
Iaakov Exman
Ricardo Pérez-Castillo
Mario Piattini
Michael Felderer   Editors

Quantum 
Software
Aspects of Theory and System Design



Quantum
Software



Iaakov Exman • Ricardo Pérez-Castillo •
Mario Piattini • Michael Felderer
Editors

Quantum
Software
Aspects of Theory and System Design



Editors
Iaakov Exman
School of Computer Science
Holon Institute of Technology (HIT)
Holon, Israel

Mario Piattini
Institute of formation Systems and
Technologies
University of Castilla-La Mancha (UCLM)
Ciudad Real, Spain

Ricardo Pérez-Castillo
Faculty of Social Sciences and Information
Technology
University of Castilla-La Mancha (UCLM)
Talavera de la Reina, Spain

Michael Felderer
Institute of Software Technology
German Aerospace Center (DLR)
Cologne, Germany

University of Innsbruck
Innsbruck, Austria

University of Cologne
Cologne, Germany

ISBN 978-3-031-64135-0 ISBN 978-3-031-64136-7 (eBook)
https://doi.org/10.1007/978-3-031-64136-7

Open Access sponsored by University of Innsbruck, Innsbruck, Austria.

© The Editor(s) (if applicable) and The Author(s) 2024, corrected publication 2024. This book is an open
access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-9917-3950
https://orcid.org/0000-0002-7212-8279
https://orcid.org/0000-0002-9271-3184
https://orcid.org/0000-0003-3818-4442
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
https://doi.org/10.1007/978-3-031-64136-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


To Michal my wife, companion for life,
and to our children.
—Iaakov Exman

To my son and daughter.
In the superposition of life’s infinite
possibilities,
you both are my brightest outcomes.
—Ricardo Perez-Castillo

To Juan Carlos Trujillo, excellent
professional and friend.
—Mario Piattini

To Angelika and Konstantin for enriching my
private life. To the staff of the DLR Institute
of Software Technology for inspiring my
professional life.
—Michael Felderer

The four editors would like to thank all the
participants of the Innsbruck Symposium for
fostering a creative atmosphere that inspired
this book.
We extend special gratitude to the chapter
authors for their outstanding contributions,
which have made this book a significant
reality.
We also wish to thank the University of
Innsbruck for its support in making this book
open access.



Preface

Overview

Quantum software before hardware? This is just one of the questions triggered in
the reader’s mind by this book. Sometimes, there is a single answer. Oftentimes, it
offers several answers. Other times, the answer provokes further thoughts. This is
not supposed to be a one-time-read book. It is expected to be perceived in an easily
grasped place on the shelf, to be consulted again and again.

This book’s title is not a question. It stands as a clear statement, conveying basic
ideas intended to resist challenges over time, like those deep theories proposed
before the ultimate convincing experiments are performed. The book editors are
perfectly aware of the current quantum computing stage, coined NISQ—Noise
Intermediate-Scale Quantum—era by John Preskill [1], and the still competitive
arena between hardware technologies. NISQ means that quantum processors have a
limited number of qubits, not enough for error correction fault-tolerance in the noisy
environment, but still susceptible to quantum decoherence.

In any case, regardless of whether fault-tolerant quantum computers are achieved
in the more or less near future, it is certain that we are already witnessing the
quantum advantage and that in order for it to become a widespread reality, adequate
quantum software is needed.

This book focuses precisely on the different aspects to be taken into account in
software, from the most fundamental and theoretical to the most applied aspects of
quantum software engineering.

Organization

After an introductory chapter [2]—overviewing the contents of the subsequent
chapters—the book is composed of three parts.

vii



viii Preface

It starts with a theoretical part on quantum software, as a bold declaration
that quantum software theory is deep and valuable independent of the existence
of specific practical quantum hardware. It is based upon the claim, supported
elsewhere, that quantum software is the more general theory subsuming classical
and hybrid software system theories.

The second, more extensive, part deals with quantum software system and
engineering design. The quality of this part follows from comparison of the liberal
diversity, of sometimes conflicting views and approaches to design, enabling the
reader to make a well-pondered rational choice of preference.

The book concludes with a third part, referring to multiple software applications
and corresponding laboratory experience, in order to understand their implications
in practice, and avoid repeating past mistakes.

Target Readership

This book should be of interest to industry professionals and researchers in
academia, who are either producing or applying quantum software systems in
their work or are considering their potential utility in the future. Furthermore,
this text could be beneficial for practitioners already experienced with classical
software engineering who desire to understand the fundamentals of quantum soft-
ware, including the underlying technology, programming techniques, and possible
applications.

In a teaching environment, it can be used as a reference book, or selected chapters
can be used directly as reading material, from each of the book’s three parts,
theoretical, system design, or actual applications.

Overall, any standard first year STEM—Science, Technology, Engineering, and
Mathematics—bachelor’s degree studies will suffice. Certain chapters demand
a slightly greater mathematical/physical maturity, as the reader may perceive.
Concerning quantum computing knowledge, if needed, one may consult either
a general well-known book on computation and information, such as Quantum
Computation and Quantum Information by Nielsen and Chuang [3] or relevant
chapters of Quantum Software Engineering by Serrano et al. [4].

Conclusion

There are several possible ways to get the best benefits from this book. These depend
on the reader’s perspective and on the particular areas of interest.

One can work hard on a single chapter, analyzing in depth each of its topics. One
may even contact the chapter authors for further discussion. Another possibility,
especially referring to the book’s second part on system design, is to take a



Preface ix

comparative approach of some of the relevant chapters. This is also possible
concerning the book’s third part on applications and laboratory experience.

Referring to open issues and future research directions, each of the book’s
chapters points out its most pressing issues of relevance.

One must very carefully take into account previous lessons of the history of
science and technology to make a reasonable assessment of the future of quantum
software, with respect to the ever-accelerating and always surprising computing
areas. There have been well-known cases of misjudgment in the past decades.
A very high official of a big computing company—that still exists! despite the
misjudgment—expressed the idea that the total number of computers on planet
Earth will be five or six, i.e., roughly proportional to the number of big powers
among the nations. Another high official of a computing company with 500,000
employees said that he does not understand why people would wish to have a
personal computer at home; the company did not survive this prophecy. So, it is
only safe to state that the future will be much more interesting than our wildest
imagination.

Holon, Israel Iaakov Exman
Talavera de la Reina, Spain Ricardo Pérez-Castillo
Ciudad Real, Spain Mario Piattini
Cologne, Germany Michael Felderer

References
[1] Preskill, J.: Quantum Computing in the NISQ era and beyond. arXiv:1801.

00862 (2018). https://doi.org/10.48550/arXiv.1801.00862
[2] Felderer, M., Perez-Castillo, R., Piattini, M., Exman, I.: A novel perception

of quantum software: theoretical, engineering and application aspects (Chapter
1). In: Quantum Software – Aspects of Theory and System Design. Springer-
Nature, Cham (2024)

[3] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

[4] Serrano, M.A., Perez-Castillo, R., Piattini, M. (eds.): Quantum Software Engi-
neering. Springer-Nature, Cham (2022)


 6433
31683 a 6433 31683 a
 
http://doi.org/10.48550/arXiv.1801.00862


Acknowledgments

We express gratitude for the support of the University of Innsbruck enabling
the open access publication of this book. Furthermore, we acknowledge the
support of PID2022-137944NB-I00 (SMOOTH Project) and PDC2022-133051-
I00 (QU-ASAP Project) funded by MCIN/AEI/10.13039/501100011033 and by the
European Union NextGenerationEU/PRTR, QSERV-UCLM (PID2021-124054OB-
C32) financed by the Spanish Ministry of Science and Innovation (MICINN), and
the financial support for the execution of applied research projects, within the
framework of the University of Castilla-La Mancha (UCLM) Own Research Plan,
co-financed at 85% by the European Regional Development Fund (FEDER) UNION
(2022-GRIN-34110).

xi



Contents

A Novel Perception of Quantum Software: Theoretical,
Engineering, and Application Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Michael Felderer, Ricardo Pérez-Castillo, Mario Piattini,
and Iaakov Exman

Part I Aspects of Quantum Software Theory

Simulating Quantum Software with Density Matrices: Reading
Feynman on Fast-Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Iaakov Exman

Superoperators for Quantum Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . 45
Wolfgang Mauerer

Part II Quantum Software System Design

QSandbox: The Agile Quantum Software Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Iaakov Exman

Verification and Validation of Quantum Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Daniel Fortunato, Luis Jiménez-Navajas, José Campos, and Rui Abreu

Quantum Software Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
José A. Cruz-Lemus, Moisés Rodríguez, Raúl Barba-Rojas,
and Mario Piattini

Quantum Software Ecosystem Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Achim Basermann, Michael Epping, Benedikt Fauseweh, Michael
Felderer, Elisabeth Lobe, Melven Röhrig-Zöllner, Gary Schmiedinghoff,
Peter K. Schuhmacher, Yoshinta Setyawati, and Alexander Weinert

Development and Deployment of Quantum Services . . . . . . . . . . . . . . . . . . . . . . . . 189
Enrique Moguel, Jose Garcia-Alonso, and Juan M. Murillo

xiii



xiv Contents

Engineering Hybrid Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini

Part III Quantum Software Laboratory

Trapped-Ion Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Albert Frisch, Alexander Erhard, Thomas Feldker, Florian Girtler,
Max Hettrich, Wilfried Huss, Georg Jacob, Christine Maier, Gregor
Mayramhof, Daniel Nigg, Christian Sommer, Juris Ulmanis, Etienne
Wodey, Mederika Zangerl, and Thomas Monz

Quantum Software Engineering and Programming Applied
to Personalized Pharmacogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
José Luis Hevia, Ezequiel Murina, Aurelio Martínez, and Guido Peterssen

Challenges for Quantum Software Engineering: An Industrial
Application Scenario Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Cecilia Carbonelli, Michael Felderer, Matthias Jung, Elisabeth Lobe,
Malte Lochau, Sebastian Luber, Wolfgang Mauerer, Rudolf Ramler,
Ina Schaefer, and Christoph Schroth

Quantum Software Engineering Issues and Challenges: Insights
from Practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Manuel De Stefano, Fabiano Pecorelli, Fabio Palomba, Davide Taibi,
Dario Di Nucci, and Andrea De Lucia

Correction to: Trapped-Ion Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . C1
Albert Frisch, Alexander Erhard, Thomas Feldker, Florian Girtler,
Max Hettrich, Wilfried Huss, Georg Jacob, Christine Maier, Gregor
Mayramhof, Daniel Nigg, Christian Sommer, Juris Ulmanis, Etienne
Wodey, Mederika Zangerl, and Thomas Monz



Contributors

Rui Abreu Faculty of Engineering of University of Porto & INESC-ID, Lisboa,
Portugal

Raul Barba-Rojas Escuela Superior de Informatica (ESI-CR), Ciudad Real, Spain

Achim Basermann Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Jose Campos Faculty of Engineering of University of Porto & LASIGE, Faculdade
de Ciencias, Universidade de Lisboa, Lisbon, Portugal

Cecilia Carbonelli Infineon Technologies AG, Neubiberg, Germany

Andrea De Lucia SeSa Lab - University of Salerno, Salerno, Italy

Manuel De Stefano SeSa Lab - University of Salerno, Salerno, Italy

Dario Di Nucci SeSa Lab - University of Salerno, Salerno, Italy

Michael Epping Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Alexander Erhard Alpine Quantum Technologies GmbH, Innsbruck, Austria

Iaakov Exman HIT - Holon Institute of Technology, Holon, Israel

Benedikt Fauseweh Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Michael Felderer Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany
University of Innsbruck, Innsbruck, Austria
University of Cologne, Cologne, Germany

Thomas Feldker Alpine Quantum Technologies GmbH, Innsbruck, Austria

Daniel Fortunato Faculty of Engineering of University of Porto & Artificial
Intelligence and Computer Science Laboratory, Porto, Portugal

xv



xvi Contributors

Albert Frisch Alpine Quantum Technologies GmbH, Innsbruck, Austria

Jose Garcia-Alonso Quercus Software Engineering Group, University of
Extremadura, Caceres, Spain

Florian Girtler Alpine Quantum Technologies GmbH, Innsbruck, Austria

Max Hettrich Alpine Quantum Technologies GmbH, Innsbruck, Austria

Jose Luis Hevia aQuantum, Madrid, Spain

Wilfried Huss Alpine Quantum Technologies GmbH, Innsbruck, Austria

Georg Jacob Alpine Quantum Technologies GmbH, Innsbruck, Austria

Luis Jimenez-Navajas aQuantum, Faculty of Social Sciences & IT, University of
Castilla-La Mancha, Talavera de la Reina, Spain

Mathias Jung University of Wurzburg, Wurzburg, Germany

Jose A. Cruz Lemus Escuela Superior de Informatica (ESI-CR), Ciudad Real,
Spain

Elisabeth Lobe Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Malte Lochau University of Siegen, Siegen, Germany

Sebastian Luber Infineon Technologies AG, Neubiberg, Germany

Christine Maier Alpine Quantum Technologies GmbH, Innsbruck, Austria

Aurelio Martinez aQuantum, Madrid, Spain

Wolfgang Mauerer Technical University of Applied Sciences Regensburg,
Regensburg, Germany
Siemens AG, Regensburg, Germany

Gregor Mayramhof Alpine Quantum Technologies GmbH, Innsbruck, Austria

Enrique Moguel Quercus Software Engineering Group, University of
Extremadura, Caceres, Spain

Thomas Monz Alpine Quantum Technologies GmbH, Innsbruck, Austria
Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria

Juan M. Murillo Quercus Software Engineering Group, University of
Extremadura, Caceres, Spain

Ezequiel Murina aQuantum, Madrid, Spain

Daniel Nigg Alpine Quantum Technologies GmbH, Innsbruck, Austria

Fabio Palomba SeSa Lab - University of Salerno, Salerno, Italy



Contributors xvii

Fabiano Pecorelli Jheronimus Academy of Data Science, Hertogenbosch,
Netherlands

Ricardo Pérez-Castillo UCLM - University of Castilla-La Mancha, Talavera de la
Reina, Spain

Guido Petersen aQuantum, Madrid, Spain

Mario Piattini UCLM - University of Castilla-La Mancha, Ciudad Real, Spain

Rudolf Ramler Software Competence Center Hagenberg, Hagenberg, Austria

Moises Rodrigues Escuela Superior de Informatica (ESI-CR), Ciudad Real, Spain

Melven Röhrig-Zöllner Institute of Software Technology, German Aerospace
Center (DLR), Cologne, Germany

Ina Schäfer Karlsruhe Institute of Technology, Karlsruhe, Germany

Gary Schmiedinghoff Institute of Software Technology, German Aerospace Cen-
ter (DLR), Cologne, Germany

Chistoph Schroth Fraunhofer IESE, Kaiserslautern, Germany

Peter K. Schuhmacher Institute of Software Technology, German Aerospace
Center (DLR), Cologne, Germany

Yoshinta Setyawati Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Christian Sommer Alpine Quantum Technologies GmbH, Innsbruck, Austria

Davide Taibi University of Oulu, Oulu, Finland

Juris Ulmanis Alpine Quantum Technologies GmbH, Innsbruck, Austria

Alexander Weinert Institute of Software Technology, German Aerospace Center
(DLR), Cologne, Germany

Etienne Wodey Alpine Quantum Technologies GmbH, Innsbruck, Austria

Mederika Zangerl Alpine Quantum Technologies GmbH, Innsbruck, Austria



A Novel Perception of Quantum
Software: Theoretical, Engineering,
and Application Aspects

Michael Felderer , Ricardo Pérez-Castillo , Mario Piattini ,
and Iaakov Exman

Abstract The chapter discusses the importance of quantum software and defines
it as a multifaceted concept comprising a theoretical, engineering, and application
viewpoint. Hence, it covers aspects of quantum software theory, quantum software
systems, as well as quantum software laboratory. The chapter also outlines the entire
book and its individual chapters structured into three parts on quantum software
theory, quantum software system design, as well as quantum software laboratory
and applications.

Keywords Quantum computing · Software engineering · Theory and
experiments

M. Felderer
Institute of Software Technology, German Aerospace Center (DLR), Cologne, Germany

University of Innsbruck, Innsbruck, Austria

University of Cologne, Cologne, Germany
e-mail: Michael.Felderer@dlr.de

R. Pérez-Castillo (�)
UCLM – University of Castilla-La Mancha, Talavera de la Reina, Spain
e-mail: Ricardo.PDelCastillo@uclm.es

M. Piattini
UCLM – University of Castilla-La Mancha, Ciudad Real, Spain
e-mail: Mario.Piattini@uclm.es

I. Exman
HIT – Holon Institute of Technology, Holon, Israel
e-mail: iaakov@hit.ac.il

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 1&domain=pdf
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0000-0002-9271-3184
https://orcid.org/0000-0002-7212-8279
https://orcid.org/0000-0002-9917-3950

 885 45222 a 885 45222 a
 
mailto:Michael.Felderer@dlr.de
mailto:Michael.Felderer@dlr.de
mailto:Michael.Felderer@dlr.de

 885 49096
a 885 49096 a
 
mailto:Ricardo.PDelCastillo@uclm.es
mailto:Ricardo.PDelCastillo@uclm.es
mailto:Ricardo.PDelCastillo@uclm.es

 885 52970 a 885 52970
a
 
mailto:Mario.Piattini@uclm.es
mailto:Mario.Piattini@uclm.es
mailto:Mario.Piattini@uclm.es

 885 56845 a 885 56845 a
 
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il


2 M. Felderer et al.

1 Introduction

Quantum computing itself is a computational paradigm that explicitly uses proper-
ties of subatomic particles such as superposition, entanglement, and interference to
achieve asymptotical speedups over classical algorithms on certain tasks [1]. It is
gaining considerable attention from industry, academia, and public authorities alike
and has been making great progress in recent years. In order to meet its expectations,
not only hardware for quantum computing but also software is required. Quantum
software is a key enabler for quantum computing and, as classical software,
encompasses multiple facets.

As classical software, also quantum software is a multifaceted concept with
several aspects. It covers algorithms, system software, application software, entire
ecosystems, and hybrid systems, as well as suitable software and systems engineer-
ing concepts. In addition, new theoretical foundations for the concept of quantum
software are required as well as concrete applications. This book aims to cover all
these aspects and is therefore divided into three parts: Part I is on quantum software
theory, Part II on quantum software system design, and Part III on the quantum
software applications and laboratory.

The three parts of the book provide the reader with three different perspectives
on quantum software. The first part takes the theoretical viewpoint into account. It
emphasizes that one needs more than just informal software development models.
The time has come to apply mathematical theories enabling convincing verification
of the correctness of quantum software systems. The second part focuses on the
software and system engineering viewpoint. Its goal is to show that in contrast to
a dogmatic fixation on a single approach, one should take the variety of existing
approaches into account to design novel quantum software systems. The third part
of the book focuses on the laboratory and application perspective. Quantum software
applications and laboratory experience are essential to avoid past mistakes and make
quantum computing and its software a success.

The multiplicity of the sometimes conflicting perspectives offered by the dif-
ferent chapters of this book forces consideration of distinct factors involved in a
problem, facilitating the path to the problem solution. The freedom afforded by the
large variety of approaches is a blessing to be explored and not an impediment to
rational decisions, as we try hard to demonstrate in this book. Moreover, it is an
additional way to change how a quantum software system is perceived.

The following sections summarize the contributions of the individual chapters.
Section 2 summarizes the two chapters on quantum software theory. Section
3 summarizes the six chapters on quantum software system design. Section 4
summarizes the four chapters on quantum software laboratory and applications.



A Novel Perception of Quantum Software: Theoretical, Engineering,. . . 3

2 Quantum Software Theory

Quantum computing requires theoretical considerations about the nature of quantum
software. Quantum software adds additional aspects to the software engineering
body of knowledge [2]. It is the result of a special combination of quantum and
software. Two key aspects are modularity—separating modules, the meaningful
subsystems of a system—and entanglement—linking modules when needed, in
order to enable quantum software to run, e.g., in a simulation. Richard P. Feynman’s
visionary 1982 article entitled “Simulating Physics with Computers” [3] is a pioneer
in the field of quantum computing. This is due to Feynman’s inimitable style and
his extensive analysis of the difficulties of quantum simulation of nature.

The second chapter, entitled “Simulating Quantum Software with Density
Matrices: Reading Feynman on Fast-Forward,” provides a novel reinterpretation
of Feynman’s paper [3] as a “quantum software” precursor. Feynman’s proposal
to represent the simulated system by a density matrix opens the way toward a
mathematical quantum software systems theory. Density matrix modularization
leads to software modules as high-level abstractions unifying conceptual software
units, stimulating new software-related questions and novel quantum solutions. This
chapter defines quantum software in terms of a conceptual software perspective and
the density matrix as the rigorous bridge between concepts and qubits.

The third chapter, entitled “Superoperators for Quantum Software Engineering,”
reviews a superoperator-based approach to quantum dynamics. The approach is
supposed to be concrete enough to be useful in quantum software and systems
engineering, which necessitates gaining an understanding of quantum programming
languages and possible approaches to equip them with formal semantics. The
chapter discusses one particularly important superoperator-based formalism, i.e.,
linear superoperators acting on density operators. The chapter tailors the formalism
toward software engineering research and indicates benefits in various application
areas in that domain.

3 Quantum Software System Design

Based on theoretical considerations on quantum software and quantum computing,
this part covers several contributions on quantum software system design. Quantum
software is a multifaceted concept with several aspects. It covers algorithms, system
software, application software, entire ecosystems, and hybrid systems, as well as
suitable software and systems engineering concepts.

The fourth chapter, entitled “QSandbox: The Agile Quantum Software Sandbox,”
describes an agile software sandbox specifically designed for quantum software
research and development. QSandbox is itself modifiable since its high-level
modules are varied at will by quantum software developers. QSandbox has a series
of unique features, to produce fast results when testing any recently modified



4 M. Felderer et al.

quantum circuit. It uses high-level abstraction meaningful modules, instead of low-
level quantum gates of conventional simulators. It has instantly synchronized dual
views—high-level quantum circuit and density matrix. In addition, it has uniform
quantum and classical representation, implying the innovative idea of quantum
circuits for classical software.

The fifth chapter, entitled “Verification and Validation of Quantum Software,”
focuses on classical software testing approaches for quantum software. For that
purpose, 16 quantum software testing techniques, which have been proposed for
the IBM quantum framework Qiskit, are gathered and illustrated based on a
running example. The chapter concludes that researchers should focus on delivering
artifacts that are usable without much hindrance to the rest of the community,
and the development of quantum benchmarks should be a priority to facilitate
reproducibility, replicability, and comparison between different testing techniques.

The sixth chapter, entitled “Quantum Software Quality Metrics,” defines and
empirically assesses a set of metrics for assessing the understandability of quantum
circuits. The provided metrics fall into the categories circuit size, circuit density,
single-qubit gates, multi-qubit gates, all gates in the circuit, oracles, measurement
gates, as well as other metrics. Furthermore, a tool prototype called QMetrics is
provided for automated calculation of the proposed metrics.

The seventh chapter, entitled “Quantum Software Ecosystem Design,” presents
scientific considerations essential for building a quantum software ecosystem that
makes quantum computing available for scientific and industrial problem-solving. It
is based on the concept of hardware–software codesign, which fosters a bidirectional
feedback loop from the application layer at the top of the software stack down
to the hardware. The approach starts with compilers and low-level software that
are specifically designed to align with the unique specifications and constraints
of the quantum processor. Then, the chapter presents algorithms developed with
a clear understanding of underlying hardware and computational model features,
and extends to applications that effectively leverage the capabilities to achieve a
quantum advantage. The chapter analyzes the ecosystem from a conceptual view,
focusing on theoretical foundations, and the technical view, addressing practical
implementations around real quantum devices necessary for a functional ecosystem.
It offers a guide to the essential concepts and practical strategies necessary for
developing a scientifically grounded quantum software ecosystem.

The eighth chapter, entitled “Development and Deployment of Quantum Ser-
vices,” emphasizes that new techniques and tools are needed to facilitate access to
quantum computing technology provided by cloud providers like IBM, Amazon,
Microsoft, or Google. This helps developers to increase the level of abstraction at
which they work with this technology. The chapter performs a technical comparison
between different quantum computing service providers using a case study by
performing empirical tests based on the Traveling Salesman Problem. The study
highlights the differences between the major providers. In order to address these
differences and reduce the vendor lock-in effect, the chapter makes three proposals:
an extension of the Quantum API Gateway to support the different vendors; a
code generator making use of a modification of the OpenAPI specification; and a



A Novel Perception of Quantum Software: Theoretical, Engineering,. . . 5

workflow to automate the continuous deployment of these services making use of
GitHub Actions. This would allow programmers to deploy quantum code without
specific knowledge of the major vendors, which would facilitate access and simplify
the development of quantum applications.

The ninth chapter, entitled “Engineering Hybrid Software Systems,” highlights
that software modernization processes for transforming and migrating legacy soft-
ware systems (which may include adding new existing quantum software) toward
such hybrid software systems will be required. The chapter discusses the challenges
of hybrid software and how software modernization (based on architecture-driven
modernization) can be used as a reengineering solution for an effective evolution
of classical and quantum software. This process makes it easier to combine both
computing paradigms, quantum and classical. The modernization process consists
of three phases, reverse engineering, restructuring, and forward engineering. The
overall modernization process follows the Model-Driven Engineering (MDE) prin-
ciples, and, therefore, it could be instantiated with different (meta)models. The main
implication of the quantum software modernization process for practitioners is a set
of challenges that may appear during the evolution of classical software systems
toward hybrid software systems. Thus, software modernization helps companies to
identify which components from their business models could be evolved, and how,
or even to start new businesses following this new paradigm using techniques and
standards which have been proved to be effective in solving such problems.

4 Quantum Software Laboratory and Applications

Based on the theoretical and software system design considerations, this part covers
several contributions on quantum software laboratory and applications. It covers
a concrete quantum computing technology, i.e., trapped-ion quantum computers,
the application to quantum computer in the health domain, industrial application
scenarios for quantum software engineering, as well as an empirical study to
provide a comprehensive understanding of the current state of quantum software
engineering.

The tenth chapter, entitled “Trapped-Ion Quantum Computing,” presents
trapped-ion quantum computing, which proves to be very suitable for the transition
from tabletop, lab-based experiments to rack-mounted, on-premise systems that
allow for operation in data center environments. However, several technical
challenges need to be solved, and controlling many degrees of freedom needs
to be optimized and automated before industrial applications can be successfully
implemented on quantum computers situated within data centers. These necessary
developments range from the architecture of an ion trap that fundamentally defines
the supported instruction sets, over the control electronics and laser systems, which
limit the quality of qubit operations, to the optimized compilation of quantum
circuits based on qubit properties and gate fidelities. The chapter introduces the
ion-trap quantum computing platform, presents the current technical state of the



6 M. Felderer et al.

art of Alpine Quantum Technologies GmbH (AQT’s) ion-trapping hardware and
rack-based quantum computing systems, and highlights parts of the execution stack.

The eleventh chapter, entitled “Quantum Software Engineering and Program-
ming Applied to Personalized Pharmacogenomics,” applies upcoming best practices
of quantum software engineering to the development of a hybrid quantum/classical
software system in the context of personalized pharmacogenomics. It reports on
results from the QHealth project. The chapter concludes that in order to achieve
quantum software that can really be used in health information systems, it is
necessary to build it in an engineering way and without forgetting the good practices
of software engineering. In fact, in the QHealth project, tools for design, quality,
testing, estimation, and process management were proposed to implement the
project.

The twelfth chapter, entitled “Challenges for Quantum Software Engineering:
An Industrial Application Scenario Perspective,” analyzes three paradigmatic appli-
cation scenarios for quantum software engineering from an industrial perspective.
The use cases cover (1) optimization and quantum cloud services, (2) quantum
simulation, and (3) embedded quantum computing. From the use case analysis, the
chapter concludes that quantum programming today mostly means custom-tailoring
a quantum solution to a very specific instruction set of a specifically developed
special-purpose quantum computer. The tendency in software engineering today
is, however, to abstract exactly from those low-level details and instead focus on
requirements and design issues. Hence, recently outdated, former core disciplines
of mainstream software engineering research like compiler construction and instruc-
tion set architecture design will become highly relevant again.

The thirteenth chapter, entitled “Quantum Software Engineering Issues and
Challenges: Insights from Practitioners,” presents an empirical study based on a
survey and expert interviews. Its aim is to provide a comprehensive understanding
of the current state of quantum software engineering. Results show that there is great
enthusiasm and interest in quantum programming, with abundant educational and
experimental repositories indicating a fertile ground for innovation. The potential
applications of quantum computing, especially in fields like chemistry, physics,
and cryptography, are promising, and this has led to a growing community of
developers and researchers eager to explore and contribute to this emerging field.
However, many challenges must be overcome before the full potential of quantum
software engineering can be realized. These challenges include a steep learning
curve, a lack of standardized frameworks, hardware limitations, and a nascent stage
of community collaboration.

5 Conclusion and Acknowledgment

This chapter has discussed the importance of quantum software. It covers aspects of
quantum software theory, quantum software systems, as well as quantum software
laboratory. The editors of this book want to thank all chapter authors for their



A Novel Perception of Quantum Software: Theoretical, Engineering,. . . 7

valuable contributions. Furthermore, the editors want to express their gratitude to
all participants of the First Working Seminar on Quantum Software Engineering
(WSQSE 22) [4] for the fruitful discussions. WSQSE 22 was held on December
15–16, 2022, in Innsbruck, and during that seminar, the idea for this book was born
from the fruitful discussion.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press (2010)

2. SWEBOK V3.0. https://www.computer.org/education/bodies-of-knowledge/software-
engineering/topics

3. Feynman, R.P.: simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
4. Felderer, M., Taibi, D., Palomba, F., Epping, M., Lochau, M., Weder, B.: Software engineering

challenges for quantum computing: Report from the First Working Seminar on Quantum
Software Engineering (WSQSE 22). ACM SIGSOFT Softw. Eng. Notes. 48(2), 29–32 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 9074 14995 a 9074 14995 a
 
https://www.computer.org/education/bodies-of-knowledge/software-engineering/topics
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part I
Aspects of Quantum Software Theory



Simulating Quantum Software
with Density Matrices:
Reading Feynman on Fast-Forward

Iaakov Exman

Abstract Richard P. Feynman’s 1982 paper “Simulating Physics with Computers”
is often recognized as a pioneer of quantum computing. However, careful reading
between the lines finds further meaningful content. This work reinterprets the
pioneering paper, as a precursor of Quantum Software. Feynman’s proposal to
represent the simulated system by a Density Matrix opens the way toward a
mathematical Quantum Software systems theory.

Density Matrix modularization leads to software modules as high-level abstrac-
tions unifying conceptual software units and matrix basis kets, stimulating new
software-related questions and novel quantum solutions. Software modules are
building blocks for any imaginable Quantum Software computations in practice,
such as software system evolution, measurement, compositionality, and future
potential applications.

Keywords Quantum Software · Density Matrix · Software modules · Quantum
Software theory · Computational applications

1 Introduction

Undoubtedly and rightly so, Richard P. Feynman’s visionary 1982 article entitled
“Simulating Physics with Computers” [1] is a pioneer in the field of Quantum
Computing. This is due to Feynman’s inimitable style and his extensive analysis
of the difficulties of quantum simulation of nature.

But this characterization is not the whole story. Feynman also had a wide range
of interests in very different computational issues, in particular how software works.
As he stated, just before his paper discussion, it has been very challenging to
make a computer able to understand human natural languages. Thus, computers

I. Exman (�)
School of Computer Science, Faculty of Sciences, HIT – Holon Institute of Technology, Holon,
Israel
e-mail: iaakov@hit.ac.il

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 2&domain=pdf
https://orcid.org/0000-0002-9917-3950

 885
56845 a 885 56845 a
 
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il


12 I. Exman

have stimulated new types of thinking. Feynman’s paper, beyond being a quantum
computing pioneer, is a precursor of Quantum Software. This is the thesis of this
chapter.

This work offers a novel reinterpretation of Feynman’s paper as a “Quantum
Software” precursor for two reasons: first, the language of software in its highest
level of abstraction is the human natural languages spoken and understood by human
beings; second, Feynman’s 1982 paper gave specific suggestions concerning the
suitable way to simulate physical systems with computers: (a) to represent the
simulated system by a Density Matrix; (b) to discretize space and time, and simulate
time indirectly by state transitions. Indeed, Feynman’s simulation suggestions
perfectly fit software systems.

Density Matrices are a unique mathematical model with duality—system state
and operator—perfectly fitting the duality of software systems—structure and
behavior. A density Matrix, itself a projection operator, can be conceptually
modularized by basis ket-bra projectors of its finite Hilbert space. This opens the
horizon to a Quantum Software theory of systems, with deep and unexpected ben-
efits. It stimulates new software-related questions and their solutions, in particular
concerning software evolution and measurement. It offers software modules as the
highest level of abstraction for Quantum Software, well above qubits and gates.

This chapter defines Quantum Software in terms of a conceptual software
perspective and the Density Matrix as the rigorous bridge between concepts and
qubits.

1.1 Feynman’s Quantum Computing Pioneer Paper

It is interesting to follow Feynman’s motivation and reasoning to reach simulation
of physics—viz., our universal laws of nature—by means of computers. His main
motivation was to acquire new knowledge about the laws of physics by performing
experiments in a computational laboratory, by additional means other than experi-
ments in a traditional physical laboratory or eventual “Gedanken” experiments.

Feynman starts asking about simulation of physics by means of a universal
computer, i.e., equivalent to a Universal Turing Machine. Immediately, Feynman
adds the importance of interactions locality (see also Lloyd [2]): no arbitrary
numbers of interconnections within a huge computer. The desirable simulation, for
a physical system of any size, would demand a quantity of computation units at most
proportional to the enclosed volume of the system space-time.

Another desirable requirement is a simulation as exact as nature itself. Alter-
natively, one might think how to modify physical law, a central motivation for
Feynman’s interest in the simulation problem, for instance, instead of a continuous
space, the usage of a lattice-like discrete space. An example of a problem in such a
space is the dependence of speed of light on direction; other anisotropies could be
empirically discovered through “experiments” in the computational laboratory.



Simulating Quantum Software with Density Matrices:. . . 13

But the hardest problem, instead of classical physics, is to simulate quantum
mechanics, predicting probabilities. According to Feynman, probability prediction
of an experiment amounts to repeating the “computational experiment” in each local
region enough times to estimate the respective probability value and its accuracy.
But if one has a very large number of particles, the only way to succeed in the
calculations is to have the computer made of units themselves behaving according
to quantum mechanics, viz., a universal quantum computing simulator (cf. Deutsch
[3]). In particular, there is no way to store the numbers relevant to all particles along
the quantum computation. One needs to generate correct probability results directly.
A Density Matrix is the suitable entity, instead of wave functions.

Indeed, Feynman’s 1982 article is considered a pioneer in the field of quantum
computing. However, this is not the whole story, as described next.

1.2 Novel Insight: Feynman’s Quantum Software

Feynman mentions in his 1982 paper [1] that computers triggered new ways of
thinking relevant to various scientific fields. Among Feynman’s wide range of
interests, he had in mind computational issues, such as how software really works,
reflected in the Feynman Lectures on Computation (see Preskill [4], Feynman and
Hey [5]). Here we offer a novel reinterpretation of Feynman’s paper: beyond being
a quantum computing pioneer, it is a precursor of Quantum Software.

• Why Software?

A software system is essentially a set of natural language concepts, whose
ultimate purpose is to be understood by human beings. Natural language concepts
are first-class entities in the description of any software system. As stated by
Feynman’s 1982 paper, just before that paper’s Discussion, one did not actually
grasp how formidable a challenge it was to understand natural languages—certainly
in his time—until the direct efforts to make computers able to “comprehend”
language. Nowadays, with large language models (LLMs) we better appreciate
both the difficulties and the surprising relationships between natural language and
software.

• Why Quantum Software?

We propose to look at Quantum Software as an embodiment of a runnable and
verifiable theory of software systems based upon quantum computing, and a highest
abstraction level simulation in terms of conceptual software modules. In this view,
Quantum Software subsumes all strictly Quantum Software systems, pure classical
software systems, and hybrids of both kinds.

What is the starting point for Quantum Software simulation? Following the
admirable precision, and surprising relevance to software systems, of Feynman’s
1982 paper [1], suggestions include:



14 I. Exman

Density Matrix—describes the whole finite Hilbert state space of the quantum
software

Discretization—assumes discrete space (the finite number of Density Matrix ele-
ments) and discrete time (resembling a computer’s clock period) fitting software
systems; simulates time indirectly by transitions between software system states

• How to Link Software Concepts to a Density Matrix?

Natural language software concepts of a given software system are not directly
manipulated in Density Matrix calculations for good reasons. They are indexed, and
the indices are in one-to-one correspondence with the Quantum Software system
Density Matrix columns and rows.

1.3 Quantum Software Is the Density Matrix

Quantum Software is the Density Matrix. All Quantum Software possible calcula-
tions and property measurements can use the Density Matrix mathematical model as
a highest abstraction level simulation, instead of a low-level implemented software
system, which may not be available.

Section 4.1 details a systematic approach to generate the Density Matrix of
Quantum Software systems. Once generated, one obtains from the Density Matrix
the Quantum Software modules, as described in Sect. 4.3. Then, one learns the
Quantum Software system properties and eventually improves its design. The whole
Density Matrix shows structure and behavior duality; likewise, each of the software
system modules also displays duality, being subspaces of the whole Density Matrix.

One may evolve the Density Matrix state from a certain module to the next
module by means of relevant unitary operators, in discrete time steps. This is a
simulated equivalent to the actual execution of the low-level runnable software.
One obtains Quantum Software properties by performing, upon the Density Matrix,
probabilistic projective measurements, as Feynman’s computational experiments
suggested. Furthermore, one can compose the whole system Density Matrix using
direct sums of smaller matrices representing the Quantum Software modules.

1.4 Chapter Organization

The next sections of this chapter are organized as follows. Section 2 highlights
significant steps of the software history until just before one gets to Quantum
Software. Section 3 summarizes quantum computing ideas, which are essential
for the understanding of Quantum Software. Section 4 defines Quantum Software
based upon the ideas of the two previous sections. Section 5 illustrates the theory
by a few overviews of pure classical and strictly “Quantum” Software systems,



Simulating Quantum Software with Density Matrices:. . . 15

and hybrid composition of classical and quantum subsystems. Section 6 concisely
refers to related work. This chapter is concluded in Sect. 7 with a discussion of its
fundamental results.

2 What Is Software?

The relatively short history of software is a history of ideas. Our particular choice
of milestones is not meant to be a comprehensive historical account. Nonetheless,
one can clearly discern the evolving commonality of ideas which developed along
software’s history. It converges with the fundamental notion of “concepts,” with the
“structure and behavior” duality.

The first appearance of “software engineering” as a discipline was at a NATO
conference in 1968 [6]. Our first software history milestone is the idea of “types”:
Dahl and Hoare’s chapter with types embedded in “hierarchical structures” in 1972
[7] and Barbara Liskov’s Substitution principle on subtypes’ inheritance in 1974
[8].

The next milestone is Frederick Brooks’ idea of “conceptual integrity,” first
formulated in his book The Mythical Man-Month [9] published in 1975. In the
most recent milestone by Daniel Jackson, concepts are already visible in the title
of his book, The Essence of Software: Why Concepts Matter for Great Design [10],
published in 2021.

2.1 Liskov Types and Dahl and Hoare Hierarchical Structures

Original ideas by Barbara Liskov [8] and coworkers were published a few years
after the proposal of the software engineering discipline, especially, the Liskov
Substitution Principle, which tries to define the relation between types and their
subtypes, i.e., the idea of inheritance.

Why is Liskov’s Principle so interesting?
First, by what should have been obvious, the necessity of structure and behavior

duality. Despite the fact that types—i.e., classes—are structural notions, inheritance
by subtypes is surprisingly defined in terms of conservation of behavior.

Second, the audacity to generalize, motivated by the search for a real theory of
abstraction. The Liskov Substitution Principle is formulated in terms of a certain
type and its subtype. It refers to all programs containing such a type, despite the “all
programs” generalization clearly being an obstacle to formal correctness verification
of the principle for any particular case.

The “Hierarchical Program Structures” [7], written by Ole-Johan Dahl and
C.A.R. Hoare, is the third monograph of the influential book entitled Structured
Programming (published in 1972). It still uses the programs and programming



16 I. Exman

notions, instead of software, although the term software engineering had already
surfaced 4 years before.

The first sentence of Dahl and Hoare’s monograph refers to exploration of
program structure and its relation to concept modeling. Concept modeling is a
central and recurrent theme of software. Basic examples refer to “type,” which is a
class of values. Associated with each type concept, there are a number of operations
which apply to the type values. Thus, each of the types includes a data structure and
a set of associated operations, again reflecting the structure and behavior duality.

The idea of modularity is expressed by concepts concerning limited aspects
of the system, i.e., a subsystem obtained by decomposition of the whole system.
Good design ensures system decomposition such that each module may be designed
and revised virtually without implications for other modules of the system. An
influential paper on modularity is that by Parnas in 1972 [11].

In modern terminology, Dahl and Hoare ([7], p. 179) state that a procedure
originating block instances that survive its call is named a class. Its instances are
coined objects of that class. A class also has variables and procedures local to the
class body, named attributes of that class.

Conceptual hierarchies are built in which each layer is a conceptual level of
understanding. A system is constructed and understood in terms of high-level
concepts. These are in turn understood in terms of lower-level concepts and so on.
The important construction principle (see [7] p. 209) is abstraction. One focuses
on common features, abstracting away other features that are far removed from the
relevant working conceptual level.

2.2 Brooks’ Conceptual Integrity

Frederick P. Brooks, Jr. declared in his book The Mythical Man-Month in 1975 [9],
and reiterated in his The Design of Design in 2010 [12], that “conceptual integrity
is the most important consideration for Software system design.”

Let us carefully analyze the implications of such a statement.
The first intriguing word is conceptual. Concepts, rather than programming

language reserved words, are essential to human natural languages. The message
conveyed is that instead of focusing on some formal or informal technique to avoid
errors during the software system design, the important issue is clear understanding
by humans of the final design product, viz., software systems.

The second intriguing word is integrity, which points to intimate relationships
among concepts within a software system. Concepts are not arbitrary. Integrity
means coherence. These relationships were already hinted at by Dahl and Hoare, in
their abstracting away features that are irrelevant to the intended conceptual level.

The surprisingly far-fetched idea assigns the most important design considera-
tion to conceptual integrity. Can this be justified in a deeper way? Brooks instead
provides ([12], p. 143) design principles to answer another question: How to achieve
conceptual integrity?



Simulating Quantum Software with Density Matrices:. . . 17

Brooks’ conceptual integrity principles, slightly modified (see Perez De Rosso
and Jackson [13], p. 39), are formulated as follows:

• Propriety—a software system should have only the concepts essential to its
purpose and no more.

• Orthogonality—individual concepts should be independent of one another.

These principles—propriety and orthogonality—hint at linear algebra, the basis
of quantum computing. Indeed, the deeper justification for Brooks’ conceptual
integrity principles is given in Sect. 4 of this chapter, where we define Quantum
Software.

2.3 Jackson’s Software Concepts

Daniel Jackson’s book The Essence of Software [10] finally illustrates software
concepts with many examples, once more emphasizing the structure and behavior
duality.

One such concept, the “recycle bin” (cf. [10] p. 49), is ubiquitous on the computer
operating system screen desktop. Our standard tabular concept, a variant of the
format proposed by Jackson [10] with added structors, functionals, and modules,
is shown in Fig. 1.

Fig. 1 Recycle Bin Quantum Software—tabular concept. Its two modules are a waste bin and
recyclable items. It clearly shows, besides its purpose, the structure and behavior duality: its
structor types (green) and its respective functional behaviors (orange). These are complemented
by an explanatory operational principle



18 I. Exman

A few comments about Fig. 1 are in order:

• Natural language concepts—software concepts are always expressed in human
natural language, providing suitable metaphors, which are very desirable.

• Natural language richness—concepts meaning is not necessarily linked to
grammatical classification of a word; e.g., the word “empty” can be an adjective;
in the recycle bin concept, empty is a verb. The word “accessible” is generally an
adjective but has a multiplicity of meanings such as attainable, understandable,
approachable, etc.

• Structure and behavior—at this stage, the structure and behavior duality should
be familiar.

Structors, as their name suggests, are related to structure, and functionals are
related to behavior. More details are found in Sect. 4.

• Structor types—the structor types in the recycle bin refer to location. The bin
itself is a possible location. The relevant metaphor is a waste basket. Deleted
means inside the bin; accessible means outside the bin.

• Concepts generality—“recycle bin” does not fix the kind of item that can be
recycled. One may use the concept whenever it is appropriate. Common usages
are, for instance, a “file” or an “email message” that may be deleted or recycled.

• Flexibility—recycled means reusable, not necessarily for exactly the original
usage.

3 What Is Quantum?

Assuming a potential chapter readership of both physicists and software researchers,
we include in this section a very concise reminder of a few quantum computing
ideas essential for understanding Quantum Software: superposition, entanglement,
and the Density Matrix.1

We have already stated that Quantum Software is defined by its Density
Matrix. Superposition and entanglement are important quantum properties, not
found in classical computing, relevant to Density Matrix modularization and other
calculations. The nature of Quantum Software is detailed in Sect. 4.

1 The reader less familiar with these ideas is encouraged to read relevant sections of a quantum
computing book (e.g., [14, 15]).



Simulating Quantum Software with Density Matrices:. . . 19

3.1 Superposition and Entanglement

In contrast to the two numerical values 0, 1 of classical bits, a qubit |ψ〉 may have
any intermediate value between the ket state |0〉 and the ket state |1〉. It is said that
|ψ〉 is in a superposition, as in Eq. (1):

.|ψ〉 = c1
∗|0〉 + c2

∗|1〉 (1)

where the coefficients c1 and c2 are complex numbers—probability amplitudes—
obeying c1

2 + c2
2=1.

Assuming two particles a and b, each of them in a superposition state as in Eq.
(1), their joint state is given by a tensor product

⊗
:

.|ψ〉 = (
a1

∗ |0〉a + a2
∗ |1〉a

) ⊗ (
b1

∗ |0〉b + b2
∗ |1〉b

)
(2)

Actually performing the multiplication obtains

.|ψ〉 = (
a1

∗b1
∗ |00〉 + a1

∗b2
∗ |01〉 + a2

∗b1
∗ |10〉 + a2

∗b2
∗ |11〉) (3)

This is still a separable superposition: one easily reverts to Eq. (2) by extracting
the coefficients a1, a2.

Now suppose one goes back to the laboratory and carefully prepares the particles
a and b in the following joint state:

.|ψ〉 = (
a1

∗b1
∗ |00〉 + a2

∗b2
∗ |11〉) (4)

This is an example of entanglement. Whenever particle a is in a given state,
say |0〉, particle b is in the same state, and they are not separable. There are no
coefficients to be extracted.

3.2 Density Matrix

The Density Matrix—a Von Neumann concept [16]—is a mathematical model
which describes the state of a whole quantum system, whose most elementary
subspaces are ket states associated with the Density Matrix columns (see Sect. 4.1
and the examples in Sect. 5).

Strictly, the Density Matrix is the matrix representation of the density operator.
Since the Density Matrix is itself an operator applicable to quantum vectors,
interchanging the Density Matrix and density operator denominations is quite
common. Thus, the Density Matrix duality, reflecting both the structure of a state
and the behavior of an operator, nicely fits the structure and behavior software
systems duality.



20 I. Exman

More formally, the Density Matrix associated with an n-dimensional Hilbert
space is an n-by-n positive semi-definite, trace-one Hermitian matrix. Given a state-
vector ψ describing the same pure quantum system, the fitting Density Matrix ρ is
obtained as a ψ ket-bra, i.e., the operator is a projector:

.ρ = |ψ 〉〈 ψ| (5)

A projector is an operator that projects its argument into a subspace of the
whole space of the quantum system, justifying the relation between projectors and
Quantum Software modularization.

4 What Is Quantum Software?

The next text box is a procedure from a tabular concept to a Quantum Software
Density Matrix.

This section describes the trajectory from a tabular concept—with concepts
possibly extracted from a class diagram or a quantum circuit—until one reaches the
Quantum Software Density Matrix. Its linear algebraic constraints, corresponding
to Brooks’ conceptual integrity principles, enable modularity. Finally, Quantum
Software evolution and measurement are outlined.

4.1 From Tabular Concept to Its Quantum Software Density
Matrix

Conceptualization, to decide what is the concepts’ set of a specific software system
defining its tabular concept is a very creative and nontrivial activity. The starting
tabular concept of Procedure 1 can possibly be extracted from a suitable diagram:



Simulating Quantum Software with Density Matrices:. . . 21

Fig. 2 Recycle bin software concept—explicit modules, structors, and functionals. Their assigned
indices are shown in the bipartite graph, to be identifiers of rows and columns in the following
matrices. For instance, the S2 deleted structor provides the F2 recycle-item functional, which is
consumed by the S1 accessible structor

Fig. 3 Recycle bin software concept—bipartite graph. It has six vertices: structors have a green
background; functionals are shown in orange. Arrows pointing downward (black) mark provided
functionals. Arrows with dashed lines pointing upward (red) mark consumed functionals. Two
modules are shown on a light blue background

class diagram for classical software system or quantum circuit for a quantum or
hybrid software system. Once the tabular concept is obtained, the procedure is the
same for all types of software systems.

The “recycle bin” tabular concept of Fig. 1 (shown in Sect. 2.3) serves to illustrate
Procedure 1. Figure 2 details how to explicitly assign indices to the recycle bin
concepts: structors indexed by Sj and functionals indexed by Fk. It also includes
modules that in principle are seen only after Density Matrix modularization.

In order to allow software systems with conceptual hierarchies, where each
conceptual level has its own Density Matrix, we generalize the notion of class to
structor, and similarly generalize class method to functional, to be usable at any
conceptual level.

The recycle bin tabular concept of Figs. 1 and 2 is translated to a bipartite graph
shown in Fig. 3. According to the definition of any bipartite graph, it has two vertex
sets, such that a vertex in a certain set is only linked to vertices in the other set.

One obtains a Laplacian Matrix L from the bipartite graph using Eq. (6):

.L = D–A (6)

where D is the Degree matrix, whose elements in the diagonal Dmm are the degree
values of the vertex m of the bipartite graph. An element Amn of the Adjacency
matrix A is nonzero when the vertex n is a neighbor of the vertex m, and zero
otherwise.



22 I. Exman

Fig. 4 Recycle bin software concept—Laplacian matrix. The degree matrix is diagonal (green
background). The adjacency matrix upper-right quadrant provided functionals (blue background)
with −2 values and consumed functionals (hatched blue) with −1 value elements are reflected
around the diagonal to the lower-left quadrant. Each Laplacian column element sums to zero.
The same is true for Laplacian row elements. The purpose of different nonzero adjacency values
(−1, −2) is to differentiate provided from consumed functionals (compare the arrow colors in the
bipartite graph)

The recycle bin Laplacian matrix in Fig. 4 is obtained from the bipartite graph in
Fig. 3.

One generates the Density Matrix ρ by normalizing the Laplacian matrix L. This
is given according to the Density Matrix definition (see Sect. 3.2 of this chapter) and
following Braunstein et al. [17]. Dividing L by the Laplacian matrix Trace(L) as in
Eq. (7) obtains Trace(ρ)=1:

.L = L/T race (L) (7)

In Quantum Software Density Matrices each column and each row represents
a different elementary concept, indexed by Sj and Fk. Each module represents a
new encompassing concept, subsuming its columns and rows in a software system
sub-matrix.

The recycle bin Quantum Software Density Matrix in Fig. 5 is the result of
normalizing the Laplacian in Fig. 4.

4.2 Linear Algebraic Constraints for Software Systems

Brooks’ conceptual integrity principles (of Sect. 2.2)—propriety and orthogonal-
ity—are here, respectively, reexpressed in linear algebraic terms by means of inner
products of column and row vectors of the adjacency matrix—within the density
matrix:



Simulating Quantum Software with Density Matrices:. . . 23

Fig. 5 Recycle bin Quantum Software—Density Matrix ρ. It is the Laplacian matrix of Fig. 4
normalized by 1/Trace(L) of the Laplacian L, whose value is 1/16. Also added are the basis
kets above the matrix columns, and corresponding basis bras to the left of matrix rows. See the
explanation about modularity in Sect. 4.3

• Vectors Linear Independence—all adjacency matrix column vectors must be
mutually linear independent, and the same must be true for all matrix row
vectors, minimizing the number of Quantum Software system concepts. As a
linear algebra consequence, each adjacency matrix quadrant, within the Density
Matrix, is square.

• Vectors Orthogonality—all software system modules within the adjacency matrix
should be mutually orthogonal because concepts in different modules have less
in common than concepts in the same module. The adjacency matrix is block
diagonal.

These linear algebraic constraints, within the Quantum Software context, are a
deeper justification for Brooks’ conceptual integrity idea, and also play a crucial
role in Quantum Software modularization. On the other way round, these constraints
are the beginning of the perception of Quantum Software as a verifiable theory of
software systems.

4.3 Modularity

Modules are formally defined as subspaces of the whole Quantum Software Density
matrix space. A Quantum Software formal modularization procedure is formulated
in the next textbox.



24 I. Exman

The best clarification of this procedure is to illustrate it with an example, such
as recycle bin. The assignment of the basis kets and bras to the Density Matrix
columns and rows is already done in Fig. 5. Modularization results for the recycle
bin software concept system are shown in Fig. 6.

Some relevant comments referring to Fig. 6 are:

• Kets’ columns and bras’ rows—it is easily checked that kets and bras in the
projectors (middle column in Fig. 6) neatly fit to the Density Matrix columns and
rows (in both quadrants of Fig. 5) indexed by the structors and functionals (r.h.s.
column in Fig. 6).

• Mathematical manipulation—concepts are not directly manipulated in any
procedure, due to the complex richness of natural language. Only their indices
structors Sj and functionals Fk, kets and bras, which are clear-cut and unambigu-

Fig. 6 Recycle bin Quantum Software—modules. These are obtained using Procedure 2. The bin
module has a single projector shown in this figure. The item module has more projectors than the
ones shown in this figure, but the displayed projectors are representative, since they contain all
the kets and bras appearing in all other projectors. One clearly perceives that the item module
projectors have kets and bras disjoint to those in the bin module projectors. For the sake of
simplicity, the projectors do not include the Density Matrix normalizing factor



Simulating Quantum Software with Density Matrices:. . . 25

ous, are directly involved in any kind of calculation. The module concept names
in the l.h.s. column of Fig. 6 are for illustration only.

• Results confirmed by strict linear algebra—the results in Fig. 6 are confirmed
by a purely linear algebraic procedure: calculate Density Matrix eigenvectors and
eigenvalues; modules are obtained from eigenvectors having eigenvalues equal to
zero (see, e.g., [18]).

• Absence of connectors—connectors link modules allowing evolution (see Sect.
4.4). Here, the recycle bin Quantum Software does not have connectors, since
there is no necessary linkage between the two modules, viz., item functionals
and the bin “empty” functional. Items can be deleted or recycled, without the
bin being emptied and vice versa, e.g., by an actuator external to the recycle bin
system.

4.4 Evolution and Measurement

Density Matrix evolution means a highest-level simulated transition from state to
state, in general from one module to the next one, equivalent to a low-level software
run (see, e.g., Exman [19]).

Quantum Software Density Matrix evolution is done by means of unitary
operators U and their adjoint, i.e., complex conjugate transpose U† (U dagger)
operators, defined in Eq. (8):

.UU† = U†U = I (8)

where I is the identity operator. Thus, UU† is normalized.
Connectors are Density Matrix elements outside modules enabling evolution.

Connectors serve as “cursors” defined by Feynman (see Feynman’s 1985 paper [20],
p. 15)—in analogy to a display movable indicator, pointing to a location where an
evolution step may be selected. Unitary operators activate connectors: the simulation
evolves by its focus moving from one module to the next one. This is indirect time
simulation by state transitions, from module to module.

Quantum Software measurement upon its Density Matrix is actually done in a
projective manner, again as Feynman previewed in his 1982 paper [1], by executing
it several times until it converges to a stable value of the probabilistic result (see
Exman and Zvulunov [21]).

5 Sample Quantum Software Concepts

This section offers a small set of Quantum Software concepts embodied in sample
systems—one purely classical, some strictly quantum, and a hybrid combination
of classical and quantum subsystems. The purpose is to illustrate the uniform



26 I. Exman

approach to the variety of Quantum Software concepts, in the tabular concept and
the corresponding Density Matrix for each case.

The emphasis is on modules, the essential highest abstraction level entities of
Quantum Software. Modules obey linear algebraic constraints (from Sect. 4.2),
especially orthogonality, and express conceptual meaning understood by human
beings. We also point to specific modularity difficulties.

5.1 Reservation: A Purely Classical Concept

The reservation software concept ([10], p. 55) functionality is well known from
everyday life: to make a reservation for a hotel room, a seat in a train or airplane,
or a table at a restaurant. The goal, from the resource provider viewpoint, is to
efficiently manage limited resources. It has two modules:

a) Resource—for instance, the rooms of a hotel; they may be provided to hotel
guests after cleaning or retracted if the room needs periodic maintenance or
repairs.

b) User—for example, hotel guests may make a reservation, use it as intended, or
cancel it.

The reservation tabular concept is shown in Fig. 7.
The reservation Quantum Software Density Matrix in Fig. 8 fits the tabular

concept in Fig. 7.

Fig. 7 Reservation Quantum Software—tabular concept. One sees two modules: resource with
structors {S1, S2} and functionals {F1, F2}; user with structors {S3, S4, S5} and functionals {F3,
F4, F5}, and one user-resource connector linking the two modules by means of a single matrix
element {S3-F2}



Simulating Quantum Software with Density Matrices:. . . 27

Fig. 8 Reservation Quantum Software—Density Matrix. In analogy to the recycle bin Density
Matrix ρ in Fig. 5, one perceives the normalization factor whose value here is 1/28, the basis
kets above the matrix columns, and fitting basis bras to the left of the matrix rows. Consumed
functionals internal to the modules have a −1 value (hatched blue background). Please note the
connector in the matrix element {S3-F2} (hatched brown background), also with a −1 value,
linking the user 3-by-3 module to the resource 2-by-2 module

Comments on the reservation Quantum Software Density Matrix in Fig. 8 are:

• Connector Evolution Step—the specific purpose of this matrix in this chapter,
with just one connector {S3-F2}, is to illustrate the very connector idea,
as evolution enabler. The corresponding possible evolution step would be a
transition from the user module making a reservation to the resource module
removing the resource from the available ones.

• Additional Connectors—There could be additional connectors, not shown here;
for example, Cancellation→Add-to-available could be added to the matrix
element {S4-F1}.

• Internally Consumed Functionals—there are three consumed functionals inside
their respective modules, whose meanings are: {S1-F2} a provided resource
can be removed by the resource provision from the available ones, e.g., for
maintenance or repairs; {S3-F4} a reservation can be cancelled by the user; {S3-
F5} a reservation can be used by the respective user.

• Modularization Confirmed by Strict Linear Algebra—similar to the recycle bin
(Fig. 6), the modularization in Fig. 8 is confirmed by a purely linear algebraic
procedure based upon Density Matrix eigenvectors and eigenvalues [18]. Note
that the highest degree values in the diagonal degree matrix are those referring to
the connector matrix element. Excluding the connector from the Density Matrix
leaves exactly two neat modules, resource and user.



28 I. Exman

Fig. 9 Grover search Quantum Software—tabular concept. It has three modules (initiator, Grover
iteration, and measuring device) and two connectors linking the modules initiator to Grover
iteration, and linking Grover iteration to measuring device

5.2 Grover Search: A Modular Quantum Concept

Grover search is a well-known quantum computing algorithm [22]. It speeds up
search of a non-sorted database of N elements with a computational complexity of
O(

√
N), compared to a classical algorithm with a complexity of O(N). The Grover

tabular concept, at the highest abstraction level, is shown in Fig. 9. The respective
Quantum Software Density Matrix is shown in Fig. 10.

The obvious modularity of this Quantum Software concept is clearly perceived in
the operational principle in Fig. 9. It corresponds to a quantum circuit strictly linear
and sequential, widely described in literature sources (see, e.g., [14], page 251; [23]
p. 168) with a single register of n qubits, where the number of search elements is
N=2n. There may be additional qubits internal to the oracle workspace. The Grover
iteration is repeated O(

√
N) times.

Some comments about the Grover search Quantum Software concept in Fig. 9
are:

• This is a highest-abstraction level model—quantum gates implementation do not
appear in the tabular concept or in the Density Matrix. For instance, one knows
that Equal Superposition is performed by Hadamard Gates H

⊗
n but they are

not explicit here. The same is true for the threshold number of Grover cycle
repetitions, which is absent.

• Modules are orthogonal—this is clearly seen by the Density Matrix element
colors (blue and hatched blue); like in the reservation case, by eliminating
connectors, one retains the neat modules.



Simulating Quantum Software with Density Matrices:. . . 29

Fig. 10 Grover search Quantum Software—Density Matrix. It shows the three modules of Fig.
9, in descending order in the upper-right and lower-left quadrants: 1-by-1 initiator, 2-by-2 Grover
iteration, and 1-by-1 measuring device (all three modules with blue matrix elements and the Grover
iteration consumed functionals with hatched blue). One also sees the two connectors (F1, S2) and
(F3, S4) (hatched brown), basis kets above the Density Matrix columns, basis bras to the left of the
matrix rows, the diagonal degree matrix (green), and the normalization factor 1/24

• Modules have meaning—modules’ meaning is given by their associated natural
language concepts, found in general language dictionaries: initiator, iteration, and
measuring device. Even structor and functional names have a long history (see
the discussion in Sect. 7.3).

5.3 QFT and Order Finding: The Modularity Viewpoint

This section contrasts one of the simplest examples of QFT (quantum Fourier
transform) with the order finding algorithm, which itself uses inverse QFT as one
of its ingredients. It shows that such a simple QFT is not modular in the two senses
that we have seen before:

• No orthogonality—one cannot easily compose its gates into a reduced number of
most natural modules.

• No meaning—there is no natural language assignment to the potential modules.

To this end, we look at the well-known three qubits QFT quantum circuit in Fig.
11.

The Rk gates are unitary transformations defined in Eq. (9):

.Rk ≡
(

1 0
0 e2πi/2k

)

(9)



30 I. Exman

Fig. 11 Three qubits QFT—typical quantum circuit. Each horizontal line represents the time
passing of each qubit. Time increases from left to right. The leftmost kets are the three input
states |j1〉, . . . ,|j3〉. The quantum gates are H the Hadamard gate, and Rk gates, which are 2-by-2
matrices seen in Eq. (9). The three Rk boxes are each part of a controlled-Rk gate. The rightmost
symbol linking the first and third qubits is a swap gate. See below an explanation of this circuit

What is the essential reason for the three qubits QFT not being modular—in the
above senses of orthogonality and meaning?

This is due to the nature of controlled-gates. Each of these gates involves two
endpoints: one is the controller—graphically represented by a black dot—and the
other is the target which is a single-qubit gate. The critical issue is that two endpoints
sit on different qubits. The most common controlled-gate is the controlled-NOT,
abbreviated CNOT. If the controller qubit value is |1〉, the target gate is activated;
otherwise, if the controller value is |0〉, the target gate is not activated and there is
no change of the target qubit value.

One can clearly see in Fig. 11 that controlled-gate endpoints link diverse pairs
of qubits. For instance, counting from the left-hand side, the first controlled-R2
links the upper qubit with the middle qubit, while the controlled-R3 links the upper
qubit with the lowest qubit. Moreover, these controlled-Rk gates are intermingled
with Hadamard gates. The outcome of this situation is the difficulty of slicing the
quantum circuit vertically—into orthogonal modules: there are no consecutive gate
groups referring to the same qubits. Similarly, it is difficult to slice the quantum
circuit horizontally—into coherent meaning modules: there are no consecutive gate
groups performing the same functionality.

The conclusion is quite clear: this three qubits QFT is a circuit of too low
abstraction level in order to afford meaningful modules. See the discussion in Sect.
7.1 on the definition of modules.

We significantly jump upward in abstraction level and deal with the order finding
algorithm, used in Shor’s ([14, 15, 24, 25]) quantum factorization algorithm. A
quantum circuit is shown in Fig. 12.

The quantum circuit in Fig. 12 is not new; there are several variants in the
quantum computing scientific literature (e.g., [14]), which the reader should be
familiar with. Some clarifying comments are:

• Definition of order—assume a pair of positive integers a < N, which have no
common factors; the order of a mod N is formally defined as the least positive
integer x such that ax = 1 (mod N).

• Order finding problem—given a pair of positive integers, a, N, find the order x.
The function of relevance to the order finding problem, f = ax mod N, obtaining



Simulating Quantum Software with Density Matrices:. . . 31

Fig. 12 Order finding algorithm—quantum circuit. Its entities, reminiscent of single quantum
gates, actually stand for whole modules: from left to right, in the first register is the Hadamard
initiator, a controller black dot, an inverse QFT (quantum Fourier transform—the dagger † here
means “inverse”), and a measurement device. The module in the second register is a modular
exponentiation represented by a term giving the “remainder after division of ax by N” (more details
in the text below). The kets |0〉 at the left-side origin of both registers are computational initial
states. The slash after the initial states is a conventional indication that each of these registers has
a certain number of qubits, instead of just one

the remainder after division of ax by N, is periodic. The big numbers factoring
problem reduces to finding the period of a function.

• Do not confuse module with modulo or mod = modulus—it is somewhat unfor-
tunate that this chapter must refer to two (or three) well-established concepts
with quite different meanings, and so similar writing. Even worse, the adjective
“modular” is used with both meanings. Module is a separable component of
a system; modulus (abbreviated mod) is a natural number used as a divisor in
modular arithmetic; modulo means with respect to a specified modulus.

• Modular exponentiation—in this expression, “modular” refers to modulus and
not to modules.

It is legitimate to still have a few reminders of quantum gates in the higher-
level quantum circuit. This enables us to understand the ability to vertically slice
the circuit into orthogonal modules. The obvious case is the initiator module whose
gate implementation is a single Hadamard gate H to the tensor power of t. This
is impossible in the three qubits QFT lower-level quantum circuit since there the
Hadamard gates are intermingled with controlled-Rk gates.

The novel and important contribution of this Quantum Software concept example
is the observation that going upward toward the modules highest abstraction level,
one is well above the quantum gates and qubit registers implementation. These gates
and registers are considered analogous to the lower machine language of classical
software, whose history we do not wish to repeat.

In the tabular concept and its Quantum Software Density Matrix, we strictly
avoid any reference to quantum gates implementation or to qubit registers. Thus,
one regains modularity in the senses of orthogonality and conceptual meaning.

Figure 13 shows an order finding algorithm tabular concept, with modules,
without referring to any quantum gates or qubit registers. See the discussion on
proper names as concepts in Sect. 7.3.



32 I. Exman

Fig. 13 Order finding algorithm Quantum Software—tabular concept With the same format as
in previous tabular concepts, one sees four modules and respective structors and functionals. The
number of connectors could in principle be changed (see the Density Matrix and its comments
below)

Fig. 14 Order finding algorithm Quantum Software—Density Matrix. One can see its four
modules (blue background): all of them of 1-by-1 size, except the 2-by-2 Mod N module, with
two structors {S2, S3} and two functionals {F2, F3}. The functional F2 (hatched blue) is internally
consumed by the S3 structor. Transitions between pairs of modules are enabled by connectors
(hatched brown). As usual, one also sees the diagonal degree matrix (green), the normalizing factor
1/28, the basis kets above columns, and basis bras to the left of the matrix rows

Figure 14 shows the order finding Density Matrix corresponding to the tabular
concept in Fig. 13.

A comment on the Order Finding Density Matrix in Fig. 14 is:

• Controlled Mod N—the pragmatic Density Matrix solution to avoid explicit ref-
erence even to a generic so-to-speak controlled quantum gate seen in the quantum
circuit in Fig. 12 has a 2-by-2 Mod N module, where the information transmitted
from the controller structor S2 is conveyed by the internally consumed functional
F2 to the target structor S3.



Simulating Quantum Software with Density Matrices:. . . 33

5.4 Modularity Within Hybrid Teleportation

The hybrid Quantum Software example is the teleportation protocol. Quantum
circuits and detailed explanations of the teleportation protocol are widely found
in the literature (e.g., [15] p. 82; [14] p. 26). Its purpose, based on entanglement of
EPR (Einstein-Podolsky-Rosen [26]) pairs, is to teleport an unknown quantum state
|φ〉 from Alice’s location A to Bob’s other location B.

After a preliminary preparation in a joint Alice and Bob location A and B of an
initial EPR pair, compare Eq. (4) in Sect. 3.1—in which Alice controls the first qubit
“a” and Bob the second qubit “b”:

.|EPR0〉 = 1/
√

2∗ (|0a0b〉 + |1a1b〉) (10)

Then Alice and Bob separate: Alice goes to location A, where she holds |φ〉, and
Bob goes to location B.

The teleportation hybrid character is characterized by three stages:

• Initial quantum stage—Alice’s initial state in location A is |φ〉⊗|EPR0〉; she
performs decoding.

• Classical stage—Alice performs measurement of its two qubits in location A,
projecting her state to Bob’s state in B; then Alice does classical transmission of
two bits.

• Final quantum stage—Bob receives two classical bits and does encoding by
means of Pauli transforms, which are used to restore the original quantum state
|φ〉 in location B.

The teleportation protocol Quantum Software tabular concept is shown in Fig.
15. The corresponding Density Matrix is shown in Fig. 16.

A comment on the teleportation protocol Density Matrix is:

• Classical communication message—is represented in the Density Matrix, with-
out any difference from purely quantum modules, by its structor and functional.

6 Related Work

The scientific literature dealing with relevant subjects is quite large, well beyond the
reasonable scope of this chapter. We mention here a focused sample of references,
among others covering the mutual interaction of programming, software, and
physical systems.



34 I. Exman

Fig. 15 Teleportation protocol Quantum Software—tabular concept. The teleportation protocol
always triggers a surprise at first sight. Its causes are well exposed in this tabular concept. In
particular, worthy of attention is the measuring device with two structors and their respective
functionals: measurement in location A and projection to location B

Fig. 16 Teleportation protocol Quantum Software—Density Matrix. Similar to its tabular concept
in Fig. 15, the module worthy of attention is the 2-by-2 measuring device, whose structors are {S3,
S4} with functionals {F3, F4}, as it represents both measurement in location A and projection to
location B. The F3-S4 matrix element (hatched blue) is an internal functional F3 consumed by the
structor S4, enabling transition from measurement to projection

6.1 Operators and Superoperators

A superoperator is a linear operator acting on a vector space of linear operators.
Specifically, it may refer to a TPCP map, i.e., a trace-preserving completely positive
map. This is especially the case for mappings of density operators to density
operators (see, e.g., Preskill [27]).



Simulating Quantum Software with Density Matrices:. . . 35

Mauerer [28] presented a quantum programming language cQPL (an extended
QPL), capable of quantum communication. This language has a denotational seman-
tics based on a partial order of superoperators. In general, superoperators applied to
Density Matrices describe quantum mechanical processes, being significant to this
chapter’s contents.

Javanainen [29] in his paper “The Software Atom” developed a set of C++
classes, abstracting concepts of quantum mechanics in a specific context of inter-
actions between atom energy levels and light fields. The idea is to emphasize the
possibility of such abstract software development and not to provide optimized end-
user programs. Besides standard vector and matrix algebra, the abstract set of classes
includes linear operators such as the density operator ρ and superoperators.

6.2 Extended UML

While the approach of this chapter is centered on the Quantum Software entity
of Density Matrix, whose application is naturally extended to classical and hybrid
kinds of software systems, one finds in the literature the opposite direction: to take
existing classical sets of diagrams, mostly UML, the unified modeling language,
and extend them to be applicable to Quantum Software systems.

Perez-Delgado [30] (pages 103–119, in Serrano et al. [31]) proposed Q-UML,
a very preliminary extension of UML to model Quantum Software, with the goal
of minimally changing the base UML. In other words, for a strictly classical
software system, its modeling by Q-UML should be identical to the modeling by
the original base UML. Q-UML diagrams—such as a class or sequence diagrams
of a system—may contain together both quantum and classical elements. In Q-
UML, quantum classes/objects are marked to distinguish them from the classical
UML counterparts. This, in contrast to the Quantum Software Density Matrix of the
current chapter which represents both quantum and classical modules in a uniform
way, and purposefully avoids distinguishing quantum from classical systems.

Perez-Castillo, Jimenez-Navajas, and Piattini [32] in their paper “Modelling
Quantum Circuits with UML” propose to define a UML profile for quantum
modeling based upon UML metamodels. This is a lightweight extension of the
UML Activity Diagram. The UML profile displays six stereotypes: quantum circuit,
qubit, quantum gate, controlled qubit, measure, and reset. These stereotypes have
their corresponding metaclasses. Once the metamodel is designed, one can use it to
obtain specific quantum circuits represented with UML.

UML extensions have the advantage of being familiar to software developers,
demanding a mild learning curve. On the other hand, UML and its extensions
are informal, and do not offer the underlying theoretical richness of the Quantum
Software Density Matrix of the current chapter.



36 I. Exman

6.3 Modules

Modularity is an important idea for classical computing, and indeed for any
engineering discipline, as described in the Baldwin and Clark book Design Rules,
whose volume 1 is entitled The Power of Modularity [33]. Their approach is from
an economic perspective. The paper by Sullivan et al. on “The Structure and Value
of Modularity in Software Design” [34] also refers to classical computing. Despite
being more software oriented, it applies the economic approach of Baldwin and
Clark. Newman and Girvan, in their paper “Finding and evaluating community
structure in networks” [35], published in the physics literature, offers a widely used
criterion for modularity.

There are many module definitions in the quantum computing literature. Here are
two examples.

An interesting and quite recent (April 2023) paper by Kang and Oh [36] entitled
“Modular Component-Based Quantum Circuit Synthesis” has some objectives
similar to the current chapter. These authors observed that previous work (known as
unitary synthesis) obtained quantum circuits which are nonintuitive, making their
effects on data values difficult to comprehend. Kang and Oh’s stated objectives
are to generate human-readable, high-level circuits revealing the algorithm’s inner
workings. There is a subtle but significant difference between “readable” and mean-
ingful. This follows from their assumptions and their procedures. They characterize
as modules any arbitrary slicing of a quantum circuit. See the discussion in Sect.
7.1.

A thought-provoking paper by Thompson, Modi, Vedral, and Gu [37] entitled
“Quantum Plug n’ Play: Modular Computation in the Quantum Regime” was
published in the New Journal of Physics in 2018. It enables usage of prefabricated
circuits without knowing their construction. The lack of knowledge has many
advantages, such as allowing partial outsourcing of quantum circuits, with exchange
or upgrade of individual components. On the other hand, they prove a negative
theorem: that it is not always possible to use quantum circuits without knowing
their construction. They ask interesting questions such as: To what extent can a
client invoke a server to automatically perform a computation P(U), whenever one
transforms an input |φ〉 into U|φ〉?

7 Discussion

This section is meant to coherently summarize this chapter with the following
intentions:

• Sharpen central ideas of this work, such as modules and connectors.
• Clarify the importance of Quantum Software conceptualization.



Simulating Quantum Software with Density Matrices:. . . 37

• Offer Quantum Software practical applications, beyond the fundamental theoret-
ical basis.

• Suggest Quantum Software’s future potential roles.

7.1 Definition and Meaning of Quantum Software Modules

As stated at the beginning of Sect. 4.3, modules of Quantum Software are formally
defined as subspaces of the whole Density Matrix space. These in turn have an
essential conceptual meaning afforded by the subsumed structors and functionals,
columns and rows, as assigned by their indices Sj, Fk.

To compare with alternatives in the scientific literature, mentioned in Sect.
6.3, we emphasize that our view of modules has two inseparable complementary
aspects:

• Tabular concept = modules have meaning—natural language understood by
humans

• Density Matrix = modules are orthogonal—subspaces of the whole Density
Matrix

The already referred paper by Kang and Oh [36] defines modules in terms of
quantum circuits, as consecutive slices of quantum gates. There is no notion of
Density Matrix generated from a conceptual starting point. Contrasted with this
chapter’s modules, Kang and Oh’s modules display two properties:

(a) May have arbitrary size—one can slice quantum circuits as desired: a single
quantum circuit may have multiple modular representations.

(b) Do not have intrinsic meaning—human readability of quantum circuits does
not necessarily imply modules with conceptual meaning.

A related issue demands high abstraction level of a Quantum Software system
to attain modules with self-consistent meaning. The problem was illustrated by the
intermingling of controlled-gates in the three qubits QFT counterexample (in Sect.
5.3). In this respect, the paper by Shende, Bullock, and Markov [38] on “Synthesis
of Quantum Logic Circuits” states two relevant facts:

(a) Quantum controlled-gates are considered “expensive gates”—in particular,
CNOTs which are often the standard two-qubit gate, up to the point that the cost
of a quantum circuit can be realistically estimated by counting CNOT gates.

(b) The number of CNOT gates is exponential on the number of qubits—and
there is a theoretical lower bound for the number of CNOT gates in any
Quantum Software system. Moreover, if one insists in using the implementation
technology with only nearest-neighbor gates, it significantly increases the
number of gates.



38 I. Exman

7.2 Connector Roles Within the Quantum Software Density
Matrix

In this chapter, connectors were defined in Sect. 4.4. Connectors are Density
Matrix elements outside modules enabling evolution. Connectors serve as cursors
as defined by Feynman (in his 1985 paper [20], on p. 15), pointing to a location
where an evolution step may be selected.

Comparing the Quantum Software examples in Sect. 5, one perceives different
connector roles, some of which may also be performed by internally consumed
functionals:

• Single connector between two modules—is the simplest case. The presence of a
connector does not imply its usage. In the middle of an evolution, in the absence
of a connector, a transition between two modules is done automatically.

• Two looping connectors—in the example of the Grover search, in Figs. 9 and
10, instead of two connectors, the iteration is performed by a pair of internally
consumed functionals.

• Two connectors in opposite directions—for instance, in the recycle bin, in Figs.
1 and 5, the delete functional F1 moves an item from accessible to deleted, while
the recycle functional F2 moves an item back from deleted to accessible. These
could be connectors, but in Fig. 5, they are performed by internally consumed
functionals.

7.3 Conceptualization: Metaphors and Proper Names as
Concepts

Conceptualization is a central activity for Quantum Software development, demand-
ing significant amounts of creativity. The purpose of this short section is to
characterize two deep conceptualization issues:

• The unavoidable limitations of programming languages—programming lan-
guages have a fixed number of reserved words defined by their syntax. They are
inevitably restricted to low-level abstraction, insufficient for full range software
development. This began to change with the ideas of abstract types and classes
(described at the beginning of Sect. 2 of this chapter) but could never be liberated
from their inherent limitations.

• The complexity of natural languages—natural languages seem to be the suitable
linguistic tools for high-level abstraction software development, overcoming the
programming limitations. Then a different difficulty appears: the richness and
complexity of natural languages is an obstacle for a formal scientific theory of
software, with a notion of verifiable correctness.

The proposed solution for the latter obstacle, offered in this chapter, is a
complementary combination of two entities. Each Quantum Software system should



Simulating Quantum Software with Density Matrices:. . . 39

be defined by a tabular concept freely expressed in natural language, together with
the corresponding Density Matrix chosen as the necessary formal basis of a scientific
theory. These two entities are supposed to be linked by a one-to-one relationship
given by the indexing of the natural language concepts.

We emphasize that these two entities are essential since:

• Natural languages are indispensable and intrinsic to the meaning of software.
• On the other hand, natural languages are continuously evolving and apparently

are too complex to be the basis of a foundational and stable scientific theory of
software.

We conclude this short consideration of natural languages with a few observa-
tions. Most of the natural language concept meanings are adopted from everyday
conversation: reservation, cancellation, recycle, and so on. But there are words with
deeper cultural roots.

A wonderful example is the concept of an oracle—in the Grover search tabular
concept. The huge contrast is notable between the underlying history, full of
significant nuances—the oracle of Delphi, Greek mythology—and the clarity and
conciseness of a software oracle, indeed, an excellent metaphor for software. How
is this achieved?

A further example is proper names as common concepts. (Jacques) Hadamard is
neither a quantum gate nor a transform. He was a prolific French mathematician,
with a broader view of culture, who published a book on “The Psychology of
Invention in the Mathematical Field” [39]. (Joseph) Fourier is not a high-level QFT
gate, a transform, or a series. Another French mathematician and physicist, whose
name has become synonymous with a concept with a relatively broad meaning, in
the context of periodic phenomena, is found even in natural language dictionaries.

Perhaps in the conceptualization process we lose most of the original meaning
of metaphors and proper names. Or do clarity and conciseness distill the essence of
the original meaning?

7.4 Applications of Quantum Software

The main goal of this chapter is to delineate and open the way for a self-consistent
theory of Quantum Software and emphasize its necessity and importance. Nonethe-
less, a strictly pure theory without testing it in practice against real applications is
sterile.

This section is an intentional declaration that regardless of the possible cal-
culations with Quantum Software Density Matrix, they should lead to practical
applications of Quantum Software.

Modularization
Modules are the basic sine qua non for many applications of the Quantum Software
Density Matrix. Modules are generated by this chapter’s Procedure 2 in Sect. 4.3



40 I. Exman

(see Exman and Shmilovich [40]). It can be double-checked by a purely linear
algebraic spectral approach, independent of any quantum theory considerations
(Exman and Sakhnini [18], Fiedler [41], De Abreu [42]). Modularization leads to
evolution, measurement, and compositionality applications.

Evolution
The evolution of a Quantum Software Density Matrix by means of unitary operators
is the simulative equivalent of running an actual software system, which may not be
available, among other reasons due to lack of its implementation.

The practical application in this situation is logical debugging (see Exman [19]),
to check that (a) the Density Matrix faithfully reflects the tabular concept, and in the
negative case to correct them and rerun the checking and (b) whether some basic
concept is lacking; for instance, in the reservation tabular concept, by evolution
running, one may notice that a second connector is lacking: Cancellation→Add-to-
available, which also demands an addition to the Density Matrix.

Measurement
A practical application of measuring the Quantum Software Density Matrix is
the efficiency improvement of quantum state tomography, by usage of “quantum
modules tomography.” The number of measurements to recover the whole software
system Density Matrix is thereby significantly reduced (see Exman and Zvulunov
[21]).

Compositionality
Compositionality means that the whole Quantum Software system Density Matrix
can be decomposed into the component modules’ smaller Density Matrices using a
direct sum. This can be reversed, recomposing the whole system from its modules
(see Exman and Nechaev [43]).

The practical application, in the “Plug n’ Play” spirit of Thompson et al. [37], is
to recompose a new Quantum Software system Density Matrix, by substituting one
or more original modules with new versions or totally novel modules.

Open Issues
There are numerous potential applications of Quantum Software, beyond those
mentioned above. We are systematically working on these new applications.

7.5 Quantum Software’s Potential Roles

The potential roles of Quantum Software may be looked at from two quite general
and different viewpoints: one qualitative and another quantitative.

The qualitative point of view refers to software system design, applications, and
their improvements. Following the calculations and experiments referred to in the
previous section, first of all, one obtains the software system modules. One then uses



Simulating Quantum Software with Density Matrices:. . . 41

them to test design correctness and potential applications of the software system.
The correctness is meant in conceptual terms.

The novelty of the quite different, quantitative point of view demands assignment
to each module, and its component quantum gates, realistic run times which are
proportional to run times of actual gates in a given common technology. The overall
result should be a reliable simulation timing of the quantum computation in the spirit
of Feynman, without having constructed a real quantum computing machine.

The proportional run-times assignment can be obtained from partial experimental
data and/or estimates from computational complexity classes. These estimates
should be carefully verified, before being used in actual simulations.

7.6 Main Contribution

The main contribution of this chapter is the reinterpretation of Feynman’s “Sim-
ulating Physics with Computers” leading to a refined Quantum Software theory,
based upon linear algebra, embodied in a Density Matrix generated from its tabular
concept freely expressed in natural language.

Time will tell us whether Quantum Software theory already covers the full range
of future software, or whether nonlinear algebra and more fundamental theoretical
changes will be indispensable.

References

1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)
2. Lloyd, S.: Universal quantum simulators. Science. 273, 1073–1078 (1996)
3. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum com-

puter. Proc. R. Soc. Lond. A. 400, 97–117 (1985)
4. Preskill, J.: Quantum Computing 40 years Later. arXiv:2106.10522v3 [quant-ph] (2023)
5. Feynman, R.P.: Feynman Lectures on Computation, Anniversary edn. (Frontiers in Physics).

Edited by Tony Hey. CRC Press, USA (2023)
6. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Sponsored by the

NATO Science Committee, Garmisch, Germany, 7–11 Oct 1968. Scientific Affairs Division,
NATO, Brussels (1969)

7. Dahl, O.-J., Hoare, C.A.R.: Hierarchical program structures. In: Dahl, O.-J., Dijkstra, E.W.,
Hoare, C.A.R. (eds.) Structured Programming, pp. 175–220. Academic Press, London (1972)

8. Liskov, B.H., Zilles, S.: Programming with abstract data types. Proc. ACM Conference on Very
High Level Languages, SIGPLAN Notices 9, vol. 4, pp. 50–59 (1974)

9. Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering, Anniversary edn.
Addison-Wesley, Boston, MA (1995)

10. Jackson, D.: The Essence of Software – Why Concepts Matter for Great Design. Princeton
University Press, Princeton, NJ (2021)

11. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun. ACM.
15(12), 1053–1058 (1972). https://doi.org/10.1145/361598.361623


 9864 56461 a 9864 56461 a
 
http://doi.org/10.1145/361598.361623


42 I. Exman

12. Brooks Jr., F.P.: The Design of Design – Essays from a Computer Scientist. Addison-Wesley,
Boston, MA (2010)

13. De Rosso, S.P., Jackson, D.: What’s wrong with Git? A conceptual design analysis. In: Proc.
Onward! pp. 37–51, Indianapolis, IN (2013). https://doi.org/10.1145/2509578.2509584

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2010)

15. Rieffel, E., Polak, W.: Quantum Computing – A Gentle Introduction. MIT Press, Cambridge,
MA (2011)

16. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, New edn. Princeton
University Press, Princeton, NJ (2018)

17. Braunstein, S., Ghosh, S., Severini, S.: The Laplacian of a graph as a density matrix: a basic
combinatorial approach to separability in mixed states. arXiv:quant-ph/0405165 (2006)

18. Exman, I., Sakhnini, R.: Linear software models: bipartite isomorphism between Laplacian
Eigenvectors and Modularity Matrix Eigenvectors. Int J Softw Eng Knowl Eng. 28(7), 897–
935 (2018). https://doi.org/10.1142/S0218194018400107

19. Exman, I.: Quantum software evolution. (in Preparation), (2024)
20. Feynman, R.P.: Quantum mechanical computers. Optics News. 11, 11–20 (1985)
21. Exman, I., Zvulunov, A.: Quantum software models: quantum modules tomography and

recovery theorem. In: Proc. SEKE’2023, San Francisco Bay Area, CA, pp. 91–96. https://
doi.org/10.18293/SEKE2023-214

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual
ACM Symposium on Theory of Computation, pp. 212–219. ACM Press, New York, NY
(1996)

23. Barenco, A.: Quantum computation: an introduction. In: Lo, H.K., Popescu, S., Spiller, T.
(eds.) Introduction to Quantum Computation and Information, pp. 143–183. World Scientific,
Singapore (1998)

24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proc.
35th Annual Symposium of Foundations of Computer Science. IEEE Press, Los Alamitos, CA
(1994)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

26. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev. 47, 777–780 (1935)

27. Preskill, J.: Lecture Notes for Quantum Information Course Ph219/CS219, Chapter 3. Califor-
nia Institute of Technology, version of (2018)

28. Mauerer, W.: Semantics and Simulation of Communication in Quantum Programming.
Diploma Thesis, University Erlangen-Nuremberg (2005)

29. Javanainen, J.: The Software Atom. arXiv:1610.00791 [physics.atom-ph] (2017)
30. Perez-Delgado, C.A.: A Quantum Software Modeling Language, Chapter 6, pp. 103–119, in

Serrano et al. (2022)
31. Serrano, M.A., Perez-Castillo, R., Piattini, M. (eds.): Quantum Software Engineering.

Springer-Nature, Cham (2022). https://doi.org/10.1007/978-3-031-05324-5
32. Ricardo Perez-Castillo, Luis Jimenez-Navajas and Mario Piattini, “Modelling Quantum Cir-

cuits with UML.”, arXiv-2103.16169 (2021)
33. Baldwin, C.Y., Clark, K.B.: Design Rules The Power of Modularity, vol. 1. MIT Press (2000)
34. Sullivan, K., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of modularity in

software design, pp. 99–108. Proc. ESEC/FSE Int. Conf., Vienna, Austria (2001)
35. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys.

Rev. E. 69, 026113 (2004)
36. Kang, C.G., Oh, H.: Modular component-based quantum circuit synthesis. Proc. ACM

Program. Lang. 7, OOPSLA1, Article 87 (2023). https://doi.org/10.1145/3586039
37. Thompson, J., Modi, K., Vedral, V., Mile, G.: Quantum plug n’ play: modular computation in

the quantum regime. N J Phys. 20, 013004 (2018). https://doi.org/10.1088/1367-2630/aa99b3


 16570 3014 a 16570 3014 a
 
http://doi.org/10.1145/2509578.2509584

 4063 15191 a 4063 15191
a
 
http://doi.org/10.1142/S0218194018400107

 32220 19619 a 32220 19619 a
 
http://doi.org/10.18293/SEKE2023-214

 11465 45079 a 11465 45079 a
 
http://doi.org/10.1007/978-3-031-05324-5


18096 55041 a 18096 55041 a
 
http://doi.org/10.1145/3586039

 18673 57255 a 18673 57255 a
 
http://doi.org/10.1088/1367-2630/aa99b3


Simulating Quantum Software with Density Matrices:. . . 43

38. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of Quantum Logic Circuits, arXiv:quant-
ph/0406176v5 April 2006. IEEE Trans. Computer-Aided Des. 25, 1000–1010 (2006). https://
doi.org/10.1109/TCAD.2005.855930

39. Hadamard, J.: The Psychology of Invention in the Mathematical Field. Dover, New York, NY
(1954)

40. Exman, I., Shmilovich, A.T.: Quantum software models: the density matrix for classical and
quantum software systems design. In: Proc. Q-SE 2nd Int. Workshop on Quantum Software
Engineering, pp. 1–6 (2021) Also: arXiv:2103.13755 cs.SE quant-ph. https://doi.org/10.48550/
arXiv.2103.13755

41. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)
42. De Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebr.

