procedures.

The quality and efficiency of the chosen solution procedure are important aspects.
The field of mathematical optimization has developed rapidly over the last 100
years and year by year the methods become progressively powerful. More and more
complicated models can be solved, which were considered unsolvable years ago.

In the following, various solution algorithms are presented and their advantages
and disadvantages are discussed on the basis of the well-known Traveling Salesman
Problem (TSP). The problem arises from the typical problem of planning a tour: It
is about planning a round trip to different cities so that the traveling salesman or the
truck arrives back at the starting point (the home town or the depot) at the end and
has covered a minimum distance. While in 1954 only one instance with 49 cities
could be solved optimally [6], in 2006 an instance with 1.9 million places in the
world was provably solved almost optimally (to within 0.01%).
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7.2 Solving Methods

7.2.1 Heuristics

The simplest method to solve the TSP is the brute force method. Here, the entirety
of all possible tours is enumerated, the length is calculated for each individual tour
and the best one is selected at the end. This method already reaches its limits for
relatively small-sized problems. The reason for this is what in mathematics is called
the combinatorial explosion. As the number of cities to be visited increases, the
number of tours grows exponentially. While with 5 cities still a manageable number
of 12 tours are possible (equivalent solutions combined), with 30 cities there are
already more tours than there are stars in the universe. Even if one could calculate
1 million tours per second, one would not get an optimal solution in one’s lifetime.
Even a conceivably faster computer would not bring any significant progress here.
So in practice, after a fixed time, the brute force approach would have to be aborted,
without any statement about the quality of the obtained solution compared to the
optimal solution.

A second class of methods are so-called greedy heuristics. They rank the decisions
and then always choose the local best decision. These local decisions are often
motivated by the objective function or "best practice" rules. One of the well-known
representatives of this class is the nearest neighbor heuristic. In it, starting from the
starting location, one constructs the solution stepwise by always visiting the closest
city to the current location next and returning to the starting location at the end.
While a solution is obtained quickly by these methods, in practice the solutions are
often clearly suboptimal. The reasons for this are, on the one hand, the algorithm’s
too local view of the decisions made and, on the other hand, the lack of an overall
picture for the interactions between these decisions.

A third class of methods are local improvement heuristics (LIH). In contrast
to the greedy heuristic, which builds an admissible solution to the optimization
problem, LIH already starts with an admissible solution and then tries to improve
it by making local changes. A well-known representative for the TSP is the 2-opt
algorithm. This iterates over each pair of route segments between two cities and
checks whether the 4 considered cities can be connected shorter and, if this is
the case, exchanges the routes. This method is also often combined with a greedy
heuristic to improve the resulting initial solution. Other well-known methods of this
class are Simulated Annealing [9], Tabu Search, Genetic Algorithms [7] and Ant
Colony Optimization [8].

An overview of well-known heuristics can be found in [13]. The presented heuris-
tic methods have the advantage that they are easy to implement and use. They are also
often already implemented in program libraries. Many generic heuristics have names
from nature, as they are inspired by natural phenomena, such as the ant algorithm
or genetic algorithms. Their operation is typically easy for management to under-
stand in their descriptiveness, and their use is therefore easy to justify. However, the
performance of these generic algorithms often lags behind that of problem-specific
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algorithms. Another disadvantage is that they provide no way to detect whether an
optimization problem is infeasible, making it difficult to maintain and verify the
correctness of the optimization model. They also do not provide a way to estimate
the quality of the solution found compared to the best possible solution. This gap,
i.e., the wasted potential, can be significant even on small instances.

7.2.2 Exact Methods

While a large number of different algorithms have been developed in the field of
heuristics, the branch-and-bound method [10] has been the most popular among
the exact methods. At its core, the method, like the brute force method, is based
on enumerating many decisions. However, the amount of solutions to be tested is
significantly reduced by the clever exploitation of so-called primal and dual methods,
so that the required runtimes are achieved in more and more applications.

The procedure starts with solving a simplification of the original problem. In
doing so, certain constraints are softened to make it a linear optimization problem.
For this class, there are exact optimization methods, like the simplex method, which
usually provides an optimal solution for the simplified problem in a short time. This
solution is usually not admissible for the original problem, but it provides an estimate
for the quality of the optimal solution to the original problem. Now, if an admissible
solution has been generated using any primal heuristic, the value of this solution
together with the value of the reduced problem can be used to provide an estimate
of how good the solution found is compared to the best possible solution. With the
help of this estimation, it can be decided whether it is worthwhile to search further
for better solutions and estimations. If the estimate corresponds to the value of the
solution, a mathematically provable global optimal solution for the optimization
problem has been found. If the global optimal solution has not yet been found, the
procedure starts with the branching step. Here, for example, a binary decision is
selected in the problem and it is decomposed into two subproblems. In each of
the two subproblems, a different outcome of the decision was selected, resulting
in two smaller optimization problems. Now, in turn, new improved estimates can
be computed in both subproblems and heuristics can be used to search for new
solutions. This procedure can now be continued successively. Each branching step
creates two new subproblems and thus a search tree, the so-called branch-and-bound
tree, which grows exponentially. The bounding step tries to prevent exactly this and
sub-branches of the tree are truncated to reduce the search space. If the estimation
of a subproblem is worse than the best solution found, this part of the tree can be
removed, because no better solution can be found there even in further branching
steps.

The branch-and-bound tree is shown schematically in Figure 7.1. The nodes of
the tree are successively worked through and improved barriers and solutions are
searched for there. Figure 7.2 shows the progress of the method over time. At each
point in time, the difference between the best barrier and solution shows the remaining
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optimization potential. As the computation time progresses, this difference decreases
and the method finally converges to an optimal solution.

Fig. 7.1: Graphical representation of a branch-and-bound tree method.

Fig. 7.2: Graphical representation of a convergence optimization method.

There are many different improvements to the basic procedure described. For
example, in practice, primal heuristics are used at the nodes that are specifically
designed for branch-and-bound and to search for better admissible solutions. Fur-
thermore, there is an extension to the branch-and-cut procedure used in practice, in
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which additional dual heuristics are used that attempt to provide better estimates to
reduce the search space even faster.

The exact methods (especially branch-and-bound type methods) offer the advan-
tage of providing an estimate of the quality of the solution found compared to the
optimal solution at any time. Thus, an informed decision can be made at any time
whether further computational and time resources should be invested in finding a
better solution. Over the runtime, both the estimates and the solutions found are
improved, so that it can always be decided whether further computational and time
capacity is worthwhile. As a result, simple instances in particular can be solved
much faster because there is a clear termination criterion. The procedures enable a
significantly improved analysis capability of the problem, since the estimation can
be used to evaluate the potential in the system for further developments or different
scenarios. The procedures also offer the possibility to identify infeasibilities in the
system with pinpoint accuracy.

While heuristic methods are already frequently used due to their lower entry
barriers and free availability, exact methods are still less common. However, due
to the enormous further development of mathematical methods in the last decades,
exact methods are opening up more and more fields of application. Especially for
applications with a high economic potential, an evaluation and, if necessary, a switch
to exact methods is worthwhile due to their more versatile applicability and more
powerful analysis capabilities. Practical problems often lead to complicated opti-
mization problems for which the choice of the optimization approach is crucial.
Here, the development of problem-specific algorithms can make the difference be-
tween satisfactorily solving optimization problems in practice and maximizing the
utility of the developed software tools. In summary, optimization enables companies
to make simpler, better and faster decisions. These lead to cost savings and reduce
economic risk.

7.3 Modeling Techniques

In this section, we give an overview of basic techniques in mathematical optimization
that were used for the different applications which will be described later in this book
(14.3.4, 15.6, 16.1, 16.2).

7.3.1 Graph Theory

In mathematical optimization, graphs are used to model the relationship between
variables and constraints in an optimization problem. A graph consists of nodes and
edges, where nodes represent variables and edges represent the relationships between
variables. There are two main types of graphs used in optimization: directed and
undirected graphs. Directed graphs have edges that are directed from one node to
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another, indicating a specific relationship between the two nodes. Undirected graphs
have edges that do not have a specific direction, indicating a more general relationship
between the nodes. A subset of nodes that are all pairwise connected by an edge is
called a clique in graph theory.

7.3.1.1 Clique Problems

Clique problems have applications in a variety of fields, including computer science,
operations research, and social network analysis. One common clique problem is the
maximum clique problem, which involves finding the largest possible cliques in a
given graph. An example of a maximum clique is given in Figure 7.3. The decision
version of this problem is to determine whether a given graph contains a clique of
a certain size. The maximum clique problem is known to be NP-complete, mean-
ing that no efficient algorithm is known for solving it in general. There are several

Fig. 7.3: Examples of cliques inside a graph.

strategies to solve clique problems in graph theory. Exact algorithms are designed to
solve the clique problem optimally by finding the largest clique in a graph. Examples
of exact algorithms include the Bron-Kerbosch algorithm [3], and the brute-force
algorithm. These algorithms guarantee an optimal solution but can be computation-
ally expensive for large graphs. Heuristics are approximate algorithms that provide a
suboptimal solution to the clique problem. Examples of heuristics include the Tabu
search algorithm, the genetic algorithm [7], and the greedy algorithm [5]. These al-
gorithms are generally faster than exact algorithms and can be useful for finding good
solutions to large graphs. One can also model the clique problem as a mixed-integer
optimization problem and solve it with the branch-and-bound method. Assume we
are given an undirected graph 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of nodes and 𝐸 the set
of edges. We introduce one binary variable 𝑥𝑣 for each node. The variable is set to
one, if it is included in the clique. The constraints that ensure that the nodes in the
clique are pairwise connected are

𝑥𝑢 + 𝑥𝑣 ≤ 1 ∀(𝑢𝑣) ∉ 𝐸. (7.1)

Approximation algorithms are also a popular strategy for solving clique problems.
These algorithms are designed to find a solution to the maximum clique problem
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that is guaranteed to be within a certain factor of the optimal solution. The goal is to
find a good balance between accuracy and computational efficiency.

7.3.1.2 Flow Models

Flow models are mathematical models that represent the flow of goods, information,
or resources through a network. These models are widely used in operations research,
transportation planning, and logistics, among other fields. Flow models typically
involve two types of nodes: source nodes and sink nodes. The source nodes are
where the flow originates, while the sink nodes are where the flow is consumed. The
edges in the graph represent the routes or paths through which the flow can travel.
There are several types of flow models in optimization. Maximum flow models aim
to determine the maximum amount of flow that can be sent from the source node to
the sink node subject to certain constraints. The constraints may include limitations
on the capacities of the edges or nodes in the network. Assume for example we want
to transport as much goods as possible via train from Station A to Station B. Each
edge in the directed graph 𝐺 represents a freight train between two stations. The set
of stations and routes is illustrated in Figure 7.4. The problem can be represented by

Fig. 7.4: Example flow graph.

the following linear program.



7 Combinatorial Optimization 145

max 𝑓𝐴𝐶 + 𝑓𝐴𝐷 (7.2a)
subject to: 𝑓𝐴𝐶 ≤ 2,

𝑓𝐴𝐷 ≤ 3,
𝑓𝐶𝐷 ≤ 1,
𝑓𝐶𝐹 ≤ 1, (7.2b)
𝑓𝐷𝐸 ≤ 1,
𝑓𝐸𝐹 ≤ 1,
𝑓𝐸𝐵 ≤ 1,
𝑓𝐹𝐵 ≤ 2,

𝑓𝐴𝐶 = 𝑓𝐶𝐹 + 𝑓𝐶𝐷 ,

𝑓𝐴𝐷 + 𝑓𝐶𝐷 = 𝑓𝐷𝐸 , (7.2c)
𝑓𝐷𝐸 = 𝑓𝐸𝐹 + 𝑓𝐸𝐵,

𝑓𝐶𝐹 + 𝑓𝐸𝐹 = 𝑓𝐹𝐵,

𝑓 ∈ R8
+,

where 𝑓𝑈𝑉 is the amount of goods we send via the train from station𝑈 to station 𝑉 .
There are two types of constraints. Each freight train has a certain capacity which
cannot be exceeded (7.2b). Additionally, we have to ensure flow conservation (7.2c).
At each station the amount of goods that arrives must equal the amount that departs.
Maximized is the flow we send from station 𝐴 (7.2a). The optimal value for this ex-
ample is 2. In scheduling applications one often uses multi-commodity flow models.
These determine the optimal flow of multiple commodities through a network. The
commodities may have different origins, destinations, and demands, and the network
may have limitations on the capacities of the edges or nodes. There exist several
algorithms to solve flow problems in optimization. These algorithms vary in terms
of their computational complexity, accuracy, and applicability to different types of
flow problems. Some of the most common algorithms for solving flow problems in-
clude the Ford-Fulkerson algorithm, Edmonds-Karp algorithm and the push-relabel
algorithm [5]. These algorithms have been extensively studied and optimized over
the years, and many practical implementations are available in optimization software
packages.

7.3.2 Mixed Integer Programs and Connections to Machine Learning

Decision trees are a type of machine learning model that uses a tree-like structure to
make predictions based on a set of features. Each node in the tree represents a test or
decision on one or more features, and each branch represents an outcome of the test.
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The leaf nodes represent the final prediction or class label for the input data. Decision
trees can be modeled as mixed integer programs (MIP) A mixed integer program
consists of a description of the set of feasible points and an objective function. It can
be stated as

𝑚𝑖𝑛{𝑐𝑇𝑥 | 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ Z(𝑝−𝑞) × R𝑞}

with vectors 𝑐 and 𝑏 and a matrix 𝐴 of appropriate dimensions. In some cases,
some constraints on 𝑥 are algorithmically intractable. In order to decide whether a
given solution is fulfilling these constraints, tree classifiers are used assuming that
the chosen trained classifier is accurate enough to trust its output. The tree classifier
is modeled with linear constraints which are then added to the description of the
feasibility set.

7.3.2.1 Modeling Logic

Let 𝑥1, 𝑥2 ∈ 0, 1 be two binary decision variables. Several dependencies between the
two variables can be modeled by linear constraints:

• Conflict between 𝑥1 = 1 and 𝑥2 = 1:

𝑥1 + 𝑥2 ≤ 1

• 𝑥1 = 1 implies 𝑥2 = 1:

𝑥1 ≤ 𝑥2

• 𝑥1 = 1 if and only if 𝑥2 = 1:

𝑥1 = 𝑥2

• 𝑥1 = 1 implies 𝑥2 = 0 or vice versa:

𝑥1 + 𝑥2 = 1

A collection of linear constraints describe the set of feasible points in a mixed-integer
program.

7.3.2.2 Binary Decision Trees

We are given some input data as a vector of binary variables 𝑠 ∈ {0, 1}𝑛. The
goal is to decide for each configuration of 𝑠, whether this point is feasible for our
optimization problem. To label this point either feasible or infeasible, we use a binary
decision tree. Decision trees consist of decision nodes 𝑣 ∈ 𝑉 and label nodes 𝑣 ∈ 𝑈.
In each node, binary tests are applied on 𝑠 for example or (∨), not (¬) or and (∧).
Starting at the root node of the tree, the result of the test in one node implies the edge
one has to follow until a leaf node (label node) is reached. A small example is given
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in Figure 7.5. To determine the path that our input data is following, we introduce

Fig. 7.5: Examples of a binary decision tree.

binary variables 𝑥𝑣 for each node 𝑣 ∈ 𝑉 ∪𝑈 and binary variables 𝑦𝑣𝑖𝑣 𝑗 for each edge
between these nodes (𝐸), indicating if the path crosses these elements. To translate
this to constraints in the MIP, we use the methods to model logic described above.
An edge 𝑣𝑖𝑣 𝑗 is active if and only if both its adjacent nodes 𝑣𝑖 and 𝑣 𝑗 are active
which can be represented by the inequalities

𝑥𝑣𝑖 + 𝑥𝑣 𝑗 ≤ 𝑦𝑣𝑖𝑣 𝑗 + 1, (7.3a)
𝑦𝑣𝑖𝑣 𝑗 ≤ 𝑥𝑣𝑖 , (7.3b)
𝑦𝑣𝑖𝑣 𝑗 ≤ 𝑥𝑣 𝑗 , (7.3c)

and the binary test at the node 𝑣𝑖 implies the activation of the edge. An edge
𝑣𝑖𝑣 𝑗 is either implied by a TRUE or a FALSE result for the binary test at 𝑣𝑖 . In the
example in Figure 7.5, the edge 𝑣1𝑣2 can only be active, if 𝑠1 ∨ 𝑠2 is TRUE. This is
modeled by the inequality

𝑠1 + 𝑠2 ≥ 𝑦𝑣1𝑣2 . (7.3d)

The other binary test inequalities for the example are given by

0.5(1 − 𝑠1) + 0.5(1 − 𝑠2) ≥ 𝑦𝑣1𝑣3 , (7.3e)
0.5𝑠1 + 0.5𝑠4 ≥ 𝑦𝑣2𝑢1 , (7.3f)

(1 − 𝑠1) + (1 − 𝑠4) ≥ 𝑦𝑣2𝑢2 , (7.3g)
𝑠2 + (1 − 𝑠3) ≥ 𝑦𝑣3𝑢1 , (7.3h)

0.5(1 − 𝑠2) + 0.5𝑠3 ≥ 𝑦𝑣3𝑢2 . (7.3i)

Lastly, an active node implies the activation of exactly one of its child nodes.
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𝑥𝑣𝑖 ≥
∑︁

𝑣 𝑗 |𝑣𝑖𝑣 𝑗 ∈𝐸
𝑥𝑣 𝑗 . (7.3j)

Now, to decide whether 𝑠 is feasible for our optimization problem we just have to
check if 𝑥𝑣4 = 1.

7.3.3 Pooling

In the following, we will introduce the pooling problem as it is stated in [1]. Although
it originally comes from the petrochemical industry, Chapter 15.6 shows how it could
be applied in the food-industrial context. Let𝐺 = (𝑁, 𝐴) be a simple acyclic-directed
graph whose node set is partitioned as 𝑁 = 𝐼∪𝐿∪𝐽. Here, 𝐼 denotes the set of inputs,
𝐿 the set of pools, and 𝐽 the set of outputs. We assume that 𝐴 ⊆ (𝑁 \ 𝐽) × (𝑁 \ 𝐼),
i.e., every directed arc originates at a non-output node and terminates at a non-
input node. Note that we explicitly allowed the presence of arcs between pools.
Traditionally, instances with 𝐴 ∪ (𝐿 × 𝐿) = ∅ are referred to as standard pooling
problems; otherwise, they are referred to as generalized pooling problems. For every
𝑙 ∈ 𝐿, 𝐼𝑙 denotes the subset of inputs that have a directed path to 𝑙 in 𝐺. An example
for 𝐺 is illustrated in Figure 7.3.3.

For every 𝑖 ∈ 𝐼, let 𝑢𝑖 be the total available supply for this input. Let 𝑢𝑙 resp.
𝑢 𝑗 denote the flow capacities for each pool 𝑙 ∈ 𝐿 resp. each output 𝑗 ∈ 𝐽. The
upper bound on arc flows is denoted by 𝑢𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝐴. Typically, we have
𝑢𝑖 𝑗 = min

{
𝑢𝑖 , 𝑢 𝑗

}
. Further, let 𝐾 denote the set of quality specifications that are

tracked across the problem. For 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾 , 𝜆𝑖𝑘 denotes the level of specification
𝑘 in raw material at input 𝑖. Likewise, 𝜇min

𝑗𝑘
and 𝜇max

𝑗𝑘
are the lower and upper bound

requirements on level of specification 𝑘 and output 𝑗 .
Let 𝑦𝑎 be the flow variable for arc 𝑎 ∈ 𝐴. Non-negative flows originate at inputs

and the assumed structure of 𝐴 implies that each pool receives flows from inputs
or other pools and each output receives flows from inputs or pools. For notational
simplicity, we will always write equations using the flow variables 𝑦𝑖 𝑗 with the
understanding that 𝑦𝑖 𝑗 is defined only for (𝑖, 𝑗) ∈ 𝐴. Besides the flow variables,
we have proportion variables 𝑞𝑖𝑙 for 𝑙 ∈ 𝐿 and 𝑖 ∈ 𝐼𝑙 that describe the fraction of
incoming flow to pool 𝑙 that originated from some input 𝑖. We do not distinguish
between flows that started at 𝑖 and reached 𝑙 along different paths. With this notation
we can now state the constraints describing the pooling problem. Here, we refer to
the well-known q-formulation:
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Fig. 7.6: Examples of a pooling graph 𝐺 with inputs 𝐼 = {𝑖1, 𝑖2, 𝑖3}, one pool
𝐿 = {𝑙1, 𝑙2} and two outputs 𝐽 = { 𝑗1, 𝑗2}.

∑︁
𝑖∈𝐼∪𝐿

𝑦𝑖𝑙 =
∑︁
𝑗∈𝐿∪𝐽

𝑦𝑙 𝑗 ∀𝑙 ∈ 𝐿 (7.4)∑︁
𝑗∈𝐿∪𝐽

𝑦𝑖 𝑗 ≤ 𝑢𝑖 ∀𝑖 ∈ 𝐼,
∑︁
𝑗∈𝐿∪𝐽

𝑦𝑙 𝑗 ≤ 𝑢𝑙 ∀𝑙 ∈ 𝐿,
∑︁
𝑖∈𝐼∪𝐿

𝑦𝑖 𝑗 ≤ 𝑢 𝑗 ∀ 𝑗 ∈ 𝐽 (7.5)

0 ≤ 𝑦𝑎 ≤ 𝑢𝑎 ∀𝑎 ∈ 𝐴 (7.6)

𝑞𝑖𝑙 ≥ 0 ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼𝑙 ,
∑︁
𝑖∈𝐼𝑙

𝑞𝑖𝑙 = 1 ∀𝑙 ∈ 𝐿 (7.7)

𝑦𝑖𝑙 +
∑︁

𝑙′∈𝐿:𝑖∈𝐼𝑙′
𝑞𝑖𝑙′ 𝑦𝑙′𝑙 = 𝑞𝑖𝑙

∑︁
𝑗∈𝐿∪𝐽

𝑦𝑙 𝑗 ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼𝑙 (7.8)∑︁
𝑖∈𝐼

𝜆𝑖𝑘𝑦𝑖 𝑗 +
∑︁

𝑙∈𝐿,𝑖∈𝐼𝑙
𝜆𝑖𝑘𝑞𝑖𝑙𝑦𝑙 𝑗 ≥ 𝜇min

𝑗𝑘

∑︁
𝑖∈𝐼∪𝐿

𝑦𝑖 𝑗 , ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (7.9a)∑︁
𝑖∈𝐼

𝜆𝑖𝑘𝑦𝑖 𝑗 +
∑︁

𝑙∈𝐿,𝑖∈𝐼𝑙
𝜆𝑖𝑘𝑞𝑖𝑙𝑦𝑙 𝑗 ≤ 𝜇max

𝑗𝑘

∑︁
𝑖∈𝐼∪𝐿

𝑦𝑖 𝑗 , ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (7.9b)
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Equation (7.4) guarantees flow conservation at each pool. Inequalities (7.5) and
(7.6) describe the flow capacities for each node and arc in the network and the
non-negativity of flows. Constraint (7.7) is the simplex constraint for the proportion
variables, which means that they are non-negative and sum up to 1 at each pool.
(7.8) links the flow and proportion variables and describes the amount of flow in
pool 𝑙 that originated from input 𝑖. Finally, (7.9a) and (7.9b) accomplish the lower
and upper bounds for the quality requirements. With constraints (7.8), (7.9a), and
(7.9b) bilinear terms come into play such that the pooling problem belongs to the
class of non-convex bilinear optimization problems, whose optimization is in general
NP-hard.

Despite the inherent complexity of the pooling problem, the strong effort in
improving the algorithms since the introduction in 1978 has made this problem
computationally tractable. To that end, a variety of solution methods have been
developed where spatial Branch & Cut algorithms stand out as especially promising
as seen in [1] and [12]. In particular, the research in in this line follows two aims:
To create primal methods for quickly finding good feasible solutions [14] and to find
dual methods for obtaining tight bounds [11].

An extension of this basic pooling description is then applicable to multi-level
mixture processes in the production chain of the food industry. When it comes to a
single-level mixture process such that the inputs are directly blended to obtain the
final products, we mathematically consider the simplified blending model, which can
be obtained from the model above by setting 𝐿 = ∅. In particular, in this case only
simplifications of (7.5), (7.6), (7.9a), and (7.9b) are needed. The resulting blending
model is a linear program and can thus be solved in practice in a reasonable amount
of time by state-of-the-art solver software.

7.4 Conclusion and Outlook

A major current research task is the mutual integration of AI learning methods and
mathematical optimization methods. On the one hand, learning methods are usually
based on optimization problems: one searches for the best balancing function, the
best classifier, or – more generally – the best functional relationship between input
and labels to explain the data. Conversely, decision support has long taken place as
a purely sequential process between statistics/AI and optimization. For example, to
estimate the parameters in an optimization problem, regression techniques were used
to predict future trends. After estimating these parameters, optimization took place
based on them. In the future, it will be crucial to develop algorithms for optimization
problems based on dynamically changing data, such as those found in real-time
optimization. Here, it is no longer sufficient to keep the runtime of the algorithms
used small (which is a challenge in itself). Now, quality guarantees for the computed
solutions under time-varying data must also be maintained. For the often highly
dynamic boundary conditions of logistics chains, the availability of such methods
will be of particular importance.
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Latest projects show that it is possible to derive priorities and cost functions in
planning problems from observed past decisions [4]. This methodological approach
to logistic problems is particularly relevant because many planning rules are implicit,
in the sense of not being formalized and difficult to automate. The ability to derive
explicit planning rules from past decisions, thus, ensures a higher degree of automa-
tion of the logistics chain and the objectivity of logistical planning decisions. The
further development of this approach in the context of learning optimization methods
will be of particular importance in future research. The practical application of these
methods in an industrial context will constitute a decisive competitive advantage for
the user.
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Chapter 8
Acquisition of Semantics for Machine-Learning
and Deep-Learning based Applications

Thomas Wittenberg1,2, Thomas Lang2,4, Thomas Eixelberger1,2, Roland Gruber2,3

Abstract For the development, training, and validation of machine learning (ML)
and deep learning (DL) based methods, such as, e.g., image analysis, prediction
of critical events, extraction or reconstruction of information from disrupted data
streams, searching similarities in data collections, or planning of procedures, a
lot of data is needed. Additionally to this data (images, bio-signals, vital-signs,
text records, machine states, trajectories, antenna data, ...) adequate supplementary
information about the meaning encoded in the data is required. Only with this
additional information – the meaning or knowledge – a tight relation between the
raw data and the human-understandable concepts – the semantics – from the real
world can be established. Nevertheless, as the amount of data needed to develop
robust ML or DL methods is strongly increasing, the assessment and acquisition of
the related knowledge becomes more and more challenging. Within this chapter, an
overview of concepts of knowledge acquisition applied to the different examples of
applications is described and evaluated. Six main groups of knowledge acquisition
related to AI-based technologies have been identified, namely (1) manual annotation
methods, (2) data augmentation, (3) generative networks or simulation techniques,
(4) synchronized sensors, (5) Active Learning approaches, and (6) explicit knowledge
modeling using semantic networks.
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8.1 Introduction

For the development, training, and validation of machine-learning (ML) and deep-
learning (DL) based procedures, such as, e.g., the automatic segmentation and analy-
sis of 2D or 3D images or videos, the analysis of multi-modal temporal data streams,
the prediction of (critical) events (e.g., for autonomous driving or driver surveillance),
searching of similarities in huge data collections, or the planning of procedures (as,
e.g., gaming tactics and reactive strategies), a plethora of data is needed [62]. In
addition to this data 𝐷 ∈ D of any origin adequate additional information about the
meaning 𝑀 of the data is essential. This additional information about the meaning is
usually encoded in some types of labels 𝑀𝑖 , describing the content of the data with
respect to a certain task. Nevertheless, for some data there can always exist a set of
different "meanings" 𝑀1, ..., 𝑀𝑛 ∈ M, each one related to one specific task at hand.
Thus, if some data is used for a different task, probably a new set of labels with a
complete different meaning 𝑀 𝑗 is required. Together, the data 𝐷 and its meanings
𝑀𝑖 yield the semantics 𝑆 = (𝐷, 𝑀𝑖), a research field originally based in linguistics.

In 1983 Niemann [49] has postulated this connection of ’data’ and ’meaning’
as: "In order to collect information about a problem domain Ω, a representative
collection of samples 𝜔 = {(f1 (x), y1), . . . , (f𝑖 (x), y𝑖), . . . , (f𝑁 (x), y𝑁 )} ⊂ Ω is
available. In this context f𝑖 (x) denotes the 𝑖 − 𝑡ℎ ’pattern’ (the ’data’ 𝐷) from the
problem domain Ω and y𝑖 some additional information (the ’meaning’ 𝑀) about the
data.1

This idea about ’data’ and ’meaning’ (resp. ’knowledge’) is briefly illustrated in
Figure 8.1. On the left side a 24× 24 patch of numbers (the raw data 𝐷 (𝑥, 𝑦)) can be
seen, which correspond to the top 24 × 24 pixels of the image on the right side. The
right side depicts an MRI slice of the author’s (TW) left wrist, where the radix (1)
and the ulna (2) bones have been delineated manually. These delineations describe
the locations, geometry, extensions, textures, labels and relation of these two bones
to each other within the image contents and hence its ’meaning’ 𝑀 with respect to
delineating these bones with ML or DL approaches. Without the image annotation
𝑀 , the data 𝐷 (𝑥, 𝑦) is more or less meaningless and could not be used to train or
parameterize any common supervised machine learning or deep learning method.

Within the addressed application domain of machine learning, deep learning or
artificial intelligence, the broad goal of any such system is to use meaningfully-
labeled reference data (𝐷, 𝑀) for the definition, training, validation and (hyper-)
parameter optimization of the developed applications 𝐴. This developed application
system 𝐴 can then be applied to and evaluated on yet unknown and unseen data
𝐷̃ in order to extract the embedded meaning 𝑀̃ from it, thus 𝐴(𝐷̃) → 𝑀̃ , while
simultaneously minimizing some loss function 𝐿 (𝑀, 𝑀 ′) between the obtained
meaning 𝑀 ′ and the intended meaning 𝑀 [63].

1 Even though, Niemann [49] defined the additional information 𝑦𝑖 ∈ {1, . . . , 𝑘} in a more
restricted sense as a set of distinct class labels, the fundamental concept of ’meaning’ remains the
same.
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Fig. 8.1: Left side: A 24 × 24 patch of numbers (the data 𝐷 (𝑥, 𝑦)) corresponding
to the top left 24 × 24 pixels of the image on the right side. Right side: An MRI
slice of the author’s (TW) left wrist, where the radix (1) and the ulna (2) bones
have manually been delineated, hence providing information 𝑀 about the bones
position, geometry, extension, texture and labels. Additional information about the
skin, muscles, nerves, arteries, veins could be be added. Together, data 𝐷 (left side)
and the annotations 𝑀 (right side) yield the semantics 𝑆 of this image.

However, as the amount of data needed to develop adequate and robust AI-based
methods is strongly increasing, the simultaneous assessment and acquisition of the
related semantics becomes more and more challenging [12, 63, 64]. Specifically,
Nikolenko, 2021 [52] describes this situation as "Still, any machine learning prac-
titioner will tell you that it is exactly the ’Data’ and for some problems especially
[the] ’annotation‘ phases that take upwards of 80% of any real data science project
where standard open datasets are not enough. "

Thus, in this contribution different approaches of knowledge acquisition related
to machine and deep learning approaches and applications are identified, described,
and evaluated. Furthermore, hybrid approaches are deducted, supporting a shift
from human-in-the-loop approaches to the machine-in-the-loop methods for the
acquisition of semantics.

8.2 Approaches to Acquire Semantics

In order to obtain an overview of currently used knowledge acquisition methods
for AI-based technologies, interviews with members of various research groups of
the ADA-Lovelace-Center at the Fraunhofer IIS and also contributors to this book
have been conducted and supplemented with adequate literature from the field.
Among these applications such as AI for digital pathology (Chapter 12), biosignal
analysis and affective sensing (Chapter 11), as well as XXL-CT dataset segmentation
(Chapter18) will serve as examples.
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The identified approaches of knowledge acquisition have then been clustered.
As result five main groups of knowledge acquisition approaches related to Machine
Learning and AI-based technologies have been identified, namely the:

• manual annotation and labeling of data (Section 8.2.1),
• data augmentation techniques (Section 8.2.2),
• simulation of data (Section 8.2.3),
• use of synchronized (expensive) sensors to obtain reference data, (Section 8.2.4),
• active learning (Section 8.2.5), and
• knowledge modeling using semantic networks (Section 8.2.6).

In the following sections these approaches shall be exemplified and illustrated
based on application examples described in the Application Part of this book as well
as some additional research by the authors.

8.2.1 Manual Annotation and Labeling

For image data (as, e.g., 2D, 3D, 2D+t, 3D+t, or point cloud data) mainly manual
annotation methods are used, where experienced users delineate or draw depicted
entities in the image data and label them using a predefined set of classifications. For
example, the labels for the original ImageNet [13] data collection with currently over
14 million indexed images are based on the WordNet-Ontology [19]. In Figure 8.2a,
the complete volumetric data of the fuselage of an historic airplane [23] with a
spatial extension of approximately 6,100× 15,000× 5,200 voxels and in Figure 8.2b
a 5123-voxel sub-volume as 3D image rendering to be annotated can be seen (see
also Chapter 18). Figure 8.2c shows the manual annotation and labeling processing
using a graphics tablet (having been found to be precise and intuitive [11]), yielding
a labeled data set, see Figure 8.2d. Similarly, trajectories of moving objects in
video streams, see Figure 8.5, and temporal single or multi-modal bio-signals of all
types (electrocardiogram (ECG), electromyography (EMG), electroencephalogram
(EEG), SpO2, RR, emotions, . . .) (see also Chapter 11), are usually manually labeled.
In Figure 8.3, important events such as the so-called ’R-peaks’ (blue boxes) in ECG
data (dotted red line) along the timeline are manually marked and related to a
predefined class.

Despite the fact that manual data labeling is currently referred to as the ‘gold
standard’ for complex data [2, 65], the required resources are quite high with respect
to delineation time and experienced staff. These expenses remain high, even if spe-
cialized annotation pipelines and dedicated annotation tools can be applied to this
task, allowing data-guided annotation, proofreading of inference results and model
refinements. Consequently, to minimize the costs of experts needed for manual or in-
teractive data labeling, so-called ‘crowd-sourcing’ approaches have been established
in the past [42, 10]. These ‘crowd-sourcing’ approaches are performed by so-called
’click-workers’. This distributed approach with very low costs per segmentation has
in the past enabled the possibility to annotate and label challenging data multiple
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(a) (b)

(c) (d)

Fig. 8.2: 8.2a Rendering of the reconstructed fuselage of a completely scanned
aircraft (see also Ch. 18, and 8.2b detail located at approximately the midpoint of
the fuselage between the nose and the tail of the aircraft, see green box. 8.2c Manual
labeling of the detail chunk using a high-resolution graphics tablet and a digital pen,
8.2d resulting a labeled data set. (Images with courtesy from R. Gruber [23]).

times and thus improve the segmentation accuracy by using the ’collective intelli-
gence’ of the annotators. Nevertheless, to be efficient, crowd-sourcing also profits
strongly from the availability of distributed data via the internet such as Amazon’s
Mechanical Turk [56], adequate online annotation tools as well as soft skills of the
annotators. However, besides the organizational, legal and logistic overhead, one
drawback of crowd-sourcing can be the limited understanding of the click-workers
about the annotation problem at hand and the complexity of the data depicting the
various types of entities.

8.2.2 Data Augmentation Techniques

Even though data augmentation techniques (DA) do not provide explicit (new) knowl-
edge embedded in the data (such as, e.g., manual annotation (Section 8.2.1) or phys-
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Fig. 8.3: Example of manually labeled R-Peaks (blue boxes) from ECG data (red
dotted lines) ).

ical simulation (Section 8.2.3), DA techniques are applied to change the appearance
of the available data based on some a-priori known information on how the data
might also appear within a certain domain, while keeping the already known labels
aka ’meaning’ constant. Specifically, these changes are mainly related to rotation
(R), translation (T), scaling (S) and illumination (I) in order to make the dedicated
applications independent to these RTSI-influences, if needed. Even though no new
knowledge is gained by DA, the amount of training data with known labels can thus
be extended, which can be quite useful for data generalization as, e.g., needed for
unsupervised training or auto-encoders. Besides extending the data collections for a
certain domain or task, data augmentation is also widely used to achieve a so-called
domain generalization, addressing the idea how to take knowledge acquired from an
arbitrary number of related domains and apply it to previously unseen domains [47].

For machine learning and deep learning-based image analysis systems using spa-
tial, volumetric or temporal image data, typical augmentation techniques include
geometric (rotation, flipping, cropping, shifting, zooming, scaling, shearing) and
photometric changes (change of color, brightness, contrast, gamma), the addition of
noise (erasing, noise injection) as well as kernel based alterations (using, e.g., lin-
ear and non-linear high- and low-pass, or FIR filters) [3]. Specifically an alteration
of color can be achieved by principle component analysis (PCA), change of hue,
saturation, gray-level equalization, random contrast, auto-contrast, contrast limited
adaptive histogram equalization (CLAHE), solarization, or color jitter (where bright-
ness, contrast and saturation of an image are randomly changed). Many of these DA
techniques – such as the geometrical, noise and kernel based changes – can also be
modified for the use of temporal data, such as, e.g., vital signs (EMG, ECG, EEG,
temperature, ...) or state data from machines such as robots or cars [53].

For more specific applications, e.g., as the development of DL-based computer-
assisted diagnosis (CAD) system within the field of digital pathology using whole-
slide-images (see Chapter 12), more task-specific augmentation techniques are
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Fig. 8.4: Examples for image augmentation for HE-stained tissue in the field of digital
pathology (see Chapter 12): (a) original image patch; (b) rotation, (c+d) flipping,
(e) shearing, (f) zooming, (g-j) change of color stain, (k) change of brightness,
(l) addition of noise, (m) random erasing, (n) Gaussian blur, and (o) Sobel based
filtering. The semantics of the new image patches (b – o) is not changed as they
provide the same information, but in a different peculiarity.

needed, which can consider possible variations of the hematoxylin and eosin (HE)
staining [33] as well as the influence of different scanning systems [4].

Figure 8.4 gives an example of a small image patch of HE-stained tissue from the
field of digital pathology, where the appearance of original image (a) has artificially
been changed with respect of rotation and flipping (b,c,d), shearing and zooming
(e,f), change of color (g-j), change of brightness (k), the addition of noise (l) and
random erasing (m), and the use of a Gaussian and and Sobel kernel filter (n+o). As
can be seen, the semantics of all the new image patches (b – o) is not changed as
they provide the same information, but in a different peculiarity.

8.2.3 Simulation and Generation

If no sufficient data is available for the development and evaluation of ML and AI-
based applications or manual data labeling (see Section 8.2.1) becomes too tedious,
complex or expensive, (physical) data simulation as well as (deep learning-based)
data generation techniques can be used. These approaches are able to yield adequate
data 𝐷 and its related meaning 𝑀 at the same time. Two approaches, namely physical
modeling (motivated from computer games and using such visualization engines),
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and DL-driven generation of new data using generative adversarial networks (GANs),
are described here.

8.2.3.1 Physical Modeling

The physics-based simulation approaches usually only need a limited set of physical
rules to yield realistic data. For instance, for the physical simulation of radiographs
(images produced by X-rays, gamma rays, or similar radiation) with different con-
tent, Monte-Carlo-Simulations (MCS) can be applied, as they include the treatment
of many known interaction mechanisms contributing to image formation, such as
absorption, incoherent and coherent scattering including bonding effects and pair
formation. However, the description of the object geometries can be challenging. In
the biomedical domain Monte-Carlo-Simulated radiographs can for example be used
to generate realistic breast tomosynthesis images [5] or chest radiographies [45, 51]
from a voxelized geometry model to represent the patient anatomy. In non-medical
applications, Monte-Carlo-Simulations can be used used to simulate radiographs of
technical objects [28, 44, 59].

Besides the physical modeling of light-matter interactions to yield simulated
radiographs, also object-to-object interactions can be modeled in order to simulate
the movement of soccer players during a soccer match.

Application Example – Searching Soccer Scenes:

Finding critical or interesting scenes in video recordings of sports matches (such as
soccer, basketball, or ice hockey games) and evaluating these scenes is a fundamental
step with match- and game-strategy analysis for sports clubs, associations and soci-
eties as well as media reporting. Currently, the status quo is the manual annotation
of the video providing adequate labels during or after a match or a time-consuming
search in video material after a game. The use of these labels is intended to provide
added value in terms of more effective training management and talent scouting, e.g.,
through the automatic identification of weak points or the automatic compilation of
well or poorly solved scenes of a player’s game.

Hence, to support and provide scene search for soccer games (and other sports
matches) an AI-based search engine has been developed [39, 40], which is able to
detect similar situations in a databases of past games by means of positional data.
Besides finding similar game situations or constellations in the data collection, in
a second step, these scenes should be evaluated and analyzed with respect to their
contribution to the game and the outcome. Also, it is envisioned that it should be
possible to suggest gaming strategies and solutions to optimize a game situation [43].

Nevertheless, as the complete manual labeling of full matches (or only key relevant
scenes) to obtain an adequate labeled data collection is quite expensive with respect
to time, personnel and other resources (see Section 8.2.1), a soccer game simulator
was applied in order to provide a sufficient set of interesting visual scenes (the data
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Fig. 8.5: Top: one single frame of a simulated soccer scene; Bottom: the correspond-
ing ground truth (the meaning 𝑀 , related to) the individual trajectories of the soccer
players and the ball during a goal scene.

𝐷) together with the trajectories of the players and the ball. These trajectories of the
players and the ball relate to the ’meaning’ 𝑀 embedded within the video data and
which are needed for the automated scene analysis and game evaluation [40, 43].
Figure 8.5 depicts on the top a simulated visual soccer scene, while the bottom
shows the related simulated ground truth (the meaning 𝑀) in form of the individual
trajectories of the soccer players and the ball during a goal. More details about the
specific use of the thus generated and labeled game trajectories can be found in the
works of Loeffler et al. [40] as well as Marzilger at al. [43].

8.2.3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [21] refer to the class of unsupervised deep
learning approaches which are able to automatically extract and characterize the
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structure and patterns of the incoming data in such a way, that the model can then
be used to automatically generate new data in the same domain and similar to the
original data.

The basic approach of GANs relates to a pair of deep neural networks, namely the
generatorG – usually an autoencoder – and a discriminatorD. From a vector of latent
variables, the generator produces new data, while the task of the discriminator is to
decide whether this data is real or fake. Usually the generator receives noise as input
and produces new data as output, while the discriminator takes the newly generated
data as well as real reference data as input and provides a probability value as output,
indicating the chance of the generated data being real or fake. Furthermore, as a
positive side effect, the necessary meaning 𝑀 (as, e.g., labels, locations, contours,
shapes, ... ) about the content of the generated synthetic data 𝐷 can simultaneously
be provided.

Typical examples for generative adversarial networks being used to provide large
scale (labeled) data collections are, e.g., the generation of photographs of human
faces [27, 25], synthetic pictures of polyps in colonoscopy images [57], synthetic
fundus images [6], image data for crack detection in electromagnetic nondestructive
testing, [60], or defect detection in steel blocks from ultrasonic B-scan images [54].

Application Example – Generating Synthetic Data for NDT:

Specifically in the field of non-destructive testing (NDT), the use of GANs has
recently received high interest. Especially during the production of devices with task-
critical functionalities in the automotive domain (as, e.g., electric circuits, car wheels,
tires, pistons ...) non-destructive testing based on various imaging modalities such as
X-ray, CT, ultrasound or hyper-spectral imaging during the production has become
mandatory. To analyze the thus acquired large scale image data many different
machine and deep learning approaches have been proposed and investigated in the
past. Nevertheless, as the occurrence of real defects during the production of these
devices is in the range of one percent and below, the collection and acquisition of
adequate reference data for the development of appropriate ML and DL methods
remains challenging. Hence, to this end, GANs have recently been investigated to
augment real NDT image data with artificially generated defects. Using artificially
generated defects in aluminum cast wheels as an example [8, 48], Figure 8.6 provides
a detail (rim and two spokes) of a GAN generated X-ray of an aluminum wheel
including an artificial defect (red box).

Nevertheless, these deep learning-based approaches to provide realistic X-ray
image data have the disadvantage, that a plethora of adequate training data – including
sufficient images with and without defects – is needed. Hence the training of such
GANs itself becomes challenging.
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Fig. 8.6: Left side: Detail of an artificially generated X-ray of an aluminum wheel
(here the connection between the rim and two spokes) with an artefact (red box);
Right side: detail of the artificial generated artifact.

8.2.4 High-End Reference Sensors

In ML and DL applications, where expensive sensors (e.g., high-end cameras or
ECG-sensors) are replaced by portable low-cost devices (e.g., smartphones), which
then make use of AI-procedures to enhance the captured raw data, the high-grade
data from the synchronized (expensive) sensors can directly be used as the needed
reference knowledge for the training of the AI-methods [63]. In the field of biomedical
engineering examples for this approach are the use of professional high end medical
grade sensor devices for the wire-bound acquisition of high-quality physiological
data such ECG, EMG, EEG, blood oxygen saturation (SpO2), ...) as reference for
contact-less optical heart and respiratory rate assessment on smartphones, or high-
end optical tracking or kinematic systems as reference for smartphone-based gait
analysis and localization [17, 20, 31].

Application Example – Reference data for indoor localization

Radio-based localization and tracking of objects or people (e.g., by their smart-
phones) is a key component of many indoor applications and industrial environ-
ments. Typically, a set of synchronized antennas receives fixed frequency radio
signal oscillations from mobile transmitting units to exploit values such as run-time
measurement, time-of-arrival, and difference in time-of-arrival to estimate a posi-
tion. For the (self) localization process, deep neural networks, and more specifically
so-called long short-term memory (LSTM) networks can be applied [16, 18], extract-
ing the exact location from the mentioned time-depending variables. Nevertheless,
multi-path propagation of high-frequency signals is one of the most common sources
of error that adds dynamic drift to the measurements. On top of that, the objects
and people to be located and tracked usually move dynamically and non-linearly
in real-world applications (e.g., in sports) and even change their motion behavior
both in the short and long term, e.g., they stop abruptly or run in circles for a long
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(a) (b) (c)

Fig. 8.7: (a) Mobile robot to capture reference data for radio-based location and
tracking; (b) reference zig-zag path obtained with the robot; (c) Results of two path
estimators using a Kalman filter and an LSTM network architecture to reconstruct
the path from radio based data.

time. Therefore, the challenge is twofold: First to compensate for multi-path effects,
second to distinguish between the actual motion and the drift of the measurements.

To address both challenges and provide reliable and accurate localization and
tracking, reference positions and reference trajectories are employed (being the
meaning 𝑀). In this case several synchronized high-end reference systems were used
to collect this data. On one hand, an accurate indoor optical laser-based positioning
system was applied providing positions at 30 Hz with an average (vertical and
horizontal) mean error of less than 1 mm. On the other hand, a mobile robot was
used to collect highly dynamic motion data with a maximum speed of 30 km/h and
an acceleration of 2 m/s2. These positions were then used as a reference data 𝑀 for
the development and training of various deep neural network approaches. It has to be
noted, that the synchronization process between the devices is a challenge by itself,
but by this approach smart-phone-based tracking can be enhanced.

Figure 8.7 shows the mobile platform used to collect the reference data (8.7a),
the reference zig-zag path obtained from the mobile platform (8.7b), and the direct
comparison of the ground-truth (semantics) with two approaches (Kalman filter and
an LSTM network architecture) to estimate the paths from radio-based data (8.7c).
For more datails, see [15].

8.2.5 Active Learning

With the exception of DA, the described approaches and techniques to acquire and
collect (implicit or explicit) knowledge (or meanings 𝑀𝑖) about some data 𝐷 are
all depending on a strong involvement of human experts, either for data labeling
(Section 8.2.1), structured knowledge modeling (Section 8.2.6), programming and
training, designing and implementing adequate high-end simulations (Section 8.2.3),
or applying synchronized high-grade devices (Section 8.2.4) [63].
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To reduce these expensive workloads, more intelligent and hybrid approaches
are needed, shifting the focus from human-in-the-loop to machine-in-the-loop. Such
approaches could for example be reinforcement learning (RL) [46, 38] (see Sec-
tion 3.2), active learning (AL) [7, 29, 34, 55] (see Section 4.3), or boot-strapping
(BS) where already available (machine learning) methods can be used for the aug-
mentation of data with labels (knowledge), and where human experts are only needed
for verification or corrections.