Appl. 423, 53–73 (2007)
43. Exman, I., Nechaev, A.: Quantum software models: software density matrix is a perfect direct

sum of module matrices. In: Proc. SEKE’2022, Virtual, Pittsburgh, PA, pp. 434–439. https://
doi.org/10.18293/SEKE2022-158

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 32220 800 a 32220 800 a
 
http://doi.org/10.1109/TCAD.2005.855930

 12369 7442 a 12369 7442 a
 
https://arxiv.org/abs/2103.13755

 25493 7442 a 25493 7442 a
 
http://doi.org/10.48550/arXiv.2103.13755

 32220 14084 a 32220 14084 a
 
http://doi.org/10.18293/SEKE2022-158
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Superoperators for Quantum Software
Engineering

Wolfgang Mauerer

Abstract As implementations of quantum computers grow in size and maturity,
the question of how to program this new class of machines is attracting increasing
attention in the software engineering domain. Yet, many questions from how
to design expressible quantum languages augmented with formal semantics via
implementing appropriate optimizing compilers to abstracting details of machine
properties in software systems remain challenging. Performing research at this
intersection of quantum computing and software engineering requires sufficient
knowledge of the physical processes underlying quantum computations, and how to
model these. In this chapter, we review a superoperator-based approach to quantum
dynamics, as it can provide means that are sufficiently abstract, yet concrete enough
to be useful in quantum software and systems engineering, and outline how it is
used in several important applications in the field.

Keywords Quantum computing · Software engineering · Quantum software
engineering · Density operator · Superoperators · Formal semantics

1 Introduction

The actual and hypothesized capabilities of performing computational tasks based
on the laws of quantum mechanics have made the implementation of quantum
computers a target of interest to physics and engineering. Yet, producing software
(and algorithms) for this class of machines has by far not reached the level of
productivity and ease of handling that computer science has come to expect for
classical machines following decades of development. This is likely because at the
current level of abstraction, expressing algorithms resides close to the underlying

W. Mauerer (�)
Technical University of Applied Sciences/Siemens AG, Regensburg, Germany
e-mail: wolfgang.mauerer@othr.de

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 3&domain=pdf

 885 56845 a 885 56845
a
 
mailto:wolfgang.mauerer@othr.de
mailto:wolfgang.mauerer@othr.de
mailto:wolfgang.mauerer@othr.de
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3
https://doi.org/10.1007/978-3-031-64136-7_3


46 W. Mauerer

physical concepts. This necessitates strong inter-domain knowledge for researchers
working in the field.

Detailed knowledge of alternative methods of describing the dynamics of
quantum systems beyond applying unitary operators on finite-dimensional quantum
states might not be universally spread in the software engineering community. This
implies that appreciation of the usefulness of such descriptions for many open
problems in quantum software engineering could be further fostered. Consequently,
we provide an exposition of one particularly important such formalism—linear
superoperators acting on density operators—in this chapter especially tailored
toward software engineering research. We include a discussion of the possible
benefits in various application areas in the domain.

Quantum circuits are the basis of many software engineering considerations,
albeit at a low level of abstraction. Any typical introduction to quantum computing
for computer scientists includes a discussion of circuits for the foundational set of
algorithms like the ones invented by Grover, Shor, or Deutsch. In essence, a quantum
state .|ψ〉 (we provide precise formal definitions later) propagates through a quantum
circuit in three phases—initialization, application of a sequence of quantum oper-
ations, and a measurement delivering stochastic results—that constitute a quantum
program. The first two actions are described by so-called unitary operators U that
capture possibilities (and limitations) of quantum operations, and exhibit peculiar
properties that engineers are not accustomed to from classical programming.
Keeping in mind that measurements, which are realized by other means than unitary
transformations, are an important ingredient of quantum algorithms, the core part of
any such algorithm can nonetheless be expressed as a unitary transformation of an
appropriately initialized quantum state .|ψ〉 by .|ψ〉 �→ U |ψ〉 = |ψ ′〉.

However, for most known algorithms, quantum circuits (or any other equivalent
representation of operations on quantum states) only capture part of the overall
computational sequence. Any required classical operations or the implementation
of control flow is usually described (and handled) separately from the manipulation
of purely quantum mechanical states. Variational algorithms that underlie many
considerations of the current era of noisy, intermediate-scale quantum (NISQ)
machines rely inherently on interleaved classical and quantum operations, and
explicitly operate on quantum and classical data. Consequently, it is helpful to
consider a mathematical formalism that can capture all these aspects in a unified
description. Likewise, the unavoidable effects of noise and imperfections that
exercise probabilistic influence on a quantum state, and thus directly concern
any real-world analysis of algorithmic properties, must be taken into account. A
good mathematical framework for this purpose is the density operator formalism,
which generalizes quantum states .|φ〉 into density operators .� that can describe
both quantum and classical aspects of a computational state. Instead of unitary
operators U that act on states and describe operations, superoperators .Λ map



Superoperators for Quantum Software Engineering 47

density operators to density operators (i.e., .� �→ Λ(�) = �′), and therefore
generalize unitary quantum operations.1

In this chapter, we present an exposition of these concepts that targets the needs
of software engineers working on the relatively new field of quantum software
engineering, which necessitates gaining an understanding of quantum programming
languages and possible approaches to equip them with formal semantics, or produce
software with correctness by construction approaches. While we aim at using
enough mathematical formalism to arrive at a precise and unambiguous presenta-
tion, we avoid the use of advanced mathematics, especially category theory, that
is commonplace in research work on quantum programming language semantics,
yet may act as an impediment to obtaining a higher-level view of the issues from a
software engineering perspective.

This chapter nonetheless relies on some amount of formalism, and the particular
mathematical topics might not be present in every computer science curriculum (and
even if they are, it might have been a while since the reader had to deal with these
topics). For those who are curious to hear the software engineering essentials short
and crisp, if you trust us that

• a density operator .� can, compared to ket representations .|ψ〉, describe quantum
states that suffer from imperfections and intricacies of the real world;

• superoperators extend the role of quantum gates to this scenario; and
• the Kraus representation allows us to describe such operators in a form that is

particularly convenient for computer science and software engineering purposes,

then you can skip directly to Sect. 5 that shows some of the most important software-
centric applications for superoperators: formal semantics for and verification of
quantum programs, communicating and distributed quantum systems, and dealing
with imperfections in real-world NISQ machines.

1.1 Challenges in Quantum Software

Following the recent review by Garhwal et al. [5] and the textbook [34], currently
established programming languages follow an either imperative paradigm (e.g.,
QCL [19], Silq [2], or Q# [27]) or functional paradigm (e.g., QPL [26],
Quipper [7], or LIQUiD [31]). While they differ in their capabilities and degrees of
abstraction, their quantum features center around generating quantum circuits that
eventually apply lists of operators on quantum states. The same observations can
be made for commercial approaches (e.g., Cirq, Ocean, or Qiskit) to the quantum

1 The mathematical formalism of superoperators can handle more general operators than density
operators, and we will see later how that can benefit software engineering when trace-decreasing
operations come into play.


 17283 50412 a 17283 50412 a
 
https://quantumai.google/cirq

 19881
50412 a 19881 50412 a
 
https://ocean.dwavesys.com

 24613 50412 a 24613 50412
a
 
https://qiskit.org


48 W. Mauerer

programming problem where instructions on how to generate quantum circuits are
embedded into a host language, typically Python.

While software engineering research has established a multitude of methods,
techniques, and processes aimed at systematically constructing high-quality soft-
ware artifacts, some of the elementary developmental options like debugging,
tracing, and some variants of testing are not directly applicable in a meaningful
way in the quantum domain. Given the resulting reduction of engineering options,
ascertaining the quality (or correctness) of quantum programs must focus more on
other methods like formal verification. This, in turn, requires means of properly
formalizing quantum programs. Starting with the seminal work [26], research on
numerous approaches of equipping quantum programming languages with formal
semantics, based on which verification efforts can take place, has been conducted.
Yet, the current state of the art is still lagging behind the classical level of maturity.

While it should not be required to educate all software engineers working on
quantum computing on the bells and whistles of quantum physics, a reasonable
awareness of the underlying principles, methods, and formalisms is important
for determining effective layers of abstraction. The situation is not unlike at the
advent of software engineering as a discipline: then, the need for using structured
engineering approaches to construct software became apparent, yet low-level details
remained crucial—as embodied, for instance, by research topics like the construc-
tion of efficient compilers for expressive high-level languages that nonetheless
catered to the very distinct hardware properties of then-current systems. We believe
the superoperator-based view of quantum computing is an apt starting point for
deriving such sound, practical, and useful abstractions using established methods of
computer science for quantum programming and quantum software engineering.

2 Mathematical Foundations

In this and the following section, we introduce the necessary formalities to under-
stand the superoperator-based view of quantum dynamics. We assume knowledge
of the standard computer science curriculum of linear algebra, but try to give an
otherwise self-contained exposition. All mathematical statements and facts that
we refer to without providing an explicit rationale or proof sketch are part of the
standard literature on quantum computing and quantum information theory, for
instance [18, 28, 4, 22], to which we refer readers interested in a more in-depth
formal treatment or explicit proofs.

2.1 The Need for Formalization

A quantum program enacts a transformation of a state (in the sense of computer
science) comprised of quantum and classical input data to quantum and classical



Superoperators for Quantum Software Engineering 49

output data. While it is not possible to perform intermediate measurements on the
quantum part of the state without influencing the state itself, this state nonetheless
exists uniquely during the whole computation: after preparing required initial
states based on classical input data, in each step of performing the computational
sequence, and before performing any measurements. The latter, finally, reduce (parts
of) the quantum data to classical information, usually in a stochastic way. A quantum
program can, depending on the input data, lead to many possible intermediate states,
and likewise to many possible different outputs, even when perfect machines are
assumed for execution. This is similar to stochastic algorithms that find ample use
in classical software, and mathematical frameworks that allow us to model such
scenarios have been established.

Consequently, we need to deal with three different entities: the state of a system,
a quantum program that acts on this state, and a transformation between the
quantum program (specified in whatever programming language) and an appropriate
collection of formal operations that represent the state transformations, and most
importantly allow us to reason about properties of the quantum program with
established and new methods. While the scenario in general is very similar to
the approaches used in programming language semantics, a crucial difference is
that the state is not open to direct inspection by observers, and is described by
different mathematical objects than for classical computation. Also, the admissible
transformations between states differ radically from classical approaches.

From a physical standpoint, there are different ways of viewing this scenario:
a quantum program can be translated (and most of the contemporary compilers
follow this approach) into a sequence of gates that are applied to a quantum state
(together with a suitable formalization of the classical state), which can be expressed
as the element of a Hilbert space. However, this formalism only applies to perfect
underlying quantum computers that faithfully execute each gate, and are able to
prepare initial quantum states that exactly represent the desired form without any
stochastic uncertainties.

When machines are subject to noise and imperfections, gate operations, state
preparation, readout, etc. are affected by uncontrolled influences that introduce
stochasticity into the quantum state; straightforward kets cannot represent the aris-
ing statistical mixture of quantum states that requires an additional characterization
of the associated classical distribution to be included in their description. This is,
however, possible in the density operator formulation of quantum mechanics. As
we have seen previously, superoperators extend the role of perfect gates in the
bra-ket picture. We believe this formal representation is well suited to augmenting
a quantum program with formal semantics, as it can capture a wider range of
phenomena that cannot be ignored at the current state of hardware development,
and will with some likelihood also be of interest in the long run. While the picture
is solidly established in physics-centric research, this does not universally hold for
computer science and software engineering. The aim of this chapter is to provide an
introduction to the formalism tailored to the particular needs of software engineering
researchers.



50 W. Mauerer

First, let us fix some notation conventions: a quantum register .|R〉 is an element
of a Hilbert space .H. This space is, in the finite-dimensional case relevant for
quantum computing, a complex vector space with an inner product, which implies
the existence of an orthonormal standard basis .{|i〉} (the infinite-dimensional case
requires more care, but is only very rarely relevant for the computer science
aspects of quantum computing). Operations on quantum registers are carried out
using unitary (linear) operators U (satisfying .UU† = U†U = 1, where the
dagger operation .† denotes taking the adjoint of a linear operator). .〈R| is the co-
vector from the dual space of .H associated with .|R〉. The inner product between
two quantum registers is denoted by .〈R1 | R2〉; recall that it satisfies, despite
the somewhat different notation compared to inner products on vector spaces,
(a) conjugate symmetry .〈x | y〉 = 〈y | x〉, (b) linearity in the second argument
.〈x|(α|y1〉 + β|y2〉) = α〈x | y1〉 + β〈y2〉2, and (c) positive definiteness .〈x | x〉 > 0.
Since quantum states are normalized, the latter condition effectively reads .〈x | x〉 =
1.

2.2 Linear and Hilbert-Schmid Operators

The notion of linearity is well established in physics and computer science, and
linear maps find use in many domains. The concept of linearity can of course be
easily applied to operators; for the sake of completeness, let us recall the exact
definition of a linear operator on normed spaces, as it is the formal backbone of our
considerations:

Definition 1 (Linear Operator) A linear operator T from a normed space X to
another normed space Y is a linear map from .D(T ) ⊆ X (the domain of T ) to Y

with the following property for .x, y ∈ D(T ), .α, β ∈ K, where .K is an unspecified
field:

.T (αx + βy) = αT (x) + βT (y). (1)

A particularly important class of operators in quantum computing (including,
most importantly, density and unitary operators) is bounded as by the following
definition:

Definition 2 (Bounded Operator) An operator is called bounded if .∃C ≥ 0, C ∈
R such that

.||T x|| ≤ C · ||x|| (2)

for all .x ∈ D(T ).

2 The standard scalar product on vector spaces requires linearity in the first argument.



Superoperators for Quantum Software Engineering 51

We write .B(·) to denote the set of all bounded operators acting on an underlying
space. Operators that map Hilbert spaces to Hilbert spaces are crucial for our
considerations:

Definition 3 (Hilbert-Schmidt Operator) Let .X, Y be Hilbert spaces. An opera-
tor .K ∈ B(X, Y ) is called Hilbert-Schmidt operator if there exists an orthonormal
basis .{eα : α ∈ A} (where A is some index set) with .

∑
α∈A ||Keα||2 < ∞.

Using the trace of an operator M given by .trM = ∑
i〈i|M|i〉 for an orthonormal

basis .{|i〉} of the Hilbert space .H, we can also express the latter condition in the
above definition by .trK†K < ∞, which is obviously fulfilled if .K ∈ B(H) and
.dim(H) < ∞, and therefore for the finite-dimensional Hilbert spaces relevant for
quantum computing.

Theorem 1 (Hilbert Space of Hilbert-Schmidt Operators) For Hilbert-Schmidt
operators .K,L of a Hilbert space X to a Hilbert space Y , .||·||HS is a norm on this
space induced by the scalar product

.〈K,L〉HS :=
∑

α

〈Keα,Leα〉. (3)

In the quantum computing literature (and more general expositions from quantum
physics), this is usually expressed by using the trace operation:

.〈K,L〉HS = trK†L. (4)

Proof If K is a Hilbert-Schmidt operator, aK is a Hilbert-Schmidt operator as well
for every .a ∈ K. If .K,L are HS operators, then for every orthonormal basis .{eα}, it
holds that

.

∑

α

||(K + L)eα||2 ≤ 2 ·
∑

α

(
||Keα||2 + ||Leα||2

)
< ∞, (5)

which makes .K + L a Hilbert-Schmidt operator. By .〈·, ·〉, we denote the scalar
product in the space of Hilbert-Schmidt operators, and .||K||HS = 〈K,K〉1/2HS (of
course, the scalar product induces a metric). �

A comparison of Hilbert spaces for quantum states and Hilbert spaces with a
Hilbert-Schmidt operator basis that extend and generalize this concept is given in
Table 1. The similarities between the two constructions that may seem very different
at a first glance are particularly obvious when viewed in direct comparison.



52 W. Mauerer

Table 1 A comparison between standard Hilbert spaces used for quantum states and Hilbert
spaces based on Hilbert-Schmidt operators.

Entity Hilbert space Hilbert space of Hilbert-Schmidt operators

State .|f 〉 ∈ H .D̂ : H → H
Operator .H→H: .D̂|x〉 = |x′〉 .Λ : D̂→D̂ ≡ (H → H) → (H → H)

Norm .||f 〉| = √〈f |f 〉 .‖D̂‖HS = √
trD†D

Operator norm.a .‖D̂‖ = sup
|f 〉∈H
‖|f 〉‖≤1

|D̂|f 〉| .||Λ|| = sup
D̂∈H
‖D̂‖≤1

Λ(D̂) = sup
D̂∈H
‖D̂‖≤1

trΛ(D̂)†Λ(D̂)

a Other choices for the Hilbert space norm that fulfill the required properties are possible.

3 Modeling Hybrid Quantum-Classical Systems

Having laid out the mathematical preliminaries, we commence with discussing how
to apply the formalism to model hybrid quantum-classical systems, as they form the
basis of essentially all known quantum algorithms.

3.1 States and Effects

Ideally, an experiment resulting in a probability distribution can be carried out
by repeating the following two processes until a a meaningful level of statistical
significance is reached.

• Preparation of a (quantum mechanical) state according to some fixed procedure
that can be repeated a sufficient number of times.

• Measurement of some observable quantity (e.g., spin, energy, . . . ). Effects are a
special class of measurement that can result in either the answer “yes” or “no”
according to some probability distribution.

It is important to note that quantum measurements do not correspond to a passive
acquisition of information that is common in classical computing. While it is a
physical process, it is described by a different set of mathematical tools in the
standard formalism of quantum computing based on states and operators. This
unsatisfactory difference can be mostly mended by the use of superoperators.

Since quantum computing does not only deal with pure quantum states (and, at
least in the NISQ era, statistical mixtures), but needs to handle classical and quantum
data, the formalism must be able to account for such settings. Resulting systems are
usually termed hybrid systems. It is obvious that any measurement results obtained
from quantum systems fall into the classical category since measurement gauges
that materialize in the macroscopic world are used to infer them from the quantum



Superoperators for Quantum Software Engineering 53

system, whatever their exact mechanism of performing the measurement is; this
requires providing mechanisms that reduce quantum to classical data.3

Every quantum system can be completely characterized by its observable
quantities which in turn are characterized by self-adjoint operators. These operators
form an algebra .A; since we only deal with finite-dimensional Hilbert spaces here,
we can restrict ourselves to sub-algebras of .B(H) (i.e., .A ⊂ B(H)). .A is called
the observable algebra of the system and is often identified with the system itself
because it is possible to deduce all properties of the system from its observable
algebra. The dual algebra of .A is denoted by .A∗ and is the algebra defined on the
dual space.

To capture the notions of state and effectmathematically, two sets (.S representing
all states, and .E containing all effects) are defined as follows:

.S(A) = {� ∈ A∗ | � ≥ 0 ∧ �(1) = 1}, . (6)

E(A) = {A ∈ A | A ≥ 0 ∧ A ≤ 1}. (7)

For every tuple .(�,A) ∈ S × E , there exists a map .(�,A) → �(A) ∈ [0, 1] which
gives the probability .p = �(A) that measuring an effect A on a (system prepared in
the) state .� results in the answer “yes.” Accordingly, the probability for the answer
“no’ is given by .1−p. .�(A) is called the expectation value of an effect A; states are
thus defined as expectation value functionals from an abstract point of view. These
expectation value functionals can be uniquely connected with a normalized trace-
class operator (for which the value of the trace operation is independent of the basis
chosen to evaluate the trace) .� such that .�(A) = tr(�A). In principle, it would be
necessary to introduce two different symbols for the expectation value functional
and the operator, but for simplicity, we omit this complication.

We need to distinguish between two different kinds of states: pure and mixed
ones. This is a consequence of both .S and .E being convex spaces: for two states
.�1, �2 ∈ S(A) and .λ ∈ R, 0 ≤ λ ≤ 1, the convex combination .λ�1 + (1 − λ)�2
is also an element of .S(A). The same statement holds for the elements of .E(A).
This decomposition provides a nice insight into the structure of both spaces:
extremal points cannot be written as a proper convex decomposition, that is, for
.x = λy + (1 − λ)z it follows that .λ = 1, or .λ = 0, or .x = y = z. They can be
interpreted as follows:

• For .S(A), extremal points are pure states with no associated classical uncer-
tainty.

• For .E(A), extremal points describe measurements which do not allow any
fuzziness as is, for instance, introduced by a detector which detects some property

3 The problem of how measurements of a quantum system are to be interpreted (or even how
the whole process can be described consistently) has been and still is one of the fundamental
philosophical problems of quantum mechanics [1]. Fortunately, choosing an interpretation (or
answering the question if an interpretation is necessary at all) is not relevant for any of the
formalisms discussed in this chapter.



54 W. Mauerer

not with certainty, but only up to some finite error (alas, this applies to all real-
world detectors used in NISQ machines to read the result of a computation).

It can be shown that the density matrix .� = |φ〉〈φ| of pure states fulfills the
property .tr(�2) = 1, whereas for mixed states, .tr(�2) < 1. Consequently, it is
possible to distinguish between pure and mixed states when a physical tomography
of the resulting state (or any intermediate state of a computation) is available. While
this is not within the usual functionalities offered by NISQ machines, it can be
implemented with some effort, and it is important to know from a software point
of view (especially in terms of result reliability and quality) that the approach is
available.

3.2 Observables

Until now, we have only considered effects, that is, measurements resulting in a
binary answer that is either “yes” or “no.” We also need to cover measurements with
a more complicated result range; this is necessary to describe general observables.
Although we would have to consider an infinite (even uncountable) number of
possible outcomes for a general description of quantum mechanics, it is sufficient
to consider only observables with a finite range for the purposes of quantum
computing.4 Such observables are represented by maps which connect elements x

of a finite set R to some effect .Ex ∈ E(A); this in turn gives rise to a probability
distribution .px = �(Ex). More formally, we can put it as in the following:

Definition 4 (Positive Operator-Valued Measurement) A family .E = {Ex}, x ∈
R of effects .Ex ∈ A is called a positive operator valued measurement (POVM) on
R if .

∑
x∈R Ex = 1.

Note that the .Ex need not necessarily be projectors, that is, they must not
necessarily satisfy the identity .E2

x = Ex . Should this be the case for all x, the
measurement is called a projective measurement, which is the type of measurement
used in most canonical quantum algorithms and variational approaches when a
projection onto the binary basis is performed.

Observables of this kind can be described by self-adjoint operators of the
underlying Hilbert space .Hwhich can be seen as follows: every self-adjoint operator
A on a Hilbert space .H of finite dimension can (owing to the spectral theorem for
normal matrices) be decomposed as .A = ∑

λ∈σ(A) λPλ. Here .σ(A) denotes the

4 This is justified because quantum computers process states of the type .(|0〉, |1〉)⊗n. Although
quantum computers can possess an arbitrary number of qubits, it is still a fixed and (which is
most important) finite number; additionally, we are not concerned with any continuous quantum
properties of these objects. Note that special types of computations like analogue quantum
simulation of molecules of chemical compounds that are seen as possible use-cases for quantum
computers are not included in the framework discussed here.



Superoperators for Quantum Software Engineering 55

spectrum of A, while .Pλ provide projectors onto the corresponding eigenspace. The
expectation value .

∑
λ λ�(Pλ) of A for a given state .� can equivalently be calculated

by .�(A) = tr(�A). Since this is the standard way of formulating the expectation
value of an operator, both points of view coincide.

3.3 Classical Components

Systems consisting solely of quantum components are generally not to be found: at
the latest after a measurement has been performed, classical probabilities need to be
accounted for. Therefore, we need to pay attention to hybrid systems composed from
quantum and classical parts as well. Obviously, we have to orient ourselves along
the lines of Sect. 3.1 to provide proper grounding for both possibilities. Consider
a finite set X of elementary events, that is, all possible outcomes of an experiment.
Again, .S(A) and .E(A) define the set of states and effects, respectively, but this time,
the observable algebra is given by all complex valued functions from the set X to .C
as defined by

.A = C(X) = {f : X → C}. (8)

By identifying the function f with the operator .f̂ given by

.f̂ =
∑

x∈X

fx |x〉〈x| (9)

where .|x〉 denotes a fixed orthonormal basis, the probability distribution can be
interpreted as an operator algebra similar to the quantum mechanical case because
.f̂ is an element of .B(H). Thus, .C(X) can be used as an observable algebra .A along
any other quantum mechanical or classical constituent of a multi-partite composite
system.

3.4 Composite and Hybrid Systems

Since quantum mechanical and classical systems can be described with very similar
structures, the presented formalism is well suited for the presentation of composite
systems, as becomes necessary when quantum computations are subjected to a
classical control flow, or when hybrid quantum-classical calculations are performed,
as is the case for variational algorithms. Let .A ⊂ B(H) and .A′ ⊂ B(K) be systems
given in terms of their observable algebras; the composite system is then given by

.A ⊗ A′ ≡ span{A ⊗ B|A ∈ A, B ∈ A′}. (10)



56 W. Mauerer

Three cases for the choice of .H,K can be distinguished:

• If both systems are quantum, then .A ⊗ A′ = B(H ⊗ K).
• If both systems are classical, then .A ⊗ A′ = C(X × Y ) with .C as defined by

Eq. (8)
• If .A is classical and .A′ is quantum mechanical, we have a hybrid system; the

composite observable algebra is then given by .C(X) ⊗ B(H), which cannot be
simplified any further. Observables are operator-valued functions in this case, as
expected.

4 Completely Positive Maps and Their Representation

In quantum mechanics, time evolution is described by transformations of density
matrices with an operator .Λ that is called a superoperator.5 Before we can proceed
to formally define superoperators, let us fix some terminology: an operator O acting
on a Hilbert space is positive definite if .〈ψ |O|ψ〉 > 0 for all elements .|ψ〉 of
the Hilbert space, and positive semidefinite if .〈ψ |O|ψ〉 is non-negative. Physical
density operators are Hermitian and positive semidefinite, which implies they have
real non-negative eigenvalues. A positive map .Λ transforms positive operators into
positive operators. If .Λ ⊗ 1 is semidefinite positive (.∀n ∈ N : Λ ⊗ 1n ≥ 0), then
.Λ is called a completely positive map.

Definition 5 (Superoperator) A superoperator .Λ : B(H) → B(H) has the
following properties for all density operators .� with .�′ = Λ(�):

1. .Λ is linear.
2. If .�† = �, then .�′† = �′ (Hermiticity preservation).
3. If .tr � = 1, then .tr �′ = 1 (trace preservation).
4. .Λ is a completely positive map.

Superoperators share the convenient property of linearity with many other
objects in computer science. Since physical density operators are Hermitian, the
preservation of Hermiticity in property (2) means this important characteristic of
a density operator is not changed by any superoperator. Specifically, it implies
that eigenvalues of the operator remain real-valued after transformations. Property
(3) means that statistical mixtures of quantum states are mapped to other valid

5 The Schrödinger equation .ih̄ ∂
∂t

|ψ(t)〉 = H |ψ(t)〉 governs, given a Hamilton operator H

(whose meaning is extensively discussed in the quantum software engineering chapter of this
book) the time evolution of a closed quantum system. The Liouville–von Neumann equation
.ih̄

∂�
∂t

= [H, �] = H� − �H generalizes the Schrödinger equation to density operators. For
a time-independent system (which we take as a simple illustration, albeit the consideration
would also apply to time-dependent interactions), the density operator at time t , .�(t), can be
obtained as .�(t) = exp(−iH t/h̄)�(t = 0) exp(iH t/h̄), which is nothing other than a mapping
.�(t = 0) �→ �(t) = Λ(�) using a superoperator .Λ.



Superoperators for Quantum Software Engineering 57

statistical mixtures of quantum states, and we cannot produce “invalid” objects
by executing transformations described by superoperators. Note that if dissipative
processes are considered, the second condition must be loosened to .tr(�′) ≤ 1;
we will see later that relaxing this physically motivated condition is reasonable for
the computer science domain. Finally, property (4) is of physical importance: .Λ is
not only positive semidefinite (i.e., .�′ is non-negative if .� is non-negative) on .HA,
but also on any possible extension .HA ⊗ HB . This ensures that .Λ maps a density
operator to another valid density operator even when the system under consideration
is entangled with some outside entity.

4.1 Operator-Sum Representation

Kraus [11] provides a seminal result about the decomposability of completely
positive maps that allows us to specify concrete, operational representations for
superoperators:

Theorem 2 (Kraus Representation Theorem) A superoperator .Λ as defined in
Definition 5 can be written as a partition of .1 = ∑N

k=1 A
†
kAk where .Ak are linear

operators acting on the Hilbert space of the system such that

.�′ = Λ(�) =
N∑

k=1

Ak�A
†
k (11)

for any density matrix .� that represents a mixed or a pure state.6

This representation is also known by the illustrative name operator-sum representa-
tion.

A unitary operator U that is applied to a (possibly mixed) density operator
.� is a Kraus representation with a single element (.k = 1) for the underlying
transformation, as .�′ = U�U†, and .U†U = 1. Superoperators, in that sense,
generalize unitary transformations as they allow for expressing more complex
transformations than can be provided by .� �→ U�U†.

To further illustrate the Kraus representation, consider the situation that the
system is in contact with a (larger) environment, which is a common situation not
only for more general physical experiments, but especially for quantum computers:
the processing unit (QPU) where quantum effects take place is surrounded by
multiple levels of cooling, the laboratory room in an experimental facility (or a

6 Note that while Kraus published his representation theorem relatively late compared to the advent
of quantum mechanics, and coincidentally around the time when Feynman first considered the
computational power of quantum mechanics, the concept of density operators goes back much
further in history. Both concept and representation find widespread use outside quantum computing
in the dynamical description of general dissipative systems.



58 W. Mauerer

data center), and ultimately, the rest of the universe. All of these can perturb
and therefore influence the QPU, which must be shielded from the influence of
this environment. Even setting aside engineering issues, a perfect shielding that
eliminates the influence of the environment is impossible to achieve, as this would
make it impossible to prepare initial states, apply transformations on them, and read
out the result.

If the environment is modeled sufficiently large, both systems form a closed
quantum system. Transformations in the combined system can be described by
a unitary transformation .U ∈ U(dim(H) · dim(Henv)) where .H denotes the
Hilbert space of the system under consideration and .Henv the Hilbert space of the
environment. Assume that the environment is in a pure state .|e0〉〈e0|.7 The density
operator of the system under consideration after the unitary operation was applied
to the total system can be recovered by tracing out the environment:

.�′ = Λ(�) = trenv(U� ⊗ |e0〉〈e0|U†). (12)

=
∑

k

〈ek|U(� ⊗ |e0〉〈e0|)U†|ek〉. (13)

=
∑

k

〈ek|U |e0〉�〈e0|U†|ek〉. (14)

=
∑

k

Ak�A
†
k. (15)

In the last step, we define .Ak by .Ak ≡ 〈ek|U |e0〉. A set of Kraus operators .{Ak}
implements a completely positive .Λ if .∀� ∈ D : ∑

k Ak�A
†
k = Λ(�).

Theorem 3 The operation elements of a given superoperator .Λ are not unique:
if .{Ej } is a set of Kraus operators, then a different set of Kraus operators .{Fk}
describes the same operation if and only if there exists a unitary matrix .U ∈ U(n)

with .n = card({Ek}) (where .card(X) is the cardinality of the set X) such that

.Fk =
∑

j

UkjEj . (16)

Note that the shorter set may be padded with zero elements until the cardinality of
both matches.

Let .{Ak} be a set of Kraus operators that represents the cp-map .Λ. Note that if
any number of elements .Ai is taken from .{Ak}, the set still remains a completely
positive map, but is not trace preserving any more.

7 This assumption holds without loss of generality because it can be shown that a system can be
purified by introducing extra dimensions which do not have any physical consequences.



Superoperators for Quantum Software Engineering 59

Superoperators are elements of .B(H), which makes it possible to apply many
theorems of linear operator algebra to superoperators. As we have seen above, super-
operators can themselves be used as elements of a Hilbert space, which implies that
from a structural point of view, any distinction between operators and superoperators
is mathematically irrelevant. However, we believe this is an argument in favor of
using superoperators to describe quantum programming languages, as insights and
techniques from linear operator theory can be immediately applied. Finally, note that
the number of Kraus elements needed to express any arbitrary completely positive
map .T : B(H1) → B(H2) is bounded by .dim(H1) · dim(H2).

5 Applications in Quantum Software and Systems
Engineering

In this section, we provide concrete examples for the use of superoperators in
problems related to software engineering, embedding a brief discussion of seminal
and recent results.

5.1 Formal Semantics and Verification

Several semantic domains based on various mathematical formalisms of the under-
lying quantum physics have been used to provide semantics for quantum programs:
unitary operations or probabilistic functions on pure quantum states, admissible
transformations [21], or completely positive maps on density operators, for
which [26] initiated a series of follow-up results that established connections
between the physical framework outlined in this chapter and established approaches
to (denotational) semantics in computer science, in particular based on category
theory.

Following [16], it is known that modeling classical computational effects like
assignments or exceptions is possible using the category theoretical concept of
monads that have received considerable attention in computer science as abstract
data types in functional programming languages. Likewise, quantum computing
based on states and linear operators is known to be almost a monad [17]; by
extending the physical model to density operators and superoperators [29], it
is possible to formalize the computational semantics by the category theoretical
construct of arrows, which generalize monads. Importantly, such approaches do
not need to distinguish between computation and measurement, as the underlying
superoperator formalism unifies both aspects. As stated earlier, establishing con-
nections between quantum computations (in terms of the superoperator formalism)
and monads and arrows enables embeddings in current classical languages, and



60 W. Mauerer

exposes connections to well-understood concepts from the semantics of (classical)
programming languages.

Earlier seminal work [26] defines a functional programming language that can
establish various compile-time guarantees, and is equipped with a denotational
semantics based on complete partial orders of superoperators: the established
Löwner partial order, in which .A � B holds if and only if .B − A is positive
semidefinite, is slightly extended to apply on matrix tuples. The approach also
offers a formal category theoretic treatment based on so-called complete partial
order-enriched traced monadial categories, for which categorical operations like
composition and tensor are Scott-continuous (i.e., they preserve least upper bounds
of increasing sequences), which allows for using the guaranteed existence of fix-
points of Scott-continuous endofunctions on pointed (i.e., equipped with a least
element) complete partial orders to deal with loops and recursion.

An additional recent approach, QUnity, [30] provides a type system based on
algebraic data types, and allows for combining (and nesting) the use of unitary
transformations and superoperators. Denotational semantics are provided in the
form of pure and mixed semantics, building upon unitary transformation of quantum
states and superoperators applied to density operators, respectively. Finally, let us
mention the review of formal verification [12] that summarizes further approaches
to quantum semantics, not limited to superoperator-based constructions.

Given the multitude of existing approaches, it is interesting to observe that actual
software containing quantum code [24] and patterns for quantum software [13]
are almost exclusively expressed in languages that are not equipped with advanced
formal semantics, while languages that enjoy this quality find popularity restricted
to within academic circles. This leaves important gaps to be filled, given that it is
textbook knowledge in software engineering how software quality and reliability
of systems can be considerably improved by formal verification, static analysis, or
correctness by construction. First results along this line for the quantum domain
have appeared recently (albeit also based, as is customary in this line of research,
on toy languages that expose only the most salient features without syntactic sugar)
[20, 35]; interestingly, both approaches revolve around denotational semantics [25]
for a “while” language .�C� : B(H) → B(H) as denotation of program (fragment)
C. To convey the flavor of how the approaches relate to superoperators, consider the
following (incomplete) fragment of a language similar to what is used by Peduri et
al. and Zhou et al.:

.S := skip | abort | �q := Û (�q) | S1; S2 | repeat N do S end |
while meas �q with B do S end

Here, .Si denote quantum program fragments obtained from the production S, .�q
allows us to select quantum bits from the overall quantum register, and .Û is a
unitary operator, as usual. An application of the operator on a subset of the available



Superoperators for Quantum Software Engineering 61

quantum bits is given by .Û (�q). A denotational semantics, again similar to the
variants used in the cited approaches, can be defined as follows:

.�skip� = 1; that is, .�skip�(�) = 1�1† = �

.�abort� = 0; that is, .�abort�(�) = 0

.��q := Û (�q)� = Û�q ; that is, .��q := Û (�q)�(�) = Û�qρÛ
†
�q

.�S1; S2� = �S2� ◦ �S1�

.�repeat N do S end� = �S� ◦ �S� ◦ · · · ◦ �S�
︸ ︷︷ ︸

N times

.�while meas �q with B do S end� = ∑∞
k=0

(
B0,�q ◦ (

�S� ◦ B1,�q
)k

)

The definitions for the skip statement and unitary operator application on (a list
of) quantum states .�q defined in the first two lines make it clear that the denotations
for the fragments are superoperators that can be applied on concrete density matrices
.�; however, a density matrix is not required to define the actual denotation. The
while statement uses two binary projective measurement operations that can also be
represented by superoperators that define the transformation: .Bi (�) = Bi�B

†
i for

.Bi = |i〉〈i| in the computational standard basis.
Multiple approaches can establish that the while statement is well defined;

Peduri et al. base their consideration on an increasing sequence (in terms of the
Löwner partial order as defined above) of density operators obtained for termination
within an increasing number of iterations. To allow for modeling non-termination,
their considerations are based on sub-normalized density operators, that is, positive
semidefinite operators with trace at most one instead of exactly one, which is
satisfied for physical density operators. It is immediately clear that the abort is
non-trace preserving, and the while loop can be non-trace preserving if it does not
terminate after a finite number of iterations.

However, despite recent progress and compared to the substantial body of
literature on classical programming language semantics, the field is still very much
in its early stages. Apt mathematical models to describe foundational semantics
that attract researchers from both fields, together with a common understanding
of necessities, can hopefully lead to fruitful progress in the future, possibly also
eventually benefiting classical software engineering. As many of the approaches
are implicitly or explicitly based on superoperators, it is not unlikely that this
formalization of quantum computing will play an important role in the further
development of quantum software semantics.

5.2 Communicating and Distributed Systems

Quantum communicating systems [10] can be seen as an example of restricted,
distributed quantum computers; while they are not intended for general-purpose
computing, they share some characteristics with quantum computers in that they



62 W. Mauerer

prepare, manipulate, and measure quantum states. In contrast to NISQ machines
and future fault-tolerant quantum computers, quantum communication systems have
reached commercial maturity. In view of future distributed quantum computers that
will also face how to distribute quantum states over spatial distances, insights into
quantum communication systems can therefore benefit future quantum software
engineering. Again, superoperators play a pronounced role in this domain.

Let, for example, .�AB denote the density matrix of the state shared by Alice
and Bob, the two customary virtual representative parties of distributed (commu-
nication) systems. The information available for each of them can be inferred by
calculating the partial trace: .�A = trB �AB and .�B = trA(�AB). The bipartite
density matrix can never be recovered from these partial density matrices because,
as is known in general, many bipartite density matrices give rise to the same
partial density matrices . It is also obvious that a density operator representing
an entangled state cannot be represented by a direct tensor product of unrelated
partial density operators by the very definition of entanglement. One of the goals of
denotational semantics as exemplified for the quantum case in the previous section
is, essentially, to assign sufficient information to every edge of a flow graph such
that the complete semantics of a program can be reconstructed by combining only
the information given by the edges constituting the program. The denotation of a
statement composed of several sub-statements must be completely determined only
by a function of the denotations of the sub-statements.

This is impossible when transformations between explicit density matrices are
considered. Since a combination of the partial density matrices .�A, .�B which were
manipulated by Alice and Bob does not restore the total bipartite state .�AB, a
description that relies on a single density operator would obviously not comply with
the physical state afterwards.

A possible solution would be to annotate the complete flow graph, that is, of both
paths representing the control flow for Alice and Bob. In this case, the operations
performed by Alice and Bob would be written as tensor products of the type .A⊗1B
and .1A⊗B that act on the combined density matrix .�AB. This way, we could assign
semantics to the program as a whole, but would lose the ability to construct the
denotation of a phrase from the denotations of its sub-phrases. This means that the
semantics of the complete program could not be constructed from the denotation
of Alice’s and Bob’s programs (each running on a separate computational entity)
alone, which contrasts the key idea of denotational semantics.

Therefore, we need to seek a solution that does not characterize quantum
operations by showing transformations of explicit density matrices (or provide
superoperators that operate on the overall density operator), but instead captures
the notion of a transformation in a more abstract sense. Completely positive
maps (as explicitly represented by a set of Kraus operators) obviously fulfill
this need, and we consequently deem them a good choice to describe quantum
communication processes, and more general quantum computations that involve
communication [15], or distributed computations [3]. While this requires some
additional care in making sure that the definition of denotations does not carry an



Superoperators for Quantum Software Engineering 63

implicit dependence on an actual density operator, this is possible with the Kraus
representation of superoperators as introduced above.

5.3 Noise and Imperfection Modeling

At the time of writing, all physically available quantum computers fall into the
class of noisy, intermediate-scale quantum (NISQ) machines that are not fully fault-
tolerant. This means that there is a difference between the intended transformation
of quantum states (and measurements) described by a quantum program and the
actual transformation performed by the hardware. While no physical obstacles
prevent the building of perfect machines that reduce error rates to arbitrary low
levels by using error-correcting codes, this comes at the expense of substantial
overhead in the amount of required qubits and other resources that are currently
much beyond experimental reach. Therefore, any formal and semantic consider-
ations that implicitly assume perfect quantum computers will be in disagreement
with experimental and practical reality, which is counter to their crucial point as
they are supposed to improve software quality and correctness, which is a strongly
practical desideratum.

However, even if this problem will disappear with the advent of perfect quantum
computers, there are reasons to believe that NISQ machines of sufficient quality
will be able to perform advantageous computations, and it cannot be ruled out that
this class of machines—given that it will likely be possible to manufacture them
at substantially reduced cost and effort in comparison to fault-tolerant machines
with application-specific co-design techniques [32, 23]—will be of long-term or
even permanent relevance. Considering the effects of imperfections is, consequently,
not only worthwhile in the NISQ area, but might also display benefits beyond,
and software engineering research should consider the respective implications:
we believe it is important to understand the scalability, performance, quality, and
reliability of quantum software on NISQmachines beyond empirical measurements,
as these are also core considerations for classical software executing on classical
hardware.

As NISQ systems can be seen as open quantum systems, superoperators are
again well suited to modeling their properties and behavior (other techniques like
Lindbladian dynamics [22] could model such scenarios, but are outside the scope
of our considerations).

Current software-centric research deals with effectively adapting noise models to
real machines [6] or the efficient learning of quantum noise [9], as characterizing
noise from first physical principles or even measuring the actual characteristics on
machines can be computationally prohibitive. The (non-)resilience against noise
of variational algorithms like the quantum alternating operator approach (QAOA),
an optimization algorithm targeted at NISQ machines, has been studied [14, 33].
From the software engineering point of view, [8] provide a didactic exposition to



64 W. Mauerer

modeling imperfections of quantum computers with a focus on consequences for
non-functional properties; we partly follow their presentation below.

To model such imperfections, consider that while the evolution of a closed
quantum system is described by unitary operations, NISQ machines do not enjoy
a complete isolation against their environment. Until fully error-corrected systems
that mitigate this deficiency are available, the arising consequences will penetrate
into the quantum software and programming language layers. A noisy system is
subject to the influence of an external, uncontrolled environment that must be
included in any model of the system, eventually ending up with a larger, but closed
quantum system.

Similar to the earlier illustration of the Kraus representation theorem, .� denotes
the open quantum system under consideration. It is combined with an uncontrolled
environment .�env, equating to a larger, closed system .� ⊗ �env subject to evolution
.U(� ⊗ �env)U

†. This overall evolution is described by a unitary operator U .
By eliminating the uncontrolled environment using a partial trace operation, the
effective (and usually non-unitary) evolution of .� under noise is given by .E(�) =
trenv(U(� ⊗ �env)U

†).
Let .Be = {|ek〉}k be a basis of the environment. If the environment is measured

in .Be after the time evolution, then the outcome determines the state of the principal
system. We end up with a random distribution of states for the principal system
depending on the measurement. The effect the environment had on .� when the
outcome k occurred can be described by an operator .Ek , leading to a mixed state
description

.� �→
∑

k

Ek�E
†
k . (17)

This Kraus representation can be used to describe effects that occur in imperfect,
NISQ-era quantum systems. One canonical example of a probabilistic qubit flip that
randomly with probability p (i.e., by the influence of external factors like energy
dissipation, or the imperfect operation of quantum gates) negates a quantum bit can
be described by

.� �→ (1 − p)1�1† + pX�X†. (18)

The Pauli X gate is a unitary operator that, in state-based notation, flips a quantum
bit: .X|0〉 = |1〉, and .X|1〉 = |0〉. The operator can be applied as usual in a
quantum circuit to deterministically negate a quantum bit. In the above formulation
of Eq. (18), however, the gate is applied to the one qubit system .� with probability
p, and otherwise leaves the state as is. When the source of corresponding errors is
unclear in a NISQ system, probability p is an effective (classical) parameter of the
system whose magnitude can be determined by testing the system. By comparing
the structure of Eq. (17) with the above equation, it can be seen that this delivers
operators .Ek . Similarly, randomly occurring phase flip errors (described in the state
formulation by a PauliZ gate) or a combination of bit and phase flip error (described



Superoperators for Quantum Software Engineering 65

in the state formulation by a Pauli Y gate) can be constructed by replacing X by Z

or Y in Eq. (18). In each case, the interpretation of the operation is that the quantum
state is left intact with probability .1 − p by applying an identity transformation,
and affected by the error with probability p, resulting in a convex combination of
density operators that includes classical, stochastic uncertainty: while the actual
quantum system is in each of possibly multiple computational runs either in state
.� (when no error occurred) or state .X�X (in case an error occurred), an observer
does not know if a stochastic error occurred, and must therefore include this lack of
knowledge in the description of the quantum state. Note that while the initial state
may be a pure state that does not contain any lack of knowledge before the operation
induced by Eq. (18) is performed, it is also possible that a density operator already
featuring classical lack of knowledge enters the quantum operation, which then in
turn (usually) increases the lack of knowledge even further.

Generalizing from the binary error model use for bit, phase, and phase-bit
flips, the formalism also allows us to model more complex imperfections as they
occur in realistic systems, for instance with the commonly employed completely
depolarizing operator: one qubit is randomly subjected to one of the Pauli operators
.X, Y,Z by

.

� �→ (1 − p)1�1†+

p
1

4

(
1�1† + X�X† + Y�Y † + Z�Z†

)
,

(19)

with a certain probability, and otherwise leaves the qubit as is. A quick calculation
reveals that (19) equals .� �→ (1− p)� + p 1

21, where .
1
21 is the density representing

the state of a system being in every basis state with equal probability. Hence, the
system either stays intact or all information gets destroyed with probability p. For
an n qubit system, we obtain

.� �→ (1 − p)� + p
1

2n
1 (20)

following a textbook calculation.

6 Summary and Conclusion

Superoperators provide a rigorous mathematical representation of quantum oper-
ations that go beyond unitary transformations, as they allow us to model mea-
surements and imperfections. In this chapter, we have provided an introductory
exposition to the concept tailored toward the domain of software engineering, and
have elaborated on existing and possible use-cases for the concept, including to
equip quantum programs with formal semantics, and how to handle communication
and imperfection in current and future quantum computers.



66 W. Mauerer

While constructing practical software and algorithms for NISQ machines is
likely to differ substantially from approaches geared toward scalable and fault-
tolerant quantum computing, the superoperator formalism may provide a unified
and consistent representation that caters well to both scenarios. We expect that with
an increasing interest in quantum computing in software engineering, more uses of
the concept will appear in future literature, which makes it important for software
engineering researchers to be aware of the necessary structures and methods.

Acknowledgments This work is partly supported by the German Federal Ministry of Education
and Research within the funding program Quantum technologies—from basic research to market,
contract numbers 13N15647 and 13NI6092, and by the high-tech agenda of the Free State of
Bavaria. The author would like to thank Felix Greiwe, Tom Krüger, and four semi-anonymous
reviewers for helpful comments on a draft of this chapter that helped to substantially improve
presentation.

References

1. Auletta, G., Fortunato, M., Parisi, G.: Quantum Mechanics. Cambridge University Press,
Cambridge (2009). https://doi.org/10.1017/CBO9780511813955

2. Bichsel, B., et al. (June 2020) Silq: A High-Level Quantum Language with Safe Uncompu-
tation and Intuitive Semantics. In: Proc. 41st ACM SIGPLAN, pp. 286–300. ACM. ISBN:
978-1-4503-7613-6. https://doi.org/10.1145/3385412.3386007 (visited on 24/04/2023)

3. Cirac, J.I. et al.: Distributed quantum computation over noisy channels. Phys. Rev. A
59(6), 4249–4254 (1999). https://doi.org/10.1103/PhysRevA.59.4249 https://link.aps.org/doi/
10.1103/PhysRevA.59.4249

4. Ekert, A., Hosgold, T.: Introduction to Quantum Information Science (2022). https://qubit.
guide/qubit_guide.pdf

5. Garhwal, S., Ghorani, M., Ahmad, A.: Quantum programming language: a systematic review
of research topic and top cited languages. Arch. Comput. Methods Eng. 28(2), 289–310 (Mar.
2021). ISSN: 1134-3060, 1886-1784. https://doi.org/10.1007/s11831-019-09372-6

6. Georgopoulos, K., Emary, C., Zuliani, P.: Modeling and simulating the noisy behavior of near-
term quantum computers. Phys. Rev. A 104(6), 062432 (Dec. 2021). https://doi.org/10.1103/
PhysRevA.104.062432. https://link.aps.org/doi/10.1103/PhysRevA.104.062432

7. Green, A.S. et al.: Quipper: a scalable quantum programming language. SIGPLAN Not. 48(6),
333–342 (2013). ISSN: 0362-1340. https://doi.org/10.1145/2499370.2462177

8. Greiwe, F., Krüger, T., Mauerer, W.: Effects of Imperfections on Quantum Algorithms:
A Software Engineering Perspective. In: 2023 IEEE International Conference on Quantum
Software (QSW), pp. 31–42. https://doi.org/10.1109/QSW59989.2023.00014

9. Harper, R., Flammia, S.T., Wallman, J.J.: Efficient learning of quantum noise. Nature Phys.
16(12), 1184–1188 (2020). https://doi.org/10.1038/s41567-020-0992-8

10. Khatri, S., Wilde, M.M.: Principles of quantum communication theory: A modern approach.
Preprint (2020). arXiv:2011.04672. https://doi.org/10.48550/arXiv.2011.04672

11. Kraus, K.: States, Effects, and Operations Fundamental Notions of Quantum Theory, vol. 190.
In: Lecture Notes in Physics. Springer, Berlin, Heidelberg (1983). ISBN: 9783540127321.
https://doi.org/10.1007/3-540-12732-1. http://link.springer.com/10.1007/3-540-12732-1

12. Lewis, M., Soudjani, S., Zuliani, P.: Formal verification of quantum programs: theory, tools
and challenges. ACM Trans. Quantum Comput. (2023). https://doi.org/10.1145/3624483

13. Leymann, F.: Towards a Pattern Language for Quantum Algorithms. Quantum Technology
and Optimization Problems, vol. 11413. In: Lecture Notes in Computer Science (LNCS), pp.

https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1017/CBO9780511813955
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://doi.org/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://link.aps.org/doi/10.1103/PhysRevA.59.4249
https://qubit.guide/qubit_guide.pdf
https://qubit.guide/qubit_guide.pdf
https://qubit.guide/qubit_guide.pdf
https://qubit.guide/qubit_guide.pdf
https://qubit.guide/qubit_guide.pdf
https://qubit.guide/qubit_guide.pdf
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1109/QSW59989.2023.00014
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.1038/s41567-020-0992-8
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.48550/arXiv.2011.04672
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
http://link.springer.com/10.1007/3-540-12732-1
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3624483
https://doi.org/10.1145/3624483


Superoperators for Quantum Software Engineering 67

218–230. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-
14082-3_19

14. Marshall, J. et al.: Characterizing local noise in QAOA circuits. IOP SciNotes 1(2), 025208
(2020). https://doi.org/10.1088/2633-1357/abb0d7

15. Mauerer, W.: Semantics and Simulation of Communication in Quantum Programming
(2005). https://doi.org/10.48550/ARXIV.QUANT-PH/0511145. https://arxiv.org/abs/quant-
ph/0511145

16. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), (1991). Selections
from 1989 IEEE Symposium on Logic in Computer Science, pp. 55–92. ISSN: 0890-
5401. https://doi.org/10.1016/0890-5401(91)90052-4. https://www.sciencedirect.com/science/
article/pii/0890540191900524

17. Mu, S.-C., Bird, R.: Functional Quantum Programming. In: Asian Workshop on Programming
Languages and Systems KAIST, Dajeaon, Korea (Dec. 2001). http://www.cs.ox.ac.uk/people/
richard.bird/online/MuBird2001Functional.pdf

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/
CBO9780511976667

19. Ömer, B.: Procedural quantum programming. AIP Confer. Proc. 627(1), 276–285 (Sept.
2002). ISSN: 0094-243X. https://doi.org/10.1063/1.1503695. eprint: https://pubs.aip.org/aip/
acp/article-pdf/627/1/276/11571870/276_1_online.pdf

20. Peduri, A., Schaefer, I., Walter, M.: QbC: Quantum Correctness by Construction (2023). arXiv:
2307.15641 [quant-ph]

21. Perdrix, S.: A hierarchy of quantum semantics. Electron. Notes Theor. Comput. Sci. 192(3),
71–83 (Nov. 2008). ISSN: 1571-0661. https://doi.org/10.1016/j.entcs.2008.10.028

22. Preskill, J.: Lecture Notes for Physics 229:Quantum Information and Computation. CreateS-
pace Independent Publishing Platform (2015). ISBN: 9781506189918. https://books.google.
de/books?id=MIv8rQEACAAJ

23. Safi, H., Winterspergerm, K., Mauerer, W.: Influence of HW-SW-Co-Design on Quantum
Computing Scalability. In: 2023 IEEE International Conference on Quantum Software (QSW),
pp. 104–115 (2023). https://doi.org/10.1109/QSW59989.2023.00022

24. Schönberger, M., et al.: Peel — Pile? Cross-Framework Portability of Quantum Software. In:
2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp.
164–169 (2022). https://doi.org/10.1109/ICSA-C54293.2022.00039

25. Scott, D., Strachey, C.: Toward a Mathematical Semantics for Computer Languages. Technical
Monograph PRG-6. Programming Research Group. Oxford Univ. Computing Lab., Oxford
(1971)

26. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput. Sci.
14(4), 527–586 (Aug. 2004). ISSN: 0960-1295, 1469-8072. https://doi.org/10.1017/
S0960129504004256

27. Svore, K., et al.: Q#: Enabling Scalable Quantum Computing and Development with a High-
level DSL. In: Proceedings of the Real World Domain Specific Languages Workshop 2018,
pp. 1–10. ACM, (Feb. 2018). ISBN: 978-1-4503-6355-6. https://doi.org/10.1145/3183895.
3183901 (visited on 24/08/2023)

28. Vedral, V.: Introduction to Quantum Information Science (Oxford Graduate Texts). Oxford
University Press, USA (2006). ISBN: 0199215707

29. Vizotto, J., Altenkirch, T., Sabry, A.: Structuring quantum effects: superoperators as
arrows. Math. Struct. Comput. Sci. 16(3), 453–468 (2006). https://doi.org/10.1017/
S0960129506005287

30. Voichick, F., et al.: Qunity: a unified language for quantum and classical computing. Proc.
ACM Program. Lang. 7(POPL), (2023). https://doi.org/10.1145/357122510.1145/3571225

31. Wecker, D., Svore, K.M.: LIQUi|>: A Software Design Architecture and Domain-Specific
Language for Quantum Computing (Feb. 2014). CoRR abs/1402.4467. https://doi.org/10.
48550/arXiv.1402.4467

https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1007/978-3-030-14082-3_19
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
https://www.sciencedirect.com/science/article/pii/0890540191900524
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/MuBird2001Functional.pdf
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://doi.org/10.1063/1.1503695
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://pubs.aip.org/aip/acp/article-pdf/627/1/276/11571870/276_1_online.pdf
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://doi.org/10.1016/j.entcs.2008.10.028
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://books.google.de/books?id=MIv8rQEACAAJ
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/QSW59989.2023.00022
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1017/S0960129506005287
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467
https://doi.org/10.48550/arXiv.1402.4467


68 W. Mauerer

32. Wintersperger, K., Safi, H., Mauerer, W.: QPU-System Co-Design for Quantum HPC Accel-
erators. In: Schulz, M., et al. (eds.) Proceedings of the 35th GI/ITG International Conference
on the Architecture of Computing Systems. Gesellschaft für Informatik, pp. 100–114 (Aug.
2022). ISBN: 978-3-031-21867-5. https://doi.org/10.1007/978-3-031-21867-5_7

33. Xue, C., et al.: Effects of quantum noise on quantum approximate optimization algorithm.
Chin. Phys. Lett. 38(3), 030302 (2021). https://dx.doi.org/10.1088/0256-307X/38/3/030302

34. Ying, M., Zhou, L., Li, Y.: Reasoning about Parallel Quantum Programs (Aug. 2019). https://
doi.org/10.48550/arXiv.1810.11334. http://arxiv.org/abs/1810.11334

35. Zhou, L., et al.: CoqQ: Foundational verification of quantum programs. Proc. ACM Program.
Lang. 7(POPL), (Jan. 2023). https://doi.org/10.1145/3571222

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1007/978-3-031-21867-5_7
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://dx.doi.org/10.1088/0256-307X/38/3/030302
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
https://doi.org/10.48550/arXiv.1810.11334
http://arxiv.org/abs/1810.11334
http://arxiv.org/abs/1810.11334
http://arxiv.org/abs/1810.11334
http://arxiv.org/abs/1810.11334
http://arxiv.org/abs/1810.11334
http://arxiv.org/abs/1810.11334
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3571222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part II
Quantum Software System Design



QSandbox: The Agile Quantum Software
Sandbox

Iaakov Exman

Abstract QSandbox is an agile software sandbox specifically designed for Quan-
tum Software research and development. QSandbox agility goes beyond the System
Under Development within the sandbox. QSandbox agility is itself modifiable since
its high-level modules are varied at will by Quantum Software developers.

QSandbox has a series of unique features suitable for agile development. It
uses high-level abstraction meaningful modules, instead of low-level quantum
gates of conventional simulators. It has instantly synchronized dual views—high-
level quantum circuit and density matrix. It has uniform quantum and classical
representation, implying the innovative idea of quantum circuits for classical
software.

Keywords Quantum Software · Agile QSandbox · High-level quantum circuit ·
Density matrix · Abstraction · Meaningful modules · Quantum circuits for
classical software

1 Introduction

The relatively young Quantum Software discipline should adopt classic software
techniques that have demonstrated great advantages in software development (e.g.,
Kent Beck [1], Fox and Patterson [2]), to enable an agile approach to Quantum
Software systems.

A generic sandbox is a safe and isolated environment to test software, which has
been used for agile software development (e.g. [3]). The agile Quantum Software
sandbox—in short QSandbox—is specifically designed for Quantum Software.
QSandbox agility goes beyond the System Under Development (SUD) within the
sandbox. QSandbox agility is itself modifiable by Quantum Software developers
and researchers, as an experimental substrate. Therefore, it preserves exactly what

I. Exman (�)
HIT Holon Institute of Technology, School of Computer Science, Holon, Israel
e-mail: iaakov@hit.ac.il

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 4&domain=pdf
https://orcid.org/0000-0002-9917-3950

 885 56845 a 885 56845 a
 
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il
mailto:iaakov@hit.ac.il


72 I. Exman

the Quantum Software professionals think are meaningful modules for their own
work. We use high-level abstraction modules, instead of low-level quantum gates of
conventional simulators.

The current chapter’s purpose is to characterize QSandbox as a theoretical based
but useful system in practice. It aims to be a concrete implementation of the ideas
exposed by Exman [4], enabling actual testing of those ideas.

1.1 Concise QSandbox Characterization

QSandbox is a software development environment specifically designed for Quan-
tum Software, either pure quantum or hybrid systems composed of quantum and
classical subsystems. QSandbox is useful for pure classical systems, as we believe
these are limiting cases of more general Quantum Software systems.

An essential QSandbox characteristic is ease of “modify and keep it meaningful”
or even “modify and sharpen its meaning.” Thus, it displays the following proper-
ties:

1. Dual views—consisting of instantly synchronized high-level “quantum circuit”
and its “density matrix”: if the quantum circuit is changed, the density matrix is
concurrently modified; if the density matrix is changed, the quantum circuit is
instantly modified as well. If a developer chooses to add an optional view, this
view is also automatically synchronized. Instant views synchronization avoids
special synchronization commands, shortening development time.

2. Modular perspective—QSandbox enables whole modules to be inserted/removed
from each of its dual views, for example, a module containing a complete set of
gates needed for the oracle recognition of the correct answer of a Grover search.
One should be able to easily substitute a module for another one.

Why the Insistence on Modules?
Modules must have meaning, due to the higher abstraction level of Quantum

Software systems, in which they are embedded.
The dual views and the modular approach, due to their theoretical basis, should

afford a significantly higher perspective to Quantum Software development and
immediate response by QSandbox.

1.2 Chapter Organization

This chapter is organized as follows. Section 2 presents a set of QSandbox focused
ideas. Section 3 overviews the QSandbox software architecture. Section 4 contains
an explanation of the dual views from a theoretical perspective. Section 5 presents
the novel idea of a quantum circuit for classical software. Section 6 displays agile
compressed views with a Quantum Software system case study. Section 7 refers



QSandbox: The Agile Quantum Software Sandbox 73

to related work. Section 8 concludes the chapter with an in-depth discussion of
QSandbox, including open issues and future work.

2 QSandbox Focused Ideas

QSandbox is based upon a set of focused ideas, aiming at fundamentally changing
how a Quantum Software system is perceived by developers and researchers.

2.1 High Abstraction Level Interface: First Idea

An important goal of QSandbox is to hide any underlying low-level details that are
not essential for agile Quantum Software system development and understanding. It
is analogous to an operating system which hides the underlying computing machine,
be it real or virtual, or to the memory hierarchy—cache, RAM, virtual memory—
hiding the various hierarchy levels, to give an illusion that memory is almost always
very fast.

The high abstraction level interface deals with high-level modules, each one
having a well-understood meaning in natural language. Its advantages are:

(a) One avoids repeating mistakes of the history of classical computing. Low-level
quantum gates would be analogous to a return to classical machine language.

(b) Low-level quantum gates refer to specific problem solutions, e.g., a specific
number of qubits; high abstraction module level focuses on perceiving generic
solutions.

2.2 Modular Perspective: Second Idea

A unique trait of the QSandbox is the particular set of Quantum Software modules
available within a specific copy of QSandbox, at a certain development time and
place.

The set of high-level modules is varied at will by developers or researchers,
in contrast to the fixed set of simple quantum gates permanently available in
conventional simulators.

When first acquired, QSandbox offers a useful initial repertoire of modules.
An example of a high-level module has a variable number n of Hadamard gates
H

⊗
n frequently necessary to attain equal superposition. Another example is a

set of measurement devices. These, despite not strictly being a kind of quantum
gate, often appear in quantum circuits, as the way to acquire specific information
about a quantum subsystem by measuring its variables. A slightly different kind



74 I. Exman

of “modules” offers localized types of control, for instance, a loop with a variable
number of cycles, easily inserted/removed around a desired set of modules.

Additional modules are expected to be collected by developer or researcher teams
along the lifetime of a given copy of QSandbox. Specific modules may also be
discarded if rarely used, or if deemed irrelevant by the software developers. Finally,
similar module versions may be preserved if they are frequently applied modules by
these teams.

2.3 Uniform Quantum and Classical System Representations:
Third Idea

The module representations in both views—high-level quantum circuit and density
matrix—are uniform and independent of the type of software system, whether pure
quantum, pure classical, or hybrid systems, composed of quantum and classical
subsystems.

The representation uniformity facilitates immediate recognition of modules
during research and development activities. Moreover, it stimulates innovative ideas
such as quantum circuits for classical software.

3 QSandbox Software Architecture Overview

This section describes the initial QSandbox from the following points of view:

1. Its software architecture, components, and their interrelations
2. The user interface as seen from the outside
3. The most important user commands and their purposes

3.1 QSandbox Software Architecture

The initialQSandbox software architecture has the following groups of components:

Active Components

• Views generator—generating and synchronizing the available views, either the
dual standard (quantum circuit and density matrix) or additional optional ones
(such as particular quantum computing languages)

• Simulator—to run and test any System Under Development (SUD), either upon
the quantum circuit or upon the density matrix

• Modulaser [5]—an internal software program designed to manipulate matrices,
in particular for density matrix modularization



QSandbox: The Agile Quantum Software Sandbox 75

Fig. 1 Schematic diagram of the QSandbox software architecture—component types are grouped
with distinct colors: active components (light blue), internal views implementation (dark blue),
input (green), and output (orange)

• Views converter—to convert back and forth display representations to efficiently
save formats internally or exportable to external long-term memory devices

System Input/Output

• Input—to add new kinds of modules and possibly quantum gates.
• Output—views, menus, and simulator results on a computer/mobile phone

screen; the long-term memory contents may be exported to external memory
devices.

The QSandbox software architecture is summarized in Fig. 1. Component types
are grouped with distinct colors. The QSandbox center of gravity is the views
generator (light blue), linking internal views (dark blue), the views converter, and
their output. On the left-hand side, the input gets modules and gates. On the right-
hand side is the output to a screen.

Now, suppose that the developer wishes to make additions to the initial overall
software architecture. From Fig. 1, one can clearly see an essentially modular
architecture based on the idea that the components are grouped by component types,
which in Fig. 1 have distinct colors. This idea should be cautiously preserved in
every addition.

One may add a single component to an existing group, for instance, a new
optional view. A concrete example could be to add a view of a previously absent
quantum computing language. In this particular case, one essentially needs to link
the new optional view to the views generator.

Alternatively, one may add a whole new group. For example, in the future, a
system developer may wish to add a series of noise models, to allow one to test
various such models. In such a case, one needs to add a new group, with a number
of components as the number of models, and link all these models to the simulator.



76 I. Exman

Fig. 2 QSandbox default user interface—schematic diagram. The upper left-hand side shows the
default quantum circuit. On the right-hand side, one sees a default density matrix. The lower left-
hand side shows the four-button menus

3.2 User Interface

The QSandbox user interface, consistent with the purposeful approach—to hide
superfluous low-level details—is as neat and sharp as possible:

• The dual views—a quantum circuit with a schematic initial default diagram; a
density matrix with suggestive default values

• A concise menu—with four buttons: (1) quantum modules; (2) simple quantum
gates; (3) views; and (4) run program. Each of these buttons when clicked will
open a more detailed menu offering a choice of the respective items.

The default user interface view is shown in Fig. 2. In detail, the default quantum
circuit has a single register, four qubits with initial state values |0〉, and four empty
modules.

The default density matrix values, illustrated later on in Sects. 5 and 6, are eight
columns and eight rows, whose respective indices are four functionals followed by
four structors, with empty initial values; upon the columns, there are kets with values
from |000〉 to |111〉, and to the left of the rows, there are bras with values from 〈000|
to 〈111|; these default values are only for the sake of illustration.

The quantum modules detailed menu when opened offers the available modules
to add them to the quantum circuit, similar to the simple quantum gates.

The opened views menu shows six items:

• Optional views
• Restart view
• Save view and retrieve view
• Compress and decompress view



QSandbox: The Agile Quantum Software Sandbox 77

Most views items are self-explanatory. Compress view reduces the internal
module details displayed in a view; it is defined in Sect. 4.3 and further illustrated
in Sect. 6.

The run program menu shows two items:

• Simulator
• Modulaser

Additions to the initial user interface are simpler than those to the overall
architecture. Looking at Fig. 2, possible additions can be made to the menus. One
may add a single component to an existing menu button, or one may need to add a
whole new button, containing a submenu with several possible alternatives.

3.3 User Commands’ Set

The QSandbox user commands’ set follows from the neat approach of the user
interface:

• Modules and Gates—one simply drags and drops the chosen module or gate icon
on the quantum circuit.

• Views—one chooses the desired command—save, retrieve, restart, compress,
decompress—and puts the pointer (say a mouse) on the view to which the
command should be applied. In case of an optional view, one should choose it,
move it out of the menu, and release it outside the menu to be usable.

• Run Program—for the simulator upon the quantum circuit, one can run one-
step-forward, run-to-the-end of the circuit, one-step-backward, or return-to-
the-beginning of the circuit. For the simulator upon the density matrix, one
chooses the desired initial matrix element and applies the relevant unitary
operator. For the modulaser, one should choose the desired matrix operation,
e.g., modularization.

There will also be trivial commands of practical value, for instance, to extend a
view to cover the whole screen, to reduce the view to its original size, and so on.

This is only a brief overview. For effective use of QSandbox, one will need a
self-explanatory interface and, to be on the safe side, a more detailed user’s guide.

4 Dual Views in Depth

This section explains and justifies the dual views by deep theoretical considerations.
The relatively abstract terms in this section are clarified in Sects. 5 and 6 by case
studies with concrete examples. The theory [4] defines Quantum Software modules
by two complementary aspects of high-level modules:



78 I. Exman

• Modules have meaning—meaning is afforded by natural language concepts
understood by humans. Concepts are the essence of Quantum Software systems.

• Modules are orthogonal—modularization implies algebraic constraints, enabling
correctness verification; the purpose of a real software theory is to check whether
the software is correctly built as a self-consistent system.

For instance, a car braking system has no relation whatsoever with the car air-
conditioner. These are orthogonal modules; thus, the car is a self-consistent system.
It would be strange if in order to brake (reduce the car speed), one needed to turn on
the air-conditioner. This is inconsistent; these subsystems do not belong to a single
module.

But the meaning and orthogonality of high-level modules by themselves are not
enough to constitute a software theory useful in practice. One needs computable
entities. The computable entities corresponding to meaning and orthogonality are,
respectively, the high-level quantum circuit and its fitting density matrix, explained
in the next sections.

4.1 High-Level Quantum Circuit

How do we represent module concepts in a high-level quantum circuit of a Quantum
Software system?

First, by the high-level modules themselves named by concepts, which are
understood by human developers and researchers.

Second, the high-level modules contain indices of two types: structors {S1,
S2, . . . Sj}, a term reminding one that this deals with structures), and functionals
{F1, F2, . . .Fk}, reminding one that these are “functions” performing computations.
The necessity for indices is discussed in Sect. 4.4 describing the density matrix.

High-level modules enable understanding the nature of computations but are
not themselves computing entities. To perform computations, one inserts low-
level modules with computing quantum gates into the high-level modules. Then
computation is feasible.

4.2 Computations with High-Level Quantum Circuits

What is the nature of the computations with a high-level quantum circuit?
Assume low-level modules were previously input in QSandbox. A run is a

sequential application of modules on the Quantum Software system states, sum-
marized in the next text box.



QSandbox: The Agile Quantum Software Sandbox 79

Procedure 1—Computation with a High-Level Quantum Circuit
{ Given that high-level quantum circuits (QC) are composed with generic
modules, which are not computing entities by themselves:

Modules choice—for each generic module in the QC, choose a specific
low-level module composed of simple quantum gates from the long-term
memory. Specific modules are recognized by the number of qubits n and a
serial number for module type.

Substitute generic with specific modules—drag and drop specific modules
on the high-level quantum circuit with generic modules.

Loop: until the desired state, eventually doing steps-forward or steps-
backward

{ Run the QC upon the software system current state—starting from the
initial state, say |0〉, chose a command, e.g., one-step-forward, and apply it by
the relevant module upon the current state. }

}

4.3 Compressed Views

Compressed views is an additional agility tool, to shorten development time.
Suppose that computation results with one or more modules belonging to a given

Quantum Software system are already satisfactory, and there is no current need
for further detailed computations with these modules. Then one can compress its
internal structors and continue working only with the remaining modules. This is
the general idea of a compressed higher-level quantum circuit.

Compressing a set of modules is done as follows:

• Save Original Quantum Circuit—save the original high-level quantum circuit
to allow decompression, after all remaining modules have satisfactory computa-
tions.

• Modules Substitution—substitute the whole set of modules to be compressed by
just one compressed module.

• Compressed Module Contents—the compressed module should have just a single
structor and a single functional, with names provided by the developer.

• Coalesced Structor and Functional Indices—the structor index is a pair of
coalesced juxtaposed indices of the first and the last compressed modules,
for instance, “S3S5,” and corresponding functional index, “F3F5,” where the
first compressed module is M3 and the last one is M5. Coalesced indices tell
QSandbox that the marked structor is inside a compressed module.

• Decompression—is done by restoring the saved original quantum circuit.



80 I. Exman

4.4 Density Matrix

A density matrix,1 usually designated by ρ (the Greek letter “rho”), is one of the
ways to describe the state of a quantum system. Formally, it is defined as a square
positive semi-definite trace-one Hermitian matrix. Trace-one means that the matrix
trace—the sum of the diagonal matrix elements—equals one. The density matrix in
this chapter serves to describe the overall state of a Quantum Software system.

What are the relationships between structors, functionals, modules, and a density
matrix?

We first observe that structors are a generalization of classes in object-oriented
design (OOD). Functionals generalize class methods in OOD. The generalizations
are needed since to describe a very complex system, one would use not just a single
density matrix but a hierarchy of density matrices, for example, a density matrix
for the whole car, other matrices for the subsystems—one for the air-conditioner,
another for the braking subsystem, etc. Each matrix has its structor and functional
sets.

For example, the air-conditioner could have three structors {S1=heater;
S2=cooler; S3=fan} and three functionals {F1=heating function; F2=cooling;
F3=ventilating}. One can say that a structor provides a functional. For instance, the
heater provides the heating function. The number of functionals per structor is not
necessarily one to one. One could have two functionals (heating and warming) for
the same structor (the heater). The same functional provided by two structors is also
possible: this is OOD “inheritance.”

Each structor Sj and each functional Fk index should always and consistently
represent each respective concept. The necessity for Sj and Fk indices is that
matrices do not perform computations directly with concepts but rather with their
respective index values.

A matrix with structors represented by columns and functionals represented
by rows is called an adjacency matrix, whose nonzero matrix elements stand for
“neighbors,” marking which functionals are provided by their respective structors.

In order to minimize the structors and functionals number of a system, the
adjacency matrix set of columns must be linear independent. The same is true for
the set of rows of this matrix. Then, by linear algebra considerations, the adjacency
matrix must be square.

Modules are sub-matrices of the adjacency matrix, containing a consistent subset
of structors and functionals, with related meaning. An air-conditioner module
should have a set of columns (structors) as seen above: heater, cooler, and fan.
The braking system module should have a different set of columns (structors) such
as brake, handbrake, brake fluid, etc., in order to be self-consistent. The same is
true for matrix rows. There must not be mixing of concepts belonging to diverse
modules. The outcome is that modules are orthogonal. Thus, an adjacency matrix

1 Readers not familiar with quantum computing terms are encouraged to read relevant sections of
a quantum computing book (e.g., [6–9]).



QSandbox: The Agile Quantum Software Sandbox 81

correctly modularized must be block-diagonal. This is the real Quantum Software
theory enabling modularity correctness verification.

Finally, any Quantum Software density matrix is composed of the diagonal with
trace equals one, an upper-right quadrant adjacency matrix above the diagonal, and
its reflection in the lower left below the diagonal. This is illustrated by case studies
in Sects. 5 and 6.

4.5 Computations with a Density Matrix

This section does not explain the nature of the computations with a density matrix
in detail. But these computations are so important that we provide here concise
descriptions of these computations and references to the relevant literature where
one can find these detailed descriptions.

• Modularization—this means a procedure to find the modules of a Quantum
Software system, given a density matrix. If the software developer or researcher
is not satisfied with the resulting modularization, one can reconceptualize the
system, obtaining a slightly different density matrix.

There are two ways to modularize a Quantum Software density matrix.
One is purely linear algebraic, based upon the fact that the density matrix
inherits properties of the Laplacian matrix (see, e.g., Braunstein et al. [10]).
Modules correspond to zero-valued matrix eigenvalues, whose size is given
by the corresponding eigenvectors (see, e.g., Exman and Sakhnini [11] and
references therein; see also von Luxburg [12]).

Another modularization method is by representing the density matrix as sums
of projectors. In this case, modules are given by disjoint sets of projectors (see
Exman and Shmilovich [13]).

• Projective Measurements—projective measurements are one of the well-known
kinds of quantum measurements, which may be used for several applications.
One possible application is to reduce the number of measurements in a quantum
tomography process. This reduction of the number of measurements is due to the
use of “modules” in a so-called modules tomography (see Exman and Zvulunov
[14] and references therein).

• System Simulation—instead of actually running a Quantum Software System,
whose code may not be available, one can perform evolution of the matrix state,
which is a very high-level simulation of running the Quantum Software system
represented by the density matrix.



82 I. Exman

4.6 Optional Views

As discussed in the previous subsections, there are well-funded theoretical argu-
ments linking the high-level quantum circuit with the density matrix of a given
Quantum Software system, jointly consisting of the basic mandatory dual views
of QSandbox.

Besides the standard dual views, one can use optional views. A common optional
view is a translation of the high-level quantum circuit to a quantum computing
programming language, such as Qiskit [15], QWIRE [16], or Cirq [17] (see also
Serrano et al. [18]).

If optional views are available in a given QSandbox version, the basic dual views
mechanisms are applicable to the optional views. These mechanisms are instant
automatic views synchronization, views appearance in the views submenus, and
their preservation in the QSandbox long-term memory. The decision as to whether
to actually use optional views is left to the developer or researcher using his specific
QSandbox version.

5 Quantum Circuit for Classical Software: The Recycle Bin
Case Study

This case study offers plenty of challenges. The novelty is a quantum circuit for pure
classical software systems. It is legitimate as the latter are viewed as limiting cases
of quantum systems. The open question is the possibility of designing high-level
quantum circuits in general for classical software. A fitting density matrix is also
obtained.

5.1 Recycle Bin Overview and High-Level Quantum Circuit

What is a recycle bin? Any computer user is familiar with the waste basket in a
computer screen corner, where deleted files are pictorially thrown. A recycle bin
enables recycling of a file or an email message, previously deleted. Deleting and
then recycling can be done many times, until one empties the waste basket, and
recycling is not possible anymore.

A recycle bin (see Jackson [19], [20] p. 49) high-level quantum circuit is shown
in Fig. 3.

We start the high-level quantum circuit top-to-bottom description with mod-
ules:

• M1 = Item—that can be deleted and recycled, such as a file or an email message
• M2 = Waste bin—location that can be emptied, and then items are permanently

unusable



QSandbox: The Agile Quantum Software Sandbox 83

Fig. 3 Recycle
bin—high-level quantum
circuit. Time increases from
left to right. It has two
modules (light blue); three
structors (green); three
functionals (orange); and one
connector. This is a first
example of a quantum circuit
for classical software

Modules contain structors:

• S1 = Accessible—structor with items that can be used.
• S2 = Deleted—structor with items that cannot be used.
• S3 = Bin—this is the only structor within the waste bin.

Structors provide functionals:

• F1 = Delete—move item from accessible to deleted.
• F2 = Recycle—move item from deleted to accessible.
• F3 = Empty—permanently remove all items from bin.

When connector is activated, it removes all deleted items, emptying the waste
bin.

Now we describe the quantum entities, which seem quite interesting:

• Number of qubits—is left unspecified as n; each qubit represents one item; but
there is just one qubit timeline; a slash in the beginning of the qubit line is a
conventional way to state that there are multiple qubits.

• Initial qubit value—it is |1〉 because an item is initially accessible.
• The operator Pauli X—is the quantum not, transforming |1〉 into |0〉 and back;

|0〉 represents a deleted item. Thus, delete and recycle are reversible, as they
should be.

• The empty operator is a measurement—since it should be irreversible.
• The connector is needed—emptying is a voluntary decision and not automati-

cally performed.

An exercise left for the reader is the following question: What is a reasonable
value for the result of the (empty) measurement? How is this function implemented?



84 I. Exman

Fig. 4 Recycle bin Quantum Software density matrix—one sees diagonal matrix elements (green).
Above and below the diagonal is the square adjacency matrix with two modules in descending
order: a 2-by-2 item module (plain and hatched light blue) and a 1-by-1 waste bin module (plain
light blue). The connector is shown in {F2, S3}

5.2 Recycle Bin: Density Matrix

The density matrix fitting the high-level quantum circuit in Fig. 3 is shown in Fig.
4.

The recycle bin density matrix in Fig. 4 perfectly corresponds to the high-level
quantum circuit in Fig. 3. For instance, the item module is located in the density
matrix elements {S1, S2, F1, F2} fitting structors and functionals of the quantum
circuit.

6 Compressed Dual Views of Quantum Software: Grover
Search Case Study

Grover search is a well-known quantum computing algorithm. Here it concretely
illustrates usage facets of QSandbox, focusing on the user interface and modules.

After a concise Grover overview, we separate the two Grover search dual views,
to examine each of them in more detail. First, we have a look at the high-level
quantum circuit and its compressed version. Then, we look at the compressed
density matrix.

6.1 Grover Search Concise Overview

Grover’s overall idea [21] is, for an unsorted database of size N, to search a desired
database item. Assume a telephone directory sorted by subscriber names; asking



QSandbox: The Agile Quantum Software Sandbox 85

for a phone number given a subscriber’s name, there are efficient classical search
algorithms.

But, given a telephone number and asking for the subscriber’s name, the same
telephone directory is unstructured for this request: a classical algorithm takes O(N)

search function evaluations, while Grover quantum search takes only O.

(√
N

)
, a

quadratic speed-up. The number of qubits necessary for Grover search is a register
of n = log2 N qubits.

The algorithm initiates by an equal superposition of all states. Next, a Grover
iteration is performed where an “oracle” recognizes and marks the solution,
followed by an amplification of the marked solution, gradually increasing the
probability of finding the solution. A final measurement obtains the solution. The

iteration cycles number is O.

(√
N

)
.

6.2 Grover: High-Level Quantum Circuit

A high-level quantum circuit of the Grover Quantum Software system is shown in
Fig. 5.

The high-level quantum circuit in Fig. 5 is consistent with the QSandbox
approach in two senses: (a) there are only high-level modules, no explicit simple
quantum gates or registers; (b) all module names are natural language concepts,
understood by developers.

Hadamard, Grover, and Fourier for that matter are not “quantum gates” or
transforms; these are proper person names, scientists that became common natural
language concepts, for their contribution to science (see Discussion in [4]).

Fig. 5 Grover search—high-level quantum circuit. Time increases left to right. It has three
modules {M1, M2, M3} (light blue), four structors {S1, Hadamard init; S2, oracle; S3, amplifier;
S4, measurement} (green), four Functionals {F1, equal superposition; F2, mark target; F3,
inversion about average; F4, measure} (orange), and two connectors



86 I. Exman

Below the connectors, between consecutive modules in the circuit of Fig. 5, there
are linking points: from the preceding module functional to the next module first
structor.

An important connectors’ role in this system is to delimit the beginning and end
of the Grover iteration cycles. One probably needs a better way to demarcate the
components of iterations, as suggested above in Sect. 2.2. The number of Grover
iteration cycles is not shown in this kind of quantum circuit: one wishes to keep it
as general as possible.

The number of qubits n is also unspecified, by the same generality consideration.
Similar to the recycle bin (in Fig. 3), there is just one qubit timeline, with a slash
right in the beginning, meaning multiple qubits. Here the initial state is |0〉.

QSandbox simulator computations apply the Hadamard init structor on the initial
|0〉 state, passing by the connector, to the next module, as described in Procedure 1
Sect. 4.2.

6.3 Grover: Compressed Higher-Level Quantum Circuit

The Grover quantum circuit obtained from Fig. 5, by compressing the intermediate
Grover iteration module M2, is shown in Fig. 6.

6.4 Grover: Compressed Density Matrix

The respective Grover Quantum Software system compressed density matrix is
shown in Fig. 7.

Fig. 6 Grover search compressed higher-level quantum circuit—the “Grover iteration” module
M2 is compressed. Its two structors coalesced into a single “loop” structor and a single “increase
probability” functional. The original structor and functional indices coalesced into double indices,
“S2S3” and “F2F3.” The other modules were not changed



QSandbox: The Agile Quantum Software Sandbox 87

Fig. 7 Grover search compressed density matrix ρ—the 3-by-3 adjacency matrix (upper-right and
lower-left quadrant) has 1-by-1modules (light blue), in descending order: M, initiator {S1,F1}; M2,
compressed Grover iteration {S2S3, F2F3}; M3, measuring device {S4,F4}. Connectors (hatched
brown) are in {F1, S2S3} and {F2F3, S4}

The exact correspondence of the compressed density matrix in Fig. 7 with the
compressed higher-level quantum circuit modules of Fig. 6 is clearly seen. For
instance, the initiator module M1 in the quantum circuit contains the structor S1
and its functional F1; the corresponding initiator module M1 in the density matrix
is the matrix element {S1, F1}. The next module in both views is the compressed
Grover iterator M2 with just a single matrix element {S2S3, F2F3}. In between, one
sees the connector located in {F1, S2S3}.

All the density matrix columns sum to zero, and the same is true for all its
rows, a property inherited from the Laplacian matrix (see, e.g., [11]), being a
further checking of its correctness. The reason for not normalizing the density
matrix—actually dividing its matrix elements by the trace, whose value is 16—is
that algebraically adding some of these division outcomes gives results equaling
very close to but not exactly zero, due to rounding errors.

The kets above the density matrix columns and bras at the left of the density
matrix rows are relevant to the density matrix modularization, described elsewhere
(e.g., [13, 22]). A linear algebraic modularization can be performed by the modu-
laser [5] accessible within QSandbox (in Fig. 1).

7 Related Work

In this section, one can find a concise review of the scientific literature relevant to
the material in this chapter. It includes classical sandbox examples, such as the Java
sandbox.



88 I. Exman

7.1 Classical Software Sandbox

Sandboxing operates a safe and isolated environment, decoupled from the sur-
rounding infrastructure, to test and analyze code. It is mainly used for security
considerations. But once it is usable to test code, in principle it can be applied to
software development.

The main purpose of the well-known classical Java sandbox is a secure envi-
ronment to run untrusted software code. Coker et al. [23] in their paper carried
out an empirical study to test the hypothesis that the Java security model affords
developers more flexibility than needed, i.e., its complexity compromises security
without improving practical functionality.

Herzog and Shahmehri [24] refer to the secure Java sandbox, with a slightly
different purpose. They investigate if the Java permission syntax can be used
to formulate policies for resource management of high-level resources. These
resources are, e.g., the file system, I/O device APIs (application programmer
interfaces), threads, sockets, or properties.

Wilcox et al. [3] take a very different approach to sandboxing. Their paper’s
focus is agile development, using many sandboxes to enable parallel development.
Their sandbox is a complete clone of the source code, including continuous
integration and deployment capabilities. They aggressively use sandboxes for all
changes beyond what has been completed in a day. The sandbox, apart from code,
has a running application instance. The book containing the Wilcox et al. paper (see
Book ref. [25]) is a potentially good source of ideas.

The classical software usage of sandboxes referred to above had a serious and
useful technological basis, mainly for security and software development.

In contrast, searching for references to quantum sandboxes for software applica-
tions, we found many papers using very liberally the sandbox terminology, but the
technological aspects are very disappointing. We decided not to include references
to those papers.

8 Discussion

This section discusses central assumptions behindQSandbox, speculating somewhat
about open issues and future work, and concludes with the main contribution of this
chapter.



QSandbox: The Agile Quantum Software Sandbox 89

8.1 Main QSandbox Assumptions

Here are the most important QSandbox assumptions:

• Two complementary and inseparable views—the high-level quantum circuit with
modules named by natural language understood by humans and the density
matrix enabling exact computations with Quantum Software.

• The usage of abstract and generic high-level modules—the deeper reason for
high-level quantum modules, instead of low-level quantum gates, is the ability to
compose abstract and generic quantum circuits from concrete specific modules.

8.2 Open Issues: Quantum Circuit for Classical Software

The quantum circuit of the recycle bin—a quantum circuit for a pure classical
software (Sect. 5.2)—opens wider and very interesting questions: Why and how
should one make routine use of quantum circuits for classical software?

Concerning the “why” question: What have we learned from the quantum circuit
of the recycle bin? The remarkable answer is that it is so obvious, because the
recycle bin quantum circuit is readable and understandable, like any other quantum
circuit of an actual Quantum Software, that we would not have asked such a
question.

Concerning the “how” question explicitly formulated: How to systematically
generate a quantum circuit for classical software? This seems more challenging,
deserving further consideration.

We have justified quantum circuits for classical software, claiming that classical
software is a limiting case of quantum systems. This needs a deeper argumentation.

8.3 Quantum Agile Software?

Classical agile software development as expressed as the four rules of simple design
(see Kent Beck [1, 26], Bekkers [27], Fowler [28], Haines [29]) tells us two things:

1. Learn from experience in the laboratory—it is an objective test indifferent to our
chaotic thoughts.

2. The importance of theory—theory is also an objective test: theories are checked
again and again, accumulating knowledge independent of capricious decisions;
they are expressed in mathematical terms, the language of science.

To attain the “four rules” of quantum agility, one needs an acceptable theory
and/or laboratory experience. But while quantum computing theory is well devel-
oped, quantum laboratory experience is still at a very far level from agile software.



90 I. Exman

8.4 Future Work

The QSandbox feasibility test in practice, and the proof of the expected QSandbox
efficiency is the full QSandbox implementation as described in this chapter, and
subsequent performance of experiments with a variety of Quantum Software
systems, under diverse conditions.

8.5 Main Contribution

The main chapter contribution is the software architecture and the user interface of
the QSandbox, based upon the theoretical basis of the dual views—the high-level
quantum circuit and a fitting density matrix—specifically designed to be applicable
to any Quantum Software system.