All named approaches (RL, AL, BS) share the assumption that there exists a
subset of data samples 𝐷̃ ⊂ 𝐷, which can be used to train or optimize an ML-
approach and will yield a better – but not yet optimal – performance than training on
the complete dataset. Additionally, for RL and AL it is assumed that there exists a
selection method that finds this subset 𝐷̃ ⊂ 𝐷 faster than random sampling, whereas
the methods to select the most adequate training data are mainly based on heuristics
and try to employ insights of the application task or the ML-model. Nevertheless, the
main motivation to use AL approaches is to reduce the expensive human resources
to generate annotations.

Fig. 8.8: Human-in-the-loop approach to generate training data.

Application Example – Boot-Strapping:

For example, Eixelberger at al.+[14] recently proposed a human-in-the-loop boot-
strapping approach, which is used to iteratively increase the labeled training data
collection, see Figure 8.8. In this case a deep neural network 𝑁0 was initially pre-
trained using labeled data 𝐿0 from a publicly available repository, yielding a network
model 𝑁1. This network 𝑁1 was then used to pre-label a yet unlabeled private image
data-set 𝑈1, whose labels were then reviewed, checked and partially corrected by a
human expert (also known as the "oracle"). By this, a correctly labeled data-set 𝐿1
was created, and added to the learning data. Then the network model was retrained
using the additional training data (𝐿0, 𝐿1), hence yielding a new network 𝑁2. By
this iterative approach with increasingly new labeled training data, the outcome of
the network was constantly improved, while simultaneously the amount of labeled
training data increased.
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Furthermore, this machine-in-the-loop approach reduced the time required for
labeling new training data. The involved experts only needed to review and correct
the suggested labels instead of drawing each bounding box on their own. Based on
the work by Su et al. [58] the median annotation time of a click-worker for setting
a bounding box is 42 seconds (mean: 88 seconds), yielding a duration of nearly
twelve hours for labeling 1,000 images. In this case the implemented network 𝑁𝑖
needs approximately 25 ms per frame for the prediction and pre-labeling of the new
data, thus, 1,000 yet unseen images can be processed within 250 seconds or less
than 5 minutes. A user can review these predictions with one frame per second, thus
needing approximately 17 minutes. If 25% of the images need to be corrected, and
an experienced user needs 10 seconds to correct the bounding box and set a label,
this sums up to 42 minutes for the necessary intervention. Hence, in total the user
can check and correct 1,000 images per hour. Compared to the twelve hours, this is
a time reduction of over 90% [14].

8.2.6 Knowledge Modeling Using Semantic Networks

In the above-described data-driven resp. bottom-up approaches the acquired data 𝐷
is linked and combined directly on the pixel-, voxel-, or time-stamp-level with their
related meanings 𝑀 . For images (volumes, videos, point clouds, ... ) this means that
a set of spatially adjacent pixels (voxels, surface points, ...) is usually combined and
labeled, likewise for uni- or multi-modal data a set of synchronized and temporally
adjacent and successive set of data points are combined and labeled.

In contrast to theses methods, also classic rule-based methods can be applied. Here
the factual and procedural knowledge of human experts about the domain, context
and content of the data is translated into machine-understandable information (also
known as ontologies), and then implemented in adequate data analysis measures.
Examples for such a rule-based description of the content of the acquired and
observed data are scene-graphs [9] or semantic networks, as proposed by Niemann
et al. [50].

Such a semantic network or scene graph can be defined as a labeled, directed,
and acyclic graph 𝐺 = (V, E) consisting of the two sets V and E. The set V =

{𝑣1, . . . , 𝑣𝑁 } consists of vertices 𝑣𝑖 (nodes) representing concepts, ideas, physical
or conceptual objects, or features of objects. The set E = {𝑒1, . . . , 𝑒𝑀 } is a subset of
V ×V and describes edges 𝑒𝑙 connecting ordered pairs of vertices (𝑣𝑖 , 𝑣 𝑗 ) and thus
relations between two objects [64]. The most important types of relations (edges)
used within semantical networks are relations between classes and sub-classes of
objects such as ‘is a’, ‘has a’ or ‘has feature’, as well as instance relations between
object instances and object classes. For machine learning and deep learning driven
approaches, such semantic networks or scene graphs can simultaneously be applied to
organize and describe (a) very complex inter-relationships and the inter-dependencies
of the involved objects (e.g., such as all the parts and their relationships of a car or
the human anatomy) and hence the knowledge or meaning 𝑀 about the data, and
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(b) the needed methods to extract the related information from the data [32, 24].
Nevertheless, in practice not every node 𝑣𝑖 needs to relate to a feature or an image
processing functionality. In consequence, the system does not further process such
a node and its sub components.

As an example for such a semantic network 𝐺, Figure 8.9 provides a coarse
semantic network (or scene graph) of a car. The main node (on the top) denotes
the car itself with its associated label (’car’) and a set of important parts (as, e.g.,
four wheels, a windshield and the motor). On the next level, the object ’wheel’ is
a combination of a ’rim’ and and a ’tire’ object, where once again the rim may
consist of the hub, some spokes and the horn. All these individual parts or objects
and their relationships (’has a’ or ’part-of’, ’connects-to’, ...) are denoted in black.
Each object furthermore incorporates some descriptive features (denoted in green),
such as, e.g., a unique label (’car’, ’wheel’, ’rim’, ’spoke’, ...) and the amount of
its occurrences within the next level object (’4 wheels’, ’8 spokes’). Also attached
to an object node can be a reference to some image analysis method (depicted in
yellow) and its necessary parameters, which can be applied to detect and segment
types of this entity in the related data. For example, ’wheel’ objects (rim and tire) of
vehicles can be identified in video-data using the generalized Hough transform [22],
which is a well understood image analysis module to detect and describe parametric
curves such as circular or elliptical objects from edge images. Depending on the
structure, size, geometry, extension or complexity of an object at node 𝑣𝑖 , besides
the generalized Hough transform for circles or ellipses, any other image detection
and segmentation module can be used, either being a deep neural network or a
method from classical image analysis. Similar approaches have been proposed for
the analysis of volumetric image data in medicine as, e.g., the segmentation of chest
CT data using an anatomical model as semantic network.

Application Example – Instance Segmentation from Industrial CT:

For the automatic segmentation of various vehicle parts from large scale XXL-CT
data Lang et al. [35] recently proposed the use of a semantic network based on the
’standard anatomy’ of a car, usually having three to four wheels, a large windshield,
a huge solid car body and so forth. Hence, in a first step the main components of a car
are modeled as a scene graph, where in a second step the main object nodes are related
to image adequate analysis methods. For the detection and hierarchical segmentation
of the windshield the XXL-CT data 𝐷 is combined with the meaning 𝑀 encoded
in the scene graph of the car. Based on the volumetric data (see Figure 8.10a) and
the related semantic network (as, e.g., depicted in Figure 8.9), a bounding box of an
object 𝑣Windshield is detected (see Figure 8.10b). Using this bounding box as a reduced
search space, the included windshield components are iteratively analyzed and fused,
hence yielding a complete segmentation of the windshield (see Figure 8.10c). Using
this hierarchical, top-down, knowledge-driven approach, the scene graph𝐺 of the car
can iteratively be traversed from node to node, and the related methods applied to the
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Fig. 8.9: Coarse semantic network describing a car (top node) with some of its parts
(four ’wheels’, ’windshield’, ’motor’,...), parts of the wheels (’tire’ and ’rim’ objects)
and parts of the rims (’hub’, ’spokes’, ’horn’, ...). Object nodes and their relationships
(’part-of’, ’has-a’, ’connected-to’, ...) are provided in black, feature nodes (’label’,
’occurrences’, ... ) are shown in green, while method nodes and their parameters are
displayed in yellow.

volumetric data. Hence, node-by-node the individual parts of the car can piece-wise
be detected and segmented.

8.2.7 Discussion

A qualitative comparison and summary of the described methods for the acquisition
of ’knowledge’ resp. ’meaning’ 𝑀 of some data 𝐷 (together referred to as the
semantics 𝑆) for machine and deep-learning driven methods can be found in Table
8.1. In the table the listed methods are subjectively evaluated with respect to

• the amount of involved human interaction to relate the knowledge to the data,
• the programming effort needed to establish the method or handle the data,
• the quality of the yielded knowledge resp. meaning 𝑀 , and
• if new and additional data 𝐷 can be generated by this method.

With the exception of data augmentation (Section 8.2.2), all described approaches
yield the needed meaning resp. knowledge in the expected quality. For data aug-
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(a) (b) (c)

Fig. 8.10: Example for the hierarchical segmentation of a windshield in XXL-CT
data using a semantic network. Based on the volumetric data of a car (a) and a
related semantic network (as, e.g., depicted in Figure 8.9), the volume inside a
bounding box of an object 𝑣Windshield is searched for. Using the bounding box, the
included components are iteratively analyzed and fused yielding a segmentation of
the windshield. (Images ©2023 by IEEE. Reprinted, with permission from T. Lang
et al. [35]).

mentation, the ’quality’ of the knowledge acquisition is rated as ’medium’, as the
already available data 𝐷 is simply modified within a-priori known ranges related to
the application.

Both the necessary human interaction (e,.g., for data labeling or system parametriza-
tion) and the efforts with respect to some required programming task can be related
to costly human resources. Whereas the programming effort to establish, design,
implement, host, and maintain an (online) annotation tool for data management and
manual data annotation (Sections 8.2.1 and 8.2.5 ) is straightforward and manage-
able, the (crowd-sourcing) effort for the actual object delineation and labeling can be
quite high, and the achieved results depend strongly on the expertise and availability
of the labelers and annotators.

In contrast, the augmentation of data (Section 8.2.2) is quite cheap, both with
respect to human interaction (actually none) and programming efforts. As data aug-
mentation is currently already integrated in many available ML and DL frameworks,
the programming part only involves the selection and integration of adequate aug-
mentation strategies for the data involved. It should be noted that DA does not really
create new data or knowledge, but extends the available data with new representa-
tions.

For the simulation and generation of data (Section 8.2.3) the programming
effort is quite high, both for defining and establishing an adequate and realistic
physical simulation and appearance of the data (such as a soccer game or the cell
spread simulators), or for designing and training a generative adversarial network to
generate new data. The human interaction for data simulation and data generation can
be considered as quite low and refers most likely to the selection and adjustment of the
necessary parameters. In contrast to all other methods, only the (physical) simulation
and (deep learning-based) generation approaches actually yield (within some limits)
new data together with a meaningful description, where all other methods only
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support the connection of available data 𝐷 to the related meaning 𝑀 . Nevertheless,
it should be noted, that due to distribution shifts not all generated resp. simulated
data depict the ’real world’ and it must be carefully looked to it, which of this data
is adequate to be used as training data.

For the use of (expensive) synchronized and correlated sensors (Section 8.2.4)
the programming as well the human interaction efforts can be considered as medium,
as for the synchronization and handling of the various (multi-modal) data sources
some engineering, programming as well as human interaction and engagement is
needed. If some data 𝐷 can automatically be collected together with its reference (the
meaning 𝑀) and some other related data within real life scenarios, such as mobile
sensors, robots, or cars, this connection could be considered as semantic data har-
vesting [36, 37]. Compared to the other named approaches, data harvesting requires
no expensive preparation step (e.g., to design and implement a data generator) and
no post-processing step (for data annotation or labeling).

Within active learning (Section 8.2.5), the expensive human resources are tried
to be minimized, shifting the workload from human-in-the-loop to machine-in-the-
loop. Yet, this also implicates, that with a reduced need of the domain expert a shift
to the data scientist occurs, who are now responsible to provide the infrastructure to
evaluate and select the most adequate and yet unlabeled data for the domain expert
to annotate or correct. Overall, this combination of man and machine is able to yield
high quality labeled data.

Finally, defining, implementing and establishing adequate semantic networks or
scene graphs (Section 8.2.6) for a new task or application involves a high load of
human interaction. However, the actual design and programming of the inference
loop to traverse the scene graph is subjectively considered with a medium workload,
under the assumption that many DL and ML libraries for various standard (image)
analysis components as part of the graphs nodes are already available and can directly
be accessed. Certainly, if an image data analysis methods for a certain node 𝑣𝑖 is not
available yet, the workload related to the design, implementation and training of this
missing method must be considered as ’high’.

8.3 Conclusion and Outlook

Independently of their final application, the design, development, training, and eval-
uation of new machine or deep learning methods is tightly related to the availability
of data 𝐷 in combination with an adequate and machine-readable description about
the content of the data, the meaning 𝑀 . While in the ages of huge data [26, 61]
big data [41], or even massive data [1] the availability and collection of almost any
type of data has become easy – also in combination with social networks, where a
plethora of different data can be downloaded – the connection of the raw data (im-
ages, videos, vital data, texts, messages, machines states) to their meaning remains
still challenging. Nevertheless, if such immense annotated data is available and can
be used to train domain-independent machine learning or deep learning methods (as,
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Human Programming Quality of Generation of
Method Interaction Effort Knowledge 𝑀 new data 𝐷

Manual Labeling High Low High No
Augmentation None Low Medium No
Simulation Low High High Yes
Generation (GANs) Low High High Yes
Expensive Sensors Medium Medium High No
Active Learning Low Medium High No
Semantic networks High Medium High No

Table 8.1: Qualitative comparison of knowledge acquisition methods (adapted and
extended from [63], licensed under CC-BY 4.0) with respect to necessary human
interaction, programming effort, quality of the obtained knowledge as well the pos-
sibility additionally generate new data.

e.g., for image segmentation or event detection), the development of powerful new
software tools and related applications can be expected [30].

Using application examples described later in this book as well as some research
by the authors, different approaches to collect and obtain the semantics 𝑆 = (𝐷, 𝑀)
for the different tasks and various data types (antenna data, trajectories of soccer
players, XXL-CT volumes, whole slide images, multimodal bio-signals, ...) have
been investigated and reviewed. Amongst them completely different approaches were
identified, including manual data annotation and crowd-sourcing, active learning,
data augmentation, data simulation and generation, data harvesting using additional
sensors, as well as knowledge modeling using semantic networks or scene graphs. As
all these approaches are strongly related to the involvement of human resources for
annotation or implementation or other tasks, more intelligent and hybrid approaches
have to be considered in the future, shifting the workload from human-in-the-loop
to machine-in-the-loop.
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Chapter 9
Assured Resilience in Autonomous Systems –
Machine Learning Methods for Reliable
Perception

Gereon Weiss, Jens Gansloser, Adrian Schwaiger, Maximilian Schwaiger

Abstract Machine learning in the form of deep neural networks provides a pow-
erful tool for enhanced perception of autonomous systems. However, the results of
such networks are still not reliable enough for safety-critical tasks, like autonomous
driving. We provide an overview of common challenges when applying these meth-
ods and introduce our approach for making the perception more robust. It includes
utilizing uncertainty quantification based on ensemble distribution distillation and
an out-of-distribution approach for detecting unknown inputs. We evaluate the ap-
proaches for object detection tasks in different autonomous driving scenarios with
varying environmental conditions. The results show that the additional methods can
support making the perception task of object detection more robust and reliable for
future usage in autonomous systems.

Key words: uncertainty estimation, out-of-distribution detection, autonomous driv-
ing

9.1 Introduction

Over the past decade, advances in machine learning (ML) and high-performance
computing have led to a huge increase in available methods for improved percep-
tion of autonomous systems. These new approaches significantly outperform many
conventional, previously used methods in many specific tasks such as 2D/3D object
detection ([22], [18], [24], [29]), 3D depth estimation, image recognition ([14]) or
semantic segmentation ([3]). Deep neural networks (DNNs) turned out to be one of
the biggest contributors to this new wave of innovation due to their ability to solve
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highly complex problems with a high degree of accuracy. DNNs are now part of
every software stack for autonomous driving vehicles. However, it has been shown
that deep learning models often lack in giving robust and calibrated predictions
([8], [6]), making it hard to have confidence in the reliability of their outputs. One
important aspect for providing increased robustness is to monitor and to reason about
the predictions at test time as well as to check if a given input during operating time
differs strongly from the samples in the training distribution. Calibrated confidence
estimations combined with out-of-distribution (OOD) detection integrated in safety-
critical applications like autonomous driving systems can provide valuable additional
information for the correctness of predictions for the situational awareness. More-
over, they can reduce the risk of hazards resulting from functional insufficiencies by
decreasing the number of unknown unsafe scenarios, which is a critical part for the
so-called safety of the intended functionality (SOTIF) [1] of such systems.

In this work, we review, develop, and evaluate new methods for quantifying
uncertainty in DNNs and OOD detection related to perception tasks as well as
to monitor perception systems’ performance. The main focus is on safety-critical
applications by example of autonomous driving to which these methods provide
crucial knowledge for avoiding high-risk behavior and increasing overall reliability.

9.1.1 The Perception Challenge

An autonomous system must be able to observe and interpret its environment to safely
operate in it – the so-called perception. Accurate perception of the surroundings is
a key part for many autonomous systems where an agent is required to interact with
its environment. Some of the systems operate in a controlled setting where the area
of operation (operational design domain) can be constrained to fit the needs required
for them to work appropriately, e.g., by geo-fencing.

However, even though these application can also benefit from more robust predic-
tions through uncertainty quantification, the major target cases for these methods are
in open-world environments. For these applications, a huge amount of possible con-
figurations of the input data is possible and likely occur if the system is in operation.
As the inputs for their perception modules mostly consist of very high dimensional
sensor data, like LIDAR point clouds or (stereo) camera images, and the applied
deep learning models have a large amount of trainable parameters, a formal verifica-
tion which guarantees correct predictions is almost impossible even for constrained
sub-problems due to the huge state space for both, inputs and parameters.
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9.2 Approaches to reliable perception

There are many aspects which must be tackled in order to make a machine learning
based system reliable. We provide an outline and brief summary of the requirements,
challenges and approaches to design reliable systems using ML components.

9.2.1 Choice of Dataset

The training and test datasets need to be representative for the chosen area of
deployment. To do so, a thorough understanding of the target domain is required. It is
important to define under which conditions the ML system should operate, e.g., which
kinds of objects are in the environment or which kinds of weather conditions are
expected. The main challenge here is how to measure and quantify suitable datasets.
Examples of metrics are coverage of the application domain, relevance, equivalence
of cases/situations or coverage of positive and negative examples. Following standard
practice, it is important to train the model independently of the test dataset, e.g., no
hyperparameter tuning should be done on test data. Another difficulty is, how to
ensure that the training data covers all relevant information (i.e., semantics) of the
data which the model will face during deployment. To mitigate the negative effect of
distributional shift, the training dataset can be continuously improved by gathering
data after deployment.

A general critical issue in this case is to capture all relevant edge cases required
for the expected functionality of the model. A straightforward approach to achieve
this is to introduce large amounts of data to increase the generalization capabilities
of the trained model. This can be implemented by:

• Augmentation of training data to introduce more variation.
• Extending the training dataset with synthetic data or data from generative models.
• Finding underrepresented classes and mitigating this class imbalance.
• Improving the model iteratively during operation by pseudo-labeling or active

learning.

9.2.2 Unexpected Behavior of ML Methods

Currently, it is a hard challenge to verify larger DNNs and to make sure that their be-
havior is always as expected. In particular, providing proof that the network actually
learns the semantics of the problem and has a sufficient understanding of the system
it should model is challenging. Additionally, it is important that a model is adversar-
ially robust, i.e., small perturbations in the input should not change the predictions
drastically. In addition to that, an ML model should also be robust against noise in the
input space. Noisy input data can be faulty sensors or changing weather conditions.
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Interpretability is an additional important building block towards a safe ML system.
A model should be capable of explaining its predictions in a human understandable
way. This increases trust in the model and is a helpful tool for finding problems like
wrong or biased predictions. Another important step towards safer systems is that
a DNN should know when it cannot make reliable predictions. This is related to
OOD detection, where the system can, e.g., ask for human support when an input is
encountered that is different to the learned concepts. Often labeled training data is
very limited, and training a well performing model with few data is difficult as well.
A straightforward approach here is to use semi-supervised learning where a small
amount of labeled data and large amounts of unlabeled data are used for training.
Another option is active learning, where the model uses pseuo-labeling to improve
over time. We refer to [27] for an exhaustive list of safety concerns.

The safety-related topics we tackle in our contribution are as follows. Uncertainty
quantification learns reliable calibrated uncertainties for each input to determine
how confident the model is that its prediction is correct. Redundancy and en-
sembles: Redundancy can be applied at many stages of a ML pipeline, e.g., using
redundant sensors or different neural network architectures. A common approach
for improving the performance of an ML model is to train multiple models indepen-
dently with different initializations. Out-of-distribution detection is a mechanism
for detecting novel inputs that have different semantics than those contained in the
training dataset. Detecting these is crucial, since standard neural networks often
misclassify OOD samples with high confidence.

9.2.3 Reliable Object Detection for Autonomous Driving

Fig. 9.1: The envisioned perception pipeline, integrating reliability information such
as uncertainty estimates which is a metric used for the dynamic dependability man-
agement. Additionally, we show a low-performance safety path which is used when
the reported uncertainty is too high.
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For increasing the trustworthiness of an ML-based perception system for au-
tonomous vehicles, we investigated the use of uncertainty quantification for object
detection, one of the essential perception tasks of autonomous systems. The addi-
tional reliability information gained from the uncertainty quantification can in turn
be utilized to increase the overall safety of the system [13]. Figure 9.1 shows the
envisioned concept for incorporating the uncertainty information in a complete per-
ception pipeline of an autonomous vehicle. The overall perception system is thereby
split into two separate paths, a high-performance path based on ML methods and a
fallback path relying on classical, non-data driven approaches. The subsystems in the
upper high-performance path are extended with additional reliability information,
such as uncertainty estimates. At runtime, a dynamic dependability management
system takes this reliability information into account and combines it with addi-
tional sensor information and other monitoring systems. In each given situation,
it dynamically assesses the reliability of the outputs of the high-performance path
and if required switches to the safety path. The safety path is intended to provide
basic functionality to bring the autonomous vehicle in a safe state, e.g., performing
minimal risk maneuvers which allow coming to a halt on the hard shoulder of a
motorway.

Additionally, we extend the object detection with a separate OOD component to
detect wrong OOD detections of the object detector. The aim of this component is
to provide an additional safeguard that filters out wrong predictions of the object
detection pipeline.

Such a reliable object detector could in the future be integrated into an au-
tonomous driving systems. To demonstrate its general suitability, we performed
different evaluations by benchmarking the underlying feature extractors of the object
detector, comparing it to other state-of-the-art approaches w.r.t. safety metrics, and
finally testing it in a simulation environment. For an overview of generally available
methods for uncertainty quantification and out-of-distribution detection we refer the
interested reader to [11].

9.2.4 Uncertainty Quantification for Image Classification

To find suitable uncertainty estimation approaches that are further considered for
robust object detection, we first performed two benchmarking experiments on the
underlying task of image classification. In the first experiments [12], we compared
four uncertainty quantification methods for DNNs – Monte Carlo dropout [6], deep
ensembles [16], learned confidence [4], and evidential deep learning [26] – against
the baseline of assuming the outputs of the softmax activations used for classification
as confidences. We evaluated their performance across three standard image classi-
fication datasets and two network architectures. For that, we used evaluation metrics
that also consider safety-related aspects: Network calibration, which measures how
well confidences are calibrated, and Remaining Error Rate vs. Remaining Accuracy
Rate, a metric we introduced to capture the trade-off between performance and safety
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when discarding inputs based on a confidence threshold. Our initial findings show
that standard softmax values are usually overconfident and deep ensembles consis-
tently showed the best results (see also Chapter 5 for a more theoretical introduction
into the topic). However, due to the increased computational cost in training and
inference for deep ensembles, learned confidence as sampling-free approach may
also be an interesting approach for further studies.

In our second experiment [25], we investigated whether the same uncertainty
quantification methods used in the first benchmark are suitable to detect novel con-
cepts in input images that otherwise would lead to false positives. To that end, for
each method we trained three different architectures on three different datasets. For
the evaluation, we chose an out-of-distribution dataset for each training dataset or
a different split. We investigated if discarding predictions based on the uncertainty
allows rejecting novel inputs without impacting the overall performance too much.
The results show that deep ensembles consistently showed the best results, closely
followed by evidential deep learning, a sampling-free approach. However, the data
indicated that for a truly reliable novelty detection approach other more specific
measures are required, as a significant portion of out-of-distribution inputs could not
be discarded by any method without greatly impacting the overall performance.

The benchmarks were performed on the task of image classification and intended
to find suitable approaches to transfer to the downstream task of object detection. To
this end, we further investigated the application of deep ensembles, how to transfer
them to object detection, and how to minimize their computational complexity.

9.2.5 Ensemble Distribution Distillation for 2D Object Detection

For the integration of deep 2D object detection models into a perception pipeline
of safety-critical applications, the lack of awareness about uncertainty in the given
predictions represents a common problem for evaluating the trustworthiness of the
system. Previous work mostly tackled this problem with sampling-based approaches
to produce predictive uncertainty estimates. However, this requires multiple forward
passes to create a statistical output which poses a big problem for real-time applica-
tions. Sampling-free methods on the other hand, only capture limited estimations of
uncertainty which is not sufficient in many cases. A DNN that explicitly parameter-
izes a distribution is also referred to as a prior network which was first introduced
for OOD detection by [19]. Therefore, we developed an ensemble distribution dis-
tillation approach to train a student model to predict an output distribution that is
similar to an ensemble of teacher models with just requiring a single forward pass by
using prior networks. We used the Yolov3 [23] architecture for our experiments and
set the teacher models trained using maximum likelihood estimation as the baseline.

The behavior of an ensemble can be approximated by minimizing the Kull-
back–Leibler (KL) divergence between the student model and the expected predictive
distribution of the teacher models:
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𝐿 (𝜃, 𝑇𝑒𝑛𝑠) = 𝐸 𝑝̂ (𝑥 )
[
𝐾𝐿

[
𝐸 𝑝̂ (𝜙 |𝑇 ) [𝑃(𝑦 |𝑥; 𝜙)] | |𝑃(𝑦, 𝑥; 𝜃)

] ]
, (9.1)

where 𝜃 represents the parameters of the student model while 𝑇𝑒𝑛𝑠 is the teacher
ensemble parameterized by 𝜙 for each model respectively. However, for the case that
the student model directly learns the teacher outputs, this approach essentially only
captures the mean predictions of the ensemble while the diversity is lost. In order
to preserve information about the predictive distribution of the ensemble, it was
proposed by [20] to let the student learn the parameters of an underlying distribution
parameterizing the output distribution of the network:

𝑃(𝑦 |𝑥∗, 𝜃) = 𝑃(𝑦 |𝛿), 𝛿 ∼ 𝑝(𝛿 |𝑥∗, 𝐷). (9.2)

In Equation 9.2, 𝛿 can be any distribution, but is often chosen to be the conjugate
prior of 𝑦 due to traceability.

Formally, the student model is trained to distill the implicit distribution over dis-
tributions of 𝑀 teacher models from a set of samples into an explicit distribution
modeled by a single prior network. The set of distributions from 𝑀 teacher mod-
els {𝑃(𝑦 |𝑥; 𝜙 (𝑚) )}𝑀

𝑚=1 is approximated by a single distribution 𝑝(𝛿 |𝑥; 𝜃) which is
supposed to match the teacher ensemble as close as possible.
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For the classification case the conjugate prior to the categorical distribution
commonly used to describe the problem would be a Dirchlet distribution resulting
in:

𝐿𝑒𝑛𝑠𝑐𝑙𝑠 = −
𝑀∑︁
𝑚=1

𝑊∑︁
𝑗=1

𝐻∑︁
𝑙=1

𝐴∑︁
𝑘=1

𝛾 𝑗 ,𝑙,𝑘 𝑙𝑜𝑔(𝐷𝑖𝑟 (𝜏𝑚𝑗,𝑙,𝑘 |𝛼̂ 𝑗 ,𝑙,𝑘)) + 𝜖 . (9.3)

In this case, we sum over 𝑀 teacher models with 𝐴 grid cells containing anchor
boxes with 𝑊, 𝐻 widths and heights for each feature map. A small term 𝜖 is added
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for numerical stability as the 𝛼’s are computed by involving an exponential function
which can cause issues. The 𝛾 𝑗 ,𝑙,𝑘 parameter incorporates the objectness and the box
scale for the respective ground-truth box 𝛾 𝑗 ,𝑙,𝑘 = ((2 − 𝑤𝑔𝑡ℎ𝑔𝑡 )𝑜 𝑗 ,𝑙,𝑘)/2.

Similarly, for the regression of the bounding boxes a Gaussian distribution is
assumed:

𝐿𝑒𝑛𝑠𝑟𝑒𝑔 = −
𝑀∑︁
𝑚=1

𝑊∑︁
𝑗=1

𝐻∑︁
𝑙=1

𝐴∑︁
𝑘=1

𝛾 𝑗 ,𝑙,𝑘 𝑙𝑜𝑔

(
N

(
𝑡𝑚𝑖 𝑗,𝑙,𝑘 |𝜇𝑡𝑖 , Σ𝑡𝑖

) )
+ 𝜖, (9.4)

where 𝐿𝑡𝑖 denotes the loss for a single bounding box parameter (e.g. 𝑡𝑥). Similar to
Equation 9.3, the NLL of the teacher prediction 𝑡𝑖 given the predicted parameters 𝜇𝑡𝑖
and Σ𝑡𝑖 is summed over all teacher models and anchor boxes with all dimensions.

To show the effectiveness of the proposed method, the models are compared in
terms of the quality of the uncertainty estimates as well as classical performance
metrics. For performance on the detection task, mean average precision (mAP) and
mean average recall (mAR) at an intersection over union (IoU) from 0.5-0.95 was
used. Mean average precision is the most commonly used metric for comparing
object detection models. It measures the area under the precision-recall curve for
an average over different intersection over union thresholds (average precision)
defining a true positive as well as building the mean over all classes (mAP). The
mean average recall (mAR) measures the recall averaged under all intersection over
union thresholds and all classes indicating purely how many relevant objects have
been found while mAP indicates how many have been found as well as how precise
these are with a certain trade-off.

For quantifying the ability of the networks to jointly assign high probability to true
positives with respect to categories and bounding boxes, the probabilistic detection
quality (PDQ) [9] was used.

Four different types of models were evaluated: 1) Best teacher model is the best
performing model from the ensemble, 2) Deep Ensemble is the aggregated result from
the ensemble of teachers. The boxes are merged by averaging the confidence scores
as well as the bounding box position over all models. The diversity of the models
is also considered by calculating the variances for the classification and regression
parts for each box, 3) Distilled student with ground-truth is a student model trained
using soft teacher labels as well as ground-truth label, 4) Distilled student without
ground-truth is a student model trained with just using the predictions from the
ensemble of teachers as targets.

Table 9.1 shows the results of the models on the three different datasets. It can be
observed that all approaches outperform the baseline of taking the best performing
teacher model from the ensemble for all metrics by a large margin. By taking a closer
look between the distilled student models and the teacher ensembles containing 5
different networks one can see comparable for all metrics with the ensemble mostly
performing slightly better than the students. However, in some cases the students even
perform marginally better on the PDQ metric which is an interesting observation. In
addition to that, it is also notable that including the ground-truth labels to the student
training do not change the results in a significant way. This might be the case due to



9 Assured Resilience in Autonomous Systems 187

Table 9.1: Evaluation Results

Model mAP (%) mAR(%) PDQ (%) FPS

KITTI test dataset

Best teacher model (Baseline) 45.4 50.9 8.4 60
Deep Ensemble (5 models) 52.9 56.5 41.3 12
Distilled student with gt (ours) 51.7 55.5 40.8 58
Distilled student without gt (ours) 51.9 56.1 41.5 58

COCO2017 validation dataset

Best teacher model (Baseline) 32.5 42.1 2.6 60
Deep Ensemble (5 models) 34.6 44.1 23.3 12
Distilled student with gt (ours) 34.6 43.6 16.5 58
Distilled student without gt (ours) 34.4 43.4 17.2 58

BDD validation dataset

Best teacher model (Baseline) 23.1 30.2 2.5 60
Deep Ensemble (5 models) 25.7 32.7 15.5 12
Distilled student with gt (ours) 25.4 32.1 18.5 58
Distilled student without gt (ours) 25.1 32.3 17.3 58

the fact that the teachers are already converged to a certain level below the combined
ensemble and knowledge discovery mostly takes place by learning the features out
of multiple ensemble models as some models tend to find relevant objects which
others do not and vice versa due to restrictive feature space boundaries of some local
optima.

For the scope of this work, the PDQ metric is particularly interesting as it is
the only metric taking class and bounding box uncertainties into account. It is no
surprise that the single teacher models alone do not perform well on this metric as the
variances are set to zero in this case, which reduces the expected probability inside
the box significantly due to a sharp box boundary. The most prominent benefit of
the ensemble distribution distillation approach is the huge increase in speed during
inference time measured in frames per second (FPS) over the ensemble, as the student
models do not require any sampling and thus, compute the output in just one forward
pass making it multiple times faster. The speed was tested on a NVIDIA RTX2080
Ti graphic card.

In order to get more insight on the properties of the predicted values they are
plotted in Figure 9.3 against the expected precision (top) and the Intersection-over-
Union (IoU) (bottom) between predicted and ground-truth box for cases where the
IoU is higher than 0.4 with a correct classification.

All results in Figure 9.3 are based on the student model trained on the dataset
Common Objects in Context (COCO) from 2017 (COCO2017) from the ensemble
only. The first plot shows the relationship between the average confidence and preci-
sion. In the context of object detection this can also be referred to as calibration [15].
It can be seen that the model is highly underconfident in its predictions, with even
low mean confidence predictions having high precision in many cases. This, how-
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(a) Correlation mean confidence scores
and precision, Correlation coefficient:
0.18

(b) Correlation standard deviation for
class confidence scores and Precision,
Correlation coefficient: -0.97,

(c) Correlation mean confidence
scores and IoU, Correlation coeffi-
cient: 0.485

(d) Correlation box standard deviations
and IoU, Correlation coefficient: -0.34

Fig. 9.3: Correlations for distilled student without ground-truth model for
COCO2017 validation dataset.

ever, seems to be a property of the Yolo [23] architecture in general, as the teachers
were also observed to show the same behavior which reinforces the need for some
more reliable source of information. This can be found in Figure 9.2b) where the
standard deviation is plotted on the precision. There is a strong negative correlation
between these two values showing that for a more spread Dirichlet distribution over
the class label distribution the precision significantly drops. This indicates that the
disagreement over the predictive distribution gives a more robust predictor with
respect to the likelihood of a prediction to be relevant than just taking the mean con-
fidence. Having a more trustworthy approximation on what examples have a higher
chance to be false positives is of high importance in safety-critical applications like
in autonomous driving.

The two bottom graphs in Figure 9.3 show the correlation between mean confi-
dence (left) and the predicted bounding box standard deviation (right) and the IoU
with the ground-truth. For the confidences we can see a positive and for the standard
deviations a negative correlation, which is as expected. However, we expected the
correlation from the bounding box deviation to be higher than for the confidences.
Nevertheless, these results show that for correct boxes the classification confidence
and the bounding box standard deviation can indicate how well a box fits to the actual
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ground-truth which can be used as a source of information in systems using stereo
vision to estimate the exact 3D position of the detected objects.

Overall, we were able to show that our distilled student model significantly outper-
forms the teacher models by improving mean-average precision (mAP) from 32.5%
to 34.6% and PDQ from 2.6% to 16.5% on the COCO2017 evaluation dataset. In
addition to that, we showed that the predicted uncertainties of our model correlate
well with the quality of the classification and bounding box position predictions.

9.2.6 Robust Object Detection in Simulated Driving Environments

To evaluate the developed robust object detector more in-depth, we chose to create a
set of scenarios in the autonomous driving simulator CARLA [5]. This allowed us to
systematically investigate the influence of additional parameters, including lighting
and weather conditions, occlusion, and object types.

9.2.6.1 Scenarios Setup

Scenario Name Description
Accident ahead The ego vehicle drives behind another car that suddenly changes

lanes due to an accident site ahead.
Pedestrians crossing The ego vehicles takes a right turn where a group of three pedestrians

is about to cross the street.
Group of runners The ego vehicle drives along a lane behind another car. On the

opposite lane, a group of 10 runners is running behind a safety car.
Occluded pedestrian crossing The ego vehicle drives along a straight street when suddenly a

pedestrian crosses the street between two parked cars.
Roundabout crash The ego vehicle enters a two lane roundabout when the other car is

about to exit it.
Red light violation The ego vehicle arrives at a crossing and is about to perform a left

turn, when a car coming from the left side is violating a red traffic
light.

Random items The ego vehicle slowly drives along a straight street where random
items — e.g., a garden gnome, plastic bag or shopping cart — are
placed on the side walk.

Table 9.2: A short description of the scenarios generated in the CARLA simulator
for the purpose of evaluating the robust object detector developed within this project.

Within CARLA, we created a set of seven scenario types, which are described
in Table 9.2. The ego vehicle denotes the autonomous driving car incorporating the
perception system. Each scenario thereby has 18 variations, allowing for a better
investigation of the robustness of the approaches and enabled studying the impact
of changes in the environment in a controlled manner. The variations are listed
in Table 9.3 and sample images are shown in Figure 9.4. Each scenario in all its
variations thereby is executed deterministically using CARLA ScenarioRunner [5].
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Time of Day Rain Clouds Fog
{Day, Sunset, Night} None None None
{Day, Sunset, Night} Light Light None
{Day, Sunset, Night} Heavy Heavy None
{Day, Sunset, Night} Heavy Heavy Heavy
{Day, Sunset, Night} None Heavy Light
{Day, Sunset, Night} None Heavy Heavy

Table 9.3: The 18 variations for each scenario given in Table 9.2. It consists of six
basic weather conditions, repeated for three different times of day.

The resulting data, comprising the RGB camera output, ground truth for 2D object
bounding boxes and additional metadata, are recorded and stored as a dataset to
simplify the evaluation pipeline.

Fig. 9.4: Example images taken from the generated scenarios.

9.2.6.2 Methods and Metrics

We evaluated models trained on the datasets Berkely Deep Drive (BDD)) [28],
COCO [17] and KITTI [7] with ensemble distribution distillation outlined in Section
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9.2.5 and standard softmax training respectively. As a base model architecture we
chose a slightly advanced version of Yolov3.

To compare the results between the proposed ensemble distribution distillation
method and a standard implementation of a Yolo model in terms of robustness, we
compared the results for the different CARLA scenarios on mean average precision
(mAP) and mean average recall (mAR), see also explanations in Section 9.2.5.

9.2.6.3 Results

The results for the CARLA scenarios are provided as supplementary material in
tabular form [2]. As expected from the results in Section 9.2.5, the distilled model
outperforms the standard models in most cases. These differences get more pro-
nounced under difficult conditions like dusk and rain. However, even though the
trend clearly shows better performance for the distilled model, in some cases the
standard model is better. This is another indication that the quality of a certain object
detector is mostly not strictly superior to another model even if the overall results
are noticeably better. A further interesting observation is, that there are large dif-
ferences in performance solely induced by different weather condition for the same
street scenario which indicates high bias of models trained on very restricted incom-
plete datasets. Especially striking is the trend that models tend to struggle with the
same scenes and more important, the same weather conditions, even though they are
trained independently on different datasets with different methods. This is the case
despite the weather conditions vary strongly in the respective training datasets.

Overall, we could achieve a noticeable improvement for object detection over
standard models by developing the ensemble distribution distillation method which
is capable to give uncertainties for the classes as well as for the bounding box
edges. We showed that this method also shows better performance in terms of
classical object detection evaluation metrics as mAP and mAR on both, real world
and simulated data with vastly different environment conditions. In Section 9.2.5, we
also demonstrated the negative correlation between the uncertainties for classes and
box edges with the average precision and average intersection over union respectively
which strongly aligns with the expectations as more uncertain predictions are indeed
more risky to be wrong. Another interesting finding is the simultaneous degradation
in performance for all models which where independently trained with different
methods and datasets on the same weather condition on the simulated environment,
even though some of them are visually of medium difficulty for the human eye.

9.2.7 Out-of-Distribution Detection

The purpose of the OOD detection module is to detect wrong predictions of the
object detector, providing an additional layer of robustness. The OOD module should
classify bounding boxes of objects learned by the object detector as in-distribution
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(ID), and bounding boxes of everything else (e.g., background) as OOD as shown in
Figure 9.5.

Object
Detector

Input image Detections OOD detection

Fig. 9.5: The OOD module classifies the predicted bounding boxes from the object
detector as in-distribution (shown in green) or out-of-distribution (shown in red).

The OOD module is trained on the ground truth bounding boxes which are also
used to train the object detector. Since in an open-world scenario like autonomous
driving input images could contain anything, we only evaluate methods that do not
rely on training with OOD data.

We experiment with various simple OOD detection strategies. To evaluate the
OOD detection methods, we use all cropped ground truth bounding boxes for cars
and pedestrians from the various scenarios described in Section 9.2.6.1 as ID dataset,
in the following referred to as carla-id. Note that this dataset also contains noisy
images, i.e., images containing fog or rain. As OOD dataset we use the SVHN
dataset [21] (referred to as svhn) to represent inputs that strongly differ from the ID
data. Additionally, we use random crops from the scenario backgrounds that do not
contain known objects which represent wrong predictions of the object detector and
are closer to the ID data (referred to as carla-ood). The used datasets are shown in
Figure 9.6.

(a) carla-id (b) carla-ood (c) svhn

Fig. 9.6: For the evaluation of the OOD detection methods, carla-id is used as ID
dataset. This dataset contains the bounding boxes for cars and pedestrians. The OOD
datasets are carla-ood which contains random crops from the scenario backgrounds
and svhn which contains images of house numbers.

The described setup can be seen as a simple binary classification problem, which
is straightforward to solve. A classifier with a small neural network can easily
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Table 9.4: Results in AUROC, AP and FPR at 95% TPR for carla-id as ID dataset and
carla-ood and svhn as OOD datasets. The single simple-cnn and resnet models are
the best performing models in the ensemble. For the autoencoders, different number
of clusters and latent dimensions were tested and the best performing models are
reported.

AUROC AP FPR at 95% TPR

carla-ood/svhn

simple-cnn 0.83/0.94 0.58/0.88 0.65/0.28
resnet 0.75/0.89 0.48/0.69 0.76/0.36
simple-cnn ensemble 0.62/0.67 0.32/0.35 0.73/0.58
resnet ensemble 0.62/0.65 0.36/0.36 0.77/0.67
AE-gmm 0.84/0.96 0.72/0.94 0.54/0.29
AE-kmeans 0.33/0.46 0.20/0.29 0.94/0.90
AE-rec 0.81/0.98 0.73/0.97 0.71/0.10

achieve perfect accuracy. For this reason, more sophisticated OOD methods cannot
be applied here. For example, confidence calibration cannot be used in this case
since all confidences for ID data are close to 100%. Since the classifier always
has a confidence of 100%, it is already perfectly calibrated. Since the ID dataset
only contains two classes, simple OOD detection methods work well. We run our
experiments with the following OOD detection strategies.

- Classifier thresholding (simple-cnn, resnet): We threshold the maximum class
probability of a classifier, all predictions below the threshold are OOD, all above
the threshold are ID.

- Classifier thresholding with ensembles (simple-cnn ensemble, resnet ensem-
ble): The same as classifier thresholding but the class probabilities are the aver-
aged predictions of an ensemble.

- AE-gmm: We train a Gaussian mixture model (GMM) on the ID latent repre-
sentations of an autoencoder trained on ID data and threshold the likelihood of
samples.

- AE-kmeans: We cluster the ID latent representations of an autoencoder trained
on ID data and threshold the distance of a sample to the nearest cluster center.

- AE-rec: We train an autoencoder on the ID data and threshold the reconstruction
error to classify samples as ID or OOD.

Note that the classifier based OOD detection methods require class labels for
training. The autoencoders are trained in an unsupervised way. For the classifier based
methods, we use a shallow simple convolutional neural network (CNN) architecture
as well as the resnet18 architecture [10]. For the autoencoder, we use resnet18 as
encoder and a simple convolutional decoder. We evaluate the methods with the
following metrics:
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Fig. 9.7: ROC curves for (a) carla-id and carla-ood (b) carla-id and svhn (c) AE-gmm
with different latent dimensions 𝐷 and best number of clusters 𝐾 on carla-id and
carla-ood. (d) AE-gmm with latent dimension 512 and different cluster sizes on
carla-id and carla-ood.

- The Area Under the Receiver Operating Characteristic Curve (AUROC) is a
threshold independent metric for evaluating classifiers. It computes the area under
the receiver operating characteristic (ROC) curve which represents the FPR and
TPR evaluated for all possible thresholds. An AUROC of 1 corresponds to an
OOD detector that can perfectly distinguish between ID and OOD inputs.

- Average Precision (AP) is also a threshold independent metric similar to AU-
ROC. It computes the area under the precision-recall curve evaluated for all
possible thresholds. A high AP means the model has high precision as well as
high recall.

- FPR at 95% TPR is the FPR when a threshold is used such that the TPR is 95%.
It reflects the performance of the OOD detector for a specific choice of threshold.

We show the experimental results in Table 9.4. Each ensemble contains eight
independently trained classifier. For the single classifier results we use the best
performing classifier from the ensemble. For the autoencoders, we tried different
latent dimensions and used the best performing. Additionally, for AE-gmm and
AE-kmeans we tried different numbers of clusters and took the best performing
model.
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In Figure 9.7a and Figure 9.7b the ROC curves for the respective methods for
carla-ood and svhn are displayed. The best performing method for carla-ood is AE-
gmm. For svhn as OOD dataset, the best performing method is AE-rec. For both
datasets, simple-cnn, AE-gmm and AE-rec are the best performing models. We
can see that fitting simple Gaussians to the latent representations does reflect the
distribution of ID data in the latent space well. Compared to that, the L2 distance used
by K-means does not work at all and shows that the formed clusters have different
variance or overlapping convex hulls. We see that for this simple problem the simple-
cnn model works always better than the more complex resnet model. Additionally,
the best single model works better than the ensemble. Figure 9.7c shows the ROC
curve for AE-gmm with different latent dimension sizes evaluated for carla-ood. For
each curve, we evaluated different numbers of clusters and report the best performing
setup. We see that for small latent dimensions the performance is significantly worse.
Figure 9.7d shows AE-gmm with different number of clusters and latent dimension
512, also evaluated for carla-ood. With latent dimension 512 more clusters improves
the AUROC score. This shows that the latent space for ID data does not contain only
two clusters, each for one class, but is structured based on more complex features.

9.3 Conclusion and Outlook

Machine learning (ML) is a core technology for developing intelligent autonomous
systems. It is crucial to reliably integrate ML into safety-critical systems like au-
tonomous cars or collaborative robots. We investigated current state-of-the-art meth-
ods and approaches to enhance the reliability and robustness of ML-based perception
for autonomous vehicles. Our evaluations of diverse autonomous driving scenarios
show the enhancements in ML-based perception using the proposed approaches of
uncertainty quantification and out-of-distribution detection. For changing environ-
mental conditions and street scenes, we achieve more reliable detection rates. Never-
theless, from a safety perspective the introduction of ML into safety-critical tasks still
requires application-specific solutions. Therefore, further research activities should
target specific real-world systems, taking their individual safety requirements on the
perception module into account.
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Chapter 10
Data-driven Wireless Positioning

Maximilian Stahlke, Tobias Feigl, Sebastian Kram, Jonathan Ott, Jochen Seitz,
Christopher Mutschler

Abstract Radio-based indoor localization is a crucial enabler for various tasks like
robot navigation or quality assurance in industrial assembly. However, especially
industrial environments often present challenging propagation conditions, with re-
flections, diffraction obstruction, and blockage. While traditional, lateration-based
positioning algorithms can provide high accuracies in line-of-sight (LOS) condi-
tions, signal blockages cause non-line-of-sight (NLOS) propagation and degrade the
performance dramatically. To overcome this problems, recently artificial intelligence
(AI)-driven localization algorithms have shown promising results and can provide
robust and high localization performance in such challenging environments. In this
chapter, we evaluate the performance of AI-models trained on radio fingerprints
in various challenging industrial environments. We evaluate the accuracy and the
effect of environmental changes on the localization performance and robustness.
Our results show that environmental changes significantly degrade the performance,
which leads to a high effort in maintenance, i.e., keeping the models up-to-date. We
show how to combine classical lateration-based algorithms with data-driven models
employing uncertainty estimation to reduce the the effort for initial deployment and
maintenance for a more robust localization solution.

Key words: indoor localization, lateration-based positioning, AI-driven localiza-
tion, hybrid localization.
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Fig. 10.1: Simulated CIR with 250 MHz bandwidth limitation. The LOS and multi-
path components are depicted as stems.

10.1 Introduction

Indoor positioning systems achieve reliable localization in industrial environments
and enable various tasks such as process monitoring or the navigation of autonomous
robots. There are methods based on cameras [13, 12], a combination of inertial sen-
sors and cameras [14], or other modalities like LiDAR [23] and ultrasonic [23],
which enable high localization accuracies. However, these methods often lack ro-
bustness due to changing light conditions, to dynamics of industrial environments,
or interferences in the measured data [22, 15, 3, 7]. Therefore, radio-based local-
ization methods are often employed providing high localization accuracies in such
environments. Traditionally, methods such as lateration based on the time-difference-
of-arrival (TDOA) are used to estimate positions. While these algorithms achieve
localization accuracies in the decimeter range in LOS scenarios, NLOS between
the receiver and the transmitter – the access point (AP) – significantly lowers the
positioning accuracy. However, in realistic indoor scenarios, often a limited amount
of APs is available, which often leads to areas where the minimum number of three
APs in LOS cannot be ensured. To enable high localization accuracy in such NLOS
dominated areas, instead of classical TDOAs, channel impulse responses (CIRs)
can be used as an information source for positioning. These signals are complex
time-series that are acquired through correlation with known pseudo-random pulses.
They resolve all propagation components and therefore can contain a variety of
spatial information.

Fig. 10.1 shows a bandwidth-limited CIR that includes a LOS component (red)
as well as five additional signal components (blue). To exploit all the information
contained in the high-dimensional CIR, machine learning (ML)-based methods can
be used to assist radio localization systems, i.e., NLOS identification [20, 19], time-
of-arrival (TOA) error mitigation [5], or multipath-assisted localization [9]. While
[5, 9] consider all signal components (red and blue stems in Figure 10.1), the methods
proposed by [20, 19] improve the positioning by enhancing LOS information (red
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stem in Figure 10.1). However, those methods still require few APs in LOS to achieve
reliable positioning. To enable localization in NLOS-dominated areas, fingerprint-
based localization methods utilizing channel information, such as the bandwidth-
limited CIR (black line in Figure 10.1), can be employed [11, 17, 21]. These, so-called
direct positioning methods, are independent to the radio propagation conditions and
thus do not require a redundant deployment of APs to ensure LOS conditions.
However, their main drawback is that they need an expensive life cycle management
due environmental changes, including recording and labeling of data, fine-tuning
and deployment of positioning models.

In this work, we briefly review AI-assisted localization methods and focus
on investigations of the robustness of AI-based direct positioning localization
models at different environmental changes, i.e., moving persons or objects or
(non-)deterministic LOS blockage and discuss the impact on the life cycle man-
agement. Finally, we propose an approach to combine AI models trained on radio
fingerprints with traditional localization methods in order to lower the efforts for
maintenance and deployment.

10.2 AI-Assisted Localization

AI-assisted localization methods combine classical localization methods, like later-
ation based methods, with AI models. Their idea is to mitigate errors introduced by
the environment like NLOS conditions or exploit additional information, which can
not be modeled analytically, like multipath information.

A promising method is to identify NLOS signals and exclude them for localiza-
tion. In our previous work, we investigated different supervised and unsupervised
ML approaches. We used convolutional neural networks (CNNs), which employ the
CIR to identify whether a signal has LOS or NLOS [19]. Given CIRs with labels
(LOS, NLOS), CNNs can effectively model the temporal correlations in the high di-
mensional CIR to classify the channel conditions. However, labeling NLOS signals is
often challenging in real world environments. While LOS signals are similar to LOS
in visible light conditions, radio signals can propagate through various materials, like
cardboards or wood and thus beeing in LOS for radio signals, but not for visible light.
Thus labeling NLOS signals is often challenging or not possible in certain types of
environments. To overcome this problem, we proposed to only use LOS signals for a
classification by modeling the distribution of LOS CIRs and identify NLOS signals
as out-of-distribution samples [20]. We used a variational autoencoder to model the
distribution of in-domain samples, i.e., LOS CIRs, to identify NLOS signals by its
lower data likelihood. While we achieve lower accuracies compared to supervised
methods, we overcome the problem for labeling NLOS signals.

Another challenge is dense multipath propagation. Due to the limited bandwidth of
radio signals, multipath components (MPCs), i.e., reflections from the environment,
may not reliable separated in the radio channel. Thus, also under LOS conditions the
TOA measurements may be erroneous due to interference of MPCs. Also here AI
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methods can be used to estimate reliable TOA estimations. We employed a CNN to
estimate the TOA in a provided CIR given the true TOA [5]. We have shown that our
method works even under dense multipath propagation with restricted bandwidth.
Thus we could successfully mitigate the errors of interference and provide reliable
TOA measurements for classical lateration based methods. However, the radio chan-
nel does not only include the first direct path of arrival (FDPOA), but also all the
reflections of the environment. This information can be used by multipath-assisted
positioning [6]. Their idea is to learn virtual anchors, represented by reflections of
e.g. walls, and use them as additional APs. A crucial component in the learning pro-
cess is a reliable MPC delay estimation. We employed a U-Net [16], well known for
time series segmentation, to estimate the delays of MPC components outperforming
classical sub-space methods in accuracy and inference time [9].

10.3 Direct Positioning

AI-assisted localization methods still require APs with LOS conditions to enable lo-
calization. For very complex, NLOS dominated, environments, only methods that ex-
ploit the radio fingerprint of a radio system estimate very accurate positions. Stahlke
et al. [17] have shown that exploiting the channel impulse response (CIR) [2] with
the corresponding time-of-arrival (TOA) can achieve high localization accuracy in
complex NLOS environments en par with the performance of traditional tracking so-
lutions under ideal LOS conditions. The idea of the data-driven approach is to train
a deep learning (DL) model with a labeled dataset of channel impulse responses
(CIRs), TDOAs, and the corresponding reference positions. The trained model can
then, independent of the propagation conditions of the environment, predict the posi-
tion utilizing channel information. However, the main disadvantages of the approach
are (1) that the training database must cover fine-grained radio fingerprints of the
area of interest within the environment to enable accurate localization, and (2) that
the radio fingerprint, and thus the database, depend on the specific propagation en-
vironment. Hence, changes in the environment, e.g., movements of blocking objects
such as cars or shelves, significantly change the fingerprint of the radio device, and
consequently, lead to significant localization errors. In this work, we evaluate the
performance of data-driven fingerprint-based positioning in various industrial-like
environments and the effect of environmental changes on the performance of the
models.

10.3.1 Model

We follow the idea of Stahlke et al. [17] to create a DL model, which exploits the
raw CIR in the time-domain and the corresponding TDOA, for direct positioning.
An example visualization is shown in Figure 10.2. For every burst (set of received
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CIRs per timestep), for the calculation of the TDOA, the first (earliest) TOA is used.
The CIRs, shown in blue on the left hand side, of all APs are horizontally stacked,
while every CIR is padded by the TDOA to get a relative alignment of the signals in
the input tensor of the neural network. The idea is to extract and exploit all (spatial)
information of a CIR, i.e., diffractions, reflections, and absorptions, to get a unique
fingerprint for every position in an environment.

Inspired by the work of Niitsoo et al. [11] we also employ CNNs as they have
shown very accurate results in processing image and time-series data. However,
Fawaz et al. [4] have shown, that very simple CNN architectures without local
pooling can outperform highly complex models with local pooling layers in time-
series applications. Hence, in contrast to the CNN of Niitsoo et al. [11], we employ
a simple CNN architecture without local pooling to exploit the full information of
the time-series data.

10.3.2 Experimental Setup

We used a 5G-compatible software-defined radio system with commercial of the
shelf hardware. The system is a downlink TDOA system with 6 APs within an
industrial hall. The system has a bandwidth of 100 MHz with a carrier frequency of
3.75 GHz (Lower bandlimit: 3.7 MHz; Upper bandlimit: 3.8 MHz). The TX Power
of the APs is 20 dBm. The receiver records bursts (consecutive signals for every AP)
at 100 Hz.

The hardware setup of the receiver and the distribution of the APs within the
L.I.N.K. application center of Fraunhofer IIS in Nuremberg [1] are shown in Fig-

Fig. 10.2: Input embedding for the neural network. The CIRs, shown on the left hand
side in blue, are aligned by their TDOA and horizontally stacked.
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(a) Real world environment. (b) Schematic topview.

Fig. 10.3: LOS environment.

(a) Schematic topview. (b) Real world environment.

(c) Schematic topview. (d) Real world environment.

Fig. 10.4: Deterministic mixed environments with absorber L-shaped (DS1) on the
top and absorber corridor (DS2) on the bottom.

ure 10.3. In total 6 APs are available, indicated as dots within the schematic top view
on the left-hand side. The blue APs are placed at a height of 6.5 m, while the orange
APs are placed at a height of 7.5 m.
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(a) Real world environment. (b) Schematic topview.

Fig. 10.5: Realistic industrial environment with various industrial objects.

10.3.2.1 Measurement Campaign

In order to demonstrate the accuracy, robustness, and transferability of the proposed
data-driven approach an extensive measurement campaign was conducted including
three different types of environments. In general, all recordings took part in the
L.I.N.K. hall, shown in Figure 10.3 on the left-hand side. For all environments
the recording area (28 m × 18 m) remained the same. For each environment, we
recorded 1 - 1.5 hours of data covering several people on random trajectories to
mimic a realistic data acquisition that still covers the area of interest. With a recording
frequency of 100 Hz, we therefore achieve a database size of 2-3 million CIRs per
environment with 6 APs. As ground truth we used a Nikon iGPS, an optical reference
system with a positioning error of 𝑀𝐴𝐸 < 1 mm.

10.3.2.2 Environments

In total, six different environments were recorded to investigate the effects of various
environmental changes. Figure 10.3 shows the LOS environment, while the image
on the left-hand side shows the real environment and the figure on the right-hand
side shows a schematic top view. It contains no obstacles, which means that all APs
have LOS to the receiver rendering it ideally for traditional TDOA-based localization
systems. In Figure 10.4, the environments (DS1) and (DS2) are shown. We added
walls, which absorb the signals on the outside (black) and reflect them on the inside
(metal). In this environments we created severe NLOS conditions blocking the LOS
to almost the half of the APs all the time. Due to the different composition of the
absorber walls, the fingerprints are different at almost every position rendering a
good candidate for a cross environment evaluation.

The last environments are shown in Figure 10.5. We created a typical industrial
environment (RS1) with various objects, like a forklift, a van, metal shelves, and
a working platform. We introduced realistic changes (RS2), where we moved the
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van, added an additional work platform, and moved the forklift (3C). Those changes
should reflect realistic changes of a dynamic industrial environment. More details
about the environments and its changes can be found in [17].

10.3.3 Evaluation

We trained our models in all of the environments and conducted a cross validation,
i.e., tested them in the same and in the other environments. The results can be seen
in Table 10.1, i.e. mean absolute error (𝑀𝐴𝐸) on the left and the 90th percentile
of the cumulative distribution function of the absolute error (𝐶𝐸90) on the right.
The models are trained and tested in all environments to see the impact of the
environmental change. The diagonal elements show the results, where the model
is trained and tested in the same environment, while the off-diagonal elements
show the results, where the models are trained and tested in different environments.
In general, the performance is high for all environments, with a 𝐶𝐸90 < 0.7 m
for all scenarios. The positioning accuracy is the lowest in the LOS environment
compared to the other mixed environments. Under LOS conditions the CIR contains
less information about the environment, as only few multipath components are
present (e.g., floor or ceiling) compared to mixed environments with dense multipath
like in the corridor environment (DS2). However, in the other environments the
positioning accuracy is very high. The performance degrades for the model in a
different composition of the environment, as the radio fingerprint changes due to
different multipath propagation and changes of the channel state (i.e., LOS to NLOS
and vice versa). If the model is trained in the LOS environment and tested in a
mixed scenario, the performance degrades with a 𝐶𝐸90 > 2 m for all environments.
This is due to the different propagation conditions for the area. Dense multipath
and different channel states (LOS / NLOS) cause changed radio fingerprints, and
therefore, lead to a degrading positioning accuracy. If the model is trained in the
initial industrial environment (RS1) and evaluated in the changed industrial scenario
(RS2), the positioning performance degrades only slightly. This is due to the fact
that the environment only changed slightly, which leads to only local anomalies.

Table 10.1: Position accuracy and robustness of our model against various environ-
mental changes (𝑀𝐴𝐸 | CE90 in [m]).

Evaluated
LOS DS1 DS2 RS1 RS2

Tr
ai

ne
d

LOS 0.41 0.68 1.24 2.50 1.71 3.90 1.42 3.00 1.40 2.87
DS1 1.23 2.22 0.34 0.61 1.54 2.75 2.01 4.00 1.99 3.90
DS2 1.18 2.16 1.32 2.65 0.26 0.49 1.84 3.59 1.84 3.76
RS1 0.83 1.59 1.50 2.78 1.21 2.17 0.32 0.58 0.49 0.92
RS2 1.05 1.89 1.50 2.93 1.20 2.21 0.48 0.92 0.35 0.61
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10.3.4 Hybrid Localization

As shown in Section 10.3.3, data-driven models are affected by environmental
changes and need a life cycle management to ensure reliable localization. The effort
increases with the size of the environment, as the new data has to be recorded and la-
beled for all changed areas. However, indoor environments are often heterogeneous,
which means that there are sections which are dominated by NLOS, while some
areas still have enough LOS to enable traditional positioning.

Fig. 10.6: Schematic top view of a typical (dynamic) industrial environment with an
ultra-wideband localization system.

Figure 10.6 represents a typical industrial environment, with shelves with goods
(grey rectangles) and machines (purple rectangles). An ultra-wideband (UWB) ra-
dio system is deployed, shown as blue circles, to localize automated guided vehicles
(AGVs), indicated as white rectangles. The area is separated in two sections with
different complexities for localization. For the localization in the left area, a ma-
chine hall (green), traditional localization approaches can be employed as there is
always LOS to at least four transmitters. In contrast, the area on the right-hand
side, the LOS is blocked to the majority of the transmitters. To still achieve high
localization accuracies, data-driven models have to be deployed, with the overhead
for an expensive life cycle management. To enable a cost-efficient, continuous, and
robust localization, a combination of AI based and traditional localization methods
is needed, which requires the identification of the spatial limitation of the data-driven
positioning model.

10.3.5 Zone Identification

To identify the spatial limitation of our data-driven model, we employ the method
proposed by Stahlke et al. [18]. Their idea is to model the epistemic uncertainty [8]
of the AI model to identify out-of-distribution samples. In fingerprint-based local-
ization, we assume that the received signals are unique for a certain position, as the
received signals only depend on the environment. We record the data in the training



208 Maximilian Stahlke et al.

(a) Real world environment. (b) Schematic topview.

Fig. 10.7: Realistic industrial environment with heterogeneous zones for localization.

area with a high spatial density to ensure that new recordings within the training
area are already covered. Thus, the neural network is confident about unseen data
within the training area and predicts a low epistemic uncertainty. In contrast, sam-
ples recorded outside the training area are different to all recorded samples within
the training area. This leads to a high epistemic uncertainty of the neural network,
which helps us to identify the spatial limitation of the model. We employed the
probabilistic ensemble [10], with a neural network architecture very similar to the
one used in Section 10.3.1. More details about the implementation and architecture
can be read in [18]. To identify samples, which are outside of the training area, a
threshold has to be defined for the uncertainty to detect samples within and outside
the training data distribution. Methods like interquartile ranges could be used to
detect out-of-distribution samples. However, they might require some fine-tuning.
To ensure a reliable threshold, we used a logistic regression classifier, which uses
few samples out-of and inside-of the training area.

10.3.6 Experimental Setup

For the evaluation, a UWB radio system with six stationary transceivers is employed
with one dynamic transceiver carried by a small robot platform. The system is con-
figured to estimate the round-trip-time (RTT) at the robot platform with a bandwidth
of 499.2 MHz at a center frequency of 4 GHz. The recorded data is labeled with an
optical ground truth reference system with a recording frequency of 4 Hz.
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10.3.7 Environments

Also in this experiment, we created an industrial-like environment including walls,
which absorb radio signals on the outside (black) and reflect them on the inner
side. The environment is shown in Figure 10.7, where the real-world environment
is on the left-hand side and the schematic top view is on the right-hand side. The
stationary transceivers are indicated as dots and are placed on the upper and lower
part of the recording area. The reflective walls are indicated in red and are placed
to block the LOS between the stationary transceivers and the moving robot, which
causes ranging errors and thus also to a degradation in the localization performance
with traditional positioning approaches. The environment is separated into two areas:
The left area (orange), is very cluttered and mostly dominated from NLOS to the
transceivers, while the right area (green) is more open and provides always LOS to
the transceivers indicated in grey.

10.3.8 Evaluation

The uncertainty, estimated by our probabilistic ensemble, can be seen in Figure 10.8.
The dashed black line separates the training area (left) and the unseen area (right). It
can clearly be seen that the uncertainty identifies the spatial limitations of the direct
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Fig. 10.8: Spatial distribution of the uncertainty of our probabilistic ensemble. The
dashed black line indicates the transition from the training area (left) to the unseen
area (right).
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Fig. 10.9: CDFs of the errors for the fingerprint based model (UWB Fp.), the classical
localization model (UWB ToF) and our proposed combined model (Combined).

positioning model very well. The data in the training area has a low uncertainty
(black) compared to the samples out of the training data area (red). The decision
boundary is very sharp, which means that an identification is feasible with the
proposed approach.

To combine traditional localization methods with data-driven, fingerprint-based,
methods, we use a Kalman filter. While the uncertainty is low, the positions of
the model are fed to the Kalman filter. However, if the uncertainty rises above an
uncertainty threshold, the distance estimations of only the three transceivers on the
right hand side (grey), shown in Figure 10.7, are fed to the tracking filter as they
have LOS in the area on the right hand side. The errors of the localization are shown
in Figure 10.9, using only traditional positioning (UWB ToF), only data-driven
positioning with the model trained on the left hand side (UWB Fp.) and the fusion
of data-driven and traditional localization (Combined). It can clearly be seen that the
data-driven method only works in 50% of the cases. Thus, the error is up to a 𝑀𝐴𝐸
of of 2.72 m and a 𝐶𝐸90 of 8.46 m. The model is only trained on the left hand side,
see Figure 10.7 in orange, and can not extrapolate into the right hand side. Hence, the
error on the right hand side is very high. If only the traditional positioning is used,
the 𝑀𝐴𝐸 is at 0.56 m and the 𝐶𝐸90 at 1.39 m. NLOS causes errors in the distance
estimations, which leads to a degradation of the positioning results. The best results
can be achieved with the combined approach with a 𝑀𝐴𝐸 of 0.21 m and a 𝐶𝐸90 of
0.32 m. The data-driven model ensures robust localization in the cluttered left hand
side area, while the traditional localization takes over on the right hand side. The
evaluations have shown that a combination of both approaches is therefore useful
to lower the effort for data recording and maintenance. To enable this, an explicit
identification of the spatial limitation of the data-driven models is crucial to ensure
reliable and robust positioning.
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10.4 Conclusion and Outlook

In this work, we have successfully shown that AI can enhance the accuracy of radio
localization systems in complex indoor environments. However, to enable a robust
and reliable positioning an expensive life-cycle-management has to be employed.
In an extensive ablation study, including 5 different scenarios, we evaluated that
data-driven models trained on radio fingerprints cannot generalize to different en-
vironments and various environmental changes. While indoor environments often
provide heterogeneous areas, with sections fully dominated by NLOS and more open
areas with sufficient numbers of LOS connects. A combination of classical localiza-
tion methods and data-driven methods is therefore useful to lower the expenses for
maintenance and still achieve overall high localization accuracy.

We have shown how to combine traditional localization and data-driven localiza-
tion based on radio fingerprints by uncertainty estimation. This allows us to identify
the spatial limitations of the data-driven methods, which allows us to only employ
the data-driven models in NLOS dominated areas, while classical positioning can be
used elsewhere. This lowers the risk of out-dated radio fingerprints and the expenses
for labeling and maintenance.

One potential avenue for future research involves the mitigation of the high
cost associated with labeling extensive datasets. Addressing this challenge may en-
tail exploring unsupervised or self-supervised learning methodologies, which hold
promise in minimizing the dependency on labeled data points. Additionally, an on-
going inquiry pertains to the integration of fundamental physical principles, such
as Maxwell’s equations, into data-driven methodologies. Incorporating such knowl-
edge has the potential to enhance the generalization abilities of these methodologies
while concurrently diminishing the requisite volume of data.
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Chapter 11
Comprehensible AI for Multimodal State
Detection

Andreas Foltyn, Maximilian P. Oppelt

Abstract Affective computing enables computers to recognize and respond to hu-
man emotions and cognitive states using multimodal state recognition. This chapter
explores cognitive load estimation through a machine learning life cycle, addressing
data collection and preparation, modeling, and deployment challenges. Experiments
demonstrate effective unimodal and fusion models for predicting cognitive load.
Applications in gaming, healthcare, and driver monitoring have been discussed,
providing valuable insights for researchers in this field.

Key words: affective computing, cognitive load, robustness, multimodal, fusion,
biosignals, eye tracking

11.1 Introduction

Affective computing refers to the ability of computers to recognize, interpret, pro-
cess, and respond to human emotions and cognitive states. It is an interdisciplinary
field that combines computer science, psychology and neuroscience, and aims to
automatically recognize and respond to human emotions and behavior patterns. An
important component of affective computing is multimodal state recognition. This
technology uses a variety of data sources, such as physiological measurements, facial
expressions, and behavioral patterns, to determine a person’s emotional and cognitive
state. The use of multimodal state recognition has the potential to improve human-
machine interaction and better understand human needs and preferences [10, 13].

These cognitive state detection systems can be utilized in various domains. One
example is gaming where facial recognition and speech analysis can be used to de-
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tect the emotional state of players and adjust the game accordingly. If a player is
stressed or frustrated during a game, the game can be automatically adjusted to calm
the player down or help him overcome his frustration [3]. For healthcare applica-
tions the detection of stress helps during treatment and understanding of associated
pathologies [1, 17]. Moreover, in the automotive industry, affective computing and
multimodal state recognition are used in driver monitoring, e.g., study by Oppelt et
al. [10] investigated the use of multimodal state recognition to detect cognitive load
in drivers observing semi-autonomously driving vehicles.

Overall, affective computing and multimodal state recognition have the potential
to improve human daily life and to optimize human-machine interaction. It is impor-
tant though to ensure that the technology is used ethically and responsibly and that
user privacy is preserved.

In this chapter, we aim to introduce a typical process for creating applications
that predict cognitive load. Firstly, we discuss the study design, which involves
collecting data from multiple sources, as well as a framework that can be used to
systematically capture relevant high quality data. We show results from experiments
of using models to predict cognitive load in well-established psychological cognitive
load tests as well as in a laboratory real-world-motivated setting. By following this
process, we hope to enable other researchers to create their own affective computing
application.

11.1.1 Cognitive Load Estimation

Within the domain of affective computing and multimodal state detection, various
psychological states and concepts can be detected. These include emotion recogni-
tion, stress detection, arousal, or valence detection, and cognitive load. This chapter
however, focuses specifically on detecting cognitive load.

Cognitive load is a multifaceted concept with various definitions in the litera-
ture [8]. One common definition describes cognitive load as the amount of mental
effort required by a learner to complete a task [12]. Factors such as task demand and
subjective characteristics can contribute to cognitive load, and observable variables
are used to assess it since it is not directly measurable.

To measure cognitive load, variables such as mental load, mental effort, and
performance can be grouped into four categories of cognitive load measurement
methods: subjective measures, performance measures, physiological measures, and
behavioral measures [3]. Subjective measures involve self-reporting, such as ques-
tionnaires or rating scales, to assess cognitive load. Performance measures examine
how well a task is completed, and the time taken to do so. Physiological measures in-
clude the activity of the heart measured through electrocardiographic recordings, eye
tracking technology to measure pupil dilation or saccades and action units extracted
from expressions using facial videos.

Since human psychology and emotional state are complex and multidimensional
constructs, decision systems need to integrate multiple modalities to make accurate
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Fig. 11.1: Overview of the data collection setup.

predictions. By combining subjective, performance, physiological, and behavioral
measures, decision systems can better understand and predict human behavior.

11.1.2 Challenges in Affective Computing

Building robust machine learning models in affective computing is not without its
challenges. There are three key factors that pose unique challenges: The human
factor, data collection, and modeling. Affective computing involves detecting human
states, which can be expressed in many ways, such as behavior, facial expressions,
physiological signals, or tone of voice. Unfortunately, the expression of these states
is often highly subject-specific, depending on the task at hand. For example, facial
expressions can be used for emotion recognition, but the expression is often person-
dependent, e.g., some people might change their facial expressions to hide their inner
state. Also, different internal states and factors can lead to the same expression in
certain modalities, e.g., an increased heart rate could be due to stress or increased
movement. Consequently, it is helpful to use several modalities in order to be able to
make a more reliable statement. In our example, the two cases can be distinguished
by measuring the increased heart rate by adding a motion sensor. Hence, there is a
fundamental uncertainty in detecting human states, as we can only measure them
using proxies.

Data collection poses a number of challenges. In this field, we work with people
and their personal data. It is often necessary to comply with the legal framework as
to what kind of data can be collected and how it can be used. Furthermore, the study
design plays an important role in avoiding unwanted biases in the data. For example,
the illumination of the face may be slightly different due to different stimuli on the
monitor, such as pictures or games. This in turn can be seen in the video, leading to
spurious correlations. In addition to the input data, the emotional or cognitive state
annotation is also necessary to train models. However, obtaining the annotation is not
trivial. First, we need to decide how to formulate the problem. It can be formulated
as a binary, multi-class, multi-label or regression problem. Sometimes the problem
can be formulated only as one type, but in other cases we need to make an informed
decision. In addition, we have to decide whether a subjective or objective annotation
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should be used. In the case of subjective annotation, the participants of the study
are asked which state they are in. However, the questionnaires are often not very
reliable, because the person has to interpret and judge their state. For example,
the more fine-grained the labeling, the harder it is to define their exact inner state.
Alternatively, objective labels can be used. For example, you might assume that a
particular stimulus induces a particular state and use the assignment to the stimuli
as a label. However, this ignores the subjective perception of the stimuli.

Also in the modeling phase, we deal with various challenges. When models have
been trained on the data, it should be evaluated which variables in particular are used
for the decision. This may reveal biases that were not considered before. Examples
could be skin color in emotion recognition, where certain ethnicities correlate with
a skin type in the data set [5, 6]. It is also helpful to evaluate the robustness of
models by testing them on different scenarios or domains. Often, because a dataset
is randomly split, models are trained and tested on data that is fairly similar with
respect to various factors. But if minor things change, such as the hardware of the
sensors, the accuracy can decrease.

In summary, affective computing poses specific challenges that require careful
consideration when building machine learning models. Addressing these challenges
requires a deep understanding of the human factor, careful data collection, and
modeling approaches that can generalize well across different data distributions.

11.2 Data Collection

In the following section, we present the data acquisition process of the data set
ADABase intended for the detection of cognitive overload [10, 18]. This unique mul-
timodal data set encompasses a wide array of physiological measures, including elec-
trocardiography (ECG), electrodermal activity (EDA), respiratory rate (RESP), pho-
toplethysmography (PPG), video recordings, electromyography (EMG), eye-tracker
(EYE) and skin temperature (TEMP). In total, the study involved 51 subjects who
participated, resulting in an average recording duration of 155 minutes per subject.
The primary objective of the study was to employ two distinct stimuli to deliberately
induce cognitive overload.

The n-Back test is a standardised psychological test that places a heavy demand
on a person’s working memory. As shown in Figure 11.2, test subjects are shown a
grid in which the position of a rectangle changes over time. The subject’s task is to
identify whether the current position of the rectangle matches the position 𝑛 steps
earlier. In the dual n-Back variant, the subject must simultaneously complete this
memory task with an additional auditory signals. In the present study, both variants
were performed with 𝑛 ∈ {1, 2, 3}.

The k-Drive test is a semi-autonomous driving scenario in a simulator, as shown
in Figure 11.3. While the car automatically drives a lap on the track, the participant
has to react to certain events. The cognitive load was modulated by the number of
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Fig. 11.2: Procedure for a Dual-n-Back test to induce cognitive overload. The aim
is to respond when the current visual and auditory stimuli match those presented n
steps earlier.

events and the additional task of creating a music playlist. The entire study design
can be found in Figure 11.1.

11.2.1 Annotation

As already mentioned, the annotation for affective states can be implemented in
a subjective or objective way. In this data set, both options were integrated. For
a subjective annotation, a self-assessment with the NASA-TLX questionnaire was
integrated. This is a standardised questionnaire that asks about various dimensions
of stress. Furthermore, the performance and the allocation of the stimuli offer a
possibility to implement objective annotations. Another possibility is to employ
the various levels of our tasks as cognitive load classes and labels, categorizing
them into two distinct groups based on both performance metrics and subjective
feedback. The low cognitive load class encompasses baseline sessions and simpler
task levels, while the high cognitive load class encompasses more complex task
levels. This annotation strategy allows for a nuanced characterization of cognitive
workload. For instance, in the n-back task, the 1-back level was categorized as low
cognitive load (CL), reflecting its relatively simpler working memory demands.
Conversely, the dual-task 3-back level was designated as high cognitive load, given
its increased complexity requiring simultaneous management of driving tasks and
higher working memory load. Similarly, in the k-drive scenario, baseline levels and
simpler driving observations were classified as low CL, while more demanding
tasks such as detecting high acceleration and deceleration events while controlling
the music entertainment app in level 3 were classified as high cognitive load. Through
carefully planning the experimentation schedule one should create a dataset that has
a balanced class disbritubiton.
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Table 11.1: This table shows the F1-Score and calibration for fusion methods based
on XGBoost and FCN. All models are trained on n-Back.

Method ECG EDA EMG EYE PPG RESP TEMP

XGBoost 0.68 ± 0.03 0.63 ± 0.05 0.56 ± 0.07 0.83 ± 0.04 0.64 ± 0.03 0.61 ± 0.03 0.68 ± 0.03
FCN 0.60 ± 0.09 0.59 ± 0.08 0.64 ± 0.03 0.85 ± 0.03 0.57 ± 0.06 0.62 ± 0.03 0.61 ± 0.16

11.2.2 Data Preprocessing

The recorded data is provided as time series, and we used a rolling window approach
to extract segments from the data. This involved defining a specific window size and
step size, allowing us to divide the entire signal into smaller segments. Additionally,
modality-specific preprocessing steps were applied, such as outlier removal in the
pupil size and detrending of the ECG signal. Subsequently, features were extracted
from these segmented data points. For a detailed view of the exact preprocessing
techniques and features used, please refer to [10].

Fig. 11.3: In the k-Drive test, participants react to specific events in an autonomous
driving scene and complete a secondary task of playlist creation (taken from [10],
licensed under CC-BY 4.0).

11.3 Modeling

In this section, we conduct a review of several experiments that have been carried
out using the ADABase data set. One focus is on understanding how the performance
varies across different modalities. Additionally, we aim to identify significant dif-
ferences, if any, between Deep Learning (DL) and classic Machine Learning (ML)
approaches. Moreover, we investigate the potential benefits of fusion techniques in
improving overall performance. Lastly, we carefully analyze how the models behave
under a distribution shift, providing valuable insights into their robustness.
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We discuss two models that were examined with the data in the following. XG-
Boost [4] is a classic machine learning model utilizing manual extracted statistical
and expert features. The Fully Convolutional Network (FCN) [20], on the other hand,
is a 1D Convolutional Neural Network (CNN) that was introduced for processing
time series data. This end-to-end network architecture does not rely on manual fea-
ture extraction and can be trained using the raw data as input. We also experimented
with fusion methods. The first is late fusion, where the predictions of each modality
are averaged. Early fusion, where the features of all modalities are concatenated,
was also performed with XGBoost. In FCN, the features were linked in latent space
before going to a final fully connected layer. All models were trained on the n-Back
data with the objective annotation. For this purpose, the different difficulty levels of
the test were clustered into two classes: low and high cognitive load.

11.3.1 In-Domain Evaluation

Table 11.1 shows the results of models trained and evaluated on n-Back. Across all
modalities, the eye tracker achieves the best performance. There is no clear trend
between the two methods as to which performs better. While the DL approach shows
slightly better performance when used with the eye tracker, its performance with
the other modalities is either worse or similar to XGBoost. A plausible explanation
for this observation could be the difficulty in extracting generalizable features from
some modalities, e.g., the ECG. Therefore, there is an opportunity to improve the
representation learning using modality specific knowledge. This aspect is investi-
gated in detail in Section 11.3.4 for the ECG. Table 11.3 displays the fusion results.
For both methods, fusion does not lead to an improvement of the F1-score. Whether
fusion can enhance the unimodal performance largely depends on the specific task
and modalities involved. Previous studies on different domains and models have al-
ready demonstrated that incorporating more modalities does not necessarily lead to
improved accuracy [19]. In addition, we report the calibration error to assess the reli-
ability of the predictions. These scores are almost identical between the two models,
but differ greatly between the fusion approaches. For early fusion it is significantly
lower.

11.3.2 Cross-Domain Evaluation

As described in Section 11.1.2, it is important to evaluate the robustness of models
[7]. In addition to the n-Back test, the k-Drive test was also carried out in the data
collection. This is used here as an additional test set. Figure 11.2 shows models that
were trained on n-Back but evaluated on k-Drive.

It is evident that the drift in domains leads to a change in model performance.
The k-Drive scenario is characterized by increased movements and varying light
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Table 11.2: This table shows the F1-Score for unimodal models trained and evaluated
on n-Back.

Method ECG EDA EMG EYE PPG RESP TEMP

XGBoost 0.83 ± 0.04 0.63 ± 0.03 0.65 ± 0.12 0.59 ± 0.03 0.70 ± 0.09 0.80 ± 0.06 0.77 ± 0.04
FCN 0.78 ± 0.07 0.67 ± 0.09 0.83 ± 0.04 0.73 ± 0.03 0.78 ± 0.06 0.76 ± 0.05 0.73 ± 0.19

conditions. Consequently, it is understandable that the F1-score of the eye tracker is
lower compared to n-Back. However, we also observe that FCN exhibits relatively
greater resilience to domain changes than XGBoost. One possible explanation for
this could be that the expert features heavily aggregate information from the 60-
second window, causing essential features that could aid in domain generalization
to be lost. Interestingly, the other modalities show better performance than the in-
distribution data. A potential reason for this could be that the altered task demands
more activity from the participants. Participants move slightly more and may tend to
engage in more movements during increased difficulty, as they need to switch their
hands between two devices. This could explain corresponding changes in muscle
activity, heart rate, skin temperature, and respiration.

Now, let us consider the question of achieving robust predictions across modali-
ties. If we were to select a classifier solely based on the best unimodal in-distribution
performance, it becomes apparent that we may encounter problems when the dis-
tribution changes. Even though the fusion approaches do not show improvement in
the in-distribution data, it raises the question of whether we can achieve enhanced
robustness by using fusion approaches. Table 11.3 presents the performance of the
fusion models evaluated on the k-Drive data. We observe that all fusion approaches
yield more robust results compared to relying solely on an eye tracker-based clas-
sifier. While XGBoost and FCN fusion models may produce similar outcomes on
in-distribution data, the DL-based fusion methods prove to be substantially more
robust.

11.3.3 Interpretability

Although the classification performance can give us a direction of the importance
of individual modalities, it is important to look more closely at the features used
and how they change between the two scenarios. This can give us an indication of
the stability of individual features. For this we use the gain feature importance of
XGBoost models trained with features from all modalities. This describes the mean
improvement in loss that results from the use of a feature.

Figure 11.4a shows the feature importance of early fusion models trained with n-
Back data. We see that pupil size is the most important feature across all modalities.
However, models trained on drive data, as shown in Figure 11.4b, exhibit a different
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Table 11.3: This table shows the F1-Score for unimodal models trained on n-Back
and evaluated on k-Drive.

Domain Method Fusion Type F1-Score (↑) Calibration Error
(↓)

n-Back
XGBoost

Late 0.82 ± 0.01 21.12 ± 1.94
Early 0.83 ± 0.04 11.37 ± 2.17

FCN
Late 0.80 ± 0.02 21.31 ± 1.85

Feature 0.84 ± 0.02 11.05 ± 2.01

k-Drive
XGBoost

Late 0.74 ± 0.05 29.36 ± 2.13
Early 0.65 ± 0.09 28.90 ± 4.72

FCN
Late 0.80 ± 0.07 26.45 ± 2.79

Feature 0.84 ± 0.05 20.83 ± 3.24

tendency. The eye tracker is still relatively important, but pupil-based features do
not play a role. Instead, fixations are more important. The most important feature
across all modalities is based on the slowly changing electrodermal activity the
skin conductance level. It is noteworthy that features based on electrocardiographic
measurements, such as heart rate and heart rate variability have also a high gain
feature importance. This aligns with the observations of models trained using only
a single modality, presented in Section 11.3.

11.3.4 Improving ECG Representation Learning

While classical machine learning algorithms can perform well with carefully crafted
features and expert knowledge, DL models can often surpass their performance by
automatically learning features from the data. This can be especially useful when
working with complex data such as images, audio, or text. Additionally, DL models
have shown great success in many applications and are constantly being improved
upon. However, often a large amount of data is needed to learn generalizable features.
Data is often hard to obtain and usually requires expert knowledge to annotate new
recordings. Therefore, it is important to investigate how DL methods can be improved
with modality-specific knowledge to learn robust features more efficiently. We look
at this from two perspectives: data and architecture.

Data augmentation techniques can be used to artificially increase the size of the
training data set by creating new, slightly modified versions of the existing data.
This can help prevent overfitting and improve the generalization ability of the model.
For this purpose domain-specific transformations were introduced, reflecting the
variability and diversity of real-world data. This leads to improved performance of
ECG DL models [14, 15]. The effects of different domain-specific augmentations are
visualised in Figure 11.5. Typical artefacts that can be present in electrocardiographic
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Fig. 11.4: XGBoost feature importance for models trained on both scenarios.

recordings include muscle noise that interferes with the ECG electrode measurements
and slowly varying wandering caused by sweat or respiration, shown in Figures 11.5c
and 11.5a.

It is also possible to make specific changes to the architecture that can improve
the performance of a particular modality. Since many important expert functions in
the ECG are frequency-based, it is reasonable to add appropriate transformations to
the architecture. For this a scattering transform to capture features on multiple time
scales ECG recording was combined with a CNN. This architecture was investigated
in various domains and was able to deliver good results in arrythmia recognition [11]
compared to DL models for time series data.
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(a) Original raw data recording without augmentation.

(b) Augmented version with muscle noise and baseline wander.

(c) Augmented version with artificially added movement artefacts.

Fig. 11.5: Adding augmentations to the raw input data.

11.3.5 Deployment and Application

Detecting cognitive load can be achieved through various biosignals such as ECG,
EEG, PPG, and respiration sensors, along with eye tracking data like pupil diameter,
and facial expressions from videos. This approach works well in a laboratory setting,
but to extend its application to real-world environments, wearables and integrated
sensor technology are essential. Wearables can provide continuous monitoring of
cognitive load, allowing for the collection of data outside of the laboratory and in
real-world environments. The integration of multiple sensors can provide a more
comprehensive understanding of cognitive load, making it easier to monitor and
manage mental workload in both personal and professional settings. One example
for integrating this kind of sensor technology in a day-to-day environment is Cardio-
Textil, a wearable garment with integrated sensor technology [2]. Other examples
might work only for some applications, such as the integration of webcam video
data, specialized electrodermal sensors in game controllers or steering wheels in
cars.

Models trained to detect cognitive load require a significant amount of compu-
tational resources, making them energy-intensive and not very efficient in terms of
deployment. This issue can be addressed by employing certain strategies, such as
the use of specialized hardware that can run inference on quantized neural networks.
Quantized neural networks can optimize the energy consumption of time series
processing models while maintaining their accuracy. Mueller et al. [9] introduce a
hardware/software co-design methodology to create these hardware aware training
routines efficently and well tested. Reiser et al. introduce a time-series specific –
in their publication solely based on ECG recordings – framework to train, test and
deploy quantized neural networks [16].
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11.4 Conclusion and Outlook

This chapter has provided an insight into affective computing, in particular the
estimation of cognitive load. To this end, a machine learning life cycle has been
presented, from data collection through the modeling phase to deployment. For each
of these steps, challenges are presented and examples of how to overcome them are
given. In the data collection phase, data from two different scenarios were collected
to build models for cognitive load estimation. In the experiments, the unimodal
models based on the eye tracker were shown to perform best on in-distribution data.
However, the unimodal models are sensitive to changes in the data distribution. This
is where fusion models are comparatively robust. Furthermore, the importance of
understanding the data and the models was presented in order to better understand
biases and spurious correlations, among other things. We used feature importance
to show that this can vary greatly between domains, and that some features are
therefore not generalizable across domains. We also used the example of the ECG to
discuss how the performance of DL models can be improved with modality-specific
knowledge, such as special data augmentation. In future research, it is imperative to
broaden the scope of data collection beyond current domains to ensure a well-rounded
and diverse dataset. Additionally, expanding experimentation to encompass a wider
range of scenarios, including safety-critical situations and entertainment contexts like
video game play, will enhance the robustness and applicability of models. Exploring
how models perform across different recording devices, such as wearable textiles
for ECG recordings, is crucial for understanding their versatility and adaptability
in real-world settings. Furthermore, assessing the robustness of classifiers should
extend beyond evaluating predictive performance alone, incorporating analysis of
uncertainty estimates to ensure the reliability and trustworthiness of machine learning
models. Finally, investigating techniques for adapting models to various testing
domains will be essential for their successful deployment and adoption in practical
applications.
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Chapter 12
Robust and Adaptive AI for Digital Pathology

Michaela Benz1, Petr Kuritcyn1, Rosalie Kletzander1, Volker Bruns1

Abstract The digitization of pathology opens up a wide field of applications that
can be supported by AI-based analysis like the detection of tumors or a quantitative
assessment of tissue composition. This contribution demonstrates possible ways on
how to approach challenges in digital pathology like the robustness against data
heterogeneity or the detection of out-of-distribution data. Moreover, the principle of
prototypical few-shot models is explained, which can be adapted to new tasks with
only a few labeled examples without any retraining of the underlying model param-
eters. In this chapter we show the suitability of a prototypical few-shot classification
model for tumor detection in two different organs and a prototypical few-shot seg-
mentation model for tumor composition analysis. Finally, a workflow for the creation
of a dedicated AI model by only providing a few annotations within the MIKAIA®

software of Fraunhofer IIS is presented.

Key words: few labels learning, data augmentation, digital pathology, prototypical
few shot models

12.1 Introduction

The daily routine of a pathologist is defined by the examination of tissue samples
from biopsies or surgeries. The processing of these tissue samples consists of steps
such as cutting them into thin sections, staining them, and fixing them on glass
slides. In traditional pathology, these tissue sections are then inspected directly by
the pathologist under an optical microscope. In digital pathology, however, they
are first digitized resulting in so-called whole-slide images (WSIs), for example by
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capturing them using an automated microscopic scanner. The digitization opens up a
wide range of possible applications for AI-based methods to support the pathologist
in the subsequent assessment of the tissue sample, such as the detection of tumors
or the identification and counting of specific cell types. However, these specific
applications and data present a number of challenges.

The first major challenge is the heterogeneity of the data (Figure 12.1), which can
arise, for example, from differences in sample preparation between different clinics,
or from the use of microscopic scanners from different manufacturers. Likewise, the
biological diversity in the appearance of tumors of even the same organ is high. This
requires the AI models to be robust in the face of data heterogeneity. Moreover, it is
important that an AI-model recognizes when it is presented with data it has not been
trained with (out-of-distribution data). This might be artifacts like pen markings on
the glass slide (Figure 12.1), or tissue types not contained in the training data.

In addition to the data heterogeneity, the enormous size of the digitized tissue
sections – called whole slide images (WSIs) – poses a challenge, mainly regarding
memory restrictions and computation time. With a typical resolution of 0.25 µm per
pixel, a single WSI contains up to several billion pixels, each of which needs to be
processed in the worst case scenario. Another challenge is that a very large amount
of data (often labeled data) is needed for the training of the AI models. Creating an
accurate labeled training set is very time-consuming and requires medically trained
experts, which are often hardly available. Therefore, approaches relying on only few
labeled data are preferable. Especially for pathological research with a wide range
of different applications an approach that can be easily and quickly adapted to new
tasks is desirable.

This contribution presents solutions to these challenges and validates their effec-
tiveness in various experiments, demonstrated using the two applications i) tumor
detection and ii) tumor characterization.

12.2 Applications: Tumor Detection and Tumor-Stroma
Assessment

In the following sections, various solutions for robust and adaptable AI for two
applications in digital pathology are presented. A more detailed description can be
found in [13], [8] and [5].

The first application addressed here is the detection of tumorous tissue within
a WSI. Delineating the tumor serves as prepossessing step for further analysis, for
example, comparing the density of specific cells within and outside the tumor bounds.
A classification approach is applied here in order to carry out an analysis of the tissue
types present in the WSI.

The second application is a more detailed characterization of the tumor on a pixel
level. Tumor tissue consists not only of viable tumor cells, but also of other benign
tissue, called “stroma”. The estimation of the tumor-stroma ratio is important for
prognosis, since a higher ratio of non-tumorous tissue within a tumor correlates
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Fig. 12.1: Images a) to c) show part of the same tissue section digitized by different
scanners, leading to visible color variance. An example for the biological diversity
of tumors within the same entity is shown in images d) to f): all three examples are
of adenocarcinoma in the colon. Different artifacts that can be present in WSIs are
depicted in images g) to i) and marked with red arrows. Common artifacts are pen
markings, tissue folds and dirt on the glass slide.

with a poorer outcome of the patient, i.e., with a higher risk of death. However, the
assessment of this ratio by humans is prone to errors, and the ratios reported by mul-
tiple pathologists presented with the same case will oftentimes deviate significantly.
Applying an AI-based model for the segmentation of the relevant tissue components
supports a more reliable and objective assessment of the tumor-stroma ratio.
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Fig. 12.2: The depicted WSI was scanned with a resolution of 0.22 µm per pixel and
comprises 8.5 billion pixels, with a width of 81,000 and a height of 104,500 pixels.
The section marked with a yellow frame in the WSI is shown enlarged on the right.
The edge length of the image section is 1,000 pixels. The dimension of the tissue
section on the glass slide is 18 mm in width and 23 mm in height.

12.2.1 Generation of Labeled Data Sets

The supervised training and quantitative evaluation of AI models requires labeled
datasets. The type of labeling is dependent on the chosen approach: In a classification
setting, the AI model only assigns one class label for each processed image tile,
whereas the result of a segmentation model is a mask which assigns each pixel of
the processed image tile to a class. Accordingly, the manually created ground truth
is also required in the same way: Labeled image tiles for classification (typically
squares with 200 to 300 pixels in width), and image tiles with corresponding masks
for segmentation (typically larger squares with e.g. 512 pixels in width).

There are several options for creating a dataset consisting of image tiles and
corresponding ground truth labels for the classification use case: One is to first divide
the WSI into tiles and assign the class labels to each single tile afterwards. Another
possibility is to first annotate tissue areas belonging to chosen classes within the
WSI, and splitting the annotations into tiles afterwards, automatically assigning the
annotation labels. The advantage of the second method is that the annotation of whole
tissue regions in WSIs is much quicker than the labeling of single image tiles. One
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disadvantage is that larger annotations may contain tiles that are not representative
of the specific tissue type, even though the entire annotated region clearly belongs
to the respective tissue class. These not representative tiles are nonetheless added
to the database with the label of the annotation (Figure 12.3). However, considering
the total number of tiles, their influence is small.

Fig. 12.3: Manually annotated tissue areas in a WSI a)). The colors of the annotations
represent the assigned tissue classes: mucosa (blue), connective tissue (green), in-
flammation (turquoise). b) displays the image tiles that have a sufficient intersecting
area with the annotations. The tiles are assigned to the tissue class of the corre-
sponding annotation. Based on these few annotations shown in a), several hundreds
labeled tiles are generated quickly. In c) the drawback of this approach is illustrated:
sometimes tiles with unspecific image content are generated (highlighted by the red
arrow).