References

1. Beck, K., et al.: Manifesto for Agile Software Development. agilealliance.org (2001)
2. Armando Fox and David Patterson, Engineering Software as a Service – An Agile Approach

Using Cloud Computing, 2nd Beta edn (2013)
3. Wilcox, E., Nusser, S., Schoudt, J., Cerruti, J., Badenes, H.: Agile development meets strategic

design in the enterprise. In: Concas, G., et al. (eds.) XP 2007, LNCS 4536, pp. 208–212.
Springer, Berlin (2007)

4. Exman, I.: Simulating quantum software with density matrices: reading Feynman on fast
forward, Chapter 2. In: Exman, I., Perez-Castillo, R., Piattini, M., Felderer, M. (eds.) Quantum
Software – Aspects of Theory and System Design. Springer, Cham (2024)

5. Exman, I., Katz, P.: Modulaser: a tool for conceptual analysis of software systems. In: Proc.
SKY 7th Int. Workshop on Software Knowledge, pp. 19–26. ScitePress, Portugal (2016)

6. Barenco, A.: Quantum computing: an introduction. In: Lo, H.-K., Popescu, S., Spiller, T.
(eds.) Introduction to Quantum Computation and Information, pp. 143–183. World Scientific,
Singapore (1998)

7. Lo, H.-K., Popescu, S., Spiller, T. (eds.): Introduction to Quantum Computation and Informa-
tion. World Scientific, Singapore (1998)

8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000)

9. Rieffel, E., Polak, W.: Quantum Computing – A Gentle Introduction. MIT Press, Cambridge,
MA (2011)

10. Braunstein, S., Ghosh, S., Severini, S.: The Laplacian of a Graph as a Density Matrix: A Basic
Combinatorial Approach to Separability in Mixed States. arXiv:quant-ph/0405165 (2006)

11. Exman, I., Sakhnini, R.: Linear software models: bipartite isomorphism between Laplacian
Eigenvectors and Modularity Matrix Eigenvectors. Int J Softw Eng Knowl Eng. 28(7), 897–
935 (2018). https://doi.org/10.1142/S0218194018400107

12. von Luxburg, U.: A tutorial on spectral clustering. Stat Computing. 17(4), 395–416 (2007).
https://doi.org/10.1007/s11222-007-9033-z

13. Exman, I., Shmilovich, A.T.: Quantum software models: the density matrix for classical and
quantum software systems design. In: Proc. Q-SE 2nd Int. Workshop on Quantum Software
Engineering, pp. 1–6 (2021)


 22386 26674 a 22386 26674
a
 
http://agilealliance.org

 4063 53241 a 4063 53241
a
 
http://doi.org/10.1142/S0218194018400107

 -563 55455 a -563 55455 a
 
http://doi.org/10.1007/s11222-007-9033-z


QSandbox: The Agile Quantum Software Sandbox 91

14. Exman, I., Zvulunov, A.: Quantum software models: quantum modules tomography and
recovery theorem. In: Proc. SEKE’2023, San Francisco Bay Area, CA, pp. 91–96. https://
doi.org/10.18293/SEKE2023-214

15. Qiskit Community: Qiskit: An Open-Source Framework for Quantum Computing. https://
github.com/Qiskit/qiskit (2017)

16. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: a core language for quantum circuits. In: Proc.
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL ’17,
pp. 846–858. New York, NY. https://jpaykin.github.io/papers/prz qwire 2017.pdf (2017)

17. Cirq Developers: Cirq. https://github.com/quantumlib/Cirq (2018)
18. Serrano, M.A., Cruz-Lemus, J.A., Pérez-Castillo, R., Piattini, M.: Quantum software com-

ponents and platforms: overview and quality assessment. ACM Comput. Surv. 55(8), 164:1–
164:31 (2023)

19. Jackson, D.: Towards a theory of conceptual design for software. In: Proc. Onward! ACM Int.
Symposium on New Ideas, New Paradigms and Reflections on Programming and Software, pp.
282–296 (2015). https://doi.org/10.1145/2814228.2814248

20. Jackson, D.: The Essence of Software – Why Concepts Matter for Great Design. Princeton
University Press, Princeton, NJ (2021)

21. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett.
79(2), 325 (1997) Also arXiv qunt-ph/9706033

22. Exman, I., Shmilovich, A.T.: Quantum software models: density matrix for universal software
design, Chapter 7. In: Serrano, M.A., Perez-Castillo, R., Piattini, M. (eds.) Quantum Software
Engineering, pp. 121–148. Springer-Nature, Cham (2022). https://doi.org/10.1007/978-3-031-
05324-5

23. Coker, Z., Maass, M., Ding, T., Le Goues, C., Sunshine, J.: Evaluating the flexibility of
the Java sandbox. In: Proc. ACSAC ’15, Los Angeles, CA (2015). https://doi.org/10.1145/
2818000.2818003

24. Herzog, A., Shahmehri, N.: Using the Java sandbox for resource control. In: 7th Nordic
Workshop on Secure IT Systems (NordSec) (2002)

25. Concas, G., Damiani, E., Scotto, M., Succi, G.: Agile processes in software engineering and
extreme programming: Proc. 8th International Conference, XP 2007, Como, Italy, June 18–22,
(2007), LNCS 4536, Springer, Heidelberg, Germany

26. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Boston, MA (2000)
27. Bekkers, N.: 4 Rules of Simple Design. https://www.theguild.nl/4-rules-of-simple-design/

(2016)
28. Fowler, M.: Beck Design Rules. Blog. https://martinfowler.com/bliki/BeckDesignRules.html

(2015)
29. Haines, C.: Understanding the Four Rules of Simple Design. Leanpub (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 32220 800 a 32220
800 a
 
http://doi.org/10.18293/SEKE2023-214

 32220 3014 a 32220
3014 a
 
https://github.com/Qiskit/qiskit

 10609 7442 a 10609 7442 a
 
https://jpaykin.github.io/papers/prz%20qwire%202017.pdf

 8233 8549 a 8233 8549 a
 
https://github.com/quantumlib/Cirq

 5945 15191 a 5945 15191 a
 
http://doi.org/10.1145/2814228.2814248

 21731 22940
a 21731 22940 a
 
http://doi.org/10.1007/978-3-031-05324-5

 25964 26260 a 25964 26260
a
 
http://doi.org/10.1145/2818000.2818003

 16144 35116 a 16144 35116
a
 
https://www.theguild.nl/4-rules-of-simple-design/

 14575 37330 a 14575
37330 a
 
https://martinfowler.com/bliki/BeckDesignRules.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Verification and Validation of Quantum
Software

Daniel Fortunato, Luis Jiménez-Navajas, José Campos, and Rui Abreu

Abstract Quantum software—like classic software—needs to be designed, spec-
ified, developed, and, most importantly, tested by developers. Writing tests is a
complex, error-prone, and time-consuming task. Due to the particular properties
of quantum physics (e.g., superposition), quantum software is inherently more
complex to develop and effectively test than classical software. Nevertheless, some
preliminary works have tried to bring commonly used classical testing practices
for quantum computing to assess and improve the quality of quantum programs. In
this chapter, we first gather 16 quantum software testing techniques that have been
proposed for the IBM quantum framework, Qiskit. Then, whenever possible, we
illustrate the usage of each technique (through the proposed tool that implements
it, if available) on a given running example. We showcase that although several
works have been proposed to ease the burn of testing quantum software, we are
still in the early stages of testing in the quantum world. Researchers should focus
on delivering artifacts that are usable without much hindrance to the rest of the

D. Fortunato (�)
Faculty of Engineering of University of Porto, Porto, Portugal

LIACC—Artificial Intelligence and Computer Science Laboratory (member of LASI LA), Porto,
Portugal
e-mail: dabf@fe.up.pt

L. Jiménez-Navajas
aQuantum, Faculty of Social Sciences & IT, University of Castilla-La Mancha, Talavera de la
Reina, Toledo, Spain
e-mail: Luis.JimenezNavajas@uclm.es

J. Campos
Faculty of Engineering of University of Porto, Porto, Portugal

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
e-mail: jcmc@fe.up.pt

R. Abreu
Faculty of Engineering of University of Porto, Porto, Portugal

INESC-ID, Lisboa, Portugal
e-mail: rui@computer.org

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 5&domain=pdf

 885 40794 a 885 40794
a
 
mailto:dabf@fe.up.pt
mailto:dabf@fe.up.pt
mailto:dabf@fe.up.pt

 885 45775 a 885 45775
a
 
mailto:Luis.JimenezNavajas@uclm.es
mailto:Luis.JimenezNavajas@uclm.es
mailto:Luis.JimenezNavajas@uclm.es

 885 51310
a 885 51310 a
 
mailto:jcmc@fe.up.pt
mailto:jcmc@fe.up.pt
mailto:jcmc@fe.up.pt

 885 56845 a 885 56845
a
 
mailto:rui@computer.org
mailto:rui@computer.org
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5
https://doi.org/10.1007/978-3-031-64136-7_5


94 D. Fortunato et al.

community, and the development of quantum benchmarks should be a priority to
facilitate reproducibility, replicability, and comparison between different testing
techniques.

Keywords Quantum software · Verification and validation · Software testing

1 Introduction

In the last few years, quantum computing has evolved enormously in many aspects.
It was not until 2019 that IBM unveiled its first commercial quantum computer with
20 qubits [1] and, in 2022, the same company developed a quantum computer with
433 qubits [2]. In addition, these hardware breakthroughs have been accompanied
by software, where the largest companies in the world have created quantum
programming languages [3] (such as Microsoft with Q# or IBM with OpenQASM),
libraries to develop quantum software (such as Google with Cirq or IBM with
Qiskit), or services to run and design quantum software (such as Amazon with
Braket).

The entire ecosystem that quantum computing vendors have built allows users
and organizations to develop and run quantum software in a straightforward
manner [4]. This implies that, at some point, organizations that can take advantage
of the potential benefits of this new technology will design and develop quantum
components that can provide them with speedup. In other words, quantum software
will be developed in a large-scale industrial context in the same way that classic
software is nowadays produced [5].

Quantum software, as classical software, will, at some point in its development
life cycle, need to be tested [6]. Apart from the evaluation of the functionality of
the quantum software, concerns related to security vulnerabilities can also appear in
this new programming domain [7].

However, we face three main challenges when testing quantum software [8].
First, unlike classical computing, with quantum computing, we cannot read the state
of qubits at any time. If a qubit in superposition is measured, its state collapses.
Second, the inherent nature of this new paradigm is non-deterministic. This implies
that we will likely get a different result every time we run the quantum software.
Third, the fact that current quantum computers are sensitive to noise and are fault-
tolerant implies that when we run a quantum program and the result is different than
expected, we cannot be sure whether the failure is caused by noise or by natural
randomness.

Over the past few years, several approaches have been developed to alleviate the
challenges associated with quantum testing. Regarding the verification of quantum
programs, one can find works based on Hoare logic [9, 10, 11] or static analysis of
source code [12, 13, 14, 15]. Concerning the validation of quantum programs, there
are works related to the generation of data inputs aiming at detecting faults [16, 17,



Verification and Validation of Quantum Software 95

18], oracle generation [19, 20], and a combination of both techniques [21, 22, 23,
24, 25, 26].

This chapter details current testing approaches used to help developers verify
and validate their quantum software. More specifically, we focus our analysis
on testing approaches designed to test quantum circuits since most quantum
software is written through the application of quantum gates to quantum circuits.
Consequently, we only present techniques and tools designed for circuit-based
techniques. For instance, testing techniques for quantum annealing [27] are not
included. Additionally, given that Qiskit [28], the circuit-based IBM framework, is
one of the most popular quantum software development frameworks, we focus our
analysis on works that use it.

This chapter is organized as follows. We present some concepts and definitions
in Sect. 2. In Sect. 3, we discuss techniques that have been proposed for quantum
software testing. Section 4 discusses current quantum fault benchmarks. We discuss
some limitations of quantum software testing in Sect. 5 and conclude the chapter in
Sect. 6.

2 Concepts and Definitions

2.1 Quantum Computing

Given that quantum computing is an emerging field, the definition of certain key
concepts is warranted.

Qubit Unlike classical computers that use bits, quantum computers use the quan-
tum bit (qubit for short) as their fundamental unit of memory. A qubit, just like the
bit, has a state that can be .|0〉 or .|1〉, but contrary to the bit, those are just two possible
states. The Dyrac notation, ‘.|〉’, is used to represent states in quantum mechanics.
The difference between classic states and quantum states is that quantum states can
be in superposition [29], meaning that it is possible to form linear combinations of
states. A qubit can be expressed as .|�〉 = α|0〉 + β|1〉.

Unlike the classical bit, in which we can easily determine whether it is in state
0 or 1, we cannot determine a qubit’s state [29]. We can only measure a qubit, and
when we do, we obtain either 0 with .|α|2 probability or 1 with .|β|2 probability.
Another important qubit property is entanglement. Entanglement is, at the moment,
still an ill-defined concept currently being subjected to heavy research, but its main
idea is that the state of a qubit affects the state of other qubits in the system, meaning
that there is a correlation between them.

Quantum Circuits A classical computer is built from electrical circuits containing
wires and logic gates. Similarly, some quantum computers are built from quantum
circuits (there are other types of quantum computers, although these are out of the
scope of this chapter) containing wires and quantum gates that carry around and



96 D. Fortunato et al.

operate on qubits. One of the quantum gates used throughout this chapter is the Not
gate. Classically, this gate brings a bit from 0 to 1 and from 1 to 0. The quantum Not
gate [29] interchanges the weights on .α and .β. It is represented by the following X
matrix:

.X ≡
[

0 1
1 0

]

(1)

If we have the following quantum state .α|0〉 + β|1〉, its vector notation would be

.

[
α

β

]

, (2)

and applying the Not gate to this state would yield the following output:

.X

[
α

β

]

=
[

β

α

]

. (3)

This is how gates are applied to qubits and how we can alter their state.

Quantum Programs A program is considered to be quantum when it initializes
qubits and performs some operations that alter their state through the application of
quantum gates. Quantum programs can be hybrid (i.e., they combine classical and
quantum operations), the more common option, or pure (i.e., they only use quantum
operations), the less common option.

2.2 Software Testing

As described by the IEEE Std. 610.12-1990, “Software testing is the process
of operating a system or component under specified conditions, observing and
recording the results, and making an evaluation.” In other words, in software testing,
a test case sets up a testing scenario that exercises software behavior and assesses
whether the observed behavior matches the expected one; if not, a fault has been
found. These faults, also known as bugs or defects, can cause failures in software
systems.

Although a simple idea, it is far from easy—recent studies estimate that 20%
to 80% of the total cost and time to develop a classical software system is fully
dedicated to software testing and debugging [30], mostly because

(i) Assessing whether a piece of software performs correctly could be extremely
complex due to the extremely large or even infinite number of possible tests
that exist for any non-trivial system.

(ii) Software testing is traditionally a manual and tedious process that is subject to
incompleteness and further errors.



Verification and Validation of Quantum Software 97

The usage of some testing concepts throughout this chapter justifies their
clarification.

Mutation Testing This testing technique refers to the change/mutation of statements
in the source code (Fig. 1 is an example of a mutant) to check if tests can find errors
in the source code. Mutation testing aims to ensure the quality of the source code’s
test suite. This is measured through the source code’s mutation score, the number of
killed mutants divided by the number of total mutants generated.

Coverage This is a testing metric that measures how thoroughly tests cover a given
program. A test suite’s coverage is the percentage of lines, branches, or paths of the
code covered by at least one test case.

3 Automatic Verification and Validation of Quantum
Software

Verifying and validating code is laborious, error-prone, and time-consuming in the
classical realm. Given the added complexity of quantum programs, this endeavor
is even more challenging in the quantum world [31, 5, 32]. Additionally, not all
technologies are fully tailored to this new paradigm, and neither are the developers
who would have to understand quantum physics/mechanics.

Nevertheless, some preliminary works are bringing commonly used classical
testing practices for quantum computing [5] to assess and improve the quality of
quantum programs. Regarding verification, there are works on the application of
Hoare Logic [9, 10] and static code analysis [12, 14, 15, 11, 33]. And regarding
validation, there are also techniques designed to automatically generate test inputs
and/or full test cases based on mutation [34, 35, 36, 37, 18], metamorphic [19, 20],
fuzzing [16], differential [17], projection [38], search-based [24, 23, 25, 26], and
combinatorial testing [22, 21].

Table 1 shows the details of the collected research papers. These papers present
tools that are ‘Available’ and can be used and experimented with, tools that are
‘Unavailable’ and do not provide any artifact with their paper, and tools that we
considered ‘Unusable’ since they are not easily available or capable of testing any
other program than the ones used in the empirical study of the tool. For instance,
although LintQ’s [33] source code is available online, it is stored in an anonymous
repository that does not allow its download or cloning. QDiff [17] and Abreu
et al. [19]’s tool only allows one to reproduce the experiments described in the
paper, i.e., in order to run the proposed tool on any program, its source code would
have to be adapted (which is out of the scope of this chapter). We discuss the
“Available” tools in detail in the following subsections. It is also worth pointing out
that there are several other works on verification and validation of quantum software
applied on different quantum frameworks, test levels, or issues related to quantum
software testing that are not included in this study as they target different quantum



98 D. Fortunato et al.

Table 1 Details of the collected research papers

ID Topic Paper title Tool Year Reference

Verification

1 Hoare Logic Floyd–Hoare Logic for Quantum
Programs

Unavailable 2012 [9]

2 Hoare Logic An Applied Quantum Hoare
Logic

Unavailable 2019 [10]

3 Static analysis QChecker: Detecting Bugs in
Quantum Programs via Static
Analysis

Available 2023 [12]

4 Static/Dynamic analysis The Smelly Eight: An Empirical
Study on the Prevalence of Code
Smells in Quantum Computing

Available 2023 [51]

5 Static analysis Quantum abstract interpretation Unavailable 2021 [13]

6 Static analysis Static Entanglement Analysis of
Quantum Programs

Unavailable 2023 [14]

7 Static analysis A Uniform Representation of
Classical and Quantum Source
Code for Static Code Analysis

Unavailable 2023 [15]

8 Static analysis LintQ: A Static Analysis
Framework for Qiskit Quantum
Programs

Unusable 2023 [33]

Validation

9 Data generation QuanFuzz: Fuzz Testing of
Quantum Program

Unavailable 2018 [16]

10 Data generation QDiff: Differential Testing of
Quantum Software Stacks

Unusable 2021 [17]

11 Data generation Mutation-Based Test Generation
for Quantum Programs with
Multi-Objective Search

Unavailable 2022 [18]

12 Oracle generation Metamorphic testing of oracle
quantum programs

Unusable 2022 [19]

13 Oracle generation MorphQ: Metamorphic Testing
of Quantum Computing
Platforms

Available 2022 [20]

14 Data/Oracle generation Application of Combinatorial
Testing To Quantum Programs

Available 2021 [21, 22]

15 Data/Oracle generation Generating Failing Test Suites
for Quantum Programs With
Search

Available 2021 [23, 24]

16 Data/Oracle generation Assessing the Effectiveness of
Input and Output Coverage
Criteria for Testing Quantum
Programs

Available 2021 [25, 26]


 22821 8963
a 22821 8963 a
 
https://github.com/Z-928/QChecker

 22821
12505 a 22821 12505 a
 
https://github.com/jose/qsmell

 22821 23354
a 22821 23354 a
 
https://anonymous.4open.science/r/LintQ/README.md

 22821 30660 a 22821 30660 a
 
https://github.com/UCLA-SEAL/QDiff

 22821 36637 a 22821 36637 a
 
https://github.com/LuisLlana/metamorphic_testing/

 22821 39072 a 22821 39072 a
 
https://github.com/sola-st/MorphQ-Quantum-Qiskit-Testing-ICSE-23/

 22821 42615 a 22821 42615 a
 
https://github.com/Simula-COMPLEX/qucat-paper

 22821 45050
a 22821 45050 a
 
https://github.com/Simula-COMPLEX/qusbt-tool

 22821 48592
a 22821 48592 a
 
https://github.com/Simula-COMPLEX/quito


Verification and Validation of Quantum Software 99

frameworks or used quantum physics knowledge that cannot be applied directly to
software. The following paragraph briefly mentions them.

Muqeet et al. [39] propose a testing technique aware of the inherent problem
of quantum computing related to noise. Zhang et al. [40] examine whether flaky
tests (i.e., intermittently failing tests) affect quantum software development. They
identify flaky tests in 12 out of 14 quantum software projects and note that quantum
programmers need to start using flaky test countermeasures developed by software
engineers. Long and Zhao [41, 42] address specific testing requirements of multi-
subroutine quantum programs in their work. They present a systematic testing
process tailored to the intricacies of quantum programming. They cover unit and
integration testing, focusing on IO analysis, quantum relation checking, structural
testing, behavior testing, and test case generation for Q#. Honarvar et al. [11]
present a property-based framework applied for Q# derived from Hoare logic [43].
They review various aspects of design concerning property specification, test case
generation, and test result analysis. Xia and Zhao [14] present a static analysis tool
that constructs an interprocedural control flow graph for Q# programs and gathers
the entanglement information within quantum programs. A similar tool is proposed
by Yamaguchi et al. [44] for Qiskit; we detail it in Sect. 3.2. de la Barrera et al.
[45] propose QuMU, a quantum mutation tool based on the Quirk1 quantum circuit
simulator. QuMU exports quantum circuits as JSON objects from Quirk and creates
a circuit representation that shows the quantum operations of a quantum program.
Mutation operators defined in QuMU can mutate the circuit representation of a
quantum program, and their tool can then execute these mutants in Quirk.

3.1 Running Example

Let us introduce a running example for the remainder of this section. The quantum
program in Fig. 1 implements a Bell state [46], the simplest example of quantum
entanglement. Bell states are four entangled two-qubit states. We obtain a Bell state
by applying the Hadamard gate to qubit 1 (line 13) and the Control-Not with qubit
1 as the control qubit and qubit 2 as the target qubit (line 16). This means that when
the quantum program is executed, the qubits are dependent on each other, and one
will obtain either 00 or 11 as a result, with a 50% chance of getting either one. Note
that Qiskit initializes qubits as zero.

The quantum program listed in Fig. 1 follows the specification reported in
Table 2. Note that although inputs 01 and 11 do not produce a Bell state, we still
list them in the table to have the full program specification.

Suppose we introduce a fault in the program’s source code to create a faulty
version of the program. For instance, swap the Hadamard gate (h) in line 13 for
the Not gate (x) in line 13. Note that this is a change (i.e., mutation) that a tool

1 https://algassert.com/quirk, visited October 2023.

https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk


100 D. Fortunato et al.

Fig. 1 Fault-free and faulty Bell state quantum program

Table 2 Specification of the
Bell state quantum program
in Fig. 1

Input Output Output Probability

00 00 50%

00 11 50%

01 00 50%

01 11 50%

10 10 50%

10 01 50%

11 01 50%

11 10 50%

like Muskit [37] or QMutPy [34, 35, 36] (described in Sect. 3.3.4) can produce.
We then apply different verification and validation techniques on this faulty version
of the running example in the following subsections to understand to what extent
techniques can detect this fault. Note that if a tool of a specific technique is not
available or usable, we do not apply it.

3.2 Automatic Verification of Quantum Software

Verification aims to assess whether developers have built the software correctly, i.e.,
it answers the question: Does the software correctly do what has been specified?



Verification and Validation of Quantum Software 101

3.2.1 Hoare Logic

The Hoare logic testing [43] is a formal system with a set of logical rules for formal
verification of the correctness of an algorithm against a formal specification. This
logic is based on the idea of a specification as a contract between the implementation
of a function and its client. To prove the correctness of a specification, it provides
a mathematical framework using logical assertions, a pre- and post-condition, for
describing the desired behavior of a program before and after its execution.

The central component of the Hoare logic is the Hoare triple. A Hoare triple is
a notation used to express the relationship between a pre-condition, a program or
program segment, and a post-condition. It is written as .{P }S{Q} where P is the
pre-condition (predicate describing the condition the function relies on for correct
operation), Q is the post-condition (predicate describing the condition the function
establishes after correctly running), and S the statement implementing the function.
The Hoare logic also provides a set of axioms and rules of inference that can be
used in proofs of the properties of computer programs.

Regarding quantum software testing, Ying [9] derives from Hoare logic the
Quantum Hoare Logic (QHL) for verifying the correctness of quantum programs.
The correctness formula of QHL is also written as .{P }S{Q}, but S is a quantum
program, and both P and Q are quantum predicates on .Hall , which is the tensor
product of the state spaces of all quantum variables.

Zhou et al. [10] further develop the work of Ying [9]. They propose aQHL,
a new class of Hermitian operators (i.e., an operator that is equal to its conjugate
transpose, e.g., .A = A†), which are used in the pre- and post-conditions and
allow a simplification of the inference rules in case statements, and loops and
computation of ranking functions in QHL. The authors prove that with aQHL they
can verify the correctness of a well-known quantum algorithm for linear systems
of equations, the HHL (Harrow-Hassidim-Lloyd) [47] algorithm. Zhou et al. [10]
also propose several rules for reasoning about the robustness of quantum programs,
i.e., error bounds of the output software programs, to prove that the outputs of
a quantum program approximately satisfy a post-condition. They use these new
rules to verify the quantum Principal Component Analysis (PCA) [48], a machine
learning algorithm.

3.2.2 Static Analysis

Zhao et al. [12] propose QChecker,2 a static analysis tool that generates warning
messages to assist developers in pinpointing potential faults in their quantum
programs. QChecker starts by extracting the abstract syntactic tree of a quantum
program and parses it through a detection module equipped with a catalog of
quantum faults patterns [49]. If the source code of a quantum program matches any

2 https://github.com/Z-928/QChecker, visited October 2023.

https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker
https://github.com/Z-928/QChecker


102 D. Fortunato et al.

of the patterns, a true fault might have been identified. The authors evaluate their
tool on 20 real faults3 from open-source quantum programs written in Qiskit [50]
and their results attest to the efficiency and effectiveness of QChecker—all faults
were detected.

Applying QChecker to our faulty running example (Fig. 1) we obtained two
warnings (that might be true faults):

1. Incorrect initial state in lines 7 and 8. To fix it, one would have to create a
variable n = 2 and then reuse n in lines 7 and 8, i.e.,

7 - qr = QuantumRegister(2)
8 - cr = ClassicalRegister(2)
7 + n = 2; qr = QuantumRegister(n)
8 + cr = ClassicalRegister(n)

The rationale is that one might initialize the QuantumRegister with a number
of qubits and/or the ClassicalRegister with a different number of bits. This
potential error is mitigated with a variable that defines the number of bits.

2. Parameter error in line 21. To fix it, one would have to hard code line 21 as the
second parameter of the execute function in line 22, i.e.,

21 - backend = BasicAer.get_backend(’qasm_simulator’)
22 - job = execute(circ, backend, shots=1000)
21 + job = execute(circ, BasicAer.get_backend(’qasm_simulator’), shots=1000)

We could not find any rationale for this QChecker warning and were inclined
to label it as a false positive. Note that if we apply QChecker suggestion and
the execute call starts to fail, we will not know whether the failure is due to
execute or get_backend. This would make debugging more difficult.

It is worth noting that QChecker did not produce any warning regarding the fault we
introduced in line 13 (in Fig. 1).

Chen et al. [51] define, for Qiskit programs, eight quantum-specific smells
(which might lead to a fault) inspired by the best coding practices suggested by
Google Cirq’s team.4 For example, LC (Long circuit) smell—the wider the circuit,
the higher the probability of quantum noise affecting a quantum circuit’s intended
behavior. They also developed a tool named QSmell5 that supports the proposed
quantum-specific smells and empirically evaluated its effectiveness at detecting the
smells in 15 quantum programs. Their results show that most quantum programs
(73%) have at least one smell and, on average, a program has three smells; LC is the
most common smell.

3 Although the first version of the catalog proposed by Zhao et al. [49] is composed by only 36
real faults, Zhao et al. [12] used an augmented version of the catalog with 42 real faults of which
only 22 can be detected by running the quantum program. Thus, Zhao et al. [12] only consider the
remaining 20 in the evaluation conducted with QChecker.
4 https://quantumai.google/cirq/google/best_practices, visited October 2023.
5 https://github.com/jose/qsmell, visited October 2023.

https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://quantumai.google/cirq/google/best_practices
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell
https://github.com/jose/qsmell


Verification and Validation of Quantum Software 103

Fig. 2 Quantum circuit of
the faulty Bell state quantum
program

When we apply QSmell to our faulty running example (Fig. 1), one smell is
reported by the tool, IdQ (Idle Qubits). With current quantum computers, it is
only possible to ensure the correctness of a qubit’s state for very short periods of
time. This means that having idle qubits for too long enhances the loss of quantum
information and might jeopardize the results of the running quantum programs. In
a nutshell, QSmell reports that qubit 1 is idle between lines 10 and 16 (in Fig. 1) or
between the first and third operations (Fig. 2), which might indicate a fault. In this
case, and to the best of our knowledge, there is no other way to write the quantum
circuit to avoid that. Thus, we consider this a false positive.

Yu and Palsberg [13] propose an abstract interpretation of quantum programs
and use it to automatically verify whether a program might behave as expected
in polynomial time. To achieve this, the authors take the density matrix of a
quantum program and divide it into parts (i.e., reduced density matrixes). Then,
they approximate each reduced matrix by a projection. Recall that a projection is the
closest point/vector in a subspace to a given point in the space. This enables them to
define abstract states to be a tuple of projections. To transition from abstract state to
abstract state, the authors present a new abstract interpretation of quantum programs
with new abstractions and concretization functions that form a Galois connection,
and they use them to define abstract operations. Yu and Palsberg [13] evaluate
their approach on three quantum programs. They first run the abstract interpretation,
which produces an abstraction of the state of each quantum program. Then, they
abstract the assertion (i.e., the circuit output desired) to the same format as the
abstract states, and finally, they check that the abstract state satisfies the abstracted
assertion. If the check succeeds, then the assertion is correct. For all three programs,
the authors successfully verified their assertions.

Applying this technique would detect the fault in our running example. Starting
with qubit state .|00〉 and successfully generating the abstract states to be a tuple of
projections through the application of the Not and Controlled-Not would not result
in a successful assertion with our desired output, i.e., {.|00〉, |11〉}. However, our
correct running example would.

Paltenghi and Pradel [33] propose LintQ, a static analysis framework for
detecting faults in quantum programs. LintQ receives a quantum program as input
and extracts general information about Python code, such as control flow paths,
data flow facts, and how to resolve imports. Then it represents the behavior of the
quantum program using a set of reusable quantum programming abstractions, such



104 D. Fortunato et al.

as qubits, gates, and circuits. Finally, LintQ contains a set of nine quantum analyses
that detect potential faults. LinQ performs three main types of analysis:

1. Measurement-related and gate-related problems
2. Resource allocation problems
3. Implicit API constraints

The authors perform an empirical study applying LintQ to a quantum program
dataset containing 7568 quantum programs where LintQ found multiple true posi-
tives with a precision of 80.5%. The authors also tried LintQ with the Bugs4Q [50]
benchmark of real faults and obtained a recall of only 4.8%. The authors argue that
the low recall achieved in the Bugs4Q benchmark programs is mainly due to the
incomplete code snippets gathered from issues and forum questions provided by the
benchmark.

Kaul et al. [15] extend the Code Property Graph (CPG) static code analysis
technique [44] used in classical computing to quantum computing. CPG is a
computer program representation that captures syntactic structure, control flow, and
data dependencies in a language-independent property graph model. The authors
extended this concept to quantum computing by modeling the memory and opera-
tions as well as dependencies between qubits and quantum registers. Their prototype
supports Qiskit [28] and QASM [52] programs. It also includes information
from the quantum realm in the graph (i.e., qubits, gates, gates arguments) and
demonstrates CPG’s ability to analyze classical and quantum source code. By
combining all relevant information into a single detailed analysis, this tool can
facilitate quantum source code analysis. To that end, the authors propose a series
of eight queries that return specific information about the quantum program to the
user, such as the quantum/classical parts of the program, constant conditions, or the
result bits. This allows users to have a clearer picture of the implementation of the
program.

3.3 Automatic Validation of Quantum Software

Validation aims to assess whether developers have built the correct software
according to the user requirements, i.e., it answers the question: Does the software
do what it is supposed to do?

To improve the effectiveness of software testing and to reduce its cost,
researchers have devised approaches (in both the classical and quantum realm)
to automate the generation of test cases and validate quantum software. Automating
the creation of test cases offers several benefits over manually writing the test
cases. In classical computing, it is computationally cheap to automatically generate
test cases, and they are often more complete as they are generated systematically;
there is no evidence that it would be otherwise for the automatic generation of test
cases for quantum programs. Automatic test generation is a two-step process: (1)
generation of test data, i.e., inputs to exercise the software, and (2) generation of



Verification and Validation of Quantum Software 105

test oracles (also known as assertions) to verify whether the execution of the test
data reveals any fault.

3.3.1 Test Data Generation

Wang et al. [17] propose QDiff, a differential testing approach for quantum
programs, which can be used with three quantum frameworks: Qiskit, Cirq, and
Pyquil. QDiff takes as input a quantum program and derives equivalent programs
from it (i.e., programs that are supposed to produce identical behavior) that trigger
unexpected behavior on the target quantum framework. To speed up their analysis,
QDiff analyzes static program characteristics such as circuit depth (i.e., the longest
sequence of applied gates to the circuit), the number of two-qubit gates, and
known error rates. Finally, QDiff performs a statistical comparison between the
measurements of the equivalent circuits. The empirical evaluation of QDiff found
six sources of instability in the three quantum frameworks and managed to reduce
compute-intensive simulation.

Fuzz testing [53, 54, 55, 56, 57, 58]—a set of software testing techniques imply-
ing the generation of a set of inputs aiming at finding errors/crashes and identifying
security flaws—is gaining relevance in quantum software testing [16]. Wang et al.
[16] adapt this technique to the quantum realm and present QuanFuzz, a search-
based test input generator for quantum programs. In a nutshell, it can automatically
find the input that triggers the quantum-sensitive branches. QuanFuzz was evaluated
with seven programs and outperformed a random technique, increasing branch
coverage by 20% to 60%.

Wang et al. [18] propose MutTG, a multi-objective and search-based approach
to generate the minimum number of test cases that kill as many mutants as
possible. The authors introduce a discount factor to tackle the equivalent mutants
problem [59, 60, 61, 62, 63] ever-present in mutation testing (i.e., mutants that are
equivalent to the source code and do not alter its result) to prevent their approach
from repeatedly trying to kill those non-killable mutants. The authors employ
NSGA-II as the multi-objective search algorithm and use five quantum programs
for which they created 20 different versions (four mutants per program) with three
distinct difficulty levels of killing mutants (easy, medium, difficult) to evaluate their
approach. Results from their experimental evaluation show that NSGA-II [64]
significantly outperforms the random search technique employed as a baseline for
all the difficult benchmarks composed of subtle mutants (i.e., mutants that are killed
by few inputs). Also, they show that their discount factor is effective in avoiding
spending meaningless effort trying to kill non-killable mutants.

3.3.2 Test Oracle Generation

The well-known oracle problem [65] for classical testing becomes even more
complex in this new programming paradigm. Test oracle automation is essential to



106 D. Fortunato et al.

remove the bottleneck that inhibits greater overall test automation. In other words,
without a formal specification of how software should behave, it is impossible to
generate effective fault-revealing test oracles. Thus, techniques that generate tests
usually generate regression tests.

To the best of our knowledge, two metamorphic approaches [19, 20] have
attempted to address the oracle problem by substituting conventional oracles with
mutated versions of the quantum program under test. Recall that metamorphic
testing consists of injecting small mutations to the code that do not alter a program’s
execution (e.g., in classical computing, adding zero to a number; in quantum
computing, introducing the identity gate to a circuit).

The approaches that Abreu et al. [19] and Paltenghi and Pradel [20] propose
are similar in nature and define oracle quantum programs which validate a source
quantum program’s properties by doing mutations to its source code that do not
alter the program output. Both of these approaches define a set of metamorphic rules
and assert whether their mutated program behaves when executed. They empirically
evaluate their metamorphic rules on quantum programs (i.e., they create a mutated
version of a quantum program that is expected to produce the same result) and
find that metamorphic rules are effective at finding crashes and incorrect outputs
in quantum programs.

3.3.3 Test Data and Oracle Generation

Wang et al. [26] propose QUITO6 (QUantum InpuT Output testing) consisting of
three coverage criteria defined by the inputs and outputs of a quantum program:

1. Input coverage: checks that for a valid input, the quantum program produces a
valid output. Only one execution of the program is necessary for this criterion.
This is the least expensive (i.e., runs the smallest number of tests).

2. Output coverage: checks that all valid outputs are covered, iterating over all valid
inputs until a wrong output value is detected or time runs out. This is the second
most expensive criterion.

3. Input-Output coverage: checks that all possible output values are covered for all
valid inputs, iterating over all valid inputs until a wrong output value is detected
or time runs out. This is the most expensive criterion.

It also consists of two oracle generation strategies:

1. Wrong Output Oracle (WOO), which asserts whether the quantum program
produced expected output values

2. Output Probability Oracle (OPO), which asserts whether the quantum program
produced an expected output with its corresponding expected probability

To assess the effectiveness of the three coverage criteria, the authors perform an
empirical study on 78 mutated versions of four quantum programs. They generate

6 https://github.com/Simula-COMPLEX/quito, visited October 2023.

https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito
https://github.com/Simula-COMPLEX/quito


Verification and Validation of Quantum Software 107

Fig. 3 Faulty Bell state program adapted to be executed with QuCAT [21], QUITO [26], and
QuSBT [23]

Fig. 4 Configuration for the QUITO tool. In this figure, we only list the required parameters
and which values we used. Other parameters were left with their default values. Consult
QUITO’s documentation (https://github.com/Simula-COMPLEX/quito/blob/main/README.md,
visited October 2023) for more information

these mutants with the Muskit [37] tool. After generating a set of test cases for
each mutant using the three coverage criteria, the authors evaluate them with WOO,
stopping the testing if a failure occurs, and then the OPO. Results indicate that input
coverage is more effective than the others.

We run QUITO with our faulty running example in Fig. 1. To test our example,
we had to adapt it to the tool’s requirements (Fig. 3) and create a configuration
file where we define the number of input and output qubits our program would
have, in our case, two input qubits and two output qubits (see Fig. 4). We also set
input coverage (line 17 in Fig. 4) as the coverage criterion as it is the most effective
according to QUITO’s authors. Finally, we also detail the program specification
(lines 21–29 in Fig. 4) for our example as shown in Table 2. QUITO generates 800

https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md
https://github.com/Simula-COMPLEX/quito/blob/main/README.md


108 D. Fortunato et al.

tests (total number of test suites, i.e., 200 by default .× number of possible input
states, i.e., four). For our example, all of our eight input/output qubit combinations
fail with the OPO oracle.

Wang et al. [21, 22] proposed QuCAT7 (QUantum CombinAtorial Testing),
which attempts to trigger faults by particular input combinations of a given strength.
These faults are found through the two oracles previously defined in QUITO (i.e.,
WOO and OPO). The strength of a combination is the number of input qubits used,
meaning that two input qubits are a combination of strength two, three input qubits
are a combination of strength three, and so on. QuCAT supports two test generation
scenarios:

1. The generation of combinatorial test cases of a given strength
2. The incremental generation of combinatorial test cases of increasing strengths

The authors performed an empirical study on six Qiskit quantum programs, in which
they manually introduced three faults in each. They found that their combinatorial
technique of strength four (highest strength attempted) always detects the faults,
tests of strength three have more difficulty in detecting all faults, and strength two
only detects one fault consistently. Thus, with increased cost, this combinatorial
technique increases in effectiveness. Also, results showed that combinatorial testing
is always more effective than random testing in terms of generating test cases that
expose program failure and performs better in 88% of the faulty programs.

Trying QuCAT was similar to QUITO. We include in its configuration file the
same qubit and specification information as before. However, we also define the
strength of the input combination as two as our program has two input qubits (see
Fig. 5). This means that we execute QuCAT with the first test generation scenario
(i.e., we generated combinatorial test cases of strength two). The tool generates
four tests in a Python file and the results of the oracles in a separate text file, these
bundled together in Fig. 6 for reading convenience. As we can see, the generated
tests perform a print of the execution of the program with certain inputs. Although
no explicit oracle (e.g., assert) exists in any test, all reveal the fault. If one compares
the tests’ output and the program’s specification, one will notice that each output
has only one result with 100% probability instead of two results with 50% each. To
have fully automated tests, QuCAT should have generated the test oracles in Fig. 7
for test_bell_state_0 (line 3 in Fig. 6). These test oracles would fail in lines
6 (as we obtained one pair of bits as output and not two), 7 (as there were no 00
results), 9 (since the probability of obtaining 11 is 100% which is superior to 55%),
and 10 (because the probability of obtaining 00 is 0%, which is inferior to 45%).
Line 8 does not fail; there are results of state 11.

Wang et al. [23, 24] propose QuSBT8 (Quantum Search-Based Testing), a test
generation tool for quantum programs that uses an evolutionary algorithm to search
for the maximum set of tests that reveal the fault. The authors also use the WOO and

7 https://github.com/Simula-COMPLEX/qucat-tool, visited October 2023.
8 https://github.com/Simula-COMPLEX/qusbt-tool, visited October 2023.

https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qucat-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool
https://github.com/Simula-COMPLEX/qusbt-tool


Verification and Validation of Quantum Software 109

Fig. 5 Configuration for the QuCAT tool. In this figure, we only list the required parameters and
which values we use. We left all other parameters with their default values. Consult QuCAT’s
documentation (https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md, vis-
ited October 2023) for more information

Fig. 6 Tests generated by the QuCAT tool [21, 22] for the faulty Bell state quantum program

OPO oracles in QuSBT. The authors evaluate QuSBT on six quantum programs, in
which they manually introduce five faults in each and compare QuSBT’s results
with a random search strategy. The authors find that for the majority of the faulty
programs (87%), QuSBT performs significantly better than the random approach.
For the remainder of the faulty programs, no significant differences are detected.

https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qucat-tool/blob/main/README.md


110 D. Fortunato et al.

Fig. 7 Ideal set of test oracles for the test_bell_state_0 test (in Fig. 6)

Fig. 8 Configuration for the QuSBT tool. In this figure, we only list the required parameters and
the values we use. Other parameters are left with their default values. Consult QuSBT’s documenta-
tion (https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md, visited October
2023) for more information

Running QuSBT requires the same initial configurations as QUITO and QuCAT
(i.e., number of input and output qubits, program specification). Additionally, we set
the beta parameter, a percentage of the inputs, as the number of generated tests, so
that all possible tests are generated (see Fig. 8). The default value of beta is 0.05,
which would mean, for our example, that only one test would have been generated.
QuSBT generates two tests (similar to the first and third tests generated by QuCAT;
see Fig. 9) that also fail with the OPO oracle. Note that extending QuSBT tests as
we did for QuCAT in Fig. 7 would pass and fail for the same assertions.

https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md
https://github.com/Simula-COMPLEX/qusbt-tool/blob/main/README.md


Verification and Validation of Quantum Software 111

Fig. 9 Tests generated by the QuSBT tool [23, 24] for the faulty Bell state quantum program

3.3.4 Test Adequacy Measurements

In the quantum realm, a few approaches and tools (based on the ideas borrowed from
the classical realm) have been proposed to measure the effectiveness of manually
written or automatically generated tests of quantum programs.

Structural Coverage

Code coverage and other source-code metrics used for classical software have not
been adopted for quantum programs [66]. This may be because the differences in
the importance between quantum code and classical code have not yet been fully
explored. Also, thresholds for source code metrics and their significance as predic-
tors of defects [67] cannot be used as a starting point for quantum programs since
quantum programmers and their knowledge of this new programming paradigm are
likely to be completely different.

Thus, recent studies propose other metrics besides traditional coverage. For
instance, Kumar [68] proposes single-, two-, and three-qubit gate coverage and
multiple controlled qubit gate coverage, which are defined by the total number
of times test cases would execute these types of gates divided by the number of
instances that gate is used in the code. Ali et al. [25] also propose three new
types of coverage criteria previously discussed in Sect. 3.3.3: input coverage, output
coverage, and input-output coverage.

Nevertheless, other studies still use classical coverage. For instance, the previ-
ously discussed work of Wang et al. [16] empirically evaluates whether their input
generation technique increases coverage compared to random input generation (see
Sect. 3.3.1). Also, Fortunato et al. [34] measure the coverage of 24 real Qiskit
programs and find that tests covered on average 90% of the lines of code of a
quantum program.

Fault Detection

Classically, mutation testing is often used as a practical substitute for real faults
since mutant detection is positively correlated with fault detection [69]. Current



112 D. Fortunato et al.

Fig. 10 Fault-free Bell state program implementation for Muskit

research in quantum testing uses mutants to artificially generate faults in programs
and evaluate the effectiveness of their approaches at detecting the mutant, as seen in
Sect. 3.3.3. Mendiluze et al. [37] propose Muskit9 and Fortunato et al. [34, 36, 35]
propose QMutPy10 to perform mutation analysis. These tools are similar in nature
since they perform mutations (i.e., artificial faults) to the input source program.

On the one hand, Muskit requires the raw circuit of a program to be able to
execute. This means that real programs such as our running example in Fig. 1 would
need to be transformed to the one in Fig. 10. Then to use Muskit, we have to:

• Create a configuration file to specify what we are going to mutate (i.e., which
gates, which types of gates (1-qubit, 2-qubit, etc.), the maximum number of
mutants to generate, what mutation operators we are going to use (Muskit
mutation operators are Add, Remove, and Replace Gate), and the location of
where to Add a new gate if the Add operator is selected).

• Create the executor file to specify the number of times we want to execute the
circuit, if we are going to use all possible input values (in the case of Fig. 10,
those would be 00, 01, 10, or 11) or not, and if we want to specify our input
values we would need to create another custom test file where we specify which
ones we want to use.

• Create an analyzer file to specify the number of qubits our program has that we
want to measure (in our case, we have two qubits and want to measure both of
them) and what is the significance level (p-value) for our tests.

To determine whether a mutant was detected, Muskit uses two oracles already
explained in Sect. 3.3.3: the WOO (i.e., if the program output is wrong, the mutant
is detected) and the OPO (i.e., if our p-value is lower than the chosen significance
level the mutant is detected). Suppose we apply the Remove gate operator to both
our gates with input values 00 (the default Qiskit qubit initialization value) to our
running example (Fig. 1). After setting up all of the necessary files described above

9 https://github.com/Simula-COMPLEX/muskit, visited October 2023.
10 https://github.com/danielfobooss/mutpy, visited October 2023.

https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/Simula-COMPLEX/muskit
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy
https://github.com/danielfobooss/mutpy


Verification and Validation of Quantum Software 113

Fig. 11 Manually written test for the Bell state quantum program

and running the tool, Muskit reports that two mutants were generated and that both
were detected by the WOO. This is expected as the output value of our example
without the Hadamard gate will always be 00 (i.e., only one correct output instead of
two), and without the Controlled-Not gate, it will always be 00 with 50% probability,
which is a correct output, and 10 with 50% probability, which is an incorrect output.

On the other hand, QMutPy only requires a Qiskit program and its set of test
cases (either written in unittest11 or pytest12). QMutPy allows us to select from five
quantum mutation operators:

• QGD—Quantum Gate Deletion (equivalent to the Remove operator from Muskit)
• QGI—Quantum Gate Insertion (equivalent to the Add operator from Muskit)
• QGR—Quantum Gate Replacement (equivalent to the Replace operator from

Muskit)
• QMD—Quantum Measurement Deletion
• QMI—Quantum Measurement Insertion

To run QMutPy, we simply execute a command where we select the target program
file (i.e., the fault-free version in Fig. 1) and the target test file (Fig. 11) and select
which operators we want to use. If we perform the same experiment (i.e., select the
QGD operator), QMutPy will also report that both mutants were detected.

The empirical results from both studies [37, 34] show that both Muskit and
QMutPy tools are efficient and effective at assessing the performance of programs’
specifications or test cases. However, as we can see, QMutPy is far simpler to set
up than Muskit since it does not require a formal specification of each quantum
program. It only requires the program’s source code and its corresponding tests.
Also, in case we wish to re-run our experiment with different setups, we would have
to manually alter our program specification files for Muskit, while for QMutPy we
would only need to select additional or fewer operators to use. It is worth pointing
out that Muskit could run a mutation analysis with different inputs, and for QMutPy
to do this, it would be necessary to create more tests for the quantum program under

11 https://docs.python.org/3/library/unittest.html, visited October 2023.
12 https://docs.pytest.org, visited October 2023.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org


114 D. Fortunato et al.

test. However, the QMutPy’s authors left for future work the addition of an input
mutation operator to the tool.

4 Benchmarks of Real Faults in Open-Source Quantum
Programs

Although several techniques and tools have been proposed to verify and validate
quantum programs (see Sect. 3), reproducing13 previous studies or evaluating/-
comparing new techniques is still challenging. The lack of widely accepted and
easy-to-use databases of real quantum faults (i.e., faults that have occurred in real
quantum projects) is one of the main challenges. For instance, Fortunato et al. [34]
and Mendiluze et al. [37] proposed a similar tool for mutation analysis, but both
conducted an empirical evaluation on a different set of Qiskit quantum programs.
Hence, it is not possible to answer the question: Which tool performs better?

In classical computing, many databases of real faults have been proposed, e.g.,
Defects4J [70] for Java, BugsJS [71] for JavaScript, and BugsInPy [72] for Python.
These benchmarks have allowed researchers to conduct empirical studies on real
faults on different research topics, e.g., automatic test generation [73, 74], test
prioritization [75, 76], fault localization [77, 78, 79, 80, 81], automatic program
repair [82], on whether artificial faults might be a practical substitute for real
faults [69], etc.

In quantum computing, to the best of our knowledge, only three benchmarks (not
yet widely accepted or easy to use) have been proposed in quantum computing [83,
50, 84].

Campos and Souto [83] propose QBugs, a framework that includes a catalog
of reproducible faults of real quantum programs and an infrastructure to enable
empirical and controlled experiments in quantum software testing and debugging.
QBugs is not available at the time of writing this chapter.

Zhao et al. [50] propose Bugs4Q,14 a benchmark of 36 real and manually
validated faults on programs written in Qiskit.15 These faulty programs are not
accompanied by, for example, any test that reproduces and reveals the faulty
behavior (as, for example, in the Defects4J [70] benchmark). Furthermore, Bugs4Q

13 ACM defines reproducibility as the measurement obtained with stated precision by a different
team using the same measurement procedure, the same measuring system, under the same
operating conditions, in the same or a different location on multiple trials for the same artifact. For
computational experiments, this means that an independent group can obtain the same result as the
author using the author’s artifacts. https://www.acm.org/publications/policies/artifact-review-and-
badging-current, visited October 2023.
14 https://github.com/Z-928/Bugs4Q, visited October 2023.
15 Since its release, Bugs4Q has been augmented with seven more faults on programs written in
Qiskit, two faults on programs written in Q#, and seven faults on programs written in Cirq (October
2023).

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q
https://github.com/Z-928/Bugs4Q


Verification and Validation of Quantum Software 115

only provides (for each fault) the faulty and fixed files. In other words, it does
not provide fully faulty programs (i.e., including configuration files, build files,
documentation, commit history, etc.) that might be relevant to some tools or other
research venues. For instance, Paltenghi and Pradel [33] pointed out that the low
precision of the LintQ tool in the Bugs4Q benchmark was due to incomplete faulty
programs. Other research venues, for example, fault predictors that require the
commit history of a program to predict which components (e.g., functions) are likely
faulty [85, 86, 87, 88, 89, 75], might also perform poorly or not work at all due to
the lack of such information.

Paltenghi and Pradel [84]16 present a catalog of 223 real-world faults mined from
18 open-source quantum computing platforms (including Qiskit, Cirq, and Q#) and
perform an in-depth analysis of the types of faults most frequently found in quantum
software. The authors make available the faults as a catalog, the type of faults found,
and their fixes. Similar to the Bugs4Q benchmark, there is no interface to interact
with the catalog of faults.

To the best of our knowledge, QChecker [12] and LintQ [33] are the only tools
evaluated on real faults, i.e., that considered the Bugs4Q benchmark.

5 Discussion

Despite the many advances in the verification and validation of quantum programs,
most approaches remain to be adopted or perfected. Based on our observations,
we have compiled a list of limitations that researchers (Sect. 5.1), tool developers
(Sect. 5.2), and benchmark developers (Sect. 5.3) should try to address in the future.

5.1 For Researchers

The approaches presented in Sect. 3 do not exercise to their full extent the
underlying idiosyncrasies of the quantum programs under test [31, 5, 32], for
example, the number of independent paths generated due to the superposition of
each qubit [68].

5.2 For Developers of Testing Tools

Developing a quantum testing tool is not an easy endeavor. We highlight four key
aspects for developers of testing tools to keep in mind.

16 https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms, visited October 2023.

https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms
https://github.com/MattePalte/Bugs-Quantum-Computing-Platforms


116 D. Fortunato et al.

• Setup: The installation and configuration of each tool require a huge amount of
time to perform correctly. For instance, QuSBT [24], QuCAT [22], QUITO
[26], and Muskit [37] require that we clone the tool from GitHub, set up the
correct environment with the right packages and the right packages’ versions,
manually create a configuration file and set some parameters, execute a Python
file, and then select options from a menu on the command line at runtime. All
of these requirements and steps might discourage users from using these tools.
Even tools like QMutPy [34] or QChecker [12] that only require the cloning, the
environment setup, and the execution of a single command can be inconvenient
and frustrating.

• Usage: Developers of tools should aim to, for example, integrate their tools with
common Integrated Development Environments (IDEs) such as Visual Studio or
IntelliJ IDEA to ease their usage. Tools such as EvoSuite [90] (a test generation
automation tool for Java programs) increase their usability when integrated with
an IDE. It should be no different for quantum tools.

• Produce test suites source code: Tools like QUITO [26] do not generate tests
source code (i.e., written in Python) and therefore do not use any of the common
testing frameworks (unittest17 and pytest18). Without such functionalities, tests
cannot be executed or integrated into any project. Thus, tests could not be used to,
for example, (i) detect regressions in future versions of the quantum program or
(ii) assist developers in localizing [91, 77] and repairing faults [82], as has been
proposed in classical computing.

• Produce test suites with an oracle: Tools like QuCAT [22] and QuSBT [24]
do generate tests source code (i.e., written in Python), but they do not generate
an explicit oracle (i.e., assertion). Oracleless tests hold down the adoption of
automatically generated tests as they would not be able to detect any fault in the
program under test.

5.3 For Developers of Quantum Faults Benchmarks

Benchmarks, which are a pillar of reproducibility and applicability, allow one to
compare the performance of different techniques with the same datasets. Currently,
benchmarks are lacking in quantum software testing, and in regard to our focus of
interest, more specifically, quantum faults benchmarks. This is mainly due to the
fact that there are still few quantum programs to analyze, and fault patterns are
still being extracted from real faulty quantum programs. As pointed out in Sect. 4,
to support different venues of research in quantum software testing, benchmarks
for quantum software testing should (1) provide an interface to interact with the
fixed and faulty version of a quantum program, (2) provide fully fixed and faulty

17 https://docs.python.org/3/library/unittest.html, visited October 2023.
18 https://docs.pytest.org, visited October 2023.

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org
https://docs.pytest.org


Verification and Validation of Quantum Software 117

programs, and (3) provide fault-revealing test cases (either manually written or
automatically generated).

6 Conclusion

The field of quantum computing is developing at a very fast pace. Therefore, the
development of tools to ensure the correctness of quantum programs is of the utmost
importance. In this chapter, we presented and detailed novel techniques and tools
researchers have proposed to verify and validate quantum programs. Based on our
exploration of the many techniques, tools, and benchmarks that have been proposed
in quantum verification and validation, we highlighted key aspects of what is still
lacking in the field and offered suggestions for future work. In short, researchers
should focus on further exploring the properties of quantum programs. Developers
should work on delivering tools and quantum fault benchmarks in ways that promote
their adoption and usefulness to the scientific community.

References

1. Russell, J.: IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center
Plans. HPC Wire

2. Collins, H., Nay, C.: IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation
IBM Quantum. IBM Newsroom

3. Ferreira, F.: An Exploratory Study on the Usage of Quantum Programming Languages.
Available at http://hdl.handle.net/10451/56751

4. Hevia, J.L., Peterssen, G., Ebert, C., Piattini, M.: Quantum computing. IEEE Software 38(5),
7–15 (2021). https://doi.org/10.1109/MS.2021.3087755

5. Barrera, A., Guzmán, I., Polo, M., Piattini, M.: Quantum software testing: state of the art. J.
Software Evol. Process 35(4), 2419 (2023). https://doi.org/10.1002/smr.2419

6. Weder, B., Barzen, J., Leymann, F., Salm, M., Vietz, D.: The Quantum Software Lifecycle.
In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and
Paradigms for Engineering Quantum Software. APEQS 2020, pp. 2–9. Association for
Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3412451.3428497

7. Arias, D., García Rodríguez de Guzmán, I., Rodríguez, M., Terres, E.B., Sanz, B., Gaviria de la
Puerta, J., Pastor, I., Zubillaga, A., García Bringas, P.: Let’s do it right the first time: Survey on
security concerns in the way to quantum software engineering. Neurocomputing 538, 126199
(2023). https://doi.org/10.1016/j.neucom.2023.03.060

8. Tao Yue, P.A., Ali, S.: Quantum Software Testing: Challenges, Early Achievements, and
Opportunities. ERCIM News

9. Ying, M.: Floyd–Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6)
(2012). https://doi.org/10.1145/2049706.2049708

10. Zhou, L., Yu, N., Ying, M.: An Applied Quantum Hoare Logic. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2019, pp. 1149–1162. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3314221.3314584

http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
http://hdl.handle.net/10451/56751
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1109/MS.2021.3087755
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1145/3412451.3428497
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584
https://doi.org/10.1145/3314221.3314584


118 D. Fortunato et al.

11. Honarvar, S., Mousavi, M.R., Nagarajan, R.: Property-Based Testing of Quantum Programs in
q#. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp. 430–435 (2020)

12. Zhao, P., Wu, X., Li, Z., Zhao, J.: QChecker: Detecting Bugs in Quantum Programs via Static
Analysis (2023)

13. Yu, N., Palsberg, J.: Quantum Abstract Interpretation. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
pp. 542–558. ACM, Virtual Canada (2021). https://doi.org/10.1145/3453483.3454061. https://
dl.acm.org/doi/10.1145/3453483.3454061

14. Xia, S., Zhao, J.: Static Entanglement Analysis of Quantum Programs (2023). https://doi.org/
10.48550/arXiv.2304.05049. arXiv:2304.05049 [quant-ph]

15. Kaul, M., Küchler, A., Banse, C.: A Uniform Representation of Classical and Quantum
Source Code for Static Code Analysis (2023). https://doi.org/10.48550/arXiv.2308.06113.
arXiv:2308.06113 [cs]

16. Wang, J., Gao, M., Jiang, Y., Lou, J., Gao, Y., Zhang, D., Sun, J.: QuanFuzz: Fuzz Testing of
Quantum Program (2018). arXiv:1810.10310 [cs]

17. Wang, J., Zhang, Q., Xu, G.H., Kim, M.: QDiff: Differential Testing of Quantum Software
Stacks. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 692–704 (2021). https://doi.org/10.1109/ASE51524.2021.9678792

18. Wang, X., Yu, T., Arcaini, P., Yue, T., Ali, S.: Mutation-Based Test Generation for Quantum
Programs with Multi-Objective Search. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1345–1353. ACM, Boston Massachusetts (2022). https://doi.org/
10.1145/3512290.3528869. https://dl.acm.org/doi/10.1145/3512290.3528869

19. Abreu, R., Fernandes, J.P., Llana, L., Tavares, G.: Metamorphic Testing of Oracle Quantum
Programs. In: Proceedings of the 3rd International Workshop on Quantum Software Engi-
neering, pp. 16–23. ACM, Pittsburgh Pennsylvania (2022). https://doi.org/10.1145/3528230.
3529189. https://dl.acm.org/doi/10.1145/3528230.3529189

20. Paltenghi, M., Pradel, M.: MorphQ: Metamorphic Testing of Quantum Computing Platforms
(2022). https://doi.org/10.48550/arXiv.2206.01111. arXiv:2206.01111 [cs]

21. Wang, X., Arcaini, P., Yue, T., Ali, S.: Application of Combinatorial Testing to Quantum
Programs. In: 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS), pp. 179–188 (2021). https://doi.org/10.1109/QRS54544.2021.00029

22. Wang, X., Arcaini, P., Yue, T., Ali, S.: QuCAT: A Combinatorial Testing Tool for Quantum
Software (2023). https://arxiv.org/abs/2309.00119v1

23. Wang, X., Arcaini, P., Yue, T., Ali, S.: Generating Failing Test Suites for Quantum Programs
With Search. In: O’Reilly, U.-M., Devroey, X. (eds.) Search-Based Software Engineering.
Lecture Notes in Computer Science, pp. 9–25. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88106-1_2

24. Wang, X., Arcaini, P., Yue, T., Ali, S.: QuSBT: Search-Based Testing of Quantum Programs.
In: Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, pp. 173–177 (2022)

25. Ali, S., Arcaini, P., Wang, X., Yue, T.: Assessing the Effectiveness of Input and Output
Coverage Criteria for Testing Quantum Programs. In: 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST), pp. 13–23 (2021). https://doi.org/10.
1109/ICST49551.2021.00014

26. Wang, X., Arcaini, P., Yue, T., Ali, S.: Quito: A Coverage-Guided Test Generator for Quan-
tum Programs. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1237–1241 (2021). https://doi.org/10.1109/ASE51524.2021.9678798

27. Rajak, A., Suzuki, S., Dutta, A., Chakrabarti, B.K.: Quantum annealing: an overview. Phil.
Trans. Roy. Soc. A Math. Phys. Eng. Sci. 381(2241), 20210417 (2023). https://doi.org/10.
1098/rsta.2021.0417. https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0417

28. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D.,
Cabrera-Hernández, F.J., Carballo-Franquis, J., Chen, A., Chen, C.-F., Chow, J.M., Córcoles-
Gonzales, A.D., Cross, A.J., Cross, A., Cruz-Benito, J., Culver, C., González, S.D.L.P., Torre,

https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://dl.acm.org/doi/10.1145/3453483.3454061
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2304.05049
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.48550/arXiv.2308.06113
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1109/ASE51524.2021.9678792
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://doi.org/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://dl.acm.org/doi/10.1145/3512290.3528869
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://dl.acm.org/doi/10.1145/3528230.3529189
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.48550/arXiv.2206.01111
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://doi.org/10.1109/QRS54544.2021.00029
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://arxiv.org/abs/2309.00119v1
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1007/978-3-030-88106-1_2
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ICST49551.2021.00014
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1109/ASE51524.2021.9678798
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417
https://doi.org/10.1098/rsta.2021.0417

 7644 55041 a 7644 55041 a
 
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2021.0417


Verification and Validation of Quantum Software 119

E.D.L., Ding, D., Dumitrescu, E., Duran, I., Eendebak, P., Everitt, M., Sertage, I.F., Frisch,
A., Fuhrer, A., Gambetta, J., Gago, B.G., Gomez-Mosquera, J., Greenberg, D., Hamamura, I.,
Havlicek, V., Hellmers, J., Herok, Horii, H., Hu, S., Imamichi, T., Itoko, T., Javadi-Abhari, A.,
Kanazawa, N., Karazeev, A., Krsulich, K., Liu, P., Luh, Y., Maeng, Y., Marques, M., Martín-
Fernández, F.J., McClure, D.T., McKay, D., Meesala, S., Mezzacapo, A., Moll, N., Rodríguez,
D.M., Nannicini, G., Nation, P., Ollitrault, P., O’Riordan, L.J., Paik, H., Pérez, J., Phan, A.,
Pistoia, M., Prutyanov, V., Reuter, M., Rice, J., Davila, A.R., Rudy, R.H.P., Ryu, M., Sathaye,
N., Schnabel, C., Schoute, E., Setia, K., Shi, Y., Silva, A., Siraichi, Y., Sivarajah, S., Smolin,
J.A., Soeken, M., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Trabing, K., Treinish,
M., Turner, W., Vogt-Lee, D., Vuillot, C., Wildstrom, J.A., Wilson, J., Winston, E., Wood, C.,
Wood, S., Wörner, S., Akhalwaya, I.Y., Zoufal, C.: Qiskit: An Open-source Framework for
Quantum Computing. Zenodo (2019). https://doi.org/10.5281/zenodo.2562111

29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/
CBO9780511976667

30. Alaqail, H., Ahmed, S.: Overview of software testing standard iso/iec/ieee 29119. Int. J.
Comput. Sci. Network Secur. (IJCSNS) 18(2), 112–116 (2018)

31. Miranskyy, A., Zhang, L.: On Testing Quantum Programs. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),
pp. 57–60 (2019). https://doi.org/10.1109/ICSE-NIER.2019.00023. http://arxiv.org/abs/1812.
09261

32. De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: Software engineering
for quantum programming: How far are we? J. Syst. Software 190, 111326 (2022). https://doi.
org/10.1016/j.jss.2022.111326

33. Paltenghi, M., Pradel, M.: LintQ: A Static Analysis Framework for Qiskit Quantum Programs
(2023). arXiv:2310.00718 [cs]

34. Fortunato, D., Campos, J., Abreu, R.: Mutation testing of quantum programs: a case study with
Qiskit. IEEE Trans. Quant. Eng. 3, 1–17 (2022). https://doi.org/10.1109/TQE.2022.3195061

35. Fortunato, D., Campos, J., Abreu, R.: Mutation Testing of Quantum Programs Written
in QISKit. In: 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 358–359 (2022). https://doi.org/10.1145/
3510454.3528649

36. Fortunato, D., Campos, J., Abreu, R.: QMutPy: A Mutation Testing tool for Quantum algo-
rithms and Applications in Qiskit. In: Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 797–800. ACM, Virtual South Korea
(2022). https://doi.org/10.1145/3533767.3543296 . https://dl.acm.org/doi/10.1145/3533767.
3543296

37. Mendiluze, E., Ali, S., Arcaini, P., Yue, T.: Muskit: A Mutation Analysis Tool for Quantum
Software Testing. In: 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1266–1270 (2021). https://doi.org/10.1109/ASE51524.2021.9678563

38. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime assertions for
testing and debugging quantum programs (2020). Accepted: 2021-03-14T22:46:19Z

39. Muqeet, A., Yue, T., Ali, S., Arcaini, P.: Noise-Aware Quantum Software Testing (2023)
40. Zhang, L., Radnejad, M., Miranskyy, A.: Identifying Flakiness in Quantum Programs. Preprint

(2023). arXiv:2302.03256
41. Long, P., Zhao, J.: Testing multi-subroutine quantum programs: From unit testing to integration

testing (2023). arXiv:2306.17407 [quant-ph]
42. Long, P., Zhao, J.: Testing quantum programs with multiple subroutines (2023).

arXiv:2208.09206 [cs]
43. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–

580 (1969). https://doi.org/10.1145/363235.363259
44. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and Discovering Vulnerabilities with

Code Property Graphs. In: 2014 IEEE Symposium on Security and Privacy, pp. 590–604
(2014). https://doi.org/10.1109/SP.2014.44

https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.5281/zenodo.2562111
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
http://arxiv.org/abs/1812.09261
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1016/j.jss.2022.111326
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1109/TQE.2022.3195061
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3510454.3528649
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://doi.org/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://dl.acm.org/doi/10.1145/3533767.3543296
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1109/ASE51524.2021.9678563
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/SP.2014.44


120 D. Fortunato et al.

45. Barrera, A.G., Guzmán, I.G.-R., Polo, M., Cruz-Lemus, J.A.: In: Serrano, M.A., Pérez-Castillo,
R., Piattini, M. (eds.) Quantum Software Testing: Current Trends and Emerging Proposals, pp.
167–191. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05324-5_9

46. Sych, D., Leuchs, G.: A complete basis of generalized bell states. New J. Phys. 11(1), 013006
(2009). https://doi.org/10.1088/1367-2630/11/1/013006

47. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103(15), (2009). https://doi.org/10.1103/physrevlett.103.150502

48. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nature Phys.
10(9), 631–633 (2014) https://doi.org/10.1038/nphys3029

49. Zhao, P., Zhao, J., Ma, L.: Identifying Bug Patterns in Quantum Programs. In: 2021
IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), pp.
16–21. IEEE, Madrid, Spain (2021). https://doi.org/10.1109/Q-SE52541.2021.00011. https://
ieeexplore.ieee.org/document/9474564/

50. Zhao, P., Zhao, J., Miao, Z., Lan, S.: Bugs4Q: A Benchmark of Real Bugs for Quantum
Programs. In: 2021 36th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 1373–1376 (2021). https://doi.org/10.1109/ASE51524.2021.9678908

51. Chen, Q., Câmara, R., Campos, J., Souto, A., Ahmed, I.: The Smelly Eight: An Empirical
Study on the Prevalence of Code Smells in Quantum Computing. In: 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pp. 358–370 (2023). https://doi.
org/10.1109/ICSE48619.2023.00041

52. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open Quantum Assembly Language
(2017)

53. Liang, H., Pei, X., Jia, X., Shen, W., Zhang, J.: Fuzzing: state of the art. IEEE Trans. Reliab.
67(3), 1199–1218 (2018). https://doi.org/10.1109/TR.2018.2834476

54. Zhu, X., Wen, S., Camtepe, S., Xiang, Y.: Fuzzing: A survey for roadmap. ACM Comput. Surv.
54(11s), (2022). https://doi.org/10.1145/3512345

55. Manès, V.J.M., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.: The art,
science, and engineering of fuzzing: A survey. IEEE Trans. Software Eng. 47(11), 2312–2331
(2021). https://doi.org/10.1109/TSE.2019.2946563

56. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1), 1–13 (2018)
57. Godefroid, P.: Fuzzing: Hack, art, and science. Commun. ACM 63(2), 70–76 (2020)
58. Wang, Y., Jia, P., Liu, L., Huang, C., Liu, Z.: A systematic review of fuzzing based on

machine learning techniques. PLOS ONE 15(8), 1–37 (2020). https://doi.org/10.1371/journal.
pone.0237749

59. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible paths. Software
Test. Verif. Reliab. 7(3), 165–192 (1997). https://doi.org/10.1002/(SICI)1099-1689(199709)7:
3<165::AID-STVR143>3.0.CO;2-U

60. Just, R., Kapfhammer, G.M., Schweiggert, F.: Do Redundant Mutants Affect the Effectiveness
and Efficiency of Mutation Analysis? In: 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, pp. 720–725 (2012). https://doi.org/10.1109/
ICST.2012.162

61. Madeyski, L., Orzeszyna, W., Torkar, R., Józala, M.: Overcoming the equivalent mutant
problem: a systematic literature review and a comparative experiment of second order
mutation. IEEE Trans. Software Eng. 40(1), 23–42 (2014). https://doi.org/10.1109/TSE.2013.
44

62. Just, R., Kapfhammer, G.M., Schweiggert, F.: Using Non-redundant Mutation Operators and
Test Suite Prioritization to Achieve Efficient and Scalable Mutation Analysis. In: 2012 IEEE
23rd International Symposium on Software Reliability Engineering, pp. 11–20 (2012). https://
doi.org/10.1109/ISSRE.2012.31

63. Just, R., Schweiggert, F.: Higher accuracy and lower run time: efficient mutation analysis using
non-redundant mutation operators. Software Test. Verif. Reliab. 25(5-7), 490–507 (2015).
https://doi.org/10.1002/stvr.1561

https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1007/978-3-031-05324-5_9
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1088/1367-2630/11/1/013006
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/nphys3029
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.1109/Q-SE52541.2021.00011
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://ieeexplore.ieee.org/document/9474564/
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ASE51524.2021.9678908
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/ICSE48619.2023.00041
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/ICST.2012.162
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561


Verification and Validation of Quantum Software 121

64. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/
4235.996017

65. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The Oracle problem in software
testing: a survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015). https://doi.org/10.1109/
TSE.2014.2372785

66. Sicilia, M.-A., Sánchez-Alonso, S., Mora-Cantallops, M., García-Barriocanal, E.: On the
Source Code Structure of Quantum Code: Insights from Q# and QDK. In: Shepperd, M.,
Abreu, F., Silva, A., Pérez-Castillo, R. (eds.) Quality of Information and Communications
Technology. Communications in Computer and Information Science, pp. 292–299. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58793-2_24

67. Yamashita, K., Huang, C., Nagappan, M., Kamei, Y., Mockus, A., Hassan, A.E., Ubayashi, N.:
Thresholds for Size and Complexity Metrics: A Case Study from the Perspective of Defect
Density. In: 2016 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pp. 191–201 (2016). https://doi.org/10.1109/QRS.2016.31

68. Kumar, A.: Formalization of structural test cases coverage criteria for quantum software
testing. Int. J. Theor. Phys. 62, (2023). https://doi.org/10.1007/s10773-022-05271-y

69. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are Mutants a Valid
Substitute for Real Faults in Software Testing? In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 654–665. ACM, Hong
Kong China (2014). https://doi.org/10.1145/2635868.2635929. https://dl.acm.org/doi/10.1145/
2635868.2635929

70. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A Database of Existing Faults to Enable Controlled
Testing Studies for Java Programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pp. 437–440. ACM, San Jose, CA, USA (2014). https://doi.
org/10.1145/2610384.2628055. https://dl.acm.org/doi/10.1145/2610384.2628055

71. Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Beszédes, A., Ferenc, R., Mesbah,
A.: BugsJS: A Benchmark of JavaScript Bugs. In: 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pp. 90–101 (2019). https://doi.org/10.1109/ICST.
2019.00019

72. Widyasari, R., Sim, S.Q., Lok, C., Qi, H., Phan, J., Tay, Q., Tan, C., Wee, F., Tan, J.E., Yieh,
Y., Goh, B., Thung, F., Kang, H.J., Hoang, T., Lo, D., Ouh, E.L.: BugsInPy: A Database of
Existing Bugs in Python Programs to Enable Controlled Testing and Debugging Studies. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2020, pp. 1556–
1560. Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.
1145/3368089.3417943

73. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do Automatically
Generated Unit Tests Find Real Faults? An Empirical Study of Effectiveness and Challenges.
In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 201–211 (2015). https://doi.org/10.1109/ASE.2015.86

74. Lukasczyk, S., Kroiß, F., Fraser, G.: An empirical study of automated unit test generation for
Python. Empirical Software Eng. 28(2), 36 (2023)

75. Paterson, D., Campos, J., Abreu, R., Kapfhammer, G.M., Fraser, G., McMinn, P.: An Empirical
Study on the Use of Defect Prediction for Test Case Prioritization. In: 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), pp. 346–357 (2019).
https://doi.org/10.1109/ICST.2019.00041

76. Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A.: FAST Approaches to Scalable
Similarity-Based Test Case Prioritization. In: Proceedings of the 40th International Conference
on Software Engineering. ICSE ’18, pp. 222–232. Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3180155.3180210

https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1109/QRS.2016.31
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1007/s10773-022-05271-y
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://dl.acm.org/doi/10.1145/2635868.2635929
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1109/ICST.2019.00019
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210


122 D. Fortunato et al.

77. Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D., Keller,
B.: Evaluating and Improving Fault Localization. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 609–620 (2017). https://doi.org/10.1109/
ICSE.2017.62

78. Li, X., Li, W., Zhang, Y., Zhang, L.: DeepFL: Integrating Multiple Fault Diagnosis Dimensions
for Deep Fault Localization. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2019, pp. 169–180. Association for
Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293882.3330574

79. Zou, D., Liang, J., Xiong, Y., Ernst, M.D., Zhang, L.: An empirical study of fault localization
families and their combinations. IEEE Trans. Software Eng. 47(2), 332–347 (2021). https://
doi.org/10.1109/TSE.2019.2892102

80. Sarhan, Q.I., Beszédes, A.: A survey of challenges in spectrum-based software fault localiza-
tion. IEEE Access 10, 10618–10639 (2022). https://doi.org/10.1109/ACCESS.2022.3144079

81. Widyasari, R., Prana, G.A.A., Haryono, S.A., Wang, S., Lo, D.: Real world projects, real faults:
evaluating spectrum based fault localization techniques on Python projects. Empirical Software
Eng. 27(6), 147 (2022)

82. Durieux, T., Madeiral, F., Martinez, M., Abreu, R.: Empirical Review of Java Program Repair
Tools: A Large-Scale Experiment on 2,141 Bugs and 23,551 Repair Attempts. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ESEC/FSE 2019, pp. 302–313.
Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3338906.3338911

83. Campos, J., Souto, A.: QBugs: A Collection of Reproducible Bugs in Quantum Algorithms and
a Supporting Infrastructure to Enable Controlled Quantum Software Testing and Debugging
Experiments (2021)

84. Paltenghi, M., Pradel, M.: Bugs in quantum computing platforms: an empirical study. Proc.
ACM Program. Lang. 6(OOPSLA1), (2022). https://doi.org/10.1145/3527330

85. Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., Whitehead Jr., E.J.: Does Bug Prediction
Support Human Developers? Findings from a Google Case Study. In: Proceedings of the 2013
International Conference on Software Engineering. ICSE ’13, pp. 372–381. IEEE Press, San
Francisco, CA, USA (2013)

86. Freitas, P.A.F.: Software repository mining analytics to estimate software component reliability
(2015)

87. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a benchmark
and an extensive comparison. Empirical Software Eng. 17(4–5), 531–577 (2012). https://doi.
org/10.1007/s10664-011-9173-9

88. Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl.
36(4), 7346–7354 (2009). https://doi.org/10.1016/j.eswa.2008.10.027

89. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in large
software systems. IEEE Trans. Software Eng. 31(4), 340–355 (2005). https://doi.org/10.1109/
TSE.2005.49

90. Arcuri, A., Campos, J., Fraser, G.: Unit Test Generation During Software Development:
EvoSuite Plugins for Maven, IntelliJ and Jenkins. In: 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST), pp. 401–408 (2016). https://doi.org/
10.1109/ICST.2016.44

91. Campos, J., Riboira, A., Perez, A., Abreu, R.: Gzoltar: An Eclipse Plug-in for Testing and
Debugging. In: Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering. ASE ’12, pp. 378–381. Association for Computing Machinery, New
York, NY, USA (2012). https://doi.org/10.1145/2351676.2351752

https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1145/3293882.3330574
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/TSE.2019.2892102
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1145/3527330
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/TSE.2005.49
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1109/ICST.2016.44
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2351676.2351752


Verification and Validation of Quantum Software 123

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Quantum Software Quality Metrics

José A. Cruz-Lemus, Moisés Rodríguez, Raúl Barba-Rojas,
and Mario Piattini

Abstract Until now, the quality problems of quantum software have been largely
ignored. This chapter analyzes the applicability of models and metrics for quantum
software and, to mitigate this lack of attention to quality issues, presents a set
of metrics that have been proposed and empirically validated to characterize the
complexity of quantum circuits in terms of their understandability. The validation
experiment design, execution, and results are reported. In addition, the main func-
tionalities of a prototype tool that has been created for the automatic computation
of the metrics are briefly presented.

Keywords Quantum computing · Quantum software engineering · Quantum
circuits understandability · Metrics validation

1 Introduction

To drive the large-scale production of quantum software, an adequate level of quality
is required [20] so that society can truly benefit from the promising quantum
applications that exist in different domains. In a quantum information system,
there are several factors that influence the quality of the results: the quality of the
quantum hardware, the quality of the quantum software platform (development and
operational), and the quality of the quantum software itself. Regarding the first
factor, there are different types of simulators and quantum computers (adiabatic,
gate-based, measurement-based, etc.); however, to date, most of them are still
flawed, and hence their name: noisy intermediate-scale quantum (NISQ) [21].

J. A. Cruz-Lemus (�) · M. Rodríguez · R. Barba-Rojas · M. Piattini
Escuela Superior de Informática de Ciudad Real, University of Castilla-La Mancha, Spain
e-mail: joseantonio.cruz@uclm.es; moises.rodriguez@uclm.es; mario.piattini@uclm.es

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 6&domain=pdf

 885 56845 a 885 56845 a
 
mailto:joseantonio.cruz@uclm.es
mailto:joseantonio.cruz@uclm.es
mailto:joseantonio.cruz@uclm.es

 11342 56845 a 11342
56845 a
 
mailto:moises.rodriguez@uclm.es
mailto:moises.rodriguez@uclm.es
mailto:moises.rodriguez@uclm.es

 22061 56845 a 22061 56845 a
 
mailto:mario.piattini@uclm.es
mailto:mario.piattini@uclm.es
mailto:mario.piattini@uclm.es
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6
https://doi.org/10.1007/978-3-031-64136-7_6


126 J. A. Cruz-Lemus et al.

As far as platform quality is concerned, an analysis of how quantum computing
affects the most relevant software quality characteristics is proposed in [19].
However, quantum hardware and platforms are not the only important issues
in achieving high-quality quantum information systems; software quality is also
essential. In fact, quantum software engineering (QSE) is an essential contribution
to the success of quantum computing. One of the tenets of the Talavera Manifesto
for Quantum Software Engineering and Programming [19] states that “QSE must
ensure the quality of quantum software. Quality management of both processes and
products is essential if quantum software is to be produced at the expected quality
levels.”

In fact, it would be necessary to adapt the quality models as specified in ISO/IEC
25010 [16], as some quality characteristics should be redefined and perhaps others
incorporated to take into account the peculiarities of quantum software. In any case,
there are characteristics such as understandability that are still fundamental, since
quantum software that cannot be understood is not quantum software.

Unfortunately, until now, the quality problems of quantum software have been
largely ignored, and hence this chapter aims to alleviate this situation. First, we
will focus on defining and empirically validating a set of metrics for assessing the
understandability of quantum circuits. As interesting as it is, quantum annealing is
out of the scope of this research, although the quality of this quantum computing
approach will eventually be dealt with in the future.

The remainder of this chapter is organized as follows. In Sect. 2, the proposals
that have been found in the literature are detailed. In Sect. 2.2 a proposal of metrics
for quantum circuits is presented. An empirical validation of these metrics is briefly
explained in Sect. 4, while Sect. 5 presents a prototype of a tool that has been
developed to calculate these metrics automatically. Finally, in Sect. 6 the most
important conclusions of this chapter are detailed.

2 State-of-the-Art

2.1 Quality in Quantum Computing Software

Sodhi and Kapur [28] published an analysis of the main quantum programming
platforms, examining how they affect the most relevant software quality charac-
teristics: availability, interoperability, maintainability, manageability, performance,
reliability, scalability, security, testability, and usability. In their study, some of the
characteristics that most affect the quality attributes are:

1. Lower level of programming abstractions, which increases the complexity of the
code impacting maintainability, testability, reliability, and availability

2. Platform heterogeneity, which impairs software cohesion, affecting maintainabil-
ity, reliability, robustness, reusability, and system manageability and testability



Quantum Software Quality Metrics 127

3. Remote software development and deployment, which slows programming,
testing, and debugging of quantum programs, affecting maintainability and
testability

4. Dependence on known quantum algorithms, which affects the ability to perform
enhancements and corrective maintenance, as well as testability and interoper-
ability (with classical software)

5. Limited software portability, resulting in a lack of standardization in several
areas, affecting availability, interoperability, maintainability, and scalability

6. Lack of a native quantum operating system, which decreases performance,
manageability, reliability, scalability, and security

7. Fundamentally different programming models, which can increase code com-
plexity and affect maintainability, interoperability, security, and testability

As for other related work, most of the existing research efforts related to quantum
software quality have generally focused on quantum program verification [23] and
specifically on verified compilation [22], verification protocols [15], relational
verification of quantum programs [1], formal description of quantum programs [6],
formal verification and certification of programs [7], and equivalence checking for
quantum circuits [5]. But, as in classical computer science, formal verification is
not a realistic solution since it is only useful for very specific programs of small size
and requires mathematical knowledge that is foreign to most computer scientists.
This is why it is much more convenient to have a set of metrics that can guide the
work of quantum software designers and programmers.

2.2 Metrics for Quantum Computing Software

It is important to adapt software quality metrics to the characteristics of quantum
systems. In fact, on the one hand, there is a lot of research on metrics for classical
conceptual models [8, 10, 12, 26], but very little for quantum software.

On the other hand, for quantum circuits, there is the “quantum volume” metric,
which summarizes performance as a function of a few factors: number of physical
qubits, number of gates, device connectivity, and number of operations that can
be executed in parallel [2]. But it is intended as a hardware performance metric
measuring the useful amount of quantum computation performed by a device in
space and time, or as an alternative means of formalizing the complexity of quantum
algorithms [25].

Different “quantum circuit performance measures” are collected in [29]: cubic
cost (total number of qubits required to design the quantum circuit), gate count
(total number of gates used in the quantum circuit), “junk” gates (all gates that exist
to preserve reversibility but are not primary inputs or useful outputs), ancillae (all
constant inputs to the quantum circuit), and depth (the number of layers of gates in
the circuit).



128 J. A. Cruz-Lemus et al.

In [18], QUANTIFY, an open source framework for quantitative analysis of
quantum circuits, is proposed, which uses the number of physical qubits and the
amount of time to operate the physical qubits, which influence the total energy
consumed to perform the computation.

Finally, some other proposals can be found in [17, 27, 31].

3 Metrics for Quantum Circuits

We are aware that the easier it is to understand a quantum circuit, as with any
modeling artifact, the easier the tasks of debugging, testing, and, in general,
maintenance of quantum software will be, and we will be able to achieve quality
quantum applications. Hence a set of metrics has been defined to measure the
understandability of quantum circuits. Thus, this section presents a set of metrics
[9] to evaluate the understandability of quantum circuits, which can influence
the time and resources required for their development, their testability, and their
maintainability. For better understanding, the metrics have been grouped according
to their measurement objective.

3.1 Circuit Size

Intuitively, the larger the circuit, the more complex it must also be to understand.
The metrics in this group are:

• Width: Number of qubits in the circuit
• Depth: Maximum number of operations applied to a qubit in the circuit

3.2 Circuit Density

This group of metrics refers to the number of gates applied to each qubit in the
circuit. We can find several equivalent circuits in which the gates are deployed
differently (see Fig. 1). The density of these two circuits, i.e., the number of steps
needed in the quantum circuit to perform the same number of operations, is different.
This group contains the following metrics:

• MaxDens: Maximum number of operations applied to the qubits
• AvgDens: Average number of operations applied to the qubits



Quantum Software Quality Metrics 129

Fig. 1 Two equivalent
quantum circuits with
different densities

3.3 Single-Qubit Gates

This group contains the gates most commonly used in quantum circuits:

• NoP-X: Number of Pauli-X gates (NOT)
• NoP-Y: Number of Pauli-Y gates
• NoP-Z: Number of Pauli-Z gates
• TNo-P: Total number of Pauli gates in the circuit (calculated as the sum of the

previous three)
• NoH: Number of Hadamard gates
• %SpposQ: Ratio of qubits with a Hadamard gate as an initial gate (qubits in

superposition state)
• NoOtherSG: Number of other single-qubit gates in the circuit
• TNoSQG: Total number of single-qubit gates
• TNoCSQG: Total number of controlled single-qubit gates

3.4 Multi-Qubit Gates

This group includes gates involving several qubits as input and output:

• NoCAnyG: Number of controlled gates (any).
• NoSWAP: Number of exchange gates.
• NoCNOT: Number of NOT controlled gates (CNOT).



130 J. A. Cruz-Lemus et al.

• %QinCNOT: Ratio of qubits affected by CNOT gates. Both the controlled qubit
and the target qubit in a CNOT will be considered affected for the calculation of
this metric.

• AvgCNOT: Average number of CNOT gates directed to any qubit in a circuit.
• MaxCNOT: Maximum number of CNOT gates directed to any qubit of a circuit.
• NoToff: Number of Toffoli gates.
• %QinToff: Ratio of qubits affected by Toffoli gates. The calculation will take

into account the controlled qubit and the target qubits as affected.
• AvgToff: Average number of Toffoli gates targeting any qubit of a circuit.
• MaxToff: Maximum number of Toffoli gates targeting any qubit of a circuit.

3.5 All Gates in the Circuit

• NoGates: Total number of gates in the circuit
• NoCGates: Total number of controlled gates in the circuit
• NoGates: Ratio of single gates to total gates

3.6 Oracles

We are aware that there are certain features regarding the use of oracles in quantum
circuits that could affect their understandability but, because they behave as “black
boxes,” it is not possible to compute them. However, a comprehensive study of how
oracles affect the understandability of quantum circuits is planned for future work.

• NoOr: Number of oracles in the circuit.
• NoCOr: Number of controlled oracles in the circuit.
• %QinOr: Proportion of qubits affected by the oracles. For the calculation of this

metric, only the oracle input qubits will be considered affected.
• %QinCOr: Ratio of qubits affected by controlled oracles. The controlled qubit

and the oracle input qubits will be considered affected for the calculation of this
metric.

• AvgOrD: Average depth of an oracle in the circuit.
• MaxOrD: Maximum depth of an oracle in the circuit.

3.7 Measurement Gates

• NoQM: Number of measured qubits
• %QM: Ratio of measured qubits



Quantum Software Quality Metrics 131

3.8 Other Metrics

• %Anc: Ratio of ancilla (auxiliary) qubits in the circuit

3.9 Metrics for Quantum Circuits Calculation Examples

In this section, a couple of examples (Figs. 2 and 3) are used to illustrate the
calculation of the metrics proposed in the previous section. Table 1 shows these
calculations when applied to the examples.

Fig. 2 An example (A) of a quantum circuit

Fig. 3 Another example (B) of a quantum circuit



132 J. A. Cruz-Lemus et al.

Table 1 Metrics calculation for the given examples

Metric Example A Example B Metric Example A Example B

Width 5 5 MaxCNOT 0 3

Depth 10 7 NoToff 0 1

MaxDens 3 1 %QinCNOT 0 0.60

AvgDens 1.20 1 AvgToff(q) 0 0.20

NoP-X 0 0 MaxToff(q) 0 1

NoP-Y 0 0 NoGates 12 7

NoP-Z 0 0 NoCGates 6 7

TNo-P 0 0 %SGates 0.75 1.00

NoH 6 0 NoOr 3 0

%SpposQ 0.60 0 NoCOr 3 0

NoOtherSG 3 0 %QinOr 0.40 0

TNoSQG 9 0 %QinCOr 1.00 0

TNoCSQG 3 0 AvgOrD 2.00 0

NoCAnyG 6 7 MaxOrD 2 0

NoSWAP 0 0 NoQM 3 0

NoCNOT 0 6 %QM 0.60 0

%QinCNOT 0 1.00 %Anc 0.40 0

AvgCNOT 0 1.20

4 Validation of Quantum Circuits Metrics

This section briefly describes an experiment performed to empirically validate the
metrics proposed in Sect. 3. In different subsections, its design, execution, results,
conclusions, and limitations will be explained.

4.1 Experiment Design

The whole experimental process is based on the methodology proposed in [30].
First, the main goal of the experiment was to validate the set of metrics presented

in Sect. 3. The experimental null hypothesis (.H0) was defined as the quantum circuit
aspects measured by each of the metrics under study do not have an impact on the
understandability of the quantum circuit .

The experiment was carried out online from mid-April until the end of May of
2023 and, as for the experimental subjects, over 600 quantum software researchers
and professionals were sent an invitation to participate in the experiment, but finally,
only 32 of them filled out the online materials, consisting of a set of questionnaires
with a quantum circuit on each of them and questions about that circuit, state change
when some gates were added or removed, results on several qubits, etc. Part of one



Quantum Software Quality Metrics 133

Fig. 4 Spearman’s correlation coefficient results

of the questionnaires can be found as an example in the appendix at the end of the
chapter (see Fig. 12).

4.2 Experiment Results

When trying to apply the typical correlation analyses, we obtained that Pearson’s
coefficient could not be applied as the data did not meet the conditions required
to do so. On the other hand, we could apply Spearman’s correlation coefficient to
the obtained data. When doing so, only one metric showed a statistically significant
result (see Fig. 4). It was the metric TNoCSQG that, as mentioned in Sect. 3.3,
counts the total number of controlled single-qubit gates.

As these results had been quite discouraging so far, because only one of the whole
set of metrics had been validated, we decided to use several machine learning (ML)
techniques, such as decision trees [3] and random forests [4], on a discretized and
a non-discretized version of the dataset.

The color code in Fig. 5 puts a green square where a certain metric had a feature
relevance higher than the third quartile related to a certain technique. This implies
that the metric is affecting how the quantum circuit has been understood by the
subjects. It also puts a red square when the feature relevance was lower than the first
quartile and, finally, leaves a white square on the other cases.

Thus, it can be observed that there is a subset of metrics with green squares in
several techniques, which means that they have been validated as good indicators
for assessing the understandability of quantum circuits. These metrics are Depth,



134 J. A. Cruz-Lemus et al.

Fig. 5 Machine learning techniques results



Quantum Software Quality Metrics 135

NoOtherSG, TNoCSQG (confirming the results of the Spearman’s correlation),
Width, and %SGates.

4.3 Experiment Limitations

This experiment has a set of limitations that need to be taken into account. First,
the use of ML techniques for validating the metrics is a different approach from
other metrics validation processes [11]. In this case, several ML techniques were
used, and metrics are validated when they are located in the highest quartile in a
relevant number of cases. Also, the number of experimental subjects (32) is quite
low. Unfortunately, the quantum computing community is still growing, and it is
hoped that we will have more experimental subjects in future replication studies.
Finally, although a methodological approach has been undertaken for the design,
execution, and analysis of the data collected by this experiment, further replication
studies should be conducted to confirm the strength of the conclusions achieved in
this experiment.

5 QMetrics

A tool prototype called QMetrics was created for the automatic calculation of the
proposed metrics. Essentially, it is a Web application that allows for automatically
calculating each of the metrics proposed over a quantum circuit provided by the user.
An example of use is presented in this section, to highlight its main functionalities,
which will be commented on next:

1. Adding a new quantum circuit (optional): The first step to perform the
calculation of the metrics for a given quantum circuit is to add such a circuit,
provided the quantum circuit is not already loaded on the tool. To insert the
quantum circuit, the user must specify its code, generated by QPainter, another
tool that allows the graphical designing of quantum circuits, similar to other tools
such as IBM Composer1 or Quirk.2 The name of the circuit has to be added too
(see Fig. 6).

2. Selecting the circuit: In the following step, the circuit on which the metrics will
be calculated can be selected from the list of quantum circuits loaded on the tool
(see Fig. 7).

1 https://quantum-computing.ibm.com/composer/.
2 https://algassert.com/quirk.

https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://quantum-computing.ibm.com/composer/
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk


136 J. A. Cruz-Lemus et al.

Fig. 6 Adding a quantum circuit in QMetrics

Fig. 7 Selecting a quantum circuit in QMetrics

Fig. 8 Visualizing a quantum circuit in QMetrics

3. Visualizing the circuit: The tool provides a component for the visualization of
quantum circuits, using theQPainter interface. Once a quantum circuit is selected
and loaded, it is graphically shown (see Fig. 8).

4. Selecting the metrics to be calculated: After that, the metrics to be computed
can be selected. The user can decide to compute all the metrics or only a subset
of them (see Fig. 9).

5. Calculating the metrics: In order to compute the metrics for the selected circuit,
a “Calculate Metrics” is clicked, obtaining a table with the metrics values, as
shown in Fig. 10. The table can be exported to several file formats, such as PDF
or CSV.

6. Visualizing the results: Finally, QMetrics offers some charts to visualize the
calculated metrics (see Fig. 11).



Quantum Software Quality Metrics 137

Fig. 9 Selecting metrics in QMetrics

Fig. 10 Calculating metrics in QMetrics



138 J. A. Cruz-Lemus et al.

Fig. 11 Visualizing the calculated metrics in QMetrics



Quantum Software Quality Metrics 139

6 Conclusions

Establishing solid foundations is crucial when creating new disciplines, such as
quantum software engineering (QSE). One of the fundamental principles of this
new area is the establishment of a QSE that is agnostic with respect to quantum
programming languages and technologies to ensure the quality of quantum software.
The quality characteristics of classical software are still valid in quantum software,
but it is essential to have a set of appropriate metrics, adapted to the peculiarities of
these systems, that are able to accurately measure quantum circuits.

In this chapter, a set of metrics has been defined to measure the understandability
of quantum circuits. In addition, a first empirical study has been presented in which
a subset of these metrics have been validated as indicators of the understandability
of quantum circuits. Finally, a prototype tool capable of automatically calculating
the proposed metrics has been described.

After this first step, there are several challenges on which we will focus our
efforts. The first will obviously consist of future experimental replications to endorse
the conclusions obtained.

Also in the future, it is considered interesting to develop refactoring techniques
for quantum circuits that will allow us to improve their understandability in any new
improved and equivalent version that maintains all the original functionality.

Finally, as stated in the introduction, we consider it crucial to carry out an in-
depth study of the quality of quantum annealing systems.

Acknowledgments The authors want to sincerely thank Sergio Jiménez Fernández, who gave
crucial feedback for improving the experimental materials.

This work was partially funded by the QHealth: Quantum Pharmacogenomics Applied to
Aging project (EXP 00135977/MIG-20201059) by the 2020 CDTI Missions Program (Center for
the Development of Industrial Technology of the Ministry of Science and Innovation of Spain),
the AETHER-UCLM project: A smart data holistic approach for context-aware data analytics
focused on Quality and Security project (Ministry of Science and Innovation of Spain, PID2020-
112540RB-C42), and the QSERV project: Quantum Software Quality Assurance and Testing
(Ministry of Science and Innovation of Spain & FEDER, PID2021-124054OB-C32).



140 J. A. Cruz-Lemus et al.

Appendix. Example of Experimental Material

See Fig. 12.

Fig. 12 Experimental materials: Part of a questionnaire



Quantum Software Quality Metrics 141

References

1. Barthe, G., Hsu, J., Ying, M., Yu, N., Zhou, L.: Relational proofs for quantum programs. POPL
(2020). https://doi.org/10.1145/3371089

2. Bishop, L., Bravyi, S., Cross, A., Gambetta, J., Smolin, J.: Quantum volume (2017). https://
storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf

3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.
Taylor & Francis (1984). https://doi.org/10.1201/9781315139470

4. Breiman, L.: Random forests. Mach. Learn. (2001). https://doi.org/10.1023/A:1010933404324
5. Burgholzer, L., Wille, R.: Advanced Equivalence Checking for Quantum Circuits (2020).

https://doi.org/10.48550/arXiv.2004.08420
6. Cartiere, C.R.: Formal Quantum Software Engineering: Introducing the Formal Methods of

Software Engineering to Quantum Computing. QSET (2021). https://doi.org/10.13140/RG.2.
2.26157.10725/2

7. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: Toward certified quantum
programming (2020). https://doi.org/10.48550/arXiv.2003.05841

8. Cruz-Lemus, J.A., Maes, A., Genero, M., Poels, G., Piattini, M.: The impact of structural
complexity on the understandability of UML statechart diagrams. Inf. Sci. (2010). https://doi.
org/10.1016/j.ins.2010.01.026

9. Cruz-Lemus, J.A., Marcelo, L.A., Piattini, M.: Towards a set of metrics for quantum circuits
understandability. QUATIC (2021). https://doi.org/10.1007/978-3-030-85347-1_18

10. Genero, M., Piattini, M., Calero, C. A survey of metrics for UML class diagrams. J. Object
Technol. (2005). https://doi.org/10.5381/jot.2005.4.9.a1

11. Genero, M., Piattini, M., Calero, C.: Metrics for Software Conceptual Models. Imperial College
Press (2005). https://doi.org/10.1142/P359

12. Genero, M., Piattini, M., Chaudron, M.: Quality of UML models. Inf. Soft. Technol (2009).
https://doi.org/10.1016/j.infsof.2009.04.006

13. Grumbling, E., Horowitz, M.: Quantum Computing Progress and Prospects. The National
Academies Press, Washington DC (2019)

14. EQF.: Strategic Research Agenda. European Quantum Flagship. February (2020)
15. Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation: An

overview of existing approaches. Theory Comput. Sys. (2018). https://doi.org/10.48550/arXiv.
1709.06984

16. ISO/IEC 25010.: Software Engineering - Systems and Software Quality Requirements and
Evaluation (SQuaRE) – System and Software quality models. International Organization for
Standardization, Geneva (2011)

17. Maslov, D., Miller, M.: Comparison of the cost metrics through investigation of the relation
between optimal NCV and optimal NCT three-qubit reversible circuits. IET Comput. Digit.
Tech. (2007). https://doi.org/10.1049/iet-cdt:20060070

18. Pérez-Delgado, C., Perez-Gonzalez, H.: Towards a quantum software modeling language. Q-
SE (2020). https://doi.org/10.48550/arXiv.2006.16690

19. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., et al.: The Talavera Manifesto for
Quantum Software Engineering and Programming. QANSWER (2020). http://ceur-ws.org/
Vol-2561/paper0.pdf

20. Piattini, M., Serrano, M., Pérez-Castillo, R., Peterssen, G., Hevia J.L.: Towards a Quantum
Software Engineering. IT Prof. (2021). https://doi.org/10.1109/MITP.2020.3019522

21. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum (2018). https://doi.
org/10.22331/q-2018-08-06-79

22. Rand, R., Paykin, J., Zdancewic, S.: QWIRE practice: formal verification of quantum circuits.
EPTCS 266, (2018). https://doi.org/10.4204/EPTCS.266.8

23. Rand, R.: Research Statement: Languages, Verification and Compilation for the Quantum Era
(2020). http://www.cs.umd.edu/~rrand/Research_Statement.pdf

https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://storageconsortium.de/content/sites/default/files/quantum-volumehp08co1vbo0cc8fr.pdf
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.48550/arXiv.2004.08420
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.13140/RG.2.2.26157.10725/2
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.48550/arXiv.2003.05841
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1016/j.ins.2010.01.026
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.1007/978-3-030-85347-1_18
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.5381/jot.2005.4.9.a1
https://doi.org/10.1142/P359
https://doi.org/10.1142/P359
https://doi.org/10.1142/P359
https://doi.org/10.1142/P359
https://doi.org/10.1142/P359
https://doi.org/10.1142/P359
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.1016/j.infsof.2009.04.006
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.48550/arXiv.1709.06984
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.1049/iet-cdt:20060070
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
https://doi.org/10.48550/arXiv.2006.16690
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
http://ceur-ws.org/Vol-2561/paper0.pdf
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf
http://www.cs.umd.edu/~{}rrand/Research_Statement.pdf


142 J. A. Cruz-Lemus et al.

24. Resch, S., Karpuzcu, U.R.: Quantum Computing: An Overview Across the System. Stack
(2019). https://doi.org/10.48550/arXiv.1905.07240

25. Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction. The MIT Press (2014)
26. Serrano, M., Trujillo, J., Calero, C., Piattini, M.: Metrics for data warehouse conceptual models

understandability. Inf. Soft. Technol. (2007). https://doi.org/10.1016/j.infsof.2006.09.008
27. Sicilia, M., Sánchez-Alonso, S., Mora-Cantallops, M., García-Barriocanal, E.: On the source

code structure of quantum code: Insights from q# and qdk. QUATIC (2020). https://doi.org/10.
1007/978-3-030-58793-2_24

28. Sodhi, B., Kapur, R.: Quantum Computing Platforms: Assessing Impact on Quality Attributes
and SDLC Activities. ICSA (2021). https://doi.org/10.48550/arXiv.2104.14261

29. Thapliyal, H., Muñoz-Coreas, E.: Design of Quantum Computing Circuits. IT Prof. (2019).
https://doi.org/10.1109/MITP.2019.2943134

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimentation in Software
Engineering. Springer (2012). https://doi.org/10.1007/978-3-642-29044-2

31. Zhao, J.: Some size and structure metrics for quantum software. Q-SE (2020). https://doi.org/
10.48550/arXiv.2103.08815

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.48550/arXiv.1905.07240
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1016/j.infsof.2006.09.008
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.1007/978-3-030-58793-2_24
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.48550/arXiv.2104.14261
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1109/MITP.2019.2943134
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
https://doi.org/10.48550/arXiv.2103.08815
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Quantum Software Ecosystem Design

Achim Basermann , Michael Epping , Benedikt Fauseweh ,
Michael Felderer , Elisabeth Lobe , Melven Röhrig-Zöllner ,
Gary Schmiedinghoff , Peter K. Schuhmacher , Yoshinta Setyawati ,
and Alexander Weinert

Abstract The rapid advancements in quantum computing necessitate a scientific
and rigorous approach to the construction of a corresponding software ecosystem,
a topic underexplored and primed for systematic investigation. This chapter takes
an important step in this direction. It presents scientific considerations essential for
building a quantum software ecosystem that makes quantum computing available
for scientific and industrial problem-solving. Central to this discourse is the concept
of hardware–software co-design, which fosters a bidirectional feedback loop from
the application layer at the top of the software stack down to the hardware.
This approach begins with compilers and low-level software that are specifically
designed to align with the unique specifications and constraints of the quantum
processor, proceeds with algorithms developed with a clear understanding of
underlying hardware and computational model features, and extends to applica-
tions that effectively leverage the capabilities to achieve a quantum advantage.
We analyze the ecosystem from two critical perspectives: the conceptual view,
focusing on theoretical foundations, and the technical infrastructure, addressing
practical implementations around real quantum devices necessary for a functional
ecosystem. This approach ensures that the focus is toward promising applications
with optimized algorithm–circuit synergy, while ensuring a user-friendly design, an
effective data management, and an overall orchestration. This chapter thus offers a
guide to the essential concepts and practical strategies necessary for developing a
scientifically grounded quantum software ecosystem.

Keywords Quantum computing · Software ecosystem · Hardware–software
co-design · Software engineering

A. Basermann · M. Epping · B. Fauseweh · M. Felderer · E. Lobe (�) · M. Röhrig-Zöllner · G.
Schmiedinghoff · P. K. Schuhmacher · Y. Setyawati · A. Weinert
Institute of Software Technology, German Aerospace Center (DLR), Cologne, Germany
e-mail: elisabeth.lobe@dlr.de

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 7&domain=pdf
http://orcid.org/0000-0003-3637-3231
http://orcid.org/0000-0003-0950-6801
http://orcid.org/0000-0002-4861-7101
http://orcid.org/0000-0003-3818-4442
http://orcid.org/0000-0002-3473-8906
http://orcid.org/0000-0001-9851-5886
http://orcid.org/0000-0003-2259-7365
http://orcid.org/0000-0003-1232-4363
http://orcid.org/0000-0003-3718-4491
http://orcid.org/0000-0001-8143-246X

 885 56845 a 885 56845 a
 
mailto:elisabeth.lobe@dlr.de
mailto:elisabeth.lobe@dlr.de
mailto:elisabeth.lobe@dlr.de
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7
https://doi.org/10.1007/978-3-031-64136-7_7


144 A. Basermann et al.

1 Introduction

Over the past few decades, quantum computing has steadily garnered attention
owing to its potentially transformative applications in various fields including
cryptography [1], material science [2], linear algebra [3], and combinatorial
optimization [4], among others. The possibility to vastly improve computational
efficiencies in solving certain classes of problems, compared to classical computers,
has driven significant interest and investment in quantum computing technologies
from both the scientific community and industry.

In recent years the field has reached a new level of maturity, characterized by
the development of more stable qubit systems and increased gate fidelities [5].
The emergence of quantum hardware platforms from academia and industry has
underlined the significant strides made in this direction, creating a foundation for
more advanced research and practical explorations in quantum computing [6].
However, it must be acknowledged that while substantial, these advancements are
but the precursors to a fully fault-tolerant quantum computing potential.

Despite the progress, the current era of noisy intermediate-scale quantum (NISQ)
devices [7] presents significant challenges, including limited qubit connectivity, low
coherence times, and gate cross-talk. Moreover, the reliable physical fabrication
of these devices, especially on an industrial scale, involves considerable hurdles:
ensuring the purity of materials, achieving the precise alignment of nanostructures,
and maintaining the ultra-low temperatures necessary for operation present ongoing
challenges. Another problem is our limited understanding concerning the underlying
principles of quantum algorithms, with a yet limited selection of algorithmic build-
ing blocks available, like the quantum Fourier transformation and the amplitude
amplification. The development of a diverse and comprehensive portfolio of high-
level algorithms is central to advancing the quantum computing field.

These factors naturally lead to the question: What is necessary to advance the
field of quantum algorithms and how can we obtain meaningful results from these
near-term quantum devices given the existing limitations? It is evident that, in the
NISQ era, the fruitful utilization of quantum devices necessitates approaches that
can effectively navigate the noise and errors inherent to current hardware.

In answer to this central question, we propose the necessity of creating an
ecosystem that uses an interdisciplinary approach grounded in the principle of
hardware–software co-design. This ecosystem requires the systematic development
in software encompassing applications, algorithms, and compilers, and a robust
technical infrastructure that is precisely aligned with the intricacies of existing and
swiftly advancing quantum hardware. By establishing a framework where software
development is intricately linked with hardware evolution, we aim to maximize the
utility of quantum computing in its current NISQ stage and beyond. This approach
does not exclude but rather complements hardware-agnostic abstractions that allow
for more generic software development independently of the specific hardware.

In our view, a quantum software ecosystem comprehends all aspects in and
around software designed for quantum computers, e.g., novel quantum algorithms



Quantum Software Ecosystem Design 145

designed for specific devices, optimized compilers, pre- and post-processing tools
for results from quantum computations, and the technical integration into existing
high-performance computing (HPC) environments. It includes the whole path from
user perspective over access to actual hardware and, reversely, from the embedded
hardware access to the general availability for different end users.

In this review we first describe a potential vision, how such a quantum software
ecosystem interfaces with the potential end users and with the quantum hardware,
in Sect. 2. We then analyze the requirements for an efficient ecosystem from the
conceptual view, focusing on abstract requirements and methods, in Sect. 3. In
Sect. 4 we are concerned with the technical implementation of such an ecosystem,
and finally in Sect. 5 we give a concise conclusion and an outlook for the potential
of such a scientifically constructed software ecosystem.

2 Quantum Computing Perspective

Future applications of quantum algorithms have the potential to provide novel
efficient solutions in various sectors. This includes breakthroughs in material
science, such as new superconductors or ultrafast memory, solutions for industrial
size planning problems, applications in cryptography, or the design of new and
more efficient drugs. In the following section we describe how a quantum software
ecosystem supports these aims, by interfacing the applications with the quantum
devices in a comprehensive and user-centered way.

2.1 Achieving the Vision Through the Quantum Software
Ecosystem

As quantum computers continue to develop, it is plausible to predict a scenario
where stakeholders, from academic researchers to industrial partners, gain access
to quantum computational capabilities through cloud platforms. While such cloud
access to quantum devices is already available for a limited number of platforms,
the process is not yet streamlined and has various drawbacks due to the quantum
device imperfections. However, such cloud-based access simplifies the challenges
associated with operating and using quantum hardware, making it more feasible for
a wider range of users.

At the heart of such a scenario, specialized quantum algorithms, devised by
algorithmic developers, will be processed. In order to make these algorithms
compatible with quantum hardware, specialized compilers, developed by experts
in quantum software, will be crucial. These compilers will be responsible for
translating high-level quantum logic into specific instructions, tailored for the



146 A. Basermann et al.

distinct hardware platforms created by quantum hardware designers. Facilitating
this process is the core responsibility of the quantum software ecosystem.

Furthermore, an integral component of this ecosystem will be the integration of
quantum computers with classical systems. Fast embedded classical computers will
process quantum-classical feedback algorithms within the coherence time of the
quantum computer, especially those related to error correction. Additionally, HPC
frameworks will be instrumental for algorithms that use parameterized quantum
circuits, as these often require intensive computations to optimize parameters in
tandem with quantum processors.

Another component shaping this ecosystem is the principle of hardware–software
co-design. In this paradigm, not only is software adapted to optimally exploit the
capabilities of the underlying quantum hardware, but the design of future quantum
processors is also influenced by application-driven requirements. This bidirectional
feedback ensures that hardware evolution remains attuned to the practical needs and
challenges posed by real-world quantum applications. By closely intertwining the
development processes of both hardware and software, the co-design approach seeks
to accelerate the maturation and optimization of the quantum computing landscape.

After the computations are completed, users will receive their results via the
same cloud interface. This closed-loop system aims to streamline the process of
quantum computing, from input to result retrieval, while maximizing efficiency
and user accessibility. The sustainability and success of this vision are inherently
tied to the collaborative effort between quantum algorithm developers, compiler
specialists, hardware builders, software engineers, and the users themselves.

2.2 Interested Parties and Their Requirements

Research and development in Quantum computing (QC) have accelerated dramat-
ically in recent years. Due to its potential, efforts in QC have attracted different
parties. They are classified as primary and secondary stakeholders. Primary stake-
holders are stakeholders that directly contribute to the development of quantum
computing as shown in Fig. 1.

1. End users: End users are individuals or organizations from different fields
that use or adopt QC for various purposes, e.g., to speed up simulations for
electric car batteries, to predict financial risk in insurance companies, or to
optimize antenna patterns in radar technology. They are influenced by design
and functionality features provided by the QC software researchers and the QC
hardware developers. End users’ expectations, values, and requirements must be
considered to guarantee that the technology is effective and benefits them. The
end users may not know how to write the algorithm and formulate the problem
as a quantum program, but they can express it mathematically and are capable of
post-processing the result of the computation as shown on the left panel of Fig. 1.



Quantum Software Ecosystem Design 147

input

compiler

algorithm

output

researchers & developers

background processing

quantum computing

process

end users

output

classical to

quantum program QC program

hardware

post-processing

results

application

description

Fig. 1 Schematic diagram of the workflow and the stakeholders that directly use and develop
quantum computing technologies

2. Researchers and developers: They are individuals and organizations that are
directly involved in the development of and research on QC. Currently, research
institutes and universities are the primary sources of this group, but also more
and more large companies and start-ups participate in the development of QC.
These vendors contribute significantly to the advancement of QC, for example,
by developing hardware and software packages for industry and research insti-
tutions. Their role is shown on the right panel of Fig. 1 and includes algorithmic
problem descriptions, compilation, software, and hardware development, such
that the produced results can be post-processed and returned back to the end
users. Hence, their work influences the design and development of technology;
at the same time they must align with the goals of other stakeholders.

(a) Software developers: These include private companies or research insti-
tutions that develop novel quantum algorithms, compilation schemes, and
software interfaces between algorithmic solutions and hardware for QC.
They also explore novel quantum computing architectures and investigate
promising use cases for QC. Due to the noisy nature of current devices, the
development has to take the low-level hardware properties into account to
ensure optimal algorithm execution leading to unique design paradigms. In
this context, it is important to have a clear and precise understanding of the
performance of components and of the impact of physical quantum noise,
which can be characterized by low-level benchmarks.

(b) Hardware designers: The development of physical quantum computers is
crucial. In many cases, hardware advancement is the bottleneck in the field of
QC. Quantum computers are particularly sensitive to noise and errors caused
by interactions with their surroundings. This can lead to an accumulation
of errors, lowering computation quality. Thus, improving the fidelity of the



148 A. Basermann et al.

hardware operations is critical, even though noise can be tackled to some
extent in software as well (see Sect. 3.7). Hardware manufacturers have a
natural interest in making their devices available to a wide range of users.
Some QC hardware is developed by private companies which might restrict
information about the implementation details and restrict access to low-level
control features, a fact that needs to be considered when developing software
at the lower layers of the QC stack.

Secondary stakeholders are interested parties who can influence the future of QC
but contribute indirectly to the workflow in Fig. 1.

1. Suppliers: They provide the necessary equipment and spare parts to build
QC hardware. These stakeholders should consider requests from researchers
and developers, whose involvement can shape the design and availability of
technology. Semiconductor and chip manufacturers are two examples of this
stakeholder group. The term “enabling technologies” is used in the context of QC
to denote the development of products and enhanced manufacturing techniques
that are not directly related to QC itself but will facilitate breakthroughs in QC
and other fields. Therefore the suppliers play a crucial role in advancing the
ecosystem.

2. Regulators and policymakers: They are responsible for the community’s well-
being and ensure that the developed technology boosts innovation. These
governmental entities are also responsible for ensuring that QC aligns with
society’s values and needs, for example by motivating the development of QC
to strengthen the economy and industrial advancement. Hence, they create laws
and regulations for the development and use of QC. In many situations, they
provide state funding for research and development and encourage enterprises to
foster the growth of QC.

3. Investors: These are private funding sources that support research and develop-
ment of QC. Investors are interested in the development of QC and expect a
return on investment in the future. Investment in QC has increased significantly
from US$93.5 million in 2015 to US$1.02 billion in 2021 globally [8].
Most investments are made for hardware, but there are also deals for software
promising potential applications in the future.

4. Media: Media also play a significant role in the advancement of QC technology.
They shape public opinion, hence raising awareness of QC development and
its impact on society. They also convey the basic principles of this technology
to the general public. Not only the potential, but also the growth of research,
technology, startups, and investment is communicated through media.

Only the collaborative effort between all of these stakeholders will enable
quantum computing to be established as a well-founded technology, where the
quantum software ecosystem should support the communication and form the
baseline for further advancements.



Quantum Software Ecosystem Design 149

Fig. 2 Conceptual stack of
the components necessary to
solve problems using QC

so
ft
w
ar
e

hardware

compilation

algorithms

applications

hardware models

error models

verification

benchmarking

error handling

3 Conceptual View

In this section, we examine the quantum software ecosystem from a more theoretical
viewpoint, focusing on conceptually important ideas and abstracted QC concepts,
which are the main area of scientific research on QC. This conceptual view includes
various topics, as shown in Fig. 2.

At the top of this “stack,” i.e., on the side of the user, is the application or problem
that needs to be solved, and on the bottom of the stack lies the hardware that executes
the necessary QC steps. Those ends are connected by the software, including various
algorithms and compilation schemes. In order to attain the correct results, it is
necessary to handle the noise-induced errors emerging during the computation,
which requires accurate error models for the hardware. One major challenge is the
verification of the various parts of this stack. In the following, we look at each part
of this stack and its role in the quantum software ecosystem.

3.1 Computational Paradigms

The development of a functional quantum computer is a central research goal these
days. There exist different paradigms on how such a machine could look even on a
conceptual level. In this section, we first review the basic principles of quantum
mechanics on which all these quantum computing paradigms rely. Afterwards,
we discuss the most prominent ones, namely the gate-based model and adiabatic
quantum computation. Finally, we briefly mention a few alternatives.

3.1.1 Foundations of Quantum Computing

In this section, we outline the phenomenology that builds the foundation of QC
without elucidating the rich mathematical framework of quantum mechanics that
can be found in many textbooks [9, 10].

A quantum bit, or qubit for short, is a direct generalization of a classical bit
with two additional, inherently quantum-mechanical properties: superposition and
entanglement with other qubits. While a classical bit can only take one of the



150 A. Basermann et al.

two states 0 and 1, a qubit can be in a superposition of both at the same time.
Mathematically, the state of a single qubit can be expressed as

.|ψ〉 = a|0〉 + b|1〉, (1)

where .|0〉 and .|1〉 denote the computational basis states written in Dirac notation
that is convenient in quantum mechanics and a and b are complex numbers with
.|a|2 + |b|2 = 1. The probability of measuring the state .|0〉, i.e., a bit 0, is given
by .|a|2 and analogously for .|1〉 by .|b|2. After measurement, the state of the qubit
collapses to only the parts in agreement with the measurement outcome, i.e., .|ψ0〉 =
|0〉 or .|ψ1〉 = |1〉.

Since a and b are complex numbers, they each contain a phase (.a = |a|eiϕa ). In
quantum mechanics, only the phase difference .ϕ = ϕb − ϕa is relevant; hence the
single-qubit state can be fully expressed by one probability and the relative phase,
or equally by two angles. Thus, any single-qubit state can be visualized as a unit
vector

.|ψ〉 =
⎛

⎝
sin (θ) cos (ϕ)

sin (θ) sin (ϕ)

cos (θ)

⎞

⎠ (2)

on the Bloch sphere, which is depicted in Fig. 3. This visualization is also useful
to understand the concept of the computational basis: any two opposite points on
the Bloch sphere can be chosen as the computational basis states .|0〉 and .|1〉 and
changing the basis is equivalent to rotating the qubit state.

A superposition state needs to be initialized using classical information and
after performing a measurement collapses to one of these two states, i.e., back to
a classical bit. Therefore, the input and output are always restricted to classical
bits, but during the computation the full space of superpositions can be exploited.
It needs to be stressed that while a register of N classical bits can describe one
of .2N different states at a time, an N -qubit register can describe any state in a

Fig. 3 Visualization of an
arbitrary qubit state called the
Bloch sphere. The
computational basis states .|0〉
and .|1〉 are mapped to the
north pole and the south pole
respectively. A general state
.|ψ〉 is fully determined by the
angles .θ and .ϕ. Any quantum
gate on a single qubit
corresponds to a rotation of
the state on that sphere.
Graphic taken from [11]



Quantum Software Ecosystem Design 151

continuous region of a .2N -dimensional vector space. As a consequence, qubits are
tremendously more expressive than bits. Since each measurement can change the
qubit state .|ψ〉, consecutive measurements of the same qubit in different bases do not
yield additional information, unless one prepares .|ψ〉 anew for each measurement.

The second important property of qubits, quantum entanglement, is the ability
of multiple qubits to interfere with one another such that their probabilities become
correlated in a way that is not possible for classical bits. For instance, two qubits
can be entangled in the state .|ψ〉 = a|00〉 + b|11〉. When measuring the state of one
of the qubits, the result automatically determines the state of the other qubit in the
same computational basis, since, e.g., finding .|0〉 for the first qubit collapses the full
state to .|ψ0〉 = |00〉.

It is noteworthy that any computation on the full qubit state .|ψ〉 acts on all
superposed states at the same time, e.g., on both .|00〉 and .|11〉. This is utilized
by many powerful quantum algorithms that perform computations using precisely
choreographed patterns of interference between superpositions of bit strings, which
together with quantum entanglement realize the quantum computational efficiency.
One needs to remember that measuring all qubits in a register collapses the carefully
computed quantum state to a classical bit string, so care must be taken to prepare
the final quantum state in a way that maximizes the probability of measuring the bit
string that contains the relevant computational result.

Any natural or artificial quantum mechanical two-level system could in principle
serve as a qubit, making the number of possible realizations incredible large.
However, for fault tolerance a hardware platform needs at least to satisfy the
DiVincenzo criteria [12]. It is necessary to have

1. A scalable physical system with well-characterized qubits
2. The ability to initialize the state of the qubits to a simple state
3. Long relevant coherence times
4. A universal set of gates
5. A qubit-specific measurement capability

These qualitative criteria point out immediately why building a functional quantum
computer remains a challenge to date: on the one hand, satisfying criterion 3
requires decoupling the quantum system from any environmental disturbances. On
the other hand, criteria 2, 4, and 5 demand direct physical access to the system
and, therefore it is necessary to couple it at least to its measurement apparatus and
some control electronics. This ambivalence makes quantum computers inherently
error prone. As of now, no quantum system exists that fulfills all criteria equally, but
recent quantum hardware has reached a level of maturity that allows for small-scale
quantum computations. Platforms that have reached this level are dubbed NISQ
devices.



152 A. Basermann et al.

3.1.2 Gate-Based Quantum Computing

In this section, we review the paradigm of gate-based quantum computing, which
was the first quantum computing paradigm to be proposed [10]. Here, a quantum
gate denotes the analog of a logical gate in classical computing. In the latter, there
are only two possible gates on a single bit, namely the identity and the negation. By
contrast, any operation corresponding to a rotation on the Bloch sphere, shown in
Fig. 3, represents a valid quantum gate on a single qubit. Therefore, the set of valid
quantum gates is uncountable even for that single qubit.

In order to realize an actually useful quantum computer, it does not suffice to
consider single-qubit rotations. Instead, we need an N -qubit register, and we need
to be able to apply multi-qubit gates on any set of qubits. Fortuitously, it turns out
to be sufficient to have access to just a single maximally entangling two-qubit gate
and to arbitrary single-qubit rotations to achieve universality [13]. In other words,
any quantum gate applied to the N -qubit register can be realized as a sequence of
these elementary gates. There are multiple universal gate sets. In many cases the QC
hardware provides a basic set of gates, which ideally is universal.

One important consequence of quantum mechanical dynamics is that valid
quantum gates must be unitary, i.e., the gate operations are represented by unitary
matrices, which are reversible. Therefore, classical logic gates like the AND-gate,
which has two input bits and one output bit, cannot be implemented directly on
qubits without a second output qubit to ensure reversibility. Another consequence is
that it is not possible to fully clone arbitrary qubit states, turning error correction by
redundancy into a challenging prospect.

A sequence of quantum gates that solves a computational task composes a
quantum algorithm. Quantum circuit diagrams have become established as a mode
of representation, where the individual qubits usually correspond to horizontal lines
on which gate operations are drawn (time runs from left to right) [10]. An example
can be seen in Fig. 4.

Fig. 4 An example of a circuit diagram, the most common way to represent quantum programs
today. Horizontal lines correspond to qubits. Gates are represented by special symbols or boxes
with labels. Double lines indicate classical information, which can represent results of the circuit.
But they can also be used to condition the application of gates on measurement results, a technique
called feed-forward



Quantum Software Ecosystem Design 153

3.1.3 Adiabatic Quantum Computation and Quantum Annealing

Around 2000, a new computational concept based on quantum mechanical prin-
ciples was developed, the adiabatic quantum computation (AQC) [14]. The
underlying adiabatic theorem is a fundamental result in quantum mechanics,
originally formulated in [15]. The AQC paradigm is different to the “conventional”
quantum computing in the way that it does not provide a universal programmability
straightforwardly in terms of implementing quantum gates to form quantum circuits.
It rather represents a single algorithm whose input data can be varied. Nevertheless,
the authors of [16] and [17] have shown that QC and AQC are equivalent in the
sense that each can efficiently simulate the other. We briefly summarize the main
background of AQC here, but for a more detailed review, we refer the reader to [18].

Given two related quantum systems, the rapid transfer from one to another might
cause the system to change its state from their lowest-energy state, i.e., the ground
state. However, by applying an adiabatic evolution process instead, which means
a sufficiently slow transformation according to the adiabatic theorem, the system
can remain in its instantaneous ground state with high probability. By encoding a
mathematical optimization problem in the target quantum system, where the energy
states represent the feasible solutions, we could thus obtain the minimal solution to
the problem.

The first company that strived to build quantum systems based on AQC and made
them commercially available was D-Wave Systems Inc. They implement the trans-
verse field Ising model [19, 20], established by Ernst Ising, using superconducting
loops to form qubits in a quantum system [21]. A current flow induces a magnetic
flux in these loops, pointing either up or down or being in a superposition of both.
Due to couplings of the loops by joints, the qubits interact with each other pairwise,
where the strengths of the interactions can be adjusted with external magnetic fields.
This way we can encode a quadratic function over binary variables, with linear
and quadratic terms weighted according to the magnetic field strength. Finding the
solution for such a quadratic unconstrained binary optimization (QUBO) problem
is hard on classical computers. More precisely, its corresponding decision problem
belongs to the class of NP-hard problems. This also means it relates to a large
number of other problems, which can easily be transferred into a QUBO and
therefore solved with these machines, at least in theory.

Although empirical studies like [22] provide hints that the output of the devices is
in general close to the optimal solution, it is, however, not guaranteed to be achieved,
nor is the success probability known in advance. Several physical restrictions
prevent the realization of the theoretical concept of the adiabatic theorem, which
only applies if ideal conditions prevail. One obstacle is, for instance, the shielding
against environmental noise, which is never entirely achieved. Therefore, the term
quantum annealing (QA) has been established, in reference to the classical heuristic
simulated annealing, to distinguish the theoretical concept from the heuristic process
performed by the corresponding devices [23]. In general, quantum annealing
is repeated several times with the same configuration to obtain a sample set of
solutions, and from those the best one is extracted.



154 A. Basermann et al.

3.1.4 Others

The gate-based model and quantum annealing are without question the leading
quantum computing paradigms. However, there exist alternative paradigms that turn
out to be computationally equivalent to these mainstream approaches. For example,
a paradigm called one-way quantum computing is pursued in the context of photonic
quantum computers [24]. As photons hardly interact in nature, they can have enor-
mous coherence times (one detects coherent photons from other stars regularly),
but it is a challenge to perform two-qubit gates between them for the same reason.
In order to circumvent this issue, an elegant idea that relies on the Knill-Laflamme-
Milburn proposal [25] is to prepare all entanglement non-deterministically first. If
successful, then the computation is proceeded by measurements and single-qubit
rotations only, i.e., by avoiding any further interaction [26]. However, functional
one-way quantum computing has not been demonstrated yet.

Another universal approach for quantum computation is quantum random walks,
or short quantum walks, a quantum mechanical analog to the classical random
walk [27, 28, 29, 30, 31]. They can either be discrete-time [32] or continuous-
time [33], and they are studied in the context of machine learning [34, 35] and
photosynthesis [36]. Both versions can again be extended to non-unitary evolution
by a joint generalization of quantum and classical random walks, called quantum
stochastic walks [37, 38, 39]. In contrast to the completely coherent quantum walk,
quantum stochastic walks give rise to a directed evolution.

3.2 Hardware

In 1936, Alan Turing proposed a conceptual blueprint for a universally pro-
grammable computer [40]. This event became the child birth of modern computer
science. However, as the direct physical implementation of the “Turing machine”
would be impractical, a huge variety of different hardware platforms were used to
realize different computational models. This early time of modern computer science
came to a sudden end with the invention of the transistor [41]. Since then, the
development of classical computers has relied on the same key building blocks but
miniaturizing them.

In close analogy to these early days of classical computing, there exists a huge
variety of candidates for quantum computing hardware—the current status of quan-
tum computer development resembles the construction of the Z3 by Konrad Zuse
rather than building modern HPC systems. A rather broad overview of hardware
platforms, including a classification with respect to the state of development,1 can be
found in [42]. In the following, we focus on the most developed platforms according
to this study, which are depicted in Fig. 5.

1 Due to the status of the year 2020.



Quantum Software Ecosystem Design 155

to
p
o
lo
g
ical

p
latfo

rm
s

m
o
lecu

lar
sp
in
s

G
aA

s
q
u
an
tu
m

d
o
ts

silico
n
d
o
n
o
rs

n
u
clear

m
ag
n
etic

reso
n
an
ce

p
h
o
to
n
s

co
lo
r
cen

ters

S
iG
e
q
u
an
tu
m

d
o
ts

3
D
tran

sm
o
n
s

R
y
d
b
erg

ato
m
s

fl
u
x
q
u
b
its

2
D
tran

sm
o
n
s

io
n
trap

s

A – basic function B – quality C – errorcorrection D/E

Fig. 5 State of development of different hardware platforms according to [42]. In this study, the
platforms are classified into five different levels from satisfying the DiVincenco criteria (level A),
to demonstration of high fidelities (level B), to the demonstration of quantum error correction
(level C). The levels D (execution of fault-tolerant operations) and E (running fault-tolerant
algorithms) have not been achieved by any platform so far

Generally speaking, there are two different classes of qubit candidates: natural
quantum systems like neutral atoms, ions, or photons [25, 43, 44, 45], and artificial
quantum systems like superconducting circuits or other solid state architectures [46,
47, 48, 49]. The state-of-the-art leading hardware platforms are based on trapped
ions and planar transmons; the latter is a specific version of superconducting circuits.
These platforms achieved the level of development C in Fig. 5, i.e., they allow for
the demonstration of quantum error correction.

Superconducting integrated circuits are viewed as one of the most promising
hardware candidates [50]. These circuits are put onto a chip that needs to be cooled
to cryogenic temperatures, i.e., a few tens of mK, and they are controlled with
electromagnetic fields in the microwave range. Even for this specific architecture,
there is a variety of different qubit designs. However, all these designs share the
same key ingredient, namely the Josephson junction [51]. This is a nonlinear
element leading to a non-equidistant energy spectrum of the circuit. This property
is crucial to address two quantum states as the computational states individually.

There are two mainstream types of superconducting qubits, i.e., charge qubit-
[52, 53, 54] and flux qubit [55, 56, 57]-derived designs. To date, the primary
representative of charge-derived qubits is the planar transmon, due to its suppressed
sensitivity against charge noise at the cost of small anharmonicities in the level
splittings [54, 58]. It operates at a sweet spot with rather long coherence times and
a good reproducability of the qubits. The main benefit of planar transmons is their
rather straightforward scaling in qubit numbers; the challenge here is to maintain
the controllability of the individual qubits and to keep high-fidelity operations
when scaling up. Transmons are typically considered for implementing gate-based
quantum computing. One draft of a corresponding chip is shown in Fig. 6, where
the planar transmons are arranged in a two-dimensional square lattice with nearest-



156 A. Basermann et al.

Fig. 6 Sketch of the
KQCircuits chip design by
the company IQM Quantum
Computers (courtesy of IQM
Quantum Computers)

neighbor interactions. Control and readout lines are connected to the qubits from
below.

Flux qubits consist of superconducting loops that are interrupted by an (effec-
tively) odd number of Josephson junctions. Their computational states are encoded
in the magnetic fluxes that are induced by clockwise and anticlockwise circulating
currents. By design, they share a lot of similarities to superconducting quantum
interference devices (SQUIDs) [59]. Flux qubits can be coupled easily via mutual
induction with coupling constants up to ultra-strong coupling if needed. This makes
them an auspicious candidate for quantum annealing, and possibly for specific
quantum simulation applications. In comparison to planar transmons, flux qubits
are easier to couple, but it is harder to reproduce them reliably.

Apart from technical challenges, one of the main drawbacks of superconducting
qubits is their limited connectivity: only nearest neighbors are directly coupled and
hence two-qubit gates can only be applied between them directly. If a gate-based
quantum algorithm needs gates between qubits that are not physically connected,
one needs to perform the desired logical gate by swapping the qubit state through the
intermediate qubits. This process produces a serious overhead in circuit depth. For
quantum annealing, the limited connectivity becomes even more serious, because
general optimization problems require strongly connected problem Hamiltonians.
Therefore, embedding the desired problem Hamiltonian on the actual hardware
becomes a nontrivial task [60]. Moreover, as superconducting qubits are artificially
made, every single qubit has slightly different parameters than the others, an issue
that needs to be tackled by optimal control theory [61].

With up to about 20 qubits, the best performing quantum computer is a chain
of isotopically pure ions in a linear Paul trap.2 The ions are trapped in an ultrahigh
vacuum using electromagnetic fields in a quadrupole geometry such that they form
a one-dimensional crystal [62, 63]. No cryogenics are needed; the trap operates
at room temperature. In contrast to superconducting qubits, the ions in the trap

2 Named after Nobel laureate Wolfgang Paul.



Quantum Software Ecosystem Design 157

are coupled via the long-range Coulomb interaction, leading to a natural all-to-all
connectivity of the qubits. In comparison to other hardware platforms, the relevant
coherence times are high, and the gate quality is excellent.

Unfortunately, the design of the linear Paul trap does not allow for a scaling
to large qubit numbers for two reasons. On the one hand, adding more and more
ions into the trap deforms their arrangement; the ions start to form two-dimensional
structures instead of a well-controlled chain. On the other hand, an effect called
frequency crowding becomes more and more dominant, such that the system
becomes uncontrollable [64]. Therefore, the main challenge for trap ion-based
quantum computing is the scaling to larger qubit numbers. One ansatz is to combine
several linear Paul traps via photonic links [65]. Here, the quantum information
needs to be converted from the ions in the trap to photons that are transmitted
through a fiber, and then it is converted back to the ions in another trap. This process
makes quantum computing with trapped ions enormously slow, because every single
conversion only succeeds with limited probability. A different strategy is to use
two-dimensional surface traps instead of linear Paul traps [66]. Here, the second
dimension is used to shuttle the ions during the computation to different zones on
the chip, depending on their current purpose (performing a gate, readout, etc). In the
gate zone, the surface trap mimics the linear Paul trap with its advantages locally.
A photograph of such a surface trap is shown in Fig. 7. However, surface traps have
not yet been able to demonstrate the same quality as linear Paul traps.

In this section, we discussed the benefits and drawbacks of the furthest devel-
oped hardware platforms to date, namely superconducting circuits and ion traps.
However, as the field develops rapidly, other platforms may take over in the
future. But even in this case, the substantial challenges to build functional quantum
computers will probably remain during the coming decades [7]. Therefore, any
near-term quantum software ecosystem needs to incorporate the specific hardware
restrictions that are present or that are expected to remain in the near future. For
example, one requires additional compilation techniques to run a desired quantum

Fig. 7 Photograph of the
surface trap chip design by
the company eleQtron
(courtesy of eleQtron)



158 A. Basermann et al.

algorithm on a superconducting qubit platform due to its limited connectivity, as
on ion-trap platforms with natural all-to-all connectivity. Conversely, if a given
quantum algorithm can be easily embedded on the connectivity graph of the
superconducting chip, then this platform might be preferential because of the larger
qubit numbers that can be achieved. In the long term, as soon as universal fault-
tolerant quantum computers are realized, the necessity to keep track of the specific
hardware limitations by designing a quantum software ecosystem will become less
and less important.

3.3 Applications

Quantum computers have enabled advancements in a range of applications, starting
with well-established domains such as database search and factorization using
Grover’s and Shor’s algorithms. These have a proven potential in enhancing search
capabilities and disrupting traditional cryptographic methods, respectively, but
require a level of fault tolerance not yet reached on quantum devices.

Beyond these utilities, quantum machine learning is emerging as a noteworthy
area of application [67, 68], enabling advancements in categorization, learning
tasks, and the solution for partial differential equations. However, it is on the
intermediate timeline where quantum simulation and optimization are drawing
heightened attention. Quantum simulation facilitates the study of quantum systems,
promising more accurate modeling of atomic and chemical processes, with applica-
tions in material science, quantum chemistry, and drug design. In parallel, quantum
optimization provides avenues for solving complex problems more efficiently,
finding its relevance in logistics, finance, and more.

In the forthcoming sections, we narrow our focus on quantum simulation and
optimization, as these represent the realms where quantum computing is expected
to offer significant advantages in the near term.

3.3.1 Simulation

Digital quantum simulation (DQS) represents a notable application for future quan-
tum computers, focusing on simulating quantum systems with universal quantum
computers. Richard P. Feynman originally suggested this application [69], later
formalized by Lloyd [2]. DQS is of particular significance for studying quantum
materials like superconductors and topological insulators, which prove challenging
for classical simulations.

Emergence, described as the rise of new system properties from the fundamental
interactions of its components, has been evident in quantum phases and is directly
connected to the existence of strong quantum fluctuations and entanglement.
Traditionally, the examination of such phenomena relied on resource-intensive
experiments, which explored only a limited range of parameters, including material



Quantum Software Ecosystem Design 159

composition and external electromagnetic fields. Theoretical modeling and simu-
lation can significantly conserve resources and is pivotal for advancing material
science. Yet, simulations of quantum models on conventional computers face
challenges due to the exponential scaling with system size. Classical simulations
on modern HPC hardware are capable of describing non-equilibrium dynamics in
quantum dots [70], of 1D quantum systems [71], as well as 2D systems [72, 73],
but with strong limitations in the simulatable system size.

DQS employs quantum computers to efficiently simulate quantum systems.
However, the current state of DQS struggles to match the capabilities of con-
ventional HPC. Advancements in the present NISQ hardware require innovative
quantum algorithms like the variational quantum eigensolvers (VQEs) [74], which
capitalize on the increased expressiveness of quantum computers [75]. Ongoing
research is centered on assessing the strengths and weaknesses of various hardware
platforms concerning their potential DQS applications [76].

3.3.2 Optimization

Optimization problems appear in all fields where resources are limited, for instance
in engineering, economics, computer science, and many others. The development
of efficient solution methods and answering the question as to whether these
actually exist is the essential part of the research in mathematical optimization and
complexity theory. A very important and well-studied class of problems are the
NP-hard ones, which are, loosely speaking, those problems that cannot be solved
efficiently using classical computation. This situation cannot be alleviated simply by
increasing the computational resources of classical computers. This naturally calls
for the exploration of different, more powerful computational models. And the hope
is that quantum computation steps into the breach due to properties of superposition,
entanglement, and quantum parallelism.

As explained in Sect. 3.1.3, quantum annealing is a tailored method to solve
discrete optimization problems. Several studies have shown the practical feasibility
of this approach in different research areas, e.g., for the optimization of flight routes
[77], flight gate assignments [78], and satellite scheduling [79]. However, due to
their heuristic nature, the actual practical advantage of the quantum annealers over
dedicated classical approaches, including approximation algorithms and heuristics,
is still under discussion.

Besides the optimization-tailored QA, also algorithms for the gate-based quan-
tum computing concept have been developed, like quantum approximate optimiza-
tion algorithm (QAOA) or Grover search, which we elaborate in the next section.
However, due to currently too limited available resources, their performance on
interesting industrial applications still needs to be evaluated in the future [80].
To investigate the capabilities of all such approaches systematically, they need to
be integrated into a full software environment that allows for quickly formulating
different applications and for benchmarking the results of the quantum devices
against several classical approaches.



160 A. Basermann et al.

3.4 Algorithms

The application cases described in Sect. 3.3 can also, in principle, be solved on
classical computers. In order to gain a speedup over these classical approaches by
using quantum computers, efficient quantum algorithms are necessary. While many
promising algorithms already exist, there is active work on expanding the existing
toolbox. A quantum software ecosystem must provide a library of algorithms that
end users can access and must also support the development of new algorithms for
domain and quantum experts.

The development of novel quantum algorithms faces two main challenges:
Currently, there is much less experience in realizing quantum algorithms as software
than for classical algorithms, and in order for quantum algorithms to be viable, they
need to provide a significant asymptotic speedup over existing classical algorithms.
The following section provides a selection of important quantum algorithms, many
of which provide super-polynomial speedup. A more extensive overview can be
found in [81].

3.4.1 Powerful Algorithms for Fault-Tolerant Devices

Table 1 lists some of the most promising quantum algorithms [82], which are
expected to provide a quantum advantage on fully fault-tolerant QC. One such
algorithm is Shor’s algorithm for the prime factorization of large integers with super-
polynomial speedup compared to the classical counterpart. Shor’s algorithm is based
on the quantum Fourier transformation and connected to the more general class of
hidden subgroup problems, which include e.g., discrete logarithms and Gauss sums.
Grover’s algorithm searches through an unsorted list with a polynomial speedup.
The quantum phase estimation algorithm approximates eigenvalues of a given
Hamiltonian. Furthermore, a quantum computer can efficiently perform quantum
time evolutions and SLE can be solved with the algorithm by Harrow et al. [3]. A
variety of other quantum algorithms, such as the Deutsch-Jozsa algorithm [83], the

Table 1 Examples of promising quantum algorithms for fault-tolerant QC

Algorithm Application case Complexity Classical complexity

Shor Prime factorization of integer
with N bits

.O(N2 logN) .O(exp(1.9N1/3 ×
(logN)2/3))

Quantum Fourier
Transform

Fourier transform with N

amplitudes
.O((logN)2) .O(N logN)

Grover Unsorted search on N items .O(
√

N) .O(N)

Quantum Phase
Estimation

Eigenvalues of unitaries up to
error .ε

.O(1/ε) .O(N2)

Harrow-Hassidim-
Lloyd

Solving SLE with N eq. and
condition number .κ

.O(κ2 logN) .O(κN)



Quantum Software Ecosystem Design 161

Table 2 Examples of promising quantum algorithms for NISQ devices

Algorithm Application case Complexity Classical

VQE Eigenenergies and -states Heuristic, often .O(Np) .O(eN )

QITE Ground state preparation For highly local Hamiltonians .O(Np) .O(eN )

QAOA Combinatorial optimization Heuristic, potentially .O(Np) .O(eN )

Bernstein-Vazirani algorithm [84], and the Simon algorithm [85], have been found
as well, but won’t be discussed here in detail.

3.4.2 Hybrid Algorithms for Noisy Intermediate Scale Devices

Fully fault-tolerant quantum computers are not expected to be built in the near
future. Therefore, great effort is put into researching efficient algorithms for NISQ
devices, where the focus lies more on achieving quantum advantage over classical
devices than on the best asymptotic performance. Many of these algorithms are
heuristic and an asymptotic speedup is expected in special cases [86]. Some
promising approaches in this area are listed in Table 2.

One general strategy to bring useful quantum algorithms on NISQ devices is
hybrid computation, where only the part of the problem that gains most from
quantum hardware is solved on such, while the remaining problem is solved on
a classical device. One example of this is variational quantum algorithms (VQAs),
most famously VQEs [87]. The idea of VQAs is to use a parameterized circuit on
the quantum processor to prepare highly entangled states in the exponentially large
Hilbert space and perform measurements on them. The classical processor evaluates
the measurement results and adapts the parameters of the quantum circuit in order
to improve the result. For instance, VQEs minimize the energy to find the ground
state. Various adaptions of this approach are being researched at the moment, such
as searching for excited states by optimizing the energy to be in a certain range or
by enforcing orthogonality to the ground state. Furthermore, ground states can be
prepared efficiently for highly local Hamiltonians by using quantum imaginary time
evolution (QITE) [88].

The QAOA [89] is used to solve combinatorial problems by encoding them
as a Hamiltonian with bit strings as representations of the possible solutions. The
QAOA applies time evolution of a mixer Hamiltonian and problem Hamiltonian in
alternation to find the bit string that minimizes the problem Hamiltonian expectation
value.

A central challenge with performing these optimization algorithms in polynomial
time is the risk of converging to local minima. It is important to extend the scope
of these algorithms and facilitate an infrastructure where a hybrid compiler (see
Sect. 3.6) can efficiently select which parts of a given problem to solve on the
quantum device with quantum speedup.



162 A. Basermann et al.

3.5 Software Engineering

The goal of software engineering is the efficient development of high-quality
software through scientific methods and precise processes. In this context, we
understand software to be a structured collection of program code, documentation,
quality assurance measures, artifacts, and, where applicable, other data required to
execute the programs. All software is written to perform specific tasks that can
be described in the form of user stories: A user wants to achieve a goal with
the software. The value of the software therefore lies in the efficient and reliable
achievement of these goals.

Quantum software fits the above scheme just as well [90]. At this level of
abstraction, the only difference is that quantum software contains parts that are
executed on a quantum computer. As described above, quantum computers are
particularly suitable for difficult problems, and the applications institutions, such as
the German Aerospace Center (DLR),3 are particularly interested in having a strong
interdisciplinary character and will have a large scope. An efficient, structured
approach and an integrated quality assurance strategy will therefore be essential
in the near future.

In the following, we take a closer look at the aspects of software engineering
where we recognize specific requirements of quantum computing or which, in our
view, are particularly important in this context.

3.5.1 Requirements

A particular challenge in the development of software for quantum computers is the
collection and specification of requirements [91]. It can differ significantly from
classical software requirement engineering [92].

The first step is to describe the primary requirements. In our experience, this is
done in collaboration with domain experts who often have little experience with
quantum computers. Finding a common understanding of the problem to be solved
is tedious, but always worthwhile. Subsequently, a precise mathematical formulation
must be worked out that allows the mapping of the application to an existing
quantum algorithm or the development of a new one.

The joint elaboration not only helps the software engineer to find a solution
approach, but also gives insights into quantum computing to a wider circle of
interested people. This experience building within the organization, but also within
the ecosystem as a whole, is something we have recognized as having its own
value [93, 94].

Secondary requirements arise from the primary ones, e.g., requirements on the
size of the system via the input data. The requirements must be considered together

3 www.dlr.de

www.dlr.de
www.dlr.de
www.dlr.de


Quantum Software Ecosystem Design 163

with the expected limitations of the hardware, a step that admittedly often leads to
disillusionment and requires several iterations at this point. For instance, at DLR
there is a huge gap between the problem sizes that quantum computers can handle
and the massive computing tasks that arise in engineering questions. However, we
must and can already set the course for future advantages in our fields of application.
Despite or precisely because of the current hardware-related limitations, scalability
must always be considered in quantum software development. There is great value
today in demonstrating an algorithm that can solve small instances of difficult
problems if it “only” needs to be scaled in the future; see [95, 96, 97] for the
example of Shor’s algorithm [1]. In contrast, it seems questionable to implement a
highly optimized algorithm that does not even theoretically scale to large instances.

3.5.2 Software Design

Software design is always about defining the architecture, components, and their
interfaces. In the design of quantum software, a dimension is added that is very
important. It is necessary to decide which parts of the program are to be calculated
on a conventional computer and which on a quantum computer. In this context, one
also speaks of a quantum processing unit (QPU), which can take over specific tasks.
Not every task is well suited for a QPU, and it does not currently look as if quantum
computers will completely replace conventional processors.

Once it has been determined what is to be computed where (which includes in
particular the choice of a quantum algorithm as discussed above), a specification of
the data exchanged between the conventional and quantum parts must be made. A
hardware-aware concept is required in order to feed data of a certain accuracy from
a classical computer system reliably and accurately into a specific quantum circuit.
Speed requirements here depend on the integration of the quantum hardware with
the classical hardware and on the algorithm to be executed. Some hybrid algorithms
require communication between the classical and the quantum systems within the
coherence time. The challenge here is to define abstract layers in the software design
so that software solutions for reliable and accurate data communication between
classical and quantum system are at least partially reusable.

A conceptual separation of software into hardware-specific and -agnostic parts
increases the reusability of the software we develop. It is important to understand
that, although we use very low-level methods to get the most out of our quantum
computers, we aim to develop software and methods that are useful in the long
term. Therefore, reusability is an important criterion.

Interfaces must be defined for the transfer of data. At present, there is practically
no distinction between program code and data on the quantum computer. Input data
is transferred via program code for preparing the data [98], which can be very
hardware-specific; see [99, 100] for examples on ion traps. We expect that future
abstractions will facilitate data transmission.

The development of suitable data types on quantum computers is still in its
infancy. A lot of research and standardization is still needed here. However, it is



164 A. Basermann et al.

already apparent that, even for integers, the type of encoding has a major influence
on the performance of quantum computers [101]. Possible choices are amplitude
encoding or basis encodings like binary encoding, one hot encoding, and domain
wall encoding [102]. More ways to encode classical data into quantum states are
considered in the context of machine learning; see, e.g., [103]. They affect the
performance mainly due to the strong noise of current models, so any form of
resource optimization can help a lot.

In many engineering applications, decimal fractions are of course required,
which, depending on the required resolution, generate a very high resource require-
ment by today’s standards (measured in number of qubits). It can therefore be
worthwhile to choose an algorithm that is formulated in data types that fit well with
a quantum computer.

Finally, a good design process for quantum software includes simulations of the
program and, if possible, test runs on available hardware. It allows challenges to be
identified and the design to be adapted if necessary. A rigid approach here is even
more doomed to failure than in conventional software design.

3.5.3 Models and Representation

Let’s take a look at current ways of representing quantum software, or rather pro-
gram code for quantum computers. At the moment, mainly low-level descriptions
are used. Even in most recent publications we are still on a level where quantum
algorithms are described via elementary gates and quantum circuits. Internally,
these circuits can be represented as a list of gates, directed acyclic graphs (DAGs),
path integrals/phase polynomials, or decision diagrams. Low-level languages such
as OpenQASM [104], cirq [105], and qiskit [106] have become established as
descriptions by a user and as interfaces between tools. Despite some attempts to
create more high-level quantum programming languages, e.g., Q# [107], Silq [108],
or qrisp [109], none of these is currently widely used (for various reasons). In
the long term, however, there is no way around the introduction of more powerful
language constructs in our view. It will be crucial that these find a natural way
to represent the special capabilities of quantum computers. Although perhaps only
years of programming experience will make natural programming languages for
quantum computers possible, we want to support developments in this direction at
an early stage.

In the context of compilers in particular, intermediate representations (IR) are
also introduced as an intermediate level between the abstraction layers of the
programming language and the machine language. Examples are QIR [110] and
QSSA [111]. The formulation of quantum-specific optimization steps on this level
is a subject of current research, which we will discuss in Sect. 3.6. We should also
mention that other established tools of conventional software design are currently
translated to and tried in the context of quantum computing, e.g., the unified
modeling language (UML) [112].



Quantum Software Ecosystem Design 165

3.5.4 Software Testing

Software testing is part of the software development process that aims to ensure
the quality and reliability of the software. There are different types of tests, and
common categories are unit tests (testing small components), integration tests,
functional tests, and acceptance tests (checking fulfilment of requirements). Tests
are artifacts (code or instructions) that are executed automatically or manually. In
contrast, verification relies on formal proofs which employ static code analysis, and
benchmarking is concerned with the quantification of the performance of software
and hardware. We look at verification and benchmarking in more detail in Sect. 3.8.
We emphasize that testing is about finding programming bugs, not hardware errors,
whose treatment we discuss in Sect. 3.7. However, we investigate how the methods
developed for handling hardware errors can also be adapted to testing.

Given the above definition of testing it is clear that future software for powerful
quantum computers will also need to be tested. It is important to do basic
preliminary work already now, before the hardware allows complex software to
run. And research in this direction has indeed started [113, 114, 115, 90]. This
ensures that the reliability of software does not become a bottleneck in future
developments of QC. It is particularly important because in QC the transition from
low-level circuits to high-level programs mostly still lies ahead of us. And testing
is an exciting research topic in the field of quantum software engineering because
quantum-specific phenomena have to be taken into account.

It is obvious that facts like the no-cloning theorem [116] are obstacles in testing
programs. Classical approaches that often use copying implicitly need to be adapted
in order to apply them to quantum software. The fact that in general measurements
in quantum theory disturb the observed system also complicates state monitoring.
This severely affects the possibilities for runtime tests on quantum computers (see
e.g., [117, 118]), and further research in this direction will be necessary.

Furthermore, what constitutes a typical error is quite different between classical
and quantum programming. Due to the difference in the computational model there
are even programming errors that are not meaningful in classical programming, e.g.,
when they affect only the phase of the state. It is therefore necessary to conduct
studies on what bugs are typical in quantum programs [119, 120]. Such studies
can be very programming language-specific, i.e., tailored toward Q# [121]. Only
with knowledge about typical bugs is it possible to then develop good tests that
detect as many of them as possible. A useful tool here is the creation of benchmark
collections, as well as the automatic generation of test cases.

It is necessary to define tests that circumvent the abovementioned quantum-
specific challenges, and are still meaningful. And this leads to further research
questions, such as the definition of meaningful measures for the significance of tests.
Once more and more quantum software is written, guidelines for writing reliable
code and informative tests which are based on the above research will be very useful.



166 A. Basermann et al.

3.6 Compiling

3.6.1 Gate-Based Quantum Computing

Like conventional computers, quantum computers also implement a finite set of
elementary basic operations, the gates already mentioned above. Different sets of
gates have become accepted for the description of quantum circuits [122, 123, 10].
If a gate set enables an efficient approximation of any unitary operation, we call it a
universal gate set. By efficient here we mean that the new length of the circuit scales
polynomially with the original circuit length when switching from any other gate
set.

On the one hand, convenient gate sets are used for the theoretical description
of quantum algorithms. These sets in general contain significantly more gates than
necessary, are useful in the context of fault tolerance, and might also contain larger,
undecomposed blocks. On the other hand, each hardware platform implements
different, sometimes very limited, gate sets. A major restriction results, for example,
from limited connectivity, which means that the two-qubit operations provided
are not possible for every pair of qubits. However, some hardware platforms, in
particular ion traps, provide native multi-qubit gates that allow this issue to be
circumvented; see also Sect. 3.2.

The transition from one description of the quantum circuit to another is called
transpiling. Specifically, the transition from a general unitary to a set of elementary
gates is called synthesis. Both transitions are core tasks of a compiler. Furthermore,
the compiler, just like its conventional analog, has the task of customizing the
output to the specific hardware as best as possible. In summary, the requirement
of a compiler is producing correct, efficient, and hardware-compatible output, as
explained in more detail below.

The typical compiler architecture can be divided into individual steps (passes),
which are connected in series as a pipeline where each step transforms the quantum
circuit. The best order is not obvious and passes can also be repeated at a later point
in the compilation. Typical transformation steps include:

• Synthesis. Larger operations need to be decomposed into a universal set of basic
gates. Small operations can be decomposed optimally with regard to a certain cost
function, while synthesis of larger operations will not yield optimal solutions in
general.

• Routing. The circuit needs to be rewritten in a way that contains only gates that
are natively supported by the hardware. In particular, multi-qubit gates can only
act on qubits that can interact physically. Even qubits that might not be part of a
calculation can mediate the interaction.

• Optimization. The overall circuit can be optimized with regard to some cost
function as well. Here the input and the output are both decomposed circuits. We
discuss this point in more detail in the following.



Quantum Software Ecosystem Design 167

Various objective functions for circuit optimization are conceivable and are
used. For example, the number of certain gates (e.g., controlled-Not gate, T
gate), the depth of the circuit (related but not identical to the runtime), or the
expected noise on the final state can be minimized. Of course, one can also try
to maximize algorithm-specific performance, e.g., the probability of success. The
problem of optimizing a circuit with respect to a particular objective is generally
very difficult [124, 125, 126], such that there is no efficient algorithm to find the
global minimum except for small circuits. Some approaches are based on meet-
in-the-middle [127] or satisfiability (SAT) solvers [128]. For larger circuits only
heuristic algorithms are feasible; see, e.g., [129]. For the optimization passes
there are promising research approaches to transfer the conventionally established
methods based on IR to quantum compilers.

Deciding whether the result of the compilation is indeed efficient on actual
devices is not obvious. Since the global optimum is generally not known, one can
only compare the result with other reference compilers. However, this comparison
depends strongly on the circuits. It is important to use balanced benchmark suites,
for example, the Arline Benchmark suite [130]. Further developments in this
direction are foreseeable.

The development of compilers of hybrid programs has a major impact on the
possibilities for optimization. Such hybrid compilers are compilers that do not
generate pure quantum circuits, but executable code on conventional computers
that contains calls to a QPU [131]. This results in strong optimization potential
because the compiler can automatically decide whether the calculations are better
computed on the QPU or on a conventional computer. Furthermore, it is even
possible to apply hybrid simplification rules, which, e.g., move individual operations
from the quantum circuit to conventional pre- or post-processing [132], where they
can be combined and simplified with established methods. The goal is to leave
only the essence of the quantum algorithm in the quantum circuit. These hybrid
simplification rules in particular can benefit from the established concept of IR.

Another motivation for hybrid compilers is a closer coupling of the central
processing unit (CPU) and the QPU. In particular, hybrid quantum algorithms
such as VQAs [87] benefit greatly from an efficient coupling of conventional and
quantum systems. Here, experience in GPU programming (e.g., CUDA [133])
can be built upon. In the future, abstract language constructs should simplify
and unify the use of different hardware architectures. QPU and CPU codes are
developed in a common project folder, where calls to the QPU are controlled
via synchronous and asynchronous commands. Efficient interfaces and protocols
must be developed for uploading data and code to the QPU and downloading
measurement results. The QPU code may not only contain quantum operations but
also increasingly complex dynamic operations that directly process measurement
results and influence subsequent quantum operations. This feed-forward approach
opens up exciting possibilities for new experiments, and it is essential in the
measurement-based model of quantum computation [134]. The close coupling of
a CPU and a QPU is flanked by development work aimed at integrating quantum



168 A. Basermann et al.

computers into HPC environments; see [135, 136]. The experience with these
prototypes will influence the necessary standards.

As mentioned, we require the correctness of the compiler, i.e., a proof that
the output corresponds in functionality to the original input, possibly in human-
readable form. However, it is known that the general equivalence test problem for
quantum circuits is not efficiently solvable, as it is in the class of QMA-complete
problems [137], which are, loosely speaking, those problems that are hard to
solve for quantum computers. This means that we have little hope of proving the
correctness of the final result. What we can do instead is to prove the correctness
of the process. The compiler is correct if it only applies correct transformations.
And for each individual transformation, it is possible to show correctness. When
we speak of heuristics in the compiler pipeline, we mean procedures that do not
necessarily lead to improved circuits but which nevertheless output a correct circuit
in every case.

In addition to the described methodology, some approaches attempt to prove
the equivalence of circuits. Although they suffer from an exponential increase in
resources (time or memory), they can still deliver results for “simple” circuits. We
refer the interested reader here to the literature [138, 139, 140].

3.6.2 Quantum Annealing

Although quantum annealing (QA) is a different computational model and therefore
poses its own challenges, compiling in a certain sense is also needed here: quantum
annealers can only process a very specific optimization problem, in case of D-
Wave, a restricted version of the Ising problem [60]. Programming such devices
essentially means providing the problem-defining parameters. However, exemplary
applications from industry and research, cf. Sect. 3.3.2, show that there is in general
no trivial way of obtaining these parameters. Several transformation steps from the
original problem formulation to the native one of the device are required. A compiler
handling these different abstraction layers would make the technology available for
various users with different levels of expertise in QA.

From a mathematical point of view, the step from an arbitrary discrete opti-
mization problem to a general Ising problem is solved and can be done using a
set of standard methods. However, a complete software suite implementing this is
not yet available. Nevertheless, toolboxes like the D-Wave Ocean SDK [141] or
quark [142] already support users with utility methods. But further expansion
of the software suites and conceptual advances are necessary. For instance, the
recent research on the reduction of combinatorial optimization problems has
mainly focused on any kind of (polynomial) reduction and not on the optimal
one in a certain sense, e.g., in the number of resulting variables, which would be
advantageous regarding the limited resources of current quantum computational
devices. Furthermore, the actually implemented Ising problem is not a general one
but faces further restrictions, such as a specific non-complete hardware graph and a
limited parameter precision. This causes the reformulation of the original problem



Quantum Software Ecosystem Design 169

to be a nontrivial task and demands that a “compiler” implement all the necessary
steps and hide the complexity from the application-focused users.

The two main transformation steps are the graph embedding and the parameter
setting. Unfortunately, the first step, the embedding of the original problem graph
into the hardware graph, has appeared to be a computationally hard problem, in
particular, as hard as the problem D-Wave’s annealers are capable of solving [143].
Therefore, in practice, heuristic methods need to be applied to circumvent this
bottleneck [144, 145]. In the second step, the hardware-native Ising problem
has to be formulated based on the found embedding. If this step is not done
correctly, we will not be able to analyze the actual performance of the quantum
device itself, because the success probability might be suppressed due to a wrongly
formulated problem. Recently, a new formulation has been developed that provides
an embedded Ising problem which provably corresponds to the original problem and
meanwhile optimizes its parameters with respect to the machine precision [146].
Based on this recent and future theoretical work, the compilation software has to be
steadily improved and extended, and the full software ecosystem has to be able to
adapt to these changes.

3.7 Error Handling

It is essential that errors caused by imperfect hardware are considered in the software
stack, because the amplitudes and phases of the qubits are not discrete. Additional
steps or layers are necessary to protect the information against this unavoidable
noise introduced by the hardware. This section briefly sketches the main concepts
in this field of research and provides references to more in-depth introductions.

We distinguish three categories of error-handling strategies. First, techniques that
start directly at the hardware level and attempt to reduce the noise level [147]. This
includes, for example, dynamical decoupling [148], where special control pulse
sequences are used to eliminate the disturbing influence of the environment. Second,
techniques that encode the quantum information into subspaces that do not couple
to the environment and are therefore not affected by decoherence introduced by the
environment [149]. Third, taking the noise of the quantum computer into account
for the compilation can lead to circuits that are less prone to noise. For example,
we investigated which decompositions of a common multi-qubit gate introduce the
least amount of noise [150].

Furthermore, some post-processing steps on the classical measurement data are
aimed at removing the noise [151, 152]. For example, zero-noise extrapolation
[153] and readout error mitigation [154] have proven effective in some applications.
The term error mitigation has come to refer to these types of techniques. We
emphasize that they do not avoid errors, but try to eliminate the errors afterwards.
Finally, methods on the error correction codes are aimed to suppress the noise to
any degree [155, 156, 157]. We explain error mitigation and error correction in
more detail in the following sections.



170 A. Basermann et al.

3.7.1 Error Models

Simple models for describing noise on quantum computers may only depend on
a single parameter or a few parameters. They can be found in any textbook on
quantum information, e.g., [10]. The depolarizing noise model is often used and
can be interpreted in such a way that with a certain probability (the parameter of the
model) the state of the system is replaced by white noise. Of course, this is a poor
representation of the real experiment. However, we have found that it is often very
suitable for a first qualitative picture of the effect of noise. Other simple models are
the bit-flip, phase-flip, and amplitude damping channels.

A more precise description of the noise is possible with a Pauli channel [10],
where every tensor product of Pauli operators can appear as an error. These errors
can occur with different probabilities. A complete description of the error channel
via Kraus operators [10] is also possible. The free parameters of this model
can be determined via process tomography in the experiment [158, 159]. It is
a complex procedure that does not scale well with the system size but obtains
complete information. It is worthwhile, for example, if one wants to obtain a very
precise picture of a single gate of a quantum computer. Instead of determining the
parameters experimentally, one can also use “realistic” noise models. In this case,
one tries to understand and model the physics of the process as well as possible.
Often the parameters of the model have a physical interpretation. This approach
is very hardware-specific and requires an exact fit of the model to the experiment.
However, it also offers the chance to draw conclusions about necessary hardware
improvements from model calculations, which is very helpful in the paradigm of
hardware–software co-design.

We follow yet another approach in which the noisy process is largely considered
as a black box, with few assumptions to be made about the noise [160]. In this
context, the assumption of Pauli noise and the assumption that the noise of a circuit
block are independent of the context. This means that the same gate causes the same
noise at different positions in the circuit. Of course, these assumptions might not be
fully satisfied in a real experiment. Instead of a description that is as complete as
possible, we obtain information regarding errors that affect operators in the stabilizer
elements, which we will discuss below.

3.7.2 Error Mitigation

Error mitigation is a form of post-processing in which one tries to infer the ideal
result from the noisy result [151, 152]. The techniques of error mitigation use addi-
tional measurements to extract information about the noise, which can be partially
removed from the outcome. They go beyond simply improving the measurement
statistics by increasing the number of runs. However, they are interesting for NISQ
computers because they do not require additional quantum resources. Prominent
examples are zero-noise extrapolation [153] and readout error mitigation [154].



Quantum Software Ecosystem Design 171

Furthermore, the method of [160] to model the noise above can be used as an
error mitigation technique. The parameters of the error model are determined via
a calibration measurement. It allows us to infer the ideal expected values from the
noisy ones of the stabilizer elements. The results are comparable to readout error
mitigation, while the method generates significantly less effort.

3.7.3 Error Correction

The topic of quantum error correction is vast and plays an important role. In this
subsection, we briefly sketch the relevant concepts and refer interested readers to
excellent introductions in [155, 156, 157]. Generally speaking, it is the extension of
classical error correction codes to correct not only bit-flip but also phase-flip errors,
and thus also general errors on a quantum system.

Quantum error correction codes encode k logical qubits into n physical qubits.
Many codes can be described via the stabilizer of this code space, i.e., via a subgroup
of the Pauli group whose elements leave the code words invariant. Small size
examples are the nine-qubit Shor code [161], the seven-qubit Steane code [162],
and the five-qubit code [163, 164]. A family of widely used codes is the surface
code [165]. The layout of the qubits follows a lattice structure with the stabilizer
generators acting locally, a fact that makes these codes a natural choice for hardware
platforms with a matching architecture, e.g., those based on superconducting qubits.

The capacity of a code to correct errors is described by distance d, the minimum
Hamming distance between two code words. The information about an error in the
system is determined via the syndrome measurements. Here, one measures a set of
observables that yield enough information to inform the correction operation. This
measurement result is called a syndrome.

The concept of fault tolerance is crucial in quantum computing [155]. It is
possible, with the help of quantum error correction codes and clever design of
circuits, to perform arbitrarily long calculations despite the noisy operations. One
can simply choose an arbitrarily large code, if it does not introduce too much noise
due to the overhead of the additional operations, and the existing faults cannot
propagate badly. It allows us to push the noise down to a desired level. The required
quality of operations that achieves this scaling is called the threshold of the error
correction scheme [166]. The additional complexity can be hidden in an abstract
layer of the stack, e.g., when focusing on higher layers. It allows us to develop an
ideal QC without having to consider the additional complexity of error correction at
all times.

3.8 Verification and Benchmarking

Verification aims to ensure that software fulfills its requirements, e.g., that the output
is correct under certain preconditions for given inputs. Similar to conventional non-



172 A. Basermann et al.

deterministic software, the stochastic nature of most quantum algorithms poses a
challenge to verification. That is, the same inputs can produce different results due
to the intrinsic properties of quantum measurements but also due to the high level of
noise on near-term hardware; see Sect. 3.2. A typical requirement that needs to be
verified is that one obtains a high-quality solution, e.g., a result close to the desired
result, with a sufficiently high probability. Here we focus on static verification, while
what is sometimes also referred to as dynamical verification is covered in Sect. 3.5.4.
The task of verification can be addressed from two sides. First, from a formal point
of view, given “working” hardware we need a theoretical proof that the quantum
algorithm is correct. Second, from a practical point of view, we need to ensure that
the algorithm is implemented correctly in code for the classical and quantum parts of
the program. Both parts need verification and the latter finally needs to be correctly
translated into the executable circuit; see also Sect. 3.6. The verification of quantum
algorithms gives rise to an interesting research question [167, 168, 126]: When
quantum computers outperform conventional computers, how can we ensure that
the algorithm is correct?

Benchmarking is the quantification of the performance of software and hardware.
Because in the current state of QC the question is not yet how fast we can get a result
but how good the results are that we get, benchmarking usually refers to assessing
the quality of hardware components. So in contrast to conventional computer
science, we do not yet compare different software or hardware with metrics like
time to solution. In this context, benchmarks are standardized, technology-agnostic
methods to evaluate quantum computers. The result of benchmarks are metrics
for the performance of a specific device. They should be treated with caution, as
they only cover single aspects of the machine, may struggle with the different
hardware approaches (see also Sect. 3.2), and only measure the current state of
the technology, not its future perspective. Also note that the score is affected by
software, in particular the compilation. Any good benchmark should fulfill a number
of requirements. It should be accepted by scientists and industry alike. The score of
the benchmark is a number or a yes/no answer. The metric allows for a meaningful
interpretation, which goes beyond that specific benchmark test. It should not give an
advantage to one specific technology by construction, but the values can and will be
better for some technologies than others, of course. The benchmarks should be well
defined and easy to understand. They should be efficiently implementable, which
poses a limitation on the information content in practice and therefore requires
them to focus on specific aspects of the performance. They should be reproducible,
which is a challenge given the non-deterministic character of quantum computers.
Finally, they need to be scalable so they can be applied to small and larger quantum
computers to enable tracking of the development progress.

The following quantities and methods are typically considered in the context of
benchmarking.

• The fidelity of state preparation, single and two-qubit gates, and measurements.
These numbers measure how close the implemented operation and the target
operation are.



Quantum Software Ecosystem Design 173

• Coherence times, which describe how long the coherence of a system, i.e., its
ability to interfere, is conserved. In particular, the number of gate operations
which can be performed in the coherence time indicates how long quantum
computations can be.

• Cross-talk, e.g., how strong idle qubits are affected by gates acting on other
qubits. Due to its non-local nature this noise can be difficult to handle.

• Hardware connectivity, i.e., how many qubits can directly interact.
• State and process tomography are methods that allow for a full characterization

of a quantum state and a quantum operation, respectively [169, 170, 171].
• Randomized benchmarking [172] is a method to find the average gate fidelity

of an important subset of gates, the so-called Clifford gates. It relies on the
Gottesman–Knill theorem, which shows that circuits only consisting of such
gates can be efficiently simulated on a conventional computer [10]. This then
allows for the random insertion of gates into a circuit and efficient inversion of
their net effect. Then the deviation from an identity operation is linked to the
average fidelity of the gates. One advantage of this method is that the metric is
not affected by state preparation and measurement errors.

In order to perform useful reproducible benchmarks, we need to define a suite
of standard problems, ideally reflecting interesting target applications (like SPEC
benchmarks [173] for different classical hardware) or, e.g., basic operations and
algorithms (like LINPACK [174]). Existing benchmark suites for QC include
SupermarQ [175] and Arline [130]. There are also benchmark suites tailored toward
specific applications, e.g., fermionic quantum simulation [176]. In addition, for
the special case of comparing quantum hardware and software, it might be helpful
to further specify some constraints on how those problems should be solved as
different approaches might not be comparable; e.g., hardcoding the solution is not
a fair comparison. This can be tricky to achieve in practice as different assumptions
or prior knowledge about the problem is often used in different solution approaches.

For comparison with classical computers, there exists a wide range of possible
implementations: we can plug in a classical computer at almost any stage from the
level of the original application problem, over a transformed formulation suitable
for a quantum algorithm, to the actual operations for a specific hardware (at
least for small problems or theoretical runtime considerations). And even on a
classical computer, software can be more or less optimized, which influences its
runtime by several orders of magnitudes (see, e.g., [177] for an example). So for
actual benchmarking results, one needs to provide many additional details on all
used implementations as well as on the hardware to actually allow an insightful
comparison and interpretation. We further suggest defining separate benchmarking
suites to address specific questions in the future:

• Quantum supremacy: These benchmarks compare the fastest implementation
on a quantum computer with the fastest, elaborated, existing software for
classical hardware for different key applications.



174 A. Basermann et al.

• Near-term practicability: These benchmarks compare the (estimated) costs
of solutions for interesting algorithms (with input data from applications) for
different quantum platforms and for classical hardware.

• Performance and correctness: These benchmarks assess the accuracy/quality
of solutions obtained with different quantum hardware and software stacks for
mathematical test problems with known solutions.

4 System Architecture and Implementation

In Sect. 3, we have described the conceptual workflow of quantum computers, from
application to actual hardware. The end users are typically ultimately interested in
solving their engineering problem, e.g., in simulating the airflow around an aircraft
or in finding some optimal resource scheduling. To this end, we aim to construct a
platform that allows end users to describe their domain-specific problem and find
solutions to it while having to think about the underlying hardware as little as
possible. This section describes the technical building blocks we use to construct
such a platform. An illustration of the individual components and their connections
is provided in Fig. 8.

We aim to construct this platform as domain-independently as possible. To guide
our description of the individual components, however, we use an artificial example
problem from the automotive domain using this platform. This example problem
serves to highlight many of the considerations to be made when constructing a
platform for quantum computing. While other use cases will require additional
considerations, we believe that this example already suffices to illustrate the most
pressing and general concerns platform engineers should consider for a wide swath
of use cases.

For our example, consider the goal of developing a new driving function for
autonomous vehicles. The engineers implementing this driving function want to
evaluate whether it behaves safely in a number of specified driving scenarios.
To this end, they specify sets of possible scenarios using traffic sequence charts
(TSC) [178]. They then instantiate scenarios that conform to solutions for the given
TSC problem and simulate the behavior of the implemented driving function in
that scenario [179]. Moreover, they implement a software monitor that observes
the simulation and reports unexpected behavior. This is also accompanied by a
visualization of the simulation. The full sequence of steps of the simulation shall
be automatized. To stay in the frame of a quantum software ecosystem, we further
assume that the TSC problem shall be solved using quantum computing hardware.
This can, for instance, be done by converting the TSC into a SAT formula and using
Grover’s algorithm to search for feasible solutions provided by a corresponding
quantum oracle gate.

Note that, in an actual application, the TSC is converted into an Satisfiability
Modulo Theory (SMT) formula instead of a SAT formula, where the former is
a strictly more general model than the latter. There is, however, currently not



Quantum Software Ecosystem Design 175

Fig. 8 A technical overview of the platform supporting quantum software developers

a straightforward way to generate solutions for an SMT formula using quantum
circuits. Hence, for the sake of example, we assume that the engineers instead
generate concrete scenarios via SAT formulas instead of SMT formulas.

In practice, the described simulation steps require heterogeneous hardware: the
transformation from TSC to SAT and the extraction of a concrete scenario from
a SAT solution can be executed on virtually any hardware without proprietary
software. In contrast, finding the solution of the SAT problem and the execution of
the simulation requires specialized software, namely SAT solvers, such as Z3 [180],
and traffic simulation software, such as CARLA [181], respectively. Moreover, the
visualization requires specialized hardware, e.g., graphics processing units (GPUs).
As, in this running example, we assume that the engineer wants to find solutions
to the SAT formula using some quantum circuit, we also interact with quantum
devices.

In order to construct and execute their experiments, the engineers require some
interface to the system. This interface provides the engineer with an integrated
development environment (IDE) and, once the engineer is satisfied with their
specification, passes the problem to some backend for execution. We describe the
requirements for that interface in Sect. 4.1. Once the end user has specified the
problem, the platform will have to schedule the use of the heterogeneous hardware



176 A. Basermann et al.

systems described above. The major novelty of this platform lies in orchestrating the
cooperation between classical computing hardware on the one hand, including, e.g.,
classical workstations, HPC resources, and GPUs, and between QPUs on the other
hand. We describe the requirements for this orchestration in Sect. 4.2. The QPUs
used during the execution may be implemented in actual hardware or it may be
simulated using one of multiple quantum computing simulators. We have described
the constraints faced in using existing hardware platforms in Sect. 3.2. The trade-
offs to consider when using quantum simulators follow in Sect. 4.3.

4.1 User Interface

Quantum software developers require a straightforward interface for specifying their
problems. In our example, the end user must be able to specify the described loop
consisting of reading a TSC, calling external software, and performing computations
on a well-suited QPU. The end user is not likely to be interested in the specifics of
the underlying hardware but instead wants to have the choice of hardware handled
by the platform during execution. In contrast, the interface should also cater to
experts who are not interested in specifying domain-specific problems but are
working on developing novel quantum algorithms. To this end, they require more
direct access to the underlying hardware for, e.g., benchmarking.

The interface should allow the user to iterate rapidly on problem formulations
e.g., the typical interface of HPC hardware. When using HPC hardware for
solving a domain problem, the underlying algorithms and implementations are often
mature and well tested. In contrast, when using quantum computing hardware, the
underlying algorithms and implementations are constantly evolving and are often
adapted to the domain problem at hand. Hence, the platform should allow the end
user to rapidly iterate on the formulation of the domain-specific problem.

One approach to satisfy these requirements is allowing users to formulate their
problems using a service-oriented architecture. In such an architecture, multiple
independent software services collaborate to solve the specified problem. In our
example above, users could specify one service each for the following tasks:

• Transform a given TSC into an SAT formula
• Construct a quantum circuit that solves this formula.
• Execute the quantum circuit to obtain a solution.
• Transform the solution into a concrete scenario.
• Simulate and monitor the scenario using CARLA [181], obtaining a visualization

of the simulation.

The user needs to specify the software and hardware requirements for each service,
e.g., that they require a QPU for the third service and CARLA with GPUs for the
visualization of the fifth service. They do not necessarily have to implement all
services themselves but can rely on other services that users of the platform have
implemented and opted to share publicly. Finally, the user must specify the data



Quantum Software Ecosystem Design 177

flow between these services and ask the orchestration component to execute the
composed service.

Letting end users define composable services and publishing them to other users
has proven successful in the context of data analysis with Apache Nifi [182] and
in the context of preliminary design of airplanes, jet fuels, electrical grids, ships,
and other complex systems with RCE [183]. Moreover, a graphical user interface
that allows users to graphically connect relevant services has been employed
successfully for several decades in the field of data acquisition and analysis by
LabVIEW [184].

4.2 Orchestration and Data Management

Once the problem has been specified and is given to the orchestration component for
execution, that component has to reserve computation time on the initial required
computing resource. Our running example requires some computation time on
an off-the-shelf workstation which transforms the TSC into an SAT formula and
subsequently transforms this formula into a quantum circuit. The orchestration
component then has to reserve computation time on some QPU, either real hardware
or simulated, to execute the quantum circuit. Once the execution of the quantum
circuit has finished and resulted in a solution to the SAT problem, the orchestration
component needs to reserve some computation time on an off-the-shelf workstation
which transforms this solution into a scenario. Subsequently, the orchestration
component needs to reserve computation time on an HPC resource equipped with
GPUs to simulate the generated scenario, monitor the simulation, and visualize the
simulation if necessary. Finally, the orchestration component needs to repeat the
above steps until non-nominal behavior is observed during the simulation.

Our example shows that it is infeasible for the orchestration component to reserve
all required computing resources prior to the execution of the initial service. The
requirements for the QPU, the available gates, and number of qubits required for
the execution of the quantum circuit only become available after the execution of
the initial service. Hence, the orchestration component needs to be able to reserve
computation time on the fly as results from earlier services become available.

Moreover, the orchestration component needs to take into account external
requirements for the chosen computational resources. The visualization of the
simulation in the final step of the computation described above may require large
maps, textures, or other large data artifacts to visualize the scenario with the required
fidelity. If these artifacts are only available to the visualization via a network
connection with low bandwidth, the execution time of the complete computation
will increase significantly. Hence, the orchestration component needs to be aware of
data-intensive parts of the computation and the locality of the required data.



178 A. Basermann et al.

4.3 Use of QC Simulators

In the section Sect. 3.2, we have described the hardware platforms that are currently
available for executing quantum circuits. All these platforms are costly, only
available in low quantities, do not provide a large number of qubits, and produce
noisy results. Although these problems are being addressed in the production
of quantum computing hardware research, alternative solutions may tackle these
issues.

A promising alternative is the use of quantum computing simulators that adopt
classical hardware to simulate the execution of quantum circuits on actual hardware.
Simulating such an execution requires significant computing power that is usually
only provided by HPC systems. These systems are typically the same ones that
execute the classical part of the computation job. Hence, any platform for the
execution of quantum computing workloads using simulators must strike a balance
between using the HPC resources it has available for the simulation of quantum
circuits and using them for classical computation. Moreover, these HPC resources
are rarely available for exclusive use by the quantum computing platform. Instead,
the resources are also used for “classical” HPC applications. The owner of the
resources has to balance their availability between the use by the platform and by
the classical applications.

Although the results of the simulations produce data in the same order of
magnitude as actual quantum computers (namely a few kilobytes or megabytes),
they may offer additional diagnostic data which grows exponentially with the
number of simulated qubits. If this data is made available to end users, the platform
needs to provide data storage as well as bandwidth for transferring the data to the
end user.

5 Conclusion

Quantum computing represents a paradigm shift in computational capabilities, with
potential applications in various sectors. A key aspect to unlock its full potential is
the establishment of a robust software ecosystem. This ecosystem not only provides
the essential infrastructure for operating quantum devices but also serves as a bridge,
enabling a broad spectrum of researchers, scientists, and industry experts to explore,
use, and enhance the applications of these quantum systems.