Creating a pixel-precise ground truth data set to train and evaluate a segmentation
model is even more time consuming, since a class label has to be assigned to each
pixel of each image tile in the data set. One way to generate a larger number of
annotated images serving as input to a segmentation model is to first annotate larger
image tiles and then to randomly sampling patches from that annotated image, cf.
Figure 12.3.
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Fig. 12.4: Original image (left) and corresponding pixel precise ground truth mask
(right). The assigned tissue labels are color-coded: tumor (yellow), stroma (green),
necrosis (grey), background (white). The edge length of this image is 4,000 pixels,
which corresponds to a length of approximately 900 µm. The required input size
for our segmentation model is 512 x 512 pixel. Instead of tiling the original image
with a grid of non-overlapping tiles of this size, the input image tiles are cropped at
random positions (indicated by three exemplary squares with black outlines), thus
generating a higher number of different input images.

12.2.2 Data Sets for Tumor Detection

Five different data sets were established for experiments conducted within the "tu-
mor detection" application in order to show the robustness and adaptability of the
created models. The primary data set was used mainly for training the model and for
the baseline evaluation. In addition, multi-scanner and multi-center data sets were
created to demonstrate the model robustness. To evaluate the capability to detect out-
of-distribution data, a specific data set containing artifacts was generated. Finally,
the adaptability to a new task based on only a few labeled examples was investigated
on data originating from a different entity (urothelial cancer) than the primary data
set (colon cancer).

12.2.2.1 Primary Data Set

The primary dataset was created based on 152 hematoxylin and eosin (H&E) stained
colon sections. These were digitized with a resolution of 0.22 µm per pixel and
manually annotated afterwards. The annotations consisted of seven tissue classes
(Figure 12.5) and labeled image tiles with a size of 224 x 224 pixels were extracted
from them as described in Section 12.2.1. The dataset was split up into three disjoint
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sets: A training set with 2,173,515 image tiles from 92 WSIs, a validation set with
719,010 image tiles from 30 WSIs, and a test set with 1,381,316 images tiles from
30 WSIs. The training set was used to train several deep neural network models,
the validation set served to select the best-performing model, and the test set was
employed for the evaluation of the model performance.

Fig. 12.5: In each column, examples for one tissue class are displayed. From left
to right: connective combined with adipose tissue, inflammation, mucosa, mucus,
muscle tissue, necrosis, and tumor cells.

12.2.2.2 Multi-Scanner Dataset

As mentioned in Section 19.1, it is crucial that an AI solution performs reliably,
independent of the microscopic scanner used to digitize the tissue sections. As can
be seen in Figure 12.1 (images a) to c)), there are immense differences in color
appearances between different scanners. In order to evaluate the model robustness
quantitatively, a multi-scanner data set was generated. Therefore, the 30 colon sec-
tions from the primary test set were also scanned with four different automated
microscopic scanners and a manual digitization solution that uses a camera and a
stitching software to create the WSI. Manual annotations were only performed on the
primary WSIs. All additional WSIs were registered to their corresponding primary
WSI so that the annotations could be transferred directly. Afterwards, labeled image
tiles with a size of 224 x 224 pixel were generated based on the annotated WSIs for
each scanner.

12.2.2.3 Multi-Center Dataset

Similar to the digitization process, the sample preparation, especially the staining
process, might also introduce variances, e.g., in color. Therefore, a multi-center
dataset with WSIs obtained from H&E stained colon section from different centers
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(clinics) was assembled. All WSIs were annotated manually, using the same seven
tissue classes as in the primary data set. As for the other datasets, labeled image
tiles with a size of 224 x 224 pixel were generated based on the annotated WSIs. In
total, the multi-center data set comprises almost 900,000 image tiles derived from
110 WSIs.

12.2.2.4 Out-of-Distribution Data Set

In order to investigate whether out-of-distribution data can be detected with a suitable
uncertainty measure, a small dedicated database was established. 15 H&E stained
colon and lymph node sections were selected that contained artifacts as shown in
Figure 12.1 (images g) to i)). On top of the seven tissue classes used in the primary
dataset, three additional out-of-distribution classes were introduced: artifacts, debris
and blood. Overall, this dataset comprises 14,001 image tiles assigned to one of the
seven tissue classes (in-distribution data) and 11,388 out-of-distribution image tiles
that are assigned either to the artifact (8,133), debris (1204), or blood (2051) class.

12.2.2.5 Urothelial Data Sets

With this dataset the adaptability of the classification model to the new entity of
urothelial cancer using only a few annotations is evaluated. The distinctive charac-
teristic of urothelial cancer is that it differentiates into a particularly large number
of subtypes, some of which exhibit very different morphologies. Six different sub-
types, combined into one "tumor" class, were included in this dataset. Accordingly,
four "healthy" subclasses (e.g., connective tissue) were combined into one "healthy"
class. Necrotic tissue, belonging to neither, was annotated as a separate class. For
each subclass, three annotations in three different WSIs were included and set apart
for the adaptation of the classification model. Further 37 WSIs were annotated, re-
sulting in a test database with 13,963 image tiles of class tumor, 22,739 image tiles
of class healthy and 2,126 image tiles of class necrosis.

12.2.3 Data Set for Tumor-Stroma Assessment

The tumor-stroma assessment application required a data set with a different type
of ground truth, which was generated from 33 WSIs of the primary data set, all
containing adenocarcinoma of various grades. Pixel-precise annotations were carried
out within manually selected regions of interest (ROIs) with an average size of 1 mm
x 1 mm in the WSIs (Figure 12.4) and each pixel was assigned to one of the six
classes: tumor, stroma, mucus, necrosis, background and artifact. The artifact class
was introduced for pixels that should be ignored during training and evaluation.
The data set comprised three disjoint subsets: the training set with 29 ROIs from



12 Robust and Adaptive AI for Digital Pathology 237

23 WSIs (685,462,500 labeled pixels), the validation set with 6 ROIs from 4 WSIs
(166,362,500 labeled pixels) and the test set with 9 ROIS from 6 WSIs (203,092,500
labeled pixels).

12.3 Prototypical Few-Shot Classification

For the task of tumor detection, a prototypical few-shot classification model [11] was
chosen. The remarkable aspect of the prototypical model is that it can be adapted to
a new task with only a few annotated examples and without retraining the underlying
network weights [11]. The underlying neural network is very similar to a classical
CNN approach: only the classification layers are removed and all layers that generate
the feature vector are kept. The difference between classical neural networks and the
prototypical network approach is how the classification itself is performed: In the
classical approach, the classification starts from the feature vector via fully connected
layers, often followed by a softmax layer. In the prototypical few-shot approach, the
final layers that would perform the classification are omitted and the feature vector
itself is used for computing the similarity of a query to so-called class prototypes
and the class label of the nearest prototype is assigned to a query. Therefore, any
CNN architecture such as e.g. Xception [2], ResNet [7] or EfficientNet [12] can be
used as feature generator, or alternatively even a vision transformer [3].

The class prototypes are derived from a set of "supports", i.e., example images per
class. These support images are propagated through the CNN backbone, resulting
in support feature vectors. There are different methods for representing the class
prototypes: the most straightforward way is to use the average over all support
feature vectors as the prototype. A more sophisticated option is to apply a clustering
algorithm on the support feature vectors and use the estimated cluster centers as
prototypes. This is particularly advantageous if there are high variances in appearance
within a single class.

The class prototypes, like the supports and the query images, are represented by
their feature vectors in the so-called latent space. As a result, their similarity can be
calculated by a distance metric, e.g., the squared euclidean norm. In order to classify
a query, the class label of the most similar class prototype is assigned to the input
query image.

A more detailed description of the prototypical few-shot approach, including the
training procedure as well as investigations into the influence of the number of the
support images per class and the number of prototypes per class, is given by Deuschel
et al. [4].
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Fig. 12.6: Concept of classification with a prototypical few-shot model derived
from [4]. Support images and a query image are propagated through an Efficient-
NetB0 model (without classification layers), resulting in a feature vector for each of
the input images. Based on the feature vectors of the support images for each class
prototypes are calculated by applying e.g. a k-means clustering algorithm. The class
label of the most similar prototype - in this case the one with the minimal squared
euclidean distance - is assigned to the query image.

12.3.1 Robustness through Data Augmentation

One method of introducing more robustness into neural network models is to simulate
the expected variance in the data by creating additional samples de novo during
training, which is called data augmentation. This is particularly applicable in digital
pathology, as the color changes in the data caused by using different scanners or
staining protocols presents a major impact on the trained models and luckily is fairly
easy to simulate. A further advantage of data augmentation is that it is performed
only during training and thus the inference time remains unaffected, which is not the
case with other methods that, for example, perform color normalization of the input
image before the inference step.

Four different augmentations were applied randomly on the training data, each
highlighting different possible variations in the input data. The first two augmen-
tations randomly modified the hue and saturation components of the image colors,
respectively. In order to access these components, the images were first transformed
into the HSV color space to perform the modification, before being transformed
back into the original RGB color space. Another augmentation was performed in a
domain specific color space: the color space of the tissue staining. The tissue sections
are stained with hematoxylin and eosin. In the so-called H&E color space, each of
these components were separated into one channel each, plus a residual channel [1].
In order to simulate variations in the staining processes, the pixel values of both
channels, the hematoxylin as well as the eosin channel, were altered randomly. Then,
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a transformation back into the RGB color space was performed. Finally, as a last
augmentation, Gaussian blur was added to some of the input images. Each of these
augmentations was applied to an image during training with a defined probabil-
ity (25%). Examples of augmented images for these four different categories are
depicted in Figure 12.2.

Fig. 12.7: Examples of images with four different augmentations applied: hue or
saturation alteration of the image in the HSV color space, domain specific color
space transformation ("H&E") with pixel value alteration of the resulting color
channels, and Gaussian blurring. The first row shows the original images. The other
rows show the corresponding augmented images obtained using different parameters,
e.g., adding more or less Gaussian blur to the original image.

Other types of data augmentation are commonly used as well, such as scaling or
contrast enhancement. In the presented application, however, applying such mod-
ifications like scaling the input images as an augmentation, did not significantly
improve the robustness of the model. Investigations on the impact of further data
augmentations and the robustness of different CNN network architectures can be
found in [10] and [9]. The combination of the four above mentioned data augmenta-
tions showed not only to be very effective in our application but in fact, extremely
necessary, as the classification accuracy without data augmentation proved to be
very low on unseen scanner data, as the evaluation in the next section shows.

In order to find the most appropriate network architecture, several different mod-
els were compared, including Xception, ResNet50, EfficientNetB0, EfficientNetB3,
EfficientB4, and QuickNet. In our case, the EfficientNetB0 architecture achieved
the best trade-off between classification accuracy on the multi-scanner data set and
inference time [9]. As a result, all evaluations reported in the following evaluation
section were obtained with EfficientNetB0 models that were trained exclusively on
WSIs scanned with the same automated microscopic scanner (primary data set) and
applying hue, saturation, H&E and blur augmentations. The EfficientNetB0 was not
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only used for the prototypical few-shot model as a feature extractor, but also as
classical CNN using fully connected-layers and a softmax layer for classification as
a baseline comparison for the prototypical few-shot model.

12.3.1.1 Evaluation on the Multi-Scanner Data Set

Figure 12.8 shows the results of the prototypical few-shot and the classical CNN
approach using an EfficientNetB0 architecture and a reference model (classical CNN
with Xception architecture) that was trained without applying any data augmentation.
For each approach – except for the reference without data augmentation – training was
repeated three times using the training and validation set extracted from the primary
data set. Afterwards, the respective models were applied to the test set of the primary
data set ("original scanner") and to each set of the multi-scanner database and their
results were averaged. In contrast to the reference trained without augmentation, the
models trained with data augmentations showed robust performance on all automated
scanners (scanners 1 to 4). The classification accuracy decreased only on the data
obtained with a manual digitization process. Here, the scan quality is worse compared
to the scan quality obtained in an automatized scanning process, and more stitching
errors and out-of-focus regions are present. However, since manual digitization is
fairly rare, no further investigations were carried out. To improve the performance
on this data set, synthetic generation of images containing stitching errors could be
investigated.

Fig. 12.8: Comparison of classification accuracy over data sets obtained with dif-
ferent scanners and a manual digitization process for the prototypical few-shot and
the classical CNN approach (both trained using data augmentation), as well as a
reference model (classical CNN with Xception architecture) trained without data
augmentation.

The classical CNN approach achieved a higher classification accuracy on the
original scanner data set than the prototypical few-shot approach (0.932 compared to
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0.915). However, the average classification accuracy on the four automated scanners
that were unseen during training is almost identical for both approaches (0.910
compared to 0.912). It is notable that the prototypical few-shot models performed
very similarly on all five automated scanner data sets. In contrast, the reference model
(classical CNN with Xception architecture) that was trained completely without
applying data augmentations, obtained classification accuracy ranging between 0.29
and 0.73 on the multi-scanner data set. This strongly indicates the need for and the
effectiveness of data augmentation.

12.3.1.2 Evaluation on the Multi-Center Data Set

For the evaluation on the multi-center data set, one model with EfficientNet B0
architecture was chosen from the three classical CNN and the three few-shot models,
each. The decision was made based on which models performed best on the multi-
scanner data set.

The results for both approaches on the multi-center data set, as well as for the
primary test set, are denoted in Table 12.1. The overall accuracy for both approaches
lies above 90% for all multi-center data set, demonstrating the models’ robustness.
Comparing the class specific metrics for the tumor class, a drop in recall compared
to the primary test set is evident, whereas the precision lies almost in the same
range as the precision on the primary test set. Since the recall is also involved in the
calculation of the F1 score, these values are also lower than on the primary test set.
In contrast to the multi-scanner data set, where the variance was caused only by the
use of different scanners, this database has multiple sources of variance. First of all,
these three data sets contain WSIs obtained from different tissue sections, unlike the
multi-scanner data set, where the same 30 tissue sections were used for all scanners.
As the tissue sections were stained at different sites, different staining protocols were
applied, which lead to color variances. On top of that, different scanners were used
at the different centers for the digitization. A closer look at the results of individual
WSIs showed that a poor recall of the tumor class often occurred for WSIs containing
tumor subtypes that were underrepresented in the primary training set. Therefore, the
extension of the primary training set with WSIs containing these underrepresented
subtypes would probably increase the performance of the models regarding the tumor
recall on the multi-center data set.
Table 12.1: Overall accuracy as well as precision, recall and F1 score for the "tumor"
class achieved with classical CNN and prototypical few-shot model on datasets from
different centers and on the primary test dataset.

Few-Shot Classical CNN
overall Tumor overall Tumor
acc. prec. recall F1 acc. prec. recall F1

Center 1 0.94 0.99 0.73 0.84 0.95 0.97 0.85 0.91
Center 2 0.93 0.91 0.91 0.91 0.95 0.93 0.87 0.90
Center 3 0.91 0.96 0.75 0.85 0.91 0.97 0.70 0.82
Primary Set 0.92 0.98 0.94 0.96 0.93 0.97 0.95 0.96
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12.3.2 Out-of-Distribution Detection

It is not only important that a classification model is robust w.r.t. variations in the
input data, but also that a quantitative measure can be given of how reliable the
predicted label for a given image tile is. This includes the recognition of so-called
out-of-distribution inputs. As opposed to the images with which the respective model
was trained (in-distribution data), out-of-distribution data refers to classes that were
not part of the training data, for example images containing pen markings (Figure
12.1).

In the few-shot approach, the classification is performed based on the distance
of the queries to the class prototypes. The class prototypes in turn are determined
by their respective supports. The distribution of these supports can be considered as
a multivariate normal distribution. Therefore, the Mahalanobis distance [6], which
is calculated based on the covariance matrix of the support feature vectors and
differences between the features of the query and the corresponding class prototype,
can be utilized for estimating the reliability that the query image belongs to this
cluster.

This approach was evaluated on the out-of-distribution data set with a prototypical
few-shot model using an EfficientNetB0 architecture that generates a 32-dimensional
feature vector. The model was trained on the primary training set. The classified
image tiles of the out-of-distribution data set can be grouped into three categories:
in-distribution image tiles that are classified correctly, in-distribution image tiles
with wrong classification, and out-of-distribution image tiles. For each image tile
the Mahalanobis distance from its feature vector to the nearest class prototype
was calculated. Then all image tiles with a Mahalanobis distance above a defined
threshold were rejected. The ratio of rejected images tiles to the total amount of
images tiles for each of the categories are depicted in Figure 12.9 for varying
thresholds. For instance, a threshold of 125 leads to the rejection of only 1.2% of
correctly classified tiles, but 23.5% of incorrectly classified tiles and 41.4% of all
out-of-distribution tiles. Thus the Mahalanobis distance seems to be a promising
measure for the reliability of the model predictions. One further advantage is that the
inference time is barely increased by computing the Mahalanobis distance, which is
an important aspect considering the enormous size of the WSIs.

12.3.3 Adaptation to Urothelial Tumor Detection

The design of the prototypical few-shot model with its explicit representation of
classes by prototypes in the latent space allows an adaptation to a new classification
task without retraining the weights of the CNN (here an EfficientNetB0) that is used
for embedding the images in latent space. It is sufficient to generate new prototypes
that represent the classes of the new task. Therefore, support images of each new
class are required. The model was initially trained on the primary data set that
was derived from colon tissue sections containing adenocarcinoma. The new task
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Fig. 12.9: All images tiles with a Mahalanobis distance greater than the respec-
tive threshold to the nearest class prototype were rejected. Three different groups
were considered: image tiles belonging to the out-of-distribution classes, image tiles
belonging to the in-distribution classes that were classified correctly and image
tiles belonging to the in-distribution classes with wrong classifications. The ratio
of rejected image tiles to the total amount of tiles for each category is depicted in
dependence of the applied threshold for the Mahalanobis distance.

is to distinguish the three classes tumor, healthy and necrosis in WSIs containing
urothelial tumor. As described in Section 12.2.2.5, 33 regions were annotated (three
for each tumor subtype, as well as three for each healthy subclass) in 18 WSIs. The
resulting labeled image tiles were taken as supports to calculate prototypes for each
class. Two different methods were compared in [8]: a) using a k-means clustering
(with k=6) on the set of all supports of each class and b) calculating one prototype
per annotation by averaging all supports derived from this annotation. The latter
method is particularly suited to support an interactive process in which the user also
annotates previously misclassified regions. Calculating the prototype per annotation
ensures that each annotation is represented by a prototype, which is not the case
when using k-means clustering.

The results of the evaluation on a disjoint test set are shown in Table 12.2. Both
models achieved similar results and were able to recognize all three classes well,
as shown by the high recall values. These results demonstrate that the prototypical
few-shot model was successfully adapted to the new task.

12.3.4 Interactive AI Authoring with MIKAIA®

The entire workflow of adapting the prototypical few-shot model and applying it
to WSIs was realized in the MIKAIA® software (Figure 12.10) of Fraunhofer IIS.
Without any knowledge about deep neural networks users can create their own model
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Table 12.2: Classification results of the adapted prototypical few-shot model on the
urothelial test set with two different prototype calculation methods: A) using k-means
clustering on the set of all supports of each class and B) one prototype per annotation
calculated as average over all supports derived from this annotation.

prototype method overall accuracy avg. precision avg. recall avg. F1

A (k-means) 0.936 0.898 0.930 0.912
B (per annotation) 0.929 0.908 0.919 0.913

by providing annotations for the classes to be distinguished interactively. Hereby,
the model can be adapted iteratively. As soon as at least one annotation is available
for each class, the new prototypes can be calculated. Depending on the size of the
provided annotations this process only takes a couple of seconds. Afterwards, the
model can be applied. If the result is not sufficient, further annotations may be carried
out and added to the prototype calculation.

Fig. 12.10: User interface of the "AI Author" module of the MIKAIA® software of
Fraunhofer IIS. To create a new AI the user specifies a name and clicks on the button
"New" (A). Then, classes can be named and added (B). Afterwards, annotations
for each class need to be provided (C). Clicking "Train" triggers the calculation of
the new prototypes (D). Hereby, all image tiles within the annotations are taken as
support images. A two-dimensional projection of the latent space is displayed in (E).
The supports of each class are color-coded and form separate clusters in latent space.
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Performing a tissue analysis on a WSI with a deep neural network requires first of
all a tiling step into smaller image tiles as the input sizes of the network are signifi-
cantly smaller (e.g., 224 x 224 pixels) compared to the size of a WSI (e.g., 80,000 x
100,000 pixel). Tiling into non-overlapping image tiles and generating a color-coded
overlay according to the predicted label results in a checker board visualization. A
smoother overlay can be obtained by using overlapping tiles, hence increasing the
computation time due to the increased number of tiles to be classified. Another option
is to introduce a preprocessing step that divides the WSI in superpixels by group-
ing visually similar adjacent pixels. Afterwards, image tiles within the superpixels
are classified and their classification labels are combined into a superpixel label.
Thereby, it is sufficient to classify only a random subset of images tiles contained in
the superpixel which leads to a reduction of the computation time [13]. Figure 12.11
shows the classification results obtained with the prototypical few-shot model that
was adapted based on the three annotations displayed in Figure 12.10 for both tiling
strategies.

Fig. 12.11: Color-coded classification results for two different tiling strategies are
shown that were obtained with the adapted prototypical few-shot model based on the
annotations shown in Figure 12.10. Tiling into non-overlapping image tiles yields a
checkered classification overlay (left). A prior segmentation into superpixels (middle)
yields smoother results (right).

12.4 Prototypical Few-Shot Segmentation

Deep neural network segmentation models are chosen for tasks where a pixel-precise
analysis is required. The basic principle of the prototypical few-shot approach can
be applied here as well as shown in Figure 12.12, ensuring an easy adaptability to
new tasks. Instead of single classification labels per support image, labeled masks
are required in this case. Similar to the classification approach, the input images are
propagated through a CNN architecture with the difference that the result for one
image is not a single feature vector but a spatially arranged map of feature vectors.
This feature map has smaller dimensions than the input image. For each support
image the feature map is fused with the accordingly downsampled annotation mask.
Afterwards, masked average pooling is applied, resulting in one support feature
vector representing the average of all pixels belonging to this class in this support
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image. The subsequent calculation of prototypes is identical to the classification
case. Query images are also propagated through the network. For all pixels in their
feature map the similarity to the class prototypes is determined and the label of the
most similar one is assigned to this pixel. Finally, an upsampling step is performed
resulting in a segmentation mask in the original resolution of the input image. Further
details can be found in [5].

Fig. 12.12: Concept of segmentation with a prototypical few-shot model derived
from [5], licensed under CC-BY 4.0. Support images are propagated through a
MobileNetV2, resulting in a downsampled feature map which is fused with the an-
notation mask. Afterwards, masked average pooling is applied to obtain one support
feature vector per support image. Class prototypes in latent space are calculated by,
e.g., applying k-means clustering to all support feature vectors of the respective class.
Query images are propagated through the MobileNetV2 as well. For each feature
vector in the query feature map the most similar prototype is determined and its label
is assigned to the corresponding pixel in the feature map.

12.4.1 Tumor-Stroma Assessment

On the data set described in Section 12.2.3 a prototypical few-shot segmentation
model with a MobileNetV2 architecture was trained. A detailed description of the
training parameters is provided in [5]. Table 12.3 shows the results obtained on the
corresponding test set. Especially, the classes tumor and stroma that are important for
an accurate tumor-stroma assessment are reliably recognized. Confusions between
the other three classes are less relevant as they do not affect the tumor stroma
ratio. This opens up new opportunities for the tumor-stroma characterization like
the complete segmentation of the tumor and detection of regions with high and low
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stroma density. Currently, manual assessment is restricted to determining the ratio
of the tumor and stroma area within small representative region of interest within
the tumor due to time constraints.

Table 12.3: Results of pixel-wise evaluation on tumor-stroma test set.

Class precision recall F1-score

tumor 0.917 0.925 0.921
stroma 0.881 0.910 0.895
necrosis 0.631 0.682 0.655
mucus 0.848 0.525 0.638
background 0.727 0.710 0.718

12.5 Conclusion and Outlook

Prototypical few-shot approaches are easily adapted to new tasks based on only a few
annotated examples without retraining the underlying network weights. They can be
designed as classification as well as segmentation model and are suited for the use
in digital pathology applications, as shown in this contribution for the example of
tumor detection and tumor-stroma assessment. An important aspect when develop-
ing AI solutions for digital pathology is to ensure their robustness against the data
heterogeneity in "real-world" scenarios. Domain-specific data augmentations are an
effective way to cope with variance that are introduced by differences in staining
procedures or by digitization with scanners from different manufactures. This was
demonstrated for the tumor detection task on multi-scanner and multi-center data.
Moreover the biological diversity of, e.g., tumor subtypes, has to be reflected in
the training data. Missing or underrepresented sub types might lead to a poorer
detection rate which probably caused the lower recall values for the tumor class
on the multi-center data. Furthermore, a desirable property is that the AI model
recognizes when it is confronted with out-of-distribution data that it has not encoun-
tered during training. These might include yet unseen tumor subtypes or artifacts.
Therefore, the model should not only predict a result but also provide an estimate
how reliable the prediction is. In case of prototypical few-shot models, a promis-
ing reliability measure can be derived from the Mahalanobis distance between the
query and the corresponding prototype in latent space. Its effectiveness in reducing
incorrectly classified and out-of-distribution image tiles was shown for the tumor
detection application. To make the developed AI approaches usable for pathologists,
the workflow to customize and generate an own AI was realized in a software with
graphical user interface. The introduction of AI solutions to support pathologists in
the assessment of digitized tissue sections opens up new possibilities in the research
of new prognostic factors like the tumor-stroma ratio: instead of only evaluating
individual small hotspots, analyses can be performed on the entire tumor area that
were not feasible manually in terms of time. Also, the results become more objec-
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tive, since especially the estimation of areas is very subjective and high variations
between different pathologists occur.

In addition to analyzing the composition of different tissue types, which can be
performed with the proposed few-shot models, a quantitative analysis of the cell types
and their distributions provides further insights into the tumor biology. Therefore,
future work will focus on developing a reliable cell detection and classification and
on combining it with the described prototypical few-shot approaches. General classi-
fication and segmentation of a WSI into different tissue types and sub-structures with
prototypical networks will permit subsequent informed cell classification analyses.
The detection of cell types and densities in relation to the segmented substructures
will provide the pathologist with an even more comprehensive and quantitative char-
acterization, which will facilitate more specific diagnosis required for personalized
medicine..
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Chapter 13
Safe and Reliable AI for Autonomous Systems

Axel Plinge1, Georgios Kontes1, Sebastian Rietsch1, Christopher Mutschler1

Abstract A big challenge in implementing autonomous systems using reinforcement
learning in a way to be used in the real world is to make them dependable, i.e.,
explainable and reliable. Automated and autonomous driving poses one of the biggest
challenges to the development of artificial intelligence (AI), as it is technically
demanding to solve the tasks involved in order to make a car act autonomously in
real-world situations. However, unless autonomous systems become truly safe and
dependable, they cannot be deployed in a real-world setup. Operating autonomous
vehicles not only efficiently but also safely and reliably is even more challenging.
This chapter explains several unique and innovative methods to illustrate dependable
reinforcement learning in autonomous vehicles.

Key words: reinforcement learning, autonomous systems, dependable artificial in-
telligence, autonomous vehicles

13.1 Introduction

Autonomous agents determine – independently of human supervision – how a given
system should operate in response to observed environmental parameters. They
comprise actuators for interacting with the environment, sensors for perceiving it,
and components for the aggregation, analysis, and interpretation of data, as well
as situation assessment and planning future actions. Applications include, among
others, robotic movement [14], the control of autonomous vehicles [12] and drones
in industrial use cases [15], regulation of chemical processes [13] or hydraulic pumps
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Fig. 13.1: An autonomous system with reinforcement learning. Images (C) phonla-
maiphoto - Fotolia.com, Victoria - Fotolia.com

in industrial plants [10], control of intelligent buildings [46], and renewable energy
production through wind turbines [32].

13.1.1 Reinforcement Learning

The complexity of real-world applications paves the way for the development and
adoption of learning autonomous systems. Here, the agent progressively learns to
improve on a given task through interaction with the environment. For the learning
component of the agent, we adopt the reinforcement learning (RL) paradigm.

RL is a branch of machine learning that addresses sequential decision problems
under uncertainty. Therefore, it is more suited for systems that operate autonomously
and affect the environment with actuators compared to supervised and unsupervised
learning algorithms that are able to tackle one-step decision problems.

Here, the agent interacts with the environment, and through trial-and-error, pro-
gressively derives rules that define how actions or decisions are selected. This process
is guided by a reward signal which is available to the agent after every time step –
with the final goal to learn a function (called policy) that selects actions that max-
imize the future expected total reward gathered by the agent. The generality of the
reward definition allows for optimizing the behavior of the system towards multiple
desired objectives, such as safety and effectiveness.

RL has shown to reach super human-level performance across a wide range of
tasks. Unfortunately, even though generalization in supervised learning is generally
mature and well-established, those insights do not generally transfer well to the
reward-based learning paradigm. It is generally understood that standard RL tends to
be brittle and unfit to address unknown situations or cope even with subtle deviations
from their training conditions (even to the random seeds of the (simulated) environ-
ments [16]), seriously restricting their relevance in real-world applications [21]. The
problem further intensifies due to novel RL algorithms being commonly evaluated
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based on training performance inside singleton environments like Atari or ALE [5],
slowing a deeper understanding of such algorithmic qualities.

We address these shortcomings by adopting dependable RL approaches and best
practices. To achieve this, we make the connection between dependability and al-
gorithmic transparency – a crucial factor in the design of autonomous systems, as
highlighted in the concept discussed by Lipton [26]. Here, we ensure that the inputs,
internal mechanisms, and outputs of the decision-making process are comprehensi-
ble, thereby enabling humans to gain insight into the decision-making process. In
our approach, we achieve transparency through five aspects:

Understandable observations and states: Prefer hand-engineered or learned
features over raw sensor measurements for algorithmic transparency as they carry
more semantic meaning (e.g.,[35]).

Semantic actions: Semantic, discrete action spaces are favored over direct low-
level control for better understanding. The behavioral planner employs a few discrete,
semantic actions executed through low-level controllers like model predictive control
(MPC) (e.g., see [40, 28, 33, 24]).

Explicit safety components: While approaches like reward shaping (see Chap-
ter 3) have been effective, they rely on an implicit trade-off between safety and
performance. We strive to make this trade-off explicit, enabling separate learning,
analysis, and verification of the risk estimator (e.g., see [38]).

Interpretable learning framework: For example, value-based RL methods like
deep Q-networks (DQNs) are easier to interpret compared to policy-gradient methods
like proximal policy optimization (PPO), cf. chapter 3. DQN estimates future rewards
for state-action pairs, providing a clear theoretical definition that can be numerically
approximated. Policy gradients optimize the policy directly, which is less intuitive
to explain (e.g., see [17, 23, 37, 38] and the references therein).

13.1.2 Reinforcement Learning for Autonomous Driving

As dependable reinforcement learning is best applied in a design framework geared
towards safety, we develop a dependable driving assistant in order to demonstrate
our technology. Autonomous driving provides a unique context for research, as it
requires learning correct behavior over variations of road layouts and distributions of
traffic situations, including individual driver personalities and hard-to-predict traffic
incidents.

The typical processing pipeline of autonomous vehicles is made up of perception,
behavioral planning, motion planning, and actuators, as illustrated in Figure 13.2. The
perception module outputs an abstract representation of the environment. Behavioral
planning selects a high-level action, e.g., changing lanes to avoid an obstacle. Motion
planning prescribes the path of this motion, whereas actuators implement the motion
along that path.

Recently, several algorithmic flavors of RL have been utilized to address various
sub-problems in the autonomous driving domain [20]. In this direction, there have
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Fig. 13.2: Autonomous vehicle pipeline: The perception is typically handled by
supervised machine learning (e.g., computer vision), while behavioral planning is
a key application for RL. The motion planning can be handled by RL or model
predictive control (MPC) before the actuators bring the action to the road. Images
(C) Victoria - Fotolia.com, fotokalle - Fotolia.com

been notable successful real-world applications (e.g. [7, 3]) that leverage imitation
learning algorithms [30] training on available data from vehicles, usually combined
with some form of data augmentation to address the distribution shift of the de-
ployment environment. Other, smaller-scale studies utilize an available high-fidelity
simulator and simulation-to-reality transfer approaches [31] or even learn a driving
policy online [18]. A central concern in these approaches is the extent to which we
can guarantee safety [41] for all possible situations that can occur in the real world.

Unless autonomous systems become truly safe and dependable, they cannot be
deployed in a real-world setup. Operating autonomous vehicles not only efficiently
but also safely and reliably is even more challenging. There are many unique tasks
that need to be solved reliably for safe and efficient performance. Among them,
behavioral planning is one of the hardest challenges [25].

We focus on the realization of behavioral planning by reinforcement learning.
Safe and efficient behavior are the key guiding principles for autonomous vehicles.
Manually designed rule-based systems need to act very conservatively to ensure
a safe operation. This limits their applicability to real-world systems. On the other
hand, more advanced behaviors, i.e., policies learned through means of reinforcement
learning (RL), suffer from non-interpretability as they are usually expressed by deep
neural networks that are hard to explain. Even worse, there are no formal safety
guarantees for their operation.

In Figure 13.3, we see the overall pipeline of our proposed approach to behavioral
planning and its dependable implementation. For each traffic scenario, our training
framework Driver Dojo [34] generates multiple challenging environments. These
are used to train a safe reinforcement learning policy with, e.g., our SafeDQN algo-
rithm [38]. The safe policy is used to train a safe decision tree using our SafeVIPER
algorithm [37]. These trees can also be validated analytically in case there is a usable
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Fig. 13.3: Our proposed pipeline for dependable RL in autonomous driving.

analytic formulation of the scenario. In the following sections, each of our methods
is explained and evaluated in more detail.

13.2 Generating Environments with Driver Dojo

To address RL generalizability and robustness, we require a framework that is able
to emulate a highly-variable driving environment that allows for training and testing
agent behavior in many distinct scenarios. To compare the trade-off between high-
level actions and direct control inputs or different observation spaces against each
other, it must also be easily configurable and provide a broad set of ready-to-use
features. For this, we introduce a sophisticated, application-focused environment
benchmark for autonomous driving called Driver Dojo built on top of the simulation
of urban mobility (SUMO) [27] traffic simulator.

Our environment framework offers a broad suite of features: i) fully randomized
street networks for intersections, roundabouts, and multiple highway driving tasks; ii)
fine-grained rule over traffic initialization and randomization including a sampling-
based method for physical and behavioral of non-ego driver attributes on a per-vehicle
basis; iii) a direct and semantic action space, multiple vehicle dynamics models, and
a catalog of composable observation methods; iv) co-simulation to Carla [11] for
realistic observations from different types of sensors; v) an underlying code-base that
is modular and performant and allows for fine-grained composition of environment
designs. Furthermore, Driver Dojo has a simple workflow to create and deploy static
scenario definitions on par with most simulation benchmarks. The code for the
benchmark is available at https://github.com/seawee1/driver-dojo.

In our benchmark, we mainly concern ourselves with i.i.d. generalization [21],
where training and evaluation scenarios are drawn from the same underlying distri-
bution. However, as we show in our experiments, in-distribution generalization in an
autonomous driving application already poses highly challenging problems.

https://github.com/seawee1/driver-dojo
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Fig. 13.4: Overview of Driver Dojo.

We note that efforts towards adopting real-world traffic datasets aim to address
a similar problem [47, 22] like Driver Dojo, though ultimately suffer from the
shortcoming that prerecorded traffic trajectories deprive the user of the ability to
dynamically respond to movements of the controlled ego vehicle. We argue that the
issue has to be alleviated first for datasets to become an acceptable alternative to
simulation benchmarks.

13.2.1 Method

In Driver Dojo [34], we employ SUMO as the core engine and use its traffic model
to simulate traffic and its interactions with the ego vehicle. It is a microscopic traffic
simulator that is under active development for over 20 years and, thus, very mature and
offers a pallet of features and a versatile ecosystem of range applications, supporting
in many aspects for building a naturalistic driving benchmark for autonomous agents.
The driving simulator Carla [11] offers official SUMO co-simulation support in its
recent versions. Despite SUMO’s lack of a native 3D engine, the integration of
Carla allows us to provide diverse sensor readings through an extensive library of
implemented sensor models. We take advantage of the vehicle dynamics library
of CommonRoad [2] to simulate ego vehicle motion. It offers a range of dynamic
models of varying complexity and physical parameter sets of three distinct real-world
passenger cars. The architecture of Driver Dojo is visualized Figure 13.4.

Actions Our implementation allows granting the agent direct access to the car’s
throttle, brake pedal, and steering wheel or commanding it through high-level se-
mantic actions. While control actions have an immediate and direct impact on the
vehicle, semantic actions affect the vehicle many steps into the future, abstracting
the underlying control complexity and, in other words, decoupling the behavioral
execution problem from the planning problem, allowing to solve them independently.
In its current form, the semantic action space is realized through a low-level Stanley
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control that tracks the path along a selected lane under a specified velocity, both of
which the agent can modify through its actions.

To ensure maximum flexibility, action spaces are parameterized to allow for dis-
cretization of the continuous control action space or selection from various discrete
space configurations. Additionally, we offer an interface for outside motion planners
through passing a list of waypoints to the agent vehicle, enabling combined methods
of classical motion planning and RL.

To reduce the computational complexity in experimental settings where accu-
rate physical modeling is not the main concern, Driver Dojo offers the TargetPo-
sitionSpeed (TPS) vehicle model, which simply interpolates the ego position and
orientation towards the next waypoint. In all other cases, we adopt the kinematic
single-track, single-track drift or multi-body dynamics vehicle models offered by
the CommonRoad [2] suite, along with the accompanying physical parameters for a
Ford Escort, BMW320i, and a VW Vanagon.

Observations. It is common practice to either provide raw perceptions in the
form of sensor readings to the agent or to let it perceive the environment in the
form of driving affordances [8, 1], which is a more condensed representation of
the road situation inside a meaningful and compact feature space. Whereas the
latter eases the learning task, reward-based feature learning on raw perceptions
could be an important angle for solving the generalization problem, as convolutional
neural networks have proven immensely powerful in learning expressive feature
representations in other problem domains. Driver Dojo enables both paradigms by
implementing a multitude of ready-to-use ground-truth observations extracted from
the world state inside SUMO and by using Carla to generate raw perception sensor
signals.

Environment generation. We randomize on both the street network level and
the traffic level through different methods. Our core benchmark scenarios include
roundabouts, intersections and high-ways. Driver Dojo provides programmatic sce-
nario definitions for maximum flexibility in creating highly diverse scenarios. We
translate between conventional map formats, including OpenDRIVE, through net-
convert, which is part of the SUMO software ecosystem. For the roundabout and
intersection scenarios, we define distributions over the number of incoming lanes,
their angle in relation to the structural center, their lengths, as well as the distance
of their connection point with the junction. For roundabouts in particular, we added
probabilistic deformations as real-world roundabouts are often not perfectly round.

Traffic behavior. SUMO’s microscopic traffic simulation modularizes traffic be-
havior through separate car-following, lane-change, and junction models. Commonly,
such models are fixed for one traffic simulation, but different model parameters can
be assigned to groups of vehicles. These span across attributes that define, for in-
stance, pushiness or willingness for strategic lane changes, but also safety-related
factors like targeted time headway, driving imperfections or malicious overlooking
when crossing a junction. To make our benchmark as challenging as possible, we
define distributions over 34 such parameters of interest, from which we sample a
fixed set of parameter constellations, and randomly assign them to non-egos entering
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Fig. 13.5: Safe DQN approach: Two separate networks are learning safe and efficient
behavior in parallel. One optimizes for utility, one for safety.

the scenario. These also include physical properties such as vehicle dimensions or
acceleration and deceleration profiles.

13.3 Training safe Policies with SafeDQN

In order to ensure the dependability of reinforcement learning behavior planning,
[38] presents a novel approach that splits its knowledge of safe behavior into two
components. The idea starts from Q-Learning, a fundamental algorithm in RL that
iteratively updates Q-values using the Bellman optimality equation. It is an off-
policy method aiming to approach the optimal policy. To address large or continuous
state spaces, a non-linear function approximator like a neural network (NN) can
represent the Q-function. Its parameters can be learned through back-propagation
by minimizing the Bellman error of the Q-function. The DQN algorithm [29] builds
upon this concept and incorporates additional techniques to enhance learning stability
(see Chapter 3).

13.3.1 Method

In our approach, we train two neural networks in parallel, as illustrated in Figure 13.5.
The first network is used as an approximator of the optimal state-action value (Q-
value) function, meaning the maximum expected utility or cumulative future return
of an action conditioned on a state, in the same manner as in tabular Q-Learning or
Deep Q-Networks. For our safety-oriented approach, we add the second network to
approximate the optimal state-action risk function, meaning the minimum expected
cumulative cost of an action conditioned on a state. This allows us to make an
explicit risk-utility trade-off by subtracting the risk estimate from the utility estimate
and choosing the action that maximizes the combined risk-utility signal. To enable
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(a) Left turn (b) Right turn (c) Roundabout

(d) Highway merge

(e) Highway drive

(f) Highway split

Fig. 13.6: Driver Dojo generated maps for the different scenarios.

the user to manually specify a desired threshold safety, we automatically learn the
linear weighting factor alongside both network weights during training.

Further, enhanced interpretability is achieved through the disentangled estimates,
enabling separate analysis and evaluation of risk and utility, thereby facilitating better
understanding and reasoning.

Furthermore, we assessed a variant of SafeDQN with an alternative objective
function, referred to as SafeDQN-Alt. In this modified objective, the action from
which to bootstrap the next Q-value is determined from the Lagrangian combination
𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑠, 𝑎)+𝜆𝑅𝑖𝑠𝑘 (𝑠, 𝑎). The rationale behind this adjusted objective is to optimize
both estimators by incorporating information from each other. Specifically, this
change in objective aims to mitigate overestimation in states where the best action
according to utility carries a high risk and should be avoided. This concept bears
resemblance to Double DQN [45], which employs the best action from the target
network to alleviate overestimation bias. CDQN [17] also incorporates constraints,
albeit in a more stringent manner.

13.3.2 Evaluation

Through evaluation of SafeDQN in diverse traffic scenarios, we demonstrate its
ability to generate effective strategies while significantly outperforming baseline
methods in terms of safety. Thus, the goal for the agent is to successfully complete
each scenario along a predefined route without a collision. In Figure 13.6, we see
the target environments generated with Driver Dojo [34]. We included three typical
highway tasks (merge, drive, split) and inner-city scenarios (left/right turns and a
roundabout). The street networks of scenarios Right turn, Left turn, and Roundabout
are part of the Town03 map from the CARLA simulator [11], which were integrated
utilizing SUMO’s tooling scripts.

The other algorithms considered in our evaluation include DQN with reward
shaping, PPO with reward shaping, and RCPO+. RCPO+ is similar to RCPO [43]
but utilizes two critics, akin to the approach employed in SafeDQN and CPPO [42],
to separately estimate reward and safety.

In Figure 13.7, the results are shown as the average return per episode (top) and
the cumulative number of constraint violations (bottom) of SafeDQN along with the
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Fig. 13.7: Evaluation results for SafeDQN against baseline algorithms in the scenar-
ios.

baselines after training. Overall, our method operates much safer than all baselines
in five out of six scenarios. SafeDQN encounters difficulty in quickly discovering
a secure policy during Highway-Drive scenarios. Unlike other scenarios, Highway-
Drive exhibits a distinct characteristic where a random policy exhibits competitive
performance. Typically, a random policy operates at speeds lower than the average
traffic speed, and the randomness in lane changes can be more easily adjusted for by
the traffic’s lane-changing model.

13.4 Extracting tree policies with SafeVIPER

While most work on neural network interpretability [39, 6] fails to explain policy
networks, previous work by Bastani et al. [4] uses imitation learning on the policy
to extract decision trees that are both interpretable and easy to comprehend through
manual analysis. Moreover, the decision trees can be formulated as sets of logical
clauses of the input because the policy is piece-wise linear. Through formulating
system clauses, the logical rules can be used to formally prove correctness [4].

The method introduced in [37] provides a pipeline that builds on this technique
to create policies that are both safe and interpretable. The pipeline trains a non-
interpretable RL agent for safe behavior, modifying existing reward structures and
training techniques. The pipeline combines (Deep) RL advancements with safety
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and interpretability requirements. It extracts rules resembling the policy through a
decision tree, which matches the performance and safety of the DNN agent while
being easily interpretable. Additionally, the pipeline employs formal verification to
ensure safety for linearized system dynamics. This approach extends beyond overtak-
ing maneuvers, encompassing risk-sensitive driving scenarios like roundabout entry,
exit, and intersection navigation. Notably, our work represents the first application
of VIPER [4] and its verification concepts in an autonomous driving context.

13.4.1 Training the Policy

The SafeVIPER algorithm we introduced [37] works as follows: Decision trees
are trained form the learned RL policy as student policies. We begin by initializing
several elements, including a dataset of transitions denoted as D, a dataset for critical
transitions referred to asK, the initial policy for aggregating experiences represented
as 𝜋̂0, and the set of safe students denoted as Π𝑠 . Subsequently, we repeatedly collect
experience from the current policy 𝜋̂𝑖 and incorporate this experience into our
dataset D. We identify critical trajectories, which are trajectories where 𝜋̂𝑖 results in
a violation of constraints, and include them inK. Then, we train a new student policy
using a dataset that comprises both K and a subset of D. If the trained student policy
successfully passes an evaluation test without violating constraints, it is added to Π𝑠 .
Eventually, after training a total of 𝑁 students, we evaluate all policies within Π𝑠 .
We select and return the policy that attains the highest reward, taking into account a
substantial penalty for constraint violations.

13.4.2 Verification of Decision Trees

The verification step formally proves the safety of the agent policy. Both the en-
vironment and the trained decision trees are formulated into sets of mathematical
constraints. Then, we show that, when these constraints hold, a crash is formally
impossible. This verifies the safety of the trained policies for linearized dynamics.
We use a linearized lane change scenario as a running example.

Our verification approach is based on work by Bastani et al. [4]. The general
idea is to translate the system dynamics, the agent policy, and the definition of a
catastrophic episode into sets of constraints. Let S be the set of clauses that describe
our system, P the set of clauses that describe the agent policy, and C the set of
clauses that describe catastrophic situations, i.e., crashes. Formally, we prove that
the following holds:S∧P=⇒¬C In other words, if both the system dynamics and the
policy hold, there is no solution that satisfies the crash conditions. As a consequence,
such a system is deemed safe.

To prove this, we use the satisfiability modulo theories (SMT) solver Z3 [9] to
find solutions to the negation, ¬(S ∧ P=⇒¬C) ≡ · · · ≡ S ∧ P ∧ C. If there are no
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Agent Car 1 Car 2

Fig. 13.8: Experimental scenario. The agent follows two cars on the right lane of
a two-way highway. Car 1 is faster than Car 2, and will overtake. The agent has to
decide when and how to overtake.

assignments that satisfy these equations, the first assumption must hold, and thus the
system and the agent together are safe.

13.4.3 Evaluation

Autonomous vehicles frequently encounter overtaking scenarios on various road
types and traffic conditions. The goal is to optimize speed and efficiency while
ensuring safe maneuvers. Striking a balance between caution and performance is
essential, as overly conservative behavior hinders efficiency. Meeting high safety
standards is crucial for real-world deployment, achieved through rigorous verification
methods. The objective is to minimize risk when making decisions. To show the
viability of our approach, we therefore choose an overtaking maneuver.

For our scenario shown in Figure 13.8, we place three cars on the right lane of
a highway. The foremost car (Car 2) drives slower than the middle car (Car 1). The
agent’s car is the fastest but behind the two. The longitudinal decisions of non-ego
cars are made by standard intelligent driver model [44] rules, while lane change
decisions are made according to the minimizing overall braking induced by lane
change (MOBIL) model [19]. The car controlled by the agent faces a challenge in
overtaking both vehicles simultaneously due to the possibility of the second vehicle
initiating its own overtaking maneuver. Consequently, the agent must predict the
expected response of the second vehicle and make a decision to either overtake both
cars confidently or wait until the second car has completed its maneuver. Every
episode begins with a random setup of the distances and velocities between the
vehicles and lasts for a fixed duration of 40 time steps or stops in the event of a
collision.

To evaluate the trained policies, we report the final longitudinal position of the
agent car as a good score for the agent performance and the probability of crashes in
20 000 time steps of simulation. Additionally, we evaluate the policies in a random-
ized test environment. In this environment, the non-vehicle cars randomly change
their speed. This makes safe operation harder for the agent.