Our chapter takes a research-driven approach toward constructing such an
ecosystem. We have bifurcated our exploration into two key dimensions. Firstly,
we present the conceptual design which encompasses considerations from com-
putational paradigms, applications like quantum simulation, over device-optimized
compiling to error handling, verification, and benchmarking. This underscores the
theoretical foundation, taking into account the unique challenges and attributes
of quantum computing. Secondly, we delve into the system architecture and



Quantum Software Ecosystem Design 179

implementation, focusing on aspects ranging from user interfaces to orchestration,
data management, and the critical role of quantum computing simulators. The fusion
of these two perspectives ensures a comprehensive understanding and a holistic
approach to developing a quantum software ecosystem.

As we step into the future, it is imperative to emphasize that this endeavor
is iterative. Practical evaluation and real-world implementation of the proposed
ecosystem will undoubtedly reveal areas for improvement. The scientific approach
allows the adaptation of the ecosystem, especially given the rapidly evolving quan-
tum hardware landscape. Monitoring these advancements and ensuring flexibility
in the response will be critical to remaining aligned with the dynamic nature of
quantum computing. By doing so, we pave the way for maximizing the potential of
quantum computing, fostering innovation, and moving the field forward.

Acknowledgments This research is part of the projects Algorithms for quantum computer
development in hardware-software codesign (ALQU), https://qci.dlr.de/en/alqu, and Classical
Integration of Quantum Computers (CLIQUE), https://qci.dlr.de/en/clique, which were made
possible by the DLR Quantum Computing Initiative (QCI) and the German Federal Ministry
for Economic Affairs and Climate Action (BMWK). Special thanks is due to IQM Quantum
Computers and EleQtron for kindly making their respective quantum hardware chip designs
available.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). https://doi.org/10.1137/
S0097539795293172

2. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073 (1996). https://doi.org/10.
1126/science.273.5278.1073

3. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

4. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E
58, 5355 (1998). https://doi.org/10.1103/PhysRevE.58.5355

5. Byrd, G.T., Ding, Y.: Quantum computing: progress and innovation. Computer 56(01), 20
(2023). https://doi.org/10.1109/MC.2022.3217021

6. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo,
S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R.,
Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M.,
Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M.,
Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly,
J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero,
E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K.,
Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov,
A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger,
K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White,
T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a
programmable superconducting processor. Nature 574(7779), 505 (2019). https://doi.org/10.
1038/s41586-019-1666-5

https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/alqu
https://qci.dlr.de/en/clique
https://qci.dlr.de/en/clique
https://qci.dlr.de/en/clique
https://qci.dlr.de/en/clique
https://qci.dlr.de/en/clique
https://qci.dlr.de/en/clique
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1109/MC.2022.3217021
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5


180 A. Basermann et al.

7. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://
doi.org/10.22331/q-2018-08-06-79

8. Temkin, M.. Investors bet on the technologically unproven field of quantum computing.
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding. Accessed
04 Oct 2023

9. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Textbook Physics, vol. 1, 1st
edn. Wiley, Hoboken (1991)

10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511976667

11. Schuhmacher, P.K: Decoherence as a resource for quantum information. Ph.D. Thesis,
Universität des Saarlandes (2021). https://doi.org/10.22028/D291-35131

12. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschritte der
Physik Progr. Phys. 48(9–11), 771 (2000). https://doi.org/10.1002/1521-3978(200009)48:9/
11<771::AID-PROP771>3.0.CO;2-E

13. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74,
4087 (1995). https://doi.org/10.1103/PhysRevLett.74.4087

14. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic
evolution. Preprint (2000). https://doi.org/10.48550/arXiv.quant-ph/0001106

15. Born, M., Fock, V.: Beweis des Adiabatensatzes. Zeitschrift für Physik 51(3–4), 165–180
(1928). https://doi.org/10.1007/BF01343193

16. Van Dam, W., Mosca, M., Vazirani, U.: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pp. 279–287. IEEE, Piscataway (2001). https://doi.org/10.1109/SFCS.
2001.959902

17. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum
computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755 (2008).
https://doi.org/10.1137/080734479

18. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Modern Phys. 90(1), 015002
(2018). https://doi.org/10.1103/RevModPhys.90.015002

19. Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79 (1970).
https://doi.org/10.1016/0003-4916(70)90270-8

20. Fauseweh, B., Uhrig, G.S.: Multiparticle spectral properties in the transverse field Ising model
by continuous unitary transformations. Phys. Rev. B 87, 184406 (2013). https://doi.org/10.
1103/PhysRevB.87.184406

21. Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R.,
Berkley, A.J., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins.
Nature 473(7346), 194 (2011). https://doi.org/10.1038/nature10012

22. Jünger, M., Lobe, E., Mutzel, P., Reinelt, G., Rendl, F., Rinaldi, G., Stollenwerk, T.: Quantum
annealing versus digital computing: an experimental comparison. J. Exper. Algorithmics 26,
1 (2021). https://doi.org/10.1145/3459606

23. McGeoch, C.C.: Theory versus practice in annealing-based quantum computing. Theoret.
Comput. Sci. 816, 169 (2020). https://doi.org/10.1016/j.tcs.2020.01.024

24. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188
(2001). https://doi.org/10.1103/PhysRevLett.86.5188

25. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with
linear optics. Nature 409(6816), 46 (2001). https://doi.org/10.1038/35051009

26. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys.
Rev. Lett. 95, 010501 (2005). https://doi.org/10.1103/PhysRevLett.95.010501

27. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687
(1993). https://doi.org/10.1103/PhysRevA.48.1687

28. Kempe, J.: Quantum random walks: An introductory overview. Contemp. Phys. 44(4), 307
(2003). https://doi.org/10.1080/00107151031000110776

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://pitchbook.com/news/articles/quantum-computing-venture-capital-funding
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.22028/D291-35131
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.1103/PhysRevLett.74.4087
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1007/BF01343193
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1109/SFCS.2001.959902
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1137/080734479
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1103/PhysRevB.87.184406
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1016/j.tcs.2020.01.024
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776


Quantum Software Ecosystem Design 181

29. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential
algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, pp. 59–68. Association for Computing
Machinery, New York (2003). https://doi.org/10.1145/780542.780552

30. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).
https://doi.org/10.1103/PhysRevLett.102.180501

31. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computa-
tion using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010). https://doi.org/
10.1103/PhysRevA.81.042330

32. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In:
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
’01, pp. 50–59. Association for Computing Machinery, New York (2001). https://doi.org/10.
1145/380752.380758

33. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915
(1998). https://doi.org/10.1103/PhysRevA.58.915

34. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing
patterns of a quantum neural network. Phys. Rev. A 89, 032333 (2014). https://doi.org/10.
1103/PhysRevA.89.032333

35. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data
classification. Phys. Rev. Lett. 113, 130503 (2014). https://doi.org/10.1103/PhysRevLett.113.
130503

36. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum
walks in photosynthetic energy transfer. J. Chem. Phys. 129(17), 174106 (2008). https://doi.
org/10.1063/1.3002335

37. Whitfield, J.D., Rodríguez-Rosario, C.A., Aspuru-Guzik, A.: Quantum stochastic walks: A
generalization of classical randomwalks and quantumwalks. Phys. Rev. A 81, 022323 (2010).
https://doi.org/10.1103/PhysRevA.81.022323

38. Govia, L.C.G., Taketani, B.G., Schuhmacher, P.K., Wilhelm, F.K.: Quantum simulation of a
quantum stochastic walk. Quant. Sci. Technol. 2(1), 015002 (2017). https://doi.org/10.1088/
2058-9565/aa540b

39. Schuhmacher, P.K., Govia, L.C.G., Taketani, B.G., Wilhelm, F.K.: Quantum simulation of a
discrete-time quantum stochastic walk. Europhys. Lett. 133(5), 50003 (2021). https://doi.org/
10.1209/0295-5075/133/50003

40. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem.
Proc. Lond. Mathemat. Soc. 2(1), 230 (1937). https://doi.org/10.1112/plms/s2-42.1.230

41. NobelPrize.org. Nobel Prize Outreach AB 2023. The nobel prize in physics 1956. https://
www.nobelprize.org/prizes/physics/1956/summary/. Accessed 04 Oct 2023

42. Wilhelm, F.K., Steinwandt, R., Langenberg, B., Liebermann, P.J., Messinger, A.,
Schuhmacher, P.K., Misra-Spieldenner, A.: BSI Project Number 283 (2018). https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_
QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1

43. Häffner, H., Roos, C., Blatt, R.: Quantum computing with trapped ions. Phys. Rep. 469(4),
155 (2008). https://doi.org/10.1016/j.physrep.2008.09.003

44. Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339(6124), 1164 (2013).
https://doi.org/10.1126/science.1231298

45. Brandl, M.F.: A Quantum von Neumann Architecture for Large-Scale Quantum Computing.
Preprint (2017). https://doi.org/10.48550/arXiv.1702.02583

46. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453(7198), 1031 (2008).
https://doi.org/10.1038/nature07128

47. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133 (1998).
https://doi.org/10.1038/30156

48. Heinzel, T.: Mesoscopic Electronics in Solid State Nanostructures. Physics Textbook, 2nd
edn. Wiley, Hoboken (2007)

https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1145/380752.380758
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevA.89.032333
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3002335
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1103/PhysRevA.81.022323
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1088/2058-9565/aa540b
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1209/0295-5075/133/50003
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.nobelprize.org/prizes/physics/1956/summary/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.1126/science.1231298
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.48550/arXiv.1702.02583
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156


182 A. Basermann et al.

49. Hayashi, T., Fujisawa, T., Cheong, H.D., Jeong, Y.H., Hirayama, Y.: Coherent manipulation
of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003). https://doi.
org/10.1103/PhysRevLett.91.226804

50. Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., Esteve, D., Gisin, N.,
Glaser, S.J., Jelezko, F., Kuhr, S., Lewenstein, M., Riedel, M.F., Schmidt, P.O., Thew, R.,
Wallraff, A., Walmsley, I., Wilhelm, F.K.: The quantum technologies roadmap: a European
community view. New J. Phys. 20(8), 080201 (2018). https://doi.org/10.1088/1367-2630/
aad1ea

51. Josephson, B.D.: Possible new effects in superconductive tunnelling. Phys. Lett. 1(7), 251
(1962). https://doi.org/10.1016/0031-9163(62)91369-0

52. Bladh, K., Duty, T., Gunnarsson, D., Delsing, P.: The single Cooper-pair box as a charge
qubit. New J. Phys. 7(1), 180 (2005). https://doi.org/10.1088/1367-2630/7/1/180

53. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret,
M.H.: Manipulating the quantum state of an electrical circuit. Science 296(5569), 886 (2002).
https://doi.org/10.1126/science.1069372

54. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret,
M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the
Cooper pair box. Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.
042319

55. Mooij, J., Orlando, T., Levitov, L., Tian, L.,Van der Wal, C.H., Lloyd, S.: Josephson
persistent-current qubit. Science 285(5430), 1036 (1999). https://doi.org/10.1126/science.
285.5430.1036

56. Van Der Wal, C.H., Ter Haar, A., Wilhelm, F., Schouten, R., Harmans, C., Orlando,
T., Lloyd, S., Mooij, J.: Quantum superposition of macroscopic persistent-current states.
Science 290(5492), 773 (2000). https://doi.org/10.1126/science.290.5492.773

57. Pop, I.M., Geerlings, K., Catelani, G., Schoelkopf, R.J., Glazman, L.I., Devoret, M.H.:
Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles.
Nature 508(7496), 369 (2014). https://doi.org/10.1038/nature13017

58. Houck, A.A., Koch, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Life after charge noise:
recent results with transmon qubits. Quant. Inf. Process. 8(2), 105 (2009). https://doi.org/10.
1007/s11128-009-0100-6

59. Clarke, J., Braginski, A.: The SQUID Handbook: Fundamentals and Technology of SQUIDs
and SQUID Systems, vol. 1. Wiley, Hoboken (2004). https://doi.org/10.1002/3527603646

60. Lobe, E.: Combinatorial problems in programming quantum annealers. Ph.D. Thesis, Fakultät
für Mathematik, Otto-von-Guericke-Universität Magdeburg (2022). https://doi.org/10.25673/
89443

61. Motzoi, F., Gambetta, J.M., Rebentrost, P., Wilhelm, F.K.: Simple pulses for elimination of
leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009). https://doi.org/10.
1103/PhysRevLett.103.110501

62. Paul, W., Steinwedel, H.: Notizen: Ein neues Massenspektrometer ohne Magnetfeld.
Zeitschrift für Naturforschung A 8(7), 448 (1953). https://doi.org/10.1515/zna-1953-0710

63. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531
(1990). https://doi.org/10.1103/RevModPhys.62.531

64. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum
computer. Nature 417(6890), 709 (2002). https://doi.org/10.1038/nature00784

65. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.M., Kim,
J.: Large-scale modular quantum-computer architecture with atomic memory and photonic
interconnects. Phys. Rev. A 89, 022317 (2014). https://doi.org/10.1103/PhysRevA.89.022317

66. Lekitsch, B., Weidt, S., Fowler, A.G., Mølmer, K., Devitt, S.J., Wunderlich, C., Hensinger,
W.K.: Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3(2), e1601540
(2017). https://doi.org/10.1126/sciadv.1601540

67. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine
learning. Nature 549(7671), 195 (2017). https://doi.org/10.1038/nature23474

https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1088/1367-2630/7/1/180
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.285.5430.1036
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1126/science.290.5492.773
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1038/nature13017
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1007/s11128-009-0100-6
https://doi.org/10.1002/3527603646
https://doi.org/10.1002/3527603646
https://doi.org/10.1002/3527603646
https://doi.org/10.1002/3527603646
https://doi.org/10.1002/3527603646
https://doi.org/10.1002/3527603646
https://doi.org/10.25673/89443
https://doi.org/10.25673/89443
https://doi.org/10.25673/89443
https://doi.org/10.25673/89443
https://doi.org/10.25673/89443
https://doi.org/10.25673/89443
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1515/zna-1953-0710
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1126/sciadv.1601540
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474


Quantum Software Ecosystem Design 183

68. Saggio, V., Asenbeck, B.E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., Friis, N.,
Harris, N.C., Hochberg, M., Englund, D., Wölk, S., Briegel, H.J., Walther, P.: Experimental
quantum speed-up in reinforcement learning agents. Nature 591(7849), 229 (2021). https://
doi.org/10.1038/s41586-021-03242-7

69. Feynman, R.P., et al.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–
488 (2018)

70. Fauseweh, B., Schering, P., Hüdepohl, J., Uhrig, G.S.: Efficient algorithms for the dynamics
of large and infinite classical central spin models. Phys. Rev. B 96, 054415 (2017). https://
doi.org/10.1103/PhysRevB.96.054415

71. Paeckel, S., Fauseweh, B., Osterkorn, A., Köhler, T., Manske, D., Manmana, S.R.: Detecting
superconductivity out of equilibrium. Phys. Rev. B 101, 180507 (2020). https://doi.org/10.
1103/PhysRevB.101.180507

72. Schwarz, L., Fauseweh, B., Tsuji, N., Cheng, N., Bittner, N., Krull, H., Berciu, M.,
Uhrig, G.S., Schnyder, A.P., Kaiser, S., Manske, D.: Classification and characterization of
nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11(1), 287
(2020). https://doi.org/10.1038/s41467-019-13763-5

73. Fauseweh, B., Zhu, J.X.: Laser pulse driven control of charge and spin order in the
two-dimensional Kondo lattice. Phys. Rev. B 102, 165128 (2020). https://doi.org/10.1103/
PhysRevB.102.165128

74. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., Zhou, X.Q., Love, P.J., Aspuru-Guzik,
A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat.
Commun. 5(1), 4213 (2014). https://doi.org/10.1038/ncomms5213

75. Fauseweh, B., Zhu, J.X.: Quantum computing Floquet energy spectra. Quantum 7, 1063
(2023). https://doi.org/10.22331/q-2023-07-20-1063

76. Fauseweh, B., Zhu, J.X.: Digital quantum simulation of non-equilibrium quantum many-body
systems. Quant. Inf. Process. 20(4), 138 (2021). https://doi.org/10.1007/s11128-021-03079-
z

77. Stollenwerk, T., O’Gorman, B., Venturelli, D., Mandra, S., Rodionova, O., Ng, H., Sridhar,
B., Rieffel, E.G., Biswas, R.: Quantum annealing applied to de-conflicting optimal trajectories
for air traffic management. IEEE Trans. Intell. Transport. Syst. 21(1), 285 (2019). https://doi.
org/10.1109/TITS.2019.2891235

78. Stollenwerk, T., Lobe, E., Jung, M.: International Workshop on Quantum Technology and
Optimization Problems, pp. 99–110. Springer, Berrlin (2019). https://doi.org/10.1007/978-3-
030-14082-3_9

79. Stollenwerk, T., Michaud, V., Lobe, E., Picard, M., Basermann, A., Botter, T.: Agile earth
observation satellite scheduling with a quantum annealer. IEEE Trans. Aerosp. Electr. Syst.
57(5), 3520 (2021). https://doi.org/10.1109/TAES.2021.3088490

80. Misra-Spieldenner, A., Bode, T., Schuhmacher, P.K., Stollenwerk, T., Bagrets, D., Wilhelm,
F.K.: Mean-field approximate optimization algorithm. PRX Quantum 4, 030335 (2023).
https://doi.org/10.1103/PRXQuantum.4.030335

81. Jordan, S.: Quantum Algorithm Zoo. https://quantumalgorithmzoo.org/. Accessed 04 Oct
2023

82. Montanaro, A.: Quantum algorithms: an overview. npj Quant. Inf. 2, 15023 (2016). https://
doi.org/10.1038/npjqi.2015.23

83. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc.
London. Ser. A Math. Phys. Sci. 439(1907), 553 (1992). https://doi.org/10.1098/rspa.1992.
0167

84. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411
(1997). https://doi.org/10.1137/S0097539796300921

85. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474 (1997).
https://doi.org/10.1137/S0097539796298637

https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1038/s41586-021-03242-7
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.96.054415
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1103/PhysRevB.101.180507
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1038/s41467-019-13763-5
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1103/PhysRevB.102.165128
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.22331/q-2023-07-20-1063
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1007/s11128-021-03079-z
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1109/TITS.2019.2891235
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1109/TAES.2021.3088490
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://doi.org/10.1103/PRXQuantum.4.030335
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://quantumalgorithmzoo.org/
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637


184 A. Basermann et al.

86. Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Grant, E., Wossnig, L., Rungger, I.,
Booth, G.H., Tennyson, J.: The variational quantum eigensolver: A review of methods and
best practices. Phys. Rep. 986, 1 (2022). https://doi.org/10.1016/j.physrep.2022.08.003. The
Variational Quantum Eigensolver: a review of methods and best practices

87. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R.,
Mitarai, K., Yuan, X., Cincio, L., Coles, P.J.: Variational quantum algorithms. Nat. Rev. Phys.
3(9), 625 (2021). https://doi.org/10.1038/s42254-021-00348-9

88. McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based
quantum simulation of imaginary time evolution. npj Quant. Inf. 5, 75 (2019). https://doi.org/
10.1038/s41534-019-0187-2

89. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm.
Preprint (2014). https://doi.org/10.48550/arXiv.1411.4028

90. Serrano, M.A., Perez-Castillo, R., Piattini, M.: Quantum Software Engineering. Springer
Nature, Cham (2022). https://doi.org/10.1007/978-3-031-05324-5

91. Spoletini, P.: Towards quantum requirements engineering. In: 2023 IEEE 31st International
Requirements Engineering Conference Workshops (REW), pp. 371–374. IEEE, Piscataway
(2023). https://doi.org/10.1109/REW57809.2023.00072

92. Yue, T., Ali, S., Arcaini, P.: Towards quantum software requirements engineering. Preprint
(2023). https://doi.org/10.48550/arXiv.2309.13358

93. ELEVATE (Enhanced probLEm solVing with quAntum compuTErs). https://www.dlr.de/sc/
en/desktopdefault.aspx/tabid-18455/29433_read-77059/. Accessed 04 Oct 2023

94. DLR Quantum Computing Initiative – We shape the quantum computing ecosystem. https://
qci.dlr.de/en/. Accessed 04 Oct 2023

95. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang,
I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic
resonance. Nature 414(6866), 883 (2001). https://doi.org/10.1038/414883a

96. Amico, M., Saleem, Z.H., Kumph, M.: Experimental study of Shor’s factoring algorithm
using the IBM Q experience. Phys. Rev. A 100, 012305 (2019). https://doi.org/10.1103/
PhysRevA.100.012305

97. Skosana, U., Tame, M.: Demonstration of Shor’s factoring algorithm for N = 21 on IBM
quantum processors. Sci. Rep. 11(1), 16599 (2021). https://doi.org/10.1038/s41598-021-
95973-w

98. Zhang, X.M., Li, T., Yuan, X.: Quantum state preparation with optimal circuit depth:
Implementations and applications. Phys. Rev. Lett. 129, 230504 (2022). https://doi.org/10.
1103/PhysRevLett.129.230504

99. Cirac, J.I., Blatt, R., Parkins, A.S., Zoller, P.: Preparation of Fock states by observation
of quantum jumps in an ion trap. Phys. Rev. Lett. 70, 762 (1993). https://doi.org/10.1103/
PhysRevLett.70.762

100. Wunderlich, H., Wunderlich, C., Singer, K., Schmidt-Kaler, F.: Two-dimensional cluster-state
preparation with linear ion traps. Phys. Rev. A 79, 052324 (2009). https://doi.org/10.1103/
PhysRevA.79.052324

101. Berwald, J., Chancellor, N., Dridi, R.: Understanding domain-wall encoding theoretically and
experimentally. Philosoph. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 381(2241), 20210410
(2023). https://doi.org/10.1098/rsta.2021.0410

102. Chancellor, N.: Domain wall encoding of discrete variables for quantum annealing and
QAOA. Quant. Sci. Technol. 4(4), 045004 (2019). https://doi.org/10.1088/2058-9565/ab33c2

103. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., Killoran, N.: Quantum embeddings for machine
learning. Preprint (2020). https://doi.org/10.48550/arXiv.2001.03622

104. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language.
Preprint (2017). https://doi.org/10.48550/arXiv.1707.03429

105. Cirq developers. Cirq (2023). https://doi.org/10.5281/zenodo.8161252. Full list of authors:
http://github.com/quantumlib/Cirq/graphs/contributors

106. Qiskit contributors. Qiskit: An open-source framework for quantum computing (2023).
https://doi.org/10.5281/zenodo.2573505. https://qiskit.org/

https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.1109/REW57809.2023.00072
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://doi.org/10.48550/arXiv.2309.13358
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://www.dlr.de/sc/en/desktopdefault.aspx/tabid-18455/29433_read-77059/
https://qci.dlr.de/en/
https://qci.dlr.de/en/
https://qci.dlr.de/en/
https://qci.dlr.de/en/
https://qci.dlr.de/en/
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1038/414883a
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1103/PhysRevA.100.012305
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevLett.70.762
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1103/PhysRevA.79.052324
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1098/rsta.2021.0410
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.1088/2058-9565/ab33c2
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.2001.03622
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.48550/arXiv.1707.03429
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
http://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://qiskit.org/
https://qiskit.org/
https://qiskit.org/


Quantum Software Ecosystem Design 185

107. Svore, K., Geller, A., Troyer, M., Azariah, J., Granade, C., Heim, B., Kliuchnikov, V.,
Mykhailova, M., Paz, A., Roetteler, M.: Q#: Enabling scalable quantum computing and
development with a high-level DSL. In: Proceedings of the Real World Domain Specific
Languages Workshop 2018, RWDSL2018. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3183895.3183901

108. Bichsel, B., Baader, M., Gehr, T., Vechev, M.: Silq: a high-level quantum language with
safe uncomputation and intuitive semantics. In: Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020, pp. 286–
300. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3385412.3386007

109. Foundation, E.: Qrisp (2023). https://www.qrisp.eu/. Accessed 21 Nov 2023
110. QIR Alliance: QIR Specification (2021). https://github.com/qir-alliance/qir-spec. Accessed

04 Oct 2023
111. Peduri, A., Bhat, S., Grosser, T.: QSSA: an SSA-based IR for quantum computing. In:

Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction,
CC 2022, pp. 2–14. Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3497776.3517772

112. Pérez-Castillo, R., Piattini, M.: Design of classical-quantum systems with UML. Computing
104(11), 2375 (2022). https://doi.org/10.1007/s00607-022-01091-4

113. Usaola, M.P.: In: Short Papers Proceedings of the 1st International Workshop on the
QuANtum SoftWare Engineering & Programming, Talavera de la Reina, Spain, February
11–12, 2020, CEUR Workshop Proceedings. Piattini, M., Peterssen, G., Pérez-Castillo, R.,
Hevia, J.L., Serrano, M.A. (eds.) CEUR-WS.org, vol. 2561, pp. 57–63 (2020). https://ceur-
ws.org/Vol-2561/paper6.pdf

114. García de la Barrera, A., García-Rodríguez de Guzmán, I., Polo, M., Piattini, M.: Quantum
software testing: State of the art. J. Softw. Evolut. Process 35(4), e2419 (2023). https://doi.
org/10.1002/smr.2419

115. Miranskyy, A., Zhang, L., Doliskani, J.: On Testing and Debugging Quantum Software.
Preprint (2021). https://doi.org/10.48550/arXiv.2103.09172

116. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802
(1982). https://doi.org/10.1038/299802a0

117. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Proq: Projection-based Runtime
Assertions for Debugging on a Quantum Computer. Preprint (2020). https://doi.org/10.48550/
arXiv.1911.12855

118. Liu, J., Byrd, G.T., Zhou, H.: Quantum Circuits for Dynamic Runtime Assertions in Quantum
Computation. In: Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’20, pp. 1017–1030.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3373376.
3378488

119. Campos, J., Souto, A.: QBugs: A Collection of Reproducible Bugs in Quantum Algorithms
and a Supporting Infrastructure to Enable Controlled Quantum Software Testing and Debug-
ging Experiments. Preprint (2021). https://doi.org/10.48550/arXiv.2103.16968

120. Zhao, P., Zhao, J., Miao, Z., Lan, S.: Bugs4Q: A Benchmark of Real Bugs for Quantum
Programs. Preprint (2021). https://doi.org/10.48550/arXiv.2108.09744

121. Honarvar, S., Mousavi, M.R., Nagarajan, R.: Property-based Testing of Quantum Programs
in Q#. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, ICSEW’20, pp. 430–435. Association for Computing Machinery,
New York (2020). https://doi.org/10.1145/3387940.3391459

122. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127 (1998).
https://doi.org/10.1103/PhysRevA.57.127

123. Preskill, J.: Lecture Notes for Physics 229: Quantum Information and Computation. Califor-
nia Institution of Technology, Pasadena (1998)

124. Herr, D., Nori, F., Devitt, S.J.: Optimization of lattice surgery is NP-hard. npj Quant. Inf. 3(1),
35 (2017). https://doi.org/10.1038/s41534-017-0035-1

https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://www.qrisp.eu/
https://www.qrisp.eu/
https://www.qrisp.eu/
https://www.qrisp.eu/
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://github.com/qir-alliance/qir-spec
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1145/3497776.3517772
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1007/s00607-022-01091-4
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://ceur-ws.org/Vol-2561/paper6.pdf
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.48550/arXiv.2103.09172
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.48550/arXiv.1911.12855
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.1145/3373376.3378488
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2103.16968
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.48550/arXiv.2108.09744
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1
https://doi.org/10.1038/s41534-017-0035-1


186 A. Basermann et al.

125. Botea, A., Kishimoto, A., Marinescu, R.: In: Proceedings of the Eleventh International
Symposium on Combinatorial Search (SoCS2018), vol. 9, pp. 138–142 (2018). https://doi.
org/10.1609/socs.v9i1.18463

126. Amy, M., Azimzadeh, P., Mosca, M.: On the controlled-NOT complexity of controlled-NOT-
phase circuits. Quant. Sci. Technol. 4(1), 015002 (2018). https://doi.org/10.1088/2058-9565/
aad8ca

127. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast
synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided Design Integr. Circ.
Syst. 32(6), 818 (2013). https://doi.org/10.1109/TCAD.2013.2244643

128. Schneider, S., Burgholzer, L., Wille, R.: In: Proceedings of the 28th Asia and South Pacific
Design Automation Conference, ASPDAC ’23, pp. 190–195 . Association for Computing
Machinery, New York (2023). https://doi.org/10.1145/3566097.3567929

129. Nam, Y., Ross, N.J., Su, Y., Childs, A.M., Maslov, D.: Automated optimization of large
quantum circuits with continuous parameters. npj Quant. Inf. 4(1), 23 (2018). https://doi.
org/10.1038/s41534-018-0072-4

130. Kharkov, Y., Ivanova, A., Mikhantiev, E., Kotelnikov, A.: Arline Benchmarks: Automated
Benchmarking Platform for Quantum Compilers. Preprint (2022). https://doi.org/10.48550/
arXiv.2202.14025

131. Khalate, P., Wu, X.C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi,
G.G. , Zou, X., Matsuura, A.Y.: An LLVM-based C++ Compiler Toolchain for Variational
Hybrid Quantum-Classical Algorithms and Quantum Accelerators. Preprint (2022). https://
doi.org/10.48550/arXiv.2202.11142

132. Epping, M.: Hybrid simplification rules for boundaries of quantum circuits. Preprint (2022).
https://doi.org/10.48550/arXiv.2206.03036

133. NVIDIA, Vingelmann, P., Fitzek, F.H.: CUDA (2020). https://developer.nvidia.com/cuda-
toolkit

134. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based
quantum computation. Nat. Phys. 5(1), 19 (2009). https://doi.org/10.1038/nphys1157

135. Lippert, T., Michielsen, K.: In: NIC Symposium 2022: Proceedings, Publication Series of
the John von Neumann Institute for Computing (NIC) NIC Series, vol. 51, pp. 3 – 23. NIC
Symposium 2022, Jülich, Germany, 29 Sep 2022–30 Sep 2022. Forschungszentrum Jülich
GmbH Zentralbibliothek, Verlag, Jülich (2022). https://juser.fz-juelich.de/record/917067

136. HPCQC. Where quantum accelerates the future of supercomputing. https://www.hpcqc.org/.
Accessed 04 Oct 2023

137. Janzing, D., Wocjan, P., Beth, T.: Identity check is QMA-complete. Preprint (2003). https://
doi.org/10.48550/arXiv.quant-ph/0305050

138. Viamontes, G.F., Markov, I.L., Hayes, J.P.: In: 2007 IEEE/ACM International Conference on
Computer-Aided Design, pp. 69–74 (2007). https://doi.org/10.1109/ICCAD.2007.4397246

139. Burgholzer, L., Wille, R.: In: 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), IEEE, pp. 127–132. IEEE Press, Piscataway (2020). https://doi.org/10.
1109/ASP-DAC47756.2020.9045153

140. Burgholzer, L., Wille, R.: QCEC: A JKQ tool for quantum circuit equivalence checking.
Softw. Impacts 7, 100051 (2021). https://doi.org/10.1016/j.simpa.2020.100051. https://www.
sciencedirect.com/science/article/pii/S2665963820300427

141. D-Wave. Ocean. https://github.com/dwavesystems/dwave-ocean-sdk
142. DLR-SC. quark (2023). https://gitlab.com/quantum-computing-software/quark
143. Lobe, E., Lutz, A.: Minor Embedding in Broken Chimera and Derived Graphs is NP-

complete. In: Theoretical Computer Science 989 (2024). https://doi.org/10.1016/j.tcs.2023.
114369

144. Cai, J., W.G. Macready, Roy, A.: A practical heuristic for finding graph minors. Preprint
(2014). https://doi.org/10.48550/arXiv.1406.2741

145. Lobe, E., Schürmann, L., Stollenwerk, T.: Embedding of complete graphs in broken Chimera
graphs. Quant. Inf. Process. 20(7), 1 (2021). https://doi.org/10.1007/s11128-021-03168-z

146. Lobe, E., Kaibel, V.: Optimal sufficient requirements on the embedded Ising problem in
polynomial time. Quant. Inf. Process. 22(305), 1 (2023). https://doi.org/10.1007/s11128-023-
04058-2

https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1609/socs.v9i1.18463
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.14025
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2202.11142
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://doi.org/10.48550/arXiv.2206.03036
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://juser.fz-juelich.de/record/917067
https://www.hpcqc.org/
https://www.hpcqc.org/
https://www.hpcqc.org/
https://www.hpcqc.org/
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.48550/arXiv.quant-ph/0305050
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ICCAD.2007.4397246
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1109/ASP-DAC47756.2020.9045153
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://doi.org/10.1016/j.simpa.2020.100051
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://www.sciencedirect.com/science/article/pii/S2665963820300427
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://gitlab.com/quantum-computing-software/quark
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.1016/j.tcs.2023.114369
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.48550/arXiv.1406.2741
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-021-03168-z
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2
https://doi.org/10.1007/s11128-023-04058-2


Quantum Software Ecosystem Design 187

147. Lidar, D.A.: Review of Decoherence-Free Subspaces, Noiseless Subsystems, and Dynamical
Decoupling, pp. 295–354. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118742631.
ch11

148. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems.
Phys. Rev. A 58, 2733 (1998). https://doi.org/10.1103/PhysRevA.58.2733

149. Lidar, D.A., Birgitta Whaley, K.: Decoherence-Free Subspaces and Subsystems, pp. 83–120.
Springer, Berlin (2003). https://doi.org/10.1007/3-540-44874-8_5

150. Mueller, T., Stollenwerk, T., Headley, D., Epping, M., Wilhelm, F.K.: Coherent and non-
unitary errors in ZZ-generated gates. Preprint (2023). https://doi.org/10.48550/arXiv.2304.
14212

151. Cai, Z., Babbush, R., Benjamin, S.C., Endo, S., Huggins, W.J., Li, Y., McClean, J.R., O’Brien,
T.E.: Quantum Error Mitigation. Preprint (2023). https://doi.org/10.48550/arXiv.2210.00921

152. Endo, S.: Hybrid quantum-classical algorithms and error mitigation. Ph.D. Thesis,
University of Oxford (2019). https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-
18946aa5df85

153. Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits.
Phys. Rev. Lett. 119, 180509 (2017). https://doi.org/10.1103/PhysRevLett.119.180509

154. Beisel, M., Barzen, J., Leymann, F., Truger, F., Weder, B., Yussupov, V.: Configurable readout
error mitigation in quantum workflows. Electronics 11(19), 2983 (2022). https://doi.org/10.
3390/electronics11192983

155. Gottesman, D.: An Introduction to Quantum Error Correction and Fault-Tolerant Quantum
Computation. Preprint (2009). https://doi.org/10.48550/arXiv.0904.2557

156. Bacon, D.: Introduction to Quantum Error Correction, Chap. 2, pp. 46–77. Cambridge
University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139034807.004

157. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226 (2019).
https://doi.org/10.1080/00107514.2019.1667078

158. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: Resource analysis
of different strategies. Phys. Rev. A 77, 032322 (2008). https://doi.org/10.1103/PhysRevA.77.
032322

159. Flammia, S.T., Wallman, J.J.: Efficient estimation of pauli channels. ACM Trans. Quant.
Comput. 1(1), 1 (2020). https://doi.org/10.1145/3408039

160. Wimmer, C., Szangolies, J., Epping, M.: Calibration of Syndrome Measurements in a Single
Experiment. Preprint (2023). https://doi.org/10.48550/arXiv.2305.03004

161. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A
52, R2493 (1995). https://doi.org/10.1103/PhysRevA.52.R2493

162. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 452(1954), 2551 (1996). https://doi.org/10.1098/rspa.1996.0136

163. Laflamme, R., Miquel, C., J.P. Paz, Zurek, W.H.: Perfect Quantum Error Correction Code.
Preprint (1996). https://doi.org/10.48550/arXiv.quant-ph/9602019

164. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement
and quantum error correction. Phys. Rev. A 54, 3824 (1996). https://doi.org/10.1103/
PhysRevA.54.3824

165. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv.
52(6), 1191 (1997). https://doi.org/10.1070/RM1997v052n06ABEH002155

166. Shor, P.: In: Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65
(1996). https://doi.org/10.1109/SFCS.1996.548464

167. Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation: an
overview of existing approaches. Theory Comput. Syst, 63(4), 715 (2019). https://doi.org/
10.1007/s00224-018-9872-3

168. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for
quantum circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(2), 584–
594 (2008). https://doi.org/10.1093/ietfec/e91-a.2.584

169. D’Ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Quantum Tomography. Preprint (2003). https://
doi.org/10.48550/arXiv.quant-ph/0302028

https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1002/9781118742631.ch11
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.1007/3-540-44874-8_5
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2304.14212
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.48550/arXiv.2210.00921
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://ora.ox.ac.uk/objects/uuid:6733c0f6-1b19-4d12-a899-18946aa5df85
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.3390/electronics11192983
https://doi.org/10.3390/electronics11192983
https://doi.org/10.3390/electronics11192983
https://doi.org/10.3390/electronics11192983
https://doi.org/10.3390/electronics11192983
https://doi.org/10.3390/electronics11192983
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1017/CBO9781139034807.004
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1103/PhysRevA.77.032322
https://doi.org/10.1145/3408039
https://doi.org/10.1145/3408039
https://doi.org/10.1145/3408039
https://doi.org/10.1145/3408039
https://doi.org/10.1145/3408039
https://doi.org/10.1145/3408039
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.48550/arXiv.2305.03004
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.48550/arXiv.quant-ph/9602019
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.1093/ietfec/e91-a.2.584
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028
https://doi.org/10.48550/arXiv.quant-ph/0302028


188 A. Basermann et al.

170. D’Ariano, G.M., Maccone, L., Presti, P.L.: Quantum calibration of measurement instrumen-
tation. Phys. Rev. Lett. 93, 250407 (2004). https://doi.org/10.1103/PhysRevLett.93.250407

171. Artiles, L.M., Gill, R.D., Gută, M.I.: An invitation to quantum tomography. J. Roy. Stat.
Soc. Ser. B (Statist. Methodol.) 67(1), 109 (2005). https://doi.org/10.1111/j.1467-9868.2005.
00491.x

172. Gaebler, J.P., Meier, A.M., Tan, T.R., Bowler, R., Lin, Y., Hanneke, D., Jost, J.D., Home, J.P.,
Knill, E., Leibfried, D., Wineland, D.J.: Randomized benchmarking of multiqubit gates. Phys.
Rev. Lett. 108, 260503 (2012). https://doi.org/10.1103/PhysRevLett.108.260503

173. SPEC (Standard Performance Evaluation Corporation). SPEC benchmark and tools. https://
spec.org/benchmarks.html. Accessed 04 Oct 2023

174. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK Benchmark: past, present and future.
Concurr. Comput. Pract. Exper. 15(9), 803 (2003). https://doi.org/10.1002/cpe.728

175. Tomesh, T., Gokhale, P., Omole, V., Ravi, G.S., Smith, K.N., Viszlai, J., Wu, X.C.,
Hardavellas, N., Martonosi, M.R., Chong, F.T.: SupermarQ: A scalable quantum benchmark
suite. Preprint (2022). https://doi.org/10.48550/arXiv.2202.11045

176. Dallaire-Demers, P.L., Stechly, M., Gonthier, J.F., Bashige, N.T., Romero, J., Cao, Y.: An
application benchmark for fermionic quantum simulations. Preprint (2020). https://doi.org/
10.48550/arXiv.2003.01862

177. Röhrig-Zöllner, M., Thies, J., Basermann, A.: Performance of the low-rank TT-SVD for large
dense tensors on modern MultiCore CPUs. SIAM J. Sci. Comput. 44(4), C287 (2022). https://
doi.org/10.1137/21m1395545

178. Damm, W., Möhlmann, E., Peikenkamp, T., Rakow, A.: LNCS, pp. 182–205. Springer, Berlin
(2018). https://doi.org/10.1007/978-3-319-95246-8_11

179. Kröger, Scheidegger, Becker, Deublein, Fehlberg, Galassi, Hohl, Koester, Zanella:
Autonomes fahren. ein treiber zukünftiger mobilität (2022). https://doi.org/10.5281/
ZENODO.5907154

180. de Moura, L., Bjørner, N.: TACAS, pp. 337–340. Springer, Berlin (2008). https://doi.org/10.
1007/978-3-540-78800-3_24

181. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: In: Proceedings of the 1st
Annual Conference on Robot Learning, Proceedings of Machine Learning Research. Levine,
S., Vanhoucke, V., Goldberg, K. (Eds.) , vol. 78, pp. 1–16. PMLR (2017). https://proceedings.
mlr.press/v78/dosovitskiy17a.html

182. Apache Software Foundation, Cloudera, Hortonworks. Apache Nifi. https://nifi.apache.org/.
Accessed 04 Oct 2023

183. Boden, B., Flink, J., Först, N., Mischke, R., Schaffert, K., Weinert, A., Wohlan, A., Schreiber,
A.: RCE: An integration environment for engineering and science. SoftwareX 15, 100759
(2021). https://doi.org/10.1016/j.softx.2021.100759

184. Texas Instruments. Laboratory Virtual Instrument Engineering Workbench (LabVIEW).
https://www.ni.com/labview. Accessed 04 Oct 2023

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1103/PhysRevLett.93.250407
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1111/j.1467-9868.2005.00491.x
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://doi.org/10.1103/PhysRevLett.108.260503
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2202.11045
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.48550/arXiv.2003.01862
https://doi.org/10.1137/21m1395545
https://doi.org/10.1137/21m1395545
https://doi.org/10.1137/21m1395545
https://doi.org/10.1137/21m1395545
https://doi.org/10.1137/21m1395545
https://doi.org/10.1137/21m1395545
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.5281/ZENODO.5907154
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://nifi.apache.org/
https://nifi.apache.org/
https://nifi.apache.org/
https://nifi.apache.org/
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://doi.org/10.1016/j.softx.2021.100759
https://www.ni.com/labview
https://www.ni.com/labview
https://www.ni.com/labview
https://www.ni.com/labview
https://www.ni.com/labview
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Development and Deployment of
Quantum Services

Enrique Moguel, Jose Garcia-Alonso, and Juan M. Murillo

Abstract Quantum computing is advancing by leaps and bounds to become a
commercial reality. This revolutionary new technology aims to improve essential
areas such as cybersecurity, financial services, and medicine. The growth of this
technology has encouraged different research centers and big companies such
as IBM, Amazon, Microsoft, and Google to dedicate considerable efforts to the
development of new technologies that bring quantum computing to the market.
However, these technologies are not yet mature and create a major problem of
vendor lock-in. Therefore, new techniques and tools are needed to facilitate access to
this technology and to allow developers to increase the level of abstraction at which
they work. In this chapter, we perform a technical comparison between different
quantum computing service providers using a case study by performing empirical
tests based on the Traveling Salesman Problem. This study highlights the differences
between the major providers. To address these differences and reduce the vendor
lock-in effect, we made three proposals: an extension of the Quantum API Gateway
to support the different vendors; a code generator making use of a modification of
the OpenAPI specification; and a workflow to automate the continuous deployment
of these services making use of GitHub Actions. This would allow programmers
to deploy quantum code without specific knowledge of the major vendors, which
would facilitate access and simplify the development of quantum applications.

Keywords Quantum computing · Quantum software engineering · Quantum
services · Techniques and tools

E. Moguel (�) · J. Garcia-Alonso · J. M. Murillo
Quercus Software Engineering Group, University of Extremadura, Cáceres, Spain
e-mail: enrique@unex.es; jgaralo@unex.es; juan.murillo@cenits.es

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_8

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 8&domain=pdf

 885 56845
a 885 56845 a
 
mailto:enrique@unex.es
mailto:enrique@unex.es

 7904 56845 a 7904 56845 a
 
mailto:jgaralo@unex.es
mailto:jgaralo@unex.es

 14710 56845 a 14710
56845 a
 
mailto:juan.murillo@cenits.es
mailto:juan.murillo@cenits.es
mailto:juan.murillo@cenits.es
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8
https://doi.org/10.1007/978-3-031-64136-7_8


190 E. Moguel et al.

1 Introduction

Quantum computing has indeed been making significant strides toward becoming a
commercial reality [1]. Major technology companies have developed functional
quantum computers, and quantum programming languages and simulators have
become available. The ability for the general public to access real quantum
computers through the cloud has also become a reality [2, 3]. All this is motivating
software development companies to take their first steps in the quantum domain by
launching their own proposals for the integral development of quantum software
[4, 5, 6, 7, 8].

With the advent of the quantum era, computing will take advantage of the robust-
ness and background of classical computing for certain tasks and the computational
power of quantum computing to efficiently solve complex problems [9]. These
collaborative systems are often referred to as classical-quantum hybrid systems
[10, 11]. Leveraging the main principles from service engineering and service
computing is a natural approach to managing this coexistence and collaboration.

There are several compelling reasons for adopting a service-oriented approach
in this context. First, as quantum hardware technology matures and becomes more
cost-effective, companies are likely to adopt quantum infrastructure and quantum
software as a service, similar to how they currently use classical computing
resources. Large technology companies such as Amazon, Microsoft, IBM, and
Google have already started to explore quantum computing [12], and they may
offer both classical and quantum computing services in the future.

Second, it’s reasonable to assume that quantum systems will initially be used to
address specific portions of problems that classical architectures struggle to solve
efficiently. For example, in healthcare, quantum computing could accelerate drug
discovery and molecular simulations [13]; in finance, it might help analyze complex
scenarios and optimize portfolios [14]; or quantum computing could also play a role
in cryptography, logistics, climate modeling, and more [15, 16, 17]. The key idea
is to leverage quantum capabilities which offer a clear advantage while relying on
classical computing for tasks where it remains efficient.

In summary, the coexistence and collaboration between classical and quantum
systems are expected to define the quantum computing landscape for the foreseeable
future. Leveraging service-oriented principles can help organizations navigate this
transition and harness the potential of both classical and quantum computing
resources effectively.

Therefore, relying on quantum services is a promising approach to leverage the
capabilities of quantum computing in various applications. However, it’s important
to recognize that invoking a quantum service differs significantly from invoking a
classical service due to the unique characteristics of quantum computing.

Conceptually, invoking a quantum program is akin to invoking a classical service
in that it involves making a request and receiving a result. However, quantum
services introduce complexities related to the inherent nature of quantum computing
[18, 19, 20]:



Development and Deployment of Quantum Services 191

• Entanglement and Superposition. Quantum systems can exist in states of
entanglement and superposition, which means that they can represent multiple
solutions simultaneously. This contrasts with classical systems, where the output
is deterministic. Quantum services need to handle these quantum states and
provide mechanisms for collapsing them into a single outcome when observed.

• Quantum Specificity. Quantum algorithms and their parameters are often highly
dependent on the specific quantum hardware on which they run. This makes it
challenging to create quantum services that are hardware-agnostic, as classical
services typically are. Each quantum architecture may require tailored algorithms
and configurations.

• Error Considerations. Quantum computations are susceptible to errors due to
factors like noise and decoherence. The return of results from a quantum process
may be subject to such errors. Additionally, verifying intermediate results during
a quantum computation is challenging, as the act of measurement can collapse
the quantum state.

• Diverse Skill sets. Developing quantum algorithms and services for different
quantum architectures demands diverse skill sets. For example, developers
working with circuit-based quantum programming need expertise in quantum
gates, while those working with quantum annealing require skills in adapting
problems to this specific approach.

Given these challenges, creating quantum services that adhere to the principles
of service engineering and provide the same level of modularity, reusability,
and maintainability as classical services are currently difficult. Quantum service
engineering [21], as a specialized field, seeks to address these challenges and
develop best practices for designing and deploying quantum services effectively.

In this chapter, we review the background (Sect. 2) in the literature related
to quantum service engineering. Subsequently, in Sect. 3 we show an empirical
analysis that we have performed for the main quantum computing service providers.
Next, in Sect. 4 we show the progress made in standardization in accessing service
providers. In Sect. 5 we then advance the work in the area of service generation
for quantum computing. Then, in Sect. 6 we define the existing methods and tools
for deploying quantum services. Finally, conclusions to this work are presented in
Sect. 7.

2 Background

Service-oriented computing (SOC) [22] has played a pivotal role in driving
innovation in the computing field over the past few decades [23]. It has significantly
impacted both research and industry, leading to transformative changes in the way
software is developed and deployed. From service-oriented architectures [24] to
cloud computing [25], SOC has had a major impact on both research and industry.



192 E. Moguel et al.

The SOC paradigm revolves around the use of services as fundamental building
blocks to enable the development of applications that are fast, cost-effective,
interoperable, adaptable, and capable of massive distribution. This paradigm has
brought about a fundamental shift in software development, ushering in an era of
smart devices and ubiquitous applications that permeate every aspect of our lives.

Some key technological foundations and developments have contributed to the
success of SOC:

• Service-Oriented Architecture (SOA): SOA provides a framework for orga-
nizing and using services in a flexible and modular manner [26]. It has been
instrumental in structuring software systems around services.

• Semantic Web: The Semantic Web extends the capabilities of the World Wide
Web by adding a semantic layer, enabling more meaningful interactions between
machines [27]. It has contributed to the intelligent discovery and composition of
services.

• Standards and Recommendations: Standards such as OpenAPI [28] and W3C
Thing Description [29] have played a crucial role in specifying and describing
services in a standardized manner, making it easier for developers to understand
and utilize them.

• Service Composition: Service composition allows the combination of multiple
services or microservices to create higher-level services that can support complex
tasks or entire business processes.

The primary goal of these technological advancements has been to enhance
flexibility and enable seamless integration in the realm of distributed applications.
By adopting SOC principles and technologies, organizations have been able to build
more agile and adaptable software systems, driving innovation and transforming
various industries.

However, the evolution and benefits seen in classical computing have not yet
been fully replicated in the realm of quantum computing. Quantum computers,
which are still expensive to build and operate, have followed a model that resembles
Quantum Computing as a Service (QCaaS) [30]. This model is somewhat analogous
to the classical Infrastructure as a Service (IaaS) [31] model in cloud computing.
While QCaaS allows developers to access quantum computers through the cloud, it’s
important to note that this access is highly dependent on specific quantum hardware,
and developers typically require a deep understanding of quantum computing to
harness its advantages.

Efforts are underway to increase the level of abstraction and accessibility of
QCaaS. Companies like Amazon (Amazon Braket),1 IBM (IBM Quantum),2 and
Microsoft (Azure Quantum)3 have introduced platforms that provide a development
environment for quantum software engineers. These platforms aim to simplify the

1 https://aws.amazon.com/braket.
2 https://www.ibm.com/quantum.
3 https://quantum.microsoft.com.

https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://quantum.microsoft.com
https://quantum.microsoft.com
https://quantum.microsoft.com
https://quantum.microsoft.com


Development and Deployment of Quantum Services 193

process of working with quantum computing resources and integrate classical and
quantum software.

On the other hand, platforms like QPath4 offer comprehensive ecosystems that
bridge the classical and quantum realms of software development. These platforms
provide a quantum development and application life cycle environment, fostering
the creation of high-quality quantum software.

In the academic field, research efforts are starting to emerge in the field of
quantum software engineering. Some papers focus on translating lessons from
classical software engineering to enhance the quality of quantum software [32, 33].
However, there remains a relatively small body of work that specifically addresses
the service engineering perspective for quantum and hybrid software [34]. In
addition, innovations like Quantum Application as a Service (QaaS) have been
proposed to bridge the gap between classical service engineering and quantum
software [35, 36]. These initiatives recognize the need for a service-oriented
approach to quantum service development.

These developments reflect a growing awareness of the importance of abstracting
and simplifying access to quantum computing resources and services [37, 38].
They aim to make quantum computing more accessible to a broader range of
developers, including those who may not possess an in-depth understanding of
quantum mechanics but can leverage quantum resources for various applications.

Therefore, in the following sections, we will present an empirical study of the
main providers of quantum computing services. In addition, we will discuss the
main limitations associated with access to this technology. Subsequently, we will
delve into the different alternatives proposed in the literature to address these issues.

3 Quantum Providers

The growing interest and investment in quantum computing have positioned it as
an emerging commercial reality [32]. Major research centers, large companies, and
countries recognize the potential impact of quantum computing on future society.
Consequently, quantum computing is on a trajectory to become as popular and well
known as classical computing is today [39]. This, combined with the expanding
range of applications, makes quantum computing highly attractive to technology
companies and researchers alike.

Several prominent computer companies have already developed functional quan-
tum computers. These achievements are the result of substantial efforts and invest-
ments in quantum computer construction. Companies are working on processors
with increasing numbers of qubits and exploring solutions to address challenges
like noise and information loss [40]. For instance, Google presented its Sycamore
quantum chip in 2019 with 53 qubits, the Riggetti company at the end of 2022

4 https://www.quantumpath.es.

https://www.quantumpath.es
https://www.quantumpath.es
https://www.quantumpath.es
https://www.quantumpath.es


194 E. Moguel et al.

developed the Aspen-M-3 chip with 80 qubits, and IBM presented Osprey in
November 2022, with a 433-qubit quantum processor. In this regard, IBM, one of
the leading companies in the development of quantum computers, plans to launch
Condor with an 1121-qubit quantum chip by the end of 2023, Flamingo with at least
1386 qubits in 2024, and Kookaburra with no less than 4158 qubits in 2025.

These advancements signal the rapid development of quantum computing and
its journey from research laboratories to the broader technology landscape, with
potential applications across various industries [1].

The emergence of quantum computing has brought with it a proliferation of
quantum programming languages and simulators, making quantum computing
resources increasingly accessible. The availability of real quantum computers
through cloud platforms has further accelerated this trend, enabling the general
public to experiment with quantum computing [4, 6, 5].

This evolution has sparked the interest of software development companies,
leading them to explore the development of comprehensive quantum software
solutions. In light of these developments, this section undertakes an empirical
analysis of quantum computing service providers, examining them from a software
engineering perspective. The number of companies offering quantum services has
grown significantly, as has the diversity of quantum computers and alternatives
for executing quantum algorithms and tasks. With this abundance of choices, the
process of selecting the most suitable technology for a given task becomes nontrivial
[41].

The primary objective of this analysis is to assess and compare several tech-
nological alternatives using consistent criteria. The goal is to provide insights into
the strengths and weaknesses of different quantum computing service providers.
Additionally, this analysis aims to highlight the challenges and issues faced by
quantum software developers who want to use these providers.

To conduct this assessment, a Quantum Phase Estimation (QPE) algorithm
has been chosen as a case study. This algorithm will be employed to solve the
Travelling Salesman Problem (TSP) and will be developed, deployed, and executed
on various quantum machines using different technologies. This case study will
provide practical insights into the capabilities and limitations of different quantum
computing options for solving real-world problems.

The Traveling Salesman Problem (TSP), as identified by Karp in 1972 [42], falls
into the category of NP-hard problems. In this class of problems, if the algorithm is
divided into smaller sub-problems, each of these sub-problems is as complex as the
original problem. This inherent complexity is one of the reasons for choosing the
TSP as a case study. Furthermore, the TSP is notable for lacking an optimal solution
found in classical computation. These problems possess a unique characteristic:
as the problem size increases, the number of possible solutions typically grows
exponentially.

In the analysis that follows, we will examine some of the most popular and
innovative solutions available for developing and executing quantum software. Our
focus will prioritize integrated tools and options for quantum circuit development
provided by these platforms over local alternatives, whenever applicable.



Development and Deployment of Quantum Services 195

The primary vendors included in this analysis are IBM Quantum,5 Amazon
Braket,6 Azure Quantum,7 and Google Quantum AI.8 While other quantum plat-
forms and service providers were initially considered, they were ultimately excluded
for various reasons. Some were excluded because they significantly deviated from
the gate-based model architecture used by other quantum computers, rendering a
fair comparison difficult (e.g., D-Wave Systems9). Others were excluded because
they did not function as independent quantum service providers but rather relied
entirely on other platforms to provide quantum computing resources for algorithm
execution (e.g., QC Ware Forge10).

Another platform, Stim [43], which simulates the behavior of stabilizing circuits,
was also excluded. It’s important to note that Stim does not function as a quantum
service provider in the same vein as IBMQuantum or Azure Quantum. Instead, Stim
serves as a software tool for simulating the behavior of quantum circuits. While not
directly comparable to the gate-based model used by other quantum computers, Stim
remains a valuable resource for those interested in quantum computing.

Figure 1 shows a first review of the main vendors included in this study. The
figure not only highlights the numerous quantum computers and simulators offered
by these vendors but also includes the main languages and libraries they offer for
the development of quantum algorithms. Therefore, it can be seen that companies
are making great efforts in quantum computing, especially in building quantum
computers and processors with a higher number of qubits, as well as offering
multiple simulators that allow the study of a quantum system in a programmable
way. In addition to quantum hardware, the new paradigm of quantum computing
also includes new quantum programming languages and libraries, fundamental
in the development of quantum software, with Python being the most common
language among the vendors analyzed.

The comparison included in the following sections is performed at different
levels, analyzing the vendors themselves along with the services offered, and
finally developing a quantum algorithm in each of them and running that algorithm
on the quantum hardware provided. Although we have included simulators in
the comparison, to analyze the performance and capabilities of these quantum
vendors we have exclusively used real quantum computers provided by the vendors
analyzed.

To find out what is the best time to perform experiments on the quantum
machines of these vendors, we have consulted the specific guidelines and recom-
mendations of each vendor on what is the best time of the day to perform runs
on their quantum machines, in addition to having tested over a sufficient period of

5 https://www.ibm.com/quantum.
6 https://aws.amazon.com/braket.
7 https://azure.microsoft.com/products/quantum.
8 https://quantumai.google.
9 https://www.dwavesys.com.
10 https://forge.qcware.com.

https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://www.ibm.com/quantum
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://aws.amazon.com/braket
https://azure.microsoft.com/products/quantum
https://azure.microsoft.com/products/quantum
https://azure.microsoft.com/products/quantum
https://azure.microsoft.com/products/quantum
https://azure.microsoft.com/products/quantum
https://azure.microsoft.com/products/quantum
https://quantumai.google
https://quantumai.google
https://quantumai.google
https://www.dwavesys.com
https://www.dwavesys.com
https://www.dwavesys.com
https://www.dwavesys.com
https://forge.qcware.com
https://forge.qcware.com
https://forge.qcware.com
https://forge.qcware.com


196 E. Moguel et al.

Fig. 1 Overview of quantum providers

time to validate the experiment. In addition, we have also taken into account factors
such as the availability of computing resources and the workload of the quantum
machine at that time. All this is to achieve more accurate results and to make the
vendor comparison effective.

The implementation of the algorithm for each of the vendors analyzed can be
found in the Bitbucket repository.11

3.1 IBM Quantum

IBM Quantum’s decision to provide access to quantum computers via the cloud
has been pivotal in democratizing quantum computing. It has allowed researchers,
developers, and enthusiasts worldwide to experiment with quantum algorithms
without needing specialized hardware.

IBM Quantum offers a comprehensive set of tools and services for quantum
computing. Here are some key components of IBM Quantum’s quantum computing
ecosystem:

11 https://bitbucket.org/spilab/sqj-tsp-code.git.

https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git


Development and Deployment of Quantum Services 197

• Quantum Computers. IBM Quantum provides access to a variety of quantum
computers through the cloud. These quantum computers have different numbers
of qubits and capabilities, allowing users to choose the one that suits their needs.

• Qiskit. Qiskit is an open-source quantum computing framework developed by
IBM. It provides a rich set of tools and libraries for quantum programming. Users
can define quantum circuits, execute them on real or simulated quantum hard-
ware, and work with quantum algorithms. Qiskit supports multiple programming
languages, including Python.

• Qiskit Runtime. Qiskit Runtime is a cloud-based service offered by IBM
Quantum. It allows users to run complex quantum algorithms without having
to manage the low-level details of execution. Developers can create quantum
programs that leverage Qiskit Runtime to execute on IBM’s quantum computers.

• Quantum Composer. The Quantum Composer is a graphical user interface
provided by IBM Quantum. It simplifies the process of designing quantum
circuits using a drag-and-drop interface. Users can visually construct quantum
circuits and then export them for execution.

• OpenQASM. OpenQASM is an open quantum assembly language developed
by IBM. It provides a textual representation of quantum circuits and allows
users to define quantum operations at a low level. Quantum circuits written in
OpenQASM can be executed on IBM Quantum’s hardware.

• Cloud-Based Access. IBM Quantum offers cloud-based access to its quantum
computers, making it easy for users to run quantum experiments without the
need for specialized hardware. Users can access these quantum computers via
the IBM Quantum Experience platform.

• Community and Resources. IBM Quantum has an active community of
researchers, developers, and quantum enthusiasts. They provide extensive
documentation, tutorials, and educational resources to help users get started
with quantum programming and research.

• Quantum Software Development Kit (SDK). IBM Quantum offers a com-
prehensive SDK that includes Qiskit, Qiskit Aqua (for quantum applications),
Qiskit Aer (for quantum simulation), and other tools for quantum software
development.

Overall, IBM Quantum provides a robust ecosystem for quantum computing,
making it accessible to a wide range of users, from beginners to experienced
researchers and developers.

Table 1 summarizes the analysis of the general aspects of IBM Quantum.
The circuit representing the TSP has been implemented using Qiskit, an open-

source SDK for programming quantum circuits based on Python, accessed via
Jupyter Notebooks hosted in the IBM Quantum Lab, and by the Pay-As-You-Go
Plan. In order to be able to use the quantum composition tool, the circuit has also
been transformed from a Qiskit format to an OpenQASM 2.0 format. The visual
representation of a fragment of the circuit is depicted in Fig. 2.

The process of creating this quantum circuit involves defining six qubits named
“unit,” eight qubits named “eigen,” and six classical bits to store measured results.



198 E. Moguel et al.

Table 1 General aspects analysis of IBM Quantum

Category Description

Type of
quantum
technology

Gate-based quantum computing model

Purpose Develop quantum programs, run them, and analyze the results

QPUs and
Simulators

5 simulators, of different types, with 5000, 100, 63, 32, and 32 qubits
respectively 21 QPUs grouped by processor type: Eagle (1 QPU of 127
qubits), Hummingbird (1 QPU of 65 qubits), Falcon (19 QPUs from 5 to 27
qubits)

General
Characteristics

Medium flexibility, allowing development in Qikist and OpenQASM 2.0

Developer
tools

Qiskit Runtime: workloads optimization Quantum Lab: Python Notebooks
with Qiskit Quantum Composer: Drag and drop and coding based on
OpenQASM 2.0

Plans and
pricing

3 different plans (Free Plan, Pay-As-You-Go Plan, and Premium Plan)

Fig. 2 Partial representation of the TSP implemented with Qiskit in IBM Quantum

The “unit” qubits represent the distances between cities, which are encoded as
phases. The “eigen” qubits represent the computational basis states that have
eigenvalues associated with them. Quantum gates are then applied to the circuit,
including X gates to select input eigenvalues and Hadamard gates to create a
superposition state. Also, multiple unitary gates are applied to corresponding qubits
before the QFT gate is applied to the “unit” qubits, which are then measured, storing
the results in the six classical bits. The complete description of the design of the
circuit can be found on Qiskit’s official Web site.12

Then, we executed the quantum algorithm on IBM Quantum hardware, using a
total of 8192 shots. In quantum computing, a “shot” refers to a single execution of

12 https://qiskit.org/textbook/ch-paper-implementations/tsp.html.

https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html
https://qiskit.org/textbook/ch-paper-implementations/tsp.html


Development and Deployment of Quantum Services 199

a quantum circuit on the quantum computer. The exact number of shots required
for a quantum machine to execute an algorithm can vary based on several factors.
These factors include the size and complexity of the problem instance being solved,
the specific quantum algorithm used, the connectivity of qubits in the quantum
hardware, and the level of noise or errors present in the quantum system.

For this particular experiment, a decision was made to use 8192 shots across
all providers. This choice aligns with the limits set by quantum service providers
to ensure a high quality of service and maintain consistency in the execution of
quantum circuits across different platforms [44].

The Traveling Salesman Problem (TSP) algorithm used in this experiment
involved executing the same quantum circuit six times, once for each eigenstate.
Each eigenstate corresponds to a different route that could potentially solve the TSP.
After each circuit execution, the results were collected and analyzed. The analysis
aimed to identify which eigenstate had the smallest phase value, indicating the most
favorable solution to the TSP. This approach allowed you to determine the associated
Hamiltonian cycle, which, in turn, provided the final solution to the TSP for each
provider.

IBM Quantum, as a quantum service provider, offers access to a quantum
computer with a capacity of up to 127 qubits for circuit execution. We chose
to execute your circuit 8192 times, which corresponds to the number of shots,
following the terminology of the vendor. This usage resulted in a cost of $8.32
under IBM Quantum’s pay-as-you-go pricing model.

In terms of performance, the average running time for executing the algorithm on
IBM Quantum hardware was approximately 5.2 seconds. Additionally, there was a
queue time of 11.2 seconds, indicating the time it took for your job to be scheduled
and executed on the quantum computer.

3.2 Amazon Braket

Amazon Braket is a fully managed quantum computing service provided by Amazon
Web Services (AWS). It is designed to accelerate scientific research and software
development in the field of quantum computing. Amazon Braket serves as a central
access point for a range of quantum computing technologies and supports hybrid
approaches that combine classical and quantum computing.

Users can leverage Amazon Braket to experiment with quantum algorithms,
develop quantum applications, and explore the potential of quantum computing
in various domains. It provides access to quantum hardware, simulators, and a
set of development tools to facilitate quantum computing research and application
development.

Table 2 summarizes the analysis of the general aspects of Amazon Braket.
Amazon Braket provides a Platform as a Service (PaaS) that enables users to

implement and execute quantum algorithms. This platform is designed to seamlessly
integrate quantum computing with classical software and supports the development



200 E. Moguel et al.

Table 2 General aspects analysis of Amazon Braket

Category Description

Type of
quantum
technology

Gate-based quantum computing, quantum annealing, and hybrid
quantum-classical computing

Purpose Access tools to develop and execute quantum circuits in third-party hardware
providers

QPUs and
simulators

Four simulators (local, sv1, tn1, and dm1), seven QPUs from other hardware
providers: D-Wave (three QPUs), IonQ (one QPU), Oxford Quantum Circuits
(one QPU), and Rigetti (two QPUs)

General
Characteristics

Medium flexibility, allowing mainly development through its SDK and the
possibility of using Qiskit and OpenQASM 3.0

Developer
tools

Amazon Braket SDK with the possibility of using Qiskit or OpenQASM 3.0.
Possibility to create hybrid jobs

Plans and
pricing

Fixed prices which vary slightly depending on the QPU. Generally: $0.30 for
task + $0.00035 for every shot

of hybrid software, which combines classical and quantum elements to address
complex problems. Amazon Braket serves as a comprehensive solution for quantum
computing in the cloud, offering access to various quantum simulators and quantum
computers from different providers.

In Amazon Braket, users can work with a set of quantum simulators, each
designed for specific purposes. Additionally, they can access quantum hardware
from various providers, allowing for experimentation with different quantum pro-
cessors. This flexibility and hybrid computing capability makes Amazon Braket a
robust platform for building, testing, and deploying quantum-classical applications.

To implement the Traveling Salesman Problem (TSP) algorithm in Amazon
Braket, some adaptations were required due to differences in syntax compared to
Qiskit, and also because not all gates used in the original TSP circuit were supported
by the Rigetti hardware (where the execution was carried out). To address this,
a Qiskit provider for Amazon Braket was utilized with Amazon’s support. The
implementation details can be found in the Bitbucket repository.13

Amazon Braket supports circuit execution with up to 80 qubits. In this particular
case, the TSP circuit was executed using 8192 shots under a pay-as-you-go plan,
resulting in an execution cost of $3.17. The algorithm was run on various machines
available through Amazon Braket, with an average total runtime of 9.95 seconds,
including a queue time of 30 seconds.

13 https://bitbucket.org/spilab/sqj-tsp-code.git.

https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git
https://bitbucket.org/spilab/sqj-tsp-code.git


Development and Deployment of Quantum Services 201

Table 3 General aspects analysis of Azure Quantum

Category Description

Type of
quantum
technology

Gate-based quantum computing model

Purpose Access tools to develop and execute quantum circuits in third-party hardware
providers

QPUs and
Simulators

15+ optimization simulators and QPUs from other hardware providers: IONQ
(two QPUs and one simulator), Quantinuum (five QPUs and two simulators)

General
Characteristics

High flexibility, allowing development in Q#, Qiskit, and Cirq easily

Developer
tools

Quantum Development Kit using Python Notebooks, Q#, Qiskit, and Cirq as
language

Plans and
pricing

Three different plans (Azure Quantum credits, Pay-as-go, and Subscription)

3.3 Azure Quantum

Azure Quantum is the quantum computing cloud service of Azure developed by
Microsoft, with a diverse set of quantum solutions and technologies. It provides
access to quantum computers from IonQ and Quantinuum and will soon add Rigetti
and Quantum Circuits Inc. In addition, it provides a Quantum Development Kit
(QDK) which is a complete SDK that includes a quantum-specific language called
Q# and enables anyone to write quantum programs, simulate those programs on
a classical computer, and then execute the program on the quantum computer
connected to Azure. Thus, Azure Quantum ensures an open, flexible, and future-
proofed path to quantum computing that adapts to your way of working and
accelerates your progress.

Table 3 summarizes the analysis of the general aspects of Azure Quantum.
The implementation of quantum circuits in Azure Quantum involves the use of

Jupyter Notebooks. Azure Quantum offers a higher level of customization, allowing
users to choose between Python and Q# as the core of the notebook and select a
provider for running quantum jobs, with options including IONQ and Quantinuum.

To perform this validation, we select IONQ. To set up the program for execution
on IONQ’s quantum hardware within Azure Quantum, several adjustments and
modifications are required. Firstly, users need to obtain the AzureQuantumProvider
by calling the appropriate method and providing the ID of their resources and the
region where these resources are located. In Azure Quantum, a resource represents
an entity managed by Azure, such as an Azure Quantum workspace, where quantum
programs are managed. The specific provider’s quantum hardware ID must also
be obtained and specified when running the quantum program. Regions in Azure
Quantum correspond to geographic locations where resources are hosted, and the
chosen region determines the available quantum hardware providers.



202 E. Moguel et al.

The circuit implementation for solving problems like the Traveling Salesman
Problem (TSP) in Azure Quantum is conceptually similar to that used in other
quantum providers. It involves the definition of various quantum gates as needed
for the circuit.

Regarding the execution of the circuit, it is performed on different quantum
machines, with the number of qubits in the circuit adjusted to match the maximum
number of qubits supported by each machine. In this case, it’s possible to run a
circuit with a maximum of 29 qubits.

Execution details include the use of 8192 shots in this case with a pay-as-
you-go plan, resulting in an execution cost of $0.0143. After running the TSP
algorithm on various machines provided by Azure Quantum, the average runtime
was approximately 5.15 seconds, with a queue time of 17 seconds included.

3.4 Google Quantum AI

Google has made significant strides in the field of quantum computing, and its
Quantum AI division is at the forefront of these efforts. Google Quantum AI
is dedicated to advancing quantum computing technologies and making them
accessible to researchers and developers for experimentation and problem-solving.

One of Google’s notable achievements in quantum computing is the development
of the Bristlecone quantum processor. Bristlecone boasts an impressive 72 qubits,
which is a significant advancement in quantum hardware. Qubits are the fundamen-
tal units of quantum information, and having a large number of them in a quantum
processor like Bristlecone opens up new possibilities for quantum computing.

Beyond hardware development, Google is also actively involved in the research
and development of quantum algorithms. These algorithms are specifically designed
to tackle problems that classical computers struggle with. Quantum machine
learning and pattern recognition are among the complex problem domains that
Google is exploring with quantum computing.

To facilitate quantum algorithm development and experimentation, Google has
introduced an open-source quantum framework called Cirq. This framework is
designed for experimenting with noisy intermediate-scale quantum (NISQ) algo-
rithms. NISQ algorithms are quantum algorithms tailored for the limitations and
characteristics of current quantum hardware, where the details of the hardware’s
behavior play a crucial role in algorithm design.

Table 4 summarizes the analysis of the general aspects of Google Quantum AI.
The implementation of the TSP circuit using the Google Quantum AI platform

and the Cirq framework shares similarities with the IBM Quantum implementation,
but there are some key differences, particularly related to how qubits are defined and
manipulated.

In Cirq, qubits can be defined in three different ways: they can be labeled with
any name, labeled by a number in a linear array, or labeled by two numbers in



Development and Deployment of Quantum Services 203

Table 4 General aspects analysis of Google Quantum AI

Category Description

Type of
quantum
technology

Gate-based quantum computing model

Purpose Explore the different solutions for quantum software and hardware, with the
possibility of developing circuits and running them in their hardware

QPUs and
Simulators

One simulator of 20 qubits and the possibility of creating a QVM. three
QPUs: Bristlecone (72 qubits), Sycamore (54 qubits), Foxtail (22 qubits)

General
Characteristics

Cirq is the only language of development and its hardware has many
restrictions, but with the possibility of importing circuits from Quirk or
OpenQASM 2.0

Developer
tools

Cirq framework and language. Also, other libraries like qsim or Pennylane

Plans and
pricing

Free

a rectangular lattice. This flexibility in qubit labeling allows for various ways to
represent and organize qubits in a quantum circuit.

Gate application in Cirq is accomplished through a concept called a “Moment,”
which allows sets of quantum gates to be applied simultaneously to a set of
qubits. While Cirq doesn’t define gates in the traditional sense as in other quantum
frameworks like Qiskit, the Moment concept serves a similar purpose.

The process of measuring qubits in Cirq is similar to other quantum frameworks,
with measurements being performed in a regular manner.

However, a notable difference when running a circuit on a real quantum processor
with Google Quantum AI is the consideration of the processor’s topology. Each
quantum processor from Google Quantum AI has a unique topology, which refers
to the physical arrangement of qubits and their connectivity. For instance, the
Sycamore processor has a square grid layout, while the Bristlecone processor has
a linear layout. When designing a quantum circuit for execution on a specific
processor, it’s essential to account for the topology and connectivity of that
particular processor.

In the case of Google Quantum AI, up to 72 qubits are available for circuit
execution, and 8192 shots were used in the Free plan with no execution cost.
The average total runtime for the TSP algorithm on various Google Quantum AI
processors was approximately 8.935 seconds, including a queue time of 8.1 seconds.

3.5 Analysis and Comparison

Upon evaluating these providers and utilizing them to create and run the TSP
algorithm, the initial observation is that, while all of them target a common
objective, each has been crafted with distinct technology and criteria. Consequently,



204 E. Moguel et al.

Table 5 Overview of the inputs for all experiments

Max. number

of qubits sopported Cost in $ Number of shots

IBM Quantum 433 8.32 8192

Amazon Braket
(Rigetti)

80 3.17 8192

Azure Quantum
(IONQ)

29 0.0143 8192

Google Quantum AI 72 Free 8192

each platform is tailored for specific purposes and aligns more effectively with
certain projects over others.

Table 5 displays the records encompassing all the conducted experiments on
the providers. To sum up, it was determined that the execution utilized 8192
shots for each provider. This choice aligns with the providers’ service quality
standards, ensuring a robust distribution of results, especially when contending with
noise [44]. While executing the algorithm across diverse quantum computers, it
became evident that employing a high number of shots, as we have done, proves
advantageous [45]. This is due to the presence of noise, which occasionally causes
erroneous results, given the ongoing developmental nature of this technology.

Another thing we can easily observe is the maximum number of qubits depending
on the machines they offer. Currently, IBM Quantum is the provider supplying
the highest number of qubits, followed by Amazon Braket, although this is quite
variable depending on the progress of the technologies and the machines they offer
respectively.

Another conclusion that can be drawn is the price of running the experiments,
which is highly variable from one provider to another, with the least expensive
being Azure Quantum and Google Quantum AI, which is free. These prices differ
depending on the payment plan chosen and the number of shots.

Another factor to consider when choosing a quantum platform for a project
is the specific application or use case. Different quantum platforms offer various
functionalities that are tailored to specific applications. For example, IBM Quantum
has developed a series of software development kits (SDKs) that provide access to
different domains, such as quantum chemistry, optimization, and finance. On the
other hand, Google Quantum AI has developed the TensorFlow Quantum library,
which allows developers to build and train quantum machine learning models.
Similarly, Azure Quantum provides access to the Quantum Development Kit, which
includes the Q# programming language and quantum simulators, while Amazon
Braket offers integration with different classical computing tools and access to
different types of quantum hardware. We know that these factors can influence the
decision to choose a quantum platform for specific projects, but they have not been
analyzed in depth in the above comparison, as they are more platform-specific, so a
fair comparison is not possible. As for the results, as can be seen in Table 6, these
are “100100” for all experiments. Despite the inherently probabilistic nature of the



Development and Deployment of Quantum Services 205

Table 6 Overview of the results for all experiments

Compiling/ Queue Running Total

Results Transpiling time time time time

IBM
Quantum

100100
(consistent)

5.9s 11.2s 5.2s 22.3s

Amazon
Braket
(Rigetti)

100100
(consistent)

2.2s 30s 9.95s 42.15s

Azure
Quantum
(IONQ)

100100
(consistent)

4s 17s 5.15s 26.15s

Google
Quantum AI

100100
(consistent)

4.801s 8.1s 8.935s 21.836s

TSP algorithm in quantum computing, which arises from the probabilistic nature of
quantum mechanics and not just noise or errors, we obtained consistent results in
the algorithm runs [46].

The “100100” result in the context of the TSP on quantum machines is the
solution that is represented as a state of the quantum machine. The solution is
represented as a quantum system’s own state, as a binary representation of a solution
to the TSP problem, where each digit represents the order of visiting a city in the
tour. Concretely, it means that the provider visits cities 1, 2, 3, 3, 4, and 1 in that
order. Moreover, these results are consistent because the same result is obtained in
all experiments. Consistency is an important property of any computational result,
including those obtained using quantum algorithms, because it indicates that the
result is reliable and reproducible, as it is in this case. In addition, it can be observed
that the elapsed time from launching the run on each platform is different. However,
these times are indicative and variable since they depend on the number of users that
are sending jobs to the machines at a given time.

After analyzing the implementation of the TSP in each provider, we deduce that it
is difficult to work with machines from different providers, without having extensive
knowledge about the operation of all of them. We even encounter this problem
within the same vendor, where, depending on the machine to be used, the circuit
must be implemented differently. In other words, there is a limitation in terms of the
programming language or SDK, and the topology of the quantum processor used by
the machine to be used for execution [47].

Therefore, it is necessary to work along these research lines in order to solve
the problems that still prevail in the access and standardization of the different
quantum computing providers. To this end, in the following sections, we will show
the research being carried out at different levels: in Sect. 4 we will examine the
existing works on the standardization of access to the different providers; in Sect. 5
we will show the existing works on the generation of quantum services; and finally,
in Sect. 6 we will consider the existing deployment approaches in this area.



206 E. Moguel et al.

4 Standardization of Access to Quantum Services Use

As can be seen from the previous analysis of different providers, it is necessary to
facilitate access so developers can benefit from the advancement of this technology.
Along these lines, Ohkura et al. [48] propose a compilation protocol for quantum
multiprogramming on NISQ processors. In this work, the researchers pay attention
to combining quantum circuits for parallel execution and mapping program qubit
variables to physical qubits to reduce unwanted interference among the active
set of quantum circuits. They also propose a software-based cross-talk detection
protocol that uses a combination of randomized benchmarking methods. The
proposed method is characterized by hardware suitability for multiprogramming
with relatively low detection costs. In addition, they find a trade-off between success
rate and runtime in multiprogramming.

Furthermore, Jonathan Ray’s work [49] promotes the connection between
quantum simulators from Chinese providers with online platforms for artificial
intelligence. In this work, the researcher identifies the main entities investigating
the nexus between the two technologies, assesses the pathways, and technological
hurdles, and provides pointers for future development.

Also, there are works in the field of security for different quantum providers
such as Kaliyanandi et al. [50] in which they propose a holistic approach to
load balancing with security in cloud computing. The authors have created the
Quantum-Based Security Framework, making use of fuzzy logic. Along these lines,
Karacan et al. [51] propose two different quantum attack-resistant structures to
ensure secure communication between the subscriber identity module (SIM) and
service providers. In these proposed methods, they use the advanced encryption
standard (AES-256) for communication with resource-constrained devices, and
the N-th degree Truncated polynomial Ring Units (NTRU) encryption system for
communication with servers. This proposed method provides authentication, data
privacy, and integrity for post-quantum SIM cards.

But in none of these cases is a middleware proposed that allows developers to
connect to all quantum machines in an agnostic way. Therefore, Garcia-Alonso et
al. [52] have proposed a Quantum API Gateway to solve this problem.

4.1 Quantum API Gateway

An API Gateway is a pattern used for the composition of microservices in
applications [53]. It is also a valuable tool for optimizing the deployment strategy of
quantum services at runtime. By integrating multiple quantum computing vendors
and offering the ability to recommend the best quantum machine based on user-
indicated parameters, this gateway can enhance the efficiency and effectiveness of
quantum service utilization.



Development and Deployment of Quantum Services 207

It’s important to note that quantum computing is still in its early stages, and
the availability of multiple quantum computing platforms from different vendors
introduces complexities in terms of selecting the right hardware for a specific task.
Solutions like the Quantum API Gateway can help users make more informed
decisions by considering various factors when choosing a quantum machine,
such as the problem’s nature and size, hardware constraints, and performance
characteristics.

Additionally, the use of machine learning models to recommend quantum
machines based on user inputs is a promising approach. As quantum computing
technology continues to evolve, such intelligent decision-making tools may become
increasingly essential for users looking to harness the power of quantum computers
effectively.

Therefore, Garcia-Alonso et al. [52] proposed a machine learning model
implemented to recommend the best quantum machine based on the parameters
indicated by the user in the request. In short, it allows for optimizing the deployment
strategy of a quantum service at runtime.

The Quantum API Gateway is developed in Python, specifically using the Flask
library to define the API with the different endpoints. The project is currently
deployed on an AWS server and is presented with a reference implementation for
Amazon Braket.

The authors have tested with the Amazon Braket reference implementation, and
have extended this tool to cover other vendors, such as IBM Quantum, discussed in
Sect. 3.

By integrating multiple vendors with the Quantum API Gateway, and using the
TSP algorithm to thoroughly validate this new implementation, the researchers
have successfully validated its technological capabilities. The complete system is
shown in Fig. 3. The proposed solution significantly improves the deployment and
execution of quantum services.

In this work, the researchers use the information presented by the providers about
the state of the execution queues on their machines and deploy the quantum service
on the best machine of the best platform based on the user’s constraints. In this way,
the Quantum API Gateway agnostically deploys the quantum services taking into
account the constraints and, after receiving the user’s requests, returns the response
in a standard format for all providers.

The execution process, represented graphically in Fig. 4, starts with a classical
machine wishing to invoke a quantum service (step 1). This service call includes
input and optimization parameters for the quantum machine, such as the number
of qubits, the maximum price to be paid for execution, and the type of machine
required for execution: frog or gate. When the Quantum API Gateway receives the
service call, it requests information about the state of the machines from the QCaaS
provider (step 2) and, through its recommender, chooses the most optimal one to
deploy the service (step 3). Once the machine is chosen, it launches the service
(step 4) and returns the response in a standard format to the classic machine (step
5). Once the execution is finished, it returns to the quantum machine to recommend
the data obtained during the execution (step 6).



208 E. Moguel et al.

Fig. 3 Quantum providers solutions through Quantum API Gateway

Thus, with this process and by choosing the best computer for each task,
the Quantum API Gateway provides advantages over existing methods for using
quantum services. For example, it gives developers the flexibility to select at runtime
between different providers, depending on the type of code they want to run. This
takes into account the number of qubits required for the computation to ensure that
only machines with sufficient computational power are used. This information is
usually provided by the vendors, being available as static data (e.g., in the case of
Amazon Braket) and as back-end information (e.g., in the case of IBM Quantum);
this information is specific to each service provider. In addition, the tool allows the
flexibility to select between gating-based and annealing-based machines, assuming
both quantum service implementations are available. This feature allows for greater
efficiency and accuracy in quantum computing.



Development and Deployment of Quantum Services 209

Fig. 4 Quantum API Gateway process

In addition to the number of qubits, the Quantum API Gateway also evaluates
the cost of running the chosen computer, taking into account several factors. These
include the number of shots the developer needs, the maximum cost he is willing
to pay, and the cost per shot. In this context, the triggers refer to the number of
iterations needed to find the solution and obtain the results of the service execution.

To calculate the service execution cost, the tool combines the cost per execution
with the cost per shot, multiplied by the number of shots. Only machines that meet
the cost threshold are selected, and this information is easily accessible from some
vendors such as Amazon Braket. However, other providers do not currently offer
this type of information at runtime. In these cases, a cost estimate is made from the
technical specifications. In the latter case, the choice of vendor is made based on
availability, as explained below.

Once the developer selects the machines that meet the cost threshold, Quantum
API Gateway checks the availability of quantum computers that meet all these
requirements. It then calculates the estimated execution time for each machine,
which provides the developer with valuable information to make an informed
decision. This is done based on the run context that was also established during



210 E. Moguel et al.

the vendor comparison day of the week, the run start time, and the actual time taken
by previous runs performed on that computer.

Overall, this process ensures the selection of the most cost-effective and efficient
machine to perform the quantum service. Therefore, with these tool enhancements,
we ensure that the optimal machine is selected for each service call. By providing a
standard format for service responses and incorporating a feedback mechanism for
the quantum machine recommender among multiple providers, the entire execution
process is streamlined and allows developers to abstract from both quantum
machines and providers.

5 Development of Quantum Services

Significant work is already underway with the goal of bringing the way quantum
computers in the cloud are used up to the standards managed for working with
classical ones. For example, Amazon Braket [54] provides a unified SDK that
allows developers to build quantum algorithms in a single programming language,
test them on different simulators, and execute them in quantum computers from
different vendors abstracting developers away from the hardware differences. Also,
works like [55] are contributing to mitigating the problems of hardware differences
and availability by providing a method to analyze and optimize quantum algorithms
to estimate in advance which combination of hardware and quantum compiler will
return the more stable execution.

Nevertheless, the development and operation of quantum service-oriented soft-
ware is still a complex task very different from the development of classical services
which professionals are used to [2]. The lack of advanced operating systems makes
it impossible to deploy a quantum service in the same way a classical service is
deployed. Alternatively, a classical service can be deployed that executes a quantum
task when called, adding an additional layer of indirection and complexity to the
system [56, 57]. The queuing system used to run tasks in most quantum computers
makes it very difficult to know or estimate the response time of a given quantum
task, making it impossible to work with service-level agreements that guarantee any
kind of service quality. The low abstraction level of most quantum programming
languages and algorithms makes the quantum source code very dependent on the
specific hardware where it is designed to be run, preventing developers from taking
advantage of the availability of different quantum computers through the cloud. The
availability of advanced tools and methodologies for the development of quantum
services is very limited, making developers use low abstraction level techniques
that are error-prone and offer few of the benefits and amenities of modern software
development tools. To address some of these problems, different research initiatives
are emerging.

That said, there is a clear need to provide developers with tools to assist them
in the generation of quantum services. In this line of work, Weder et al. [58]
focus on some of the problems related to the orchestration of quantum and classical



Development and Deployment of Quantum Services 211

services in hybrid systems. To address them, they propose the use of an orchestration
mechanism based on TOSCA to coordinate the different services. The same authors
propose in [59] a provenance mechanism to simplify the selection of a suitable
quantum computer to execute a certain quantum service.

On the other hand, there are emerging works to provide APIs for hybrid quantum-
classical computing, such as Qiskit Runtime [60] and Quantum Intermediate
Representation (QIR) [61]. These works are intended to allow users to efficiently
execute workloads and serve as a common interface between languages and
quantum computing platforms.

All these proposals, even though they raise the abstraction level of quantum
service development and simplify the creation of complex hybrid solutions in which
classical and quantum services coexist, are still far away from the classical devel-
opment of service-oriented software. Additional support is needed for the creation
of quantum services so current services developers can more easily transition to
the quantum domain, mitigating the lack of a skilled quantum workforce [62] and
facilitating the creation of a new generation of hybrid systems.

In this section, we propose an adaptation of the OpenAPI tools to support
quantum services. OpenAPI is one of the most widely used standards for API
description and, for this purpose, defines a vendor-independent description format
for REST-compliant services [63]. The acceptance of the REST architectural style
as a method and protocol for manipulating and exchanging data between different
systems has greatly changed the development of Web services. Nowadays, RESTful
Web services have become a standard for the development of Web APIs [64].
However, as APIs proliferated, the need for both humans and computers to discover
and understand the capabilities of services without accessing the source code or
documentation became clear [65]. The OpenAPI Specification14 is one of the
most widely used alternatives among developers for defining, documenting, and
implementing APIs in a standardized way. This standard facilitates the design of
APIs using different supporting tools (Swagger Editor, OpenAPI Explorer, etc.),
providing a well-defined structure that complies with the standard and considerably
reduces API implementation time [66].

By allowing the creation of quantum services through the use of OpenAPI, we not
only simplify the process of creating these services but also facilitate the transition
from classical services developers by providing them with the same set of tools and
support mechanisms they are used to.

5.1 OpenAPI Specification for Quantum Services

To implement a classic service using OpenAPI, a developer needs to combine two
main aspects: the business logic of the service, which is specific to each service, and

14 https://www.openapis.org.

https://www.openapis.org
https://www.openapis.org
https://www.openapis.org
https://www.openapis.org


212 E. Moguel et al.

the endpoint of the service. Using the OpenAPI specification the service endpoint is
defined, using a standard interface that is language-independent for RESTful APIs.
This makes it possible to discover and understand the features of the service without
having to access the source code or documentation and to define the service and its
input and output parameters. From this specification, using a source code generator,
the code structure is generated, in a programming language chosen by the developer,
where the business logic of the service is then added to have a fully operative Web
service.

Therefore, to address the current state of the art in quantum services, in this work,
we will use OpenAPI in a similar way as it is being used for the implementation
of classical services. Specifically, the code generator called OpenAPI Generator15

will be modified to support the process of defining and creating quantum Web
services. To achieve this, an extension of the OpenAPI specification, including
custom properties, and an extension of the OpenAPI Generator, to allow for defining
and generating code for quantum applications, have been developed.

For the integration of the business logic of quantum services, we will use
a graphical quantum programming tool that allows drag-and-drop operations to
build quantum circuits. Specifically, the open-source quantum circuit composer
Quirk16 will be used to develop the business logic of quantum services. Quirk is
an open-source solution implemented with JavaScript and can be run in the Web
browser and helps in rapid creation of quantum circuit prototypes. So, it offers
programmatic access to the quantum circuit composed through a graphical editor.
Nevertheless, it can be easily replaced by any other tool for quantum circuit creation
that offers programmatic access to the code so it can be integrated with the OpenAPI
Specification.

In this way, starting from an OpenAPI specification, enriched with custom
quantum properties, and a quantum circuit it is possible to automatically generate
the source code of the quantum service. For this work, we will use the Python
programming language for the generated services, as it is one of the most widely
used languages in quantum software development [67]. Note that the programming
language for the generation of quantum services can be changed to any other
language supported by the OpenAPI Generator with the appropriate modifications
to support quantum services.