The performance and probability of constraint violations of our training method
and the baseline are presented in Figure 13.9. When compared to the unmodified
baseline, our training method exhibits significantly safer behavior in terms of crash
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Fig. 13.9: Evaluation performance and crash frequencies for the baseline and safety
training methods with mean and standard deviation across five replications. All
policies are evaluated on a (constant) environment, and on a version where the other
cars change their speed randomly (randomized). Trees are extracted both using the
original VIPER algorithm [4], and with our modifications (SafeVIPER).

incidents, with a trade-off of less than 10% in performance. This holds also for the
randomized movement of other cars, where the improvement is even more substantial.
These findings demonstrate that our training method greatly enhances the system’s
resilience to changes in the environment. In individual replications, our method
achieved a score of up to 1358 in the constant environment, without any constraint
violations, and maintained perfect safety during the randomized evaluation.

Figure 13.10 shows a visualization of a tree extracted from a safety teacher policy
using SafeVIPER. Its small size and clear decision criteria make the tree highly
interpretable. Each decision can be understood easily by manually retracing the
decisions made by the tree. This gives the opportunity to inspect the generated tree
in detail, and to figure out if certain decisions are not optimal. We found that many
decisions and subtrees permit a hierarchical interpretation: Tree nodes at the top
of the tree establish a certain situation (e.g., slow non-agent-vehicles), while the
sub-trees below these nodes perform detailed controlling tasks for, or reactions to,
these situations.

In Figure 13.11 a detailed look at a part of the full tree is shown. Grey subtree
nodes show parts of the tree that were cut away. This subtree splits between the
relative speed and the lane distance of the two vehicles in our scenario. closest
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Fig. 13.10: Policy tree extracted from a PPO policy trained with the safety training
modifications. Each node represents at the decision. To compute the output of the
decision tree, start at the top node, and evaluate each node, stepping left or right,
until a leaf node is reached. Leaf nodes are colored according to the action: Change
lane to the right, change lane to the left, accelerate, brake, and idle (no dedicated
action to take).
Image taken from [37] (C) IEEE 2021

denotes the vehicle with the smaller absolute lane distance to our vehicle, v2 is the
vehicle further away. Here the decisions are chosen as follows: Nodes A and B check
for the relative velocity of the two non-agent vehicles. Thus, if C is activated, we
know that both vehicles are slower or only barely faster than the agent is. C splits on
the distance to closest, going into the unlabeled subtree on the left if closest is
either behind the ego vehicle or less than 43 m in front of it. E uses the distance to
v2: if it is behind us, the agent accelerates, if it is in front of us, the agent changes
lanes to the left. In our scenario, this is sensible: If closest is the slower
vehicle and v2 (the faster one) is behind us, we can assume that we already changed
the lane to overtake closest. Thus, with our lane clear, we can accelerate. If v2 is
the slower vehicle, and both vehicles are at most around 4 m/s bit faster than we are
(recall nodes A and B), we can change our lane to indicate that we will overtake, and
expect the other vehicles to cooperate. On the other labeled subtree, nodes F and G
seem to perform a distance control task.

13.5 Conclusion and Outlook

In our work, we developed several interconnected methods to make artificial intel-
ligence (AI) explainable and reliable in the application of reinforcement learning
(RL) to autonomous driving, thus showcasing dependable AI is attainable.

We introduced Driver Dojo [34] as a benchmark for prototyping, training, and
evaluating agents across a wide range of scenario variations. It allows to generate a
wide range of different driving scenarios under extended randomization. Apart from
pre-implemented scenarios, we elaborated on how Driver Dojo allows for fast and
efficient prototyping of new training environments and solutions.

SafeDQN [38] combines explicit risk estimation and Lagrangian learning to dis-
cover the best solutions for constrained Markov decision processes (CMDPs). Unlike
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Fig. 13.11: Subtree of the full extracted tree. Image from [37] (C) IEEE 2021

other methods, SafeDQN does not require manual tuning of hyperparameters, par-
ticularly for the reward function. It surpasses baseline approaches in terms of safety
and average return across various traffic scenarios. Furthermore, SafeDQN’s sepa-
rate risk and utility estimators offer independent interpretation, bootstrapping, and
training capabilities. The insights by the interpretability underscore the importance
of evaluating safety components independently.

Through the combination of prior work on safe RL and interpretability in [37],
we constructed a pipeline for the creation of interpretable, safe policies. To the
best of our knowledge, we were the first to propose the adoption of VIPER [4] to
tasks in autonomous vehicles with a verification of the safety of the generated trees.
We presented SafeVIPER, adapting VIPER for extraction in CMDPs. Our policies
achieve perfect safety in the environment they are trained in, and can be verified to
be provably safe in linearized environments. They also generalize robustly to more
demanding evaluations. Furthermore, the policies are small decision trees, which
makes them highly interpretable.

We have shown approaches to introduce explainability and reliability in several
instances. However, AI is being deployed more and more in various applications and
devices that operate in a connected and cooperative environment. This is also impor-
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tant in scenarios involving autonomous mobility and traffic, where multiple agents
must collaborate to find a shared solution. Since cooperation and communication
among agents play a crucial role in these situations, approaches that focus solely
on single-agent solutions often do not meet the desired outcomes. Instead, multi-
agent reinforcement learning (MARL) addresses multi-agent problems and aims to
discover policies that assist multiple vehicles in achieving both their individual and
collective objective [36]. Thus, future work should incorporate the explainable and
reliable aspects of dependable AI into MARL.
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Chapter 14
AI for Stability Optimization in Low Voltage
Direct Current Microgrids

Georg Roeder1, Raffael Schwanninger2, Peter Wienzek1, Moritz Kerscher1,
Bernd Wunder1, Martin Schellenberger1

Abstract Low voltage direct current (LVDC) is an enabling technology to foster a
sustainable resilient energy supply. LVDC microgrids comprising energy generators,
storage systems, and loads work as independently controlled units in connection with
common alternating current networks. Precise digitized control applying intelligent
power converters enables new AI-based approaches for DC microgrid layout and
operation. In this work, a new method involving connected machine learning and
optimization is established together with a novel measurement system, which en-
ables the measurement and improvement of microgrid stability. The application is
successfully validated by experimental assessment on a testbed with a four-terminal
DC network operating at a voltage of 380 VDC and the advantages of the AI-based
approach are demonstrated.

Key words: LVDC microgrid, stability, digital twin, random forest, optimization,
PRBS measurement

14.1 Introduction

The demand for climate-friendly, resource-efficient, and resilient energy supply re-
quires an increasing share of renewable energy sources and implementation of effi-
cient energy distribution systems. For more than a century, large-scale energy supply
has been realized by alternating current (AC) power grids [4], [5]. Through trans-
formation to high voltage, AC enables cost-effective transport of large amounts of
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energy over long distances. At the same time, the grid frequency can be kept stable
during changing power supply and load requirements due to the power generators
inertia. Today, the growing usage of sustainable energy sources, storage systems,
and consumers has led to an increasing relevance of Low Voltage Direct Current
(LVDC) microgrids with a supply system voltage up to 1500 V [10], where these
components are efficiently and directly connected and operate as a subsystem of
the AC grid [19]. The interconnection of DC sources, storage systems, and con-
sumers avoids unnecessary AC/DC conversions, enables a cost-efficient design of
the sub-grid [30], and precise digitized control due to the application of intelligent
power converters and AI methods [20]. With the increasing complexity of LVDC
networks due to the growing number of components, stabilization of grid control is
a challenge. New measurement systems are required to non-intrusively measure grid
stability involving many grid components. At the same time, artificial intelligence
techniques should be applied in the stability assessment to handle the complex and
time-consuming analysis and provide means for parameter adjustment to optimize
grid stability during operation. A new solution involving AI for stability optimization
in LVDC microgrids is described in the following sections.

14.2 Low Voltage DC Microgrids

14.2.1 Control of Low Voltage DC Microgrids

A typical topology of LVDC microgrids is the bus topology [10], [19], whereby
DC grids can also be implemented in other configurations such as radial, multi-
terminal, ring-bus, ladder, and zonal topologies [19]. Figure 14.1 shows an example
four-terminal DC microgrid network with a bus topology as a simplified part of a
larger DC grid, which is realized in a laboratory testbed and was investigated further
in this work.

For the control of multiple source based DC microgrids, hierarchical control is
frequently employed to maintain DC bus voltage, control load sharing, maintain
power quality, and to increase independence between the control levels [10], [19].
The primary control level addresses tasks such as current and voltage regulation
and power coupling. The secondary control level addresses voltage maintenance
and improvement of power quality, whereas the tertiary, regulatory level focuses
energy management, system optimization, and economic distribution [10], [19]. The
DC microgrid shown in Figure 14.1 is realized applying a frequently employed
decentralized control scheme for power sharing and performance and voltage regu-
lation [10], [19], [30], [20] at the secondary control level due to its inherent reliability
in case of failures [10], [19], [30] and the avoidance of centralized control of local
converters and digital communication links. Primary control is realized by using a
current-mode droop control scheme [10], [30], [20] with the objective to maintain the
bus voltage at 380 VDC. Figure 14.2 shows the arrangement of the droop controller
and the and inner control loop of a DC/DC converter for maintaining the DC grid
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Fig. 14.1: Example four-terminal DC microgrid network with a bus topology. The
source and the load branches contain the converters including control elements,
electromagnetic interference (EMI) filters, and the cable connection. Additionally,
the pseudorandom binary sequence (PRBS) measurement for stability determination
is indicated, which is conducted at the DC supply bus.

at a given bus voltage. The droop curves adjust the power sharing between sources
and loads, whereas the current flow controller and power electronics maintain stable
coupling to the network depending on the adjustments of the droop controller. By
using a PID controller, deviations between the the target value 𝐼set generated by the
droop curve and the actual value 𝐼 are compensated.
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Fig. 14.2: Droop controlled power electronics system for maintaining the DC grid at
a given bus voltage.
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14.2.2 Stability of Low Voltage DC Microgrids

The monitoring and optimization of the stability in DC microgrid is of importance
to avoid reverse power flows in the distributed generation units. Instabilities arise
due to the generation of oscillations, which are caused by switching operations that
can generate high-frequency alternating currents due to low inertia characteristics
of the microgrid and supply-demand uncertainties [24]. Hence, even if the source
and load subsystems are stable themselves, the overall system stability may be de-
graded [22]. A review of stability criteria for DC power distribution systems and
control techniques for stability improvement are given in [22], [17]. Stability may be
distinguished in small-signal stability, voltage stability, and transient stability [17].
Small-signal stability is the system’s ability to maintain stable under low amplitude
disturbances occurring at various frequencies. Voltage stability describes the abil-
ity to maintain the steady-state value of the voltage in the normal and abnormal
operating conditions. Transient stability denotes the system’s ability to maintain a
stable state under severe transient disturbances. Within this work, small-signal and
voltage stability are addressed as relevant topics in regular microgrid operation and
the gain and phase margin criterion was used for stability assessment, which relates
to the minor-loop gain criteria (MLGC) [22]. The concept of small-signal stability
assumes, that a system can be subjected to perturbation analysis, where the leading
terms dominate and enable modeling as a linear time invariant (LTI) system.

The stability of DC grids can be measured by means of systems theory and control
engineering. For the investigation of stability, the DC grid is typically divided into
two systems, usually the first subsystem consisting of all sources and the second
consisting of all loads (Figure 14.3). However, a division can also be carried out for
a spatially resolved analysis to the converter and network side in the branches of the
network. The figure depicts the impedances of the source Zs and the load Zl as well
as the voltages Vs, Vl and currents Is, Il to calculate these impedances, which are
required to derive the stability from small-signal analysis or the PRBS measurement.
The PRBS measurement and calculation of these impedances are explained in more
detail in Section 14.4.1.

The transfer function Gsl of two individually stable source and load subsystems
as shown in Figure 14.3 is given as:

𝐺sl =
𝑉s

𝑉l
= 𝐺s𝐺 l

𝑍l

𝑍l + 𝑍s
= 𝐺s𝐺 l

1
1 + 𝑇MLG

, (14.1)

where TMLG is the minor loop gain, which is given by:

𝑇MLG =
𝑍s

𝑍l
= 𝑇bus, (14.2)

and Gs, Gl are the transfer functions of the source and load system. According to
control theory, the interconnected system is stable if the Nyquist contour of TMLG
does not encircle the (−1|0) point in the complex plane [22]. The gain margin and
phase margin criterion enables that in certain frequency ranges the source impedance
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Fig. 14.3: Division of the DC microgrid into two systems, usually the sources and the
loads. The impedances of the source Zs and the load Zl as well as the voltages Vs, Vl
and currents Is, Il, which are required to calculate these impedances, are indicated.
These parameters are required to derive the stability from small-signal analysis or
the PRBS measurement.

amplitude |Zs | may be larger than the load amplitude |Zl | but ensures margins such
that the Nyquist criterion is satisfied [22] and avoids the excitation of the system.
At a phase angle of −180◦, which occurs in the resonance point of a system, the
gain margin ensures that the amplitude of |Tbus (j𝜔) | is sufficiently damped, i.e., is
sufficiently distant from the point (−1|0). The gain margin GM is defined as [31]:

𝐺𝑀 =
1

|𝑇bus ( 𝑗𝜔) |
. (14.3)

In the Bode plot, where the amplitude is depicted in decibels, the gain margin can
be determined as:

𝐺𝑀 dB = 20 𝑙𝑜𝑔10𝐺𝑀 = 0 dB − 20 𝑙𝑜𝑔10 |𝑇bus ( 𝑗𝜔) |. (14.4)

The phase margin describes whether the phase angle is sufficiently distant to the
resonance angle at −180◦. The phase margin is defined as:

𝑃𝑀 = 𝑎𝑟𝑔 𝑇bus ( 𝑗𝜔) − (−180◦). (14.5)

A system is then considered to be stable if both, the gain margin GM and the
phase margin PM, exceed the threshold values GMc, PMc characterizing a sufficient
damping and distance to the resonance angle:

𝐺𝑀 ⩾ 𝐺𝑀c ∧ 𝑃𝑀 ⩾ 𝑃𝑀c. (14.6)

Typical values for GMc and PMc are 6 dB and 45° but may be varied depending on
the application. The MLGC is a sufficient stability criterion, i.e., the system is stable
if the criteria are met but otherwise the system is not necessarily unstable. If the
system is unstable according to MLGC, typically the operating point is retained until
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the margins get close to 0. In this case, the system undergoes resonance excitation
and the operating point can no longer be maintained. This effect will be discussed
further in Section 14.4.2.

14.3 AI-based Stability Optimization for Low Voltage DC
Microgrids

14.3.1 Overview

LVDC microgrid layout for stability is typically based on empirical knowledge and is
carried out by experts with a high level of expertise in network design, control tech-
nology, and stability analysis. Moreover, until now, there have been no sufficiently
compact, interaction-free and fast measurement methods available for routine mon-
itoring and optimization of grid stability. Through the use of the pseudorandom
binary sequence (PRBS) measurement technology [18] in conjunction with artificial
intelligence methods, a solution is created to automatically analyze and evaluate the
stability in DC grids and to determine stable settings from the multitude of parame-
ters influencing grid stability. This is achieved by optimization of software adjustable
parameters, e.g., changing the droop control characteristics. The methods developed
are intended for use in regular operation of DC grids and to support experts in the
DC grid design. The approach comprises several steps related to machine learning,
optimization, and implementation, which are depicted in Figure 14.4. The approach
is described further in the following sections.

� Automated calculation of
small-signal DC network
impedance and stability
assessment for many
input parameter settings

� Adaptation to the
physical network by
refinement of the circuit
model based on
impedance
measurements

� Generation of labels for
the state of stability

Digital Network Twin
LVDC Microgrid
Surrogate Model

Stability Optimization
Implementation and

Assessment

� Modeling the relationship
between grid parameters
and stability using
random classification
forests based on the
labels derived in the
digital twin

� Determining the
relevance of the input
parameters of the
network

� Development of a base
model for the
optimization process

� Reformulation of the
random forest decision
process as mixed-
integer and possibly
non-linear program
(MINLP)

� Formulation of
optimization objectives
to determine robust or
minimum adjustment
solutions

� Application of stability
optimization in DC
networks

� Stability optimization for
a four participant DC
network, which is
available for
experimental
assessment in a testbed

� Implementation of the
stability measurement
system and improved
PID control for power
coupling

� Experimental verification
and validation

Fig. 14.4: Approach for optimization of the grid stability.
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14.3.2 Digital Network Twin and Generation of Labels to Describe the
Stability State

Electrical networks such as DC microgrids comprise numerous subsystems, compo-
nents, and devices such that network analysis requires electronic circuit simulation.
To obtain the small-signal stability behavior of the example microgrid as depicted
in Figure 14.1 for multiple possible input parameter settings, a digital network
twin for automated calculation of the small-signal DC network impedance and the
impedance-based stability evaluation according to the MLGC was realized [23]. The
digital twin is based on a grid circuit model capable to determine the static and
dynamic behavior of the entire grid and to assess the stability for different oper-
ating points. The digital twin was realized using the circuit simulator LTspice [2].
In this model, the power converters are linearized around the operating point with
their frequency response sufficiently below the converter switching frequency [20].
In the digital twin, relevant software-controlled factors such as the droop curve at
the source converters and the cut-off frequency of the output filter at the DC/DC
converter can be varied, which may also be changed for control purposes during
network operation. Furthermore, important parameters of the grid design may be in-
vestigated, e.g., the output capacitance and equivalent series resistance of the source
converters, the wire lengths from the AC source, the PV system, and of the load
groups to the bus node. The calculations are conducted varying predefined network
parameters as described above and for multiple load value combinations at Load 1
and Load 2. Parameter variation is conducted by Latin hypercube sampling [14],
[28]. A small-signal frequency sweep in the range of 10 Hz to 100 kHz is conducted
to calculate Tbus according to (14.2), assess the gain and phase margin according to
(14.4) and (14.5), and to provide a label that the grid is stable if both the gain and
the phase margin are larger than the threshold values as given in (14.6). Otherwise,
the network state is labeled as unstable. As a result, a table comprising input vectors,
which optimally fill the input parameter space and the respective labels indicating
the stability state is available for further use in surrogate modeling by random forests.

14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests

To describe the relation of the inputs and labels obtained in the digital twin, surrogate
modeling with random forests was employed [1]. Random forests were selected as a
machine learning algorithm in preparation of the stability optimization task since tree
and random forest classifiers may either be trained in a globally optimal way using
mixed-integer programming methods [6], [3] or the decisions of trained classifiers
may suit as base models in optimization (see [12] and references therein). Random
classification forests are an ensemble learning method that invoke the construction of
a multitude of decision trees [8], [13], which averages predictions over the individual
trees with the objective to reduce the generalization error on unknown samples or
parameter input [7], [15], [16], [25] (Figure 14.5). Furthermore, they enable the
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analysis of variable importance of the input on the target parameter [7], i.e., they
provide information to the engineer, which parameters are the most relevant for
obtaining stability.

Tree 2
↓

Unstable

Tree 1
↓

Stable

Tree n
↓

Stable

Averaging

…

Input parameter vector

Stable

Fig. 14.5: Schematic representation of ensemble learning with random forests. The
colors and hue indicate the probability of a stable or unstable class.

For random forest modeling the data set was split into a training and an indepen-
dent test data set with a ratio of 70:30. The hyperparameters of the random forest
models were optimized using a grid search strategy with a 10-fold stratified cross-
validation [21]. The potential imbalance of the stable and unstable classes was taken
into account [23], [9], [26] by adjusting the loss function L to maximize the average
area under the receiver operating characteristics curve AROC and the precision-recall
curve APR:

𝐿 = 𝑚𝑎𝑥 [1
2
(𝐴ROC + 𝐴PR)] . (14.7)

The adjustment of L improves the balanced accuracy score and reduces false
positives, i.e., to predict unstable states as stable. The random forests were calculated
for a variety of input parameter variations applied in the digital twin typically varying
all possible parameters within specified parameter ranges or varying the parameters
kAC, k PV, which adjust the droop characteristic during regular operation. The load
values were not considered as parameters in the random forest as the predictions
should be valid over the complete range of load settings. As an example case with
a variation of two parameters to be adjusted, Figure 14.6 shows the map of the
random forest probabilities to obtain a stable state when varying kAC, k PV and both
loads between 0 W and 10000 W. If adjustment for more parameters is required, the
additional respective cross sections in the parameter space may be visualized [12].
The labels for the random forest modelling were generated with the digital twin for
24981 different parameter settings with a resulting imbalance ratio of the positive
to the negative class labels of nstable/nunstable = 1.26 [9]. The random forest model
was generated with the hyperparameter optimization procedures as described above
with the load values not included. The minimum samples per leaf node were set
to nmin = 11 to obtain reasonably large leaf node sizes in order to estimate the
decision probability. For the optimized model, a balanced accuracy of 78% and a
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precision of 87% was obtained selecting 500 trees, considering the square root of
the maximum number of features for the best split, and adjusting the class weights
for the stable class as wstable = 0.35 and for the unstable class as wunstable = 0.65 from
the hyperparameter input space.

Measurement results:

MLGC stable

MLGC unstable

Unstable

Fig. 14.6: Map of the random forest probabilities to obtain a stable state when
varying the characteristic parameters kAC, kPV of the converter droop curves and
loads between 0 W and 10000 W. The results are shown for an adapted digital twin
model of the four-terminal DC laboratory testbed. Additionally, the figure shows the
result of the optimization to find the largest area around the new setpoint, where a
larger stable region can be obtained by changing the free optimization parameters the
kAC, kPV from (1.0|1.0) to (0.9|0.55). The results from measurements in the testbed
are indicated as squares. Green squares indicate MLGC stable systems, orange
squares indicate MLGC violating systems that can be measured and red squares
indicate unstable systems not able to find stable operating points.

14.3.4 Stability Optimization Applying Decision Trees

For the optimization of the parameter setting of the DC network, a novel optimization
approach was proposed, which exploits the relations of the input parameters and
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stability labels and enables the identification of improved settings in a classification
problem. The approach is described in detail in [12] and foundations of optimization
and the integration of decision trees are provided in Chapter 7 of this book, so here,
only the major concepts are depicted. The approach for optimization over the random
forests classification comprises the following steps:

1. Reformulation of the random forest classifier for analytical modeling by mixed-
integer variables and linear constraints,

2. refinement the formulation of step 1 to obtain a relevant optimization objective
for the considered use case.

These steps lead to a continued formulation to the general mixed-integer and
possibly non-linear program (MINLP) with decision variables x and their non-linear
relation with the stability states of the following form:

min 𝑐𝑇𝑥 (14.8)
𝑠.𝑡. 𝐷𝑥 ≤ 𝑑 (14.9)

𝑥 ∈ Z𝑝−𝑞 × R𝑞 (14.10)
𝑥 ∈ F . (14.11)

Step 1 provides a formulation of Eq. (14.11) to describe the decisions in an
existing random forest model. The inclusion of different optimization objectives
in step 2 provides additions and modifications to Eq. (14.8) and the constraints of
Eqs. (14.9) and (14.11). Here, several relevant use cases were implemented with
two different solvers [11], [29]: Finding the closest solution from a starting point,
finding the minimum number of parameters to be adjusted, finding solutions with
a margin distance to compensate for parameter fluctuations, and finding solutions,
with the largest stable area either as the largest volume of the polytope or the
largest volume of an inscribed sphere to maintain equal distances to the boundaries.
Figure 14.6 shows the result of the optimization finding the largest stable volume of
the polytope, which is a rectangle for two dimensions. It is seen that the adjustment
of the software-controllable parameters kAC, k PV leads to an improved setting from
the default starting point at (1.0|1.0) to (0.9|0.55), i.e., the stability may be adjusted
during regular grid operation.

14.4 Implementation and Assessment

14.4.1 Measurement of Grid Stability

As shown in the previous sections, the use of impedance-based criteria in DC
microgrids allows for stability assessments of an otherwise unknown grid. If the
individual components of the grid are partially known, the impedance can also be
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used to refine the models and therefore increase the model accuracy, even in not
directly measured operating points. The prerequisite for either approach is the online
impedance measurement. In this work a pseudo-random binary sequence (PRBS) is
employed as the excitation signal for the impedance measurement. The measurement
principle is depicted in Figure 14.3. A broad band test current Itest is injected on the
bus bar between the sources and loads. Itest is then split up into one part directed
towards the source Is and a part flowing into the load Il. Together with the voltages
Vs and Vl, the source and load impedances Zs and Zl can be calculated according to
eq. (14.12). Zs and Zl are then used to determine Tbus as shown in Section 14.2.2.

𝑍s =
𝑉s

𝐼s
𝑍l =

𝑉l

𝐼l
(14.12)

The benefit of the PRBS-based impedance measurement is that the coupling
system can be built very compact (Figure 14.8) and can operate minimally invasive
between measurement sequences. In this work, the test signal is coupled through the
periodic switching of a 100 Ω power resistor in and out of the grid using a power
MOSFET. Other measurement systems based on serially coupled sine wave excitation
require coupling transformers, which become very large at high DC currents and
change the physical properties of the system due to their non negligible inductance.
An exemplary result of a Bode plot displaying |𝑍s ( 𝑗𝜔) | and a𝑟𝑔 𝑍s ( 𝑗𝜔) of a PRBS
impedance measurement of an individual converter in comparison to a reference
measurement using a serial coupling is shown in Figure 14.7.
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Fig. 14.7: Bode plot determined for a single converter with PRBS compared to a
highly accurate reference measurement. The PRBS measurement shows comparable
results, while increasing measurement speed at reduced volume and weight.
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Aside from very low impedances, the PRBS measurement shows comparable
results to the reference measurement. It is important to note, that the simultaneous
measurement of 2047 frequencies with PRBS was carried out within 112 ms, while
each frequency point with the reference measurement took 330 ms for the shown
resolution. Using the reference measurement system for the same frequencies would
therefore lead to a 6031 fold increase of measurement time. Also, the volume and
weight of the PRBS impedance measurement system is significantly lower compared
to the reference measurement system, while being able to carry five times the DC
current.

14.4.2 Experimental Validation

The four-terminal DC microgrid network with a bus topology together with the PRBS
measurement (Figure 14.1) were realized as demonstrator on a testbed operating at
380 VDC to prove the feasibility of the approach in an experimental validation.
Figure 14.8 shows the demonstrator of the four-terminal network with the integrated
PRBS measurement system.

©Fraunhofer IISB

PRBS measurement system

DC grid manager

Connections to the source and load terminals

DC supply bus

Fig. 14.8: Demonstrator of the four-terminal network with the integrated PRBS
measurement system.

For validation of the overall approach, the map showing the random forest prob-
abilities (Figure 14.6) was verified using online PRBS impedance measurement and
applying the MLGC from Eq. (14.6). The map projects a multitude of power values
for both loads, whereas in the dedicated validation experiments on the testbed, the
load dependencies were evaluated at dedicated values. Hence, the grid was measured
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Fig. 14.9: Bode plot determined from a PRBS measurement for a stable operation
point with kAC, kPV at (0.9|0.55).

at various kAC and k PV values at low loads (800 W), medium loads (6 kW), and high
loads (12 kW). The resulting stability states are indicated as squares in Figure 14.6.
To illustrate the approach for determining the stability state, Figure 14.9 shows the
Bode plot displaying |𝑇bus ( 𝑗𝜔) | and a𝑟𝑔 𝑇bus ( 𝑗𝜔) of a PRBS measurement recorded
at a stable operating point with kAC, kPV at (0.9|0.55). The red areas indicate the
regions where the gain or phase requirements are exceeded. It can be seen, that while
the gain requirement is violated from 18 kHz to 23 kHz, the phase margins at both
corner frequencies, i.e., GM = 0 dB with 90◦ and 155◦ and for GM = 6 dB with 100◦
are sufficient for classification as a stable system.

For interpretation of summarized stability results in Figure 14.6 it has to be
considered that a system that is unstable according to MLGC can have different
characteristics (see Section 14.2.2). If a system that is stable according to MLGC,
the operating point is retained, as well as if the limit values are exceeded. However,
if the remaining stability and phase margins get close to 0, the system undergoes
resonance excitation and the operating point can no longer be maintained. This leads
to a deteriorated impedance measurement, whereas otherwise the determination of
the impedance and the calculation of the gain and phase margins is possible. These
states are indicated by green, orange, and red squares in Figure 14.6, where green
indicates an MLGC stable, orange an MLGC unstable and red a system with no
stable operating point. Starting at the default parameters (1|1), the system is already
MLGC stable. Changing the free parameters to (0.9|0.55) leads to an increase in
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both GM and PM. Systems close to the optimal point with (1|0.55) and (0.75|0.55)
are MLGC stable as well and still show improved GM and PM compared to (1|1).
On the other hand, changing kPV to higher values leads to decreased GM and PM. If
the thresholds of GMc, PMc are set to 6 dB and 45◦, the system has to be considered
unstable for (1|1.5) at medium loads. Increasing kAC to higher values i.e. (1.6|0.55)
and (1.6|1.5) also leads to MLGC unstable systems. Here, especially low and medium
loads lead to unfavourable GM and PM. Reducing kAC to lower than 0.5 can lead to
generally unstable systems. For additionally low kPV like for (0.5|0.55), the system
can not maintain the desired grid voltage for medium and high loads. Higher kPV as
in (0.5|1.5) will be MLGC unstable for low and medium loads, but will also not be
able to form a stable grid for high loads.

Overall, the experimental verification showed that the measured points are fully
in agreement with the predicted stability states from the digital twin and the random
forest model and that the optimization algorithm finds a stable operating region for
the DC microgrid.

14.5 Conclusion and Outlook

We developed, implemented, and validated a novel approach for applying artificial
intelligence for stability optimization in LVDC microgrids. The developed solution
addresses the increasing usage and complexity of LVDC microgrids, which are used
to support environmental-friendly and resilient energy supply in connection with the
common AC networks. The LVDC microgrids realize efficient energy generation
and sharing by connection of DC power sources, loads, and storage systems with a
more material- and cost-effective design of the network and avoiding unnecessary
AC/DC conversions. The application of digitized converters enables intelligent and
fast control and opens the possibility to solve specific problems in DC networks
through AI support, such as the design for grid stability or maintenance of grid
stability during operation.

To address a flexible, widely applicable solution that can be transferred to other
application areas, e.g., for DC on-board networks in automotive applications, the
approach was divided into four development areas:

First, by automating an electronic circuit simulator for small-signal analysis and
upgrading with an integrated, configurable possibility for functional evaluation, a
flexible digital twin of DC networks can be realized. The digital twin automatically
calculates the small-signal stability for a variety of input parameterizations of the
network and generates labels for the description of the stability state as stable or
unstable. The layout of the grid is carried out in the simulator by the design expert as
in the regular workflow and can be flexibly adapted to different components, devices,
and topologies. For the automated stability evaluation, the minor-loop gain criterion
(MLGC) was used in this work, but further stability criteria can be implemented.

In a second step, based on the generation of labels for the stability state, a
surrogate classification model is created based on random forests. These establish
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a model relationship between the input parameters of the DC grid and the state
of stability and, by evaluating the variable influences, give the domain expert an
overview of which parameters mainly influence stability. The random forest model
can be easily adapted to new models from the digital twin, since in particular class
imbalances, which can result from different network configurations, are taken into
account during model creation. Moreover, the random forest models prepare the
stability optimization step from a classification task.

A new method for optimization from classification trees was developed as a third
step that exploits the models from the trained random forest classifiers. The optimiza-
tion method determines optimized stability parameters of the network, for example
for finding favorable design parameters or by adapting software parameters such as
parameters of the droop characteristics during operation. Different target functions
can be used for optimization, for example, to determine a stable operating point with
the largest possible stable surrounding area. The steps for stability optimization were
first carried out on a digital twin of a four-terminal network.

As a fourth implementation, verification, and validation step, this four-terminal
network was realized on an experimental testbed as a demonstrator. The new PRBS
method for online impedance and stability measurement was improved and enhanced
for minimal invasive measurement at 380 VDC, including data acquisition, power
coupling, and service functions. The impedance measurement was used to charac-
terize relevant components of the testbed and to refine the circuit model in the digital
twin with subsequent processing of the following modeling and optimization steps.
Validation experiments were able to show that with the AI-based modeling and op-
timization steps, the adjustment of the stability during operation by modifying the
droop characteristic curves is possible.

Overall, the application demonstrated the feasibility and advantage of AI-
supported power electronics for DC networks as envisioned in the research field
of cognitive power electronics [27]. The work and results provided foundations for
further research topics. These are the extension of the developed methods for LVDC
microgrids, where characteristic parameters of participants are not accessible, and
data-based assessment of control stability for large-signal analysis and stability op-
timization in combination with the presented droop control approach. Evolving
research fields also include fault detection and remaining useful lifetime assessment
in DC grids, e.g., for industrial and domestic energy systems as well as on device
and component level.
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Chapter 15
Self-Optimization in Adaptive Logistics
Networks

Julius Mehringer, Ursula Neumann, Friedrich Wagner, Christopher Scholl

Abstract The spectrum of applications for AI is extremely broad, ranging from
support for complex decisions and data-driven corporate strategies to the automation
of everyday processes. In logistics networks, a plurality of decisions are to be made
on a daily basis. Typically, those decisions are comprised of a combination of
forecasting and optimization, forming the area of prescriptive analytics. In this
chapter, we present two use cases for arriving at optimal decisions: the case of
prescribing cost-optimal order policies for the stocking of spare parts, and the case
of mixing raw materials to final products with varying raw material quality.

Key words: prescriptive analytics, bayesian modeling, Gompertz growth model,
life cycle modeling, non-linear optimization, robust optimization.

15.1 Introduction

For manufacturing companies, being able to supply spare parts to markets along the
product life cycle is a vital aspect of company success, contributing up to 70% to
the revenue of service business [4]. For durable goods, spare part demand occurs
not only during the phase of serial production but a considerable proportion of total
demand occurs after production has ceased, called the End of Production (EOP)
date. In order to satisfy this demand, five strategies exist [3]:

• reproduction,
• use of compatible parts,
• remanufacturing (internal & external),
• reuse,
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• (final) stocking.

All of the five strategies are characterized by certain drawbacks: remanufacturing
and reuse require maintenance of a logistics network and respective processes.
Reproduction leads to considerably high production costs. The use of compatible
parts requires sufficient quality and quantity of the respective parts, which can be
challenging to find. The main drawback of a (final) stocking strategy is the difficulty
of quantifying the final order quantity, called the All-Time Buy [25]. This is especially
difficult when the EOP date lies early in the product’s life cycle (as discussed in detail
in Section 15.3). If a confident forecast of the All-Time Buy is possible though, the
final stocking approach is preferable over other approaches. Thus, quantifying the
All-Time Buy is considered a central element of differentiation in the competition,
contributing to a company’s economic success [11].

In the following section, we first present a brief overview of relevant and recent
literature regarding the All-Time Buy. We then describe the prediction problem
formally in Section 15.3, and present an approach to forecasting the All-Time Buy
quantity in Section 15.4. In Section 15.5 we describe a robust optimization approach,
which can deliver a cost-optimal ordering policy based on All-Time Buy predictions.
This policy balances out possible surplus stock and possible out of stock situations,
both of which are costly.

15.2 A Brief Overview of Relevant Literature on Predicting the
All-Time Buy Quantity

Since the All-Time Buy is a quantity of key interest for after sales departments in
industries such as automotive, consumer durable goods, industrial equipment, and
electronics, there is a variety of forecasting approaches in order to tackle this chal-
lenge. In [13], a dynamic inventory policy is developed, allowing for adjustments as
more and more observations occur in the life cycle of a product. A key requirement
for their methodology is the availability of a peak of sales, which is only given
reliably if a company is in charge of the whole supply chain; in modern supply chain
structures, this requirement can rarely be reliably met. The authors of [5] assume a
very simple, yet in practice valid calculation of the final order quantity by modeling
an exponential decay with rate 0.7 after EOP. We found this approach to be well
established in the industry as a benchmark, due to its simplicity. In [6], the authors
develop a forecasting model for individual spare parts, assuming the availability
of spare part failure rates, replacement rates, and sales data. Due to the assump-
tions about data availability, the forecasting model lacks practical implementation
possibilities, since individual and reliable failure rates and precise sales data are
oftentimes scarce. Although [29] describes and formalizes main aspects of spare
part demand forecasting, and develops an appealing Bayesian hierarchical model-
ing approach, their modeling approach only allows a single step prediction. As we
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will see in Section 15.3, this is unsatisfactory for the prediction of a All-Time Buy
quantity.

More recent literature suggests that the relevant patterns are observed in the
demand of earlier products as well as partially in the early phase of a spare part
life cycle. As [10], [23] and [12] propose, clustering methods are able to identify
typical demand patterns in a historical data set. Those patterns are characterized by
differing shapes of life cycle curves, e.g., rather flat versus concentrated demand,
or the main proportion of total demand occurring before or after EOP. Depending
on the available data, different clustering algorithms seem feasible for this pattern
recognition task; the Partitioning Around Medoids (PAM) Algorithm [20] or the
k-modes Algorithm [8] are promising candidates, as typically numeric as well as
categorical features are available. Then, in a subsequent step, a single spare part for
which a forecast has to be conducted, can be assigned to a cluster with a classification
algorithm. Finally, for each cluster, the median or mean demand at each time step can
be used as a typical demand curve, as proposed independently both by [23] and [12].
Determining forecasts for the All-Time Buy quantity hence consists of finding the
respective typical demand curve and scaling this curve in such a way that the last
observed spare part demand matches the scaled demand prediction. While building
on core ideas from this stream of literature, we present a more robust approach to
modeling in chapter 15.4 than the approached described in previous literature.

15.3 Predicting the All-Time Buy

In general, quantitative forecasting is the craft of finding patterns and extrapolating
those patterns into the future. Along a product’s life cycle, spare part management
can be divided in the three main phases 1) initial procurement phase, 2) the normal
operation phase and 3) the End-of-Life phase [7]. In this chapter, we address one
of the challenges in phase 3, i.e., the End-of-Life phase. We’re focusing on “[the
necessity] to set a final order on spare parts according to the demand patterns at
the end of the product life cycle (known as an ‘all-time buy’ or ‘lasttime buy’)” [7].
Thus, with respect to the product life cycle, the manufacturer has to decide at EOP
how much demand is likely to occur during the total length of the final phase, see
Figure 15.1.

While the literature suggests that the All-Time Buy is a single quantity of interest,
we have learned from industry that the problem appears to be more nuanced. In some
supply chain settings, it is possible to split the All-Time Buy quantity into a number
of orders, each of which is a fraction of the All-Time Buy quantity. By doing so, a
company can significantly improve ordering and storage cost. However, a prediction
model then should not only predict the All-Time Buy quantity, but also quantify the
speed at which demand likely occurs. We address this by modeling the shape of a
life cycle with a growth model, as described in detail in Section 15.4.

Usually, in a forecasting setting, a sufficiently long time series of observed values
𝑦1, . . . , 𝑦𝑇 is presented and the forecasting task is to predict the next 𝐻 values of the
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Fig. 15.1: Determination of the All-Time Buy quantity, embedded in the product life
cycle. Primary Product Sales predate and influence observed spare part demand. The
shaded area represents the All-Time Buy quantity. SOP and EDO denote the Start
Of Production and the End of Delivery Obligation respectively.

series 𝑦𝑇+1, . . . , 𝑦𝑇+𝐻 . For the All-Time Buy quantity, we typically observe the time
series until the EOP date in a product’s life cycle 𝑦𝑇=̂𝐸𝑂𝑃 . Then, 𝐻 is the prediction
horizon.

Importantly, 𝑇 and 𝐻 can be of variable lengths per spare part 𝑖, denoting an EOP
date early or late in a spare part’s life cycle. This variability leads to a gradual decrease
of difficulty for the prediction task with an increasing number of observations, see
Figure 15.2. In general, for life cycles of spare parts, EOP is a few time steps
before the peak of it’s demand, leading to a high variability of predictions based
on observed historical demand only as observations increase [17]. Additionally, a
forecaster typically does not know about the position of the EOP date in the life cycle
at the time of forecasting.

(a) Easy prediction scenario, where EOP is
at a late stage during a spare part’s life cycle

(b) Hard prediction scenario, where EOP is
at an early stage during a spare part’s life

cycle

Fig. 15.2: Easy vs. hard scenario; the exact position of EOP in a product’s life cycle
is generally unknown to the forecaster.

As noted by [29], the “input to the forecasting process consists not only of previous
demands for a particular part, but also of observed demands for other parts – even
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parts that were recently withdrawn from the manufacturing process.” Due to the
possibly very short observation length of 𝑇 , we thus need a model that is able to
form predictions mainly from a collection of supporting predecessors, but can take
into account all recent observed demands in 𝑇 of our target spare part 𝑖.

For our modeling purposes, we translate the distinctive, observed life cycle curve
to its cumulative form, see figure Figure 15.3 for an illustration. Then, 𝑦𝑡 is the
cumulative demand at 𝑡 and the All-Time Buy is the sum of all predictions during 𝐻:

𝐴 = 𝑦𝑇+𝐻 . (15.1)

15.4 A Probabilistic Hierarchical Growth Curve model

Since the shape of a spare part’s demand process follows a life cycle curve, we propose
a Bayesian hierarchical growth model for the prediction of the All-Time Buy quantity.
Modeling growth is typically conducted with sigmoid functions, describing growth
as starting slowly and increasing over time before reaching an upper asymptote.

Fig. 15.3: Cumulative demand modeled with the Gompertz function.

A widely used growth model is the Gompertz model. We follow the convention
of [26] and formulate the Gompertz growth model as a Type I model:

𝑦𝑡 = 𝐴 · 𝑒−𝑒−𝑘 (𝑡−𝑇 )
(15.2)

In Figure 15.3, we show the values of the cumulative demand over time, with the
respective parameters of the Gompertz function. This formulation is appealing, since
it allows an interpretation of the parameters. Here, 𝑦𝑡 is the value as a function of
time, in our case the cumulative demand at time 𝑡. 𝐴 is the upper asymptote (reflecting
the All-Time Buy, see Equation (15.1)), 𝑘 is a growth-rate parameter that affects the
slope and 𝑇 is the time at inflection. This time point is of special relevance for our
use case, since it is the point where maximum demand occurs. 𝑇 is coined a location
parameter, since it shifts the curve horizontally; the parameters 𝐴 and 𝑘 determine
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the shape of the curve and are thus shape parameters. Inferring proper parameters of
the growth model from the few observations of a single spare part only proves to be
difficult. As a remedy, we propose a hierarchical modeling approach that allow us
to use a set of reference spare part demand curves in order obtain parameters of our
target demand curve.

Hierarchical modeling assumes the existence of groups in a data set. By modeling
the growth curves hierarchically, we’re able to relate the parameters of our target
growth curve on the parameters of (almost) complete life cycle curves from reference
spare parts identified e.g. by similarity on a spare parts master data. Formally, we
thus assume the model parameters as being sampled from a population distribution
of parameters, i.e., we use information about the population to improve estimated of
individual items by regularizing toward the population mean [15].

We specify the model’s generative process as

𝑦𝑖 𝑗𝑡∼ 𝑙𝑜𝑔N
(
𝑓
(
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, 𝜏2
𝐴 𝑗

)
𝜇𝑘𝑖∼ N

(
𝜇𝑘 𝑗 , 𝜏

2
𝑘 𝑗

)
𝜇𝑇𝑖∼ N

(
𝜇𝑇𝑗 , 𝜏

2
𝑇𝑗

)
𝜇𝐴 𝑗

∼ 𝑙𝑜𝑔N
(
𝜇𝐴𝑙

, 𝜏2
𝐴𝑙

)
𝜏2
𝐴 𝑗
∼ N+ (0, 0.25)

𝜇𝑘 𝑗∼ N
(
𝜇𝑘𝑙 , 1

)
𝜏2
𝑘 𝑗
= 1

𝜇𝑇𝑗∼ N
(
𝜇𝑇𝑙 , 𝜏

2
𝑇𝑙

)
𝜏2
𝑇𝑗
∼ N+ (0, 0.25)

𝜇𝐴𝑙
∼ N (5, 1)

𝜏2
𝐴𝑙
∼ N+ (0, 0.25)

𝜇𝑘𝑙∼ N (0, 0.01)
𝜇𝑇𝑙∼ N (0, 25)
𝜏2
𝑇𝑙
∼ N+ (0, 0.25)

𝜎2∼ N+ (0, 1) ,

(15.3)

with 𝑓 being the Gompertz function from Equation (15.2). The model’s priors
are chosen as uninformative, but allowing for all assumed possible values of 𝑦.

For the target time series 𝑦, we specify 𝑖 as the item’s index, 𝑗 as the respective
group membership, and 𝑡 as the time. The respective Bayesian network for this
generative process is shown in Figure 15.4. This non-centered parametrization does
not model the parameters of individual items independently, but jointly by assuming
common hyper parameters from the latent population, 𝜇Θ𝑖

.
We then can use the draws generated by a sampler (Hamiltonian Monte Carlo [1]

in our case) and generate predictions for 𝑦ℎ, given all the observations from the target
time series 𝑦𝑡 and observations from other, similar and complete life cycle curves:

𝑝 (𝑦ℎ |𝑦𝑡 ) =
∫

𝑝 (𝑦ℎ |𝜇Θ) 𝑝 (𝜇Θ |𝑦𝑡 ) 𝑑𝜇Θ.

The essential part is the likelihood 𝑝(𝑦ℎ |𝜇Θ) as a model of the values to be pre-
dicted, conditioned on the parameter vector 𝜇Θ [19]. Since the parameters of the data
generating process 𝜇Θ are computationally intractable, we can’t analytically derive
the posterior 𝑝 (𝜇Θ |𝑦𝑡 ) and thus have to revert to a sampling-based approach in order



15 Self-Optimization in Adaptive Logistics Networks 293

𝑦

𝑓

𝜇𝐴𝑖
𝜇𝑘𝑖 𝜇𝑇𝑖

𝑡

𝜇𝐴𝑗 𝜏2
𝐴𝑗

𝜇𝑘 𝑗 𝜏2
𝑘 𝑗

𝜇𝑇𝑗 𝜏2
𝑇𝑗

𝜇𝐴𝑙 𝜏2
𝐴𝑙

𝜇𝑘𝑙 𝜏2
𝑘𝑙

𝜇𝑇𝑙 𝜏2
𝑇𝑙

𝑙𝑜𝑔N N N

𝑙𝑜𝑔N N N

𝑙𝑜𝑔N𝜎2

𝑇

𝐼

𝐽

Fig. 15.4: Bayesian network for the assumed data generating process. Each 𝑦𝑖 is the
result of the value of the Gompertz function 𝑓 of item 𝑖 at time 𝑡. The Gompertz
function 𝑓 has the latent parameters 𝜃 =

[
𝜇𝐴𝑖

, 𝜇𝑘𝑖 , 𝜇𝑇𝑖
]
, them being modeled as

inherit from the respective hyper parameters 𝜇𝐴 𝑗
, 𝜇𝑘 𝑗 and 𝜇𝑇𝑗 with respective 𝜏s

for all groups 𝐽. The 𝜇s are drawn from global hyper priors, according to the data
generating process specified in (15.3).

to sample from the posterior predictive distribution 𝑝(𝑦ℎ |𝑦𝑡 ) [9]. For 𝑟 = 1, . . . , 𝑅,
the HMC sampler [1] draws samples 𝜇 (𝑟 )

Θ
∼ 𝑝(𝜇Θ |𝑦𝑡 ) from the posterior [14], which

allow sampling from the posterior predictive distribution 𝑦 (𝑟 )
ℎ

∼ 𝑝(𝑦ℎ |𝑦𝑡 ) through
this strategy:

𝑦
(𝑟 )
ℎ

∼ 𝑙𝑜𝑔N
(
𝑓

(
ℎ; 𝜇 (𝑟 )

Θ

)
, 𝜎2(𝑟 )

)
with 𝑓 being the Gompertz function from Equation (15.2).

In short, we obtain 𝑅 samples 𝑦 (1)
ℎ
, . . . , 𝑦

(𝑅)
ℎ

from our posterior predictive distri-
bution (see Figure (15.4)) for each time step ℎ and plug those samples in a robust
optimization procedure, guaranteeing a cost-optimal ordering policy. The formula-
tion of this optimization model will be described in the following section.
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15.5 Determining the Optimal Order Policy

Given a predicted demand of spare parts, the question for a cost-optimal production
or order policy arises naturally. Depending on the specific application scenario,
different types of costs may arise. We focus on the most common ones, namely
storage costs as well as order costs per order and per part. A cost-optimal order policy
satisfies the demands while simultaneously minimizing the total costs. Optimization
problems with the goal of determining optimal order or production policies are
generally known as lot sizing problems. More specifically, the problem at hand
belongs to the subclass of single-item uncapacitated lot sizing problems (SIULSP).
For a comprehensive survey on lot sizing problems, we refer to [16, 27].