In order to carry out the generation of hybrid classical-quantum services, the
following process is proposed, which is depicted in Fig. 5, and is summarized by
the following steps:

1. Define Business Logic as a Quantum Circuit. This step involves designing
the quantum algorithm or logic that you want to expose as a service. You use
the Open Quirk Composer or a similar tool to create the quantum circuit that

15 https://openapi-generator.tech.
16 https://algassert.com/quirk.

https://openapi-generator.tech
https://openapi-generator.tech
https://openapi-generator.tech
https://openapi-generator.tech
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk
https://algassert.com/quirk


Development and Deployment of Quantum Services 213

Fig. 5 Quantum services
definition process with
OpenAPI

represents this logic. This quantum circuit encapsulates the core functionality of
the quantum service.

2. Define Service Endpoints with OpenAPI. In parallel with defining the quantum
circuit, you also specify the service endpoints that will expose this quantum
logic using the OpenAPI Specification. This YAML-based specification outlines
the available endpoints, their input and output formats, and any other relevant
information about the API.

3. Link Quantum Circuit to Service Endpoint. To connect the quantum logic to
a specific service endpoint, you include the Open Quirk URL of the quantum
circuit within the YAML specification of the API. This linkage is crucial as
it associates the quantum algorithm with the API endpoint that will trigger its
execution.



214 E. Moguel et al.

4. Generate Quantum Service Source Code. This is where the proposed extension
of the OpenAPI code generator comes into play. It generates the source code for
the quantum services based on the quantum circuit and the API specification.
This source code is generated in Python, using the Flask17 Web application
framework.

5. Deployment of Quantum Services. Once you have the source code for the
quantum services, you can deploy them. Deploying these services typically
involves hosting them on a server or a cloud platform. The quantum services
are now accessible via RESTful API calls to the specified endpoints.

6. Execution Through Supported Quantum Providers. To execute the quantum
services, they rely on quantum hardware providers (e.g., IBM Quantum or
Amazon Braket). When clients make requests to the API endpoints, these
services trigger the execution of the associated quantum algorithm on the chosen
quantum hardware provider.

This process enables developers to create quantum services that are exposed
through a RESTful API, making them accessible to other services or applications.
It combines the principles of service-oriented architecture with quantum computing
to create a flexible and accessible quantum computing infrastructure.

6 Deployment of Quantum Services

As discussed earlier in this chapter, the integration of quantum services with
classical services presents unique challenges due to the inherent constraints of
quantum systems.

However, there remains a gap in the literature when it comes to the development
of quantum services. In particular, there is a need for tools and methodologies to
support the development of quantum services that are on par with those available for
classical cloud services [68]. Currently, there is some work focusing on bringing the
advantages of service-oriented computing (SOC) to quantum computing. One exam-
ple is Kumara et al.’s [69] theoretical presentation of a SOC-based methodology that
allows quantum and classical developers and programmers to collaboratively create
hybrid applications. All this translates into a lack of resources that limits the ability
of developers to create and deploy quantum services in an efficient and scalable way
[70].

In this section, we focus on bringing the development of quantum services closer
to that of classical cloud services by adapting existing tools and methodologies to
support quantum services.

To this end, we propose a pipeline for the generation and deployment of quantum
services by adapting techniques from the DevOps methodology for continuous

17 https://flask.palletsprojects.com.

https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://flask.palletsprojects.com


Development and Deployment of Quantum Services 215

software integration [71]. Specifically, we propose a modification of the OpenAPI
specification and its code generator to generate quantum services, as well as the
automation of the continuous deployment (CD) process for their deployment in
ready-to-consume containers. This is done through a DevOps-based workflow for
continuous software integration and deployment, using the GitHub Actions tool.
To validate this workflow, a complete process has been developed through the
following steps: an API has been specified for the services, the code for these
services has been automatically generated with the OpenAPI extension, the services
have been automatically deployed on an AWS server using the GitHub Actions tool
and Docker, and their correct operation has been manually verified by analyzing the
generated code and making the necessary calls to the services.

6.1 Continuous Deployment of Quantum Services

To realize a continuous deployment similar to those that already exist in classical
computing, we have designed and implemented a pipeline that integrates the auto-
matic generation of code and its deployment in containers ready to be consumed by
developers. For this implementation, we have used a tool offered by the repositories
hosted on GitHub, a well-known code management platform. Specifically, the tool
used is GitHub Actions, which allows the developer to define what he wants to do
with the code every time a change occurs in the repository. This tool allows for
defining a workflow composed of the desired steps to be executed after a change is
made to the repository.

The proposed pipeline can be seen in Fig. 6.
The first step is to define the business logic of the service as a quantum circuit

using Open Quirk, indicating the Open Quirk URL of the created circuit or directly
indicating a URL where the source code in Qiskit language (obtained from IBM
Quantum Composer) is located.

Therefore, for the integration of the business logic of quantum services, we use
a graphical quantum programming that allows drag-and-drop operations to build
quantum circuits. Specifically, the aforementioned quantum circuit composer called
Open Quirk is used to develop the business logic of quantum services.

Then, in the second step, the quantum API is defined, for which an API contract
must be established with OpenAPI, as explained in Sect. 5.1.

At this point it should be noted that for the execution of services that have
been automatically generated, a prior configuration of the environment with the
credentials of the providers is necessary. Without this prior configuration, services
may not be accessible or the available functionality may be limited. The credentials
are typically given by the providers, such as Amazon Web Services (AWS) or IBM,
and may include a password, secret key, and region.

Returning to the process defined in our pipeline, the process continues by
automating with GitHub Actions the generation of the code for quantum services.
The manual process of the developers ends with a commit to the repository, and



216 E. Moguel et al.

Fig. 6 Automatic quantum services deployment pipeline



Development and Deployment of Quantum Services 217

the process of automatic generation and deployment of the services begins (step
3). Next, the repository specification is checked for correct formatting. To do this,
the code of the services is generated with the modified version of the OpenAPI
code generator (steps 4 and 5). If the code is generated correctly, the next task is
to automatically deploy the services in a container (step 6). To do this, a request is
made to the deployment API deployed on the AWS server. This request contains the
URL to the YAML file containing the specification, and the credentials to configure
execution on the providers.

The server receives the GitHub Shares call, generates and encapsulates the code
in a container (step 7), and deploys it by exposing it on the first free port (step 8).
Once ready, it returns the URL where the generated services are hosted. This URL
will be visible to the developer at the end of the workflow execution (steps 9 and
10).

7 Conclusion

In this chapter we have presented an introduction to the emerging field of service-
oriented computing for quantum computing; also, we have presented some of
the current limitations in the construction and use of quantum services through a
practical study of the most important service providers in the market such as IBM
Quantum, Amazon Braket, Azure Quantum, and Google Quantum. In addition, we
have indicated the need and the different alternatives existing in the literature on the
possibility of adapting techniques and methods of classical service engineering to
the quantum world.

This study will serve to enable service developers familiar with high-level
abstraction tools that simplify the process of developing and deploying classical
services to have an easier transition to quantum service development.

For all these reasons, in this chapter, we have proposed the Quantum API
Gateway tool, which is a middleware that will allow access to any service provider
in a developer-agnostic way, and that will facilitate standardization in accessing
different quantum service providers (Sect. 4.1). Furthermore, we propose a method
to standardize the process of defining quantum services using the OpenAPI specifi-
cation, providing an extension of the OpenAPI Code Generator specification capable
of generating the source code of quantum services from an API specification and a
quantum circuit (Sect. 5.1). Additionally, and to facilitate the automatic deployment
of these quantum services, we have developed a workflow for the continuous
deployment of the generated code in Docker containers using the GitHub Actions
tool, encapsulating the code in a container, returning to the developer the URLwhere
the services are deployed (Sect. 6.1).

With the proposals presented in this chapter, we aim to make quantum computing
more accessible by offering tools and techniques for the automatic generation and
deployment of quantum services. By automating the deployment process, our tools



218 E. Moguel et al.

bring quantum computing closer to developers by making it more similar to what
they already know in classical computing.

Acknowledgments This work has been partially funded by MCIN/AEI/10.13039/5011000110
33 and by the European Union ‘Next GenerationEU/PRTR, by the Ministry of Science, Inno-
vation and Universities (projects PID2021-1240454OB-C31, TED2021-130913B-I00, PDC2022-
133465-I00). It is also supported by the QSALUD project (EXP 00135977/MIG-20201059) in
the lines of action of the Center for the Development of Industrial Technology (CDTI); by the
Ministry of Economic Affairs and Digital Transformation of the Spanish Government through
the Quantum ENIA project call—Quantum Spain project; by the European Union through the
Recovery, Transformation, and Resilience Plan—NextGenerationEU within the framework of the
Digital Spain 2025 Agenda; by the European Union under the Agreement—101083667 of the
Project TECH4E-Tech4effiencyEDlH regarding the Call: DIGITAL-2021-EDlH-01 supported by
the European Commission through the Digital Europe Program; and by the Regional Ministry of
Economy, Science and Digital Agenda of the Regional Government of Extremadura (GR21133).

References

1. MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: The emerging commercial landscape
of quantum computing. Nature Rev. Phys. 2(11), 596–598 (2020). https://doi.org/10.1038/
s42254-020-00247-5

2. Rojo, J., Valencia, D., Berrocal, J., Moguel, E., Garcia-Alonso, J., Rodriguez, J.M.M.: Trials
and tribulations of developing hybrid quantum-classical microservices systems (2021). https://
doi.org/10.48550/arXiv.2105.04421

3. Romero-Álvarez, J., Alvarado-Valiente, J., Garcia-Alonso, J., Moguel, E., Murillo, J.M.: A
graph-based healthcare system for quantum simulation of medication administration in the
aging people. In: Gerontechnology IV, pp. 34–41. Springer, Évora, Portugal (2022). https://
doi.org/10.1007/978-3-030-97524-1_4

4. Pérez-Castillo, R., Piattini, M.: The quantum software engineering path. In: International
Workshop on Software Engineering & Technology (Q-SET’20) Co-located with IEEE Inter-
national Conference on Quantum Computing and Engineering (IEEE Quantum Week 2020)
Broomfield, Colorado, USA, October, 2020. CEUR Workshop Proceedings, vol. 2705, pp. 1–
4. CEUR-WS.org. http://ceur-ws.org/Vol-2705/invited1.pdf

5. Wille, R., Van Meter, R., Naveh, Y.: Ibm’s qiskit tool chain: Working with and developing for
real quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), Florence, Italy, pp. 1234–1240 (2019). https://doi.org/10.23919/DATE.2019.8715261

6. Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M.S., Ahmed, S., Arrazola, J.M.,
Blank, C., Delgado, A., Jahangiri, S., others: Pennylane: Automatic differentiation of hybrid
quantum-classical computations. arXiv preprint (2018). https://doi.org/10.48550/arXiv.1811.
04968

7. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: Toward a quantum soft-
ware engineering. IT Prof. 23(1), 62–66 (2021). https://doi.org/10.1109/MITP.2020.3019522

8. Pérez-Castillo, R., Serrano, M.A., Piattini, M.: Software modernization to embrace quantum
technology. Adv. Eng. Software 151, 102933 (2021). https://doi.org/10.1016/j.advengsoft.
2020.102933

9. Sodhi, B.: Quality attributes on quantum computing platforms. arXiv preprint (2018). https://
doi.org/10.48550/arXiv.1803.07407

10. McCaskey, A., Dumitrescu, E., Liakh, D., Humble, T.: Hybrid programming for near-term
quantum computing systems. In: IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–12 (2018). https://doi.org/10.1109/ICRC.2018.8638598

https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.1038/s42254-020-00247-5
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.48550/arXiv.2105.04421
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
https://doi.org/10.1007/978-3-030-97524-1_4
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
http://ceur-ws.org/Vol-2705/invited1.pdf
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.48550/arXiv.1811.04968
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1109/MITP.2020.3019522
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.48550/arXiv.1803.07407
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598
https://doi.org/10.1109/ICRC.2018.8638598


Development and Deployment of Quantum Services 219

11. McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble, T.S.: Xacc: a system-
level software infrastructure for heterogeneous quantum–classical computing. Quantum Sci.
Technol. 5(2), 1–17 (2020). https://doi.org/10.48550/arXiv.1911.02452

12. Digital Journal: Topological Quantum Computing Market Is Likely to Experience a
Tremendous Growth in Near Future (2022). https://www.digitaljournal.com/pr/topological-
quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-
microsoft-ibm-google-d-wave-systems

13. Zinner, M., Dahlhausen, F., Boehme, P., Ehlers, J., Bieske, L., Fehring, L.: Toward the
institutionalization of quantum computing in pharmaceutical research. Drug Discovery Today
27(2), 378–383 (2022). https://doi.org/10.1016/J.DRUDIS.2021.10.006

14. Pistoia, M., Ahmad, S.F., Ajagekar, A., Buts, A., Chakrabarti, S., Herman, D., Hu, S., Jena, A.,
Minssen, P., Niroula, P., Rattew, A., Sun, Y., Yalovetzky, R.: Quantum Machine Learning for
Finance (2021). https://doi.org/10.1109/ICCAD51958.2021.9643469 2109.04298

15. Cheng, J.K., Lim, E.M., Krikorian, Y.Y., Sklar, D.J., Kong, V.J.: A Survey of Encryption
Standard and Potential Impact Due to Quantum Computing. In: IEEE Aerospace Conference
Proceedings (2021). https://doi.org/10.1109/AERO50100.2021.9438392

16. Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., Garcia-Alonso, J., Murillo, J.M.:
Quantum-classical software for drug prescription simulation in aging people. Gerontechnology
21, 1–1 (2022). https://doi.org/10.4017/GT.2022.21.S.557.OPP7

17. Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., García-Alonso, J., Murillo, J.M.:
Towards a classical-quantum platform for pharmacogenetic simulations. In: Gerontechnology
V, pp. 187–192. Springer, Évora, Portugal and Cáceres, Spain (2023). https://doi.org/10.1007/
978-3-031-29067-1_20

18. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.: Operating
with Quantum Integers: An Efficient ‘Multiples of’ Oracle (2023). https://doi.org/10.48550/
arXiv.2304.04440

19. Sanchez-Rivero, J., Talaván, D., Garcia-Alonso, J., Ruiz-Cortés, A., Murillo, J.M.: Some Initial
Guidelines for Building Reusable Quantum Oracles (2023). https://doi.org/10.48550/arXiv.
2303.14959

20. Sanchez-Rivero, J., Talavan, D., Garcia-Alonso, J., Ruiz-Cortes, A., Murillo, J.: Automatic
generation of an efficient less-than oracle for quantum amplitude amplification. In: Inter-
national Workshop on Quantum Software Engineering (Q-SE), pp. 26–33. IEEE Computer
Society, Los Alamitos, CA, USA (2023). https://doi.org/10.1109/Q-SE59154.2023.00011

21. Ravichandran, T., Rai, A.: Quality management in systems development: An organizational
system perspective. MIS Q. Manag. Inf. Syst. 24(3), 381–410 (2000). https://doi.org/10.2307/
3250967

22. Papazoglou, M.P., Georgakopoulos, D.: Introduction: service-oriented computing. Commun.
ACM 46(10), 24–28 (2003). https://doi.org/10.1145/944217.944233

23. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. In:
Proceedings of the Fourth International Conference on Web Information Systems Engineering,
2003. WISE 2003, pp. 3–12 (2003). https://doi.org/10.1109/WISE.2003.1254461

24. Papazoglou, M.P., van den Heuvel, W.-J.: Service oriented architectures: approaches, technolo-
gies and research issues. VLDB J. 16(3), 389–415 (2007). https://doi.org/10.1007/s00778-007-
0044-3

25. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State of
the art and research challenges. Computer 40, (2007). https://doi.org/10.1109/MC.2007.400

26. World Wide Web Consortium: Web Services Architecture (2004). https://www.w3.org/TR/
2004/NOTE-ws-arch-20040211/

27. Berrocal, J., Garcia-Alonso, J., Murillo, J.M., Canal, C.: Rich contextual information for
monitoring the elderly in an early stage of cognitive impairment. Pervasive Mobile Comput.
34, 106–125 (2017). https://doi.org/10.1016/j.pmcj.2016.05.001

28. OpenAPI Initiative: The OpenAPI Specification Repository (2021). https://github.com/OAI/
OpenAPI-Specification

https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://doi.org/10.48550/arXiv.1911.02452
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://www.digitaljournal.com/pr/topological-quantum-computing-market-is-likely-to-experience-a-tremendous-growth-in-near-future-microsoft-ibm-google-d-wave-systems
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1016/J.DRUDIS.2021.10.006
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469
https://doi.org/10.1109/ICCAD51958.2021.9643469

 25661
12977 a 25661 12977 a
 
https://arxiv.org/abs/2109.04298
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.1109/AERO50100.2021.9438392
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.4017/GT.2022.21.S.557.OPP7
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.1007/978-3-031-29067-1_20
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2304.04440
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.48550/arXiv.2303.14959
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.1109/Q-SE59154.2023.00011
https://doi.org/10.2307/3250967
https://doi.org/10.2307/3250967
https://doi.org/10.2307/3250967
https://doi.org/10.2307/3250967
https://doi.org/10.2307/3250967
https://doi.org/10.2307/3250967
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1145/944217.944233
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1007/s00778-007-0044-3
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/MC.2007.400
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://doi.org/10.1016/j.pmcj.2016.05.001
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification


220 E. Moguel et al.

29. Kaebisch, S., McCool, M., Korkan, E.: Web of Things (WoT) Thing Description (2017). https://
www.w3.org/TR/wot-thing-description11/

30. Rahaman, M., Masudul Islam, Md.: A review on progress and problems of quantum computing
as a service (qcaas) in the perspective of cloud computing. Global J. Comput. Sci. Technol.
(2015). https://computerresearch.org/index.php/computer/article/view/1279

31. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing - the business
perspective. Decis. Support Syst. 51(1), 176–189 (2011). https://doi.org/10.1016/j.dss.2010.12.
006

32. Zhao, J.: Quantum software engineering: Landscapes and horizons. CoRR abs/2007.07047
(2020). https://doi.org/10.48550/arXiv.2007.07047

33. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: A new software engineer-
ing golden age. ACM SIGSOFT Softw. Eng. Notes 45(3), 12–14 (2020). https://doi.org/10.
1145/3402127.3402131

34. Valencia, D., Garcia-Alonso, J., Rojo, J., Moguel, E., Berrocal, J., Murillo, J.M.: Hybrid
classical-quantum software services systems: Exploration of the rough edges. In: Quality
of Information and Communications Technology, pp. 225–238. Springer, Algarve, Portugal
(2021). https://doi.org/10.1007/978-3-030-85347-1_17

35. Barzen, J., Leymann, F., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Relevance of near-term
quantum computing in the cloud: A humanities perspective. In: Cloud Computing and Services
Science - 10th International Conference (CLOSER) 2020, Prague, Czech Republic, May 7-
9, 2020, Revised Selected Papers. Communications in Computer and Information Science,
vol. 1399, pp. 25–58. Springer, Prague, Czech Republic (2020). https://doi.org/10.1007/978-
3-030-72369-9_2

36. Moguel, E., Rojo, J., Valencia, D., Berrocal, J., Garcia-Alonso, J., Murillo, J.M.: Quantum
service-oriented computing: current landscape and challenges. Software Q. J. 30(4), 983–1002
(2022). https://doi.org/10.1007/s11219-022-09589-y

37. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A., Hernández, G.,
García Rodríguez de Guzmán, I., Paradela, C.A., Polo, M., Murina, E., Jiménez, L., Marqueño,
J.C., Gallego, R., Tura, J., Phillipson, F., Murillo, J.M., Niño, A., Rodríguez, M.: The talavera
manifesto for quantum software engineering and programming. In: Short Papers Proceedings
of the 1st International Workshop on the QuANtum SoftWare Engineering & pRogramming,
Talavera de la Reina, Spain, February 11–12, 2020. CEUR Workshop Proceedings, vol. 2561,
pp. 1–5 (2020). https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.
pdf

38. Moguel, E., Berrocal, J., García-Alonso, J., Murillo, J.M.: A roadmap for quantum software
engineering: applying the lessons learned from the classics. In: International Workshop on
Software Engineering & Technology (Q-SET 2020) (2020). https://ceur-ws.org/Vol-2705/
short1.pdf

39. Gyongyosi, L., Imre, S.: A Survey on quantum computing technology. Comput. Sci. Rev. 31,
51–71 (2019). https://doi.org/10.1016/J.COSREV.2018.11.002

40. Grumbling, E., Horowitz, M.: Quantum computing: progress and prospects. National
Academies of Sciences, Engineering and Medicine (2019). https://nap.nationalacademies.org/
catalog/25196/quantum-computing-progress-and-prospects

41. Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., García-Alonso, J., Murillo, J.M.:
Technological diversity of quantum computing providers: a comparative study and a proposal
for api gateway integration. Software Q. J. (2023). https://doi.org/10.1007/s11219-023-09633-
5

42. Karp, R.M.: Reducibility among combinatorial problems. Complex. Comput. Comput., 85–103
(1972). https://doi.org/10.1007/978-1-4684-2001-2_9

43. Gidney, C.: Stim: a fast stabilizer circuit simulator. Quantum 5 (2021). https://doi.org/10.
22331/q-2021-07-06-497

44. Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing grover’s algorithm on the ibm quantum
computers. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2531–2537
(2018). https://doi.org/10.1109/BigData.2018.8622457

https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://computerresearch.org/index.php/computer/article/view/1279
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-85347-1_17
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/978-3-030-72369-9_2
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://doi.org/10.1007/s11219-022-09589-y
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://www.aquantum.es/wp-content/uploads/2020/03/Talavera_Manifesto.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://ceur-ws.org/Vol-2705/short1.pdf
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://doi.org/10.1016/J.COSREV.2018.11.002
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/s11219-023-09633-5
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457
https://doi.org/10.1109/BigData.2018.8622457


Development and Deployment of Quantum Services 221

45. Bisicchia, G., García-Alonso, J., Murillo, J.M., Brogi, A.: Dispatching shots among multiple
quantum computers: an architectural proposal. In: International Workshop on Quantum
Software Engineering and Technology (QCE23). IEEE Quantum Week 2023 (2023)

46. Srinivasan, K., Satyajit, S., Behera, B.K., Panigrahi, P.K.: Efficient quantum algorithm for
solving travelling salesman problem: An ibm quantum experience (2018). https://doi.org/10.
48550/arXiv.1805.10928

47. Aparicio-Morales, Á.M., Herrera, J.L., Moguel, E., Berrocal, J., Garcia-Alonso, J., Murillo,
J.M.: Minimizing deployment cost of hybrid applications. In: International Workshop on
Quantum Software Engineering and Technology (QCE23). IEEE Quantum Week 2023 (2023)

48. Ohkura, Y., Satoh, T., Van Meter, R.: Simultaneous execution of quantum circuits on current
and near-future nisq systems. IEEE Trans. Quantum Eng. 3, (2022). https://doi.org/10.1109/
TQE.2022.3164716

49. Ray, J.: China at the nexus of ai and quantum computing. Chinese Power and Artificial Intelli-
gence: Perspectives and Challenges, 155–172 (2022). https://doi.org/10.4324/9781003212980-
12

50. Kaliyanandi, M., Murugan, J., Subburaj, S.K., Ganesan, S., Gandhimathinathan, V.: Design and
development of novel security approach designed for cloud computing with load balancing.
Adv. Intell. Appl. Innov. Approach 2760, 050005 (2023). https://doi.org/10.1063/5.0126814

51. Karacan, E., Karakaya, A., Akleylek, S.: Quantum secure communication between service
provider and sim. IEEE Access 10, 69135–69146 (2022). https://doi.org/10.1109/ACCESS.
2022.3186306

52. Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., Murillo, J.M.: Quantum
software as a service through a quantum api gateway. IEEE Internet Comput. 26, 34–41 (2022).
https://doi.org/10.1109/MIC.2021.3132688

53. Romero-Álvarez, J., Alvarado-Valiente, J., Moguel, E., Canal, C., García-Alonso, J., Murillo,
J.M.: Leveraging api specifications for scaffolding quantum applications. In: International
Workshop on Quantum Software Engineering and Technology (QCE23). IEEE QuantumWeek
2023 (2023)

54. Amazon: Amazon Braket. Accelerate Quantum Computing Research. https://aws.amazon.
com/braket/

55. Salm, M., Barzen, J., Leymann, F., Weder, B.: Prioritization of compiled quantum circuits
for different quantum computers. In: 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 1258–1265 (2022). https://doi.org/10.
1109/SANER53432.2022.00150. IEEE

56. Alvarado-Valiente, J., Romero-Álvarez, J., Arias, D., Terres, E.B., Garcia-Alonso, J., Moguel,
E., Bringas, P.G., Murillo, J.M.: Improving the quality of quantum services generation process:
Controlling errors and noise. In: Hybrid Artificial Intelligent Systems, pp. 180–191. Springer,
Salamanca, Spain (2023). https://doi.org/10.1007/978-3-031-40725-3_16

57. Alvarado-Valiente, J., Romero-Álvarez, J., Díaz, A., Rodríguez, M., García-Rodríguez, I.,
Moguel, E., Garcia-Alonso, J., Murillo, J.M.: Quantum services generation and deployment
process: A quality-oriented approach. In: Quality of Information and Communications Tech-
nology, pp. 200–214. Springer, Aveiro, Portugal (2023). https://doi.org/10.1007/978-3-031-
43703-8_15

58. Weder, B., Barzen, J., Leymann, F., Zimmermann, M.: Hybrid quantum applications need
two orchestrations in superposition: A software architecture perspective. In: 2021 IEEE
International Conference on Web Services (ICWS), pp. 1–13 (2021). https://doi.org/10.48550/
arXiv.2103.04320 . IEEE

59. Weder, B., Barzen, J., Leymann, F., Salm, M., Wild, K.: Qprov: A provenance system for
quantum computing. IET Quantum Commun. 2(4), 171–181 (2021). https://doi.org/10.1049/
qtc2.12012

60. Johnson, B.: Qiskit runtime, a quantum-classical execution platform for cloud-accessible quan-
tum computers. Bull. Am. Phys. Soc. (2022). https://research.ibm.com/publications/qiskit-
runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers

https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.48550/arXiv.1805.10928
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.1109/TQE.2022.3164716
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.4324/9781003212980-12
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1063/5.0126814
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/ACCESS.2022.3186306
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://doi.org/10.1109/MIC.2021.3132688
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-40725-3_16
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.1007/978-3-031-43703-8_15
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.48550/arXiv.2103.04320
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://doi.org/10.1049/qtc2.12012
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers
https://research.ibm.com/publications/qiskit-runtime-a-quantum-classical-execution-platform-for-cloud-accessible-quantum-computers


222 E. Moguel et al.

61. Heim, B.: Universal quantum intermediate representation. In: APS March Meeting Abstracts,
vol. 2021, pp. 34–009 (2021). https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/
abstract

62. Hilton, J.: Building the quantum workforce of the future. Forbes Technology Council
(2019). https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-
workforce-of-the-future/

63. Schwichtenberg, S., Gerth, C., Engels, G.: From open api to semantic specifications and code
adapters. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 484–491
(2017). https://doi.org/10.1109/ICWS.2017.56. IEEE

64. Soni, A., Ranga, V.: Api features individualizing of web services: Rest and soap. Int. J.
Innov. Technol. Explor. Eng. 8(9), 664–671 (2019). https://api.semanticscholar.org/CorpusID:
241888945

65. Karavisileiou, A., Mainas, N., Petrakis, E.G.M.: Ontology for openapi rest services descrip-
tions. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 35–40 (2020). https://doi.org/10.1109/ICTAI50040.2020.00016

66. Romero-Álvarez, J., Alvarado-Valiente, J., Casco-Seco, J., Moguel, E., Garcia-Alonso, J.,
Canal, C., Murillo, J.M.: Developing high-level abstractions for creating quantum services:
Openapi and asyncapi. In: Symposium and Summer School On Service-Oriented Computing
(SummerSOC 2023), Crete, Greece (2023)

67. Silva, V.: Practical Quantum Computing for Developers: Programming Quantum Rigs in the
Cloud Using Python, Quantum Assembly Language and IBM QExperience. Apress, USA
(2018). https://doi.org/10.1007/978-1-4842-4218-6

68. Romero-Álvarez, J., Alvarado-Valiente, J., Moguel, E., Garcia-Alonso, J.: Quantum web
services: Development and deployment. In: Web Engineering, pp. 421–423. Springer, Alicante,
Spain (2023). https://doi.org/10.1007/978-3-031-34444-2_39

69. Kumara, I., Van Den Heuvel, W.-J., Tamburri, D.A.: Qsoc: Quantum service-oriented comput-
ing. In: Symposium and Summer School on Service-Oriented Computing, pp. 52–63 (2021).
https://doi.org/10.1007/978-3-030-87568-8_3. Springer

70. Alvarado-Valiente, J., Romero-Álvarez, J., Moguel, E., García-Alonso, J.: Quantum
web services orchestration and management using devops techniques. In: Garrigós, I.,
Murillo Rodríguez, J.M., Wimmer, M. (eds.) Web Engineering, pp. 389–394. Springer,
Alicante, Spain (2023). https://doi.org/10.1007/978-3-031-34444-2_33

71. Romero-Alvarez, J., Alvarado-Valiente, J., Moguel, E., Garcia-Alonso, J., Murillo, J.M.:
A workflow for the continuous deployment of quantum services. In: IEEE International
Conference on Software Services Engineering (SSE), pp. 1–8 (2023). https://doi.org/10.1109/
SSE60056.2023.00015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://ui.adsabs.harvard.edu/abs/2021APS..MARM34009H/abstract
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://www.forbes.com/sites/forbestechcouncil/2019/06/19/building-the-quantum-workforce-of-the-future/
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://doi.org/10.1109/ICWS.2017.56
https://api.semanticscholar.org/CorpusID:241888945
https://api.semanticscholar.org/CorpusID:241888945
https://api.semanticscholar.org/CorpusID:241888945
https://api.semanticscholar.org/CorpusID:241888945
https://api.semanticscholar.org/CorpusID:241888945
https://api.semanticscholar.org/CorpusID:241888945
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1109/ICTAI50040.2020.00016
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-1-4842-4218-6
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-031-34444-2_39
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-030-87568-8_3
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1007/978-3-031-34444-2_33
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
https://doi.org/10.1109/SSE60056.2023.00015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Engineering Hybrid Software Systems

Luis Jiménez-Navajas, Ricardo Pérez-Castillo, and Mario Piattini

Abstract Quantum computing is getting closer and closer to bringing all its
potential applications to our lives. This means that in a few years the current IT
will evolve into hybrid software systems where quantum and classical computing
paradigms should be designed, developed, and operated together. This is a big
challenge that will require software modernization processes for transforming
and migrating legacy software systems (which may include adding new existing
quantum software) toward such hybrid software systems. This chapter discusses
the challenges of hybrid software and how software modernization (based on
architecture-driven modernization) can be used as a reengineering solution for an
effective evolution of classical and quantum software.

Keywords Quantum software · Software modernization · Hybrid software
systems · Architecture-driven modernization · KDM · UML

1 Introduction

When its associated technology is sufficiently mature, quantum computing is
expected to make a great impact on information systems and, in general, on business
and society [1, 2]. Technology giants such as Amazon, IBM, Google, and Microsoft
are investing a lot of resources in developing this new paradigm, whether by creating
new languages [3–5], researching the creation of better quantum computers, or
enabling quantum services [6]. This growing interest in quantum computing and
its potential impact on various fields [7] has led to the emergence of a vibrant
quantum ecosystem comprising startups, research labs, and consortia. In 2021,

L. Jiménez-Navajas · R. Pérez-Castillo (�)
University of Castilla-La Mancha, Talavera de la Reina, Spain
e-mail: ricardo.pdelcastillo@uclm.es

M. Piattini
University of Castilla-La Mancha, Ciudad Real, Spain

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_9

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 9&domain=pdf

 885 54077 a 885 54077 a
 
mailto:ricardo.pdelcastillo@uclm.es
mailto:ricardo.pdelcastillo@uclm.es
mailto:ricardo.pdelcastillo@uclm.es


224 L. Jiménez-Navajas et al.

Zapata Computing conducted a survey of 300 leaders at large global enterprises
(information and technology officers and other executive levels) with estimated
2021 revenues of over $250 million. In this survey, 74% of enterprise leaders agreed
that “those who fail to adopt quantum computing solutions will fall behind” [8].

Companies that are eager to benefit from quantum software may want to adapt
their classical software systems to the quantum computing paradigm. For example,
companies researching the creation of certain materials or pharmaceuticals will be
forced to adopt quantum software, since its performance is better than classical
software with these types of problems [9].

The effective adoption of quantum software does not imply a total discarding of
the classical software systems but rather a progressive evolution in which quantum
software could be integrated in some parts. There are several reasons for which a
partial adoption is expected instead of a whole revolution. The first reason is that
quantum computing can solve very specific problems [10], which implies that (1)
not everything can be better solved with a quantum algorithm, and even doing so,
(2) those quantum programs could not represent a performance gain compared to
classical software [10]. Additionally, while current classical software systems were
in place, those systems probably have embedded a large amount of mission-critical
knowledge (specifically in the source code) that is still extremely valuable for the
organizations. That embedded knowledge is probably not present anywhere else, so
it is extremely difficult and risky to preserve and migrate such knowledge in new
software systems developed from scratch [11].

Consequently, in the near future, it is expected to find organizations with hybrid
software systems, which combine both quantum and classical software. Quantum
software components will perform those complex operations that classical software
cannot perform in a reasonable time. Typically, these operations will be executed
through the services provided by quantum computing providers [12], usually in the
cloud. On the other hand, the classical software will manage those request/response
interactions with quantum software, e.g., sending the input with which the quantum
software will work, and then receiving and processing the output of the quantum
software execution.

The evolution of classical software systems, in isolation, has been previously
addressed by software reengineering [13–15]. With the advent of quantum comput-
ing, some adaptations have been suggested to meet the underlying challenges of
the evolution from/toward hybrid software systems [16]. First, quantum algorithms
must be capable of being integrated into the existing software systems. Also, the
replacement of its classical counterparts must take place in an integrated way.
Second, once the classical software system has evolved, new functionalities inspired
in and based on the quantum computing paradigm must be introduced in the target
hybrid software system [17].

In order to carry out the evolution of classical software systems toward hybrid
software systems, a quantum software modernization process has been proposed
[18]. This process is a solution based on reengineering and, more specifically, on
architecture-driven modernization (ADM) [19]. ADM is the evolution of traditional
reengineering following the model-driven engineering (MDE) principles, in order



Engineering Hybrid Software Systems 225

to address the standardization and automation challenges [20]. This modernization
process facilitates the analysis, refactoring, and transformation of an existing
software system to support new requirements, the migration of systems, or even
their interoperability. Thanks to the MDE principles, this process is agnostic to the
quantum software technology and programming languages, following the quantum
software engineering principles set out in the Talavera Manifesto [21].

The remainder of this chapter is structured as follows. First, it discusses the
challenges that quantum software brings to the existing software systems and the
transformation that it entails. Then, it discusses the process of quantum software
modernization for evolving from/toward hybrid software systems. After this, a
running example illustrates how the modernization process works. The last section
draws some conclusions.

2 Classical-Quantum Software Systems

Once companies have access to quantum service providers, those companies that
would take advantage of this technology will start to consider adapting some of their
business processes. However, as mentioned above, the classical part is expected not
to be fully replaced. There are several reasons for this. Firstly, quantum algorithms
help us solve specific tasks, and the business model of some companies probably
does not allow them to employ these algorithms. Another reason might be that
the implementation of their software systems with quantum software would not
make a significant difference in performance since the functions that these systems
accomplish are simplistic regarding quantum computing, while the cost of its
implementation would skyrocket.

Hybrid software systems are expected to be composed of two main parts,
classical and quantum software. Classical software implements all those functions
that do not make sense to “quantumfy,” and which will perform a transformation of
the output of the quantum functions into legible information. Quantum software
implements such functions, either in the cloud or through simulations. Figure 1
shows the usual execution process of a hybrid program. The two parts are not
isolated from each other. The input the quantum algorithm needs to process is
provided by the classical part, previously stored in the memory. Then, the quantum
part prepares the algorithm (either adiabatic or gate based) and manipulates the
qubits to process the input. Finally, the qubits are measured, and the output of the
algorithm (now classical data) can be processed by the classical part and thus by the
users.



226 L. Jiménez-Navajas et al.

Fig. 1 Execution process of a hybrid program

2.1 Challenges of Hybrid Software

Once it is understood that companies will not completely replace their current
software systems to start from scratch with quantum systems, it is time to discuss
what kinds of companies or organizations could benefit from the evolution of their
current software systems.

Companies that will be able to take advantage of quantum computing and will
consider evolving their software systems will have to face several challenges and
will have to study which components or functions to evolve. In the vast majority of
cases, this evolution would consist of carrying out the most demanding operations
in a quantum provider’s cloud [22]. This would be one of the scenarios to be faced,
figuring out which functions to evolve and which algorithms that are isolated in
third-party systems should be used, while communications with cloud providers
would be done through classical computing, i.e., the classical software system would
evolve into a software system with quantum software components.

Another scenario could occur if organizations want to take advantage of the
quantum computing hype and start to move their business models toward the
new paradigm. This would imply a direct evolution of their software systems
toward hybrid ones, as they will still have certain business processes that remain
implemented by classical computing.

Since today’s computational power for noisy intermediate-scale quantum (NISQ)
devices is still limited to a degree, several NISQ devices could be used in a
distributed quantum computing architecture [23]. This will entail another important
challenge for the mentioned evolution toward hybrid software systems.

According to [24], hybrid software systems will also face obstacles in code
portability, tool integration, program validation, and in the orchestration of workflow
development. These problems together with the low maturity of the quantum
solutions market will lead to another important challenge. Today, there exists a huge



Engineering Hybrid Software Systems 227

volatility in quantum technology (quantum computers, programming languages,
development tools, etc.). Thus, today’s companies that bet on a specific technology
could find tomorrow that such technology has become obsolete.

3 Quantum Software Modernization

In this section, the overall quantum software modernization is explained. For a
better understanding, as the process presented is based on ADM, first the traditional
software reengineering and its evolution to architecture-driven modernization is
explained. Then, how the evolution toward hybrid software systems may be
achieved is described.

3.1 Traditional Reengineering

All technologies evolve over time, and so the software should evolve consequently.
This evolution can have negative effects on software systems developed in the past,
like degradation or aging. This implies that information systems can be turned into
legacy information systems, which means that the source code that was developed
could be technologically obsolete [25]. Reengineering allows “the preservation of
the business knowledge, making possible to carry out evolutionary maintenance of
the legacy information systems assuming low risks and low costs” [26]. The overall
reengineering process is typically presented as a “horseshoe” model [27]; see Fig.
2, where reengineering consists of three main phases:

• Reverse engineering: the information system is analyzed to identify its compo-
nents and interrelationships and create abstract representations of the system in
another form or at a higher level of abstraction.

• Restructuring: the transformation from one representation form to another
at the same relative abstraction level. This phase can consist of refactoring,
i.e., the internal structure is improved while preserving the subject system’s
external behavior (functionality and semantics). Or additionally, it can add new
functionality at this abstraction level.

• Forward engineering: the final phase consists of the renovation by generating the
new source code and other software artifacts at a lower abstraction level.

Software reengineering projects have traditionally failed when dealing with
specific challenges like the standardization and automation of the reengineering
process [28]. First, standardization constitutes a challenge since the reengineering
processes have typically been conducted in many different ad hoc ways. Reengineer-
ing projects must, therefore, focus their efforts on a better definition of the process.
Furthermore, the code cannot be the only software asset that the standardization
covers, since “the code does not contain all the information that is needed” [29].



228 L. Jiménez-Navajas et al.

Legacy System 

Un
de

rs
ta

nd
, e

xt
ra

ct
, a

bs
tra

ct
 

New system 

 G
en

er
at

e,
 re

fin
e 

High-level architectural model 
Improve, restructure, extend 

Improved restructured model 

   

New Business 
Func�onality  

Re
ve

rs
e 

En
gi

ne
er

in
g Forw

ard Engineering  

Fig. 2 Horseshoe software reengineering model

The reengineering process must be formalized to ensure an integrated management
of all the knowledge involved in the process, such as source code, data, business
rules, and so on.

Second, automation is also a particularly important problem. In order to prevent
failure in large complex legacy information systems, the reengineering process must
be mature and repeatable [30]. In addition, the reengineering process needs to be
aided by automated tools in order to enable companies to handle the maintenance
costs [28].

3.2 Architecture-Driven Modernization

In order to address the mentioned challenges, traditional reengineering evolved
toward architecture-driven modernization (ADM) [31]. ADM consists of the use
of tools that facilitate the analysis, refactoring, and transformation of existing
systems toward a modernization for supporting new requirements, their migration,
or even their interoperability. To accomplish this, ADM makes use of reengineer-
ing and model-driven engineering (MDE) principles [32], i.e., software artifacts
are represented and managed as models, and automatic model transformation is
defined between them. Thus, ADM attempts to address the mentioned flaws of the
traditional reengineering.



Engineering Hybrid Software Systems 229

Fig. 3 Horseshoe modernization model

The horseshoe reengineering model has been adapted to ADM, and it is known
as the horseshoe modernization model (see Fig. 3). There are three kinds of models
in the horseshoe model [33]:

• Computation-independent model (CIM) is a view of the system from the
computation-independent perspective at a high abstraction level. A CIM does
not show details of the system’s structure. CIMs are sometimes called domain
models and play the role of bridging the gap between the domain experts and
experts in the system design and construction.

• Platform-independent model (PIM) is a view of a system from the platform-
independent perspective at an intermediate abstraction level. A PIM has a specific
degree of technological independence to be suitable for use with several different
platforms of a similar type.

• Platform-specific model (PSM) is a view of a system from the platform-specific
perspective at a low abstraction level. A PSM combines the specifications in
the PIM with the details that specify how that system uses a particular type of
platform or technology.

As a part of the ADM initiative, the Object Management Group (OMG) released
the Knowledge Discovery Metamodel (KDM) within a broad set of proposed stan-
dards [34]. KDM addresses the main challenges that appear in the modernization
of legacy information systems, and it is the cornerstone of the set of proposed
standards, since the other standards are defined around KDM [35]. KDM uses the



230 L. Jiménez-Navajas et al.

Core

KDM

Source

Code Actions

Data Event UI Platform

Conceptual Build Structure

Infrastructure 
LayerFramework

,ticilpxe ,seviti
mirP

detc artxe
y ll acita

motua

Metamodel

Programs 
Elements 
Layer

Runtime 
Resource 
Layer

Abstractions
Layer

H
ig
h-

,t icil p
m i,leve l

sts ylana,stre pxe

Fig. 4 Layers, packages, and concerns in KDM

OMG’s standards for representing the models through XML Metadata Interchange
(XMI).

KDM provides a metamodel which represents the software artifacts involved
in the legacy information system, providing an accurate view of its functions and
structures. Reverse engineering techniques use KDM to build high abstraction level
models in a bottom-up manner starting from software legacy artifacts.

The KDM specification has different perspectives [35], and, in order to simplify
the management of its structure, four layers were designed. Each layer is, therefore,
based on the previous one, and each of them contains several packages representing
different concerns related to legacy information systems. Different KDM packages
and layers could be used depending on the artifacts analyzed (cf. Fig. 4).

According to the horseshoe modernization model, the ADM-based process can
be categorized into three kinds of modernization processes [36]. These depend on
the abstraction level reached in the reverse engineering phase. The reverse engi-
neering phase is probably the most important phase in the horseshoe modernization
model. This is because this activity conditions the abstraction level achieved in
each kind of modernization process and, therefore, the resources provided and
possibilities to restructure legacy information systems. A higher abstraction level
usually implies a greater amount of knowledge and rich information which provide
the modernization process with more restructuring possibilities.

Figure 5 shows the three kinds of modernization processes depending on the
maximum abstraction level reached during the reverse engineering phase:

• Technical Modernization. This kind of modernization considers the lowest
abstraction level and is historically that which is most applied to legacy sys-
tems. A company conducts a technical modernization project when it wishes
to deal with platform or language obsolescence, new technical opportunities,
conformance to standards, system efficiency, system usability, or other similar
modernization factors. This is sometimes not strictly considered to be a modern-
ization process since it focuses solely on corrective and preventive modifications,



Engineering Hybrid Software Systems 231

Time

Abstraction 
Level

Business 

Modernization

Application/Data 

Modernization

Technical 

Modernization

Software Modernization Curve

Source System Target System

Fig. 5 Three kinds of horseshoe modernization models

but in any case, it addresses adaptive or perfective modifications according to the
modernization definition.

• Application/Data Modernization. This kind of modernization considers an inter-
mediate abstraction level since it focuses on restructuring a legacy system at the
level of application and data design to obtain the target system. This kind of
modernization is driven by several modernization factors such as improving the
system reusability, reducing the delocalized system logic or system complexity,
and applying design patterns. There is a fine line between this kind of modern-
ization and the previous one, but that line is crossed when there is some impact
on the system design level.

• Business Modernization. This kind of modernization increases the abstraction
level to the maximum. The restructuring phase therefore takes place at the level
of business architecture, i.e., the business rules and processes that govern a
legacy system in the company. Apart from technical models and application/data
models, this kind of modernization also incorporates business semantic models
which are a key asset in (1) preserving the business knowledge embedded in
legacy systems and (2) aligning the company’s business requirements with the
future target systems.



232 L. Jiménez-Navajas et al.

3.3 Software Modernization of Hybrid Software Systems

Software engineering has evolved as new (or adapted) technologies and method-
ologies are emerging to deal with the mentioned challenges of hybrid software
systems. Now, because of the new quantum paradigm, new difficulties have emerged
as explained previously.

A solution based on reengineering and, more specifically on ADM [19], was
already proposed in [18] to achieve the evolution of classical software systems
toward hybrid ones. That solution introduced “quantum software modernization”
and ensured that it could be used in three different use cases:

• Use case 1. To integrate existing quantum algorithms into new hybrid software
systems

• Use case 2. To evolve actual/classical legacy software systems toward hybrid
software systems

• Use case 3. To implement new business operations supported by quantum
software into the target hybrid software system

Figure 6 shows the overall process of quantum software modernization. In this
process, it is proposed to employ already existing standards such as KDM (already
presented) or unified modeling language (UML). The first phase, which can be
seen on the left-hand side of Fig. 6, consists of reverse engineering, where a model

database,… 

Fig. 6 Quantum software modernization approach [37]



Engineering Hybrid Software Systems 233

represents the different components of a system in a technology-agnostic way. This
model is built through the analysis of the artifacts of the classical system (use case
1) and quantum elements—if they exist (use case 2). The second phase, at the top
center of Fig. 6, is restructuring. The extended KDM that were previously generated
are transformed into high abstraction level models. Also, new quantum programs
or business process could be added to the design of the target software system (use
case 3). The metamodel chosen was UML since it is a widely known modeling
language that has been widely embraced in the industry and which follows the
technology-agnostic philosophy of the reverse engineering phase. Finally, on the
right-hand side of Fig. 6, the forward engineering phase is depicted. In this final
step of the quantum software modernization process, various tools can be used to
automatically generate code fragments of the hybrid system designed employing the
extended UML models.

The quantum software modernization process can be used for any case that aims
at the evolution of a classical software system toward a hybrid one. To illustrate the
overall software modernization process, let us imagine a legacy shipping routing
system belonging to a logistics company. In this case, the company is intended
to implement a quantum algorithm that, taking advantage of quantum parallelism,
calculates the optimal route. Firstly, the company could explore the development of
a quantum algorithm that calculates optimal routes (programs for similar problems
already exist, at least for the quantum annealing device [38]). Secondly, once the
quantum algorithm is developed, the company could have a quantum program,
which needs to be operated almost manually. Finally, the company will need
to integrate with other parts of the existing classical software systems. This is
crucial since the input parameters for the quantum algorithms come from those
classical systems. The output of the quantum algorithms is essential for the classical
counterparts, so that users can make decisions based on them. In this scenario, the
proposed software modernization process might consist of:

• Reverse engineering to get the KDM representing both the classical software
system and the quantum program. This quantum program could be an imple-
mentation of a quantum circuit in a quantum programming language, but not the
graphical quantum circuit. This is where the change of the abstraction level lies,
since to model a quantum program in KDM, one necessarily must change the
abstraction level.

• Based on a model transformation, the target hybrid software system is restruc-
tured. In this phase, the UML representations of the quantum program are
integrated with the classical system representations, resulting in the design of the
target hybrid software system. To cover all aspects of the model transformation,
expert-based model refactoring would be employed. In this example, the integra-
tion of classical software parameters and quantum response integration could be
modeled.

• Finally, in the forward engineering phase, the source code backbone for the
target hybrid software system is generated, at least the backbone that can then
be completed by engineers.



234 L. Jiménez-Navajas et al.

4 Example of Application for the Software Modernization
Process

This section shows an example of the application of the quantum software modern-
ization process to illustrate all the involved artifacts and the tasks performed within
this process. This section has been divided into three subsections, one for each phase
of the software modernization process (i.e., reverse engineering, restructuring, and
forward engineering). However, since there is already literature on the generation of
KDM from the source code of classical software systems, the reverse engineering
phase focuses on the generation a KDM from quantum software and, in particular,
from OpenQASM3 [39]. Then, the restructuring phase performs the transformation
of KDM to UML, and the forward engineering phase introduces the automatic
quantum code generation.

4.1 Reverse Engineering of Quantum Code

Despite all the efforts of OMG and the Architecture-Driven Modernization Task
Force (ADMTF) to build a robust standard with the potential to represent all the
components of an information system that are needed for modernization, they never
considered the quantum paradigm since quantum computing was not relevant in
2003 when the ADMTF was formed. Therefore, it is necessary to “extend the KDM
metamodel through its built-in extension mechanism to support the representation
of the different quantum entities” [40]. The KDM’s default extension mechanism is
the extension family; Fig. 7 depicts the different components within this mechanism
that can be found in a quantum programming language. The KDM extension is
referred to hereinafter as “Q-KDM.”

Whenever quantum programs are analyzed by reverse engineering, the Q-
KDM must appear in the KDM generated from the respective quantum program.
In addition, each quantum component (i.e., a quantum gate or a qubit) is also
defined in the KDM according to its operation. Table 1 shows the definition of
the quantum elements that may appear in a quantum program along with its Q-

<extensionFamily>
<stereotype name="quantum programming language" />
<stereotype name="quantum program" />
<stereotype name="quantum operation" />
<stereotype name="quantum gate" />
<stereotype name="qubit" />
<stereotype name="qubit measure" />
<stereotype name="control qubit" />
<stereotype name="qubit array" />

</extensionFamily>

Fig. 7 Q-KDM extension (extracted from [40])



Engineering Hybrid Software Systems 235

Table 1 Mapping of quantum elements to KDM along with the extension family

Quantum element KDM element Extension family element

Quantum program CodeModel Quantum program
Quantum operation CallableUnit Quantum operation
Quantum gate ActionElement Quantum gate
Qubit Storable and ParameterUnit Qubit or qubit array
Quantum control ActionRelation Control qubit

Fig. 8 Example of an OpenQASM3 program and its analogous quantum circuit

KDM extension. For example, if a qubit appears in a quantum algorithm, this qubit
will be represented in KDM as a StorableUnit or ParameterUnit and will also
point to the extension family stereotype “qubit” or, if it is a qubit array, “qubit
array.” Associating quantum elements with their corresponding extension family
stereotypes allows us to extend the semantics of KDM, since stereotypes may
be used to indicate a difference in meaning or usage between two elements with
identical structures [41]. This is necessary since the elements of quantum software
are radically different from the elements that appear in classical software, which
forces us to extend the metamodel to preserve as much information as possible. In
addition, it is preferred to use standards already embraced by the industry as these
have greater tool support and dominance by industry experts.

This extension, as presented in [40], makes it possible to generate KDM by
analyzing programs developed in any quantum programming language. The left
side of Fig. 8 shows an example of a short program implementing the Bell state
developed in OpenQASM3 [39]. In this program, in line 4, an array of two qubits is
defined; in line 6, a Hadamard’s gate is applied to the first qubit. Then, a controlled
not is applied to qubits 0 and 1 in line 7. Finally, the qubits are measured in lines 8
and 9. The right side of Fig. 8 shows the same implementation of the Bell state but
using the quantum circuit composer of IBM quantum experience [42].

Figure 9 depicts a shortened version of the generated KDM from the Open-
QASM3 program shown in Fig. 8. The extension family defined on Fig. 7 can
be seen from lines 8 to 17 of Fig. 9. In lines 21 and 22, a qubit is declared as a



236 L. Jiménez-Navajas et al.

1 <xml version="1.0" encoding="UTF-8"?>
2 <kdm:Segment xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
3 xmlns:xmi=http://www.omg.org/XMI xmi:version="2.0"name="bell.qasm">
4 <extensionFamily xmi:id="id.0" name="quantum extension">
5 <stereotype name="quantum programming language" xmi:id="id.1" />
6 <stereotype name="quantum circuit" xmi:id="id.2" />
7 <stereotype name="quantum operation" xmi:id="id.3" />
8 <stereotype name="quantum gate" xmi:id="id.4" />
9 <stereotype name="qubit" xmi:id="id.5" />
10 <stereotype name="qubit measure" xmi:id="id.6" />
11 <stereotype name="control qubit" xmi:id="id.7" />
12 <stereotype name="qubit array" xmi:id="id.8" />
13 </extensionFamily>
14 <model xmi:type="code:CodeModel" name="bell.qasm" xmi:id="id.13">
15 <codeElement xmi:type="code:CompilationUnit" name="bell.qasm"
16 xmi:id="id.14" />
17 <codeElement xmi:id="id.21" xmi:type="code:StorableUnit"
18 name="q[2]" stereotype="id.8" />
19 <codeElement xmi:id="id.22" xmi:type="action:ActionElement"
20 kind="operator" name="Hadamard" stereotype="id.4">
21 <source language="OpenQASM3" snippet="h q[0]" />
22 <actionRelation xmi:id="id.23" xmi:type="action:Addresses"
23 from="id.22" to="id.21" />
24 <codeElement xmi:id="id.24" name="0" xmi:type="code:Value"
25 stereotype="id.5" />
26 <actionRelation xmi:id="id.25" xmi:type="action:Reads"
27 from="id.22" to="id.21" />
28 <actionRelation xmi:id="id.27" xmi:type="action:Flow"
29 from="id.22" to="id.28" />
30 </codeElement>
31 <codeElement xmi:id="id.28" xmi:type="action:ActionElement"
32 kind="operator" name="Controlled Not" stereotype="id.4">
33 <source language="OpenQASM3" snippet="cx q[0],q[1]" />
34 <actionRelation xmi:id="id.29" xmi:type="action:Addresses"
35 from="id.28" to="id.21" />
36 <codeElement xmi:id="id.30" name="0" xmi:type="code:Value"
37 stereotype="id.5" />
38 <codeElement xmi:id="id.32" name="1" xmi:type="code:Value"
39 stereotype="id.5" />
40 <actionRelation xmi:id="id.31" xmi:type="action:Reads"
41 from="id.28" to="id.21" stereotype="id.7" />
42 <actionRelation xmi:id="id.33" xmi:type="action:Reads"
43 from="id.28" to="id.21" />
44 <actionRelation xmi:id="id.35" xmi:type="action:Flow"
45 from="id.28" to="id.36" />
46 </codeElement>
47 <codeElement xmi:id="id.36" xmi:type="action:ActionElement"
48 kind="operator" name="Measure" stereotype="id.4">
49 <source language="OpenQASM3" snippet="m q[0]" />
50 <actionRelation xmi:id="id.37" xmi:type="action:Addresses"
51 from="id.36" to="id.21" />
52 <!--Reduced for code simplification--!>
53 </codeElement>
54 <codeElement xmi:id="id.42" xmi:type="action:ActionElement"
55 kind="operator" name="Measure" stereotype="id.4">
56 <source language="OpenQASM3" snippet="m q[1]" />
57 <actionRelation xmi:id="id.43" xmi:type="action:Addresses"
58 from="id.42" to="id.21" />
59 <!--Reduced for code simplification--!>
60 </codeElement>
61</model>
62</kdm:Segment>

Fig. 9 Resulting KDM file of the previous OpenQASM3 program



Engineering Hybrid Software Systems 237

StorableUnit, as a qubit, on reflection, is just a variable which stores a result (the
qubit’s state). This element points to id of “qubit array” in the extension family with
the attribute “stereotype.” Finally, from line 23 to 81 are described the action and the
data flow of the different quantum gates that appear in the algorithm. For example,
lines 23 to 36 represent the abstraction of the Hadamard’s gate. In that part, line 25
specifically holds the textual representation (i.e., “h q[0]”), in lines 26 and 27 the
qubit in which is applied (by means of the ids), and, in lines 34 and 35, the next
quantum gate which acts (with the “actionRelation” of type “Flow”). From lines 37
to 54, the controlled not gate is described in KDM, pointing to the two different
registers of the qubit array, and from lines 55 to 80, the two final measure gates are
described.

4.2 Restructuring

For the restructuring phase of the quantum software reengineering process, the well-
known UML standard has been selected. The restructuring phase consists of the
generation of high-level models where the relevant redesigns for the subsequent
generation of the target hybrid software system are conducted. To perform this task,
UML [43] has been chosen as the modeling language given that it is such a popular
metamodel in the industry (it is an OMG and ISO/IEC standard), with a wide variety
of tools available and a large community of software engineers who are proficient in
this metamodel. It is worth highlighting the good results obtained when using UML
for the analysis and design of software systems [43].

During the design of hybrid software systems, problems may occur concerning
the representation of the new semantics and building blocks that quantum software
can bring. However, like KDM, UML is not designed to represent the particular
elements that may appear in a quantum algorithm, such as quantum gates or qubits.
This is the reason it is necessary to create an extension of the metamodel. UML
offers three extension mechanisms [44]:

• A new instance of the Meta-Object Facility (MOF) model. This approach consists
of creating a completely new metamodel based on MOF. The result of this
heavyweight approach is a new domain-specific modeling language (DSML).

• Derivation of a new UML metamodel. This approach adds new metamodel
elements to the existing one. As occurs with the first approach, it creates a
different metamodel, but it at least considers the original UML metamodel as
it is.

• UML profile. This is a lightweight extension approach that is based on the UML
built-in extension mechanism, UML profiling. UML profiles are created as a set
of stereotypes, tagged values, and constraints defined for some of the existing
UML elements.

Of these three options, the last one has been chosen, i.e., to extend UML through
the creation of a UML profile. There were two reasons for implementing it in this



238 L. Jiménez-Navajas et al.

way: all models generated using such a profile will be fully compliant with the UML
standard; and, in addition, it is easier to maintain extensions that have been defined
as UML profiles, since the associated modeling tools do not need to be adjusted after
each change. Furthermore, there is already a UML quantum profile that represents
quantum elements through class and sequence diagrams [45].

The quantum UML profile, previously proposed in [46], allows the representation
of quantum programs through activity diagrams (see Fig. 10). On the right-hand
side of Fig. 10 can be seen the different stereotypes added to the metamodel
to represent the quantum components that might appear in a quantum program:
quantum circuit, qubit, quantum gate, controlled qubit, measure, and reset. Then,
on the left-hand side of Fig. 10, an excerpt of the UML metamodel for representing
activity diagrams is shown. Finally, the arrows which point from the stereotypes to
the different metaclass elements indicate that the stereotype extends the properties of
the metaclass elements. The UML extension is referred to hereinafter as “Q-UML.”

The root element of a model which represents a quantum circuit will be a
metaclass of type activity with the <<QuantumCircuit>> stereotype. Inside this
activity, the qubits are typified as ActivityPartition with the <<Qubit>> stereotype
because it is intended that the qubits are seen as horizontal lines where the quantum
gates can be placed (as is done by IBM Quantum Experience [42] or any circuit
composer). The quantum gates are represented by the metaclass action but with the
<<QuantumGate>> stereotype—but depending on what action they perform on the
qubits, different metaclasses and stereotypes can be assigned. Further details of Q-
UML can be seen in [46].

The designed KDM-to-UML model transformation can be formally defined in
Atlas Transformation Language (ATL) [47]. An ATL transformation program is
composed of rules that define what elements of the input metamodel are transformed
in other elements regarding the output metamodel. A key part for designing the
model transformation is to define the input and output metamodels. The input
metamodel is an extension of KDM which allows the identification of quantum
elements proposed in [18]. The output metamodel is the ECORE metamodel for
UML version 2.5.1, which defines the abstract syntax of UML. This ECORE
metamodel can be seen in [48] and contains the UML model description compliant
with the EMOF metamodel [49]. EMOF stands for Essential MOF and “it provides
a straightforward framework for mapping MOF models to implementations such as
JMI and XMI for simple metamodels” [50]. The UML metamodel is used as is,
although a quantum UML profile as depicted in [51] is used for modeling quantum
circuits as the UML activity diagram.

Having defined the metamodels, the design of the ATL transformation attempts to
identify which quantum entities could match with elements of the UML metamodel.
The transformation accomplished follows a top-down order. Thus, the first KDM
elements transformed to UML are those that group the remaining nested elements,
i.e., the Segment element as the KDM’s root element (which may contain, from
different perspectives, the description of a whole system, including its components
and interrelationships [52]. The last, and more atomic, KDM element is the



Engineering Hybrid Software Systems 239

F
ig
.1

0
Q

ua
nt

um
U

M
L

pr
ofi

le
ex

tr
ac

te
d

fr
om

[4
6]



240 L. Jiménez-Navajas et al.

Table 2 Summary of the transformations accomplished

Quantum element Input KDM Output UML

Quantum program CompilationUnit Interaction
Quantum operation CallableUnit Activity
Qubit declaration StorableUnit ActivityPartition
Quantum gate ActionElement CallOperationAction/

AcceptEventAction/
SendSignalAction

Data flow between gates Flow ControlFlow

actionRelation, which specifies on which qubit a quantum gate acted and its flow
control.

Table 2 shows a short summary of the transformations carried out. On the left side
the quantum element is analyzed, the middle of the table shows the KDM definition,
and the right side shows its UML transformation.

As previously explained, the UML standard is defined as a metamodel com-
pliant with MOF. Every metamodel has two separate but related syntaxes: “i) an
abstract syntax that describes the concepts in the language, their characteristics
and interrelationships; and ii) a concrete syntax that defines the specific textual
or graphical notations required for the abstract elements” [52]. Although the ATL
model transformation can generate UML models from KDM, these UML models are
the abstract syntax representation, while a second transformation from the abstract
to the concrete syntax representation allows us to visualize the UML diagrams in a
graphical way.

To carry out the graphical representation, several tools that perform the same
process of drawing an activity diagram based on a model were studied, for example
visual paradigm [53] and jsUML2 [54]. jsUML2 was chosen because it is an open-
source library and supports designing use cases, classes, and activity diagrams,
among others, as well as JavaScript-based web applications. This entails the
advantage of a better integration into a REST API solution.

Although the quantum algorithms modeled with the quantum UML profile are
valid according to the standard, in order to represent them graphically with jsUML2,
it is necessary to modify the models so that the library will generate activity
diagrams. Among the different types of diagrams that jsUML2 allows to design,
activity diagrams have been chosen for modeling quantum programs according to
the UML extension. This is due to the UML models built with the UML profile
belonging to the abstract syntax specification of UML activity diagrams.

Figure 11 shows the result of the graphical UML activity diagram after the
KDM-to-UML model transformation and the definition of its concrete syntax using
jsUML2 of the OpenQASM3 program depicted in Fig. 8. The activity diagram
contains an activity with the name of the quantum program, two qubits (one for
each register), and four gates: a Hadamard’s gate, a controlled not split into two
elements for a better comprehension of the diagram, and two measurement gates.
All those elements, that are represented from quantum programs, are depicted with



Engineering Hybrid Software Systems 241

Fig. 11 UML activity diagram using jsUML2

its correspondent stereotype, which enables an extension in the syntax of UML to
represent properly such quantum elements.

4.3 Forward Engineering

The proposed model-to-text transformation considers two types of UML diagrams
according to the quantum UML profile: (1) the class diagram which provides the
comprehensive static view of the system, representing how classes and packages
are organized, and (2) the activity diagram which serves to model the dynamics
(algorithms or quantum circuits) of certain quantum software components. The
output for the target hybrid software is Python and its quantum software extension,
Qiskit [55]. Today, both languages are widely used, both in classical and quantum
software development. In addition, Qiskit supports the generation of OpenQASM
quantum assembly code, which is the basis of other quantum programming lan-
guages. Despite this, the transformation could be adapted to other models and
programming languages according to the MDE approach.

The transformation process is made in two steps, which can be considered
as two independent model-to-text transformation steps executed in a row (the
transformation code is available in [56]). In the first step, the quantum software is
generated from the extended UML activity diagrams that represent quantum circuits.
In the second step, the Python code (classical software) is generated from the UML
class diagrams, which also uses quantum stereotypes defined in the UML profile.
Such information is extremely relevant to define dependencies and relationships
between classical and quantum code. Because of this, the quantum code generation
is done first.



242 L. Jiménez-Navajas et al.

Fig. 12 Excerpt of EGL transformation for quantum gates generation in Qiskit

4.3.1 UML Activity Diagrams to Qiskit Code

The first Epsilon Generation Language (EGL) transformation generates a Python
(.py) file for each activity diagram (that represents a quantum circuit). The Python
file first adds all the Qiskit imports, and then it will generate a QuantumCircuit
object representing the quantum circuit. All the quantum elements (registers, gates,
measures, etc.) will be added to that object. First, a quantum register (by using
QuantumRegister class) is generated, which groups the number of qubits that are
used by the circuit. According to the quantum UML profile, every Lane element
represents a qubit in the circuit. Similarly, a ClassicalRegister object is generated
(and added to the circuit) for every qubit affected by a measure operation (i.e., a
UML Action element stereotyped with <<Measure>>). Second, the QuantumCircuit
object is instantiated by using as parameters both registers (quantum and classical).
After that, quantum gates are added to the circuit, as well as the measure operations.
Quantum gates are modeled in the UML activity diagrams as “Action” elements
stereotyped with <<QuantumGate>> (see Fig. 12). It is crucial to preserve the order
of quantum gates, since quantum circuit does not define an explicit execution flow.
Another important question is the controlled gates, which are modeled as a pair of
two elements and one constraint between them: a SendSignalAction (on the qubit
used for the control) and an AcceptEventAction (on the qubit in which the gate
is applied). In this case, the EGL transformation should consider the relationship
between those two elements applied in different Lane elements; at the same time,
the order of the remaining gates is kept. Finally, the circuit is generated, and made
persisted in the target Python file, through the EGL template.

4.3.2 UML Class Diagrams to Python Code

The second EGL transformation generates the Python code for the classical
software, from the UML class diagrams. Of course, there already exist tools for
classical code generation from UML class diagrams. The difference is that the
classical code is generated with some relationships with the previous Qiskit code.



Engineering Hybrid Software Systems 243

Fig. 13 Excerpt for the EGL function for classical-quantum code integration

In this sense, the first mapping considers Packages and generates the respective
directory structure to store the Python files for each Class. For each Class, all the
attributes are generated in code. It is necessary to establish a mapping between the
predefined UML data types and the available Python data types (of course this is
parameterizable). Along with the attributes, the respective functions for the public
interface, i.e., getters and setters, are defined. Finally, the operations defined in the
UML classes are defined as functions in the Python code. The function signature is
created in the target class with the parameters and the return type. Obviously, these
operations are empty and must be completed by developers.

Apart from those transformation rules, the quantum code is integrated along with
the classical code. The following conditions are checked to do such integration:
(1) there is a UML class stereotyped as <<Quantum Driver>>; (2) there is a
dependency from the previous class to a different UML class stereotyped as
<<Quantum>> (which represents the quantum circuit); and (3) the <<Quantum>>
class name matches with the name of the .py file previously generated from a
UML activity diagram. As a result, the generated source code for the <<Quantum
Driver>> class contains a Qiskit QuantumCircuit attribute with the name of the
target <<Quantum>> class (see Fig. 13).

As a result, the generated code defines the skeleton of the classic classes, while
the existing code presents fully functional code. The generated code of the quantum
circuit varies in the order of application of some gates, but only in cases where
it does not affect the result, so those can be considered as functionally equivalent
circuits.

Although there are several generative techniques for both classical and quantum
software, these were provided in isolation. However, this model-to-text transforma-
tion generates both classical (Python) and quantum (Qiskit) code in combination
from the high-level design in UML of hybrid software systems. This transformation
completes the software modernization process from/to hybrid software systems.

Figure 14 shows the output of the model-to-text transformation, from the UML
activity diagram (depicted in Fig. 11) to a hybrid program (Python file importing
the IBM quantum’s Software Development Kit (SDK) Qiskit). In lines 3 and 4, the
Qiskit’s libraries are imported. Then, the qubits are declared in lines 7 and 8, and in
line 11 the quantum circuit (Bell) is initialized with the qubits previously declared.
Finally, from lines 13 to 16, the quantum gates act on the quantum circuit.



244 L. Jiménez-Navajas et al.

1 # -*- coding: utf-8 -*- 
2  
3 from qiskit import QuantumCircuit, QuantumRegister,  
4 ClassicalRegister 
5 from numpy import pi 
6  
7 q1 = QuantumRegister(1, 'q1') 
8 q0 = QuantumRegister(1, 'q0') 
9 
11 Bell = QuantumCircuit(q1, q0) 
12 
13 Bell.h(q0) 
14 Bell.cz(q0, q1) 
15 Bell.measure(q0) 
16 Bell.measure(q1) 

Fig. 14 Output Qiskit program

5 Conclusions

Every day we are coming closer to a world where organizations can have access to
quantum computers or be able to run quantum software that improves or benefits
their business models. Moreover, the estimated predictions point to a large increase
in the value of quantum software services developed regarding the new quantum
computing paradigm.

However, the organizations which could benefit from quantum computing are not
yet ready for this paradigm leap. It has always been said that it is not the strongest
that survives but the one that adapts the best. This phrase can be applied to our
context since, in a not-too-distant future, the organizations that best adapt their
business models (hence, their software systems) or create new strategies considering
the new paradigm, with which organizations will be able to survive to competence.

In this context, quantum software modernization has been introduced in this
chapter as a solution to conduct the evolution of classical software systems toward
hybrid software systems. This process makes the combination of both computing
paradigms, quantum and classical, easier. This process consists of three phases,
reverse engineering, restructuring, and forward engineering. These phases have been
illustrated in this chapter, although the overall modernization process follows the
MDE principles, and, therefore, it could be instantiated with different (meta)models.

The main implication of the quantum software modernization process for
practitioners is a set of challenges that may appear during the evolution of classical
software systems toward hybrid software systems. Thus, software modernization
helps the companies to identify which components from their business models could
be evolved, and how, or even start new businesses following this new paradigm



Engineering Hybrid Software Systems 245

using techniques and standards which have been proved to be effective in solving
such problems.

References

1. Zhao, J., Quantum Software Engineering: Landscapes and Horizons. 2020.
2. Gupta, S., Sharma, V.: Effects of quantum computing on businesses. In: 2023 4th International

Conference on Intelligent Engineering and Management (ICIEM). IEEE (2023)
3. Cross, A.: The IBM Q experience and QISKit open-source quantum computing software. In:

APS March Meeting Abstracts (2018)
4. Svore, K., et al.: Q#: Enabling scalable quantum computing and development with a high-

level DSL. In: Proceedings of the Real World Domain Specific Languages Workshop 2018.
Association for Computing Machinery, Vienna (2018) Article 7

5. Hancock, A., et al. Cirq: A Python Framework for Creating, Editing, and Invoking Quantum
Circuits. 2019.

6. Kessler, E.J.A.O.T.T., Introduction to Quantum Computing on AWS. 2020.
7. Alsalman, A.I.S.: Accelerating quantum readiness for sectors: risk management and strategies

for sectors. J Quant Inf Sci. 13(2), 33–44 (2023)
8. Zapata Computing, The First Annual Report on Enterprise Quantum Computing Adoption.

2022.
9. McArdle, S., et al.: Quantum computational chemistry. Rev Modern Phys. 92(1), 015003

(2020)
10. Aaronson, S.J.S.A.: The limits of quantum computers. Sci Am. 298(3), 62–69 (2008)
11. Pérez-Castillo, R., Mas, B., Pizka, M.: Understanding legacy architecture patterns. In:

2015 International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE) (2015)

12. Garcia-Alonso, J., et al.: Quantum software as a service through a quantum API gateway. IEEE
Internet Computing. 26(1), 34–41 (2021)

13. Colanzi, T., et al.: Are we speaking the industry language? The practice and literature of
modernizing legacy systems with microservices. In: 15th Brazilian Symposium on Software
Components, Architectures, and Reuse (2021)

14. Khadka, R., et al.: How do professionals perceive legacy systems and software modernization?
In: Proceedings of the 36th International Conference on Software Engineering (2014)

15. Comella-Dorda, S., et al.: A Survey of Legacy System Modernization Approaches. Carnegie-
Mellon Univ Pittsburgh, PA, Software Engineering Inst (2000)

16. Pérez-Castillo, R., Serrano, M.A., Piattini, M.: Software modernization to embrace quantum
technology. Adv Eng Softw. 151, 102933 (2021)

17. Heim, B., et al.: Quantum programming languages. Nat Rev Phys. 2(12), 709–722 (2020)
18. Jiménez-Navajas, L., Pérez-Castillo, R., Piattini, M.: Reverse engineering of quantum pro-

grams toward KDM models. In: 13th International Conference on the Quality of Information
and Communications Technology (QUATIC), pp. 249–262. Springer International Publishing,
Faro, Portugal. (Online Conference) (2020)

19. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Architecture-driven modernization. In:
Modern Software Engineering Concepts and Practices: Advanced Approaches, pp. 75–103.
IGI Global (2011)

20. Favre, J.-M., Towards a Basic Theory to Model Model Driven Engineering. 2011.
21. Piattini, M., et al.: The Talavera Manifesto for Quantum Software Engineering and Program-

ming. In: QANSWER (2020)
22. MacQuarrie, E.R., et al.: The emerging commercial landscape of quantum computing. Nat Rev

Phys. 2(11), 596–598 (2020)



246 L. Jiménez-Navajas et al.

23. Ferrari, D., et al.: Compiler design for distributed quantum computing. IEEE Trans Quantum
Eng. 2, 1–20 (2021)

24. McCaskey, A., et al.: Hybrid programming for near-term quantum computing systems. In: 2018
IEEE International Conference on Rebooting Computing (ICRC) (2018)

25. Ulrich, W.M., Legacy Systems: Transformation Strategies. 2002.
26. De Lucia, A., et al.: Emerging Methods, Technologies, and Process Management in Software

Engineering, pp. 1–276 (2007)
27. Kazman, R., Woods, S.G., Carriere, S.J.: Requirements for integrating software architecture

and reengineering models: CORUM II. In: Reverse Engineering – Working Conference
Proceedings, pp. 154–163 (1998)

28. Sneed, H.M.: Estimating the costs of a reengineering project. In: Proceedings of the 12th
Working Conference on Reverse Engineering, pp. 111–119. IEEE Computer Society (2005)

29. Müller, H.A., et al.: Reverse engineering: a roadmap. In: Proceedings of the Conference on
The Future of Software Engineering. ACM, Limerick, Ireland (2000)

30. Canfora, G., Penta, M.D.: New Frontiers of Reverse Engineering. In: 2007 Future of Software
Engineering. IEEE Computer Society (2007)

31. Ulrich, W.M. and P.H. Newcomb, Information Systems Transformation, 2010.
32. Schmidt, D.C.: Developing applications using model-driven design environments. IEEE Comp

Society. 39(2), 25–32 (2006)
33. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. www.omg.org/docs/omg/03-06-01.pdf, p.

62. OMG (2003)
34. OMG: Architecture-Driven Modernization Standards Roadmap. https://www.omg.org/adm/

ADMTF%20Roadmap.pdf (2009)
35. Pérez-Castillo, R., De Guzmán, I.G.R., Piattini, M.: Knowledge discovery metamodel-ISO/IEC

19506: a standard to modernize legacy systems. Comp Standards Interf. 33, 519–532 (2011)
36. Khusidman, V., Ulrich, W.: Architecture-Driven Modernization: Transforming the Enterprise.

DRAFT V.5. http://www.omg.org/docs/admtf/07-12-01.pdf, p. 7. OMG (2007)
37. Jiménez-Navajas, L., Pérez-Castillo, R., Piattini, M.: KDM to UML model transformation for

quantum software modernization. In: International Conference on the Quality of Information
and Communications Technology, pp. 211–224. Springer (2021)

38. Weinberg, S.J., et al.: Supply chain logistics with quantum and classical annealing algorithms.
Sci Rep. 13(1), 4770 (2023)

39. Cross, A.W., et al., OpenQASM 3: A Broader and Deeper Quantum Assembly Language.
2021.

40. Jiménez-Navajas, L., Pérez-Castillo, R., Piattini, M.: Reverse engineering of quantum pro-
grams toward KDM models. In: International Conference on the Quality of Information and
Communications Technology, pp. 249–262. Springer (2020)

41. ISO/IEC: Knowledge Discovery Meta-model (KDM). https://www.iso.org/standard/
32625.html (2009)

42. IBM: IBM Quantum Experience Webpage. https://quantum-computing.ibm.com/
43. OMG: UML 2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF (2017)
44. Ribo, J.M. J. Franch Gutiérrez A Two-Tiered Methodology to Extend the UML Metamodel.

2002.
45. Pérez-Delgado, C.A., Perez-Gonzalez, H.G.: Towards a quantum software modeling language.

In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops (2020)

46. Pérez-Castillo, R., Jiménez-Navajas, L., Piattini, M.: Modelling quantum circuits with UML.
In: Second International Workshop on Quantum Software Engineering (Q-SE 2021). IEEE
Computer Society, Madrid (2021) (Online). p. In Press

47. Foundation, E.: ATL – A Model Transformation Technology. https://www.eclipse.org/atl/
48. UML ECORE. https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/

uml.ecore
49. Eclipse: EMF, ECore & Meta Model. 27/03/2021. https://www.eclipse.org/modeling/emft/

search/concepts/subtopic.html


 19079 20726 a 19079 20726 a
 
http://www.omg.org/docs/omg/03-06-01.pdf

 24719 22940 a 24719
22940 a
 
https://www.omg.org/adm/ADMTF%20Roadmap.pdf

 4491 28474 a 4491 28474
a
 
http://www.omg.org/docs/admtf/07-12-01.pdf

 23726
40651 a 23726 40651 a
 
https://www.iso.org/standard/32625.html

 15877 42865 a 15877
42865 a
 
https://quantum-computing.ibm.com/


6807 43972 a 6807 43972 a
 
https://www.omg.org/spec/UML/2.5.1/PDF

 22653 53934 a 22653 53934 a
 
https://www.eclipse.org/atl/

 5675 55041 a 5675 55041 a
 
https://github.com/ricpdc/qrev-api/blob/main/qrev-api/resources/metamodels/uml.ecore

 19858 57255 a 19858 57255
a
 
https://www.eclipse.org/modeling/emft/search/concepts/subtopic.html


Engineering Hybrid Software Systems 247

50. OMG: The Essential MOF (EMOF) Model. https://it-dev.mpiwg-berlin.mpg.de/svn/JET/trunk/
doc/latex/Diplomarbeit/websources/OMG/06-01-01.pdf (2006)

51. Pérez-Castillo, R., Jiménez-Navajas, L., Piattini, M.: Modelling quantum circuits with UML.
In: 43rd ACM/IEEE International Conference on Software Engineering Workshops. 2021
IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), pp. 7–12.
IEEE Computer Society, Virtual (2021) (originally in Madrid, Spain)

52. OMG. Architecture-Driven Modernization: Knowledge Discovery Meta-Model (KDM). https:/
/www.omg.org/spec/KDM/1.4/PDF (2016)

53. Visual Paradigm’s Homepage. https://www.visual-paradigm.com/
54. Romero, D.J.R.: jsUML2 – A lightweight HTML5/javascript library for UML 2 diagramming.

http://www.jrromero.net/tools/jsUML2
55. Qiskit, I.: Getting Started with Qiskit. https://qiskit.org/documentation/tutorials/circuits/

1_getting_started_with_qiskit.html (2022)
56. Cantalejo, I.: EGL Scripts for Transforming Quantum UML Models into Python Code. https:/

/github.com/ivyncm/PythonGenerator/tree/main/EGLtemplates (2023)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 15865 -307 a 15865 -307 a
 
https://it-dev.mpiwg-berlin.mpg.de/svn/JET/trunk/doc/latex/Diplomarbeit/websources/OMG/06-01-01.pdf

 32481 6335 a 32481 6335
a
 
https://www.omg.org/spec/KDM/1.4/PDF

 11126
8549 a 11126 8549 a
 
https://www.visual-paradigm.com/

 -563 10763 a -563 10763 a
 
http://www.jrromero.net/tools/jsUML2

 16162 11870 a 16162 11870
a
 
https://qiskit.org/documentation/tutorials/circuits/1_getting_started_with_qiskit.html

 32481
14084 a 32481 14084 a
 
https://github.com/ivyncm/PythonGenerator/tree/main/EGLtemplates
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part III
Quantum Software Laboratory



Trapped-Ion Quantum Computing

Albert Frisch, Alexander Erhard, Thomas Feldker, Florian Girtler,
Max Hettrich, Wilfried Huss, Georg Jacob, Christine Maier,
Gregor Mayramhof, Daniel Nigg, Christian Sommer, Juris Ulmanis,
Etienne Wodey, Mederika Zangerl, and Thomas Monz

Abstract The future of quantum information processing requires a stable hardware
platform to execute quantum circuits reliably and with low error rates, such that
solutions for industrial applications can be built on top of it. Trapped-ion quantum
computing, among other platforms, currently proves to be very suitable for the tran-
sition from tabletop, lab-based experiments to rack-mounted, on-premise systems
which allow operation in data center environments. Several technical challenges
need to be solved and controlling many degrees of freedom needs to be optimized
and automated, before industrial applications can be successfully implemented on
quantum computers situated within data centers. These necessary developments
range from the architecture of an ion trap that fundamentally defines the supported
instruction sets, over the control electronics and laser systems, which limit the
quality of qubit operations, to the optimized compilation of quantum circuits based
on qubit properties and gate fidelities. In this chapter, we give an introduction to the
ion-trap quantum computing platform, present the current technical state of the art
of Alpine Quantum Technologies’ ion-trapping hardware and rack-based quantum
computing systems, and highlight parts of the execution stack.

Keywords Quantum computing · Trapped ions · Gate model · Quantum
performance · Alpine Quantum Technologies (AQT)

The original version of the chapter has been revised. A correction to this chapter can be found at
https://doi.org/10.1007/978-3-031-64136-7_14

A. Frisch (�) · A. Erhard · T. Feldker · F. Girtler · M. Hettrich · W. Huss · G. Jacob · C. Maier ·
G. Mayramhof · D. Nigg · C. Sommer · J. Ulmanis · E. Wodey · M. Zangerl
Alpine Quantum Technologies GmbH, Innsbruck, Austria
e-mail: albert.frisch@aqt.eu

T. Monz
Alpine Quantum Technologies GmbH, Innsbruck, Austria

Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria

© The Author(s) 2024, corrected publication 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_10

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14

 885
52417 a 885 52417 a
 
mailto:albert.frisch@aqt.eu
mailto:albert.frisch@aqt.eu
mailto:albert.frisch@aqt.eu
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10


252 A. Frisch et al.

1 Overview

In recent years, quantum computing (QC) has taken shape as a multidisciplinary
research and development field extending in many dimensions, i.e., spanning from
theoretical to experimental disciplines as well as from research and development
to engineering. Quantum algorithms and their applications touch a plethora of
scientific and industrial fields while user communities start to become aware of
their possible implications in the near future. Ultimately, the goal is to make
distinct QC resources, i.e., superposition, entanglement, and randomness, available
for real-world application workloads, which will be able to benefit from quantum
advantage [1]. Trapped-ion QC is a very promising architecture that continuously
proves to be a stable platform to execute quantum algorithms reliably. This platform
has recently started to push toward integration in data centers and high-performance
computing (HPC) environments [2].

Substantial efforts are taken to provide low-threshold programmatic access to
execute quantum algorithms on existing QC hardware provided by various vendors.
Mostly, access is implemented via so-called quantum software development kits
(SDKs) in combination with application programming interfaces (APIs). While
SDKs and APIs enable the execution of quantum circuits, they also clearly separate
the quantum computing infrastructure from the classical computing infrastructure.
For a tighter integration of classical compute nodes and quantum processing units
(QPUs), significant software and hardware development will be necessary in the
near future [3].

The following section starts with an overview of different QC platforms in
Sect. 1.1, followed by a short introduction to ion-trap technology (Sect. 1.2). In
Sect. 2 we focus on aspects of the Alpine Quantum Technologies (AQT) hardware,
from the ion trap (Sect. 2.1), mounted in a vacuum chamber setup (Sect. 2.2), to the
full-scale rack-mounted system (Sect. 2.3). Subsequently, we outline some of the
most important aspects of the quantum performance in Sect. 3, which includes 20-
qubit control (Sect. 3.1), gate fidelities (Sect. 3.2), and coherence times (Sect. 3.3),
as well as the quantum volume (QV) of the whole system (Sect. 3.4). In Sect. 4
we describe important parts of our software stack, i.e., the AQT cloud platform
(Sect. 4.1), circuit transpilation (Sect. 4.2), and the radio frequency (RF) pulse
scheduler (Sect. 4.3). We conclude with an outlook for future steps to facilitate the
realization of a heterogeneous, hybrid HPC-QC infrastructure (Sect. 4.4).

1.1 Quantum Computing Platforms

For several quantum computing system approaches more or less detailed roadmaps
have been proposed on how to construct large-scale QC systems. The promising
platforms include trapped ions, superconducting systems, neutral atoms, photons,
quantum dots, and semiconductors. For reasons of completeness, note that more



Trapped-Ion Quantum Computing 253

Table 1 Characteristic features of different QC platforms for selected properties split into the two
categories of universal and analog QC, based on [5, 6, 7, 8]. Note that no clear preference can be
given due to dependencies and trade-offs between several parameters. Some QC platforms might
belong to both categories

Number of Qubit Single-qubit Quantum
Universal QC qubits lifetimes Gate times gate fidelities volume

Superconducting
qubits

LARGE (100+) .∼ 0.5ms .∼ 10–50 ns .∼ 99.9% MEDIUM

Trapped ions MEDIUM (<100) .∼ 50 + s .∼ 1–50μs .∼ 99.99% HIGHEST

Neutral atoms LARGE .∼ 1 s .∼ 100 ns .∼ 99%

Photons SMALL (<10) N/A .∼ 1 ns .∼ 99.9%

Quantum dots SMALL .∼ 1–10 s .∼ 1–10 ns .∼ 99%

Semiconductors SMALL .∼ 100μs .∼ 10–20μs .∼ 99%

Analog QC Number of qubits Problem sizes
Quantum
annealer

LARGE MEDIUM

Trapped ions LARGE MEDIUM

Neutral atoms LARGE MEDIUM

avenues to building a quantum computer exist, but most other systems are still in a
very early stage of development. Each of these technologies has its advantages, but
also challenges that need to be overcome. To put trapped-ion quantum computers
into perspective, we compare selected metrics of those QC platforms which are
currently in the focus of start-ups and larger commercial entities in Table 1. The
comparison should serve as a rough overview to indicate that each platform has
its strengths and weaknesses, and why there is no clear “winning approach” at the
moment. We note that for a detailed evaluation which also considers fundamental
dependencies between different parameters, other comparisons can be found in the
literature [4, 5, 6].

1.2 Ion Traps Background

Devices for trapping charged particles have been developed in the context of
studying atomic, molecular, and optical physics in the mid-twentieth century, long
before the field of quantum information science emerged. Hence, there is a vast body
of literature covering the various aspects of this field [9, 10, 11, and references
therein]. The following subsection therefore certainly doesn’t attempt to broadly
cover ion-trap physics as a whole, but is only meant to provide a minimum of
necessary context to a technically inclined, but not necessarily physics-trained,
audience.

Generally speaking, ion traps, especially Paul traps [11], are devices which
capture and keep charged atomic or molecular particles at a fixed position in



254 A. Frisch et al.

space, well isolated from the environment. This is achieved by creating a confining
electrical potential, which is generated by a set of electrodes that are connected to
RF and DC voltages. Such a setup provides a physical system with the following
key features which make it an excellent platform for QC:

• Ions of one species are identical, allowing for keeping the control mechanisms
the same for all of them.

• The physics of the ions and thus their behavior in the ion trap is described by
quantum mechanics.

• Undesired external influences can be effectively suppressed, if the system
is set up in a suitable ultra-high vacuum (UHV) environment with proper
electromagnetic shielding.

• Desired external control of the system can be effectively exercised, typically
mediated by electromagnetic fields in the RF, micro-wave (MW), and optical
regime.

These very properties are the reason that such systems can fulfill all the
DiVincenzo’s criteria for realizing quantum computation [12]. Moreover, it has
been shown that all the required basis operations for QC can be performed in a
fault-tolerant way [13, 14, 15]. While quantum error correction comes at the price
of a considerable resource overhead, it is expected to be key for large-scale QC in
the future [1, 16, 17, 18, 19]. The quality of control on trapped-ion systems is also
documented by the fact that a quantum volume of .219 has been reported on such a
system [20], the highest number across all quantum computing platforms so far.

1.2.1 Paul Traps

Currently the most widely used variant of an ion trap for quantum computing is the
Paul trap, named after Wolfgang Paul, who was awarded the Nobel Prize in Physics
in 1989 for his contributions to the field of trapped ions. It emerged as a modification
of apparatuses used to create atomic and molecular beams for spectroscopy research
[11].

Paul traps work by applying suitable voltages to a set of electrodes that result in
trapping charged particles. No additional magnetic fields are used, as, e.g., in the
case of Penning traps [21]. Since it is not possible to create an electric potential
with a minimum in all three spatial dimensions using only static voltages, according
to Earnshaw’s theorem, a combination of DC and AC voltages is used to create a
harmonic pseudo-potential, i.e., an effective quasi-static potential for particles with
a specific mass [22, 23, 24].

Physical realizations of Paul traps have been evolving over time, starting from
larger setups with parabolic-shaped electrodes, to smaller devices, providing higher
trap frequencies and increased optical access for interaction with laser fields and
photon detection purposes. Another concept in trap design is mapping all electrodes
to a two-dimensional structure, which then yields planar chip traps, which can be
produced using established micro-fabrication techniques. There is no single design



Trapped-Ion Quantum Computing 255

Fig. 1 X-shaped Paul trap designed by AQT. Holes in the endcap electrodes allow for optical
access along the axial direction

that fits all the purposes ranging from quantum computation and communication to
quantum sensing. Different architectures and their main features are described in
more detail in Sect. 1.2.2.