Lot sizing is a representative example for optimization problems arising in pro-
duction and logistics. Such problems are often successfully tackled by Mixed-Integer
Programming (MIP) techniques. There, the problem of interest is modeled via a lin-
ear objective together with linear constraints over integer and continuous variables.
The success of MIP methods is based on decades of developing sophisticated solution
methods for such linear models, typically employing branch-and-cut algorithms.

As a starting point, we restate the MIP model for SIULSPs from [24]. Here, the
time horizon for the production plan is sliced into 𝑇 many time intervals of equal
length (e.g., weeks or months). For each time interval 𝑡 ∈ {1, . . . , 𝑇}, an integer
variable 𝑥𝑡 ∈ Z+0 models the quantity of produced parts. A variable 𝑠𝑡 ∈ Z+0 models
the stock at time interval 𝑡 ∈ {1, . . . , 𝑇 + 1}, while a binary variable 𝑧𝑡 ∈ {0, 1}
indicates whether parts are produced in time interval 𝑡 ∈ {1, . . . , 𝑇} or not. The basic
model assumes storage costs 𝑐storage per part as well as fixed production costs 𝑐fix per
time interval with production, independent of the produced amount. Furthermore,
the demand 𝑑𝑡 ∈ Z+0 is assumed to be known for each time interval. In the context
of this work, the demand is derived from the forecast, see Eq. (15.2). Finally, a
sufficiently large constant 𝑀 is needed, where 𝑀 ≫ ∑

𝑡 𝑑𝑡 . With these variables and
parameters the SIULSP can be model by

min
𝑥

𝑇∑︁
𝑡=1

(𝑐fix · 𝑧𝑡 + 𝑐storage · 𝑠𝑡 ) (15.4a)

s.t. 𝑠𝑡+1 = 𝑠𝑡 + 𝑥𝑡 − 𝑑𝑡 ∀1 ≤ 𝑡 ≤ 𝑇 (15.4b)
𝑥𝑡 ≤ 𝑀𝑧𝑡 ∀1 ≤ 𝑡 ≤ 𝑇 (15.4c)
𝑥𝑡 ∈ Z+0 ∀1 ≤ 𝑡 ≤ 𝑇 (15.4d)
𝑠𝑡 ∈ Z+0 ∀1 ≤ 𝑡 ≤ 𝑇 (15.4e)
𝑧𝑡 ∈ {0, 1} ∀1 ≤ 𝑡 ≤ 𝑇 (15.4f)

Constraints (15.4b) define consistent stock values, whereas constraints (15.4c) model
the logical condition 𝑧𝑡 = 1 ⇔ 𝑥𝑡 > 0. This model will serve as the basis for the
following chapters, in which it will be extended in two ways. First, we model more
complicated costs. In particular, non-linear costs per part, known as scales, are
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incorporated. Second, we develop a robust MIP model taking uncertainties in the
demand forecast into account.

15.5.1 Modeling Non-Linear Costs

The objective from Eq. (15.4a) models storage costs per part as well as fixed produc-
tion cost, but does not include production costs per part. This is due to the fact that
production costs per part are assumed to be constant. Moreover, the total production
quantity

∑𝑇
𝑡=1 𝑥𝑡 is fixed by the All-Time Buy from Eq. (15.1). Due to storage costs,

it will never be favorable to produce more parts in total than the All-Time Buy. As
a result, total production costs are simply a constant and thus are neglected in the
model. However, the assumption of constant costs per part is too simplistic for many
real scenarios. Usually, the production or ordering costs per part decrease with the
produced quantity. This leads to a non-linear scaling of total production costs with
the production quantity, as sketched in Figure 15.5.

Quantity

Production
costs

(a) Continuous, piecewise-linear costs.

Quantity

Production
costs

(b) Piecewise-linear costs with
discontinuities.

Fig. 15.5: Sketch for piecewise-linear production costs. In (a), the production costs
per part for the first, say, 100 parts are 1 =C per part while for the second 100 parts
production costs are only 0.9 =C. Also in (b), the production costs for 100 parts are 1
=C per part, but the production costs for a total production of 200 parts are 0.9 =C per
part, even for the fist 100 parts. This leads to discontinuities.

In the following, we focus on modeling a piecewise linear cost scaling. Many
equivalent formulations for modeling piecewise linear functions exist in literature,
see e.g. [22] for a survey. The formulation used here is called multiple choice model.
Let 𝑦 = 𝑓 (𝑥) be the costs for producing 𝑥 parts, where 𝑓 is a (continuous or non-
continuous) piecewise linear function. Our goal is to derive a linear description of
𝑦 = 𝑓 (𝑥) by introducing additional auxiliary variables. To this end, let (𝐵 𝑗 ) 𝑗=1...𝐽+1
be the sequence of 𝑥-values that separate linear segments of 𝑓 , e.g., the production
quantities at which a cheaper price per part starts in Figure 15.5. Now, 𝑓 is linear
in each interval [𝐵 𝑗 , 𝐵 𝑗+1]. Thus, there exists 𝑞 𝑗 ∈ R and 𝑛 𝑗 ∈ R such that 𝑓 (𝑥) =
𝑞 𝑗𝑥 + 𝑛 𝑗 for each 𝑗 = 1 . . . 𝐽. We introduce two sets of auxiliary variables. First,
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the binary variables 𝑏 𝑗 ∈ {0, 1}, 𝑘 = 𝑗 . . . 𝐽 indicate in which interval 𝑥 is located.
That is, we want to ensure the implication 𝑥 ∈ [𝐵 𝑗 , 𝐵 𝑗+1] ⇒ 𝑏 𝑗 = 1, 𝑏𝑘 = 0 ∀𝑘 ≠ 𝑗 .
Second, continuous variables 𝑤 𝑗 ∈ R+0 , 𝑗 = 1 . . . 𝐽, are introduced which are used to
model the quantity 𝑥 for 𝑥 ∈ [𝐵 𝑗 , 𝐵 𝑗+1]. More specifically, we enforce the implication
𝑥 ∈ [𝐵 𝑗 , 𝐵 𝑗+1] ⇒ 𝑤 𝑗 = 𝑥, 𝑤𝑘 = 0∀𝑘 ≠ 𝑗 . Both desired implications can be modeled
via the linear constraints

𝐽∑︁
𝑗=1

𝑏 𝑗 ≤ 1 (15.5)

𝐵 𝑗𝑏 𝑗 ≤ 𝑤 𝑗 ≤ 𝐵 𝑗+1𝑏 𝑗 ∀1 ≤ 𝑗 ≤ 𝐽 (15.6)

𝑥 =

𝐽∑︁
𝑗=1
𝑤 𝑗 . (15.7)

Finally, we require

𝑦 =

𝐽∑︁
𝑗=1

(𝑞 𝑗𝑤 𝑗 + 𝑛 𝑗 ) . (15.8)

It follows that 𝑦 = 𝑓 (𝑥) as desired. This multiple choice linearization technique
needs to be applied for every time interval, introducing variables 𝑦𝑡 ∈ R, 𝑏𝑡

𝑗
∈ {0, 1}

and 𝑤𝑡
𝑗
∈ R+0 for 𝑡 = 1 . . . 𝑇 .

As a side effect, the above linearization technique allows to model the logical
on-off condition 𝑧𝑡 = 1 ⇔ 𝑥𝑡 > 0, enforced by Eq. (15.4c), in a more efficient way.
The constraints from Eqs. (15.4c) and (15.5) can be replaced by the single equation

𝐽∑︁
𝑗=1

𝑏 𝑗 = 𝑧 (15.9)

without changing the feasible space of model. However, the resulting model has
the desirable property of being locally ideal, c. f. [22], which means that the linear
relaxation of Eqs. (15.6)-(15.9) satisfies all integrality conditions. That is, for all
vertices of the relaxation polytope it holds 𝑏 𝑗 ∈ {0, 1}, 𝑗 = 1 . . . 𝐽. Additionally,
the local ideal formulation requires no large constant 𝑀 . Both properties of the local
ideal formulation significantly increase the computational performance.

15.5.2 Robust Optimization

In the basic model, it is assumed that the demand 𝑑𝑡 is known a priori. However, the
demand forecast comes with some uncertainty. In fact, only a probability distribution
for the cumulative demand

∑𝑡
𝑖=1 𝑑𝑖 is known instead of a fixed demand value 𝑑𝑡 . Lot

sizing under uncertainty is a vivid field of ongoing research, for further reading we
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refer to [21, 2, 24, 18, 28]. In the basic model from Eq. (15.4), the requirement that
the inventory does not run out of stock is implicitly enforced by the non-negativity
of the stock variables 𝑠𝑡 . When 𝑑𝑡 is a random variable with known distribution the
requirement of non-negative stock can be replaced by the weaker requirement that
the probability of running out of stock in time interval 𝑡 is at most 𝜖 > 0,

𝑃
©­«
𝑡∑︁
𝑗=1
𝑥 𝑗 ≥

𝑡∑︁
𝑗=1

𝑑 𝑗
ª®¬ ≥ 1 − 𝜖 ∀1 ≤ 𝑡 ≤ 𝑇 . (15.10)

Note, that we do not enforce the probability for running out of stock in any time
interval 𝑡 is at most 𝜖 , which would be a much stronger requirement. We only require
that the probability in each individual time interval 𝑡 is at most 𝜖 . In other words,
we require that the inventory is non-empty in each individual time interval 𝑡 with
probability at least 𝛼 = 1 − 𝜖 . Therefore, this technique is often called 𝛼-service-
level, see also [24]. The cumulative distribution function of the cumulative demand∑𝑡
𝑘=1 𝑑𝑘 is known from the prediction and denoted by 𝐹𝑡 . Thus, we may rewrite

Eq. (15.10) as

𝐹𝑡
©­«
𝑡∑︁
𝑗=1
𝑥 𝑗

ª®¬ ≥ 1 − 𝜖 ∀1 ≤ 𝑡 ≤ 𝑇 , (15.11)

which is equivalent to

𝑡∑︁
𝑗=1
𝑥 𝑗 ≥ 𝐷𝑡1−𝜖 ∀1 ≤ 𝑡 ≤ 𝑇 , (15.12)

where 𝐷𝑡1−𝜖 denotes the (1 − 𝜖)-quantile of 𝐹𝑡 .
Apart from considering probabilities for running out of stock, also storage costs

need to be adapted when incorporating uncertain demands. With unknown demand,
also the stock amount is implicitly uncertain. To overcome this issue, we replace the
stock amount 𝑠𝑡 simply by the expected amount

𝑠𝑡 =

𝑡∑︁
𝑗=1
𝑥 𝑗 − E


𝑡∑︁
𝑗=1

𝑑 𝑗

 ∀1 ≤ 𝑡 ≤ 𝑇 . (15.13)

Including out-of-stock probabilities and expected demand, the final MIP model
reads



298 Julius Mehringer et al.

min
𝑇∑︁
𝑡=1

(𝑐fix · 𝑧𝑡 + 𝑐storage · 𝑠𝑡 + 𝑦𝑡 ) (15.14a)

s.t. 𝑧 =

𝐽∑︁
𝑘=1

𝑏𝑘 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14b)

𝑠𝑡 =

𝑡∑︁
𝑖=1

𝑥𝑖 − E
(
𝑡∑︁
𝑖=1

𝑑𝑖

)
∀1 ≤ 𝑡 ≤ 𝑇 (15.14c)

𝑥𝑡 =

𝐽∑︁
𝑗=1
𝑤𝑡𝑗 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14d)

𝑦𝑡 =

𝐽∑︁
𝑗=1
𝑞 𝑗𝑤

𝑡
𝑗 + 𝑛 𝑗𝑏𝑡𝑗 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14e)

𝐵 𝑗𝑏
𝑡
𝑗 ≤ 𝑤𝑡𝑗 ≤ 𝐵 𝑗+1𝑏

𝑡
𝑗 ∀ 𝑗 ≤ 𝑡 ≤ 𝐽 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14f)

𝑡∑︁
𝑗=1
𝑥 𝑗 ≥ 𝐷𝑡1−𝜖 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14g)

𝑥𝑡 ∈ Z+0 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14h)
𝑠𝑡 , 𝑤

𝑡
𝑗 , 𝑦

𝑡 ∈ R ∀ 𝑗 ≤ 𝑡 ≤ 𝐽 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14i)

𝑧𝑡 , 𝑏
𝑡
𝑗 ∈ {0, 1} ∀1 ≤ 𝑗 ≤ 𝐽 ∀1 ≤ 𝑡 ≤ 𝑇 (15.14j)

To summarize, we developed a MIP model which determines a cost-optimal order-
ing policy. The model incorporates non-linear ordering costs and is robust against
uncertainties in the demand forecast.

15.6 Pooling

As we have seen, forecasting demands of various kinds can be embedded into
planning models that address subsequent steps in the supply chain. One such instance
in the supply chain is the homogenous mixing process of raw materials into final
blends through blending intermediate materials that can be stored and in turn used
in the mixing process. This can be modeled by the Pooling Problem as described in
Section 7.3.3.

The application of pooling in practice requires various adjustments like the in-
clusion of recipes, for instance when mixing yogurt. Each yogurt has specific in-
gredients. The substances measured may be lactose, fat content, concentration of
food colors, or traces of bacteria from the soil where the fruit for the yogurt was
grown. By mixing the same yogurt with different fat contents together the desired
fat content can be reached. Following the notation of Section 7.3.3, the recipes can
be included as follows. The raw and intermediate materials for the mixture are saved



15 Self-Optimization in Adaptive Logistics Networks 299

in multiple batches. Let 𝑀 be the set of raw materials and let 𝐼 =
•⋃
𝑚∈𝑀 𝐼𝑚 be

the available containers in which these materials are stored, where 𝐼𝑚 is the set of
batches that contain material 𝑚 ∈ 𝑀 . Then a blending recipe describing how much
of each material is in the mix can be specified by the fraction values 𝜎𝑚𝑙 ∈ [0, 1],
𝜎𝑚𝑗 ∈ [0, 1] for all materials 𝑚 ∈ 𝑀 , pools 𝑙 ∈ 𝐿, and outputs 𝑗 ∈ 𝐽. The recipe
can be followed by adding the following constraints:∑︁

𝑖∈𝐼𝑚 ,𝑙∈𝐼𝐿
𝑞𝑖𝑙 = 𝜎𝑚𝑙∀𝑙 ∈ 𝐿,

∑︁
𝑖∈𝐼𝑚 ,𝑙∈𝐼𝐽

𝑞𝑖 𝑗 = 𝜎𝑚𝑗 ,∀ 𝑗 ∈ 𝐽

Since ingredients of various kinds are usually procured and processed in a similar
manner with some regularity, forecasts can be used to anticipate the measured values
of the substance and use them as input for the optimization. Alternatively, forecasting
can be leveraged to predict arrival dates of new batches for the mixing process.
Demand forecasting provides information on which blends should be produced. This
and other integrated approaches open up new possibilities on how to produce a more
sustainable inventory management.

15.7 Conclusion and Outlook

This chapter explored an application of prescriptive analytics, which reduces the
complexity of an analytics problem by separating it into two more manageable steps.
First, a forecasting algorithm captures uncertainty over the environment based on
observations. Second, the forecast is passed to an optimization algorithm, which
determines the optimal policy by treating any remaining uncertainty with robustness
constraints. This separation of concerns allows focusing on the uncertainty aspect
in the forecasting step and on the policy aspect in the optimization step. Each step
can leverage domain expertise and build on existing solutions for the corresponding
sub-problem. We demonstrate this principle at the task of finding cost-optimal order
policies for the All-Time Buy of spare parts. The optimal policy minimizes the total
cost of orders and storage while guaranteeing sufficient stock to satisfy the demand.
To this end, we first forecast the demand curve of a spare part based on observed
past demands. Specifically, we model the demand as a growth curve in a hierarchical
Bayesian model. The growth curves capture domain expertise about the natural
shape of demand curves and the hierarchy enables information sharing between
similar spare parts. The output of this Bayesian model is a posterior distribution over
future demand curves, which includes a measure of uncertainty. For the second step,
we formulate an optimization problem for finding the cost-optimal policy. We start
with an existing solution for the single-item uncapacitated lot sizing problem, which
assumes that the demand is known. Next, we extend this model to more realistic,
non-linear production costs. Using the multiple-choice model for the production
cost, we can derive a locally ideal, linear mixed-integer program. To make the
model robust against the uncertain demand, we adapt the storage availability and
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cost related constraints. Finally, we connect optimization and forecasting by using
the forecasted demand as input to the optimization problem. Lastly, we outline the
possibility of using forecasting in another use case, where a production of blended
goods is modeled based on a pooling problem. In this production context, forecasting
could be applied to predict the future demand of the goods or predict the assessment
of quality parameters in blending ingredients or their availability. This information
can then be funneled into the optimization model. Our focus is the case, where goods
are produced according to specified recipes. To adhere to these ingredient ratios, we
modify the standard pooling problem by including additional constraints.

Future aspects include the generalization of the forecasting model, such that fur-
ther predictors can be included in the model. Additionally, the optimization algorithm
currently does not make use of the forecasting model’s uncertainty quantification,
leaving room for further efficiency gains regarding the optimal stocking policy.
This gives room for theoretical work on how to properly incorporate uncertainty in
the stocking policy algorithm, as well as empirical work on the gains that such a
combination of forecasting and optimization yields.
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Chapter 16
Optimization of Underground Train Systems

Lukas Hager1, Tobias Kuen2

Abstract This chapter presents two approaches for enhancing the sustainability and
efficiency of underground train systems. The first approach focuses on the optimiza-
tion of DC railway power systems, employing a novel Mixed-Integer Quadratically
Constrained Quadratic Program (MIQCQP) to control substation feed-in voltages
effectively. By minimizing energy losses, this optimization approach demonstrates
substantial potential for cost and emission reduction, contributing to a more energy-
efficient underground train network. Validation results confirm the accuracy of the
proposed model, and realistic instances reveal significant energy savings. The sec-
ond approach deals with energy-efficient timetabling, a critical aspect in reducing
the environmental impact of railway operations. The presented approach seeks to
minimize energy consumption through the implementation of two key strategies:
promoting energy-efficient driving patterns and optimizing recuperated energy from
braking. Leveraging operational data, including power consumption profiles and
travel time distributions, the optimization methods demonstrate remarkable poten-
tial in reducing energy consumption, subsequently leading to lower electricity costs
and environmental benefits. This chapter is largely based on previous work of Hager
and Koop on optimization of DC railway power systems and of Bärmann et al. [1]
on energy-efficient timetabling.
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16.1 Optimization of DC Railway Power Systems

16.1.1 Introduction

Due to rising energy prices and ecological challenges, energy efficiency in railway
transport is a crucial research area. Prior studies mainly focused on reducing energy
consumption from the consumer’s side, such as energy-efficient timetabling and
velocity profile optimization. In contrast, this work concentrates on the supplier’s
side, which has limited literature. Existing research highlights potential savings in
the railway system but overlooks electrical infrastructure operations.

This work proposes a novel Mixed-Integer Quadratically Constrained Quadratic
Program (MIQCQP) global optimization approach for controlling feed-in voltages
at substations to minimize power losses. Direct current (DC) grids are considered,
where regenerative energy utilization poses challenges.

While previous works explored feed-in voltage optimization, they did not consider
recuperation losses. The proposed MIQCQP model, based on the optimal power
flow model, addresses this issue. Its novelty lies in achieving global energy loss
minimization, illustrated through a computational study using a realistic network
structure.

16.1.2 Optimal Power Flow and mathematical MIQCQP model

The following MIQCQP is based on the optimal power flow (OPF) model. OPF is
widely used to determine optimal power generation patterns in electric networks.
In [7], the authors describe a DC version of OPF used as a basis for the presented
model. For a better reading, see Table 16.5 where we list all parameters, variables,
and symbols. The electric network is modeled as a directed graph 𝐺 = (𝑋, 𝐸) with
nodes 𝑋 representing loads and sources, and arcs 𝐸 representing current flow paths.
The DC-OPF model can be stated as follows:

Minimize: Provision costs or power losses by controlling feed-in voltages

s.t. Power equation: 𝑃𝑖 = 𝑈𝑖 · 𝐼𝑖 ∀𝑖 ∈ 𝑋,

Kirchhoff’s law: 𝐼𝑖 =
∑︁

𝑗∈ 𝛿+ (𝑖)
𝐼𝑖 𝑗 −

∑︁
𝑘∈ 𝛿− (𝑖)

𝐼𝑘𝑖 ∀𝑖 ∈ 𝑋,

Ohm’s law: 𝐼𝑖 𝑗 = 𝑦𝑖 𝑗 (𝑈𝑖 −𝑈 𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐸.

The constraints in this model represent well-known relations from electrical en-
gineering. The power equations describe the non-linear relationship between power
generation or consumption 𝑃𝑖 ∈ R at each node 𝑖 ∈ 𝑋 as a product of voltage𝑈𝑖 ∈ R
– which is a control variable if node 𝑖 is feeding traction power system – and current
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𝐼𝑖 ∈ R. Kirchhoff’s current law specifies that at each node, the sum of the directed
currents adds up to zero. Here, 𝐼𝑖 𝑗 ∈ R is the current flow on the arc (𝑖, 𝑗) ∈ 𝐸 ,
while 𝐼𝑖 ∈ R models the demand at node 𝑖 ∈ 𝑋 . Ohm’s law describes the voltage
drop𝑈𝑖 −𝑈 𝑗 along an arc (𝑖, 𝑗) ∈ 𝐸 depending on the given admittance 𝑦𝑖 𝑗 ∈ R+.

16.1.2.1 Snapshot Model

Next, the DC-OPF is applied to railway traction power supply systems. The presented
optimization model considers a snapshot in time of the daily operation, where trains
have fixed positions in the railway network represented by an admittance matrix.
The power demands of the trains are also fixed. The optimization goal is to minimize
energy losses.

The directed graph𝐺 = (𝑆∪𝑁∪𝑍, 𝐸) consists of three subsets: power conversion
units 𝑁 of feeding traction power substations, additional busbar nodes 𝑆, one for each
substation, and the set of trains 𝑍 . Each busbar node in 𝑆 is directly connected to its
corresponding feed-in node in 𝑁 , and the admittance on the connecting arc models
the internal voltage drop of the substation. The set of arcs 𝐸 is divided into arcs
𝐸NS and arcs 𝐸SZ, i.e., 𝐸 = 𝐸NS ¤∪𝐸SZ. arcs in 𝐸NS always point from the power
conversion unit to the corresponding busbar, while transmission losses occur on arcs
in 𝐸SZ. The static railway DC-OPF (SR-DC-OPF) can be stated as follows:

min
𝑈𝑖 , 𝑖∈𝑁

∑︁
(𝑖, 𝑗 ) ∈𝐸SZ

𝑦𝑖 𝑗 𝐼
2
𝑖 𝑗 +

∑︁
𝑖∈𝑍

𝑃B,𝑖 +
∑︁
𝑖∈𝑁

(𝐴 + 𝐵𝐼𝑖 + 𝐶𝐼2𝑖 ),

s.t. Power equation for substations: Eqs. (16.1), (16.2),
Power equation for trains: Eqs. (16.3), (16.4), (16.5), (16.6), (16.7),
Ohm’s law for each line: Eqs. (16.8), (16.9), (16.10), (16.11), (16.12),
Kirchhoff’s current law for each node: Eq. (16.13),
Voltage restrictions of traction power supply: Eqs. (16.14).

The above model will be explained in detail, beginning with the power losses modeled
in the objective and then passing to constraints Eqs. (16.1)–(16.14).

The Objective Function contains transmission losses in lines, braking losses
in trains and conversion losses in substations. The transmission losses on an arc
(𝑖, 𝑗) ∈ 𝐸SZ can be derived via Ohm’s law and depend on the arc admittance 𝑦𝑖 𝑗
and the current flow 𝐼𝑖 𝑗 . Braking resistance losses can appear at every braking train
𝑖 ∈ 𝑍 when the feed-in voltages are chosen such that a part of the braking energy,
namely 𝑃B,𝑖 , cannot be fed back to other trains. The losses at any substation 𝑖 ∈ 𝑁 are
approximated with a quadratic function in the feed-in current 𝐼𝑖 using parameters 𝐴,
𝐵 and 𝐶, as proposed in [2]. While the transmission and substation losses generally
decrease with higher feed-in voltages, the braking losses increase with increasing
feed-in voltage. A detailed discussion on these effects can be found in [10].

Power Equation for Substations. At the feed-in nodes 𝑖 ∈ 𝑁 , the feed-in power
is the product of the control variable feed-in voltage and the corresponding current:
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𝑃𝑖 = 𝑈𝑖 · 𝐼𝑖 ∀𝑖 ∈ 𝑁. (16.1)

However, since the power 𝑃𝑖 at the feed-in node 𝑖 ∈ 𝑁 does neither appear in the
objective function nor in other constraints of the model, its modeling can simply be
neglected at feed-in nodes.

At the busbar nodes 𝑖 ∈ 𝑆, representing the phyiscal busbars in substations, power
is neither consumed nor generated. Therefore, they are modeled as pure passing
nodes. The power equation will be neglected and the variables are fixed

𝑃𝑖 , 𝐼𝑖 = 0 ∀𝑖 ∈ 𝑆. (16.2)

The Power Equation for Trains 𝑖 ∈ 𝑍 is more complex. The current splits into
two parts:

𝐼𝑖 = 𝐼trac,DC,𝑖 + 𝐼aux,𝑖 ∀𝑖 ∈ 𝑍. (16.3)

Here, 𝐼trac,DC is the current needed for traction and additional parts of the auxiliaries.
The current 𝐼aux is also needed for auxiliaries, however, it does not underlie current
limitation characteristics of trains as 𝐼trac,DC does. Therefore, the train’s power equa-
tion splits into the current underlying limitation characteristics and into the one that
is not:

𝑈𝑖 · 𝐼trac,DC,𝑖 = 𝑃trac,𝑖 + 𝑃aux,DC,𝑖 + 𝑃B,𝑖 ∀𝑖 ∈ 𝑍, (16.4)
𝑈𝑖 · 𝐼aux,𝑖 = 𝑃aux,𝑖 ∀𝑖 ∈ 𝑍. (16.5)

Here, 𝑃trac,𝑖 is the traction power of the train, 𝑃aux,DC,𝑖 is the auxiliary power subject
to current limitations, 𝑃aux,𝑖 is the auxiliary power that is not subject to current
limitations, and 𝑃B,𝑖 is used to model the residual part of traction power that is
converted into heat in a braking resistor. While 𝑃trac,𝑖 , 𝑃aux,DC,𝑖 and 𝑃aux,𝑖 are input
parameters to the model, 𝑃B,𝑖 is variable and depends on the power flows in the
network and therefore implicitly on the feed-in voltages. Note, the braking resistance
power is only relevant for braking trains (𝑃trac ≥ 0), i.e. so

𝑃B,𝑖 = 0, if 𝑃trac,𝑖 ≥ 0 ∀𝑖 ∈ 𝑍. (16.6)

The limitations on 𝐼trac,DC,𝑖 are described by a piecewise non-linear function in the
voltage of the train. These limitations result from an intersubsection of piecewise
linear boundaries on 𝐼trac,DC and the power equation from Eq. (16.4). For a non brak-
ing train 𝑖 ∈ 𝑍 , 𝑃𝐵 = 0 holds. Thus, the voltage-current combination (𝑈𝑖 , 𝐼trac,DC,𝑖)
must satisfy the equation 𝑈𝑖 · 𝐼trac,DC,𝑖 = 𝑃trac,𝑖 + 𝑃aux,DC,𝑖 and therefore, the piece-
wise linear current limitation leads to a narrowing of the feasible voltage interval,
see the upper part of Figure 16.1. If a train 𝑖 ∈ 𝑍 is braking, ideally, all traction
power that is not needed for auxiliaries is fed back into the system. However, since
technically there is a piecewise linear limitation on 𝐼trac,DC,𝑖 , it might be the case that
some residual part of traction power fis not fed back. This is converted into heat in
a braking resistor and modeled in the variable 𝑃B,𝑖 . Voltage-current combinations
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Fig. 16.1: Example for feasible voltage-current combinations of a train, with constant
power for acceleration (black) and braking (green) including current limitations
(yellow, blue). It results in a piecewise non-linear value range during braking (red)
and a quadratic value range during consumption (pink).

(𝑈𝑖 , 𝐼trac,DC,𝑖), where this is the case, lie on the piecewise linear function outside
of the intersubsections with the hyperbola

(
𝑃trac + 𝑃aux,DC

)
/𝑈, see the lower part of

Figure 16.1. The feasible voltage-current combinations in braking trains are modeled
via the piecewise non-linear function pwnllb (𝑈𝑖),

𝐼trac,DC,𝑖 = pwnllb (𝑈𝑖) ∀𝑖 ∈ 𝑍. (16.7)

Ohm’s Law is used to model for each arc (𝑖, 𝑗) ∈ 𝐸 in the network the voltage
drop. For arcs 𝐸SZ, the modeling is straightforward via

𝐼𝑖 𝑗 = (𝑈𝑖 −𝑈 𝑗 ) · 𝑦𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝐸SZ. (16.8)

For arcs 𝐸NS Ohm’s law is only applied in the direction of supply. This is due to
the physics of rectifiers at substations. Since diodes, installed in rectifiers, have a
junction they only conduct in a single direction. Thus, Ohm’s law is only active if
the voltage at the busbar is lower than the feed-in voltage. Otherwise, Ohm’s law
does not apply and current cannot flow back to the feed-in node, although the voltage
drop would imply this. This is modeled in the following:

𝐼𝑖 𝑗 = (𝑈𝑖 −𝑈 𝑗 ) · 𝑦𝑖 𝑗 + Δ𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝐸NS, (16.9)
Δ𝑖 𝑗 ≤ 𝑀Δ (1 − 𝑧𝑖 𝑗 ) ∀(𝑖, 𝑗) ∈ 𝐸NS, (16.10)
𝐼𝑖 𝑗 ≤ 𝑀𝐼 𝑧𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝐸NS, (16.11)

𝑧𝑖 𝑗 ∈ {0, 1},Δ𝑖 𝑗 ∈ R+, 𝐼𝑖 𝑗 ∈ R+ ∀(𝑖, 𝑗) ∈ 𝐸NS. (16.12)
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The continuous auxiliary variable Δ𝑖 𝑗 causes Eq. (16.9) to be trivially satisfied
whenever the corresponding binary auxiliary variable 𝑧𝑖 𝑗 ∈ {0, 1} fulfils 𝑧𝑖 𝑗 = 0.
Indeed, exactly then Δ𝑖 𝑗 has a feasible range of [0, 𝑀Δ], where 𝑀Δ is an upper bound
for every Δ𝑖 𝑗 . The input parameter 𝑀𝐼 is some upper bound on maximum current
flow on arcs in the network. If 𝑧𝑖 𝑗 = 1 then Δ𝑖 𝑗 = 0 and Eqs. (16.9)–(16.12) reduce
to the standard power equation 𝐼𝑖 𝑗 = (𝑈𝑖 − 𝑈 𝑗 ) · 𝑦𝑖 𝑗 . Finally, 𝑧𝑖 𝑗 = 1 is enforced
by Eq. (16.11) whenever there is a positive current flow from 𝑖 to 𝑗 . This modeling
technique is known as the bigM approach in discrete optimization.

Kirchhoff’s Current Law is applied at each node 𝑖 ∈ 𝑁 ∪ 𝑆 ∪ 𝑍 which says that
the inflow,

∑
(𝑖, 𝑗 ) ∈ 𝛿in (𝑖) 𝐼𝑖 𝑗 , minus the outflow,

∑
(𝑖, 𝑗 ) ∈ 𝛿out (𝑖) 𝐼𝑖 𝑗 , equals the consumed

or fed-in current 𝐼𝑖 at that node, i.e.

𝐼𝑖 =
∑︁

(𝑖, 𝑗 ) ∈ 𝛿in (𝑖)
𝐼𝑖 𝑗 −

∑︁
(𝑖, 𝑗 ) ∈ 𝛿out (𝑖)

𝐼𝑖 𝑗 ∀𝑖 ∈ 𝑁 ∪ 𝑆 ∪ 𝑍. (16.13)

Note, currents at substation nodes will be zero, see Eq. (16.2), while currents at
feed-in nodes will be negative or zero.

Voltage Restrictions are given because as the trains are mobile loads in the
railway network, variable voltage drops inevitably occur. In order to deal with these
voltage drops, the minimum and maximum voltages for substations and trains are
standardized, e.g. in Europe this is done in the standard EN 50163 [6]. This results
in node-specific bounds on the variables in the model:

𝑈𝑖,min ≤ 𝑈𝑖 ≤ 𝑈𝑖,max ∀𝑖 ∈ 𝑁 ∪ 𝑆 ∪ 𝑍. (16.14)

16.1.2.2 Time Span Model

Next, snapshot modeling is extended to time spans. For a given time span [0, 𝑇], a
discretization T := {0 = 𝑡0, 𝑡1, . . . , 𝑡𝑛 = 𝑇} is introduced. The granularity of this
discretization determines the size of the model, since a duplication of the constraints
from Eqs. (16.1)–(16.14) from the SR-DC-OPF model is performed for each time
step. It is assumed that the power demands of the trains as well as their positions,
modeled implicitly by the admittances, are known a priori for each discretization
time step 𝑡𝑖 . Most DC traction power supply systems are fed by diode rectifiers which
cannot be controlled actively in operations. Thus, it is required to optimize over a
time interval and determine a constant feed-in voltage.

Since the trains will move during the considered time span, their neighboring
relations, i.e. the arc set of the graph will change. Consequently, a separate graph
𝐺𝑡 = (𝑁 𝑡 ∪ 𝑆𝑡 ∪ 𝑍 𝑡 , 𝐸 𝑡 ) for each time step 𝑡 ∈ 𝑇 is introduced.
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The complete time-expanded DC railway optimal power flow model (TR-DC-
OPF) is stated as follows:

min
𝑈𝑡

𝑖
, 𝑖∈𝑁 𝑡

𝑇∑︁
𝑡=0

( ∑︁
(𝑖, 𝑗 ) ∈𝐸𝑡

SZ

𝑦𝑡𝑖 𝑗 (𝐼 𝑡𝑖 𝑗 )2 +
∑︁
𝑖∈𝑍 𝑡

𝑃𝑡B,𝑖 +
∑︁
𝑖∈𝑁 𝑡

(𝐴 + 𝐵𝐼 𝑡𝑖 + 𝐶 (𝐼 𝑡𝑖 )2)
)

s.t. Power equation for substations: Eqs. (16.1), (16.2) ∀𝑡 ∈ 0, . . . 𝑇,
Power equation for trains: Eqs. (16.3) – (16.7) ∀𝑡 ∈ 0, . . . 𝑇,
Ohm’s law: Eqs. (16.8) – (16.12) ∀𝑡 ∈ 0, . . . 𝑇,
Kirchhoff’s current law: Eq. (16.13) ∀𝑡 ∈ 0, . . . 𝑇,
Voltage restrictions: Eq. (16.14) ∀𝑡 ∈ 0, . . . 𝑇,
Constant voltage control: 𝐸𝑞. (16.15) ∀𝑡 ∈ 0, . . . 𝑇–1.

The TR-DC-OPF model now includes the constraints of𝑇+1 network snapshots with
corresponding sets of variables and parameters. Additionally, the feed-in voltages
are coupled via the constant voltage control constraints in TR-DC-OPF, as stated:

𝑈𝑡𝑖 = 𝑈
𝑡+1
𝑖 ∀𝑖 ∈ 𝑁 𝑡 ,∀𝑡 ∈ 0, . . . 𝑇 − 1. (16.15)

16.1.3 Case Studies

In this section, the potential benefit of an optimal voltage control at substations is
demonstrated. Therefore the feed-in voltages of two exemplary railway networks are
optimized.

16.1.3.1 Optimization of time stamps in a small network

First, the feed-in voltages are optimized for a small network consisting of two
substations and two trains, see Figure 16.2. The two timestamps 𝑡1 = 00:03:10
and 𝑡2 = 00:03:30 are optimized. According to EN 50163, the feed-in voltages
can only take values between 500 V to 900 V. In Table 16.2, the properties of the
corresponding SR-DC-OPF models are shown.

In 𝑡1 both trains in the network are accelerating and the objective consists purely
of transmission and substation losses. Therefore, optimal feed-in voltages are 900 V,
see Table 16.3. In snapshot 𝑡2, an optimal solution is expected to allow the Train2
to recuperate a large portion of its braking energy to Train1. In Table 16.3 it is
shown that the optimal feed-in voltages are 668.4 V at Substation A and 900.0 V at
Substation B.
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Fig. 16.2: Schematic diagram of the small network.

Table 16.1: Electrical parameters in the small network.

𝑡1 = 00:03:10 𝑡2 = 00:30:30
𝑃Train1 799 000 W -1 244 361 W
𝑃aux,Train1 100 000 W 100 000 W
𝑃Train2 1 111 477 W 788 956 W
𝑃aux,Train2 100 000 W 100 000 W
𝑦SubA 64.18 S 64.18 S
𝑦SubB 64.17 S 64.17 S

𝑦SubA,Train2 66.22 S 19.88 S
𝑦Train2,Train1 4.85 S 4.68 S
𝑦Train1,SubB 14.55 S 38.31 S

Table 16.2: Model parameters and results for 𝑡1 and 𝑡2 in the small network.

𝑡1 = 00:03:10 𝑡2 = 00:30:30
continuous variables 24 25
binary variables 2 2
quadratic objective terms 5 5
𝑈SubA (optimized) 900.0 V 668.4 V
𝑈SubB (optimized) 900.0 V 900.0 V

16.1.3.2 Optimization of a realistic entire line

In this example a more realistic network, an airport rail link system including a
realistic timetable, is optimized. In Figure 16.3 a visualization of the network con-
figuration is given. Again, the nominal voltage is 750 V DC and the feeding is
double-sided. Further, the trains have auxiliary loads of 100 kW each.

The headway period of 3 min is discretized with an accuracy of 1s. The proper-
ties of the TR-DC-OPF model and a comparison of optimized and non-optimized
configurations are given in Table 16.4.

The total savings are 4.0%. The optimal feed-in voltages of 856.4 V, 840.6 V and
844.8 V are higher than the non-optimized voltages. Again, the same effects as in the
previously shown example can be observed. The increase in feed voltages reduced
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Table 16.3: Detailed power losses for the small network in two snapshots – compar-
ison of non-opt. and optimized feed-in voltages as SR-DC-OPF.

𝑡1 = 00:03:10 𝑡2 = 00:30:30
non-opt. optimized non-opt. optimized

𝑈SubA 820.0 V 900.0 V 820.0 V 668.4 V
𝑈SubB 820.0 V 900.0 V 820.0 V 900.0 V
Substation losses 13 635 W 11 281 W 2 037 W 1 656 W
Transmission losses 129 452 W 103 403 W 124 035 W 326 816 W
Braking losses 0 W 0 W 438 630 W 0 W
Total losses 143 087 W 114 684 W 564 702 W 328 472 W

Fig. 16.3: Schematic diagram of the realistic network, with stations (black) and
traction power supply substations (red); from Sitras Sidytrac Designer.

Fig. 16.4: Schedule of the realistic network; from Sitras Sidytrac Designer.

substation losses by 6.1% and transmission losses by 10.8%, but resulted in an in-
crease in braking losses by 19.0%. In total, however, the savings in the transmission
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Table 16.4: Model parameters and results for the realistic network – detailed power
losses comparison of non-opt. and optimized feed-in voltages.

continuous variables 10 790
binary variables 540
quadratic objective terms 4 035

non-opt. optimized rel. difference
𝑈SubA 820.0 V 856.4 V -
𝑈SubB 820.0 V 840.6 V -
𝑈SubC 820.0 V 844.8 V -
Substation losses 0.821 kWh 0.770 kWh -6.1%
Transmission losses 15.125 kWh 13.491 kWh -10.8%
Braking losses 4.604 kWh 5.477 kWh +19.0%
Total losses 20.550 kWh 19.738 kWh -4.0%

losses compensate for the increased braking losses.

Table 16.5: List of symbols used in the optimizaton models

Element Name Unit Description

𝑇 Length of the planning horizon
Graph 𝑆 Set of substations

𝑍 Set of trains
𝑁 Set of no-load substations
𝐸 Lines

𝑃 Watt (W) Power
𝑃𝐵 Watt (W) Non-recuperated braking Power
𝑈 Volt (V) Voltage
𝐼 Ampere (V) Current at node or arc
𝐼trac,DC Ampere (V) Bounded Auxiliary current

Variables 𝐼aux Ampere (V) Auxiliary current
Δ Ampere (A) Slack variable for current balance
𝑧 Binary variable

𝑃aux Watt (W) Auxiliary power
𝑃DC,aux Watt (W) Auxiliary DC-relevant power
𝑦 Siemens (S) Admittance on a given line

Constants 𝑀Δ Ampere (A) bigM for Δ
𝑀𝐼 Ampere (A) bigM for 𝐼
𝐴, 𝐵, 𝐶 Substation loss parameters
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16.2 Energy-Efficient Timetabling applied to a German
Underground System

16.2.1 Industrial Challenge and Motivation

Traction energy consumption is among the most important cost factors in the elec-
tricity bill of a railway undertaking. It is significantly influenced by the manner in
which the trains are driven. Thus, a significant reduction in energy consumption can
be achieved by choosing energy-efficient velocity profiles. This includes making use
of pure rolling phases, the so-called coasting. As far as possible, as a train consumes
no traction energy at all in this phase and, due to the low rolling friction, only slowly
looses speed. In Figure 16.5, the effects of choosing between different driving modes
of a train are shown schematically for a train in an underground network.

These data show that by slightly slowing down the fastest possible speed profile
on a given track, the train may consume up to 1/3 less in energy. In this respect,
it is especially beneficial to extend the coasting phases of the train as much as
possible. Altogether, choosing the optimal velocity profile for each train on each leg
(= timetabled run between two stations) with respect to given total line travel times
entails a huge leverage for bringing down the consumption of the overall underground
system. This finding motivated the joint research project of FAU Erlangen-Nürnberg,
Fraunhofer IIS and VAG Verkehrs-Aktiengesellschaft, the local operator of public
transport in the German city of Nürnberg. Its idea was to take a given timetable
draft toward the end of the timetable planning phase and to use the remaining
degrees of freedom to slightly shift train departures within fixed windows around
their currently planned departure times. The aim is to create the necessary flexibility
to enable choosing the best-possible velocity profile on each leg. At the same time,
these shifts in the departures times allow for the better synchronization of departure
and arrival events. This is important as a braking train is able to feed back recuperated
energy to the grid. However, this energy can only be used if there is another train
in the network which is accelerating at the same time, otherwise it is lost because
there is no energy storage in the system. Overall, there is a considerable potential
for cost saving, as we have demonstrated in our collaboration. In the following,
we will elaborate on the mathematical approach and present our case study for the
underground system of Nürnberg.

16.2.2 Mathematical Research

Based on a timetable draft created by expert planners, the studied task is to determine
slight modifications in the train departure times as well as choosing velocity profiles
for all trains in an energy-optimal way. However, these modifications shall retain
the timetable structure established in the draft according to stated criteria, e.g. dwell
times (= passenger interchange times) in the stations, minimum headway times (=
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Fig. 16.5: Schematic representation of the effect of choosing between one of the three
driving modes “always driving as fast as possible” (black), “accelerating to maximum
velocity followed by coasting” (blue) and “accelerating to below maximum velocity
followed by extended coasting” (red) on a sample underground leg

safety distances) between trains and desired connections between trains. In order to
construct a mixed-integer programming (MIP) model for this task, we discretized the
time horizon into time steps of e.g. 5 seconds each and determined a suitable discrete
set of (e.g. 3) alternatives for the velocity profiles for each train on a given leg. The
profiles were initially chosen as heuristic solutions to an optimal control problem;
later we changed them against measured profiles of actual train runs in the network.
Furthermore, we allowed departure time shifts up to a given amount, e.g. 15 seconds
around the draft departure time for each leg – a change that is hardly noticeable by
the passengers but that can still allow for significant energy savings as we were able
to show. With allowed shifts of 15 seconds in increments of 5 seconds and 3 profiles
to choose from, there are already 3 · 7 = 21 possible choices for the combination of
departure time and velocity profile for each leg. Given that there are 24,000 legs to be
served in the Nürnberg underground each day, this means there are 24, 00021 ≈ 1092

possible timetables adjustments to choose from. No company planner could hope to
evaluate all of them manually in order to determine the most energy-efficient one.
Via the techniques of discrete optimization we have developed over the course of this
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project, however, we are able to produce near-optimal timetables within one hour or
less.

To this end, we came up with a model formulation for the set of the feasible
timetable adjustments as a special case of the clique problem with multiple-choice
constraints on an undirected graph G (see Chapter 7, Section 7.3.1.1 or for more
details [[3], [4]]). Its nodes represent possible combinations of departure time and
velocity profile for the legs to be scheduled, while the arcs model compatibilities
between the departure configurations for different legs. Whenever the departure
configurations for two specific legs do not violate any requirements for a feasible
timetable, such as the above-mentioned ones, the corresponding nodes are connected
by an arc. This results in an optimization model of the type

min
∑︁
𝑡∈𝑇

max (𝑃(𝑥, 𝑡), 0)

𝑠.𝑡. 𝑥 ∈ 𝑋,

where 𝑃(𝑥, 𝑡) represents to total energy consumption at time step 𝑡, summed over
all running trains, while 𝑋 is the set of feasible timetable adjustments. Taking the
maximum of 𝑃(𝑥, 𝑡) and 0 reflects that energy from a braking train can only be
recuperated if it is used by other trains in the same time step. After linearizing the
objective function with the help of additional auxiliary variables, the above model
can be written as a MIP. We point out that all relevant types of timetabling constraints
can indeed be expressed as pairwise node conflicts, which constitutes a very special
structure. There are several ways to translate them into linear constraints. However,
modeling the feasible region X in the most efficient way is very important as standard
MIP solvers cannot solve the problem efficiently for real-world networks if a naive
model formulation is used.

Our search for an adequate model formulation was inspired by the work of [9]. It
was among the first to study the combined optimization of railway (or more precisely
underground) timetables and energy consumption, giving a heuristic for reducing
instantaneous power peaks. In [5], we took up their basic idea and studied the
effects of optimal timetabling for small subnetworks of German railway traffic under
different objective functions relating to power consumption patterns. During this
work, we realized that the problem contains an interesting structure to be exploited
in order to reduce solution times. The nodes of the compatibility graph can be
partitioned by the legs they belong to, and within each partition 𝑉𝑙 they can be
sorted by departure time. For the special (but still NP-hard) case of a single energy
profile available for each leg, the compatibility structure then allows for a totally
unimodular description of the timetabling polytope. It could be improved to an
even more efficient dual-flow formulation by using the canonical ordering of the
departure times for each leg. This special structure also comprises problems in other
application contexts, such as the piecewise linearization of path flows – e.g. of natural
gas in a pipeline (see [8]). We generalized the core properties of the compatibility
structure to the abstract notion of staircase compatibility in [3]. There, the resulting
model formulations were successfully employed on much larger subnetworks of
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Deutsche Bahn AG (DB), up to the Germany-wide network, for minimizing peak
power consumption. When using our improved formulations, we observed significant
savings in solution times (over a factor of 100 in several cases), which allowed us to
solve the problem for the Germany-wide network within a couple of minutes, but took
hours to solve beforehand. For multiple energy profiles per leg to choose from, the
structure of the feasible set still tends to favour similar reformulations but cannot be
perfectly described by staircase compatibility. We continued our polyhedral studies
by considering a special case with respect to the dependency graph of the subsets
in the node partition according to legs. This is the graph that encodes which pairs
subsets of nodes directly impose any restrictions on each other. We showed that the
feasible set in this case can be completely described by stable-set inequalities if the
dependency graph is cycle-free. This leads to the following overall formulation:

min
∑︁
𝑡∈𝑇

max (𝑃(𝑥, 𝑡), 0)

𝑠.𝑡.
∑︁
𝑣∈𝑉𝑙

𝑥𝑣 = 1 for all subsets 𝑉𝑙 ,∑︁
𝑣∈𝑆

𝑥𝑣 ≤ 1 for all stable sets 𝑆 in 𝐺,

𝑥 ≥ 0,

where 𝐺 = (𝑉, 𝐸) is the compatibility graph and the subsets 𝑉𝑙 for each leg 𝑙 form
a partition of 𝑉 . Altogether, we want to choose exactly one departure configuration
for each leg, as modeled by the variables 𝑥𝑣 for each node 𝑣 ∈ 𝑉 . The stable sets
in G represent exactly the subsets of nodes which are in pairwise conflict with each
other. Note that the total number of stable sets is potentially large and difficult to
generate in general. However, only stable sets involving nodes from just two subsets
are needed, which significantly reduces the enumeration effort and the size of the
formulation – especially if the number of departure configurations choices for each
leg is small in comparison to the number of legs in the timetable.