1.2.2 Ion-Trap Architectures

The design details of the employed trap, i.e., the choice of materials, the geometry
of its electrodes, its dimensions, the fabrication process, etc., play a major role when
it comes to the performance of a trapped-ion QC system.

A currently widely used design can be seen in Fig. 1. The X-shaped electrode
structure ensures extensive optical access while providing high trap frequencies
using still manageable electrode voltages. High-quality quantum operations of 50
ions have been demonstrated in this kind of trap [25]. For more detailed information
on such a trap, see Sect. 2.1.

Another approach to trap design is segmentation and miniaturization [26, 27,
28, 29, 30, 31, 32]. A few such traps are shown in Fig. 2. Segmented traps feature
multiple dynamic and possibly independent trapping potentials, which allow for
dynamic transport and reconfiguration of ion crystals during operation to achieve
scalability for trapped-ion QC systems. Production of those devices usually requires
various micro-fabrication techniques due to their design complexity. This increased
complexity also limits the performance of those devices in many cases; e.g.,
maintaining low heating rates during operation remains a persisting challenge,
transport and reconfiguration of the ion crystals takes up additional computational
time, and the complexity of circuit compilation increases. Moreover, controlling
the individual segments of those traps requires suitable low-noise control of a large
number of individual DC voltages. Mitigation strategies include cooling such traps



256 A. Frisch et al.

Fig. 2 Examples of microstructured ion traps. (a) shows a planar trap, where multiple electrodes
are connected to the same DC voltage, enabling parallel ion transport operations, (b) shows a
multilayered segmented 3D ion trap (wire-bond connections missing in the image), (c) shows a
planar trap with a closed racetrack-shaped electrode structure, and (d) shows a 3D trap featuring
cross-shaped intersections

to cryogenic temperatures and/or operating the system with more than one ionic
species, which enables cooling of the quantum register during operation.

While impressive results could be achieved going down that route [20, 29], the
accompanying complexity still largely ties such systems to laboratory environments,
while systems employing traps as shown in Fig. 1 can be engineered in such a
fashion that a deployment as part of a QC system in standard data centers is possible
(see Sect. 2).



Trapped-Ion Quantum Computing 257

Fig. 3 Simplified internal and external degrees of freedom of one ion in a trap. The internal
degree of freedom is an electronic two-level system with the qubit-states |0〉 and |1〉 and an energy
difference of h̄ω0. The external degree of freedom is the ion confined in a harmonic potential with
an energy difference h̄ωt , with ωt denoting the trap frequency

1.2.3 Ion Crystals as Qubit Registers

Ions in a Paul trap have an external degree of freedom, describing the motional
state of the particles in the trapping potential, and an internal degree of freedom,
describing the electronic state of the ions (see Fig. 3). The most important aspect
of external degrees of freedom can be described as a standard quantum mechanical
harmonic oscillator in three dimensions [23]. The confining trapping potential of
a Paul trap is chosen, such that .ωz is relatively small compared to .ωx and .ωy .
Consequently, the ions will line up along the z-axis of the trap. The resulting linear
ion crystal can then be used as a qubit register, where a qubit is the most fundamental
unit of quantum information, just as the regular bit is for classical information
processing. The quantum mechanical state of a qubit in general is described by
.|ψ〉 = α|0〉 + β|1〉 with .α, β ∈ C and .|α|2 + |β|2 = 1. Upon measurement, the
superposition state of the qubit collapses, and is projected onto either .|0〉 or .|1〉. For
further details about the concept and physics of qubits, we refer the reader to the
literature [4, 37].

Describing the internal degree of freedom is in general a more complex atomic
physics problem, depending on the ionic species. For more details on that topic, we
again refer the reader to the literature [38, 39]. In the present context, it is sufficient
to be aware that ions employed for QC purposes offer two suitable electronic
energy levels. A transition between these two levels can be driven to implement
gate operations. The respective states are then referred to as .|0〉 and .|1〉, and can be
distinguished by a measurement.

In the absence of any external interaction, this system is described by the
Hamiltonian

.H = 1

2
h̄ω0σz + h̄ωt

(

a†a + 1

2

)

, (1)

with .h̄ being the reduced Planck’s constant, .a† and a the creation and annihilation
operator of the harmonic oscillator describing the motion of the ion respectively, .ω0
the transition frequency between the internal states .|0〉 and .|1〉, .ωt the trap frequency,



258 A. Frisch et al.

given by the electrode configuration and the operational parameters of the ion trap,
and .σz the respective Pauli matrix.

A suitable driving field, usually an external laser field with the frequency .ωL,
is applied to couple the internal and/or external states of the ions. We focus on the
following three cases:

• Resonant Laser Field
If .ωL = ω0, the external field only drives the transition between the ion’s internal
states .|0〉 and .|1〉. We refer to that transition as the carrier (car) transition. .φL

denotes the phase of the driving field. The resulting Hamiltonian [23] reads:

.Hcar = h̄
�

2

(
eiφLσ+ + e−iφLσ−)

(2)

• Red Motional Sideband
If .ωL = ω0 − ωT , the interaction affects the internal and the motional states of
the ion crystal. An excitation of the internal state goes along with a de-excitation
of the motional state and vice versa. We call that transition the red sideband (rsb)
transition.

.Hrsb = ih̄η
�n,n−1

2

(
eiφLaσ+ + e−iφLa†σ−)

(3)

• Blue Motional Sideband
If .ωL = ω0 + ωT , the interaction also affects the internal and the motional states
of the ion crystal. Now, an excitation of the internal state goes along with an
excitation of the motional state and vice versa. We call that transition the blue
sideband (bsb) transition.

.Hbsb = ih̄η
�n,n+1

2

(
eiφLa†σ+ + e−iφLaσ−)

(4)

Here, .� is the Rabi frequency, describing the timescale of the dynamics of the
system induced by the external driving field, .σ± = σx ± iσy a combination of Pauli
matrices, and .η the Lamb-Dicke Parameter, and the indices n designate the number
states of the motional harmonic oscillator. For more details on the underlying
physics, please refer to the standard textbook literature on quantum mechanics, e.g.,
[40].

Single-Qubit Gates
An initial state .|
(t0)〉 is converted to a final state at the end of the interaction of
duration .t1 by means of the time evolution operator .U(t), .|
(t1)〉 = U(t)|
(t0)〉.
For time-independent Hamiltonians, as .Hcar, which needs to be employed in this



Trapped-Ion Quantum Computing 259

case, it reads explicitly

.USQ(t) = exp

(

− i

h̄
Hcart

)

=
(

cos(�
2 t) −ie−iφL sin(�

2 t)

−ieiφL sin(�
2 t) cos(�

2 t)

)

= R(θ, φ)

(5)

which is identical to the canonical definition of an .R(θ, φ) gate operation [37, 4],
with .φ = φL and .θ = �t .

.Rz(θ) gate operations

.Rz(φ) =
(
cos(φ

2 ) − i sin(φ
2 ) 0

0 cos(φ
2 ) + i sin(φ

2 ))

)

(6)

can be implemented in a virtual fashion, i.e., without employing actual pulses, but
by changing the phases of all subsequent pulses [41].

Two-Qubit Gates
Engineering a suitable interaction with a bichromatic light field employing a red
and blue sideband interaction simultaneously allows for the implementation of a
two-qubit gate operation of the Mølmer-Sørensen type [42, 43]. The time evolution
operator reads

.

UMS ∝ exp

(

i
θ

2
Sx

2
)

=

⎛

⎜
⎜
⎝

cos( θ
2 ) 0 0 −i sin( θ

2 )

0 cos( θ
2 ) −i sin( θ

2 ) 0
0 −i sin( θ

2 ) cos( θ
2 ) 0

−i sin( θ
2 ) 0 0 cos( θ

2 )

⎞

⎟
⎟
⎠ = Rxx(θ),

(7)

which is identical to the canonical definition of a .Rxx(θ) gate operation [37]. Here,
.Sx = σ

(i)
x +σ

(j)
x is the global spin operator of the target ions i and j . This generates

the maximally entangled state for the case .θ = π/2

.UMS|00〉 = 1√
2

(|00〉 − i|11〉) . (8)

2 Trapped-Ion Hardware

In general, many hardware components and devices are required to build a QC
system with high-quality qubits and high-fidelity quantum gate operations. Several
trade-offs need to be considered and optimized during the design process that are
conductive for the targeted, out-of-laboratory or industrial, operational conditions.



260 A. Frisch et al.

Thus, the hardware and system design needs to ensure that the device operates to the
required physical, environmental and quantum, as well as interface specifications. In
the case of trapped ions, these requirements include keeping qubits in an adequate
electromagnetic environment, shielded from the surroundings, and at the same time
enabling well-controlled qubit operations during execution of quantum algorithms,
qubit state detection, and communication to the user.

An efficient approach to implement such complex system designs is based on a
modular architecture. In this case, the hardware components are hierarchically struc-
tured into exchangeable subassemblies, with interfaces in between, ideally allowing
them to be modeled by a hardware description in software. Tight integration of quan-
tum physics subsystems, i.e., the trapped ions coupled to electromagnetic fields,
with various other subsystems, such as high-precision laser light sources, real-time
electronic control, electro-optical distribution networks, as well as classical compute
and network systems, is required. In the following sections, we describe the main
elements of a device that we have assembled and are operating at AQT, starting with
the ion trap PINE trap in Sect. 2.1 and vacuum and control setup for operating the
trap PINE set-up in Sect. 2.2. In Sect. 2.3 we elaborate on how the complete system
is installed within a standardized .19 ′′ rack that is compatible with operation in data
center environments.

2.1 Ion-Trap Device

The PINE trap as shown in Fig. 4 is a high-precision ion trap built upon the well-
tested design of the University of Innsbruck and the Institute of Quantum Optics and
Quantum Information of the Austrian Academy of Sciences. The initial design was
further optimized for high thermal and electrical conductivity to minimize parasitic
heating effects, as well as for precision manufacturing to allow a reproducible
production process.

The trap features heating rates of .< 10 phonons/s, as demonstrated in Fig. 5,
especially an axial heating rate of .< 1 phonon/s for a trap frequency of about
.500 kHz. That low number is key for performing high-fidelity two-qubit gate
operations as described in 1.2, where the ion–ion interaction is mediated by the ion
crystal’s motional mode. The performance of the PINE trap on that front fulfills the
requirements for fault-tolerant gate operation. Furthermore, the high optical access
with a numerical aperture (NA) > 0.5 allows for tightly focusing laser fields on the
ion string, minimizing cross-talk to neighboring ions during addressing operations.
Those key performance indicators make the PINE trap an excellent device for the
storage and coherent manipulation of trapped particles in general.

The trap can be integrated in a custom-built vacuum system that contains stan-
dard vacuum components. Electrical contacts to the trapping electrodes, up to four
compensation electrodes, and temperature sensors can be accessed by standardized
electrical vacuum feedthroughs. The choice of materials and fabrication process
leads to a reduced trap-temperature over RF-power dependency of .< 5K/W,



Trapped-Ion Quantum Computing 261

Fig. 4 The PINE trap is mounted on an ultra-high-vacuum flange and connected RF and safe high-
voltage (SHV) feedthroughs for electrical supply. This trap has been already utilized by research
groups to demonstrate outstanding results in the field of QC and high precision metrology [13, 44],
and trap various atomic- and molecular ion species

Fig. 5 The PINE trap features heating rates of below .10 phonons/s within its typical operating
range and of below .1 phonon/s for an axial trap frequency of .500 kHz specifically, which allows
the trap to be used for fault-tolerant quantum operations



262 A. Frisch et al.

Fig. 6 The PINE setup includes the PINE trap mounted in an ultra-high-vacuum chamber with
required pump and controller, optical access for all laser beams for ablation loading, cooling,
detection, and polarization gradient cooling (PGC) as well as imaging and addressing of trapped
ions via a high numerical aperture (NA) objective, electromagnetic coils, and an RF resonator

minimizing mechanical drifts due to changing temperature during operation with
non-constant RF-power.

2.2 Ion-Trap Setup

The PINE setup is an ion-trapping assembly based on the modular hardware
approach (see Fig. 6). The heart of the setup is the PINE trap, which is located
inside an ultra-high-vacuum chamber facilitating a low background-gas collision
rate of .< 0.02 s−1. Such a collision rate translates to less than one collision per ion
with a background gas particle per minute, which is important when considering
the maximal width of a quantum circuit as the overall collision rate grows linearly
with the number of ions. Optical interfaces for qubit manipulation are provided via
dedicated fiber ports. The objective with a high numerical aperture (NA) of up to .0.6
fulfills two purposes. Firstly, it allows for focusing down a laser beam to a spot size
of .< 1μm to address single ions with low cross-talk to next neighbors. Secondly,
it can efficiently collect fluorescence photons for reliable state detection using the
electron shelving technique [38] within a detection time of less than .200μs. The
ion species can be selected by choosing respective targets for ablation loading, and
up to two ablation targets can be configured for multi-ion species applications. This



Trapped-Ion Quantum Computing 263

Fig. 7 This configuration of the PINE setup is ready to be mounted into a standard 19 ′′ rack with
easy access by mounting it on sliding rails which act as a drawer that can be pulled out of the rack.
Additionally, it features a vibration isolation stage, a scientific camera for imaging purposes, and
an electromagnetic shielding structure

configuration allowed the setup to achieve the world’s largest maximally entangled
quantum state with 24 calcium-ion qubits [44], superseded recently by the creation
of a 32-qubit maximally entangled state [45].

2.3 Quantum Computer in a Rack

The MARMOT system is a complete trapped-ion quantum computer that fits inside
two standardized .19 ′′ racks by mounting the PINE setup on sliding rails as shown
in Fig. 7. In that system, tens of individually addressable qubits can be prepared and
worked with, depending on the scientific application and performance requirements
(see more details in Sect. 3).

The MARMOT system has been designed to target standard HPC facilities,
data centers, industrial environments, or even office spaces (see Fig. 8). Operated
remotely and supplied from just a single phase power wall outlet, the device does
not require special access, cooling, vibration insulation, or further requirements
typically associated with other quantum devices. To date, this system has been
used as a testbed to investigate quantum benefits in the fields of chemistry, risk



264 A. Frisch et al.

Fig. 8 A photograph of the MARMOT system which is a .19 ′′-rack-mounted room-temperature
quantum computer, having a less than .2m2 footprint and a power consumption of less than .2 kW.
Designed for the installation at HPC infrastructures and data centers, the PINE setup is located
behind a front plate on the bottom of the left rack, while the full laser system and stabilization is
placed in the right rack

analysis, portfolio optimization [46], probabilistic networks [47], random numbers
for cryptographic applications [48], and more.

3 Quantum Performance

Characterizing and qualifying manufactured hardware components is a fundamental
task before using any device. The goal of our specific QC device is to use it for
quantum information processing and execution of quantum circuits. Therefore, a
well-characterized and well-specified QC system requires measuring its properties,
including the quality of qubits in various aspects. Typical examples are the quality
of isolation from the environment and from each other, how well their quantum



Trapped-Ion Quantum Computing 265

state can be controlled, and what their collective quantum performance is, which
eventually defines the quality of the whole QC system.

In the following, we describe several QC hardware performance metrics that we
have applied to characterize our MARMOT system. We start with the parasitic cou-
pling of the laser light field to neighboring ions within the qubit register, so-called
qubit cross-talk, in Sect. 3.1, the single-qubit error rate within the range for enabling
fault-tolerant quantum gate operations in Sect. 3.2, the qubit coherence times in
Sect. 3.3, and the quantum volume for simplified QC performance benchmarking
in Sect. 3.4.

3.1 20-Qubit Control

In our trapped-ion quantum computer, we move a single or several laser beams onto
the position of a single or multiple ions, respectively. Applying discrete laser pulses
onto the ions effectively changes the encoded quantum information. Ideally, the laser
light would hit only the targeted ion(s) and nothing else, which is a requirement that
can rarely be fulfilled in ion crystals with more than two ions. Thus, it is important to
characterize the undesired coupling of the laser light field via the coupling strength
of non-targeted ions relative to the addressed ion. Typical numbers are within the
range of 1–3%, but in Fig. 9 we present the full cross-talk matrix, which gives an
average coupling to next-neighbor qubits of only .0.58% in a 20-qubit register.

Such low levels of cross-talk convert into error rates in the .10−5 range,
which is compatible with fault-tolerant requirements and enables the execution of
quantum algorithms on theMARMOT systemwithout considering complicated error
mitigation routines. Supporting fault-tolerant universal quantum gate operations
provides a pathway to go beyond so-called noisy intermediate-scale quantum
(NISQ) devices [1], which, as a proof of concept, has been recently demonstrated
with trapped-ion qubits using a PINE trap [13].

Furthermore, increasing the number of high-quality qubits should result in
benefits for the end user and gradually increase the QC system performance levels.
It provides a solid basis for implementing use cases on NISQ devices ranging from
finance to chemistry [49, 50] and several more [1].

3.2 Single-Qubit Error Rates

Errors in quantum processors are one of the largest roadblocks toward the imple-
mentation of quantum applications resulting in a computational benefit. While
controlling larger numbers of qubits for creating larger quantum states for com-
puting is demanding, an even more challenging aspect is to at least maintain, but
ideally significantly improve, the performance of the quantum gate operations at the
same time. In terms of quantum processor description, this entails details such as



266 A. Frisch et al.

Fig. 9 Cross-talk matrix for a qubit register consisting of 20 individual ions. We characterize the
couplings between individual qubits by driving Rabi oscillations on a single ion and measuring
the excitation on other qubits. The mean value of the ratio of the coupling to the next-neighbor
qubits is 0.58%. In terms of error rates, this corresponds to the 10−5 range and is consistent with
the requirements for fault-tolerant quantum computers

realizingMarkovian dynamics, e.g., the order of gate operations has no effect on the
achieved performance, stability of the system, negligible cross-talk between qubits,
as well as a sufficient connectivity.

One possible source of errors is the single-qubit error rate, for which we present
individual measurements on 10 qubits in Fig. 10. We determined the fidelity for
single-qubit gates using local randomized gates [51, 52], which are randomly and
uniformly sourced from the Clifford group. In addition, the inverse element is
calculated and placed at the end of the sequence to reverse the previous operations
and ideally return the qubit to its initial state. In doing so, the average success
probability (SP) of returning the qubit to its initial state decreases with N according
to

.SP(N) = ApN + B, (9)



Trapped-Ion Quantum Computing 267

F
ig
.1

0
R
an
do
m
iz
ed

be
nc
hm

ar
ki
ng

of
si
ng
le
-q
ub
it
ga
te
s
in

a
te
n-
qu
bi
tr
eg
is
te
r.
E
ac
h
qu
bi
ta
ch
ie
ve
s
an

er
ro
r
ra
te
of

le
ss

th
an

1
in

10
00



268 A. Frisch et al.

with p the mean gate error andA andB free fitting constants with expected values of
.1− 1/2n and .1/2n, respectively, where n is the number of qubits per gate operation
and thus .n = 1 for single-qubit gate operations. For the presented measurements,
we implemented random sequences with .N = 5, 10, 20, 30, 40, and 50 Clifford
elements, where each element consists of several X and Y gate operations, on
average about .1.7 gate operations per Clifford element. For each sequence length
N we realize 50 random repetitions. A fit to the experimental data yields mean gate
errors that are given for each ion in Fig. 10. On average, the qubit register features
an error rate that is less than 1 in 1000.

3.3 Quantum Memory Lifetime

In contrast to a classical computer, where information is stored in binary states,
a QPU stores information in superpositions of binary quantum states specified
by relative phases and amplitudes. Storage and manipulation of such quantum
information can be fragile and susceptible to disturbances from the environment,
leading to information loss and thus reduction in quantum performance. The effect
of this disturbance can be quantified by the lifetime of the quantum information,
referred to as quantum memory lifetime, which is depicted in Fig. 11.

The quantum memory lifetime is dominated by two effects that can be witnessed
on qubits. The first effect describes the decay of qubit excitation resulting from
energy exchange between an ion and its environment. The respective rate is
described by the so-called .T1 time which is limited by the natural lifetime of the
energy levels constituting the qubit system. Individual measurements of .T1 for 20
qubits are shown in Fig. 12. The second effect stems from information loss due to
scrambling of the phase relation in the superposition state predominantly induced

Fig. 11 Lifetime of memory qubits .Tmem in comparison to coherence times of computational
qubits .T1 and .T2. Considering typical gate times on the order of 10 to .100μs, the quantum memory
persists for the equivalent of up to .10,000 quantum gate operations. Such circuit depths can be
challenging for some platforms (see Sec. 1.1 and Table 1)



Trapped-Ion Quantum Computing 269

F
ig
.1

2
.T
1
tim

es
fo
r
in
di
vi
du

al
qu

bi
ts
in

a
re
gi
st
er

of
20

io
ns
.A

ll
qu

bi
t
lif
et
im

es
m
at
ch

w
ith

in
on

e
st
an
da
rd

de
vi
at
io
n
to

an
av
er
ag
e
of

.T
1

=
1.
14

s
±

0.
06

s
an
d
ag
re
e
w
ith

th
e
na
tu
ra
ll
if
et
im

e
of

th
e
qu

bi
tt
ra
ns
iti
on

.T
1,
na
t
=

1.
16
5
s
±

0.
01
1
s
[5
3]



270 A. Frisch et al.

Fig. 13 .T2 time of the qubit transition. The blue and green dots represent the measurement results
derived from a standard Ramsey experiment and a Ramsey measurement with spin echo refocusing,
respectively. We determine the .T2 time by fitting exponential decays to the two experiments with
results given in the legend

by laser light field and magnetic field fluctuations. It is described by the .T2 time,
with its measurement presented in Fig. 13. Ideally, both the .T1 and .T2 times should
be significantly longer than the time it takes to manipulate the qubits. Physically, the
ultimate limit for the .T2 time of the quantum system is given by the lifetime .T1 by
.T2 < 2T1, i.e., a well-isolated quantum system should demonstrate .T2 times on the
order of .T1.

Here, we present the .T1 and .T2 times measured in theMARMOT system. We first
highlight the identical behavior of all ions in the qubit register, exemplified by the
time .T1 = 1.14 s ± 0.06 s, measured for each ion in a register of 20 ions. A laser
linewidth of less than .1Hz and highly stable magnetic fields provide us with an
excellent .T2 time between .0.5 and .1.2 s. Accordingly, the quantum memory persists
for the equivalent of up to .10,000 quantum gate operations based on gate times on
the order of 10 to .100μs, visualized in Fig. 11.

The identical nature of all qubits, in combination with low error rates and all-
to-all connectivity, allows us to reduce circuit compilation and calibration overhead.
This simplifies the implementation of quantum applications, making the trapped-ion
QPU a preferable platform for QC.

3.4 Quantum Volume

The quantum volume (QV) test is a benchmark that tries to assess and describe the
computational performance of a QC system with a single number [54]. The higher



Trapped-Ion Quantum Computing 271

the number, the more powerful the computer, where the QV is either limited by
the number of available qubits or by the circuit size that can be implemented with
reasonable success probability. Although there are many more possible benchmarks
available [55], the QV test is one of the simplest and most commonly used
benchmarks at the moment and allows us to compare different universal QC
systems, independent of their platform or architecture.

The QV on the AQT QC system was determined by running 870 random QV test
circuits in total. We show an example in Fig. 14. The test resulted in a mean heavy
output probability (HOP) of .0.714 ± 0.015 with twice the standard deviation of
.2σ = 0.031. Thus, the measured HOP is above the required threshold of .2/3 with
.99.89% confidence. The implemented circuits were generated using Qiskit [37].
The random circuits were further optimized using methods which include Block
combination, Block approximation, mirroring, and arbitrary angles for entangling
gate operations [56]. This procedure yields a QV of 128 with the corresponding
measurement shown in Fig. 15. While higher QV values have been recently achieved
by Quantinuum in the US [45], to our knowledge, so far 128 is the largest QV
measured on a universal quantum computer which has been designed, built, and
located in Europe. It’s also worth noting that QV scales exponentially with the
number of qubits.

Using the programming language Python and various supported QC interfaces,
the implementation of the presented QV test requires only a few lines of code
in Qiskit, which makes it an easy-to-use, synthetic benchmark to characterize the
holistic performance of a QC system. As an extension to synthetic benchmarks in
general, efforts have recently been made to define application-specific benchmarks
for easier comparison of real operational performances of QC systems [57, 58, 59].

4 Software

Executing quantum algorithms with sufficiently high quality is the primary goal for
every QC system, and to provide those capabilities for a given application, a suitable
software stack is required. From top to bottom, the stack includes an interface
for user input, remote connectivity, queue and job management, compilation and
transpilation of quantum circuits, scheduling and generation of RF and laser pulse
objects, processing quantum instructions, controlling electronics and components,
and result processing, to name the most important parts.

The secondary goal of the software stack is operating and maintaining a
QC system in an unattended fashion for a long period of time, which requires
automatic calibrations of QC components and parameters, monitoring and reporting
of important system properties, ensuring data integrity and security, and supporting
classical administrative and operational tasks.

In the next subsections we will present details about the cloud QC platform
(Sect. 4.1), circuit transpilation (Sect. 4.2), and the RF pulse scheduler (Sect. 4.3)
developed and used by AQT.



272 A. Frisch et al.

F
ig
.1

4
T
he

qu
an
tu
m

vo
lu
m
e
te
st
co
ns
is
ts
of

a
se
ri
es

of
ra
nd
om

qu
an
tu
m

ci
rc
ui
ts
.A

ra
nd
om

ci
rc
ui
ts
ta
rt
s
w
ith

th
e
pr
ep
ar
at
io
n
of

th
e
qu
bi
ts
,f
ol
lo
w
ed

by
th
e

im
pl
em

en
ta
tio

n
of

se
ve
ra
ll
oc
al
si
ng

le
-q
ub

it
ga
te
s
an
d
in
te
rl
ea
vi
ng

tw
o-
qu

bi
tg

at
es
.F

in
al
ly
,t
he

st
at
e
of

th
e
qu

bi
ts
is
m
ea
su
re
d
an
d
th
e
re
su
lt
is
ob

ta
in
ed

in
th
e

fo
rm

of
a
cl
as
si
ca
l
bi
t
st
ri
ng
.
T
he

nu
m
be
r
of

qu
bi
ts
(v
er
tic
al

ex
te
nt
)
co
rr
es
po
nd
s
to

th
e
ci
rc
ui
t
w
id
th

an
d
th
e
nu
m
be
r
of

ga
te

re
al
iz
at
io
ns

(h
or
iz
on
ta
l
ex
te
nt
)

de
sc
ri
be
s
th
e
ci
rc
ui
td

ep
th



Trapped-Ion Quantum Computing 273

Fig. 15 For the quantum volume test to be successful, the heavy output probability (HOP) must
be above the specified threshold of .2/3. The data shows that the mean HOP is above this threshold
and the associated uncertainty decreases as the number of random circuits increases. Eventually,
the HOP exceeds the threshold by more than two standard deviations (.2σ ), which certifies that the
AQT MARMOT system has a quantum volume of 128

4.1 Cloud Platform

Access to the AQT QC systems is provided through a dedicated cloud platform. A
client can submit circuits to the quantum computer for processing with a so-called
representational state transfer (REST) call to the cloud platform API. The circuit
is defined in a service-specific JSON format and transmitted in the HTTP request
body. Once completed, the circuit results can be requested from the same API. The
REST API is protected through token authentication.

The service provided by the cloud platform is of an asynchronous nature. This
means that when a circuit is transmitted for processing, the connection is not kept
alive until the result is available. A submission results in an immediate response
instead, containing a job ID. This job ID is then used to request the state of the
processing task and to retrieve the result once it is ready.

Internally, a submitted circuit is stored in the database, which acts like a queue.
The quantum computer queries the cloud portal for circuits to process. Similar to the
submission of circuits, this is also done through a REST API call. If an unprocessed
circuit is available in the database, it will be processed by the quantum computer
followed by yet another REST call to submit the result to the cloud platform. The
result is stored in the database and will be returned to the client upon request. The



274 A. Frisch et al.

Fig. 16 Overview of the AQT cloud QC architecture. The cloud portal is the central component
that allows users to submit workloads which are retrieved and processed by the quantum computers

Fig. 17 A step by step illustration of the cloud portal workflow: The user executes a Qiskit script
(1) which retrieves the QC capabilities (2) and transpiles into circuits compatible with the AQT QC
systems (3). The transpiled circuits are transmitted to the cloud portal (4) and they are retrieved (5)
and processed by the quantum computer (6). The results are returned to the cloud portal (7), and
are then retrieved by Qiskit and the user (8)

high-level architecture of the cloud portal is illustrated in Fig. 16, a typical workflow
is shown in Fig. 17, and a Qiskit code example in Listing 1.

It is possible to directly use the REST API, but a usage via a suitable quantum
SDK is much more convenient and user friendly: the SDK takes care of creating the
JSON payload as well as communication with the cloud platform. After submitting
a circuit it will regularly request its processing state in the background and retrieve
the result once it is ready. This allows existing code based on any of these libraries
to be readily used on the MARMOT system.



Trapped-Ion Quantum Computing 275

Listing 1 Basic example of using the Qiskit AQT provider, which creates and executes a 4-qubit
Greenberger–Horne–Zeilinger (GHZ) state on the MARMOT system

1 import qiskit
2 from qiskit import QuantumCircuit
3

4 from qiskit_aqt_provider.aqt_provider import AQTProvider
5

6 # Ways to specify an access token (in precedence order):
7 # - as argument to the AQTProvider initializer
8 # - in the AQT_TOKEN environment variable
9 # - if none of the above exists, default to an empty string

10 # to the default workspace only.
11 provider = AQTProvider("token")
12

13 # The backends() method lists all available computing backends.
14 # Printing it renders it as a table that shows each backend’s
15 # containing workspace.
16 print(provider.backends())
17

18 # Retrieve a backend by providing search criteria.
19 # The search must have a single match. For example:
20 backend = provider.get_backend("marmot", workspace="default")
21

22 # Create a 4-qubit GHZ state
23 qc = QuantumCircuit(4)
24 qc.h(0)
25 qc.cx(0, 1)
26 qc.cx(0, 2)
27 qc.cx(0, 3)
28 qc.measure_all()
29

30 result = qiskit.execute(qc, backend, shots=200).result()
31

32 if result.success:
33 print(result.get_counts())
34 else:
35 print(result.to_dict()["error"])

4.2 Circuit Transpilation

The existence of universal gate sets allows QC manufacturers to focus on imple-
menting a limited set of gate operations and rely on algebraic manipulations to
rewrite any valid quantum gate combination in terms of the gate set implemented by
the targeted hardware. The cloud platform described in Sect. 4.1 exposes the native
gates operation, which are implemented by the AQT quantum computers. These gate
operations are exactly those that trapped-ion platforms can implement with minimal
overhead (see Sect. 1.2).



276 A. Frisch et al.

The gate-level transpilation of quantum circuits, which maps arbitrary quantum
gates to those implemented by the target hardware, is performed ahead of the AQT
cloud platform API. This offers maximum transparency for the API consumers and
allows fine-tuning of the quantum circuit, e.g., for optimizing execution speed.

The AQT provider for the Qiskit SDK exposes transpilation targets and custom
transformation passes that strive to optimally rewrite an arbitrary quantum circuit
to be ready for execution on AQT hardware. The general architecture is that of the
built-in Qiskit transpiler [60], with the following notes:

1. Optimization Stage
Sequences of single-qubit rotations on the same qubit are factored into the ZXZ

form, taking advantage of the virtual nature of the .Rz operations.
2. Scheduling Stage

.Rx(θ) operations are rewritten as .R(θ, φ = 0) and rotation angles are wrapped,
exploiting the periodicity of R and .Rxx operations in .θ . For .R(θ, φ = 0)
operations, due to hardware limitations, rotation angles .θ < θs are split into
two laser pulses as .R(θ < θs, φ) = R(π, φ + π)R(θ + π, φ). The threshold .θs

is an implementation detail, typically set around .π/5. For .Rxx(θ) operations,
the following rules are applied recursively for wrapping .θ in the entangling
operations until .θ ∈ [0, π/2]:

.Rxx(θ) →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rxx(θ) 0 ≤ θ ≤ π/2

R
(1)
z (π)Rxx(|θ |)R(1)

z (π) −π/2 ≤ θ < 0

R(1)(π, 0)R(2)(π, 0)Rxx(θ − sign(θ)π) |θ | < 3π/2

Rxx(θ − 2π) otherwise.
(10)

Remarkably, the angle-wrapping rules require the knowledge of the numeric
value of the rotation angles. This is incompatible with the caching strategy
adopted by the standard implementation of the Qiskit Sampler and Estimator
primitives to minimize the transpilation overhead, e.g., when sampling different
parametrizations of the same circuit. The specialized implementations of these
primitives, AQTSampler and AQTEstimator, use a two-stage transpilation pass,
where the first one performs most of the work and is cached, while the second one
is restricted to wrapping the rotation angles and is not cached.

4.3 Radio Frequency Pulse Scheduler

In a classical computer, a program written in a high-level programming language
needs to be compiled into the language that is native to the respective hardware.
The same applies to quantum computers, but their quantum algorithms are meant
to be processed on different components of the QC systems, e.g., first on classical



Trapped-Ion Quantum Computing 277

Fig. 18 Schematic illustration of the compilation process of a classical computer (top) compared
to the transpilation, code generation, and scheduling of instructions for a quantum device (bottom).
After translating gate operations into RF pulses and the respective instructions to generate them,
the instructions are scheduled along a timeline to create an instruction sequence that is executable
on the target hardware

compute hardware and later on real-time control electronics. Such algorithms are
typically designed on the level of quantum gate operations and then translated first
into pulses needed to realize the gate operations. In a further step, the pulses are
translated into instructions specific to the electronic devices of the target system.
These instructions are directed at RF pulse generators to create RF pulses and,
subsequently, pulsed laser signals. For the laser pulses to perform the desired
operations on the qubits, the instructions need to be scheduled for execution on the
real-time hardware with very high precision in timing, frequency, and amplitude.
A schematic illustration of the transpilation and scheduling pipeline is shown in
Fig. 18.

While the translation into the pulse- and instruction-level representation is done
by the control software itself, the scheduling of instructions is done by the RF pulse
scheduler software. Figure 19 shows the relation between the control software and
the RF pulse scheduler package that is called from a driver component within the
control software. The scheduler software is aware of the hardware constraints and
applies a series of transformations to the instruction sequence in order to make it
executable. The constraints from the RF pulse electronics include that there is a
limited number of channels for instructions to run in parallel, as well as the need
for a sufficiently large distance along the timeline between two instructions on the
same channel.

In its current setup, the RF pulse electronics uses 15 different instructions,
identified by a unique opcode, shown in Listing 2. Each instruction corresponds



278 A. Frisch et al.

Fig. 19 Context diagram showing the relation of the control software and the RF pulse scheduler
software package. The RF pulse scheduler is called from a scheduler driver component within the
control software to retrieve an executable instruction sequence. Image (modified) from [61]

Listing 2 A list of the instruction set available to the scheduler. EVENT does not correspond to a
physical operation. It serves as a marker for visualization purposes

1 DDS_OUTPUT_DISABLE
2 DDS_OUTPUT_ENABLE
3 DDS_SINGLE_TONE_SETUP
4 PHASER_OUTPUT_DISABLE
5 PHASER_OUTPUT_ENABLE
6 PHASER_SINGLE_TONE_BOX_DOWN
7 PHASER_SINGLE_TONE_BOX_UP
8 PHASER_SINGLE_TONE_SETUP
9 PHASER_SINGLE_TONE_SHAPE_DOWN

10 PHASER_SINGLE_TONE_SHAPE_UP
11 TTLCOUNTER_START
12 TTLCOUNTER_STOP
13 TTL_OUTPUT_DISABLE
14 TTL_OUTPUT_ENABLE
15 EVENT

to a physical channel of the control electronics. The EVENT instruction serves as a
marker and is removed before forwarding the instruction schedule to the hardware.

An executable instruction sequence is then sent to the RF pulse electronics via
remote procedure calls (RPCs). The electronics is based on field-programmable gate
arrays (FPGAs) that schedule real-time input/output (RTIO) events for frequency
synthesizers based on the instruction schedule that was received. Eventually, the
frequency synthesizers create RF pulses with the respective frequency, amplitude,
and length to drive acousto-optical modulators (AOMs). The AOMs are used to
mix the RF pulses with the laser light and thus create the pulsed laser signals for
manipulating the qubit states.



Trapped-Ion Quantum Computing 279

4.4 High-Performance Computing Integration

It has been proposed that QC would serve as a natural accelerator to HPC in the
form of a QPU [62]. QC systems in general may provide performance boosts for
classically hard algorithms leading to an accelerated time-to-solution or to reduced
costs of generating the solution. Recent activities and initiatives aim to bring QC and
HPC technologies closer together in a step-wise process. In a first step, different
QC platforms and technologies will be installed on premise at HPC facilities and
evaluated for their readiness to operate in data center environments. The next step
will focus on integrating the QC systems into HPC nodes, until ultimately the QPU
can be used as an accelerator within the classical compute cluster. Some of the
challenges of such an accelerator hardware have been outlined for the system-level
integration part in [3, 62] and for the software development part in [2, 63].

As the HPC integration activities do not select between or prefer a specific
QC platform or hardware vendor, it is very important to establish definitions of
common standards and interfaces. First discussions have started in the context of
several initiatives, but the work is ongoing, and will require a significant amount of
communication effort between all participating entities. For example, the develop-
ment of a domain-specific language that covers both HPC and QC user communities
seems to be a simple but nonetheless important task. We give an example for three
different definitions of a QPU in case of a trapped-ion quantum computer in Fig. 20
to further illustrate the challenge of a common interface. The dashed boxes indicate
definitions of a QPU according to different sources or vendors. Only the largest

Fig. 20 Schematic diagram of a system-level model with the direction of the flow of information
shown by black arrows, the forward direction highlighted by blue and green boxes, and the
feedback direction by orange boxes. Note that boxes are representing different types of objects,
from abstract software objects, e.g., quantum circuits and pulse sequence, to physical objects,
e.g., RF or light pulses, respectively. The dashed boxes indicate that there does not yet exist an
agreement between different hardware vendors of where the boundary of a quantum processing
unit (QPU) is located



280 A. Frisch et al.

box corresponds to the proposal presented in [62], in which the scope of the QPU
covers a quantum control unit (“pulse sequence” and “processing”), a quantum
execution unit (“RF pulses,” “laser pulses,” “DC voltages,” and “detection”), as well
as the qubit register (“ions”), with labels corresponding to components as shown
in Fig. 20. These considerations demonstrate that the integration landscape is still
fractured, without clear common standards and definitions, which is understandable
for currently early stages of software development in this area.

The explanations above have outlined the similarities and differences between a
quantum computer and classical compute infrastructure. The next step is to bring QC
systems into an HPC environment to accelerate the classical compute capabilities
using quantum algorithms, but also push QC capabilities to a next level by the
standardized integration into a non-lab environment.

References

1. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://
doi.org/10.22331/q-2018-08-06-79

2. Schulz, M., Ruefenacht, M., Kranzlmüller, D., Schulz, L.B.: Accelerating hpc with quantum
computing: It is a software challenge too. Comput. Sci. Eng. 24, 60–64 (2022). https://doi.org/
10.1109/MCSE.2022.3221845

3. Humble, T.S., et al.: Quantum computers for high-performance computing. IEEE Micro. 41,
15–23 (2021). https://doi.org/10.1109/MM.2021.3099140

4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000)

5. Popkin, G.: Quest for qubits. Science 354, 1090–1093 (2016). https://www.science.org/doi/
abs/10.1126/science.354.6316.1090

6. Bobier, J.-F., Langione, M., Tao, E., Gourévitch, A.: What happens when ‘if’ turns to ‘when’
in quantum computing? https://www.bcg.com/publications/2021/building-quantum-advantage

7. Mądzik, M.T., et al.: Precision tomography of a three-qubit donor quantum processor in silicon.
Nature 601, 348–353 (2022). https://doi.org/10.1038/s41586-021-04292-7

8. Wang, C., et al.: Towards practical quantum computers: transmon qubit with a lifetime
approaching 0.5 milliseconds. npj Quantum Inf. 8, 3 (2022). https://doi.org/10.1038/s41534-
021-00510-2

9. Brown, L.S., Gabrielse, G.: Geonium theory: Physics of a single electron or ion in a penning
trap. Rev. Mod. Phys. 58, 233–311 (1986). https://link.aps.org/doi/10.1103/RevModPhys.58.
233

10. Ghosh, P.K.: Ion Traps. Oxford University Press, Oxford (1995)
11. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540

(1990). https://link.aps.org/doi/10.1103/RevModPhys.62.531
12. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschritte der

Physik 48, 771–783 (2000). https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-
PROP771>3.0.CO;2-E

13. Postler, L., et al.: Demonstration of fault-tolerant universal quantum gate operations. Nature
605, 675–680 (2022). https://doi.org/10.1038/s41586-022-04721-1

14. Ryan-Anderson, C., et al.: Realization of real-time fault-tolerant quantum error correction.
Phys. Rev. X 11, 041058 (2021). https://link.aps.org/doi/10.1103/PhysRevX.11.041058

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.science.org/doi/abs/10.1126/science.354.6316.1090
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://www.bcg.com/publications/2021/building-quantum-advantage
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41586-021-04292-7
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://doi.org/10.1038/s41534-021-00510-2
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.58.233
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://link.aps.org/doi/10.1103/RevModPhys.62.531
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://doi.org/10.1038/s41586-022-04721-1
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058
https://link.aps.org/doi/10.1103/PhysRevX.11.041058


Trapped-Ion Quantum Computing 281

15. Hilder, J., et al.: Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer. Phys. Rev. X 12, 011032 (2022). https://link.aps.org/doi/10.1103/PhysRevX.12.
011032

16. Shor, P.: Fault-tolerant quantum computation. In: Proceedings of 37th Conference on
Foundations of Computer Science, pp. 56–65 (1996). https://doi.org/10.1109/SFCS.1996.
548464

17. Preskill, J.: Reliable quantum computers. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 454,
385–410 (1998). https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167

18. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-
3 codes. arXiv quant–ph/0504218 (2005). https://doi.org/10.48550/arXiv.quant-ph/0504218

19. Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346
(2015). https://link.aps.org/doi/10.1103/RevModPhys.87.307

20. cbaldwin1, mlk621, khmayer01, ZackMassa.: Quantinuum hardware quantum volume data
(2023). https://github.com/CQCL/quantinuum-hardware-quantum-volume

21. Dehmelt, H.: Experiments with an isolated subatomic particle at rest. Rev. Mod. Phys. 62,
525–530 (1990). https://link.aps.org/doi/10.1103/RevModPhys.62.525

22. Wineland, D., et al.: Experimental Primer on the Trapped Ion Quantum Computer, chap. 3, pp.
57–84. Wiley (1999). https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3

23. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions.
Rev. Mod. Phys. 75, 281–324 (2003). https://link.aps.org/doi/10.1103/RevModPhys.75.281

24. Steane, A.: The ion trap quantum information processor. Appl. Phys. B 64, 623–643 (1997).
https://doi.org/10.1007/s003400050225

25. Kranzl, F., et al.: Controlling long ion strings for quantum simulation and precision
measurements. Phys. Rev. A 105, 052426 (2022). https://link.aps.org/doi/10.1103/PhysRevA.
105.052426

26. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum
computer. Nature 417, 709–711 (2002). https://doi.org/10.1038/nature00784

27. Kaushal, V., et al.: Shuttling-based trapped-ion quantum information processing. AVS
Quantum Sci. 2, 014101 (2020). https://doi.org/10.1116/1.5126186

28. Ragg, S., Decaroli, C., Lutz, T., Home, J.P.: Segmented ion-trap fabrication using high
precision stacked wafers. Rev. Sci. Instrum. 90, 103203 (2019). https://doi.org/10.1063/1.
5119785

29. Pino, J.M., et al.: Demonstration of the trapped-ion quantum CCD computer architecture.
Nature 592, 209–213 (2021). https://doi.org/10.1038/s41586-021-03318-4

30. Holz, P.C., et al.: 2D linear trap array for quantum information processing. Adv. Quantum
Technol. 3, 2000031 (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031

31. Bowler, R., et al.: Coherent diabatic ion transport and separation in a multizone trap
array. Phys. Rev. Lett. 109, 080502 (2012). https://link.aps.org/doi/10.1103/PhysRevLett.
109.080502

32. Walther, A., et al.: Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 080501
(2012). https://link.aps.org/doi/10.1103/PhysRevLett.109.080501

33. ©University of Innsbruck.: https://quantumoptics.at/en/research/cryotrap.html
34. Kaufmann, H.: A Scalable Quantum Processor. Ph.D. thesis, University of Mainz (2017)
35. ©National Institute of Standards and Technology.: https://www.nist.gov/image/

racetrackiontrapjpg
36. ©ETH Zürich.: https://tiqi.ethz.ch/research/equal-experiment.html
37. Qiskit.: https://qiskit.org
38. Schindler, P., et al.: A quantum information processor with trapped ions. New J. Phys. 15,

123012 (2013). https://dx.doi.org/10.1088/1367-2630/15/12/123012
39. Blinov, B.B., Leibfried, D., Monroe, C., Wineland, D.J.: Quantum computing with trapped ion

hyperfine qubits. Quantum Inf. Process. 3, 45–59 (2004). https://doi.org/10.1007/s11128-004-
9417-3

https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://link.aps.org/doi/10.1103/PhysRevX.12.011032
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://doi.org/10.1109/SFCS.1996.548464
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0167
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://doi.org/10.48550/arXiv.quant-ph/0504218
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://link.aps.org/doi/10.1103/RevModPhys.87.307
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://github.com/CQCL/quantinuum-hardware-quantum-volume
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://link.aps.org/doi/10.1103/RevModPhys.62.525
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/3527603093.ch3
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://link.aps.org/doi/10.1103/RevModPhys.75.281
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://link.aps.org/doi/10.1103/PhysRevA.105.052426
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1038/nature00784
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1116/1.5126186
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1063/1.5119785
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-021-03318-4
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202000031
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080502
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://link.aps.org/doi/10.1103/PhysRevLett.109.080501
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://quantumoptics.at/en/research/cryotrap.html
https://www.nist.gov/image/racetrackiontrapjpg
https://www.nist.gov/image/racetrackiontrapjpg
https://www.nist.gov/image/racetrackiontrapjpg
https://www.nist.gov/image/racetrackiontrapjpg
https://www.nist.gov/image/racetrackiontrapjpg
https://www.nist.gov/image/racetrackiontrapjpg
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://tiqi.ethz.ch/research/equal-experiment.html
https://qiskit.org
https://qiskit.org
https://qiskit.org
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://dx.doi.org/10.1088/1367-2630/15/12/123012
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3
https://doi.org/10.1007/s11128-004-9417-3


282 A. Frisch et al.

40. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics; 1st edn. Wiley, New York, NY
(1977). https://cds.cern.ch/record/101367. Trans. of : Mécanique quantique. Paris : Hermann,
1973

41. McKay, D., Wood, C.J., Sheldon, S., Chow, J.M., Gambetta, J.M.: Efficient Z gates for
quantum computing. Phys. Rev. A 96, 022330 (2017). https://doi.org/10.1103/PhysRevA.
96.022330

42. Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett.
82, 1971–1974 (1999). https://link.aps.org/doi/10.1103/PhysRevLett.82.1971

43. Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal
motion. Phys. Rev. A 62, 022311 (2000). https://link.aps.org/doi/10.1103/PhysRevA.62.
022311

44. Pogorelov, I., et al.: Compact ion-trap quantum computing demonstrator. PRX Quantum 2,
020343 (2021). https://link.aps.org/doi/10.1103/PRXQuantum.2.020343

45. Moses, S.A., et al.: A race track trapped-ion quantum processor. arXiv 2305.03828 (2023).
https://doi.org/10.48550/arXiv.2305.03828

46. Sanz-Fernandez, C., et al.: Quantum portfolio value forecasting. arXiv 2111.14970 (2021).
https://doi.org/10.48550/arXiv.2111.14970

47. Braun, M.C., et al.: Quantum amplitude estimation with error mitigation for time-evolving
probabilistic networks. arXiv 2303.16588 (2023). https://doi.org/10.48550/arXiv.2303.16588

48. Foreman, C., Wright, S., Edgington, A., Berta, M., Curchod, F.J.: Practical randomness
amplification and privatisation with implementations on quantum computers. Quantum 7, 969
(2023). https://doi.org/10.22331/q-2023-03-30-969

49. Woerner, S., Egger, D.J.: Quantum risk analysis. npj Quantum Inf. 5, 15 (2019). https://doi.
org/10.1038/s41534-019-0130-6

50. Cerezo, M., et al.: Variational quantum algorithms. Nature Rev. Phys. 3, 625–644 (2021).
https://doi.org/10.1038/s42254-021-00348-9

51. Emerson, J., Alicki, R., Życzkowski, K.: Scalable noise estimation with random unitary
operators. J. Opt. B Quantum Semiclassical Opt. 7, S347 (2005). https://dx.doi.org/10.1088/
1464-4266/7/10/021

52. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary 2-designs and
their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009). https://link.aps.org/
doi/10.1103/PhysRevA.80.012304

53. Kreuter, A., et al.: Experimental and theoretical study of the 3d 2D–level lifetimes of 40Ca+.
Phys. Rev. A 71, 032504 (2005). https://link.aps.org/doi/10.1103/PhysRevA.71.032504

54. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum
computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019). https://link.
aps.org/doi/10.1103/PhysRevA.100.032328

55. Eisert, J. et al. Quantum certification and benchmarking. Nature Rev. Phys. 2, 382–390 (2020).
https://doi.org/10.1038/s42254-020-0186-4

56. Baldwin, C.H., Mayer, K., Brown, N.C., Ryan-Anderson, C., Hayes, D.: Re-examining the
quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and
scalable resource estimations. Quantum 6, 707 (2022). https://doi.org/10.22331/q-2022-05-
09-707

57. Martiel, S., Ayral, T., Allouche, C.: Benchmarking quantum coprocessors in an application-
centric, hardware-agnostic, and scalable way. IEEE Trans. Quantum Eng. 2, 1–11 (2021).
https://doi.org/10.1109/TQE.2021.3090207

58. Lubinski, T., et al.: Application-oriented performance benchmarks for quantum computing.
IEEE Trans. Quantum Eng. 4, 1–32 (2023). https://doi.org/10.1109/TQE.2023.3253761

59. Chen, J.-S., et al.: Benchmarking a trapped-ion quantum computer with 29 algorithmic qubits.
arXiv 2308.05071 (2023). https://doi.org/10.48550/arXiv.2308.05071

60. Qiskit.: Qiskit transpiler documentation. https://qiskit.org/documentation/apidoc/transpiler.
html

61. Zangerl, M.: Porting and Optimization of RF Pulse Scheduling for Trapped-Ion Quantum
Computing. Bachelor’s thesis, University of Innsbruck (2023)

https://cds.cern.ch/record/101367
https://cds.cern.ch/record/101367
https://cds.cern.ch/record/101367
https://cds.cern.ch/record/101367
https://cds.cern.ch/record/101367
https://cds.cern.ch/record/101367
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevLett.82.1971
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PhysRevA.62.022311
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2305.03828
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2111.14970
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.48550/arXiv.2303.16588
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.22331/q-2023-03-30-969
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.71.032504
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.1038/s42254-020-0186-4
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2021.3090207
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://doi.org/10.48550/arXiv.2308.05071
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html


Trapped-Ion Quantum Computing 283

62. Britt, K.A., Mohiyaddin, F.A., Humble, T.S.: Quantum accelerators for high-performance
computing systems. In: 2017 IEEE International Conference on Rebooting Computing (ICRC),
pp. 1–7 (2017). https://doi.org/10.1109/ICRC.2017.8123664

63. McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble, T.S.: XACC: a system-
level software infrastructure for heterogeneous quantum–classical computing. Quantum Sci.
Technol. 5, 024002 (2020). https://dx.doi.org/10.1088/2058-9565/ab6bf6

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://doi.org/10.1109/ICRC.2017.8123664
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
https://dx.doi.org/10.1088/2058-9565/ab6bf6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Quantum Software Engineering
and Programming Applied
to Personalized Pharmacogenomics

José Luis Hevia, Ezequiel Murina, Aurelio Martínez, and Guido Peterssen

Abstract Providing personalized drug therapy to polymedicated patients is a very
complex situation, as not even the most powerful supercomputer in the world could,
in a reasonable amount of time, process the enormous number of variables required.
Fortunately, quantum computing opens up new possibilities in this field, especially
thanks to its ability to efficiently combine a large number of variables. We present
the basic idea of an extensible algorithm to deal with genetic polymorphisms,
pharmacological polytherapy, and clinical condition, and the implementation of
a prototype that allows for the calculation of the ideal dose for each patient
considering their genomics and drug interaction. To this end, we have applied best
practices of quantum software engineering to the development of quantum/classical
software systems.

Keywords QuantumPath · Quantum software engineering · qSOA

1 Introduction

During the last century, a process of transition has been taking place in the
health field, so that the prevalence of infectious diseases has been progressively
displaced by chronic diseases. This makes the elderly population (over 65) the
largest consumer of pharmaceuticals. The prescription of multiple drugs exposes
the polymedicated elderly to treatment failures and a higher risk of adverse
reactions, since physiological changes related to aging can alter pharmacokinetic
and pharmacodynamic properties [1].

The elderly often receive drugs for the treatment of minor symptoms (including
adverse effects of other drugs), but the use of these drugs is often inappropriate,
since their benefit is low, their cost is high, and the new drug may cause additional

J. L. Hevia (�) · E. Murina · A. Martínez · G. Peterssen
Quantum Software Technology, Madrid, Spain
e-mail: jluis.hevia@aquantum.es; ezequiel.murina@aquantum.es;
aurelio.martinez@aquantum.es; guido.peterssen@aquantum.es

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_11

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 11&domain=pdf

 885
55738 a 885 55738 a
 
mailto:jluis.hevia@aquantum.es
mailto:jluis.hevia@aquantum.es
mailto:jluis.hevia@aquantum.es

 10849 55738 a 10849
55738 a
 
mailto:ezequiel.murina@aquantum.es
mailto:ezequiel.murina@aquantum.es
mailto:ezequiel.murina@aquantum.es

 -2016 56845 a -2016
56845 a
 
mailto:aurelio.martinez@aquantum.es
mailto:aurelio.martinez@aquantum.es
mailto:aurelio.martinez@aquantum.es

 10218 56845 a 10218 56845 a
 
mailto:guido.peterssen@aquantum.es
mailto:guido.peterssen@aquantum.es
mailto:guido.peterssen@aquantum.es


286 J. L. Hevia et al.

toxicity. In these patients, the risk of adverse effects increases and, consequently,
the risk of hospitalization and death. In studies on hospitalized patients, between
12% and 58.5% receive an inappropriate drug [2]. This is not only a health problem
but also a problem of great economic importance since the cost of medicines
is constantly increasing and is already a serious problem for the national health
authorities.

However, providing safe and effective drug therapy to the elderly is a complex
situation due to numerous reasons, especially the management of numerous vari-
ables. In addition, the amount of information to be considered is of such magnitude
(note that some 32,000 pharmaceutical products are allowed on the market) that
with current tools, it is unmanageable.

The problem is that currently not even the most powerful supercomputer in
the world could, in a reasonable time, process the huge number of variables
needed to give an adequate answer. Hence, we consider it necessary to explore
quantum computing as a possible solution to this problem through the application
of the most appropriate methods, practices, techniques, technologies, and tools of
quantum computing to create a reliable quantum/classical system that overcomes the
information processing limits existing in the classical IT domain and, in this way,
contribute to a sustainable response to the diseases and needs arising from aging.

2 Quantum Health

Today, we can already use quantum computers, which not only allow us to
simulate nature much better but also to run algorithms that require massive parallel
computations, which are impractical for “classical” computers. In fact, the 2020s is
the “quantum decade,” in which “quantum computing is poised to expand the scope
and complexity of the business problems we can solve” [3], thus offering a true
“quantum advantage.”

Quantum computing is based on the counterintuitive principles of quantum
mechanics, such as superposition and entanglement. There are different types
of quantum technologies that have made it possible to build various quantum
computers [4, 5]. It is currently possible to distinguish two main quantum computing
paradigms: quantum gate-based computing and quantum annealing. Currently, there
are already dozens of programming languages [6] and several development envi-
ronments for building quantum software systems [7]. Although today quantum gate
machines still have challenges to overcome to become fully operational, quantum
annealing computers are beginning to offer services very close to production, which
at least brings quantum experimentation closer to new information systems.

Three key potential quantum computing use cases are central to the healthcare
industry’s ongoing transformation: diagnostic assistance, insurance premiums and
pricing, and precision medicine [3]. There are several applications of quantum
computing in medicine and health [8–12].



Quantum Software Engineering and Programming Applied to Personalized. . . 287

We have worked for the last 3 years in the QHealth project “Quantum Phar-
macogenomics applied to aging” whose goal is to increase the longevity and
quality of life of the elderly, thanks to the investigation of the relationships
between genetic determining factors and other variables of the health trajectory
of the elderly throughout their lives, including the reaction that medications can
trigger in this group, in such a manner that the possible adverse effects that a
certain medication may have on the health of an elderly person can be predicted
based on their history of taking medications, their effects, and their physiological
and genetic conditions. The members of the project are the University Institute
for Biosanitary Research of Extremadura (INUBE), the University of Castilla-La
Mancha (UCLM), the University of Extremadura (UNEX), and the companies
aQuantum (Alhambra IT), Gloin, and Madrija. It is the first major research project
on quantum computing applied to life sciences to receive funding from the Spanish
Center for the Technological and Industrial Development (CDTI), in the call of the
Health Mission Program.

To achieve this objective, we designed the scientific, methodological, and
technological models necessary for the conception of the scientific and technical
foundations of a hybrid classical/quantum system, capable of carrying out opti-
mizations and simulations that are impossible to carry out in reasonable execution
times in classic computers, which, thanks to the integration with classic health
applications, provides the results of the system to the health professionals in charge
of prescribing medicines for the elderly.

QuantumPath® [13] was chosen as the general-purpose quantum platform of the
project, because of its 100% agnosticism, no limit on the scaling required for the
execution of the experiments, support of the two quantum technological approaches
(gates and annealing), and its qSOA® architecture, ensuring the viability of real-
time integration of quantum services with classic health systems (see Fig. 1). In the
QHealth project, quantum annealing computing technology has been the focus, but
thanks to the QuantumPath platform, when the time comes, quantum gates can also
be exploited, thanks to their general purpose.

Fig. 1 Overview of the QHealth project



288 J. L. Hevia et al.

3 Qualitative Description of the Computational Problem

To address this complex situation, the Q-PGx model (from Quantum Pharmacoge-
nomics) (Fig. 2) was proposed by INUBE, led by Dr. Adrian Llerena, Director of
INUBE and President of the Spanish Society of Pharmacogenetics and Pharma-
cogenomics (SEFF), which will make it possible to determine the factors related
to pharmacogenetic variability and the interindividual difference in drug response,
for which several sets of variables have also been defined: genetic polymorphisms,
pharmacological polytherapy, and clinical conditions.

The joint management of all the variables will allow the generation of prediction
scenarios of interindividual and intraindividual variability according to temporal
variables, something unimaginable without the quantum solutions proposed by the
QHealth project.

The interrelation of all these data of the variables of the Q-PGx model (Fig. 3)
will make it possible to achieve the fundamental objective of the project: to define
the optimal dosage of each drug for each patient, at each time it is prescribed, totally
personalized and with high precision.

It is a matter of addressing the interindividual and intraindividual (transtemporal)
variability of each patient, scenarios that are unimaginable and unfathomable in
current pharmacotherapy with classical IT. This will make it possible to create
personalized medicine services that are only feasible with quantum computing.

Fig. 2 Q-PGx model: QHealth’s variables

Fig. 3 Q-PGx Model: QHealth’s data



Quantum Software Engineering and Programming Applied to Personalized. . . 289

Table 1 Metabolizing activity—drug response

Metabolizing activity (phenotype) Response to drug administration (standard dose)

Null Poisoning
Diminished Poisoning
Normal Expected effect
Increased Null effect

In a first approximation of the domain of the problem, we will work with a limited
set of variables that are closely related to the speed of the drug metabolization
process:

• Pharmacogenetics (depending on the individual genetic endowment)
• Drug interactions (depending on the treatment package)

The speed at which the body metabolizes a medication is linked to its effec-
tiveness and the possible side effects that it may entail. The body is expected to
eliminate a drug within a certain period. One of the factors influencing the previous
response to a drug is genetics, the variability of which determines the individual’s
metabolizing activity (phenotype), which can be classified into various groups as
shown in Table 1.

As can be seen in Table 1, the effect that a drug causes in a patient will be the
desired one only if the individual’s metabolizing activity is qualified as “normal.”
This happens for most individuals, who share the most common genotypes, and
based on which the standard dose of the drug is established. However, there is a
part of the population for which, potentially, the drug in question will not have the
desired effect, causing intoxication if the metabolic activity is null or decreased,
or an absence of any beneficial effect, in the case of increased metabolic activity.
Therefore, knowing the metabolic response of the patient under ideal conditions
based on their genotype, although it is obviously not the only factor to consider, will
be the starting point of the predictive model that will be carried out.

Within the information search process carried out in the framework of the
QHealth project, work has been done on the collection of information on a
broad range of drugs and the associated genetic biomarkers, and subsequently, the
variables have been defined that allow the variants to be related to the genetics
associated with each biomarker and with the different metabolizing responses
(phenotype). This process is schematized in Fig. 4.

Fig. 4 Relationship between a drug and the metabolizing capacity of a patient through their
genotype



290 J. L. Hevia et al.

Table 2 Genetic information

Genetic information

Active principle Biomarker gene (en) Haplotype Variant identification (rsID)

Phenotype
associated
with
genotype

Clopidogrel CYP2C19 *1 wt Normal
*2 rs12769205

rs4244285
rs3758581

Null

*3 rs4986893
rs3758581

Null

*4 rs12248560
rs28399504
rs3758581

Null

*5 rs3758581
rs56337013

Null

*6 rs72552267
rs3758581

Null

*7 rs72558186 Null
*8 rs41291556 Null
*9 rs17884712

rs3758581
Diminished

*10 rs6413438
rs3758581

Diminished

*11 rs58973490
rs3758581

Normal

*12 rs3758581
rs55640102

Unknown

The result, which has been incorporated into the QHealth knowledge base, is a
set of data tables that make it possible to quickly relate the genotype of a patient
to the expected metabolic response (phenotype) to a certain drug. An example of
this data can be seen in Table 2, where the biomarker CYP2C19, a metabolizer of
the drug clopidogrel, is related to the known genetic variants and their associated
activity.

One of the challenges in drug prescription is the need to identify and avoid, as far
as possible, interactions between drugs. When different drugs are administered to a
patient, there is the possibility of adverse reactions because one of the drugs may
increase or decrease the effect of another drug. This type of interaction, known as
gene–drug–drug interaction, hereinafter DDI (drug–drug interaction), involves the
process by which drugs are metabolized in the body.

The metabolization of drugs is carried out by enzymes, and after taking a drug
it is expected that it will be eliminated from the body in a certain period. However,
what if the drug removal process takes longer than expected? In this case, the drug
could accumulate in the body, which could lead to a case of intoxication, or an



Quantum Software Engineering and Programming Applied to Personalized. . . 291

excess of the pharmacological effect of the drug could be generated. Induction or
inhibition of enzymes can affect drugs directly or indirectly through a transcription
factor.

If the enzymes responsible for the metabolization of drug A are inhibited or
induced by other drugs, then the bioavailability of drug A will be higher or lower
than expected, making it toxic or less effective:

• Inhibition implies a slower metabolism of the drug →toxicity.
• Induction implies a faster metabolism of the drug →ineffectiveness.

Apart frommetabolism-based interactions, drug–drug interactions can also occur
due to induction or inhibition of transporters. Transporters are primarily responsible
for the cellular uptake or efflux of drugs. Transporters play an important role in drug
clearance since drugs can only be metabolized after they are transported to liver
cells. However, transporter-based drug interactions have not been as well studied as
metabolism-based interactions.

4 Analytical Description of the Computational Problem

The general computational problem must consider the variability in dosages over
time (Fig. 5). There will be a continuous type of variability, such as renal or
hepatic function, as well as discrete, discontinuous, or pulsed variability, such
as the pharmacological prescription. An example of the latter, that is, of drug
administration within the framework of a medical treatment, is the following:

Fig. 5 QHealth’s pharmacogenomic problem



292 J. L. Hevia et al.

The recommended total daily dose of topiramate for migraine prophylaxis in adults is
100 mg/day, divided into two doses. Dose adjustment should start with 25 mg daily,
administered in the evening, for 1 week. Subsequently, the dose will be increased, at 1-
week intervals, by 25 mg/day. If the patient cannot tolerate the titration regimen, the dose
escalation intervals may be extended.

In more analytical terms, what is desired is to study the correlations between
genetic and clinical variables, drug interactions, and temporal variability. The latter
increases the dimensionality of the problem at a magnitude that justifies the use of
quantum technologies for its approach.

One of the main objectives of the algorithm will be predictability in terms
of the selection of the drug to be administered and the administration schedule.
The modification of the regimen (dose of a drug and administration over time)
is considered, as well as the selection and modification of the number of drugs
administered. Regarding the initial prediction framework, it would be determined
by the following:

• All drugs are administered for the first time.
• For the most diseases, there are pre existing drugs, and the question is to add or

remove.

The interest of staying on a clinical description plane is emphasized, that is,
one wants to study whether a given drug should be chosen or not (dose and co-
medication) and what will happen to the patient. However, when interactions are
considered, the evidence corresponds to a biochemical level (laboratory or animal
model). Work will then be done on the development of a “coarse-grained” model
that incorporates interactions with clinical and regulatory evidence. To stay on the
clinical plane, the mathematical model will include the following points:

• Genes: present/absent in degrees for enzymes
• Clinical factor: altered, yes/no
• Interaction: exists/nonexistent

Regarding the correlations, initially those of type will be considered:

• Gene-mediated drug–drug
• Quantitative, which block by quantity and depend on the dose
• Qualitative ones that block by degree of activity in the enzyme and whose source

of information comes from experimental studies
• Coding for metabolism-modifying phenomena: induction or inhibition (when

available with clinical evidence)



Quantum Software Engineering and Programming Applied to Personalized. . . 293

5 QHealth Information System

This section provides an overview of the QHealth information system, starting with
its functionality, describing its technical features, and ending with the details of its
implementation.

5.1 Functional Overview

Software systems developed for healthcare, given their intended use, need to be
high quality, extensible, scalable, high performance, and highly secure. Therefore,
building reliable software systems for healthcare requires the application of software
engineering best practices and the team’s experience in the development of critical
software solutions. Carrying out projects of this type, incorporating quantum
computing, has the added complexity that quantum software engineering is just
taking its first steps and that the experience accumulated in the design, development,
and implementation of this type of project is accumulating its first cases.

Therefore, conceiving, designing, and testing the feasibility of the QHealth
information system has involved the challenge of researching and defining the best
options for the development of a hybrid quantum/classical health software system
capable of integrating efficiently with existing classical health systems. In addition,
it has been necessary to ensure the delivery of quality, professionally tested quantum
software solutions; to devise a security model specifically designed for quantum
projects as well as to define a management framework for quantum computing
services; and to design a valid model for the governance and management of
quantum architectures and quantum platforms.

The technical validity of the research results of the QHealth project is directly
related to the demonstration, through a wide variety of proof of concepts (PoCs),
of the feasibility of applying quantum software engineering and programming
research results to hybrid quantum/classical software systems that can be used by
healthcare specialists as just another tool in their work environment. The work for
the demonstration of this technical feasibility has represented challenges of high
complexity but, thanks to the research and technologies selected for the PoCs of
the project, we can show the basis of a hybrid quantum/classical system for health
specialists to work with personalized pharmacogenomics solutions.

Each query that can be made to the system will be based on several contexts
determined by the interaction with the specialist. In this interaction, the specialist
will determine what data is to be collected for what type of query. From a base
Hamiltonian expression, each context will introduce new elements to the expression
in the form of constraints. The data collected from the medical system (via the
QHealth dashboard, Fig. 6) will then compose a graph structure established in the
project design, which will allow for correlation of patient information according to
the context.



294 J. L. Hevia et al.

Fig. 6 System overview

Implementing this information as input to the system, and post-processing
the request through the dictionary elements of the system, the assets—agnostics,
in intermediate language—necessary to be able to execute the request to the
quantum machine(s) managed in the system will be generated. At this point, the
QuantumPath® platform makes this execution possible, as well as collecting the
response that will be encoded according to the problem. The system will therefore
decode the answer and provide, according to the context of the query, an answer
with the required information in the form of a suggestion to the specialist, so that
he/she can continue with his/her work.

As a proof of concept of the integration of the quantum software with the
classical one in the QHealth software system, it has been possible to generate
Windows applications based on Microsoft .NET technology that have exploited
annealing circuits to validate client layer designs. Thanks to QuantumPath’s qSOA®

technology, fully transparent connectivity to the QHealth system use cases was
possible, so that they can be exploited from a classic client application (Fig. 7).

5.2 Technical Features

In the design of the technical solution, all the key elements of an information system
based on n-layers have been taken into account, having as requirements by design all
the key elements of a mature system that also incorporates a new disruptive quantum
technology that will evolve very fast in the coming years. These key elements
include:

• Scalability of services. By design, automation services are structured to exploit
queues. By means of centralized queues receiving actions, services compete to
provide the best performance and optimization of actions. The system supports



Quantum Software Engineering and Programming Applied to Personalized. . . 295

F
ig
.7

Q
H
ea
lth

ap
pl
ic
at
io
n



296 J. L. Hevia et al.

prioritization, categorization, failover protection, and dynamic scalability in
elastic infrastructures. Component upgrades can be performed hot, by designing
a controlled upgrade policy, minimizing downtime.

• Information exchange protocols. The system provides a high-level protocol for
calling the computational processing subsystem. Thus, calls and responses are
based on flexible information structures based on graphs encapsulated in high-
level APIs implemented on well-known standards on the Internet and applied to
the business world. The query structures are aligned with the business logic and
mapped with the vocabularies stored in the dictionary subsystem. This guarantees
their validation and understanding.

• Telemetry of the services. All the components of the system, by design, store their
trace and error control in a standardized and centralized database. This provides
real-time information on the status of the information system.

• Centralized configuration. All system components in the general configuration
elements store and query their configuration log from a centralized store that can
be managed by an administrator. In addition, certain components are able to react
to the change immediately or to postpone their applications at the best possible
time.

• Time-extensible transpilation dictionary. Because medical parameters may
change over time, the system provides by design a dictionary where the business
rules directly related to these changes are stored. This gives rise to the concept
of business vocabulary and its versions over time. This allows for minimizing
and extending the processing spectrums, implying minimum update times,
incorporation of specializations depending on the client, error correction in
minimum times, etc. and, very importantly, a query analysis and validation
capability that is able to assist the query and identify errors or inefficiencies in
the query. This dictionary is directly related to the transpilation plug-ins and
responsible for applying the business logic in a parameterized way. This allows
new business rules or transcendent changes in the business to be refactored at the
component level in a totally modular way, and directly related to the vocabulary
version. A new rule or an extension of the existing ones will not force us to
recompile the whole system and impact the ongoing processes.

• Extensible transpilation components. These modular components, called transpi-
lation “plug-ins,” are the ones that implement the business logic responsible for
adapting the query structure of the medical client system to the quantum products
that will address the medical problem. Using advanced dictionary analysis rules,
these components generate the product logics that are launched to the quantum
processing units (QPUs) using QuantumPath® agnostic functionalities.

• Scalability of QPUs. Thanks to QuantumPath®, the management of quantum
technology providers is provided as a service. The health information system,
by design, takes into account all these functionalities by adding them to the
telemetry and configuration subsystem and therefore to the administration and
management system.

• Information protection. Given the nature of the information to be processed, it is
necessary to contemplate—by design—the protection of data and its life cycle in



Quantum Software Engineering and Programming Applied to Personalized. . . 297

the system. Encryption procedures in transit, storage, and anonymization of the
source medical data are elements defined by design in the conception of all the
modules that will make up the vertical information system.

• Governance. IT governance is an element of corporate governance, aimed at
improving the overall management of IT and deriving improved value from
investment in information and technology. IT governance frameworks enable
organizations to manage their IT risks effectively and ensure that the activities
associated with information and technology are aligned with their overall
business objectives, in this case, a Health IT system—which will have an extra
level of protection of sensitive data. IT governance enables an organization to:

– Demonstrate measurable results against broader business strategies and goals
– Meet relevant legal and regulatory obligations, such as those set out in the

GDPR (General Data Protection Regulation)
– Assure stakeholders they can have confidence in your organization’s IT

services
– Facilitate an increase in the return on IT investment
– Comply with certain corporate governance or public listing rules or require-

ments

Thanks to this “backend” system design, the “client” medical information system
responsible for the treatment of each patient’s medical data will have as a viable
method a high-level query channel to process elements not available with classical
computers for the specialist. Thanks to the system’s vocabularies, a specialist will
be able to generate a type of query with medical information elements related to the
areas of knowledge discussed in the previous points. This query will flow through
the business channels provided by the quantum information system and will return
an answer in acceptable (minute) times. The system also offers the possibility to
set up simulations based on additional variables and parameters that could not be
handled with the limitations of the “classical” systems.

5.3 Implementation Details

As discussed in the functional overview in Sect. 5.1, the QHealth information
system has involved the challenge of investigating and defining the best options
for the development of a hybrid quantum/classical health software system capable
of integrating efficiently with existing classical health systems.

It should be noted that quantum computing technologies establish a new
paradigm in the overall architecture of an information system, and it is necessary
to establish as a premise that this new technology must be added to a “traditional”
information system as a new type of modular component to be interconnected in
some way. This already means that in our way of thinking we are introducing the
terms “classical systems,” “quantum systems,” and “hybrid systems.”



298 J. L. Hevia et al.

As in the design of a classic information system, the new hybrid information
system will be adapted to the design rules of an architecture based on layers—and
their best practices—distributed and modular. One of these layers will be formed by
the new services supported by quantum computing. As with classical systems, these
layers will be coupled to the overall system following patterns of loosely coupled
elements, and therefore it will be necessary to define interconnection, adaptation,
and execution elements, as well as telemetry for the control of each and every one
of the integrated components.

5.3.1 Interconnection Layer and Information Protocol

In order that in our solution the classic system used by the health specialist can
access the services capable of accessing the algorithm that uses the quantum
advantage, it is necessary to provide an interconnection layer under a distributed
call model that will consist of an interface based on REST API services (Fig. 8)
standardized on the Internet and highly flexible information structures, parameter-
izable and extensible in time and context. These information structures will be the
tree and the network where its computer representation will be based on the JSON
standard, both for the input and the response.

Since the information system starts from a query, the query will act as input
and will be composed of the syntactic elements necessary to be able to provide the
need, the known input data, and the elements that need to be calculated, as well
as a structure of response to the query. For this purpose, the structure will have a
format:

• Queries. An object that groups one or several query type objects.
A query object is a network that represents the data associated with an analysis
query and will have the properties that will make it possible to identify the
medical objects that are provided as input rules.

– Edges → Array of edge type objects, each of which represents an edge of
the network. These elements will allow for establishing the relationship rules
between the different nodes and the values that affect this relationship.

– Questions → Array of objects of type question, each of which represents a
question to be solved by the algorithm. These questions will be information
needs established by the medical specialist and that the system will take with
the elements to be ascertained through the quantum advantage algorithm.

From the query, the QHealth vertical will activate the processing and translation
modules to generate the classic-quantum products needed to compose the required
response. This required response will also have its established format:

• queries_response. Object array of query response’s type.
A query response object represents the answers to the questions of a given query
and will consist of the metadata necessary to provide the required data. Since
there can be multiple query terms—batch query mode—there can be multiple



Quantum Software Engineering and Programming Applied to Personalized. . . 299

F
ig
.8

D
is
tr
ib
ut
ed

la
ye
rs
us
in
g
pr
ot
oc
ol
s
an
d
co
m
m
un
ic
at
io
n
fo
r
qu
an
tu
m

so
lu
tio

ns
is
ol
at
io
n



300 J. L. Hevia et al.

Fig. 9 Example of a medical query

answer terms—batch answers. The query response object will be composed of
the metadata necessary to provide the required data.

Context and timing are critical at this point. The context will establish the type
of query to be launched to the system, which will determine the number of nodes of
the trees and networks to be composed for both the query and the response, and the
time will determine the version of this type of query. Over time a given context may
be refactored, and therefore the system must take into account that the definitions
and requirements of a given context may be altered. And the system must be able
to react and adapt to this in order not to lose functionality at any time depending on
the version of the client that launches the queries.

To illustrate these ideas, we present an example, from a basic context (Fig. 9).
Question: We want to administer a drug to a patient, and we need to know the

optimal dose for this patient.
Entry data:

• Drug to be administered to the patient: N05AX07
• Enzyme that metabolizes the drug: CYP2A6

– Enzyme processing speed as a function of genotype: slow (0)

Output data:

• Most appropriate dose of the drug to be administered

Query JSON:
{
“graphs”: [

{
“id”: “newQuery”,
“nodes”: [

{
“id”: “enzyme1”,
“type”: “Processor”,
“label”: “a processor”,

(continued)



Quantum Software Engineering and Programming Applied to Personalized. . . 301

“metadata”: {
“P”: 1

}
},

{
“id”: “drug1”,
“type”: “Signal”,
“label”: “a drug”,
“metadata”: {

“Value”: “undefined”
}

},
],
“edges”: [

{
“id”: “edge1”,
“type”: “Process”,
“source”: “enzyme1”,
“target”: “drug1”

}
],

“questions”: [
{
“id”: “question1”,
“type”: “0”,
“node_id”: “drug1”

}
]

}

Response JSON:
{
“queries_response”: [

{
“id”: “newQuery”,
“questions”: [

{
“id”: “question1”,
“response”: “1

}
]

}
]

}



302 J. L. Hevia et al.

5.3.2 Execution Layer: Transpilation, Execution, and Post-processing

This layer is responsible for processing the query, preparing an execution engine
that will be responsible for “understanding” what is desired, and performing all
the necessary steps and processes to provide an answer. Among these steps, the
most critical is the one that generates the necessary elements to take the quantum
advantage of the pharmacogenomics algorithm that responds to the contexts studied
with the specialists. The execution module will rely on the transpilation, dictionary,
and telemetry subsystems to prepare the products to be executed on a quantum
computer and post-process their response to return to the classical system the data
it needs. For this purpose:

• The transpilation module (Fig. 10) will be responsible for analyzing and validat-
ing the query received, in such a way that it can identify the context and generate
a mathematical product that is compatible with the quantum computing principle
selected as a technological alternative: quantum computing by annealing.

• By using a platform-agnostic product, such as the one provided by
QuantumPath®—the first viable technological alternative selected for this
information system—this process is simplified since high-level metalanguages
are used that are perfectly adapted to the definition of the mathematical
product mentioned above, providing multiple advantages to the system under
investigation: adaptation to the technology, minimization of risks in time, and
optimal selection of the required quantum technology, among others.

• The dictionary module (Fig. 11) is responsible for providing the necessary
tools to the transpilation module to generate the necessary quantum products to
enable the launch of a quantum circuit compatible with the selected technology.
QuantumPath® generates the metalanguage elements necessary to compose a
platform-agnostic quantum circuit. The dictionary module is critical to the
system, since it makes it possible to define the contexts, the terms that are
associated with rules, and the rules that make it possible to associate the input
metadata with the variables of the quantum circuit to be generated. This module
is parameterized in database and plug-ins under extensible design.

The dictionary module contains different types of instances of “vocabularies”
adapted to the context. Let’s say, for example, that you want to validate an input
query based on the simplest context (context 1). The grammar that can validate the
rules of the query can be defined with a regular expression rule:

{”name“: ”Context1“, ”def“: ”id-ty-so-ta-MePr-“}
{{”name“: ”Context2“, ”def“: ”–a regular expression–“,{ . . .more rules . . . }}

If a query like the one proposed in Code 1 arrives, the regular expression will
validate the validity of the sentence, while identifying the context and making it
possible to load the dictionary objects associated with context 1, to generate the
mathematical expressions, and by extension, from these, the quantum product would
be generated (Fig. 12).



Quantum Software Engineering and Programming Applied to Personalized. . . 303

F
ig
.1

0
T
ra
ns
pi
la
tio

n
fe
at
ur
es

of
th
e
Q
ua
nt
um

Pa
th

®



304 J. L. Hevia et al.

Fig. 11 Dictionary module role

Fig. 12 Transpiler plus dictionary instance to process the query

Thanks to this dynamic capacity of the system, it is possible to make it grow over
time with new contexts as experience and knowledge in the health area expands,
as well as to refactor existing contexts—in response to improvements and/or
corrections—maintaining context compatibility with the systems that demand the
use case in a specific context. This is done in such a way that the platform’s
evolutions do not interrupt its execution at any time due to these dynamic and
adaptable elements of the information system. This is a 24×7 execution with loosely
coupled systems that adapt to change and favor continuous deployment.

• The execution module. It is the module directly responsible for the intercon-
nection with the quantum computers established by configuration in the system
governance. Starting with the products generated by the transpiler, calls to the
quantum computing system are generated, and the processed responses are
collected and formatted according to the standard established in the protocol
(Fig. 13). Thanks to agnostic products such as the one selected in the QHealth
project, the quantum system can be modified in a flexible and tool-guided way.



Quantum Software Engineering and Programming Applied to Personalized. . . 305

F
ig
.1

3
R
un
ni
ng

an
ag
no
st
ic
qu
an
tu
m

us
e
ca
se



306 J. L. Hevia et al.

Fig. 14 Dependencies between modules

Likewise, the quantum computer technology can be adapted to the best condi-
tions of a manufacturer and the one that offers the best fidelity for the type of call
made. Moreover, other aspects associated with the quantum devices provided by
a given vendor should be considered, as for example, cost controlling, reliability,
availability, queue contention, etc. In the case of not working with an agnostic
product such as QuantumPath®, the dictionary could always be adapted to a partic-
ular specialized hardware to generate the quantum products from the mathematical
expression, which would negatively affect the adaptation of the system to future
changes in these technologies. Figure 14 shows the dependencies between the
different modules.

• The telemetry module, as a transversal module, provides a store of trace,
control, and timing records of each and every one of the events generated in
the aforementioned modules, in such a way that, from all its stored information,
business data can be extracted to feed the different governance tools mentioned
above. For the purposes of the project, the telemetry log provides a calling
standard in the form of an API, and each of the executable elements of the
previous modules is coded with an event code and a trace type, in such a way
that everything is categorized and prepared to generate data extraction processes
to feed the system’s analysis systems.

Finally, after the whole process, the response would be returned to the classic
client system for further post-processing and treatment until it reaches the specialist.

Thanks to all the telemetry collected (Fig. 15) and the high parameterization
of the system, the governance module will enable the management, control, and
monitoring of the processes carried out in the system. For example, if we focus
on managing quantum resources, it provides a high value in the governance of the
system in the access to complete statistics of use of quantum devices by supplier,
fidelity in the answers, and costs, and it is also possible to control the risk in case a



Quantum Software Engineering and Programming Applied to Personalized. . . 307

F
ig
.1

5
A
na
ly
tic
al
in
fo
rm

at
io
n
fo
r
de
ci
si
on
-m

ak
in
g



308 J. L. Hevia et al.

supplier stops being online and it is necessary to look for a technological alternative,
and all directly on the environment already in production and with very low reaction
times.

In the general architecture of the system, the service-oriented role of these layers
and its high scalability factor cannot be overlooked, as it can be exploited by one or
many classic clients identified by an information system that does not necessarily
have to be part of this project but can integrate with this technology by means
of highly recognized standards. Potentially, the research and development of the
QHealth project can itself be a service platform that will serve health centers,
hospitals, or any other health-related entity that is able to transmit the query data and
collect the response to offer it in its functionalities, thanks to the quantum advantage
in times that will make viable the analysis of the specialist almost in real time both
for a specific operation and for a batch set of operations.

6 Conclusion

The goal of precision medicine is to identify and explain the relationships between
interventions and treatments, on the one hand, and outcomes, on the other, in order
to provide the best medical performance at the individual level.

Unfortunately, medication adjustment in the elderly is a complex and unresolved
challenge and is currently carried out by trial and error. Therefore, the availability
of software systems that allow the management of many variables could make it
possible to optimize the choice of the most optimal drug combination, the most
suitable prescribing regimen, and modeling situations over time, thus making it
possible to establish the appropriate strategy.

Fortunately, quantum computing makes it possible to deal with enormous
numbers of variables and analyze them in a timely manner to help the physician
give the appropriate dose of medicine to his patients.

However, to achieve quantum software that can really be used in health infor-
mation systems, it is necessary to build it in an engineering way and without
forgetting the good practices of software engineering [14]. In fact, in the QHealth
project, we have had to propose tools for design, quality, testing, estimation, process
management, etc. to develop the project. Furthermore, it should not be forgotten
that the quantification software must be easily integrated with existing classical IT
systems, where most of the patient data resides.

In this chapter, we have presented a quantum software prototype that implements
an algorithm capable of taking into account genomic information and drug–drug
interactions.

Acknowledgments This work is part of the QHealth: Quantum Pharmacogenomics Applied to
Aging (2020 CDTI Missions Program) project funded by the Spanish Ministry of Science and
Innovation and European Regional Development Fund (ERDF). We would like to thank all the
members of the project for their help and collaboration.



Quantum Software Engineering and Programming Applied to Personalized. . . 309

References

1. Merle, L., Laroche, M.L., Dantoine, T., Charmes, J.P.: Predicting and preventing adverse drug
reactions in the very old. Drugs Aging. 22, 375–392 (2005). https://doi.org/10.2165/00002512-
200522050-00003

2. Fahrni, M.L., Azmy, M.T., Usir, E., Aziz, N.A., Hassan, Y.: Inappropriate prescribing defined
by STOPP and START criteria and its association with adverse drug events among hospitalized
older patients: a multicentre, prospective study. PLoS One. 14, 1–20 (2019). https://doi.org/
10.1371/journal.pone.0219898

3. IBM: The Quantum Decade. A Playbook for Achieving Awareness, Readiness, and Advantage.
IBM Institute for Business Value (2023) https://www.ibm.com/thought-leadership/institute-
business-value/report/quantum-decade

4. Ezratty, O.: Understanding Quantum Technologies, 5th edn. https://www.oezratty.net/
wordpress/2022/understanding-quantum-technologies-2022/ (2023)

5. Piattini, M., Serrano, M.A., Pérez-Castillo, R., Peterssen, G., Hevia, J.L.: Toward a quantum
software engineering. IT Prof. 23(1), 62–66 (2021)

6. Serrano, M.A., Cruz-Lemus, J.A., Pérez-Castillo, R., y Piattini, M.: Quantum software
components and platforms: overview and quality assessment. ACM Comput Surv. 55(8),
164:1–164:31 (2023)

7. Hevia, J.L., Peterssen, G., Ebert, C., Piattini, M.: Quantum computing. IEEE Softw. 38(5),
7–15 (2021)

8. Cordier, B.A., Sawaya, N.P.D., Guerreschi, G.G., McWeeney, S.K.: Biology and Medicine in
the Landscape of Quantum Advantages. https://arxiv.org/pdf/2112.00760.pdf

9. Exploring Quantum Computing Use Cases for Life Sciences. Decoding Secrets of Genomes,
Drugs, and Proteins. IBM Institute for Business Value. https://www.ibm.com/downloads/cas/
EVBKAZGJ

10. Silva, G.S.M., Droguett, E.L.: Quantum Machine Learning for Health State Diagnosis and
Prognostics. https://arxiv.org/ftp/arxiv/papers/2108/2108.12265.pdf

11. The Disruptive Power of Quantum Computing in Precision Medicine. https://coruzant.com/op-
ed-p/quantum-solace/the-disruptive-power-of-quantum-computing-in-precision-medicine/

12. Rasool, R.U. et al. (2022). Quantum Computing for Healthcare: A Review.. https://
www.techrxiv.org/articles/preprint/Quantum_Computing_for_Healthcare_A_Review/
17198702/1

13. Hevia, J.L., Peterssen, G., Piattini, M.: QuantumPath: a quantum software development
platform. Softw Pract Experience. 52(6), 1517–1530 (2022)

14. M. Piattini, G. Peterssen, R. Pérez-Castillo, J. L. Hevia et al. 2020. The Talavera Manifesto for
Quantum Software Engineering and Programming.. http://ceur-ws.org/Vol-2561/paper0.pdf.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


 21887 3822 a 21887 3822
a
 
http://doi.org/10.2165/00002512-200522050-00003

 29283 8250 a 29283 8250 a
 
http://doi.org/10.1371/journal.pone.0219898


15763 11571 a 15763 11571 a
 
https://www.ibm.com/thought-leadership/institute-business-value/report/quantum-decade

 25392 13785 a 25392 13785 a
 
https://www.oezratty.net/wordpress/2022/understanding-quantum-technologies-2022/

 14726 24854 a 14726 24854 a
 
https://arxiv.org/pdf/2112.00760.pdf

 20648
27068 a 20648 27068 a
 
https://www.ibm.com/downloads/cas/EVBKAZGJ

 4299 30389 a 4299 30389 a
 
https://arxiv.org/ftp/arxiv/papers/2108/2108.12265.pdf

 25609 31496 a 25609 31496
a
 
https://coruzant.com/op-ed-p/quantum-solace/the-disruptive-power-of-quantum-computing-in-precision-medicine/

 32220 33710 a 32220 33710
a
 
https://www.techrxiv.org/articles/preprint/Quantum_Computing_for_Healthcare_A_Review/17198702/1

 19106 40352 a 19106
40352 a
 
http://ceur-ws.org/Vol-2561/paper0.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Challenges for Quantum Software
Engineering: An Industrial Application
Scenario Perspective

Cecilia Carbonelli, Michael Felderer, Matthias Jung, Elisabeth Lobe,
Malte Lochau, Sebastian Luber, Wolfgang Mauerer, Rudolf Ramler,
Ina Schaefer, and Christoph Schroth

Abstract Quantum software is becoming a key enabler for applying quantum
computing to industrial use cases. This poses challenges to quantum software

C. Carbonelli · S. Luber
Infineon Technologies AG, Neubiberg, Germany
e-mail: cecilia.carbonelli@infineon.com; sebastian.luber@infineon.com

M. Felderer
Institute of Software Technology, German Aerospace Center (DLR), Cologne, Germany

University of Innsbruck, Innsbruck, Austria

University of Cologne, Cologne, Germany
e-mail: michael.felderer@dlr.de

M. Jung
University of Würzburg, Würzburg, Germany
e-mail: m.jung@uni-wuerzburg.de

E. Lobe
Institute of Software Technology, German Aerospace Center (DLR), Brunswick, Germany
e-mail: elisabeth.lobe@dlr.de

M. Lochau (�)
University of Siegen, Siegen, Germany
e-mail: malte.lochau@uni-siegen.de

W. Mauerer
Technical University of Applied Sciences/Siemens AG, Regensburg, Germany
e-mail: wolfgang.mauerer@othr.de

R. Ramler
Software Competence Center Hagenberg, Hagenberg, Austria
e-mail: rudolf.ramler@scch.at

I. Schaefer
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: ina.schaefer@kit.edu

C. Schroth
Fraunhofer IESE, Kaiserslautern, Germany
e-mail: christof.schroth@iese.fraunhofer.de

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_12

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 12&domain=pdf

 885 22529 a 885 22529 a
 
mailto:cecilia.carbonelli@infineon.com
mailto:cecilia.carbonelli@infineon.com
mailto:cecilia.carbonelli@infineon.com

 13642 22529 a 13642
22529 a
 
mailto:sebastian.luber@infineon.com
mailto:sebastian.luber@infineon.com
mailto:sebastian.luber@infineon.com

 885 29724 a 885 29724 a
 
mailto:michael.felderer@dlr.de
mailto:michael.felderer@dlr.de
mailto:michael.felderer@dlr.de

 885
33599 a 885 33599 a
 
mailto:m.jung@uni-wuerzburg.de
mailto:m.jung@uni-wuerzburg.de
mailto:m.jung@uni-wuerzburg.de
mailto:m.jung@uni-wuerzburg.de

 885
37473 a 885 37473 a
 
mailto:elisabeth.lobe@dlr.de
mailto:elisabeth.lobe@dlr.de
mailto:elisabeth.lobe@dlr.de

 885 41347 a 885 41347 a
 
mailto:malte.lochau@uni-siegen.de
mailto:malte.lochau@uni-siegen.de
mailto:malte.lochau@uni-siegen.de
mailto:malte.lochau@uni-siegen.de

 885 45222 a 885 45222 a
 
mailto:wolfgang.mauerer@othr.de
mailto:wolfgang.mauerer@othr.de
mailto:wolfgang.mauerer@othr.de

 885 49096 a 885 49096 a
 
mailto:rudolf.ramler@scch.at
mailto:rudolf.ramler@scch.at
mailto:rudolf.ramler@scch.at

 885 52970 a 885 52970
a
 
mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu
mailto:ina.schaefer@kit.edu

 885 56845 a 885 56845 a
 
mailto:christof.schroth@iese.fraunhofer.de
mailto:christof.schroth@iese.fraunhofer.de
mailto:christof.schroth@iese.fraunhofer.de
mailto:christof.schroth@iese.fraunhofer.de
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12
https://doi.org/10.1007/978-3-031-64136-7_12


312 C. Carbonelli et al.

engineering in providing efficient and effective means to develop such software.
Eventually, this must be reliably achieved in time, on budget, and in quality, using
sound and well-principled engineering approaches. Given that quantum computers
are based on fundamentally different principles than classical machines, this raises
the question if, how, and to what extent established techniques for systematically
engineering software need to be adapted. In this chapter, we analyze three paradig-
matic application scenarios for quantum software engineering from an industrial
perspective. The respective use cases center around (1) optimization and quantum
cloud services, (2) quantum simulation, and (3) embedded quantum computing.
Our aim is to provide a concise overview of the current and future applications of
quantum computing in diverse industrial settings. We derive presumed challenges
for quantum software engineering and thus provide research directions for this
emerging field.