We used this improved formulation to greatly reduce solution time for optimizing
the timetable in the Nürnberg underground network, see [4], also for more details on
the aforementioned polyhedral results. In this preliminary computational study, an
optimized shifted schedule of the longest line U1 in the system reduced the overall
energy consumption by about 18% during the morning rush hour interval between 5
a.m. and 9 a.m. when compared to the actual 2018 schedule. From there on, we have
undertaken great efforts to broaden the available database and to extend the results
to all three Nürnberg underground lines over the whole day in order to see how much
of these 18% in savings can be expected to be obtained in practice. These efforts and
the findings we had will be described in the next section.
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16.2.3 Implementation

Fig. 16.6: A sample velocity profile (blue), approximated (red) and measured (green)
power consumption profile on a given leg in the Nürnberg underground network

The initial spark for this project was a cooperation with DB in project E-Motion
(2013–2016), funded by the German Ministry of Education and Research (BMBF).
Its aim was to develop optimization algorithms to compute slight adjustments in the
departure times of the trains to reduce peak power consumption for railway transport.
The successful completion of this project led us to approach VAG in order to see
if the same technique could be used to reduce peak consumption in the Nürnberg
underground system. We soon learned that an even higher potential lies in reduc-
ing the overall power consumption by choosing energy-efficient driving patterns.
So whereas in the project with DB we only adjusted departure times, the new task
was to choose optimal travel times for each leg. After extending our timetabling
model accordingly, we iteratively increased its performance. Firstly, the new degree
of freedom, choosing travel times, added complexity to the mathematical model. An
extensive study of its structure as described in [4] enabled us to give a more compact
problem formulation that was much easier to solve and still respected all necessary
constraints. Secondly, we incorporated additional timetabling constraints to make
sure that our solutions are not just energy-efficient, but also real-world applicable.
Note that these additions seamlessly fit into our new mathematical framework and
therefore had no negative impact on solution times. Finally, we replaced the simu-
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lated velocity and power profiles, which were based on theoretical knowledge of train
characteristics, and which we used at the beginning, with profiles that were based
on actual measurements for train runs in the system. For some time, we used pro-
files approximated from velocity and acceleration measurements as recorded by the
tachographs in the wagons together with characteristic power consumption curves
of the power trains. After confirming the potential of our approach on these approxi-
mate power profiles, VAG purchased and installed a dedicated device for measuring
the traction current used by the powertrains in a wagon. Figure 16.6 shows a sample
profile recorded by the DL350 device. These more precise recordings improved the
accuracy of the model output further, and, as our database of sample power profiles
grew, we could cooperate with the timetable experts at VAG on a related topic as
well. Namely, the collected data allowed us to perform broad statistical evaluations
to identify and study typical delays in the underground train operation. As a result,
we were able to create a reference timetable for our optimization which more closely
matches the actual underground traffic in the system. It can be used by VAG during
schedule creation to improve both the reliability of future underground timetables
and the reliability of the projected energy savings by our optimization procedures
in practice. The next step in this ongoing project will be to refine our timetabling
model further in order to integrate some more operational requirements. At the end
of this process, VAG is going to adopt the timetable planning software we are im-
plementing based on our mathematical approaches to support planners in creating
energy-efficient underground timetables.

16.3 Conclusion and Outlook

The findings of the project on the optimization of DC railway power systems under-
score the untapped potential of tailored substation voltage adjustments in enhancing
energy efficiency within underground train systems. This highlights the importance
of customizing voltage regulation to optimize energy consumption based on indi-
vidual operational dynamics and network characteristics.

Similarly, the insights from the study together with VAG in Nürnberg illumi-
nate the substantial benefits of energy-efficient timetabling in minimizing energy
consumption and operational costs of an underground train system. Synchronized
schedules enable efficient energy recuperation and underscore the significance of
optimizing train movements.

Looking ahead, an exciting avenue for future research lies in the integration
of substation voltage adjustment and energy-efficient timetabling. This combined
approach holds the promise of achieving even greater energy savings and operational
efficiency.
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Chapter 17
AI-assisted Condition Monitoring and Failure
Analysis for Industrial Wireless Systems

Ulf Wetzker1, Anna Richter1, Vineeta Jain1, Jakob Wicht1

Abstract With the increasing proliferation of wireless devices and Internet-of-
Things (IoT) applications in various fields, such as patient monitoring, vehicle-to-
everything (V2X) communication and industrial automation, there is a growing
significance in developing robust methods and tools for evaluating and predicting
link quality, monitoring information flow, as well as conducting failure analysis. This
is particularly important in safety-critical industrial IoT (IIoT) environments such as
smart factories, where challenging signal propagation conditions and interference
from coexisting wireless technologies can severely impact network performance
and application reliability. This contribution provides a comprehensive analysis of
coexistence issues in industrial IIoT networks and highlights the complexities and
challenges associated with performing failure analysis on a large scale. The necessity
of using data-driven methods in the development of efficient and user-friendly failure
analysis systems is discussed and the challenges regarding required datasets are
highlighted.

Key words: data augmentation, object detection, Autoencoder, Dynamic Time
Warping, Industrial IoT, failure analysis, coexistence problems, wireless monitor-
ing systems.

17.1 Introduction

In the automation industry, wireless technology is increasingly used for machine-to-
machine (M2M) communication. This trend is driven by substantially higher flexi-
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bility and connectivity, which simplifies the reconfiguration of production processes
and enables the introduction of advanced technologies such as autonomous robots,
augmented reality (AR) or Human-Machine-Interfaces (HMIs). In order to meet
the specific requirements of various industrial applications, a number of wireless
communication systems specially adapted to this market [3] have been established.
These systems use both unlicensed and licensed frequency bands or rely on cel-
lular networks to ensure efficient and reliable communication in various industrial
environments. Despite numerous advantages, the use of wireless communication
poses many challenges, especially in the area of network operation and maintenance.
Although many operational complications related to reception problems and inter-
ference with other wireless networks can be reduced or avoided through deliberate
planning and design of the wireless application, this is not sufficient for long-term
fault-free operation of the network. As the wireless environment is constantly chang-
ing, the state of the network must be continuously monitored and maintained. To
prevent future disruptions and system failures, experts can evaluate the condition
of the communication network and wireless connection to effectively and quickly
find problems and their causes in the event of a malfunction. As the root causes of
wireless communication failures are very difficult to identify and localize, on-site
troubleshooting requires measurement equipment that can provide an insight into
the entire network stack.

Fig. 17.1: Overview of data sources for a holistic analysis of all network layers
considering the TCP/IP model as an example.
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Spectral analysis provides comprehensive insights into the physical network layer
and parts of the datalink layer as shown in Figure 17.1. Using this measurement
method, it is possible to perform in-depth analyses of coexisting wireless applications
in the same frequency band or other sources of interference. Protocol analysis is
widely used because it covers almost all network layers, it presents the content of
packets in an easily understandable form, and is also applied in wired networks.
However, the evaluation and interpretation of the results obtained requires in-depth
knowledge of radio standards, communication networks, network protocols and the
associated applications, which is only available to specially trained technicians. Due
to the increasing popularity of wireless communications, users are encountering
interference problems more frequently. Controversially, more applications with high
Quality of Service (QoS) and reliability requirements are being deployed that are
affected by interference [8]. Due to the complexity of a network failure analysis,
experts are increasingly needed for the prevention and elimination of particular
costly or safety-critical failures. The need for user-friendly and highly automated
solutions for the analysis of network data has therefore increased significantly. In
the area of wired networks, this development has already been observed in the past
few years. Automated analysis solutions are not only used for troubleshooting but
also for intrusion detection. In both application areas, information is collected from
the network, transport and application layers and analyzed offline or processed in
real-time. In recent years, methods from the field of machine learning (ML) and
AI have become more common, and are frequently used for classification, trend
analysis, change point or anomaly detection as well as pattern recognition.

17.2 Verifying Data Source Accuracy in Protocol Analysis

There are two ways to capture the data exchanged between the devices within a
wireless communication network. First, the data can be acquired directly at the
sender or receiver of a frame. This method is particularly useful when it is known
in detail which nodes are to be examined during a troubleshooting session. Since it
is usually not possible to store data in large quantities on the embedded hardware of
the network nodes, and the required effort for collecting and merging the resulting
data is rather high, passive monitoring systems are used in the majority of all cases.
In passive data capture, a dedicated monitoring node records all frames that are sent
within reception range of the node [17]. This method is used often, since no special
requirements are imposed on the network nodes and only the hardware and software
of the monitoring node have to be extended accordingly. In addition, the monitoring
system can be used flexibly or at several different locations. Commercial tools for
passive monitoring such as [1] offer a comprehensive insight into the received frames
and enable the user to perform further evaluations and root cause analyses.
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Fig. 17.2: Manifestation of reception differences during data acquisition with a
passive monitor. Spatial differences between the original receiver of a frame and the
monitor lead to different reception problems.

Despite the unquestionable advantages of passive network monitoring, some
frames may not be received correctly due to transmission errors depending on
the position of the monitor. This is caused by location differences between the
actual participants in the data transmission and the monitoring node. These varying
reception conditions inevitably lead to changes in reception strength and interference
situations. Figure 17.2 shows such a monitoring scenario between a wireless access
point (AP) and a station (STA). Due to the different transmission channels, the
frames captured by the passive monitoring device differ from the frames received
by the STA. Since a passive receiver is not involved in the actual data transmission,
missed frames are not retransmitted and therefore not available as part of the dataset
for further analysis. For the monitoring system, this results in spatial positions with
good reception conditions at which it captures approximately the same number of
frames as the actual STA. In contrast, insufficient capture conditions are characterized
by positions of the monitoring device where significant deviations in the number of
received frames can be observed. In non-static scenarios, these conditions fluctuate
over time and can thus evolve continuously until a complete reception loss is reached,
leaving the monitoring system blind.

Currently, there is no solution taking into account the quality of the captured data
in relation to the propagation environment of the monitor. Using methods from the
field of artificial intelligence (AI), however, it is possible to develop a system [16] for
detecting anomalies in the data acquisition of passive receivers. In this work, the IEEE
802.11 protocol, which is widely known as Wi-Fi, was used as an example. Due to
its widespread use and the resulting availability of commercial off-the-shelf (COTS)
platforms, the IEEE 802.11 standard is used frequently in industrial environments
and in particular for applications with increased QoS requirements in terms of data
rate and latency. As the analysis method is data-driven, it can be easily retrained for
other wireless communication protocols by applying a suitable dataset.



Title Suppressed Due to Excessive Length 325

17.2.1 System Concept

For this purpose, the data stream of received frames can be considered as a mul-
tivariate time-series with irregular intervals, where the reception failures represent
completely missing samples. Since network protocols, similar to natural language,
are subject to a form of grammar, a logical sequence of samples exists within
the time-series. This enables the detection of missing frames. Since some network
protocols such as Wi-Fi have a high functional complexity and are continuously de-
veloped further, a simple rule-based detection of missing frames is time-consuming
and cost-intensive. A more efficient approach is to use methods from the field of
unsupervised learning to develop a system for assessing the data quality of network
captures of wireless communication systems. Application-specific knowledge that
needs to be refined continuously is not required in order to develop such a system;
no in-depth knowledge of the function of the various communication protocols or
expert knowledge in the field of communications engineering is needed. In addi-
tion, unsupervised learning also avoids the time-consuming process of labeling the
training data. These approaches reduce the required expert knowledge and therefore
increases the adaptability of the anomaly detection system.

If the absence of a sample within a sequence is considered abnormal behavior,
data-driven methods such as autoencoders (AEs) can be used to determine the number
of missing samples [13]. To implement this approach, COTS hardware can be used to
capture the wireless frames. The acquired data is then subjected to classical feature
engineering and pre-processing to be further processed by AE as a multivariate
time-series.

Fig. 17.3: Passive wireless monitoring pipeline including detection of position-
related data acquisition gaps.

As shown in Figure 17.3, input data sequences of length l are then generated
and passed to an AE for reconstruction. Missing samples within a sequence are
reconstructed by the AE, causing a difference between the input and output sequence.
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The calculated reconstruction error 𝜀 serves as a measure of whether the input
sequence contained errors. If 𝜀 > T , where T is a predefined threshold depending on
the application, the data cannot be reliably used for further analysis without further
processing. Depending on the severity of the error, data imputation can be performed
to correct the problem. Otherwise, the input sequence must be marked as incomplete
before further analysis to avoid misinterpretation.

An AE is a type of neural network (NN) that tries to find an efficient encoding
to represent the particular input data. The encoder creates an intermediate repre-
sentation for the data, and the decoder reconstructs it. By training the network with
error-free sequences, it learns its intrinsic properties and can process any further data
efficiently and with minimal errors. When abnormal input sequences with different
statistical properties are presented, the AE generates the most likely fault-free output
sequence.

17.2.2 Autoencoder Architecture for Anomaly Detection

The long short-term memory (LSTM) units chosen as the basis for our AE are
distinctive for capturing long-term dependencies between data points. A comparison
between AEs with fully linked and 1D convolutional layers was conducted, where
the LSTM-AE provided the highest accuracy in detecting missing samples in a
given sequence. The encoder consists of only a single layer with 100 LSTM units
and utilises the hidden states of the LSTM units for transforming its input to the
latent representation. The decoder is comprised of one LSTM layer with the same
number of units and an additional dense layer which forces the output y to have the
same length as the input. In this case, the data is encoded but not compressed, as
is normally the case with a AE. However, this architecture results in a significant
reduction in the dimensionality of the latent space compared to the input.

However, this architecture results in a significant reduction in the dimensionality
of the latent space compared to the input, removing redundancy from the input data,
extracting specific features from the sequences, and increasing generalization with
respect to the underlying patterns.

For the system to take advantage of the properties of the underlying transmission,
it must process multiple frames simultaneously, forming what is called a "frame
sequence". A good balance was found in using 5 frames, which provides enough
information and dependencies between successive frames while keeping the com-
putational effort low.

The mean squared error (MSE) between the input sequence x and the output
sequence y constitutes the reconstruction error and was chosen as the loss function.
Stochastic gradient descent, backpropagation algorithm, and Adam optimizer were
used in training.
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17.2.3 Dataset and Performance Evaluation

A wireless testbed was used to collect a representative dataset for training and testing.
The testbed mimicked a typical industrial plant network consisting of multiple STAs
connected to a central AP. A monitoring node captured wireless communications
between all nodes. To obtain datasets with a large diversity, all hardware and software
components were selected according to their adaptability. The final dataset contained
14.4 million frames in 20 different testbed configurations, randomly divided into 80%
training data and 20% test data. To improve the test data, real data from the production
line of an automotive factory was added as a validation dataset to provide a larger
variance of traffic and loss patterns.

(a) Good capture conditions. (b) Insufficient capture conditions.

Fig. 17.4: Reconstruction error per frame.

Since the problem is represented as an unsupervised learning task, feature selec-
tion was performed as a combination of expert knowledge from years of wireless
network protocol analysis and experimentation with different configurations. Fig-
ure 17.4 shows the performance of the LSTM-AE using a validation dataset from
the testbed. The majority of frames are decoded accurately under good capture
conditions, but some show higher reconstruction losses due to previously unseen en-
vironments for the AE. A visual comparison of Figure 17.4a and Figure 17.4b shows
a clear difference between good and insufficient capture conditions. As depicted in
Figure 17.4b, the average frame error exhibits a significant increase under insufficient
reception conditions in contrast to good conditions, as illustrated in Figure 17.4a.

A conclusive measure is obtained by examining the error distribution of the re-
construction errors shown in Figure 17.5. Figure 17.5a and Figure 17.5b illustrate
the reconstruction error distribution for good and insufficient capture conditions, re-
spectively. The dispersion index (DI), which represents the spread of the distribution,
is almost four times higher for inadequate capture conditions. A high DI indicates
an unreliable analysis by the monitor. Additionally, the model was validated on real-
world data from an automotive factory, representing a different wireless environment
than the dataset generated in the lab. Interestingly, even with unseen data, the DI
remains much lower for good (Figure 17.5c) compared to poor (Figure 17.5d) ac-
quisition conditions. Using a Wi-Fi dataset as an example, it could be shown that
the informational quality of the traffic captured by a monitor node can be evaluated
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(a) Good capture conditions. (b) Insufficient capture conditions.

(c) Good capture conditions. (d) Insufficient capture conditions.

Fig. 17.5: Reconstruction error per frame on testbed data (a), (b), and data from
previously unseen environments (c), (d).

using an unsupervised approach for anomaly detection. The described method is
a significant improvement to the existing wireless network analysis systems on the
market, as it increases the quality of the analysis results and allows non-experts to
assess the validity of these results without any ambiguity.

17.3 Automated and User-friendly Spectral Analysis

There are various reasons for transmission failures in wireless communication sys-
tems. While the analysis of packet capture (pcap) files is well suited for investigating
configuration and software problems, it cannot be used to draw direct conclusions
about the physical causes of failures. To get a deep insight into the physical layer, we
have to perform spectral analysis additionally. It enables the detection of individual
frames, even under conditions with occurring collisions and bad signal propagation.

Commercially available real-time spectrum analyzers can be used as measurement
instruments, but show strong limitations:



Title Suppressed Due to Excessive Length 329

• They do not enable an automated detection of collisions and signals with low
signal-to-noise ratio

• A detection and categorization of individual frames is not provided

To overcome these limitations by the development of a system for the gap-less and
permanent real-time monitoring of radio channels, we have leveraged the benefits of
spectral representation of signals as well as ML based image processing [18].

17.3.1 ML-based Spectrum Analysis

Spectrograms, usually presented as heat map images, visually represent the varying
usage of frequency spectrum over time. Using advanced image recognition tech-
niques, individual frames as well as collisions can be detected within a spectrogram.
We have designed an algorithm to detect individual frames, even in case of collisions,
as well as to detect collisions itself. Furthermore, frames showing low signal-to-noise
ratio (SNR) or facing partial overlapping by adjacent channels can also be detected.

YOLOv4 [4], a single-stage object detector algorithm, was selected for the image
processing, as it provides a high inference speed and sufficient accuracy. For our use
case, we have adapted the model’s hyper-parameters as well as the input resolution
and the dimensions of the bounding boxes.

One of the major challenge in the development of the spectral surveillance system
was the generation of high-quality data for training and testing our ML-model.

17.3.2 Generation of Training and Validation Data

To enable model training and testing on a variety of reproducible IEEE 802.11
frame sequences, a labeled dataset [19] was generated using a Rhode & Schwarz ®

SMBV100B vector signal generator [15] in combination with an Ettus Research ®

Universal Software Radio Peripheral (USRP) E320 software defined radio (SDR) [6].
Therefore, the following communication standards were used:

• IEEE 802.11 b/g,
• IEEE 802.11 n,
• IEEE 802.11 ac.

Additionally, we modified the following frame parameters:

• Payload length,
• modulation coding scheme (MCS),
• Data, beacon, trigger or sounding frames.

A signal processing tool-chain for the radio frequency (RF) signals received by
the USRP was developed, using Python [7] and GNU Radio [2]. The steps of the
synthesis of spectrograms from RF signals can be summarized as follows:
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1. Threshold-based frame insulation,
2. introducing randomized channel models (incl. multi-path component effects,

Doppler effect, attenuation per frame),
3. creating new random sequences of frames and collisions,
4. adding additive white Gaussian noise (AWGN) of varying magnitudes to emulate

different SNR conditions,
5. applying fast Fourier transformation (FFT) for spectrogram generation and saving

downsampled spectrograms (512 × 96 pixels) as image files, and
6. saving labels for frames and collisions.

Most of the parameters of the applied channel models, e.g., Doppler speed and
time delay, have been randomized within constraints. The minimum and maximum
number of randomly inserted frames, as well as the number of frame collisions,
were parameterized. We optimized the spectrogram sample length for YOLOv4
algorithm’s inference rate and set it to 4.5 ms. To handle fixed-length spectrogram
samples, a 500 𝜇𝑠 overlap was defined between successive segments to merge split
frame labels.

Our training dataset contained 10,000 spectrograms, split into 80% training data
and 20% validation data. The focus lay on 24 MHz and 40 MHz measurement band-
widths, corresponding to standard Wi-Fi channels.

17.3.3 Model Validation Using Artificial and Measurement Data

On the validation dataset, which is synthetically created to match the training data,
the model achieved an average precision of approximately 96% when detecting Wi-Fi
frames and around 60% average precision detecting collisions. The lower precision
in collision detection appears due to challenging edge cases with low overlap, low
SNR, and high signal power differences between frames. Performance metrics, such
as true positives and false positives, were obtained by setting confidence thresholds
for the classifier’s inference at 85% and 50%, respectively, for Wi-Fi frame detection
and collisions. The average precision is reported with a 50% confidence threshold
to allow comparison with other work from the area of object recognition.

The model was further evaluated using real measurements. A relevant dataset was
generated, considering the statistical distribution of frame parameters in real-world
scenarios. A sequence of 4,000 collision-free IEEE 802.11ac frames was generated
using a signal generator. In addition to the spectral measurements, Wi-Fi frames
were captured in the pcap format using a commercial Wi-Fi module. During the
quantitative validation, the system could detect frames with an accuracy between
98% and 97.6% depending on the transmission power as illustrated in 17.6 (a),
detecting significantly more frames than the classical monitoring system. Problems
in detection only occurred with dense sequences of very short frames and collisions.
While the model properly detects the majority of frame collisions, as shown in
Figure 17.6 (b), it occasionally happens that only one of the frames involved in the
collision is recognized reliably.
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(a)

(b)

Fig. 17.6: Examples of successfully detected Wi-Fi frames and collisions in generated
sequences (y-axis: frequency in GHz, x-axis: relative time in 𝜇𝑠, color-scale: power
ratio in dB).

17.3.4 System Architecture

The RF-band surveillance system’s architecture for deployed inference is presented
in Figure 17.7 and consists of three main components that process received radio
signals in a pipeline and present the results to the user.



332 Ulf Wetzker et al.

Fig. 17.7: Overall system
architecture.

a) The USRP E320 SDR is responsible for signal
reception. It implements automatic gain control
(AGC) to optimize the dynamic range of the sig-
nal from the analog to digital converter (ADC).
The USRP’s digital signal processing capabili-
ties efficiently compute the spectrum using FFT.

b) The host computer aggregates the spectrum
data and converts them into spectrograms,
which are directly fed into the ML infer-
ence model. The PC also calculates meta-
information and statistics in parallel and fuses
them with pcap information. All analysis results
are stored in an elasticsearch database [5] and
presented to the user on a dashboard.

c) To reduce data volume, metadata extraction is
performed on the detected frames in the spectro-
gram. The metadata includes frame bandwidth,
transmission time, center frequency, received
signal strength, radio standard probability, and
frame collisions. This information is used for
communication standard-specific statistics on
channel occupancy, frame rates, and detected
interference.

The real-time acquisition of meta-information is essential for permanent analysis,
as storing raw spectral information for extended periods would strain the storage
system. To achieve high-performance inference of frame detection, the ML model
was implemented in C++ using OpenCV and benchmarked on a mobile edge node
with an Nvidia Turing graphics processing unit (GPU). This system can compute the
algorithm in real-time and could even be implemented with higher energy efficiency
in the future, using dedicated hardware.

17.4 Cross-layer Analysis

Although spectrum analysis provides intricate details about the physical layer, such
as the spectral shape, power distribution, etc., and can detect co-existence issues and
packet collisions, it has limitations in revealing information about higher protocol
layers, such as source or destination addresses, flags within protocol headers, and
payload content. So, even if interference or collisions are identified through spec-
trum analysis, the actual interferer remains unidentified. Therefore, in this section,
we present a technique to improve automated spectrum analysis by supplementing
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protocol analysis information to it for a better root cause analysis of QoS degradation
problems. This additional information enables quick identification and rectification
of disruptions by taking measures such as reallocation of resources to non-interfering
channels or triggering an alarm in case of abnormal or unusual traffic. Moreover, the
monitoring and troubleshooting of industrial wireless networks benefit by combining
information delivered from both protocol analysis and spectrum analysis.

Combining spectral and protocol domains, also known as synchronization, can
be viewed as a time-series analysis problem, as both sequences are chronologically
ordered. However, the task is complicated as there is no prior knowledge of the
uncertainties and inaccuracies present in the traces due to missing frames, collisions
and inaccurate temporal information. A possible solution is the use of dynamic time
warping (DTW) to synchronize the traces. However, the DTW approach, which com-
pares every frame of one sequence with every frame of the other sequence, incurs a
high computational cost with a complexity of 𝑂 (𝑛2). This is infeasible in practical
scenarios with millions of frames. To address this, global constraints were intro-
duced, with the Sakoe-Chiba [14] and Itakura Parallelogram [10] being two popular
DTW versions incorporating these constraints (shown in Figure 17.8). Nevertheless,
in our scenario, global constraints are inadequate due to the unpredictable nature
of the frame sequence, especially regarding frame rate and losses. We need local
constraints that can adapt to the varying parameters of the sequences.

(a) (b)

Fig. 17.8: Enforcing Global Constraints in DTW: (a) Sakoe-Chiba and (b) Itakura
from Vineeta Jain, licensed under CC BY 4.0. The spectral sequence is represented
on the horizontal axis, while the protocol sequence is represented on the vertical
axis. The optimal warp path, used to align the protocol sequence with the frames
of the spectral sequence, is determined solely using the frames highlighted in blue
(taken from [9], licensed under CC-BY 4.0).

17.4.1 Variable Adaptive Dynamic Time Warping: A Novel Approach

To address this, we propose a novel DTW-based approach called Variable Adaptive
DTW (VADTW) [11]. This approach consists of coarse- and fine-grained synchro-
nization levels. The coarse-grained level divides the spectral and protocol sequences
into adaptive time bins, while the fine-grained level calculates variable window lim-
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its for each frame. These limits are then used to compute the warp path using DTW.
Coarse-Grained Synchronization level seeks to divide sequences into smaller

subsequences based on their frame rate per unit of time (𝜃). Sequences are divided
into bins of 𝜃, with the number of frames within these bins counted. Afterwards,
both sequences are cross-correlated based on frame rate to determine the displace-
ment of one sequence relative to the other. This step aims to eliminate any sequence
lag, optimizing the synchronization process. After lag removal, offline change point
analysis is applied to the time bins to detect significant changes in the frame rate. A
union of the change points from both sequences forms a single list of change points,
from which adaptive time bins are determined. These adaptive bins, which adjust to
the frame rate variation of the sequences and vary in time length, merge bins with a
continuous similar frame rate and separate bins with significant variations.

The goal at fine-grained synchronization level is to find an optimal match be-
tween individual frames of both sequences. One approach is to apply DTW to all
adaptive time bins independently and then merge the results to obtain an optimal
warp path, a method we call Adaptive DTW (ADTW). However, this approach may
suffer from false positives and negatives because it does not consider the start and
end points of a bin. An example can be seen in Figure 17.9(a) where the spectral
sequence is represented on the horizontal axis, while the protocol sequence is repre-
sented on the vertical axis, and two large boxes represent the adaptive bins, while the
green-colored boxes indicate the optimal warp path computed using ADTW. Due
to the constraint of calculating warp path by exclusively using the frames within the
time bins, the points marked in red are excluded from the warp path. Unfortunately,
this exclusion can lead to a loss in precision and recall. To address this, VADTW
introduces variable window lengths. Each frame in the first sequence is assigned a
window limit based on the time length of its adaptive bin, and then it is matched with
all frames in the second sequence that fall within this window limit. This approach
allows matching to extend beyond the adaptive bin, overcoming the problem of ig-
noring the bin edges. An example of varying window constraints for synchronization
is shown in Figure 17.9(b).

17.4.2 Experimental Results and Discussion

We conducted a comparative analysis between VADTW, ADTW, and DTW to prove
that our proposed algorithms perform better than DTW when used for aligning se-
quences. For this purpose, we generated a synthetic dataset of 20, 000 IEEE 802.11n
frames using a Rhode & Schwarz ® RSMBV100B vector signal generator. To demon-
strate the capability of various algorithms to synchronize traces with missing frames,
we artificially dropped frames using the Three-state Markov Chain model proposed
in [12].

Table 17.1 displays the accuracy obtained for the synthetic dataset under var-
ious packet loss scenarios. In this table, “SS" denotes single-source packet drop,
while “AS" represents all-source packet drop, involving the dropping of packets
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(a)

(b)

Fig. 17.9: A scenario depicting the problem arising due to not considering edge
cases in (a) ADTW and how the issue is resolved by (b) VADTW from Vineeta Jain,
licensed under CC BY 4.0

from both the spectral and protocol domains. From the results, it could be observed
that VADTW achieves accurate alignment for more than 50% of pairs, even when
subjected to a 50% random packet drop from both sources, which is noteworthy.
Moreover, VADTW consistently outperforms both ADTW and DTW in all frame
drop scenarios. DTW compares every frame of one sequence with every other frame
of the other sequence to find a warp path. This leads to frames getting synchronized
which are far apart in time, which is not possible in real-world, hence leading to false
positives. In case of ADTW, the comparisons occur within adaptive time bins as ex-
plained in Fig 17.9(a). In other words, the protocol frame is exclusively compared to
spectral frames falling within the range of the adaptive time bin to which the protocol
frame belongs. This leads to false positives and false negatives. For VADTW, each
protocol frame is associated with a variable window determined by its timestamp and
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Table 17.1: Accuracy obtained by different algorithms for the synthetic dataset under
various packet loss scenarios.

Packet
drop (in %)

DTW ADTW VADTW
SS AS SS AS SS AS

5 99.08 95.70 98.33 94.69 99.08 95.79

15 96.81 85.44 96.30 78.60 96.85 85.44

30 90.35 67.38 89.79 63.91 90.34 69.72

50 84.00 54.21 84.00 56.63 83.70 60.57

the length of the adaptive time bin to which it belongs (as depicted in Figure 17.9(b)).
This removes the possibility of synchronizing frames which are very far in time and
also, resolves the edge case issue of ADTW, leading to better accuracy than these
algorithms. Further, with respect to execution time analysis, where DTW took 23.8
minutes to synchronize the dataset, VADTW achieved the same result in just 14.6
seconds. This marked improvement in execution time is of considerable significance
given that spectral and protocol sequences can contain millions of frames.

17.4.3 Implications for Research and Beyond

The impact of this work extends beyond wireless networks. The two variants of DTW
presented here - ADTW and VADTW differ mainly in their choice of local window
constraints for synchronization. In ADTW, the window boundaries remain the same
for all frames in a subsequence with similar sample properties, whereas in VADTW,
window boundaries vary for each frame. These methods could be extremely useful for
the research community in analyzing time-series with a large number of observations
and many sudden change points. These methods could be particularly beneficial in
cases where local window constraints are more accurate instead of global ones, such
as predicting road traffic patterns. The proposed approaches can also be useful for
problems that require online change point analysis, such as for automatic spectrum
analysis in industries, as they are computationally less expensive and fast compared
to DTW.

17.5 Conclusion and Outlook

In summary, the ubiquity of wireless communication systems in various areas of
daily life and industry has made them an essential part of many people’s digital
lives. However, the exponential growth in the number of subscribers and devices
poses a major challenge to the flawless operation of these systems. To meet the
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increasing demands on communication systems, there has been a rapid development
of improved and new wireless standards competing for the limited frequency bands
available. While these technical advances have brought significant benefits in terms
of wireless network performance and robustness, the increasing number of competing
subscribers has also led to an increase in network failures.

One approach to ensuring fault-free network operation is the use of monitoring
systems. Continuous or immediate monitoring of the status of a wireless link, as
well as analysis of faults and their causes, enables the early initiation of preventive
measures or immediate countermeasures in the event of faults. In this section, the
main techniques of network monitoring were presented and open questions for further
improvement of these methods were addressed.

Given the ever-increasing diversity of network protocols and radio standards,
conventional approaches for developing the necessary troubleshooting tools have
significant disadvantages. The financial effort for expansion, adaptation and main-
tenance is significantly higher than using data-oriented approaches from the fields
of ML and AI. Once a suitable ML/AI system has been developed, an appropriate
dataset is needed for training to the respective standard. Obtaining these datasets can
be done in different ways, as described in the three examples, and is often supported
by data augmentation techniques.

In addition to the benefits mentioned above, AI-based systems offer a number of
other advantages in the context of wireless communication systems. These include:

• Real-time adaptability: AI systems can adapt and learn from changing network
conditions in real-time, enabling dynamic optimization and fault prediction.

• Anomaly detection: AI can efficiently detect unusual patterns and behaviors on the
network, helping to identify potential security breaches or unauthorized access.

• Scalability: ML/AI-based solutions can scale efficiently to handle the huge
amounts of data generated by the growing number of devices and subscribers
in wireless networks.

Overall, the techniques we have developed to improve protocol analysis and
spectral analysis have shown promising results, confirming the benefits of AI methods
for fault analysis in wireless communication systems. Furthermore, we were able to
link both domains together to develop a powerful and user-friendly comprehensive
method for troubleshooting. The use of AI-driven solutions will be crucial in the
future to ensure the smooth and reliable functioning of wireless communication
systems.
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Chapter 18
XXL-CT Dataset Segmentation

Roland Gruber1, Steffen Rüger1, Moritz Ottenweller1, Norman Uhlmann1, Stefan
Gerth1

Abstract The objective of XXL-CT dataset segmentation is to use machine learn-
ing to virtually divide 3D volumes of complete vehicles, acquired through XXL
computer tomography, into their individual components. Gathering labeled train-
ing data for this type of data is challenging. Previously, entity classification from
XXL-CT data required significant manual effort involving over 120 employees for
several months. This chapter shows how to develop entity segmentation procedures
which significantly reduce the time from measurement to virtual analysis. The most
time-consuming part of the data processing chain is currently the segmentation of in-
dividual assemblies, especially when dealing with overlapping metal sheets. We aim
to demonstrate the transferability of trained networks to different XXL-CT vehicle
data, taking into account the large shape variations of different metal sheets and their
contact, weld or rivet points. Challenges include low data quality which is affected
by acquisition and reconstruction artifacts, a dataset size of up to 1.7 terabytes, and
the large number of individual instances to be segmented and their interrelationships
which must be taken into account. This contribution considers three major aspects:
The segmentation of CT datasets by means of neural networks, the development of
solutions for the annotation of XXL-CT data, and the transferability of the trained
network.
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18.1 Introduction

Machine learning in 3D XXL Computed Tomography (CT) datasets encounters
various challenges. The unavailability of annotated datasets makes training accurate
and robust models difficult. Preprocessing 3D data to handle noise, missing data,
and outliers is a complex task. Furthermore, the large file size of the 3D datasets
requires specially adapted algorithms which can efficiently scale with the demanding
compute loads and memory requirements of 3D XXL-CT datasets. Generalizing
trained models to new 3D data or different domains becomes challenging due to the
variability and diversity in 3D shapes and structures.

Publicly accessible XXL-CT datasets for machine learning are scarce due to
the considerable expenses involved in data acquisition and segmentation. The con-
struction and maintenance of XXL-CT measurement systems require substantial
financial investment and specialized expertise. Additionally, the manual nature of
the data segmentation process adds to the overall cost. Error checking and proof-
reading are essential steps that further contribute to the financial burden associated
with creating such datasets.

One of the major challenges for the segmentation of large volumes of 3D X-ray
CT data is the lack of availability of annotated training data. For 2D image data
there is a wide variety of different data collections available and also specialized
pretrained networks [10, 14]. However for non-destructive testing (NDT), neither for
X-ray radiography data nor for 3D CT data collections of annotated data is available.
Further, there are only a few algorithms available for segmenting volumetric 3D
datasets. The majority of these algorithms rely on slice by slice annotation referring to
2D trained segmentation networks. This approach loses the advantages of leveraging
the interconnectivity of distinct objects in a 3D dataset.

When analyzing unique datasets such as the scan of the Me 163 airplane or the
Honda vehicles (described later), the challenge of segmenting a large, interconnected
3D volume remains. In addition to the absence of pretrained networks, another hurdle
is the lack of labeled data. This is primarily due to the unique nature of the scanned
object, making it difficult to find existing annotations for training purposes.

In this work, we discuss the acquisition process of two comprehensive XXL-CT
datasets, which comprise high-resolution scans of a historical Me 163 aircraft and a
Honda Accord vehicle, procured at the Fraunhofer IIS facility.

We explore the complexities of our annotation strategies, encompassing both 3D
instance and semantic labelling pipelines. Our instance labelling protocol details
our manual annotation effort, enhanced by algorithmic support and refined through
post-processing, with the goal of achieving high quality instance segmentations.
In parallel, our semantic labelling approach adopts a hybrid model, integrating
human annotator insights with automated machine learning systems to efficiently
and consistently apply semantic labels to the CT data.

We further present the segmentation algorithms and their corresponding results,
addressing the challenges associated with segmenting expansive volumetric datasets.
Utilizing Flood Filling Networks and an adapted 3D U-Net framework, we present
promising initial findings in the segmentation and localization of specific compo-
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nents within these intricate datasets. The paper concludes with a perspective on the
future applications of these segmentation methodologies, particularly their capac-
ity to refine manual annotation efforts and deepen the understanding of component
relationships in the realm of non-destructive testing.

18.2 XXL-CT Dataset Acquisition

The XXL-CT facility of the Fraunhofer IIS in Fürth allows for the acquisition of
volume datasets from large specimens [23]. This facility features a linear accelerator
with energies up to 9 MeV, a line detector 4 m in length and allows an object size of
up to 4 m in diameter. Using this state-of-the-art facility, we conducted scans on two
distinct datasets.

18.2.0.1 Me 163 Airplane

For a first dataset, an Me 163 Second World War fighter airplane from the historic
aircraft exhibition of the ’Deutsches Museum’ in Munich, Germany was scanned
in four consecutive CT scans, two for the fuselage (see Figure 18.1a) and two
for the disassembled wings (see Figure 18.1b). The four radiologic datasets were
subsequently reconstructed independently into volume datasets and then manually
merged. The reconstructed volume datasets for the two fuselage scans (see Figure
18.2) span a spatial dimension of 6144 × 9600 × 5288 16-bit voxels, which is
approximately 609 GB for the front part and 6144× 9600× 5186 voxels (or 567 GB)
for the rear part of the hull.

To acquire the X-ray projections, a linear accelerator with an acceleration voltage
of 9 MeV and a line detector with a width of 𝑤 = 4 m and a pixel spacing of 400 µm
has been used. The distance between the X-ray source and the detector was set to
𝑑S-D = 12 m, and the source-to-object distance was about 𝑑S-O = 10 m. This resulted
in a horizontal resolution of 9984 pixels. The X-ray projections has been acquired
using a vertical stepping motor with a spatial resolution of 9984 × 5286 pixels. The
magnification of 1.2 led to a horizontal voxel resolution of 330 × 330 µm2 and a
vertical sampling of 600 µm within the reconstructed volume.

The scanning process took approximately 17 days to complete.

18.2.0.2 Honda Accord Vehicle

The second dataset, a Honda Accord was measured in two consecutive XXL-CT
scans (see Figure 18.3). One scan was taken of the front and one of the rear of
the vehicle. Each scan was reconstructed independently into a volume dataset and
then manually merged. The front had a spatial dimension of 4864 × 4864 × 2000
16-bit voxels, which is roughly 95 GB, while the rear part had a spatial dimension of
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(a) (b)

Fig. 18.1: Fuselage (Figure 18.1a) and wings (Figure 18.1b) of the Me 163 airplane
inside the mounting brackets for the CT scan.

Fig. 18.2: Rendering of the CT scans of the front and back section of the Me 163
fuselage.
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4864 × 4864 × 2920 16-bit voxels (or approx. 138 GB). The X-ray projections were
obtained using a linear accelerator with an acceleration voltage of 7.5 MeV and the
same line detector used for the airplane scan. The distance between the X-ray source
and the detector was set to 𝑑S-D = 11.758 m, and the source-to-object distance was
about 𝑑S-O = 9.913 m, resulting in a horizontal resolution of 4870 pixels.

Fig. 18.3: Visualization of the front and rear XXL-CT scan of the Honda Accord.

18.3 Annotation Pipelines

Data annotation is a crucial step in the development and verification of machine
learning applications. Accomplishing the segmentation task in the XXL-CT use
case necessitates the availability of reliably and accurately annotated label data. For
the two use cases discussed in this context, alternative annotation pipelines have been
used. The first use case involves instance segmentation of materials along boundaries
within a volume, while the second use case involves semantic segmentation or
localization of familiar objects within a volume.

Semantic segmentation [3, 11, 15, 16, 20] entails assigning each voxel in the CT
data to a specific label of interest (such as ‘car tires’). Instance segmentation aims
to label each individual entity in an image or volume with a unique identifier (often
without knowledge of the entity’s class). For example, each voxel of a ‘screw’ is
assigned a unique ID, and each voxel of the neighbouring metal sheet is assigned
another unique ID regardless of their class. Semantic instance segmentation [1, 13,
12], combines these two tasks by assigning a unique ID to each voxel of an entity
and then assigning each entity a class such as ‘tire’ or ‘wire’.

In the following we introduce two pipelines. First, the 3D instance labelling
pipeline to tackle the instance segmentation task. Second, to address the semantic
segmentation task the 3D semantic labelling pipeline.
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18.3.1 3D Instance Labelling Pipeline

The purpose of instance segmentation is to assign the same ID to all voxels of an
entity. Figure 18.4a shows a layer of the Me 163 reconstruction which serves as
typical input for this use case. Figure 18.4b shows a possible corresponding partially
manually created segmentation, using graphics tablets in conjunction with a gray
value range bandpass algorithm and flood filling techniques to achieve the shown
annotation. However, this annotation still exhibits some unpleasant properties and
would not be desirable for the output of an instance segmentation. For instance,
due to the sometimes low contrast between different metal sheets and rivets, a clear
transition of the individual segments is not feasible. The initial segmentation depicted
in Figure 18.4b contains numerous gaps and uneven edges. These are mainly due to
the use of gray values to determine the segment boundaries and the elevated noise
level of the volume dataset used. To achieve the desired annotation quality we utilized
a post-processing step on the initial annotation. A layer of which is visible in Figure
18.4c, which contains a more uniform and desirable segmentation of entity edges.

(a) (b) (c)

Fig. 18.4: Reconstructed slice of the Me 163 airplane Fuselage (Figure 18.4a) next to
the result of the preliminary manual annotation (Figure 18.4b) and the post-processed
annotation (Figure 18.4c) with closed defects and smoother contours.

To achieve this desired quality, we utilized a morphological closing filter [4] to
post-process the manually annotated results. The aim was to close gaps between the
quality of the manual annotation and the desired quality of the automatic segmen-
tation, resulting in a semantically valid annotation with coherent boundaries and
mostly uninterrupted contours, closely resembling the output of a potential human
annotator. Specifically, a 3 × 3 × 3 structure element was used to perform the mor-
phological closing. The post-processing primarily resulted in sparse surface voxel
alterations, but it also affected the surfaces of ’noisy’ metal sheets, which are prone
to more pronounced changes due to their ’noisy’ nature as can be seen inside the
pale green metal sheet in the lower right corner of the subfigures in Figure 18.4.

Finally, a connected component analysis with a chessboard metric [4] was per-
formed to find separated segments. Small segments with less than 100 voxels were
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discarded to avoid over-segmentation. The threshold of 100 voxels was chosen using
a heuristic approach.

Manual data annotation is often considered the most reliable method for accurately
annotating complex image data (see Section 8.2.1). However, it requires substantial
resources, including experienced personnel and time dedicated to annotation, even
when specialized pipelines are used [19, 2]. Crowdsourcing approaches have been
proposed to lower costs, but these methods also require specialized data management,
annotation tools, and annotator skills.

In order to achieve a balance between expert and crowdsourcing approaches,
we adopted a methodology where each sub-volume was initially annotated by one
annotator and then reviewed and corrected by a second experienced annotator. This
approach emulated partial perspectives, taking into account the possibility of unique
biases, interpretations, or limitations in the annotations. By involving multiple an-
notators, we aimed to capture a broader range of insights and mitigate the potential
impact of individual annotator biases. This approach allowed us to consider different
viewpoints and create a more comprehensive annotation that integrated the expertise
and insights of multiple annotators. It is worth noting that the limited number of
annotators involved was primarily due to cost constraints, thus avoiding the need for
crowdsourcing.

The annotation process for the first two 5123 sub-volumes took about 350 working
hours each, while subsequent sub-volumes took between 10% to 50% of that time,
depending on the complexity of the sub-volume.

The annotation guidelines provided to all annotators stipulated that the annotation
should be based on the ’human interpreted reality’ of the data, not the ’perceived
visual representation.’ An annotator should segment the ’probable’ segment that
they would like an automated annotation to generate, rather than focusing on the
low-contrast voxels that they observe. This approach aimed to increase annotation
uniformity and develop methods to separate all components meaningfully. After
partial manual annotation, the individual segments required post-processing to close
gaps between manual annotation quality and desired segmentation quality. As men-
tioned a morphological closing filter followed by an a connected component analysis
was used for this purpose, resulting in simple surface voxel alterations and changes to
the interior of ’noisy’ metal sheets. The goal was to achieve semantically reasonable
and visually pleasing segmentation results.

The dataset as well as a more complete description of the segmentation process
and its challenges is described in [7, 6]

18.3.2 3D Semantic Labelling Pipeline

Semantic labels for a segmentation task refer to the assignment of regions or entities
of interest in image data to certain class labels [24]. The semantic labels can be
used by machine learning algorithms to identify and distinguish between them.
For example, in the introduced XXL-CT dataset of the Honda Accord (see Section
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18.2.0.2) semantic labels can belong to small entities of the car like different screws,
springs, sheets, etc. but also to components and assemblies like gears, tires, brake
discs, and so on.

The main goal of the 3D semantic labelling pipeline is to generate labeled datasets
for optimization and evaluation of machine learning models which are trained to iden-
tify certain objects of interest. A 3-step hybrid approach for annotation is proposed:

1. Identification of voxels (𝑥𝑦𝑧 coordinates) of the object of interest in the XXL-CT
data by a human annotator.

2. Those coordinates are fed into a weaker automated model for computation of a
3D binary mask.

3. Approval or further processing of the mask to the final semantic label.

Hybrid annotation approaches have two main advantages: efficiency and repro-
ducibility.

After selecting relevant voxels the second step automates the annotation processes
significantly by reduction of the time and costs that a human annotator would require
for manually labelling each voxel by hand. Furthermore, improved accuracy and
consistency of annotations are expected, as automated systems are not prone to
human errors or bias. This allows reproducing the scheme for further semantic class
labels of more objects that ultimately leads to more reliable annotations results.

For applying the proposed pipeline the introduced XXL-CT volume data of
the Honda Accord of 95 GB are partitioned into front and rear. In the following,
the front data will be referred to as XXL-CT data for semantic segmentation and
contains areas from the bumper over the engine block to the B pillar (center of the
vehicle). To account for the limitations of computer hardware resources and the faster
processing time of human annotators, the front-facing CT data was divided into two
sub-volumes, denoted as 𝑆1 and 𝑆2, which correspond to the right and left sides of
the vehicle. Figure 18.5 shows both sub-volumes.

(a) (b)

Fig. 18.5: Sub-volume 𝑆1 (Figure 18.5a) and 𝑆2 (Figure 18.5b) of the Honda front.

Within these datasets objects of interest were identified by a human annota-
tor and processed with the proposed annotation pipeline. The final annotations of
the objects of interest are presented in Table 18.1. Eight different object classes
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were distinguished in the annotated voxel dataset, which contained approximately
161.2 million voxels in total.

Object of Interest Size Origin Volume

Alternator 153 × 130 × 106 𝑆2

Brake Disc 70 × 285 × 234 𝑆1

Brake Disc 85 × 285 × 215 𝑆2

Crank Shaft 76 × 215 × 133 𝑆2

Flywheel 25 × 311 × 252 𝑆1

Frame Parts 543 × 131 × 497 𝑆1

Frame Parts 623 × 131 × 497 𝑆2

Gear 33 × 198 × 166 𝑆1

Spark Plug 216 × 70 × 52 𝑆2

Suspension Spring 155 × 249 × 104 𝑆1

Suspension Spring 396 × 472 × 339 𝑆2

Table 18.1: Annotation results of objects of interest in the XXL-CT dataset of the
Honda Accord front.

18.4 Training Infrastructure and Segmentation Results

18.4.1 Instance Segmentation

Segmenting large volumetric datasets via instance segmentation can be challenging
since it is often impractical or not feasible to fit the entire volume into the limited
GPU RAM. To circumvent this obstacle, one approach is to downsample the dataset,
while another is to work with sub-volumes or Fields of Views (FoV) of the whole
dataset and then afterwards to combine the inference results of all sub-volumes.
Downsampling, however, can lead to a significant loss of information which for
example results in reduced contrast between previously distinguishable structures
or the appearance of artifacts such as holes in thin structures. Where FoV-based
approaches, due to the requirement of overlapping sub-volumes, often necessitate
more computational resources and pose additional challenges when recombining the
individually processed sub-volumes.

In our case, we opted for an FoV-based approach inspired by Flood Filling
Networks (FFN) [9, 8]. This approach allows us to work with smaller sub-volumes,
which than can be processed by the GPU within the available memory limits, while
preserving the integrity of the original data without significant loss or the introduction
of additional artifacts.
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Flood Filling Networks belong to the family of supervised Convolutional Neural
Networks (CNN) and are used for instance segmentation. The main component of
FFN is a flood-filling algorithm which instructs the CNN to predict the likelihood of
each voxel in the current FoV belonging to the segment occupying the center of the
FoV. The FoV is usually a relatively small dimension, such as 48×48×48 voxels in
our case. The predictions are stored in an accumulator volume which is identical in
size to the input volume currently being processed. Initially, the accumulator is empty
and then is successively filled by individual FoV prediction updates. If the predicted
edge of the current segment extends beyond the current FoV, the corresponding
neighboring FoV is added to a processing queue. For the next iteration the flood
filling algorithm selects the next FoV from the queue and extracts the corresponding
FoVs of the input volume and the values of the corresponding accumulator volume.
These serve as input channels for the CNN. The CNN predicts an updated state of the
accumulator FoV, which is then integrated into the whole accumulator volume. The
iteration of a segment stops if the last FoV in its queue is consumed. Then another
starting seed point can be selected to segment the next non-overlapping segment.
The seed points can be chosen via multiple methods for example by user interaction
or by a classical image processing algorithm proposed in conjunction with FFN. It
is often possible to significantly speed up the computation by processing multiple
FoVs in parallel.

The CNN attempts to detect segment edges and boundaries based on the grayscale
values of a given sub-volume in the input dataset and the corresponding FoV of the
current state of the accumulator volume. Since the FFN algorithm is entity-agnostic
and does not have knowledge of any entity’s class, including the one currently being
segmented, it is feasible to train the CNN on one type of specimen and use it to infer
on a different type of specimen [5].

The preliminary results of the inference run on a sub-volume of the Me 163
dataset, using a CNN trained on the same dataset, are shown in Figure 18.6. At
the current stage of development of the FFN-based segmentation algorithm, the
quality of the segmentation results is mixed. Although some segments have been
adequately segmented, multiple segments have either been under-segmented or over-
segmented. For example, the large central metal sheet in example Me 1632 has been
over-segmented into multiple segments. However, this type of error is acceptable
since combining multiple correctly segmented segments into groups is a simple
and time-efficient task for a human annotator during post-processing. Conversely,
combining multiple segments into one segment, or under-segmenting, is challenging
to correct.

Figure 18.7 shows the preliminary result of performing an inference on an subset
of the ’car’ dataset 18.2.0.2 with the same CNN exclusively trained on the ’airplane’
dataset 18.2.0.1. While the segmentation results could be improved, it is worth
noting that the proposed segmentation adequately represents most of the input data
sub-volume. However, in some cases, several entities lack appropriate representation
in the output segmentation, resulting in suboptimal segmentation results. Despite
this, the early transition from a model trained solely on the Me 163 dataset to an
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(a) input Me 1631 (b) segmentation Me 1631 (c) reference Me 1631

(d) input Me 1632 (e) segmentation Me 1632 (f) reference Me 1632

Fig. 18.6: Preliminary results of an FFN based instance segmentation trained and
run on the Me 163 dataset.

inference run on the Honda dataset shows promise, with multiple thin metal sheets
being adequately segmented.

18.4.2 Semantic Segmentation

A further approach is to directly assemble segments from input data. Therefore,
an end-to-end machine learning infrastructure is introduced in the following. By
using this infrastructure, the entire processing of XXL-CT data from preprocessing
through feature extraction towards segment prediction is implemented and makes it
possible to benefit from its holistic approach. This allows that relevant parameters
e.g. for preprocessing for precise segmentation results can be learned directly from
the input.

To realise the segmentation task for specific components in the XXL-CT data,
an adapted U-Net [16] architecture has been applied. The U-Net was originally
developed for semantic segmentation in the biomedical field and is characterized by
its U-shape network topology (see Figure 18.8). The U-Net can be divided into two
sub-architectures. The first is the contracting path on the left, which is also known
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(a) input Honda1 (b) input Honda2 (c) input Honda3

(d) segmentation Honda1 (e) segmentation Honda2 (f) segmentation Honda3

Fig. 18.7: Preliminary results of an FFN based instance segmentation trained exclu-
sively on the Me 163 dataset but applied on the Honda dataset.

as the encoder. This part offers the classification information. The contracting part
is followed by the expansive part, which works as a decoder and completes the U-
shape. The expansion part allows to learn localized classification information and in
addition, increases the output resolution. The final convolutional layer then computes
a fully segmented image. The skip connections between the corresponding stages
of the contracting and the expansive part allow to propagate features of different
granularities. Here, the networks task is to decide for each voxel in an XXL-volume
whether it belongs to the target class.

To apply the classical U-Net on the XXL-volumes, the dimensions of all the
operations marked by the arrows in Figure 18.8 as well as the feature maps have to
be increased to fit the 3D data. The U-Net itself was designed to learn as many features
as possible from a non-abundant amount of data. This strength of the architecture is
used and its form reformulated to the 3D usecase that leads to three stages of up- and
downsampling. The architecture, which finally has been applied, is shown in Figure
18.9.

The contracting path follows the typical structure of a convolutional network,
which consists of repeated 3×3×3 convolutions, each followed by a Rectified Linear
Unit (ReLU) [25] and a 2 × 2 × 2 max-pooling [18] with stride 2 for downsampling.
With each downsampling, the count of feature channels doubles. Conversely, in the
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Fig. 18.8: Representation of the initial architecture of the U-Net. The green boxes
correspond to the feature maps, where the numbers above gives the count of channels.
The number at the bottom left describes the dimension of a feature map. The white
boxes contain a copy of the dashed areas of the feature maps to the left of the arrows
[21].

upsampling of the expansion path, the count of feature channels is halved again.
In addition, at the beginning of each upsampling step, a concatenation with the
corresponding feature map from the contracting path is applied.

To train the network Binary Cross-Entropy (BCE) [22] is used as the loss function
(Equation 18.1), which is a combination of BCE and the sigmoid-function 𝜎(𝑥) =

1
1+𝑒−𝑥 . The number of samples is represented by 𝑛, 𝑦𝑖 denotes the label of the ground
truth and 𝑦̂𝑖 stands for the predicted label.

𝐿 ( 𝑦̂, 𝑦) = −1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝜎( 𝑦̂𝑖)) + (1 − 𝑦𝑖) · 𝑙𝑜𝑔(1 − 𝜎( 𝑦̂𝑖)) (18.1)

The following sections outline a concrete example of semantic segmentation of
suspension springs inside the XXL-CT data. Basis of this is the above-described
infrastructure. For evaluation of the semantic segmentation results, a suitable metric
and evaluation scheme has to be selected. In addition to the introduced annotation
results from Section 18.3.2 the 3D semantic labelling pipeline was applied to segment
multiple suspension springs inside a XXL-CT volume dataset of a damaged Honda
from a crash test. Consequential the results are two independent XXL-CT datasets
here and as follows references as Hondacrashed and Hondauncrashed with annotated



352 Roland Gruber et al.

Input 
image
tile

Segmentation 
mask output

1   32   32

64      64

128      128 384           128

192      64

96    32   32     2

256  

12
8³

12
8³

12
8³

64
³

64
³

64
³

32
³

32
³

32
³

16
³

16
³

16
³

32
³

32
³

32
³

64
³

64
³

64
³

12
8³

12
8³

12
8³

12
8³

Copy and crop
Conv 3x3x3, ReLU
Conv 1x1x1
Max pooling 2x2x2
Up-conv 2x2x2

Fig. 18.9: Modified architecture of the applied U-Net. All the operations and feature
maps have been extended to three dimensions. Compared to the original Figure 18.8,
input and output do not differ in their dimensionality here.

suspension springs as a class label. Whereby the Hondauncrashed is used for training
and validation, the Hondacrashed is excluded and unseen during model optimization
as test set.

The measurement of overlapping semantic segmentation predictions of the model
and the annotated object regions of interest (ground truth) in 3D volume data was
considered as a criterion for evaluation. In the following, a correct predicted voxel of
a class label of interest is denoted as true positive (tp), where wrong predicted voxels
of a class label of interest is denoted as false positive (fp). Further, a voxel of a class
label of interest that is missed from the model prediction is denoted as false negative
(fn). For measuring the model performance three scores were selected: precision
(18.2), recall (18.3) and Dice score (18.4) [17].

Where precision gives indication of the model capability to predict correct vox-
els over the total amount of predicted voxels, recall measures the portion of correct
predicted voxels to the total amount of voxels in the ground truth. The Dice score pro-
vides a balanced measure of model performance, taking into account both precision
and recall.

precision =
tp

tp + fp
(18.2)

recall =
tp

tp + fn
(18.3)
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Dice =
2tp

2tp + fn + fp
(18.4)

To teach the model to recognize springs, the suspension spring-sub-volumes were
extracted from the large volumes 𝑆1 and 𝑆2 according to Table 18.1 plus an extended
region around the objects of interest to allow to split the volumes in cubic batches.
One batch is set to the size of 1283 voxels. The best results so far were achieved with
a training of 50 epochs. To handle the 1283 voxels size of the batches, one batch per
epoch has been the maximum. A value of 66.1% was achieved for precision and
72.3% for recall. For the Dice score the result is 69.1%.

In order to illustrate how such a model looks in application, consider Figure 18.10.
Each row shows a different perspective of a spring from the test set Hondacrashed.
The left column of sub-figures always shows the input data, the second column the
segmentation result and the rightcolumn the reference (ground truth). However, there
are still some areas where voxels are incorrectly classified as spring. Considering the
amount of data which was used for trained, the U-Net was still able to visibly segment
an object correctly. The described training infrastructure for semantic segmentation
can be applied to other components in 3D X-ray data if they are annotated according
to the 3D Semantic Labelling Pipeline from Section 18.3.2.

18.5 Conclusion and Outlook

We developed two approaches for segmenting unique datasets and localizing spe-
cific components: Instance Segmentation using Floodfilling Networks and Semantic
Segmentation using U-Nets.

Instance Segmentation using Floodfilling Networks approaches involves itera-
tively growing a region of interest by flooding voxels based on certain criteria. It
starts with seed points and expands the region by considering neighboring voxels
which meet specific conditions. Floodfilling Networks leverage machine learning
techniques to learn the criteria for voxel selection and region expansion. This ap-
proach is particularly useful for segmenting objects with irregular shapes or when
prior knowledge about the object’s appearance or class is limited. Encouraging re-
sults are observed when applying the model to unseen data of unrelated specimen
types.

Semantic Segmentation using U-Nets as type of convolutional neural network
architecture have been widely used for image segmentation tasks. It consists of an
encoder network and a decoder network. The encoder network captures high-level
features by downsampling the input data, while the decoder network upsamples the
features to produce a segmentation map. As we have shown, an adapted 3D U-Net
architecture is well-suited for segmenting specific entities within volumetric CT data
as it can capture both local and global context information. The transfer to data which
was unseen during training shows promising results. Regarding the robustness of
the 3D U-Net to identify objects of interest in unknown surroundings, we more
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(a) input XY (b) segmentation XY (c) reference XY

(d) input XZ (e) segmentation XZ (f) reference XZ

(g) input YZ (h) segmentation YZ (i) reference YZ

(j) input rendering (k) segmentation ren-
dering

(l) reference render-
ing

Fig. 18.10: Evaluation example of suspension spring semantic segmentation from
the Hondacrashed. From left to right in each row, the initial volume, segmentation
result and the ground truth is shown.
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closely investigated the semantic segmentation of suspension springs in a vehicle.
Therefore, we trained and optimized a 3D U-Net on CT data of an uncrashed Honda
vehicle and evaluated the segmentation prediction on Honda crashed as test set that
shows mechanical deformations of the vehicle, due to an intentionally performed
crash before the CT scan.

Both approaches offer viable solutions for segmenting unique datasets and local-
izing specific components within 3D datasets. The choice between these approaches
depends on the specific requirements and characteristics of the dataset and the ap-
plication.

In the world of non-destructive testing, especially for unique scans or huge vol-
umetric options segmenting data is still one of the major bottlenecks. For unique
scans, the instance segmentation approach will be a topic for further developments.
The focus would be how to integrate user input to retrain a network during the
segmentation task. This could reduce the manual segmentation task dramatically.
Contrasting for the semantic segmentation, future development will focus on the
semantic connections of individual components depending on their location within
the object. Additionally, managing labeled and segmented components to include
them in the training of neuronal networks for specific tasks is still a open research
question.
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Chapter 19
Energy-Efficient AI on the Edge

Nicolas Witt1,∗, Mark Deutel2,∗, Jakob Schubert1,∗, Christopher Sobel1,∗, Philipp
Woller1,∗

Abstract This chapter shows methods for the resource-optimized design of AI
functionality for edge devices powered by microprocessors or microcontrollers. The
goal is to identify Pareto-optimal solutions that satisfy both resource restrictions
(energy and memory) and AI performance. To accelerate the design of energy-
efficient classical machine learning pipelines, an AutoML tool based on evolutionary
algorithms is presented, which uses an energy prediction model from assembly
instructions (prediction accuracy 3.1%) to integrate the energy demand into a multi-
objective optimization approach. For the deployment of deep neural network-based
AI models, deep compression methods are exploited in an efficient design space
exploration technique based on reinforcement learning. The resulting DNNs can be
executed with a self-developed runtime for embedded devices (dnnruntime), which
is benchmarked using the MLPerf Tiny benchmark. The developed methods shall
enable the fast development of AI functions for the edge by providing AutoML-like
solutions for classical as well as for deep learning. The developed workflows shall
narrow the gap between data scientist and hardware engineers to realize working
applications. By iteratively applying the presented methods during the development
process, edge AI systems could be realized with minimized project risks.

Key words: edge ai, tinyml, automl, classical machine learning, deep compression,
design space exploration.

1Fraunhofer Institute for Integrated Circuits IIS, Fraunhofer IIS, 90411 Nuremberg, Germany
2Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
∗equal contribution

Corresponding author: Nicolas Witt
e-mail: nicolas.witt@iis.fraunhofer.de

359© The Author(s) 2024 

C. Mutschler et al. (eds.), Unlocking Artificial Intelligence,  

https://doi.org/10.1007/978-3-031-64832-8_19 

 

 

    

mailto:nicolas.witt@iis.fraunhofer.de
https://doi.org/10.1007/978-3-031-64832-8_19
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64832-8_19&domain=pdf


360 Nicolas Witt et al.

19.1 AI on the Edge

Publicly known artificial intelligence (AI) functionality is primarily deployed in large
cloud infrastructures, such as data centers. For instance, large-language models like
ChatGPT serve millions of users. AI inference can run on desktop-sized machines
similar to the personal computers used by content creators, such as AI-assisted edit-
ing. While some AI applications still rely on cloud computing, the rapid evolution
of AI has led to more opportunities in the deployment of AI systems. Thus, the com-
puting hardware targeted for AI inference can accommodate it. Taking advantage
of the substantial computational resources and scalability of the cloud computing
paradigm, complex AI functions have historically been located primarily in central-
ized data centers (the cloud). This conventional approach facilitated advanced AI
applications but poses significant challenges, including latency, security, privacy,
and data transmission overhead, especially in IoT scenarios.

Fig. 19.1: Enabling AI functionality on the edge needs a resource-optimized approach
of AI design.

Edge computing, a paradigm that emphasizes decentralized data processing and
storage, has emerged as a solution to these challenges. The fusion of AI and edge
computing has given rise to "Edge AI", a novel architectural framework that uses
local processing capabilities to enable real-time, context-aware AI decision-making
in close proximity to data sources. An overview of this emerging field can be found
in [42]. It provides the reader with more detailed background and definitions that
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are beyond the scope of this article. In the absence of a clear definition of edge
devices, our focus in this chapter is on resource-constrained devices such as drones,
mobile robots, and IoT nodes (e.g., condition monitoring (CdM) sensor nodes),
which typically rely on battery power. Processing units in these devices typically
consist of microprocessors or microcontrollers with clock speeds of few hundred
MHz and with only a few hundred kilobytes of memory (see Figure 19.1).

The advantages of designing AI systems for the edge are similar to those for edge
computing, but due to the data-hungry nature of AI plays an even more important
role. Here is a list of the most important advantages:

• Data Privacy - Processing data from private spaces (e.g., audio or video data in
people’s homes) on local devices follows the "Privacy by Design" paradigm and
no private data has to leave the access realm of the user.

• Low Latency - Local processing of input data by AI models avoids the detour of
raw data to distant data centers resulting in fast response times.

• Small Size - AI functions can even be realized in very small devices like IoT
sensor nodes or hearing aids to name a few examples.

• Low Communication Overhead - As the raw video, audio, and vibration data
can have a significant need for transmission bandwidth, extracting the essential
information locally (e.g., person detection, keyword spotting, state information
for CdM) leads to a significant reduction in communication. Instead of a video
stream, only person counts, activation toggle, or OK / NOT OK state information
has to be transmitted.

• Energy Efficiency - Also connected to the former advantage, edge devices can
often exploit more efficient sleep modes or turn off frequently and are more
fine-grained than servers in data centers, leading to less power consumption.

But besides these advantages, there are also several challenges in bringing AI to
edge devices. The first major challenge is the lack of combined education in both AI
and hardware development, resulting in a non-awareness of, e.g., data scientists on
memory and energy demand of their trained models and hardware developers on the
other hand not being trained to design high-performance AI models. This can lead
to several opportunities in projects to miss requirements and/or financial and time
restrictions. The main technical challenge to bringing AI to edge devices is the data
and thus problem-dependent size of AI functions. An AI function can be realized
by either classical machine learning pipelines (ML) consisting of several pipeline
steps, usually feature extraction, scaling, dimensionality reduction, and the final ML
model, or deep learning approaches where the used deep neuronal networks can have
a large number of parameters to execute the intended functionality (see Figure 19.1).

The following sections show how the design space of AI functions can be explored
to optimize not only AI performance (e.g., classification accuracy) but also optimize
the resource footprint such as energy demand or memory consumption.
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19.2 Energy-Efficient Classical Machine Learning

When searching for an energy-efficient machine learning solution suitable for de-
ployment on the edge, there are several factors to consider. These factors include
the processing of time series data that is collected by the on-board sensors, their
sampling rate, and the computing power or memory required for the AI algorithm.
Other factors to consider are the type of communication for data transmission and the
specific inference frequency (i.e., how often the AI model is triggered) required for
the use case. These factors cover a wide range of design options for potential AI so-
lutions, which are generally narrowed down only through close interaction between
hardware developers and data scientists. However, in practice, the limited overlap in
competencies often leads to lengthier development cycles. The hardware developer
might have difficulties gauging the probability of success for data-centric projects,
while the software developer is often incapable of forecasting and ascertaining com-
pliance with prerequisites like form factor or power requirements for the end system.
The presented research aimed to narrow the gap between the two disciplines by de-
signing AutoML approaches that consider both machine learning performance (for
example, accuracy or F1 score) and, e.g., power consumption (measured in Watts)
for inference on edge devices, as objectives for optimization.

19.2.1 Classification of Time Series Data

Efficient models of classical machine learning, such as decision trees or support
vector machines (SVM), are often used for time series analysis. In this process, the
time series data from the edge’s onboard sensors, like an IMU (Inertial Measurement
Units), are transformed using a sliding window approach [3]. Within each fixed-
length window, various statistical or signal processing features are computed to
summarize the data, such as mean, variance, spectral characteristics, and more.
The extracted features provide a compact representation of the time series data that
machine learning models can use. Further details are provided in Section 2.2.

The task of the developed AutoML system is to make a suitable selection or
combination of the several hundred features. This requires selecting the appropriate
machine learning model and optimizing its hyperparameters [44]. If the sensor
sampling rate is adjustable or the optimal window size for the use case is unknown,
these variables can also be incorporated into the approach and evaluated concerning
the two optimization goals: achieving maximum AI performance and minimizing
resource usage.
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19.2.2 Multi-Objective Optimization

The AutoML approach involves utilizing multi-objective optimization (MOO) which
is a strategy for tackling problems with multiple conflicting objectives. In this context,
we consider two main objectives:

1. Predictive Accuracy: Maximizing the predictive accuracy of the machine learn-
ing model is crucial for ensuring its effectiveness in practical applications.

2. Energy-Efficiency: Minimizing the energy demand of the machine learning
pipeline is vital for embedded devices that often have limited power resources.

To achieve these objectives, NSGA-II (Non-dominated Sorting Genetic Algo-
rithm) [10] is employed. NSGA-II identifies a set of Pareto-optimal solutions, each
representing a different trade-off between predictive accuracy and energy efficiency.
These solutions provide diverse options that balance the two essential objectives.
By exploring this set of trade-off solutions, decision-makers can choose the most
suitable machine-learning pipeline for their specific embedded device application.
A binary representation for encoding machine learning pipeline configurations ex-
presses concrete choices and hyperparameters using binary values (individual). For
example, if three different machine learning algorithms are considered, one allocates
a specific binary sequence to each, such as ’00’ for algorithm A, ’01’ for algorithm
B, and ’10’ for algorithm C. This binary string captures the choice of algorithm. The
binary representation also extends to the feature selection or any other components
of the pipeline such as additional preprocessing steps (e.g., scaling option, dimen-
sionality reduction technique, such as PCA, etc.). For instance, ’1’ might indicate
the inclusion of a particular feature, while ’0’ signifies its absence. Combining all
these choices results in a single binary string that represents a specific combination
of algorithm choice, hyperparameters, and pipeline structure (see Figure 19.2). Dur-
ing the evolutionary optimization process, crossover and mutation operations are
applied to these binary strings to generate new pipeline configurations. Crossover
involves exchanging bits between two parent configurations to produce offspring,
while mutation entails flipping individual bits to introduce small changes.

Fig. 19.2: Example of the binary representation of machine learning pipeline con-
figurations.
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19.2.3 Energy Prediction for Classical Machine Learning

To optimize the AI performance and energy requirements of machine learning
pipelines across generations (see Section 19.2.2), information on the energy de-
mand of each pipeline during the optimization process is needed. However, an actual
deployment and execution of each pipeline on the hardware platform to measure its
energy demand is not a practical solution in the large search space for optimization.
Therefore, instead of taking measurements, prediction models were developed to es-
timate the energy demand for each ML pipeline to make the mulit-objective AutoML
approach feasible.

The prediction of energy demand in prior research varies based on the level of
abstraction used for estimating the energy demand. The level of granularity ranges
from abstract Program Measurement Counters (PMC) [46], through functional block
level [28] to an instruction set level [21, 22, 45, 1, 30] eventually forming a compro-
mise between generalization and prediction accuracy. The two methods developed
here are based on computational demand extracted from instructions in the source
code and compiled assembly code, respectively. A dataset was formed by randomly
sampling pipeline steps and recording their computational and energy demands as
determined through physical measurements. Using this dataset a regression model is
trained to predict the general energy demand of classic machine learning pipelines.

Fig. 19.3: Source code of a logistic regression classifier.

Approach 1: Program Code Based: In the first approach, the mathematical
operations respectively write and read accesses to the data memory required for
its calculation are taken from the implementation of the pipeline steps in C++, see
Figure 19.3. The operations are categorized as either floating point or integer. A
developer must provide a parametric description of the number of each operation,
such as the number of features or classes. Consequently, during the optimization
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process, only the configuration of the pipeline step is needed as the feature vector
for predicting energy demand. But in a program-level assessment, it is very hard
to account for compiler optimizations and the true machine code running the AI
inference. Therefore another approach was chosen.
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Fig. 19.4: Construction of the CFG from assembly code (Logistic Regression classi-
fier). Green marked lines represent the end point and brown marked lines the starting
point of a jump in the control flow. Instructions and directives not relevant for the
control flow have been removed from the representation.

Approach 2: Assembly Code Based: A more precise and easier-to-automate
method involves utilizing assembly code, which represents the program code at a
lower level of abstraction and already incorporates the compiler optimizations. This
representation is used in the second method of extracting computational demand
but requires an initial analysis of the code’s control flow to identify the assembly
instructions executed on the platform. To accomplish this task, it is necessary to
apply the Implicit Path Enumeration Technique (IPET) to determine the implicit
control flow. At first, the assembly code must be used to extract a control flow
graph (CFG), e.g., see Figure 19.4. A CFG is a graph that is directed and whose
nodes consist of basic blocks that contain program instructions. The edges in the
CFG represent the potential execution paths. The IPET calculates the frequency of
execution for each node in the CFG. This method allows us to investigate the number
of times each assembly instruction is executed. To minimize the feature space and
thus the training dataset, the assembly instructions are grouped according to their
required energy demand. Instructions with the same number of clock cycles required
and using similar hardware devices in the processor are assumed to have similar
power requirements. This creates a feature vector for use in either the training or
test dataset. Like before, this feature vector is also parameterized. An example of the
logistic regression classifier is presented in Table 19.1, based on the data illustrated
in Figures 19.3 and CFG in 19.4.
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G 1 G 2 G 3 G 4 G 5 G 6 G 7

2𝐶 3𝐶 + 1 𝐶 ¤𝑀 +𝐶 4𝐶 ¤𝑀 + 6𝐶 − 2 0 𝐶 ¤𝑀 + 10𝐶 + 30 2

G 8 G 9 G 10 G 11 G 12 G 13 Sum

𝐶 ¤𝑀 + 4𝐶 + 1 0 78 0 1 0 7𝐶 ¤𝑀 + 26𝐶 + 111

Table 19.1: Resulting parametric description of the assembly computational demand
in each group (G) of the CFG shown in in Figure 19.4. The parameter 𝐶 represents
the number of classes and 𝑀 the length of the feature vector.

With Approach 1, the energy demand of each possible pipeline can be predicted
with a mean relative deviation of 4.1 %. Approach 2, results in a better mean relative
deviation of 3.1 % from the true energy demand and is better suited to integrate in
an AutoML solution.

19.2.4 EA-AutoML Tool

The entire process of developing an energy-efficient machine learning solution for
the Edge has been prototyped in an EA1-AutoML tool, offering a comprehensive
workflow for fast and easy proof of concepts. After loading a labeled dataset of
sensor data, the tool seamlessly performs feature extraction on windowed data.
The optimization phase is then highly configurable, allowing the user to define the
search space consisting of several preprocessing steps, feature calculations, and ML
models. Upon the successful completion of the multi-objective optimization, the tool
visualizes the obtained pipelines on a Pareto front (see Figure 19.5). This graphical
representation offers a clear view of the trade-offs between the different objectives.
In the example given, the damage to the bearings of an electric motor had to be
classified via vibration data2. Between the two example candidates A and B, up
to 80% of the energy demand can be saved with only a 4.5% loss in classification
accuracy (see Figure 19.5).

Further comparing candidates in terms of the lifespan of a battery-powered edge
device, taking into account parameters such as battery capacity, communication (e.g.,
Bluetooth or Wi-Fi), sleep mode power consumption, and the inference frequency.
Figure 19.6 shows the comparison between solutions A and B. Selecting the more
energy-effective pipeline B can significantly increase the potential lifespan of the
edge device in this use case.

In the final step, the selected pipeline can be exported for embedded systems.
The tool generates a C program that renders the pipelines executable on the target
platform. This program can be seamlessly integrated into an existing project, ensuring
a smooth transition from the prototype to practical application and in-field testing.

1 Evolutionary Algorithm
2 CWRU Bearing Dataset, see https://engineering.case.edu/bearingdatacenter/welcome
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Fig. 19.5: Pareto-front featuring various machine learning pipelines that enable trade-
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Fig. 19.6: Simulation of the life time and comparison of two machine learning
pipelines for use on an Edge.

19.2.5 Application Example

The following section shows a concrete application, where AutoML was used to
design an efficient AI pipeline for the edge. The use case is simplified due to
confidentiality restrictions.

The objective of the application was to estimate the usage time of electrically or
gasoline-powered appliances (e.g., garden appliances like lawnmowers) with an at-
tached sensor tag using accelerometer data. The usage time is used to determine wear
and tear, plan efficient maintenance schedules, and enable optimized distribution of
fleet devices. The tags are battery-powered and cannot be recharged. Thus the precise
estimation of usage time has to be as energy efficient as possible to prolong service
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intervals. This necessitates the implementation of an ML pipeline that has minimal
power consumption in addition to an optimal inference frequency. The ML pipeline
classifying actual usage vs. no usage (e.g., transport, carrying, stand still) should run
on windowed sensor data. A lifespan simulation was used to assess the final estima-
tion of usage time from windowed classifications and to optimize the settings of the
tag, such as inference frequency and sleep/wake-up modes. Data was recorded from
several device classes (e.g., lawnmower, brushcutter, leaf blower, etc.) and specific
device models (e.g., manufacturer X, model 1A). The accelerometer on the tag can
be set to five different sampling rates. The dataset was recorded only at the highest
sampling rate. Consequently, the raw data was downsampled to mimic other sup-
ported sampling rates of the sensor. For energy efficiency, only time-domain features
with minimal computational effort were considered (no frequency features). For each
configuration of window size and sampling rate, different classifiers (e.g., Decision
Tree, Support Vector Machine) were evaluated with 10-fold cross-validation. Deep
learning methods were not considered due to the very resource-restricted target de-
vice. The models were evaluated and compared by computing the average F1-score,
as well as Precision and Recall. The top-performing models were exported to C,
enabling execution and testing on the target platform.
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Fig. 19.7: Influence of different window sizes on performance. The example origins
from models trained with 200 Hz data from one specific tool class.

As expected the F1-scores in Figure 19.7 decrease with decreasing window size,
as there is less information in smaller windows. However, the performance hardly
worsens from 200 samples down to 40. Even with only ten samples per window, the
performance is still well beyond 99.5 %.

Finally, the task was to evaluate the effectiveness of the binary window-based
classification pipeline in estimating the usage time. A simulation with a synthetic
ground truth for usage times was used by including everyday usage profiles of each
device class, i.e. typically daily usage time and single usage times. In addition to a
consistent inference frequency (e.g., every 90 seconds), the tag was simulated with
a wake-on-motion feature. The simulation yields, e.g., "Mean Absolute Percentage
Error" (MAPE) of usage time estimation in the long run, e.g., over several days. The
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main influence on the final usage time estimate is the recall values for the usage
and no usage classes of the pipelines operating in windowed sensor data, where a
trade-off to resource-efficient pipelines (low sampling rate, low feature complexity)
could be done with the help of the simulation. Figure 19.8 shows the simulation
including predictions, inference calls, and the tag’s battery status (energy needed for
one inference heavily scaled up for visualization purposes).
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Fig. 19.8: Simulation visualization with predictions, inferences and battery level of
the tag (with deliberately exaggerated energy demand per inference for visualization
purposes).

Satisfactory results for usage time estimation and an optimized device lifespan
could be achieved with classical ML classifiers, optimally selected features, and an
optimized inference rate.

For more complex problems on edge devices, classical ML pipelines might not
achieve the AI performance needed. The following section outlines the energy-
efficient design of deep learning solutions for these problems.

19.3 Energy-Efficient Deep Learning

Deep Neural Networks (DNNs) have become dominant in various more complex
applications involving autonomous decision-making, audio recognition [20], image
classification [19, 29], or human activity monitoring [26]. DNNs offer a distinct
advantage in their ability to learn and abstract correlations within high-dimensional,
intricate data.

Nevertheless, the deployment of DNNs consumes substantial energy, resources,
and time [43, 9]. In embedded scenarios where the trade-off between energy con-
sumption, resource limitations, execution speed, and model accuracy are critical,
DNNs often struggle to outperform classical machine learning approaches, particu-
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larly in light of their high energy demands [31]. However, given the ever-increasing
amount of data to be processed on the edge, there is a growing demand for energy-
efficient DNN execution on embedded devices.

Nonetheless, most DNN training and deployment frameworks primarily prioritize
AI performance (e.g., accuracy) and do not explicitly address the critical aspects of
energy efficiency and platform-specific constraints, including memory availability
and processing speed. However, these factors are especially critical in most edge
applications.

19.3.1 Deep Compression

Deep compression is an emerging area of research focused on the compression of
Deep Neural Networks (DNNs). Notable techniques encompass DNN pruning [32]
and weight quantization [25]. The primary objective is to decrease the resource
footprint of a DNN on its designated platform, which includes its memory and energy
requirements. This reduction is achieved by diminishing the number of trainable
weights, subsequently reducing computational complexity, all while preserving the
DNN’s original accuracy.

Following these principles, various pipelines for DNN compression have been
proposed. Han et al. [15] introduced a pipeline that combines network pruning,
integer quantization, and Huffman coding. More recently Deutel et al. [13] proposed
a pipeline combining different pruning and quantization methods. Other approaches
concentrate on quantization during network training [25], while others emphasize
structured pruning [34, 2], allowing for the immediate elimination of pruned weights.
In the following, we discuss key aspects of DNN pruning and quantization and its
use in the context of Edge AI.

19.3.1.1 Pruning

A commonly used method to compress DNNs for resource constrained edge systems
is pruning. The technique is founded on the idea that some of a DNN’s trained
parameters can be removed without significantly compromising network accuracy.
This is based on the observation that many DNNs tend to be overparameterized,
harboring redundancy in their trained weights [11]. The concept of pruning has a long
history, with it being initially proposed to enhance network generalization, reduce
overfitting, and accelerate learning [17, 32, 18]. Today, pruning has evolved into one
of the most popular techniques for DNN compression, often achieving significant
reductions in size and computational complexity without sacrificing accuracy.

The simplest method for DNN pruning involves setting a subset of trainable pa-
rameters to zero during training, resulting in sparse parameter tensors. By nullifying
these parameters, they are effectively excluded from the optimization process for
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training the DNN. Consequently, these removed parameters no longer impact the
training of the network.

Granularity: Two other common techniques for DNN Pruning are element prun-
ing and structured pruning, which differ in the granularity at which they introduce
sparsity into a DNN.

Element pruning involves removing individual elements from parameter tensors,
akin to early pruning methods by authors like [32, 18]. Structured pruning, a more
recent approach, removes entire structures from parameter tensors, often focusing
on filters or channels in convolutional layers as shown in [33, 35], but is extensible
to rows or columns in linear layers as well. Structured pruning offers the advantage
of complete removal of pruned structures from the parameter tensor, which element
pruning cannot achieve since it creates tensors of arbitrary sparsity. However, struc-
tured pruning is more invasive and complex, requiring a global understanding of
the DNN’s structure and posing additional challenges in branching networks like
residual networks [19].

Heuristics: A significant challenge in DNN pruning is determining which ele-
ments or structures have the least impact on a DNN’s accuracy on the validations
dataset when removed. The most accurate method, referred to as the "oracle cri-
terion" [38], involves removing each network element or structure one by one and
evaluating its impact on the loss. However, this approach is highly resource- and
time-intensive, rendering it impractical in most cases.

As a result, alternative heuristics have been proposed in research to approximate
optimal pruning more efficiently. This process of quantifying the importance of pa-
rameters in DNN parameter tensors is also known as "Sensitivity Analysis" [16].
Recent advances have focused on finding effective approximations, i.e., heuristics, for
both element and structured pruning techniques. These include magnitude/threshold
based heuristics [14, 16], L-norm based heuristics [33], gradient based heuris-
tics [38], and heuristics based on the average percentage of zeros found in feature
maps [23].

An alternative heuristic for pruning neural network structures is rooted in Layer-
wise Relevance Propagation (LRP) [51, 50], which has its origins in the field of
explainable AI (XAI). This technique assigns relevance scores to individual neurons
within a neural network. However, although LRP-based heuristics can offer more
informed decisions and generally lead to superior pruning outcomes, they often come
at the expense of increased computation time.

Schedule: A pruning schedule, or pruning recipe, outlines when, how frequently,
and to what extent a network undergoes pruning during training. One straightforward
approach to scheduling pruning is known as one-shot pruning [32]. The general
concept involves initially training a network to achieve a reasonable level of accuracy.
Subsequently, the entire network is pruned using a specific heuristic to eliminate
structures or elements with the lowest scores. Based on these scores, a certain
number of them are then removed. Additionally, it is often beneficial to retrain the
network after pruning.

An alternative type of pruning schedule is called iterative pruning [16, 33]. This
schedule places a strong emphasis on the iterative process of pruning and retraining



372 Nicolas Witt et al.

the network multiple times during training. As a result, not all parameters are removed
at once, but over several pruning iterations. This gradual approach allows the network
to adapt more effectively to the decreasing number of trainable parameters.

An extension to iterative pruning schedules is called Automated Gradual Pruning
(AGP) [54]. The authors suggest a gradual increase in the number of pruned param-
eters instead of removing a constant number of parameters in each iteration. The
algorithm automatically adjusts the number of pruned parameters in a DNN over a
range of 𝑛 pruning steps based on predefined parameters. AGP is based on the idea
of initially pruning the network rapidly when redundant connections are abundant
and gradually reducing the number of weights pruned in each subsequent iteration
as fewer weights remain in the network.

19.3.1.2 Quantization

Quantization of DNNs revolves around the concept of reducing the precision at
which a network’s parameters are represented and processed. This strategy serves
to reduce the memory footprint and inference time of a neural network. However,
it is not without trade-offs, typically resulting in decreased accuracy. The primary
objective of quantization is to strike a balance between accuracy, computational
complexity, and memory footprint.

In general, quantization can be applied at two levels. The first is named weight-
only quantization, where only the trained weight tensors of a DNN are quantized. The
second is known as full-network quantization, which includes both weight and activa-
tion tensor quantization. Weight-only quantization is easy to implement and signifi-
cantly reduces the memory footprint of the model. However, it increases the runtime
overhead during inference, since all quantized tensors must be converted back to
floating-point space before processing, and all multiply-accumulate operations also
have to be processed in floating-point space. This conversion to floating-point space
is not required in full-network quantization, where both weight and activation ten-
sors are quantized, allowing most computations to be performed in integer space.
However, full-network quantization requires the quantization of activation tensors at
runtime, introducing additional computational overhead at runtime.

Quantization Scheme: A quantization scheme defines the mathematical connec-
tion between the representation of a DNN’s initial floating-point values and their
quantized equivalents. For edge systems, an 8-bit unsigned integer type is most
commonly used to store the quantized values. Furthermore, the most common quan-
tization schemes are based on a simple uniform affine mapping, as illustrated by
Equation 19.1,

𝑓 (𝑥) =
⌊ 𝑥
𝑠

⌉
+ 𝑧𝑝, 𝑠 = 𝑚𝑎𝑥𝑑𝑎𝑡𝑎 − 𝑚𝑖𝑛𝑑𝑎𝑡𝑎

255
, 𝑧𝑝 = −𝑚𝑖𝑛𝑑𝑎𝑡𝑎

𝑠
(19.1)

where the linear mapping is realized by the two parameters zero point 𝑧𝑝 and
scale 𝑠, which are derived from the distribution of values in the full precision floating
point tensor.
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Applying Quantization: There are two methodologies on how to apply quanti-
zation to a DNN: static post-training quantization (SPTQ) and quantization aware
training (QAT).

SPTQ involves introducing quantization into a neural network after it completes
its training [53, 6, 24]. It uses two key steps. First, quantization parameters are
determined for all weight and activation tensors. Weight tensors’ parameters are
straightforward to calculate, as their values become constant after the network’s
training. However, deriving quantization parameters for activation tensors is more
complex, as their actual values are only known during inference. A common practice
is to sample from the network’s test dataset to calculate these parameters. Second,
quantization is applied to all weight and activation tensors based on the derived
parameters and the selected quantization scheme. Weight tensors can be quantized
immediately, replacing the original floating-point tensors with their quantized coun-
terparts. For activation tensors, additional operators are added to the network to
perform quantization and de-quantization during inference as they traverse the net-
work.

QAT considers quantization during the training of the DNN [25]. Its main distinc-
tion from SPTQ is the inclusion of quantization parameters as additional trainable
parameters during training. This involves augmenting the original floating-point
model before training begins and integrating fake quantization operations into the
network structure where tensors need to be downcasted to their quantized repre-
sentation. The training process is then executed on this augmented network, where
forward passes use fake quantized tensors and backward passes optimize the orig-
inal floating-point weights. To facilitate backpropagation through the quantization
operations, the straight-through estimator (STE) [7] is used. After training is com-
pleted, the quantized model can be directly exported without requiring any additional
post-processing steps like SPTQ.

Some of the above-mentioned methods of pruning and quantization were inte-
grated into a self developed workflow leading to a runtime environment for DNNs
on embedded devices called dnnruntime [13].

19.3.2 Efficient Design Space Exploration

Deploying DNNs on embedded devices requires adhering to the constraints imposed
by the target edge platform. These constraints present significant challenges when
designing DNN models for such platforms. In essence, there is a need to reconcile
conflicting goals and constraints that usually include aspects like memory availabil-
ity, inference time, and power consumption of the deployed DNN model.

Despite extensive research in Design Space Exploration (DSE) for DNNs, i.e.,
Neural Architecture Search (NAS) and AutoML, see Chapter 1.1, there is still no
definitive method that combines efficient design space exploration and robustness.
In the literature, three prominent approaches to performing DSE for DNNs tar-
geting edge systems are discussed. First, black-box Hyperparameter Optimization
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(HPO) [55, 4, 40, 48, 12]. Second, differentiable NAS [36, 49]. Third, zero-cost
NAS [41, 8].

Black-box HPO is the most reliable and consistent option of the three and can
easily be extended to the multi-objective case, but it is typically time-consuming
and sample-inefficient since it requires training and evaluation of multiple DNNs.
However, it has been shown that the use of Bayesian optimization can improve
sampling efficiency significantly [48, 12].

Differentiable NAS attempts to optimize the architecture as part of regular DNN
training by relaxing the optimization problem. However, recent research has high-
lighted stability issues and poor generalization [52].

Zero-Cost NAS is highly time-efficient because it does not train DNNs directly,
but uses an empirical surrogate model. It can be used to quickly adapt DNN designs to
different target platforms and resource constraints [41, 8]. However, since it provides
only simple statistics from the surrogates, it does not provide precise performance
information from actually trained DNNs [47].
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Bayesian optimization can help to significantly improve the time- and resource-
efficiency of black-box optimization based NAS, see Figure 19.9. Expanding on
this concept, Deutel et al. [12] implemented a time- and resource-efficient black-
box optimization framework for DNN deployment on the edge, based on Bayesian
optimization and reinforcement learning (RL). The novel solver employs an ensemble
of locally parameterizable policies that compete with one another and are iteratively
trained using Augmented Random Search (ARS) reinforcement learning agents [37]
on the underlying Bayesian surrogate model. The network architectures proposed
by our approach are readily deployable on common microcontrollers without the
need for additional (re)training, also due to the self-developed runtime for DNNs
dnnruntime.

19.3.3 Benchmarking Edge AI

The previous sections show the number of different ways that AI algorithms can
be optimized to run on tiny edge devices with limited memory and processing
power. This makes it difficult to directly compare different optimization methods.
The MLPerf Tiny benchmark [5] shall provide a fair and reliable way to compare
the resulting AI models. It is divided into the Open and the Closed Division. The
division of the software stack is shown in Figure 19.10.

The Closed Division just allows varying hardware or deployment-specific compo-
nents. It also allows to quantize the model weights as described in Section 19.3.1.2.
This makes the different submitted solutions more comparable. In the Open Division,
the test data is the only parameter that cannot be changed. Even the training data is
allowed to be customized together with the training script and the model architecture.
In the Open Division, it is also allowed to prune the used model weights.

From the four test scenarios, anomaly detection and image classification were
chosen for evaluation. For anomaly detection, the ToyADMOS [27] and MIMII [39]
datasets are used. In both cases, the sound of a toy car is recorded and mixed with
noise from a factory environment. The goal is to classify if the machine is running
normally or not. For image classification, the CIFAR-10 [29] dataset is used.

The characteristics measured in the MLPef Tiny benchmark are accuracy, latency,
and energy demand. Accuracy is examined by evaluating the model on the corre-
sponding test dataset, while latency and power consumption are measured with the
help of an energy monitor. To get single inference values, it measures the execution
time and the power consumption of multiple inferences for at least ten seconds.

Using the MLPerf Tiny benchmark the developed dnnruntimewas benchmarked
and compared to other submissions. The results are shown in Table 19.2. Although
the achieved accuracy is the best result in three out of four scenarios, the required
latency and energy consumption are almost always above the results of the com-
pared submissions. Considering that the dnnruntime was developed as a research
prototype by a single person, results similar to those of large frameworks with many
developers cannot be expected. However, the results show that dnnruntime provides
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Fig. 19.10: Open and a Closed Division of the MLPerf Tiny benchmark (from [5]).

a good research foundation and is capable of delivering comparable results if more
work is spent to optimize performance and efficiency.

19.4 Conclusion and Outlook

This chapter described different methods for the resource-optimized design of AI
models and pipelines. Targeted edge devices are usually powered by microprocessors
or microcontrollers with very restricted memory and computing power. All AutoML
methods presented, use multi-objective optimization to find Pareto-optimal solutions
for a trade-off between AI performance and resource demand (energy, memory).

Despite classical machine learning seems to be out fashioned these days, it can
provide very energy-efficient data driven solutions. The respective chapter showed,
how a fast automatic design was achieved by using a prediction model for energy
demand based on assembly instructions inside an evolutionary algorithm for multi-
objective optimization.

For the design of deep neuronal networks, deep compression methods were
exploited in an efficient design space exploration technique based on reinforce-
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Anomaly Detection Image Classification

AUC Latency [ms] Energy at 1.8V [µJ] Accuracy [%] Latency [ms] Energy at 1.8V [µJ]

TFLiteMicro | Reference 0.86 10.523 417.7 87.5 664.01 27495.0

dnnruntime | v1 0.87 13.060 581.3 88.5 774.59 32899.5

dnnruntime | v2 0.87 12.965 574.8 88.5 774.59 33674.1

OctoML/microTVM/CMSIS-NN backend 0.86 8.6 443.2 87.5 389.5 20236.3

OctoML/microTVM/native codegen 0.86 11.7 663.7 87.5 389.5 21342.3

Plumerai/Inference Engine 2022.09 0.86 5.6 88.0 173.2

STMicroelectronics/X-CUBE-AI v7.3.0 0.86 7.6 323.0 85.0 226.9 10681.6

Keyword Spotting Visual Wake Words

AUC Latency [ms] Energy at 1.8V [µJ] Accuracy [%] Latency [ms] Energy at 1.8V [µJ]

TFLiteMicro | Reference 90.1 159.03 6608.0 82.8 545.85 22128.2

dnnruntime | v1 91.6 279.10 11853.4 82.8 1054.9 43907.3

dnnruntime | v2 91.6 278.86 11979.2 82.8 843.88 35893.4

OctoML/microTVM/CMSIS-NN backend 90.1 99.8 5230.3 85.8 301.2 15531.4

OctoML/microTVM/native codegen 90.2 144.0 5230.3 83.6 336.5 17131.6

Plumerai/Inference Engine 2022.09 90.2 71.7 85.2 208.6

STMicroelectronics/X-CUBE-AI v7.3.0 90.2 75.1 3371.7 85.2 230.5 10066.6

Table 19.2: Detailed comparison of dnnruntime inference results with other sub-
missions of the Closed Division.

ment learning. Optimizing different objectives was enabled through having a self-
developed runtime for DNNs on embedded devices (dnnruntime), which can report
expected FLOPS (floating point operations) and memory requirements during op-
timization. The dnnruntime was also benchmarked using the public MLPerf Tiny
benchmark and showed promising results.

The developed methods showed to enable even less experienced persons in from
each discipline to design energy-efficient AI solutions for edge devices. Thus bringing
data scientists and hardware engineers closer together.

Further research will focus on improved compression techniques for very big
models (e.g., large language models), hardware-aware optimizations, e.g., for AI
accelerators, and making on-device learning available on microcontrollers for actual
self-learning IoT systems. Overlapping research questions between data science and
neuromorphic computing cover bioinspired neural architectures like spiking neuronal
networks, as well as optimized hardware architectures for an analog execution of
neuronal networks for ultra low power applications. To speed up the commercial
availability of the proposed methods, future development targets the provision of
web-based services for the independent development of hardware-optimized AI
models, accompanied with certified courses for the professional expansion of know-
how in the industry.
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