Keywords Quantum computing · Software engineering · Quantum software
engineering · Industrial use cases · Software development

1 Introduction

Quantum computers (QCs) are a reality today, but quantum software development
is in its very infancy. Although many small-/medium-sized quantum programs have
been written over the years to demonstrate the potentials of quantum computing,
barely any of these examples can be seriously called quantum software. In other
words, there is no such thing as quantum software to date [28].

In this regard, software engineering (SE) is concerned with supporting and
improving the development, application, and maintenance of software-intensive
systems [92]. SE employs scientific methods, business principles, structured
process models, and predefined quality goals to cope with the complexity of
software as a whole. Current mainstream SE research for classical (i.e., non-
quantum) software comprises design principles (e.g., high-level modeling languages
fostering abstraction and modularity), development practices (e.g., tasks, roles,
and responsibilities), and tool support (e.g., Integrated Development Environment
(IDEs), code generation, static analysis, version control, issue tracking, unit testing,
debugging, etc.). This perspective of SE research on software development is,
however, mismatching the current status of quantum software. Zhao et al. were
some of the first to coin the term quantum software engineering (QSE) to sum-
marize any effort to adopt established SE principles and practices to make them
also work for quantum software [111]. However, in this chapter, we take on a
contrary perspective: research on QSE should, as a first step, identify, understand,
and tackle short-term engineering challenges for better support of, usually fully
manually crafted, small-/medium-scale quantum programs today (i.e., focusing on
the programming and deployment phases). More sophisticated and mature concepts
including high-level software abstraction as propagated, for instance, in the context
of requirements elicitation, object-oriented design patterns, software maintenance



QSE: Industrial Challenges 313

and evolution, and re-engineering are out of scope for now due to the lack of
any accessible examples and use cases. To meet the short-term goals, quantum SE
should first of all focus on the following challenges.

• Make quantum computing accessible to developers and users through appropriate
processes, methods, and tools.

• Facilitate hybrid quantum computing through a combination of classical SE and
QSE concepts based on a generic description of a computational problem and
(quantum) platform constraints.

• Provide benchmarks and benchmarking processes, methods, and tools for assess-
ing quantum advantage as well as constraints that arise from the integration of
quantum software components in an overall (hybrid) software system.

Our goal is to assess the short-term requirements and challenges of SE in the
upcoming era of quantum computing. These requirements and challenges are
already relevant to the noisy intermediate-scale quantum (NISQ) era. In contrast to
other recent works on this subject [111, 6, 101, 110], we do not follow a top-down
approach, but instead, illustrate the status quo of QSE by considering a selection
of industrial application scenarios. For each application scenario, we first provide a
short general description and then describe selected recent use cases to characterize
the common aspects of the respective scenarios. Based on these descriptions, we
derive in a bottom-up manner the key challenges for QSE with respect to these
application scenarios. Our goal is to gain a better understanding of the principles
and practices that will most likely support the development of software systems that
solve problems that, at least partly, involve quantum computations. Our claim is that,
from an SE point of view, quantum computation is not a new programming paradigm
in the first place, but, first of all, a new computational architecture. The novel
conceptual thinking required for effectively exploiting the frequently promised
quantum advantage is crosscutting all classical development phases and hierarchies
of software systems. Quantum computing will thus potentially influence SE as a
whole as we know it today [89]. Nevertheless, we argue that established solutions
developed in SE research over the past decades will not all suddenly become
inappropriate and obsolete due to the advent of quantum computing, but instead
require careful rethinking and adjustments to also cope with the key characteristics
of quantum software. Many of these characteristics and possible side effects
apparent in quantum computations have been considered before in other contexts,
whereas the inherent pervasiveness of these characteristics in a quantum setting is
indeed a novel aspect. These characteristics include, for instance, the probabilistic
nature of computational outcomes and the lack of reference architectures (although
Qiskit may be seen as a de facto standard today for the majority of computational
approaches).

“While many of quantum computing’s promised capabilities could be revolution-
ary, the realization of this promise requires breakthroughs in several areas, including
improvements in the quality of qubits, error correction, and a demonstrable set of
practical applications” [28]. The inflated expectations may result in a quantum
winter similar to what we experienced with AI, where it took a long time to



314 C. Carbonelli et al.

turn promising theoretical concepts into reality. Thus, the immediately necessary
contributions of the SE community to advancing quantum computing lie in moving
from first demonstrable examples to real-world applications with practical impact.

2 Paradigmatic Application Scenarios

We next describe potential application domains of QSE by means of paradigmatic
application scenarios as illustrated in Fig. 1:

• Application Scenario 1. Provide quantum computing capabilities as a cloud
service to solve optimization problems or machine learning tasks (quantum-
computing-as-a-service).

• Application Scenario 2. Perform physical simulations with quantum programs
developed by domain experts in a machine-oriented low-level manner.

• Application Scenario 3. Embed quantum processing units (QPUs) as integrated
components into hybrid safety- or mission-critical software systems with a
special focus on nonfunctional properties.

The selection of these application scenarios is driven by industrial and academic
experiences of the authors and is aligned with the core use cases of the QUTAC
Consortium [11]. Our aim is to illustrate the diversity of application domains and
different perspectives on quantum computing, ranging from recent black-box and
white-box views to embedded quantum computing.

Fig. 1 Application scenarios
for quantum computing

Application Scenario 1

Application Scenario 2

Application Scenario 3

Software 
Application

Quantum 
Computer

black box

Quantum 
Simulator

white box

System
Quantum 
Computing

embedded



QSE: Industrial Challenges 315

2.1 Application Scenario 1: Quantum Cloud Services

2.1.1 Use Cases and Examples

Quantum computing brings new opportunities for solving optimization problems,
which are among the first industrial applications of the technology [11]. One
example is the flight-gate assignment (FGA) problem in airport and air traffic
planning, where the assignment of incoming flights to gates shall be optimized to
minimize transfer times [94, 81]. This scheduling problem belongs to a class of
NP-hard combinatorial optimization problems. Further examples include Electronic
Design Automation (EDA) such as placement and routing on design chips and fault
detection in electrical power networks [68], trajectory optimization in air traffic
management [95], paint-shop scheduling [108], and planning problems in highly
individualized mass production [9].

NP-hardness implies that, in practice, real-world instances can only be solved by
approximation algorithms or heuristics. Here, quantum computers, taking advantage
of entanglement, superposition, and interference, could potentially speed up and
improve the optimization. One key property of the mentioned problems is that they
can be solved offline: one problem instance is solved once, usually without critical
time constraints, and the result is used to do something substantial, either conducting
further research or going in an operational state, for instance, by applying the
optimized flight schedule in an airport scenario.

2.1.2 Approaches and Challenges

A possible solution to bypass insufficient local computational power for effectively
solving hard optimization problems is to pass the work to a quantum cloud
system. For instance, D-Wave’s Leap service [23] provides connections to quantum
annealers or IBM’s Qiskit interfacing to their quantum machines [71].

It has been argued that handling the offloading of such computations does not
pose any new challenges to SE [50] as quantum computing essentially appears
as a black box with well-defined interfaces. However, an open issue is to properly
design such interfaces and to formulate optimization problems being tractable
by quantum processing units (QPUs). First, an emerging optimization problem
may be identified as computational bottlenecks within larger application contexts.
These problems are either spotted by mathematical analysis during the design phase
or during an optimization stage using a profiler; ideally, they match one of the
known quantum primitives [39]. To this end, developers have to refactor the
overall software system to isolate and replace the computational component by
calls to quantum cloud services. Yet, there may be many such components that
are closely tied to specific requirements of the overall system and which are the
result of decades’ worth of research and optimization [24]. This makes replacing
them a nontrivial endeavor. Examples include subtasks of database management



316 C. Carbonelli et al.

systems like join ordering [84, 85], multi-query optimization [98] or transaction
scheduling [15].

Using quantum computing to speed up tasks previously solved by components
designed and optimized for classical computers thus requires careful analysis.
This includes understanding the underlying problem as well as exploring possible
quantum speedups under varying workloads, input data characteristics, etc., while
simultaneously retaining crucial, yet unrelated functional and nonfunctional proper-
ties of the overall system. Established SE techniques and tools (e.g., for performance
analysis and refactoring) may help.

However, it is fair to say that the understanding of what benefits quantum
computers can provide for what specific problems is far from being well
understood in comparison to the state of the art in classical algorithms, and also
in terms of system architecture.

While the potential speedups of seminal approaches [64] like Shor’s algorithm
(and, more generally, quantum phase estimation) or Grover search are rigorously
established, the impact of imperfections on these algorithms makes any practical
application considerations quickly prohibitive [43]. Likewise, even the actual
requirements on the hardware of future machines for comparatively simple co-
variables like the number of qubits is subject to discussion, and depends not
only on many low-level details of the underlying hardware, but also on the actual
payload algorithms [78]. A substantial body of the existing literature is dedicated
to establishing a comprehensive understanding of the theoretical advantages of
quantum sampling approaches [44]. Yet, concrete applications of these techniques
are thinly spread, and their practical gain especially in comparison to existing
heuristics and approximations is still under initial exploration [27].

The situation becomes even less straightforward for the more recent class of
variational quantum algorithms and quantum approximate optimization algorithm
(QAOA)-style approaches [17, 13]. While it is known that an efficient simulation
of specific variants of QAOA would have strikingly unattractive and unexpected
consequences for some of the pillars of computational complexity theory, entirely
classical replacements for other variants are also known [61]. Likewise, the
understanding of how to construct efficient classical surrogates for variational
algorithms has considerably increased recently [87, 86], and restricts potential quan-
tum advantage to increasingly narrower domains. When—unavoidable—practical
constraints are taken into account [105, 79], determining a fair basis for comparison
is a not yet satisfactorily resolved problem [12, 46], even ignoring the substantial
limitations of currently available hardware.

A major challenge is to identify, factor out, and transform optimization subtasks
suitable for quantum computers or annealers and their specific computing archi-
tectures [25, 48]. Several transformation steps usually reformat the optimization
problem. In addition, “glue” code to connect classic and quantum parts is required.
Tools like Quark [55]1 enable users to easily formulate and transform optimization

1 See also the list of contributors (link in PDF).


 3284
58376 a 3284 58376 a
 
https://gitlab.com/quantum-computing-software/quark/-/blob/development/CONTRIBUTORS


QSE: Industrial Challenges 317

problems, and to handle experiment dispatch and analysis. Likewise, approaches
for recommending solution strategies for optimization problems using quantum
approaches have been suggested [70]. However, such tools to support interacting
and experimenting with quantum computers are still subject to research [103].

2.1.3 Conclusions

We are in the phase of evaluating the potentials of quantum computing in solving
optimization problems. Providing such capabilities as reliable (black-box) services,
however, requires an improved understanding of machine properties obtained from
experiments and benchmarking. This necessitates many iterations of interactions
with the quantum hardware for parameter tuning. Software development efforts,
therefore, increase significantly when dealing with quantum hardware in contrast to
well-established classical approaches as this fine-tuning requires not only software
skills but also deeper knowledge in fundamental quantum physics. We assume this
up-front investment will eventually pay off: if a fast heuristic solution is available
and easy to access, a user will simply call quantum optimizers as a black-box cloud
service over a well-defined interface, hiding transformation complexity and specific
hardware requirements.

Summary Quantum cloud services will allow for accelerating mathematical
optimization problems. Automatic means of transforming existing formu-
lations into quantum descriptions have become available; yet, it remains
a software architecture and engineering challenge to identify appropriate
problems. Integrating quantum solvers into applications from a black-box per-
spective, including interface design, remains a minor SE challenge. However,
the underlying quantum computing software stack, including the compilation
and hybrid computing process, requires new quantum software engineering
approaches.

2.2 Application Scenario 2: Quantum Simulation

2.2.1 Use Cases and Examples

Quantum simulation is one of the most promising application scenarios for quantum
computing. It can help in understanding real-world chemistry and physics phenom-
ena, improving design methodologies and making experiments much more effective.
Simulating quantum mechanics on classical computers is a hard computational



318 C. Carbonelli et al.

problem,2 and determining relevant properties of quantum systems, e.g., finding
their minimal energy, is even harder. To efficiently simulate a quantum system,
the simulator might rely on quantum-mechanical dynamics. The basic idea of a
quantum simulator is to use a controllable quantum platform to replicate dynamic
or static properties of another, usually less controllable, quantum system [51]. This
is similar to using wind tunnels for testing aerodynamic properties of reduced-scale
models in a controlled environment, and then to transfer gained information to full-
scale objects in the (uncontrolled) real world. With the rapid growth of quantum
computing capabilities, the interest in (quantum) material science has also risen
significantly. This field targets a large variety of applications ranging from the design
of more efficient batteries and catalysts to the study of innovative sensing materials
for consumer and automotive applications [66].

For the latter task, many candidate compounds have to be efficiently screened and
evaluated to select or design the best materials with respect to the desired properties.
This implies large effort and costs in terms of material procurement, measurement
equipment, and setup. Direct simulations of the material properties could drastically
reduce the required resources and significantly accelerate the discovery process
reducing time-to-market. Here, quantum systems promise a fast and more precise
simulation tool of real-world mechanisms than their conventional counterparts.

Likewise, the study of new storage materials and the development of innovative
battery technology is being pushed by several emerging and established appli-
cations, ranging from electric and light electric vehicles to solar energy storage
systems and robotics. Researchers aim at understanding the mechanisms impacting
efficiency, stability, and faster charging of battery operations to predict real-world
performance. Yet the first fundamental step, again, remains the selection of apt
chemical compounds. New families of disruptive active materials such as Lithium-
Ion (Li-ion) and Lithium-Sulfur (Li-S) offer four times higher energy density than
Li-ion batteries. From a modeling perspective, it is crucial to describe the solid
electrolyte interphase forming on the battery anode and to define its durability and
long-term performance. Classic DFT, multi-physics simulations, and measurements
have not provided satisfactory answers particularly in terms of accuracy . Quantum
computing can offer a closer characterization of the key chemical properties of
battery cells such as equilibrium cell voltages, ionic mobility, and thermal stability.

2 Problems efficiently solvable by QC belong to complexity class bounded-error quantum polyno-
mial (BQP), the quantum analog of BPP. The relation between BQP and classical classes like NP
poses many open questions. The dynamics of a quantum system (compute output of a quantum
circuit given an initial state) is BQP-hard [36], which makes it likely intractable for classical
computers, but doable for quantum machines for a class of natural Hamiltonians in BPQ. Inferring
global properties of a quantum system (given a quantum circuit, is there a state that produces a
desired output? What is the minimum energy eigenstate for a given Hamiltonian?) belong into
QMA, a probabilistic quantum analog of NP [1], and is intractable even for quantum computers .
It is even possible to give physical problems that are undecidable, at least within the limit of infinite
size [22]. Quantum SE needs to be aware of such peculiarities to properly ascertain the feasibility
of architectures and designs by avoiding illusory, inflated expectations of potential gains.



QSE: Industrial Challenges 319

The quantum simulation often boils down to obtaining the ground state energies of
various molecules of increasing complexity [26]; likewise, physical characteristics
like dipole moments have also been calculated [77].

2.2.2 Approaches and Challenges

Programmable universal quantum computers can simulate quantum mechanical
processes [18, 40, 7, 54, 16]. Such simulations are specified using software (e.g.,
using domain-specific languages), which takes this topic into the focus of SE.
However, different approaches to quantum simulation (analog simulation, digital
simulation, combinations thereof, and hybrid quantum-classical algorithms) differ
in their implications. In each case, and in contrast to other forms of quantum com-
putation, quantum simulation requires awareness of the Hamiltonian underlying
the task (the Hamilton operator (or Hamiltonian) of a system is, roughly speaking, a
mathematical object3 that provides information about a physical system. It is closely
related to the energy spectrum,4 and governs time-evolution of a quantum system.
The Schrödinger equation combines Hamiltonian and quantum states, which are
mathematically described by the wave function, into a differential equation).

Analog quantum simulators [18, 20] are physical systems that mimic other
quantum systems (or a class of models) by closely reproducing the system’s
characteristics. Hence, their Hamiltonian should be as similar as possible to
the simulated system. Digital quantum simulation is based on decomposing the
Hamiltonian into operations implementable in the simulator by single- and two-
qubit gate operations. This is more flexible than analog quantum simulators and
enables us to overcome the limitations of the simulator system itself. Furthermore, it
allows for quantum error correction and universality in a “fully universal” quantum

3 We have been deliberately careful to avoid confusing the physical concept of a dynamical
observable that can be measured with the mathematical operator/object to which it corresponds
in the formal description.
4 Many textbooks on quantum mechanics simply state that the Hamiltonian represents the total
energy of a system, sometimes requiring this as a fundamental postulate. There are reasons to
avoid such strong statements, both from a fundamental perspective (in the canonical approach of
replacing physical quantities in the Hamilton function H of classical mechanics with operator-
valued quantities, H is always conserved, but does, as Legendre transform of the Langrangian,
not automatically equate to the sum of potential and kinetic energy; the approach to deriving
a quantum Hamiltonian from energy-momentum relations delivers different results for the non-
relativistic and relativistic case; and approaches based on space-time symmetries need to introduce
empirical factors that relate the quantum Hamiltonian to classical energies), and from a practical
point of view that concerns the software engineering aspects of quantum simulations. It is fairly
common in this field to work with effective Hamiltonians that describe only degrees of freedom
relevant for a particular task (for instance, Spin Hamiltonians in spectroscopy, the Ligand Field
Hamiltonian of coordination chemistry, or the Hückel Hamiltonian for aromatic systems, which
all carry a certain relevance for quantum chemistry), and therefore do not deliver a complete
energy spectrum. Correctness checks, invariants, and the interpretation of results must adapt to
such circumstances, and require awareness from the software side.



320 C. Carbonelli et al.

computer. If the simulator offers a universal set of perfect quantum gates, then the
model can simulate a wide class of Hamiltonians [54], albeit the computing effort
may vary depending on the types of gates. Some implementation technologies for
QCs in use today are particularly well suited for quantum simulators. An example
is Rydberg atom arrays [63, 102] that provide identical and long-lived qubits with
strong coherent interactions. To represent the physical properties of the simulated
system, the properties of the simulator correspond well to these, especially when
analog simulation steps are involved. At least for this aspect, this challenges the
idea that abstraction layers [10], despite proven useful classically, can satisfactorily
eliminate differences between implementation platforms.

Industrial experience with quantum simulation problems gained by some of the
authors shows that the exact boundary between digital simulation and optimiza-
tion is not always clear. Especially quantum-classical hybrid algorithms—most
importantly, the variational quantum eigensolver (VQE) [97]—rely on optimization
methods to determine observables like the ground state energy of molecules based
on a physical model. It is hypothesized that VQE, which at its core is independent
of the simulated problem, will provide improved modeling accuracy over classical
approaches like DFT. However, engineering challenges remain such as hardware-
dependent noise compensation, an understanding of the differences between the
many available variants of VQE [34] (requiring problem-dependent benchmark-
ing [76]), and determining optimal quantum-classical splits. Especially the latter
topics fall within the responsibilities of SE, but it might also be possible to improve
noise handling based on software-centric methods. Also, the depth reduction of
circuits generated from Hamiltonian descriptions is an important goal, in which
compilers may play a crucial role (see, e.g., [30, 49, 82]). As with other use cases,
resource usage and scalability in general need to be addressed by QSE.

Despite initial steps taken on problems of industrial scale, explorations are still
in an early phase with already important collaborations emerging between large
chemical and computing technology corporations [19]. Currently, the effort of
finding appropriate Hamiltonian models by far exceeds the software implementation
effort; knowledge of physical principles and details by far outranks the challenges
of transcribing these into the quantum framework. While the modeling task in the
classical domain is routinely reduced to a well-informed parametrization of canned
DFT software, quantum tools—even given existing frameworks support [71]—
require high manual programming effort.

2.2.3 Conclusions

SE tasks in quantum simulation include algorithm selection, determining the
influence of mathematical/physical details on nonfunctional and functional prop-
erties, and comparing quantum and hybrid architectures to classical approaches
and heuristics. Many revolve, in a broader sense, around the topic of testing.
As the goal of quantum simulation is to exceed the computational capabilities
of classical approaches, this opens up new research challenges. Testing quantum



QSE: Industrial Challenges 321

simulations comprises ensuring (a) model correctness and (b) correctness of circuits
generated from the model. After establishing a Hamiltonian description of the
system, empirical measurements on the actual physical system can be performed
and compared to the simulation results. The resulting circuit generator is then
trusted, and quantum simulation based on the generators can be used to explore
the properties of novel, previously unexplored materials.

From an SE point of view, recent attempts lift established techniques for end-
to-end testing of classical computations to components with probabilistic behavior
[62, 41, 35, 38]. This includes novel notions of testing oracles based on distance
measures for execution trace distributions and statistical criteria for approximating
error probability by the number of repetitions of test runs. More involved quantum
phenomena like superposition and entanglement of computational states are not yet
properly addressed by these approaches. This, first of all, requires new abstractions
concerning the notion of observations in testing reflecting the destructive nature of
quantum measurements which obstructs established testing practices like interactive
debugging [62].

Further properties of quantum states and circuits are also not suited to established
testing methods: as there are usually no classical control branches in quantum
circuits, structural code coverage criteria are not applicable, which renders well-
established, elementary software testing concepts [92] useless. Likewise, local-
ization of faults is unlike harder for quantum circuits than for classical programs,
given that entangled states can intertwine arbitrary parts of a circuit and mutually
influence each other . Not just the stochastic nature of quantum measurements but
also the impact of imperfection and noise in quantum circuits obstruct the definition
of proper test oracles. Here, we need to distinguish unavoidable variations caused
by quantum measurements from variations due to (classically) probabilistic algo-
rithmic elements from variations induced by noise and imperfection. Distinguishing
between such different probability distributions is no new challenge, but there are
quantum specifics: for instance, the amount of information to be recorded for a
meaningful statement (e.g., by estimating the required number of samples for a
desired precision and bounded error probability via Hoeffding’s inequality [65], or
randomized measurement procedures [31] that estimate quantum properties from
classical observations) requires future research in QSE. Well-principled guidelines
can eliminate the need for individual software engineers to be aware of such
statistical peculiarities.

Other verification approaches for quantum simulation include up-front correct-
ness validation of models (e.g., finding physical invariants that can be probed
with accessible measurements), equipping a model’s software representation (or the
representation of the simulation approach) with a formal semantics honors quantum
aspects (e.g., [58, 14, 21, 32]) that allows us to verify specific properties and
correctness of generated modeling circuits by decomposition techniques (see, e.g.,
[67, 99]).



322 C. Carbonelli et al.

Summary Quantum simulation can benefit from established means of SE
to formulate and describe models of physical systems whose properties
can be simulated on quantum computers. Efforts evolve more around a
physical understanding of the employed models rather than programming.
Validation and verification techniques, as well as architectural decomposition
into quantum and classical aspects, will rely on established, yet to be adapted
SE approaches.

2.3 Application Scenario 3: Embedded Quantum Computing

2.3.1 Use Cases and Examples

Embedded software systems are purpose-built for specific tasks. In contrast to
general purpose and high-performance computing systems (Application Scenario
1), embedded systems operate under restricted resources, on specific hardware
platforms, and have to meet distinct quality requirements like real-time constraints
or safety guarantees. Safety measures prevent material damage and harm to
individuals and deeply influence hardware and software co-design of classical
embedded software [57].

2.3.2 Approaches and Challenges

We recently observed a convergence between embedded systems and high-
performance computing [42], for instance, in autonomous driving, avionics, and
control systems. We expect embedded systems to require even more computational
resources in future applications. Hence, quantum computing may also play an
important role in hybrid embedded scenarios by utilizing quantum accelerators
for solving particular computational tasks [105]. To the best of our knowledge, no
approaches have been investigated so far to facilitate quality assurance techniques
and tools for embedded quantum computing. Meeting these requirements in
QPU accelerated hybrid systems is complicated by the dominance of iterative,
probabilistic algorithms; yet, since almost all known quantum algorithms
that operate on perfect error-corrected quantum systems are also inherently
probabilistic [56], the problem will also extend after the NISQ area. Open research
questions include how to improve understanding of termination properties and
convergence toward sufficiently accurate results in iterative algorithms [33, 3],
as well as the role of classical optimization components [114, 96] and result
degradation. But, perhaps counter-intuitively, also possible improvements [53] by
imperfections and noise [4, 100] are important research questions.



QSE: Industrial Challenges 323

In many application domains, embedded co-design development processes must
achieve (safety) certifications. It is an open question how established approaches can
be adapted to quantum computing including entirely novel qualification approaches
aligned with QPU peculiarities. Therefore, we may expect that system engineering
will play a larger role in hybrid embedded quantum computing than for classical
applications.

Prior work in safety-critical embedded systems deals with probabilistic algo-
rithms and machine learning (e.g., neural networks) in the context of unreliable
hardware. Measures include redundant computation, error correction [93], as well
as more high-level concepts like safety cages [45] and static partitioning [73],
Digital Dependability Identities (DDI) [74], and Dynamic Risk Management
(DRM) [75]. It is not obvious if and how these approaches can be adopted
for quantum computing. It is also crucial to consider how to integrate QPUs
into existing embedded development processes and infrastructures. This includes
interface design (at the physical and protocol level) to ensure proper timing and
co-scheduling of computational tasks offloaded to a quantum component. The
integration of QPUs further impacts the software operating systems level and
middleware layers. Given the strong influence of imperfection of QPUs in the
near and midterm [13], QPU integration will also impact co-design of hardware
and algorithms to ensure computational advantages for a given set of problems.
The established approaches to hardware–software co-design are currently adapted
to interactions between QPUs and classical system components [52, 5], with
efforts ranging from traditional embedded systems design to integration with high-
performance computing [105, 88], all of which also pose software engineering
challenges. The feasibility of co-design decisions strongly depends on the under-
lying physical implementation technology, which influences the quality properties
of any software executed on top.

Since embedded systems are employed in industrial and cost-sensitive domains,
economic considerations are also important in a quantum setting, especially given
that even in the upcoming era of fully error-corrected quantum computers (but even
more so in the NISQ era), different physical implementations of the computational
concepts will offer different characteristics depending on their physical implementa-
tion [104]. A quantum approach with marginal improvement over existing solutions
at the expense of inflating the bill of materials (or other development costs) is neither
intellectually satisfying nor economically desirable. Embedded quantum SE must
consider these issues.

2.3.3 Conclusions

The main challenges to enable hybrid embedded quantum computing include novel
co-design principles and practices to adopt quality assurance techniques (e.g.,
embedded systems testing) and corresponding certification processes to a quantum
setting. This is particularly crucial in safety-critical application domains. In the
near term, we may expect quantum computing to find its way into large-scale



324 C. Carbonelli et al.

embedded systems only (e.g., in CT scanners). In contrast, the physical size of
recent quantum computers is the main limiting factor for small-scale, mobile use
cases such as automotive Electronic Compute Units (ECU). These limitations of
first-generation QPU are not quantum inherent, and future quantum technology may
provide quantum accelerators fitting into small, well-integrated embedded systems.

Summary We expect that QPUs, given increasing miniaturization, will be
deployed as accelerators in embedded use cases. This requires applications
(and extensions) of established co-design methods from embedded SE that
also lean substantially toward systems engineering. Quality assurance, cer-
tification requirements, and economic and physical constraints will play
pronounced roles.

3 Promises and Perils of Quantum Software Engineering

3.1 Promises and Opportunities

Application scenario 1 is aligned with classical SE for developing complete software
solutions by making use of quantum cloud services, whereas application scenario
2 crosscuts classical SE and instead seeks support of craftsmanship by individual
experts. Application scenario 3 demands principles and practices similar to sys-
tems engineering for quality-aware integration of heterogeneous software/hardware
components on a computational platform. From these observations, we conclude
that the work with quantum computing is, and will be, similar to the development
process using embedded accelerators, such as GPUs or special-purpose hardware
(see Fig. 2). Similar to hardware–software co-design approaches, we expect that
hardware–software–QC co-design processes will be required to split classical from
quantum software parts [29, 69]. Likewise, a number of proposals have been made
regarding more general questions of software architecture for quantum-classical
hybrid systems, for instance [90, 80, 37].

After the diverse software parts are completed and tested as separate units (taking
into account that quantum aspects bring additional challenges to reproducibility
aspects [60]), an integration test step is required. Ideally, those steps will be
embedded into continuous engineering processes [8], e.g., by making use of
virtual hardware platforms or simulators for faster feedback cycles. We next discuss
challenges of QSE by considering the respective SE phases. While many of these
challenges have already been mentioned in recent surveys on QSE [111], our
attempt is to relate these aspects to the insights gained from all three application
scenarios described above.



QSE: Industrial Challenges 325

Fig. 2 Quantum software development process

Requirements Engineering The requirements engineering phase will not funda-
mentally change as requirements, by definition, deal with the What? and not the
How? in software projects. Hence, system-level requirements for QC do not sub-
stantially differ from classical requirements. However, new types of nonfunctional
requirements specific to quantum software in combination with quantum hardware
might become relevant.

Systems Design/Architecture (Hardware–Software–QC Co-Design) In this
phase, the problem splitting between classical and quantum tasks takes place:
the engineer decides which parts of the overall problem are solved by classical
computations and which ones by quantum solutions. This requires architectural
guidelines and patterns, as well as interface descriptions for interactions between
classical and quantum data.

Programming Languages and Implementation (Q-Circuit) In this phase, algo-
rithms need to be realized for the classical as well as for the quantum parts of
a given problem. For the classical part, programming languages and compilation
is well known. However, for implementing quantum algorithms, we currently rely



326 C. Carbonelli et al.

on gate-level languages (even in case of seemingly higher-level quantum program-
ming languages like Q#). While gate-level languages are essentially the quantum
equivalent to classical assembly languages, for more efficient implementation, we
need appropriate high-level quantum programming abstractions. Furthermore, we
need programming guidelines and idioms, as well as design patterns for quantum
programming languages. [107] Design by contract for quantum software.

Compilation and Deployment (Q-Circuit) Today, each quantum hardware comes
with its own hardware specifics, e.g., gates that can be implemented easily or
at all and to which qubits these gates can apply. This requires machine-specific
compilation and transpilation techniques. OpenQASM is only becoming a de facto
standard for hardware-level quantum programming. In order to allow for more
efficient development and execution of quantum programs, we need a common
intermediate language, e.g., OpenQASM, and generic compilation techniques. This
includes instruction set selection and back-end optimization that can be easily
adapted and configured for specific hardware. Here, ideas for classical compiler-
compilers may become useful again to automatically generate hardware-specific
compilers.

This aspect naturally includes devising new methods to (statically) check desir-
able properties and guarantees of quantum programs at compile time; the first steps
in this direction have already been taken [112, 47, 106, 72].

Testing and Verification In the spirit of the V-model and similar development
models, the approaches in this phase complement the approaches of the respective
development phases. Recent techniques for testing and verification of (partly)
probabilistic hybrid software systems may provide a conceptual foundation for
ensuring that the observed output behavior of quantum components conforms to
a given specification [41, 62, 109, 35, 2]. Corresponding black-box techniques are
applicable at the functional unit level as well as the system integration level of the
hybrid system, by abstracting from any internal details of quantum components
(application scenarios 1 and 3). In contrast, in the case of a white-box setting
(application scenario 2), it is not obvious how to adopt established techniques
for software testing (e.g., interactive debugging [62]) and verification of quantum
computations. The first step in this direction may be to find sound abstractions that
properly reflect quantum-specific phenomena like superposition and entanglement
of computational states and the destructive nature of quantum measurements. As
always, testing and verification aim at improving software quality and minimizing
the number of bugs; the first steps in the direction of understanding the quantum-
specific aspects of these goals have been taken [113].

3.2 Perils

Quantum computing will benefit from established software engineering techniques.
The synthesis of both fields will likely put a few new topics on the joint research



QSE: Industrial Challenges 327

agenda. However, there is also good reason to predict that quantum software
engineering will (a) likely not radically change most established means of software
engineering and (b) not benefit from inapt, straightforward adaptations of existing
insights. In particular, we argue that this concerns the use of modeling languages
and adaptations of development processes.

Albeit special-purpose quantum languages are available, most development
activities in the NISQ either comprise using quantum functionalities on the API
level or constructing gate sequences that are applied on qubits. Dispatching
and orchestration aspects are embedded into a classical host scripting language,
typically Python [71, 91]. The translation between different APIs is currently near-
trivial [83]. Special-purpose quantum programming languages (or extensions to
classical languages) promise to lift the specification or verification of quantum
algorithms to more appropriate levels of abstraction that require less manual
handling of details. We are not aware of an argument as to why abstraction levels
that transcend algorithmic implementation details, and thus avoid quantum specifics,
would necessarily need to be crafted differently than in the classical case. Of course,
it is possible to use mechanisms like UML that were intended to model software
designs for describing low-level details of qubits, quantum registers, and gates. Yet
it would also be possible to model classical bits, registers and electronic gates using
UML in the same way; since we are not aware of any beneficial application of such a
technique to the best of our knowledge, this underlines the importance of not mixing
modeling techniques targeted at high levels of abstraction with low-level details.
While the design of algorithms for quantum systems is entirely different from
classical algorithms (and systematic methods range among the most challenging
unsolved problems in the field), implementation details in general almost never
concern modeling at a higher level [10], and should therefore continue not to do
so in quantum software development.

Again to the best of our knowledge, using entirely nonstandard development
processes in specific domains is not commonly reported in the literature. Likewise,
we are unaware of specially crafted software development processes—unlike
architectures—that are beneficial when components like GPU accelerators or target
domains like cloud deployments are considered. As we have argued in the use
case discussion above, GPUs can be seen as computational accelerators (in local
appliances) or cloud resources (in distributed systems), which by analogy suggests
that any such specially crafted processes will not lead to pronounced advantages.
Additionally, software engineering research often finds little to no difference [59]
when the implications of various forms of (social) process interactions between
developers are studied for software in different domains. This insight further
strengthens the hypothesis that quantum software development can be based on
existing processes, and inherit the advantages and disadvantages of each approach.

Consequently, we find it unlikely that quantum software engineering in any
of the scenarios described in this chapter will require entirely new development
processes, or nontrivial modifications of existing approaches. Since no substantial
body of quantum software exists yet, mining quantitative empirical evidence toward
one side or another will likely not be conclusive at this stage. While it cannot be



328 C. Carbonelli et al.

ruled out that, for instance, UML will be an appropriate tool to design algorithms
at gate and qubit level, or that entirely new development processes will need to
be devised to implement quantum software, we call for caution before making
overly ambitious statements without conclusive evidence, which could either be
derived from sound ab initio considerations or empirically observed from mounting
industrial and academic experience with creating concrete quantum software.

4 Summary and Outlook

Quantum computing is still in a very early stage with major challenges ahead.
Many of these challenges have to be addressed by advancing quantum computing
at the hardware level. Nevertheless, quantum computing will not only be pushed by
innovations in physics, leading to advancements in quantum hardware, but progress
can also be expected by a pull effect caused by innovative future applications.
Or, according to the aforementioned quote by Deshpande [28], realizing practical
applications is indeed in the domain of SE.

Nevertheless, quantum software development will not cause a revolution in SE,
neither today nor in the foreseeable future. The overall aim of many SE principles
(e.g., separation of concerns, encapsulation, and information hiding, just to name
a few) is exactly to be agnostic to diverse (existing and future) computational
platforms. Hence, we should be more interested in those characteristics of quantum
computations which have been exotic corner cases in SE until now but will soon
become omnipresent in quantum software development.

Moreover, quantum software development today mostly happens at source code
level and reaching downwards to assembly level. Quantum programming today
mostly means to custom-tailor a quantum solution to a very specific instruction
set of a specifically developed special-purpose quantum computer. The tendency in
mainstream SE today is, however, to abstract exactly from those low-level details
and instead focus on requirements and design issues. Hence, recently outdated,
former core disciplines of mainstream SE research like compiler construction and
instruction set architecture design will become highly relevant again.

Acknowledgments This work is supported by the German Federal Ministry of Education and
Research within the funding program Quantum technologies—from basic research to market,
contract numbers 13N16303 (IS) and 13N15647/13NI6092 (WM). WM also acknowledges
support from the High-Tech Agenda of the Free State of Bavaria. The work is further partly
supported by the Austrian ministries BMK, BMAW, and the State of Upper Austria in the frame of
the FFG COMET competence center INTEGRATE at SCCH as well as by BMBWF via the project
QuantumReady (RR ). We also acknowledge the use of IBM Quantum services and the Fraunhofer
quantum computer in Ehningen for this work (MJ).



QSE: Industrial Challenges 329

References

1. Aaronson, S.: Quantum Computing Since Democritus. Cambridge University Press, USA
(2013). ISBN:0521199565

2. Abreu, R., et al.: Metamorphic Testing of Oracle Quantum Programs. In: 2022 IEEE/ACM
3rd International Workshop on Quantum Software Engineering (Q-SE), pp. 16–23 (2022).
https://doi.org/10.1145/3528230.3529189

3. Akshay, V., et al.: Reachability deficits in quantum approximate optimization. Phys. Rev.
Lett. 124(9), 090504 (Mar. 2020). https://doi.org/10.1103/PhysRevLett.124.090504. https://
link.aps.org/doi/10.1103/PhysRevLett.124.090504

4. Alam, M., Ash-Saki, A., Ghosh, S.: Design-Space Exploration of Quantum Approximate
Optimization Algorithm under Noise. In: 2020 IEEE Custom Integrated Circuits Conference
(CICC), pp. 1–4 (2020). https://doi.org/10.1109/CICC48029.2020.9075903

5. Algaba, M.G., et al.: Co-design quantum simulation of nanoscale NMR. Phys. Rev. Res.
4(4), 043089 (Nov. 2022). https://doi.org/10.1103/PhysRevResearch.4.043089. https://link.
aps.org/doi/10.1103/PhysRevResearch.4.043089

6. Ali, S., Yue, T., Abreu, R.: When software engineering meets quantum computing. Commun.
ACM 65(4), 84–88 (Mar. 2022). ISSN:0001-0782. https://doi.org/10.1145/3512340

7. Altman, E., et al.: Quantum simulators: Architectures and opportunities. PRX Quantum 2(1),
017003 (2021)

8. Antonino, P.O., et al.: Enabling Continuous Software Engineering for Embedded Systems
Architectures with Virtual Prototypes. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) Software
Architecture, pp. 115–130. Springer International Publishing, Cham (2018). ISBN:978-3-
030-00761-4

9. Awasthi, A., et al.: Quantum Computing Techniques for Multi-Knapsack Problems (2023).
https://doi.org/10.48550/ARXIV.2301.05750. https://arxiv.org/abs/2301.05750

10. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley (2003). ISBN:9780321154958

11. Bayerstadler, A., et al.: Industry quantum computing applications. EPJ Quantum
Technol. 8(1), (Nov. 2021). https://doi.org/10.1140/epjqt/s40507-021-00114-x. https://
epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf

12. Becker, C.K.-U., Gheorghe-Pop, I.-D., Tcholtchev, N.: A Testing Pipeline for Quantum
Computing Applications. In: Proceedings of the IEEE International Conference on Quantum
Software. IEEE (2023)

13. Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94(1),
015004 (Feb. 2022). https://doi.org/10.1103/RevModPhys.94.015004. https://link.aps.org/
doi/10.1103/RevModPhys.94.015004

14. Bichsel, B., et al.: Silq: A High-Level Quantum Language with Safe Uncomputation and
Intuitive Semantics. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, pp. 286–300. Association for Computing
Machinery, London, UK (2020). ISBN:9781450376136. https://doi.org/10.1145/3385412.
3386007

15. Bittner, T., Groppe, S.: Avoiding Blocking by Scheduling Transactions Using Quantum
Annealing. In: Proceedings of the 24th Symposium on International Database Engineering &
Applications, IDEAS ’20. Association for Computing Machinery, Seoul, Republic of Korea
(2020). ISBN:9781450375030. https://doi.org/10.1145/3410566.3410593

16. Blatt, R., Roos, C.F.: Quantum simulations with trapped ions. Nature Phys. 8(4), 277–284
(2012)

17. Blekos, K., et al.: A Review on Quantum Approximate Optimization Algorithm and Its
Variants (2023). arXiv:2306.09198 [quant-ph]

18. Buluta, I., Nori, F.: Quantum simulators. Science 326(5949), 108–111 (2009). https://doi.org/
10.1126/science.1177838. eprint: https://www.science.org/doi/pdf/10.1126/science.1177838.
https://www.science.org/doi/abs/10.1126/science.1177838

https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1145/3528230.3529189
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://link.aps.org/doi/10.1103/PhysRevLett.124.090504
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043089
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3512340
https://doi.org/10.1145/3512340
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://doi.org/10.48550/ARXIV.2301.05750
https://arxiv.org/abs/2301.05750
https://arxiv.org/abs/2301.05750
https://arxiv.org/abs/2301.05750
https://arxiv.org/abs/2301.05750
https://arxiv.org/abs/2301.05750
https://arxiv.org/abs/2301.05750
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://doi.org/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/pdf/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838
https://www.science.org/doi/abs/10.1126/science.1177838


330 C. Carbonelli et al.

19. Business Value II for: The Quantum Decade: A Playbook for Achieving Awareness,
Readiness, and Advantage. IBM Institute for Business Value (2021). ISBN:9781737401100.
https://books.google.de/books?id=MeN%5C_zgEACAAJ

20. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nature Phys. 8(4), 264–
266 (2012). https://doi.org/10.1038/nphys2275

21. Cross, A., et al.: OpenQASM 3: A broader and deeper quantum assembly language.
ACM Trans. Quantum Comput. 3(3), (Sept. 2022). ISSN:2643-6809. https://doi.org/10.1145/
3505636

22. Cubitt, T.S., Perez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature
528(7581), 207–211 (2015). https://doi.org/10.1038/nature16059

23. D-Wave Systems Inc.: D-Wave Systems Leap Cloud Service (2023). https://cloud.dwavesys.
com/leap/ visited 2023-03-03

24. De Andoin, M.G., et al.: Comparative Benchmark of a Quantum Algorithm for the Bin
Packing Problem. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 930–937. IEEE (2022)

25. Deb, A., Dueck, G.W., Wille, R.: Exploring the potential benefits of alternative quantum
computing architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(9), 1825–
1835 (2020)

26. Delgado, A., et al.: Simulating key properties of lithium-ion batteries with a fault-tolerant
quantum computer. Phys. Rev. A 106(3), 032428 (Sept. 2022). https://doi.org/10.1103/
PhysRevA.106.032428. https://link.aps.org/doi/10.1103/PhysRevA.106.032428

27. Deng, Y.-H., et al.: Solving graph problems using Gaussian Boson sampling. Phys. Rev. Lett.
130(19), 190601 (May 2023). https://doi.org/10.1103/PhysRevLett.130.190601. https://link.
aps.org/doi/10.1103/PhysRevLett.130.190601

28. Deshpande, A.: Assessing the quantum-computing landscape. Commun. ACM 65(10), 57–65
(2022)

29. Dey, N., et al.: QDLC – The Quantum Development Life Cycle (2020). arXiv:2010.08053
[cs.ET]

30. Ding, Y., et al.: Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-
Aware Compilation. In: 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 201–214 (2020). https://doi.org/10.1109/MICRO50266.2020.00028

31. Elben, A., et al.: The randomized measurement toolbox. Nature Rev. Phys. 5(1), 9–24 (2023).
https://doi.org/10.1038/s42254-022-00535-2

32. Evans, A., et al.: MCBeth: A Measurement Based Quantum Programming Language (2022).
arXiv:2204.10784 [cs.PL]

33. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approximate Optimization Algorithm
(2014). https://doi.org/10.48550/ARXIV.1411.4028. https://arxiv.org/abs/1411.4028

34. Fedorov, D.A., et al.: VQE method: a short survey and recent developments. Mater. Theory
6(1), 2 (2022). https://doi.org/10.1186/s41313-021-00032-6

35. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. ACM Trans. Program.
Lang. Syst. 34(4), (2012). https://doi.org/10.1145/2400676.2400680

36. Fortnow, L.: One Complexity Theorist’s View of Quantum Computing. In: Electronic Notes
in Theoretical Computer Science. 31 CATS 2000 Computing: the Australasian Theory Sym-
posium, pp. 58–72 (2000). ISSN:1571-0661. https://doi.org/10.1016/S1571-0661(05)80330-
5. https://www.sciencedirect.com/science/article/pii/S1571066105803305

37. Furutanpey, A., et al.: Architectural Vision for Quantum Computing in the Edge-Cloud
Continuum. In: Proceedings of the IEEE International Conference on Quantum Software.
IEEE (2023)

38. Garcìa de la Barrera, A., et al.: Quantum software testing: State of the art. J. Software
Evol. Process 35(4), e2419 (2023). https://doi.org/10.1002/smr.2419. https://onlinelibrary.
wiley.com/doi/abs/10.1002/smr.2419

39. Gemeinhardt, F.G., Wille, R., Wimmer, M.: Quantum k-community detection: algorithm
proposals and cross-architectural evaluation. Quantum Inf. Process. 20(9), 302 (2021)

https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://books.google.de/books?id=MeN{%}5C_zgEACAAJ
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2275
https://doi.org/10.1038/nphys2275
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3505636
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://doi.org/10.1038/nature16059
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://cloud.dwavesys.com/leap/
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://link.aps.org/doi/10.1103/PhysRevA.106.032428
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://doi.org/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://link.aps.org/doi/10.1103/PhysRevLett.130.190601
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1109/MICRO50266.2020.00028
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.1038/s42254-022-00535-2
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1186/s41313-021-00032-6
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://doi.org/10.1016/S1571-0661(05)80330-5
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://www.sciencedirect.com/science/article/pii/S1571066105803305
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://doi.org/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2419


QSE: Industrial Challenges 331

40. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Modern Phys. 86(1), 153
(2014)

41. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. Formal Aspects
Comput. 30(1), 77–106 (Jan. 2018). ISSN:0934-5043. https://doi.org/10.1007/s00165-017-
0440-4

42. Girbal, S., et al.: On the convergence of mainstream and mission-critical markets. In: 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10 (May 2013).
https://doi.org/10.1145/2463209.2488962

43. Greiwe, F., Krüger, T., Mauerer, W.: Effects of Imperfections on Quantum Algorithms: A
Software Engineering Perspective. In: Proceedings of the IEEE International Conference on
Quantum Software. IEEE (2023)

44. Hangleiter, D., Eisert, J.: Computational advantage of quantum random sampling. Rev.
Modern Phys. 95(3), (July 2023). https://doi.org/10.1103/revmodphys.95.035001

45. Heckemann, K., et al.: Safe Automotive Software. In: König, A., et al. (eds.) Knowledge-
Based and Intelligent Information and Engineering Systems, pp. 167–176. Springer, Berlin,
Heidelberg (2011). ISBN:978-3-642-23866-6

46. Herrmann, N., et al.: Quantum Utility—Definition and Assessment of a Practical Quantum
Advantage. In: Proceedings of the IEEE International Conference on Quantum Software.
IEEE (2023)

47. Klamroth, J., et al.: QIn: Enabling Formal Methods to Deal with Quantum Circuits. In:
Proceedings of the IEEE International Conference on Quantum Software. IEEE (2023)

48. Kole, A., et al.: Improved mapping of quantum circuits to IBM QX architectures. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 39(10), 2375–2383 (2019)

49. Kreppel, F., et al.: Quantum Circuit Compiler for a Shuttling-Based Trapped-Ion Quantum
Computer (2022). https://doi.org/10.48550/ARXIV.2207.01964. https://arxiv.org/abs/2207.
01964

50. Krüger, T., Mauerer, W.: Quantum Annealing-Based Software Components: An Experimental
Case Study with SAT Solving (2020). Q-SE@ICSE. https://arxiv.org/abs/2005.05465

51. Lamata, L., et al.: Digital-analog quantum simulations with superconducting circuits. Adv.
Phys. X 3(1), 1457981 (2018). https://doi.org/10.1080/23746149.2018.1457981

52. Li, G., et al.: On the Co-Design of Quantum Software and Hardware. In: Proceedings of
the Eight Annual ACM International Conference on Nanoscale Computing and Communi-
cation NANOCOM ’21 Association for Computing Machinery, Virtual Event, Italy (2021).
ISBN:9781450387101. https://doi.org/10.1145/3477206.3477464

53. Liu, J., et al.: Noise can be helpful for variational quantum algorithms (Oct. 2022). arXiv:
2210.06723 [quant-ph]

54. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996). https://
doi.org/10.1126/science.273.5278.1073. eprint: https://www.science.org/doi/pdf/10.1126/
science.273.5278.1073. https://www.science.org/doi/abs/10.1126/science.273.5278.1073

55. Lobe, E., Stollenwerk, T.: QUARK (Feb. 2022). https://quantum-computing-software.gitlab.
io/quark/

56. Lubinski, T., et al.: Advancing hybrid quantum-classical computation with real-time execu-
tion. Front. Phys. 10, (2022). ISSN:2296-424X. https://doi.org/10.3389/fphy.2022.940293.
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293

57. Marwedel, P.: Embedded System Design - Embedded Systems Foundations of Cyber-Physical
Systems, Second Edition. Embedded Systems Springer (2011). ISBN: 978-94-007-0256-1.
https://doi.org/10.1007/978-94-007-0257-8

58. Mauerer, W.: Semantics and simulation of communication in quantum programming
(2005). https://doi.org/10.48550/ARXIV.QUANT-PH/0511145. https://arxiv.org/abs/quant-
ph/0511145

https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1007/s00165-017-0440-4
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1145/2463209.2488962
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.1103/revmodphys.95.035001
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://doi.org/10.48550/ARXIV.2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2207.01964
https://arxiv.org/abs/2005.05465
https://arxiv.org/abs/2005.05465
https://arxiv.org/abs/2005.05465
https://arxiv.org/abs/2005.05465
https://arxiv.org/abs/2005.05465
https://arxiv.org/abs/2005.05465
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/pdf/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://quantum-computing-software.gitlab.io/quark/
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/articles/10.3389/fphy.2022.940293
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.1007/978-94-007-0257-8
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://doi.org/10.48550/ARXIV.QUANT-PH/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145
https://arxiv.org/abs/quant-ph/0511145


332 C. Carbonelli et al.

59. Mauerer, W., Joblin, M., et al.: In search of socio-technical congruence: A large-scale
longitudinal study. IEEE Trans. Software Eng. (01), 1–1 (May 2021). ISSN: 1939-
3520. https://doi.org/10.1109/TSE.2021.3082074. https://www.computer.org/csdl/journal/ts/
5555/01/09436025/1tJsglfkGru

60. Mauerer, W., Scherzinger, S.: 1-2-3 Reproducibility for Quantum Software Experiments.
Q-SANER@IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (2022)

61. Medvidović, M., Carleo, G.: Classical variational simulation of the quantum approximate
optimization algorithm. npj Quantum Inf. 7(1), 101 (2021)

62. Miranskyy, A., Zhang, L.: On Testing Quantum Programs. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER), pp. 57–60 (2019). https://doi.org/10.1109/ICSE-NIER.2019.00023

63. Morgado, M., Whitlock, S.: Quantum simulation and computing with Rydberg-interacting
qubits. AVS Quantum Sci. 3(2), 023501 (June 2021). https://doi.org/10.1116/5.0036562

64. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge (2000)

65. Pashayan, H., Wallman, J.J., Bartlett, S.D.: Estimating outcome probabilities of quantum
circuits using quasiprobabilities. Phys. Rev. Lett. 115(7), 070501(Aug. 2015). https://doi.org/
10.1103/PhysRevLett.115.070501. https://link.aps.org/doi/10.1103/PhysRevLett.115.070501

66. Paudel, H.P., et al.: Quantum computing and simulations for energy applications: review and
perspective. ACS Eng. Au 2(3), 151–196 (2022). https://doi.org/10.1021/acsengineeringau.
1c00033

67. Peham, T., Burgholzer, L., Wille, R.: Equivalence checking paradigms in quantum circuit
design: a case study. In: Oshana, R. (ed.) DAC ’22: 59th ACM/IEEE Design Automation
Conference, San Francisco, California, USA, July 10–14, 2022, pp. 517–522. ACM (2022).
https://doi.org/10.1145/3489517.3530480

68. Perdomo-Ortiz, A., et al.: A quantum annealing approach for fault detection and diagnosis of
graph-based systems. Eur. Phys. J. Special Top. 224, 131–148 (2015)

69. Pérez-Delgado, C.A., Perez-Gonzalez, H.G.: Towards a Quantum Software Modeling Lan-
guage. In: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops ICSEW’20, pp. 442–444. Association for Computing Machinery,
Seoul, Republic of Korea (2020). ISBN:9781450379632. https://doi.org/10.1145/3387940.
3392183

70. Poggel, B., et al.: Recommending Solution Paths for Solving Optimization Problems with
Quantum Computing. In: Proceedings of the IEEE International Conference on Quantum
Software. IEEE (2023)

71. Qiskit Contributors.: Qiskit: An Open-Source Framework for Quantum Computing (2023).
https://doi.org/10.5281/zenodo.2573505

72. Quetschlich, N., Burgholzer, L., Wille, R.: Predicting good quantum circuit compilation
options. In: 2023 IEEE International Conference on Quantum Software (QSW), pp. 43–53.
IEEE (2023)

73. Ramsauer, R., et al.: Static Hardware Partitioning on RISC-V - Shortcomings, Limitations,
and Prospects. In: 8th IEEE World Forum on Internet of Things (IEEE WFIoT2022) (July
2022). https://doi.org/10.48550/arXiv.2208.02703. https://arxiv.org/abs/2208.02703

74. Reich, J., Schneider, D., et al.: Engineering of Runtime Safety Monitors for Cyber-Physical
Systems with Digital Dependability Identities. In: Casimiro, A., et al. (eds.) Computer
Safety, Reliability, and Security, pp. 3–17. Springer International Publishing, Cham (2020).
ISBN:978-3-030-54549-9

75. Reich, J., Wellstein, M., et al.: Towards a Software Component to Perform Situation-Aware
Dynamic Risk Assessment for Autonomous Vehicles. In: Adler, R., et al. (eds.) Dependable
Computing - EDCC 2021 Workshops, pp. 3–11. Springer International Publishing, Cham
(2021). ISBN:978-3-030-86507-8

https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://doi.org/10.1109/TSE.2021.3082074
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://www.computer.org/csdl/journal/ts/5555/01/09436025/1tJsglfkGru
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1116/5.0036562
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1021/acsengineeringau.1c00033
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3489517.3530480
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.1145/3387940.3392183
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://doi.org/10.48550/arXiv.2208.02703
https://arxiv.org/abs/2208.02703
https://arxiv.org/abs/2208.02703
https://arxiv.org/abs/2208.02703
https://arxiv.org/abs/2208.02703
https://arxiv.org/abs/2208.02703
https://arxiv.org/abs/2208.02703


QSE: Industrial Challenges 333

76. Resch, S., Karpuzcu, U.R.: Benchmarking quantum computers and the impact of quantum
noise. ACM Comput. Surv. 54(7), (July 2021). ISSN:0360-0300. https://doi.org/10.1145/
3464420

77. Rice, J.E., et al.: Quantum computation of dominant products in lithium–sulfur batteries.
J. Chem. Phys. 154(13), 134115 (Apr. 2021). ISSN:0021-9606. https://doi.org/10.1063/
5.0044068. eprint: https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/
134115_1_online.pdf

78. Roffe, J.: Quantum error correction: an introductory guide. Contemp. Phys. 60(3), 226–245
(2019). https://doi.org/10.1080/00107514.2019.1667078

79. Safi, H., Wintersperger, K., Mauerer, W.: Influence of HW-SW-Co-Design on Quantum
Computing Scalability. In: Proceedings of the IEEE International Conference on Quantum
Software. IEEE (2023)

80. Saurabh, N., Jha, S., Luckow, A.: A Conceptual Architecture for a Middleware for Hybrid
Quantum-HPC Application Workflows. In: Proceedings of the IEEE International Conference
on Quantum Software. IEEE (2023)

81. Sax, I., et al.: Approximate Approximation on a Quantum Annealer. In: Proceedings of the
17th ACM International Conference on Computing Frontiers, pp. 108–117 (2020). https://
arxiv.org/pdf/2004.09267

82. Schmale, T., et al.: Backend compiler phases for trapped-ion quantum computers. In: 2022
IEEE International Conference on Quantum Software (QSW), pp. 32–37. IEEE Computer
Society, Los Alamitos, CA, USA (July 2022). https://doi.org/10.1109/QSW55613.2022.
00020. https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020

83. Schönberger, M., Franz, M., et al.: Peel — Pile? Cross-Framework Portability of Quantum
Software. In: 2022 IEEE 19th International Conference on Software Architecture Companion
(ICSA-C), pp. 164–169 (2022). https://doi.org/10.1109/ICSA-C54293.2022.00039

84. Schönberger, M., Scherzinger, S., Mauerer, W.: Ready to Leap (by Co-Design)? Join Order
Optimisation on Quantum Hardware. In: Proceedings of ACM SIGMOD/PODS International
Conference on Management of Data (2023)

85. Schönberger, M., Trummer, I., Mauerer, W.: Quantum Optimisation of General Join Trees.
In: Proceedings of the International Workshop on Quantum Data Science and Management,
QDSM ’23 (Aug. 2023)

86. Schreiber, F.J., Eisert, J., Meyer, J.J.: Classical surrogates for quantum learning models
(2022). arXiv: 2206.11740 [quant-ph]

87. Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive
power of variational quantum-machine-learning models. Phys. Rev. A 103(3), 032430
(Mar. 2021). https://doi.org/10.1103/PhysRevA.103.032430. https://link.aps.org/doi/10.1103/
PhysRevA.103.032430

88. Schulz, M., et al.: Accelerating HPC with quantum computing: It is a software challenge
too. Comput. Sci. Eng. 24(04), 60–64 (July 2022). ISSN:1558-366X. https://doi.org/10.1109/
MCSE.2022.3221845

89. Serrano, M.A., Perez-Castillo, R., Piattini, M., (eds.): Quantum Software Engineering.
Springer (2022). ISBN:978-3-031-05323-8. https://doi.org/10.1007/978-3-031-05324-5

90. Sitdikov, I., et al.: Middleware for Quantum: An orchestration of hybrid quantum-classical
systems. In: Proceedings of the IEEE International Conference on Quantum Software. IEEE
(2023)

91. Sivarajah, S., et al.: t|ket〉: a retargetable compiler for NISQ devices. Quantum Sci. Technol.
6(1), 014003 (Nov. 2020). https://doi.org/10.1088/2058-9565/ab8e92

92. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Harlow, England (2010).
ISBN:978-0-13-703515-1

93. Steiner, L., et al.: An LPDDR4 Safety Model for Automotive Applications. In: The
International Symposium on Memory Systems MEMSYS 2021 Association for Computing
Machinery, Washington DC, DC, USA (2022). ISBN:9781450385701. https://doi.org/10.
1145/3488423.3519333

https://doi.org/10.1145/3464420
https://doi.org/10.1145/3464420
https://doi.org/10.1145/3464420
https://doi.org/10.1145/3464420
https://doi.org/10.1145/3464420
https://doi.org/10.1145/3464420
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://doi.org/10.1063/5.0044068
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0044068/15588046/134115_1_online.pdf
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://arxiv.org/pdf/2004.09267
https://arxiv.org/pdf/2004.09267
https://arxiv.org/pdf/2004.09267
https://arxiv.org/pdf/2004.09267
https://arxiv.org/pdf/2004.09267
https://arxiv.org/pdf/2004.09267
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.ieeecomputersociety.org/10.1109/QSW55613.2022.00020
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1109/ICSA-C54293.2022.00039
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1109/MCSE.2022.3221845
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1007/978-3-031-05324-5
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333
https://doi.org/10.1145/3488423.3519333


334 C. Carbonelli et al.

94. Stollenwerk, T., Lobe, E., Jung, M.: Flight gate assignment with a quantum annealer.
In: International Workshop on Quantum Technology and Optimization Problems, pp. 99–
110. Springer, Berlin (2019). https://elib.dlr.de/123777/. https://doi.org/10.1007/978-3-030-
14082-3_9

95. Stollenwerk, T., O’Gorman, B., et al.: Quantum annealing applied to de-conflicting optimal
trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297
(2019)

96. Streif, M., Leib, M.: Training the quantum approximate optimization algorithm without
access to a quantum processing unit. Quantum Sci. Technol. 5(3), 034008 (May 2020). https://
doi.org/10.1088/2058-9565/ab8c2b

97. Tilly, J., et al.: The Variational Quantum Eigensolver: A review of methods and best practices.
Physics Reports, 986 The Variational Quantum Eigensolver: a review of methods and best
practices, pp. 1–128 (2022). ISSN:0370-1573. https://doi.org/10.1016/j.physrep.2022.08.003.
https://www.sciencedirect.com/science/article/pii/S0370157322003118

98. Trummer, I., Koch, C.: Multiple query optimization on the D-wave 2X adiabatic quantum
computer. Proc. VLDB Endow. 9(9), 648–659 (May 2016). ISSN:2150-8097. https://doi.org/
10.14778/2947618.2947621

99. Ufrecht, C., et al.: Cutting multi-control quantum gates with ZX calculus (2023). https://doi.
org/10.48550/ARXIV.2302.00387. https://arxiv.org/abs/2302.00387

100. Wang, S., et al.: Noise-induced barren plateaus in variational quantum algorithms. Nature
Commun. 12(1), 6961 (2021). https://doi.org/10.1038/s41467-021-27045-6

101. Weder, B., et al.: Quantum software development lifecycle. Quantum Software Engineering,
pp. 61–83. Springer (2022)

102. Weimer, H., et al.: Digital quantum simulation with Rydberg atoms. Quantum Inf. Process.
10(6), 885 (2011). https://doi.org/10.1007/s11128-011-0303-5

103. Wille, R., Hillmich, S., Burgholzer, L.: Tools for quantum computing based on decision
diagrams. ACM Trans. Quantum Comput. 3(3), 1–17 (2022)

104. Wintersperger, K., Dommert, F., et al.: Neutral Atom Quantum Computing Hardware:
Performance and End-User Perspective (2023)

105. Wintersperger, K., Safi, H., Mauerer, W.: QPU-System Co-Design for Quantum HPC Accel-
erators. In: Proceedings of the 35th GI/ITG International Conference on the Architecture of
Computing Systems (Aug. 2022). Gesellschaft für Informatik

106. Xia, S., Zhao, J.: Static Entanglement Analysis of Quantum Programs (2023). arXiv:
2304.05049 [cs.SE]

107. Yamaguchi, M., Yoshioka, N.: Design by Contract Framework for Quantum Software (2023).
arXiv: 2303.17750 [cs.CL]

108. Yarkoni, S., et al.: Multi-car paint shop optimization with quantum annealing. In: 2021 IEEE
International Conference on Quantum Computing and Engineering (QCE), pp. 35–41. IEEE
(2021)

109. Ying, M.: Toward automatic verification of quantum programs. Formal Aspects Comput.
31(1), 3–25 (2019). https://doi.org/10.1007/s00165-018-0465-3

110. Yue, T., et al.: Challenges and Opportunities in Quantum Software Architecture. In: Weber,
I., Kazman, R., Pellicione, P. (eds.) Software Architecture Research Roadmaps from the
Community. Springer (2023)

111. Zhao, J.: Quantum Software Engineering: Landscapes and Horizons. CoRR. abs/2007.07047
(2020). arXiv: 2007.07047. https://arxiv.org/abs/2007.07047

112. Zhao, P., Wu, X., Li, Z., et al.: QChecker: Detecting Bugs in Quantum Programs via Static
Analysis (2023). arXiv: 2304.04387 [cs.SE]

113. Zhao, P., Wu, X., Luo, J., et al.: An Empirical Study of Bugs in Quantum Machine Learning
Frameworks. In: Proceedings of the IEEE International Conference on Quantum Software.
IEEE (2023)

114. Zhou, L., et al.: Quantum approximate optimization algorithm: performance, mechanism, and
implementation on near-term devices. Phys. Rev. X 10(2), 021067 (June 2020). https://doi.
org/10.1103/PhysRevX.10.021067. https://link.aps.org/doi/10.1103/PhysRevX.10.021067

https://elib.dlr.de/123777/
https://elib.dlr.de/123777/
https://elib.dlr.de/123777/
https://elib.dlr.de/123777/
https://elib.dlr.de/123777/
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1007/978-3-030-14082-3_9
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://doi.org/10.48550/ARXIV.2302.00387
https://arxiv.org/abs/2302.00387
https://arxiv.org/abs/2302.00387
https://arxiv.org/abs/2302.00387
https://arxiv.org/abs/2302.00387
https://arxiv.org/abs/2302.00387
https://arxiv.org/abs/2302.00387
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s11128-011-0303-5
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://doi.org/10.1007/s00165-018-0465-3
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://arxiv.org/abs/2007.07047
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067


QSE: Industrial Challenges 335

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Quantum Software Engineering Issues
and Challenges: Insights from
Practitioners

Manuel De Stefano, Fabiano Pecorelli, Fabio Palomba, Davide Taibi,
Dario Di Nucci, and Andrea De Lucia

Abstract Quantum computing is an emerging field in which theoretical principles
are being transformed into practical applications, largely due to the efforts of
the developer community. In order to ensure that quantum software engineering
continues to advance, it is vital to understand the experiences, challenges, and
aspirations of developers. This chapter is a continuation of our previous work, which
provided a comprehensive survey exploring the adoption patterns and common
challenges in quantum software engineering. In addition to the survey, we conducted
in-depth, semi-structured interviews with practitioners in the field to gain a deeper
and more detailed understanding of their perspectives. Through the interviews and
survey findings, we have gained nuanced insights into the motivations, hurdles, and
outlook of developers toward the rapidly evolving quantum computing landscape.
We describe the research methodology in detail, including the tools and techniques
used, in order to provide a comprehensive understanding of the research process.
Furthermore, we present critical insights from both the survey and interviews,
enriching the narrative with fresh perspectives obtained from the post-publication
interviews. This chapter is a blend of academic investigation and real-world
practitioner insights, aiming to provide a comprehensive understanding of the
current state of quantum software engineering. By illuminating the path for future
research and development in this dynamic field, we hope to guide the way toward
continued progress and innovation.

M. De Stefano (�) · F. Palomba · D. Di Nucci · A. De Lucia
SeSa Lab, University of Salerno, Fisciano, Italy
e-mail: madestefano@unisa.it; fpecorelli@unisa.it; ddnucci@unisa.it; adelucia@unisa.it

F. Pecorelli
Jheronimus Academy of Data Science, s-Hertogenbosch, Netherlands
e-mail: fpalomba@unisa.it

D. Taibi
University of Oulu, Oulu, Finland
e-mail: Davide.Taibi@oulu.fi

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_13

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 13&domain=pdf

 885 49096 a 885 49096
a
 
mailto:madestefano@unisa.it
mailto:madestefano@unisa.it

 9739 49096 a 9739 49096 a
 
mailto:fpecorelli@unisa.it
mailto:fpecorelli@unisa.it

 17453 49096 a 17453 49096 a
 
mailto:ddnucci@unisa.it
mailto:ddnucci@unisa.it

 24540 49096 a 24540 49096 a
 
mailto:adelucia@unisa.it
mailto:adelucia@unisa.it

 885 52970 a 885 52970 a
 
mailto:fpalomba@unisa.it
mailto:fpalomba@unisa.it

 885 56845
a 885 56845 a
 
mailto:Davide.Taibi@oulu.fi
mailto:Davide.Taibi@oulu.fi
mailto:Davide.Taibi@oulu.fi
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13
https://doi.org/10.1007/978-3-031-64136-7_13


338 M. De Stefano et al.

Keywords Quantum computing · Software engineering · Developer
community · Quantum software engineering

1 Introduction

Quantum computing (QC) stands at the forefront of technological advancements,
with developers serving as the linchpin of this revolution [6]. While the conceptual
roots of quantum mechanics are deeply entrenched in theory, the tangible impacts
are most discernible in the realm of quantum software engineering (QSE), where
this theory translates into real-world applications [8, 9]. Thus, gauging developers’
experiences and insights is paramount [12]. Our study, initiated in our foundational
work [2] and further elaborated in this chapter, seeks to bridge this gap.

Our seminal work [2] embarked on this challenging quest, offering an
exploratory analysis of quantum software engineering. Through a thorough survey,
we dissected the prevailing state of the field, elucidating adoption strategies,
recurrent challenges, and potential avenues necessitating deeper probes. The
inferences drawn provided a pragmatic perspective on quantum computing,
grounded in the experiences of its primary actors—the developers.

Augmenting the initial insights, this chapter extends our exploration by delving
deeper into the experiences of three quantum software field practitioners through
semi-structured interviews. This granular approach captures the intricacies of devel-
opers’ motivations, challenges, and aspirations. Such a comprehensive examination
underscores a pivotal realization: while quantum computing is intertwined with
intricate physics, its real-world application is unmistakably human-centric.

With its inherent challenges and experiences, the developer community’s feed-
back holds the potential to sculpt the trajectory of quantum technologies [2, 10].
Their shared concerns spotlight the areas needing more refined tools and frame-
works, elucidate existing knowledge chasms, and chart out the path for prospective
research endeavors.

This chapter embarks on a systematic journey through the terrain of quantum
software engineering. An extensive review of the current literature emphasizes
practitioners’ trials and tribulations, with our foundational work [2] serving as
a pivotal reference. This approach encompassed a dual strategy: a macroscopic
view of the QSE ecosystem through software repository mining, interspersed with
a nuanced, ground-level perspective sourced directly from practitioners via an
expansive survey. This congruence of theoretical and practical viewpoints carved a
holistic image of QSE’s current state. Our approach underscored the indispensability
of aligning academic exploration with tangible, on-ground experiences, bridging a
crucial literature gap.

Our research quest was anchored in discerning the real-world applications of
quantum programming technologies, pinpointing quantum developers’ challenges,
and assessing software engineering (SE) techniques’ relevance and applicability.
This encompassed insights from researchers, practitioners, and tool vendors, each



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 339

striving to decode the intricate dance between software engineering and quantum
programming.

Our exploration pivoted on two central research queries:

1. How and to what purpose are quantum programming frameworks predominantly
utilized?

2. What predominant hurdles do quantum developers encounter when interfacing
with quantum frameworks?

Our investigation was guided by a series of fundamental questions that aimed
to encapsulate the nuances of adopting quantum programming. Our goal was to
achieve a deep understanding of these subtleties, as they play a crucial role in
uncovering the primary challenges that quantum programming developers face. By
shedding light on these challenges, we hoped to empower tool creators and academic
researchers to craft innovative strategies that can help overcome these obstacles.

In this chapter, we take a two-pronged approach to our investigation. We first
explore the current literature on quantum programming adoption, seeking to identify
trends, patterns, and gaps in existing research. We then provide a comprehensive
analysis of both the mining study and the broad survey we conducted, which allowed
us to gather detailed insights directly from developers.

Our analysis of the mining study and the comprehensive survey builds on this
foundation, providing a more granular view of the challenges that developers face.
We examine issues such as debugging, testing, and community issues, as well
as the challenges of working with quantum hardware and the need for better
documentation and education. By exploring these issues in detail, we aim to provide
actionable insights that can help guide the development of new tools and strategies
for quantum programming.

2 Bridging the Gap in Quantum Software Engineering

Quantum software engineering (QSE) has burgeoned as a pivotal discipline within
the quantum computing domain, with the Talavera Manifesto marking a significant
milestone in its evolution [10, 11, 12]. This manifesto delineated core tenets
and principles, laying a roadmap for researchers and developers. However, it
inadvertently overlooked the practical challenges practitioners face at the quantum
software development forefront.

A recent systematic mapping study by De Stefano et al. [3] delved into the
current state of QSE research, aiming to outline the most investigated topics, the
types and number of studies, and the primary reported results alongside the most
studied quantum computing tools/frameworks. This study also aimed to gauge the
research community’s interest in QSE, its evolution, and any notable contributions
preceding the formal introduction through the Talavera Manifesto.

Employing a meticulous methodology, De Stefano et al. searched for relevant
articles across various databases, applying inclusion and exclusion criteria to



340 M. De Stefano et al.

select the most pertinent studies. Following a quality evaluation of the selected
resources, relevant data were extracted and analyzed. The findings underscored
a predominant focus on software testing within QSE research, with other crucial
topics like software engineering management receiving scant attention. Among
the technologies for techniques and tools, Qiskit emerged as the most commonly
studied, although many studies either employed multiple technologies or did not
specify any. The research community interested in QSE showcased interconnected
collaborations, with several strong collaboration clusters identified. Interestingly,
most QSE articles were published in non-thematic venues, with a preference for
conferences, indicating a burgeoning interest in the domain.

The implications of this study are manifold, serving as a centralized information
source for researchers and practitioners, facilitating knowledge transfer, and con-
tributing significantly to QSE’s advancement and growth. The study highlighted the
nascent stage of QSE research, primarily centered around software testing, leaving
other knowledge areas like software engineering management relatively unexplored.
A notable uptick in published papers between 2020 and 2021 reflects a growing
interest in QSE within the research community. The study also shed light on the
most productive authors, the main collaboration clusters, and the distribution of
researchers across different Software Engineering (SE) topics, which could catalyze
the identification of potential collaborators and foster further research in QSE.

Furthermore, the study accentuated the need for more empirical studies and a
better distribution of research efforts across diverse SE topics. It advocated for a
broader acceptance of QSE papers in non-thematic publication venues to expand the
research community’s knowledge and reach. The insights gleaned from this study
are instrumental in understanding the development and evolution of the research
community, thereby significantly contributing to the advancement and growth of
QSE.

The systematic mapping study also illuminated potential avenues for future
research in QSE, particularly in the overlooked realms of software engineering
management practices and quantum software maintenance. The call to action is
for future research to focus on devising effective strategies and tools for managing
the software development process and ensuring the reliability and performance of
quantum software over time. The unique challenges and opportunities inherent in
quantum software engineering warrant a thorough exploration to identify effective
strategies for managing the development process and evaluating the efficacy of
different software engineering practices and tools.

Despite the academic rigor marking the journey of QSE, the crucial component
of practitioners’ voices and experiences has often been overlooked. The academic
literature has largely remained aloof from the day-to-day challenges and innovative
solutions that practitioners often develop. While several studies have delved deep
into the theoretical challenges and potential solutions in QSE from a high-level
perspective [16, 10], they have missed out on the granular details and real-world
manifestations of these challenges.

Among the myriad studies in this domain, the work by El Aoun et al. stands out
for its empirical approach [5]. By analyzing QSE-related discussions on platforms



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 341

like Stack Exchange and GitHub, they tapped into a rich vein of practitioner
experiences. Their methodology employed automated topic modeling to distill
the myriad discussions into coherent themes and challenges, providing a window
into the world of quantum developers. However, the limitations of automated
topic modeling sometimes missed out on the nuances and subtleties of human
communication, and their passive approach did not allow for deeper, engaging
discussions with practitioners.

3 Current Usage of Quantum Technologies

The mining study [2] focused on identifying and analyzing quantum software
repositories to understand the extent and purpose of quantum programming frame-
works usage. Our study’s scope was primarily defined by the quantum technologies
considered. We focused on three state-of-the-practice universal gate quantum
programming technologies, namely QISKIT [1], CIRQ [4], and Q.� [13], which
are developed and maintained by IBM, Google, and Microsoft respectively. These
frameworks are recognized as more mature and stable, each having unique function-
alities and allowing the execution of quantum programs on both local simulators
and real quantum devices provided by their vendors. We employed a software
repository mining approach to identify projects on GITHUB that use at least one of
the considered technologies. This process yielded a total of 731 unique repositories.

The data analysis phase for the mining study aimed at addressing the first
research question using information from the repository mining. We employed
Straussian Grounded Theory for a systematic approach to constructing theories from
the data collected. This methodology involved a cyclical process of open, axial, and
selective coding to derive a taxonomy that serves as the foundation for answering
our research question.

We provided a data-driven perspective on how quantum technologies are
employed in real-world scenarios.

As shown in Fig. 1, the mining revealed distinct usage patterns among quantum
developers. Many repositories were dedicated to didactic purposes or personal
experimentation with quantum technologies. This suggests that many developers
are in the early stages of their quantum journey, using repositories as learning tools
or platforms for experimentation.

An interesting facet of the mining study was the analysis of contributors to
these repositories (Fig. 2). The distribution of contributors varied based on the
type of repository. For instance, toy projects, which are typically smaller and more
experimental, had a distribution skewed toward fewer contributors. In contrast,
framework-related repositories, which are more extensive and foundational, had a
broader distribution of contributors.

The mining study’s results underscore the developing nature of quantum pro-
gramming. While there is evident enthusiasm and interest in the field, as seen by
the proliferation of didactic and experimental repositories, large-scale, collaborative



342 M. De Stefano et al.

Fig. 1 Main task for which quantum repositories are created [2]

Fig. 2 Distribution of contributors per type of repository [2]

projects still have a long way to go. The contributor analysis further reinforces
this, highlighting the need for more collaborative platforms and community-driven
initiatives to foster growth in quantum software engineering.



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 343

4 The Practitioners’ Voice

The survey study aimed to gather insights from quantum developers regarding their
challenges and perspectives on the current and potential future adoption of quantum
programming technologies (Table 1).

To engage with quantum software developers, we utilized the mined repositories
to obtain a list of eligible candidates for our survey, ensuring the involvement of
developers with real experience in quantum programming. We employed an opt-in
strategy for recruitment, sending initial emails to gauge interest before providing
additional instructions to willing participants. This strategy led to the recruitment of
56 volunteers.

The survey was structured into three main sections: gathering background
information, understanding the current use of quantum technologies, and assessing
their longer-term adoption and challenges.

The data analysis phase for the survey study aimed at addressing our second
question by using the responses provided in the third part of the survey. Similar
to the mining study, we employed Straussian Grounded Theory for a systematic
approach to constructing theories from the data collected. This methodology
involved a cyclical process of open, axial, and selective coding to derive a taxonomy
that serves as the foundation for answering our research question.

Based on the practitioner feedback, we built a detailed taxonomy of their main
challenges while working with quantum computing. This taxonomy, represented
in Fig. 3, was developed through a rigorous Straussian Grounded Theory exercise.
Some challenges are independent, while others lead to more specific sub-challenges.

4.1 The Quantum Environment: Hardware and Software

The quantum environment, encompassing both hardware and software, presents
its own set of unique challenges. Software infrastructure issues can be related to
frameworks, integration, and execution.

• Framework. Developers often grapple with the ever-changing API designs of
quantum technologies. A significant number of our interviewees, 15 to be precise,
lamented the frequent and unpredictable changes in API. Others highlighted the
lack of support for certain operations, like those in QISKIT, and the absence of
standardization across frameworks.

• Integration. Integrating quantum systems with traditional ones is no easy feat.
Some developers mentioned the complexities of integrating classical algorithms
into their quantum counterparts or connecting quantum computers to blockchain
networks.

• Execution. Setting up execution environments and simulators or interfacing with
classical systems can be daunting, as 11 of our participants reported.



344 M. De Stefano et al.

Table 1 Questions asked in the survey

Question Text Answer Type Possible Answers

Part 1—Background

What is your current employment status? Multiple Choice BSc Student; MSc
Student; PhD Student;
Researcher; Open
Source Developer;
Industrial Developer;
Other

What is your educational background? Single Choice Computer Science;
Chemistry; Physics;
Other

What is your age range? Single Choice 18–24; 25–34; 35–44;
45–54; 55+

What is your gender? Free Text –

Please indicate your expertise (in years) in
Software Development.

Single Choice None; 0–3; 3–5; 5–10;
10+

Please indicate your expertise (in years) in
Industrial Development.

Single Choice None; 0–3; 3–5; 5–10;
10+

Please indicate your expertise (in years) in
Quantum Programming.

Single Choice None; 0–3; 3–5; 5–10;
10+

What is your country? Free Text –

Part 2—Current Adoption

Which quantum technology are you most
confident with?

Single Choice QISKIT; CIRQ; Q.�;
Other

Which other quantum technology do you use? Multiple Choice QISKIT; CIRQ; Q.�;
Other

In which context are you using quantum
computing?

Multiple Choice Academic Study;
Hackaton; Industry;
OSS; Personal Study;
Research; Other

Could you please tell me more about the tasks you
perform with quantum computing?

Long Free Text –

Part 3—Potential Adoption and Challenges

Consider the technology you are most confident
with. What are the top three challenges that you
have faced?

Multiple Free Text –

Based on your experience, have you ever solved
(or tried to solve) a problem using quantum
programming that has no “traditional” solution (or
the solution is intractable)?

Single Choice Yes; No

If yes, could you please elaborate on the problem
and why you had to use quantum computing?

Long Free Text –

Based on your experience, have you ever solved
(or tried to solve) a problem that has a
“traditional” solution using quantum
programming?

Single Choice Yes; No

If yes, could you please elaborate on what it was
and explain why you chose to use quantum
computing?

Long Free Text –



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 345

F
ig
.3

Ta
xo
no
m
y
of

qu
an
tu
m

pr
og
ra
m
m
in
g
ch
al
le
ng
es

id
en
tifi

ed
by

pr
ac
tit
io
ne
rs

[2
]



346 M. De Stefano et al.

Hardware infrastructure issues attain the developmental nature and availability
of the hardware and the related performance.

• Hardware. The specialized nature of quantum hardware, which is still in
its developmental phase, poses challenges. Developers often find themselves
restricted by the limited number of qubits available in quantum computers.

• Performance. Emulating quantum programs on classical computers brings forth
several performance issues. Emulators can be resource-intensive, and running
programs on actual quantum devices can be time-consuming due to vendor-
imposed job queues.

4.2 Comprehending the Quantum Realm

Understanding quantum programs is a challenge in itself.

• Theoretical Grounds. A significant number of our respondents (20) emphasized
the steep learning curve associated with quantum programming, especially the
need for a strong foundation in linear algebra.

• Documentation. These issues concern the comprehensibility and quality of the
documentation related to quantum frameworks and code.

– Comprehensibility. Inconsistent tutorials and documentation can hinder the
learning process, a sentiment echoed by three participants.

– Quality. Sixteen participants highlighted issues with outdated, incomplete, or
missing documentation.

4.3 Quantum Coding Challenges

Coding in the quantum domain presents its own set of unique challenges related to
implementation and code quality.

• Implementation. These issues are related to integrated development environ-
ments and compilation.

– IDE. A good Integrated Development Environment (IDE) can be a game-
changer. However, some developers found existing quantum IDEs lacking,
especially when working with environments like Q.�.

– Compilation. Translating quantum circuits into executable code for quantum
computers is a complex process, with developers often struggling to adapt
ideal quantum circuits to available device architectures.

• Code Quality. Code quality issues include problems related to debugging,
testing, and readability of quantum code.



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 347

– Debugging. Deciphering error messages and debugging quantum programs
can be particularly challenging due to the unique nature of quantum program-
ming.

– Testability. Ensuring that a quantum program functions as intended is not
straightforward. Some developers found it challenging to verify the correct-
ness of their circuits.

– Readability.With quantum code primarily defining qubit registers and apply-
ing gates, creating readable code becomes challenging.

4.4 The Realism Quotient

While quantum computers promise groundbreaking solutions, their practical appli-
cation remains a challenge.

• Degree of Realism. Developers often find it challenging to design quantum
programs that can address real-world problems. The limitations of current
quantum applications make it difficult to find problems that quantum solutions
can address better than traditional technologies.

4.5 Building a Quantum Community

The early stage of quantum programming means a small community of developers.

• Community.Many developers desired a more robust community for peer support
and collaboration. Slow code reviews and the effort required to understand
quantum programs further compound the challenges.

5 Deepening the Practictioners’ Insights

This chapter comprehensively analyzes the challenges of using quantum software
development technologies in various fields. To achieve this, we took a unique
approach of directly interviewing experts specializing in quantum technologies.
These experts come from diverse backgrounds and working ecosystems.

During our interviews, we discussed practitioners’ particular difficulties when
working with quantum technologies. We covered a range of topics from the
taxonomy of challenges we established [2], such as the shortcomings of existing
quantum technologies, the requisite for more sophisticated hardware and software,
and the struggles in creating quantum algorithms.

The insights provided by these experts were priceless, as they offered a wealth
of knowledge and experience from their respective fields. We present the extracts



348 M. De Stefano et al.

of each interview in the following sections, accompanied by detailed analysis and
commentary on the valuable insights provided by these practitioners. By doing so,
we hope to shed more light on the challenges of working with quantum technologies
and provide a better understanding of the field.

5.1 First Interview

In the first of our series of interviews, we engaged with an expert deeply involved
in the practical application of quantum mechanics. This individual, currently
affiliated with a consultancy company, has been actively working on the lattice
Boltzmann method for quantum computing. Their experience primarily revolves
around using platforms like Qiskit and Penny Lane, and they are keenly interested
in the challenges and opportunities of quantum hardware and software. Throughout
our discussion, they shared insights on the evolution of quantum computing, its
challenges, and the real-world implications of integrating quantum solutions with
classical systems.

Our first expert acknowledged the ever-evolving nature of APIs in quantum
computing, emphasizing their appreciation for the consistent updates. They lauded
the community’s supportive character, particularly around a specific platform, which
they described as responsive and invaluable.

Much of the discussion revolved around the practical application of quantum
programming. While some in the field find it challenging to harness quantum
programming for tangible tasks, this expert has successfully navigated these waters
in their projects.

When discussing software infrastructure, the expert highlighted the seamless
integration of quantum software with traditional software, primarily through Python.
However, they also brought to light a theoretical challenge: the intricate process of
mapping classical input to quantum.

The conversation then veered toward hardware challenges. The inherent noise
in quantum mechanics was identified as a natural obstacle in quantum computing.
Despite this, the expert recognized the commendable progress made in recent years,
especially by a leading tech company, in mitigating this noise. But they also pointed
out that this noise currently restricts the depth of circuits on real devices, leading
them to use simulators often.

On the coding front in quantum computing, the expert found the process
straightforward, especially with the support for various gates in specific platforms.
They also shared their unique approach to testing, which involves juxtaposing
quantum results with classical methods or analytical solutions.

The expert addressed the prevailing hype around quantum computing and the
inherent challenge of achieving a quantum advantage. They proudly mentioned their
company’s significant strides, especially with specific models.



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 349

5.2 Second Interview

The individual shared their experiences of and insights into quantum computing
during the interview. They emphasized the importance of grasping the fundamentals
before delving into more complex frameworks and languages. They preferred a
bottom-up approach, utilizing more straightforward tools like NumPy to build
a foundational understanding. They believed this mitigated the challenges posed
by the steep learning curve associated with quantum computing, especially when
compared to the more mature field of machine learning.

The interviewee found that existing frameworks like Qiskit were more geared
toward professional deployment rather than aiding in learning or debugging. They
mentioned the difficulty in debugging in quantum computing, attributing it to the
complexity added by these frameworks. They advocated a more straightforward
approach to coding and debugging to understand and learn quantum computing.

Drawing parallels between the evolution of machine learning and quantum
computing, the interviewee noted hype and venture capital involvement similarities.
They observed that while machine learning has found broad applications and has
become integral to many fields, quantum computing might find its niche in more
specific areas like chemistry and physics, particularly in quantum simulation. They
believed this could lead to significant advancements, such as discovering new
pharmaceuticals.

The interviewee also touched on the potential for quantum computing to become
a significant part of data center infrastructure in the future. However, they expressed
skepticism regarding the timeline for such developments, likening the anticipation
around quantum computing to the long-standing expectation around fusion energy.

Exploring various quantum computing languages, the interviewee found that
understanding the underlying mechanics was crucial for making sense of these lan-
guages. They mentioned having examined various quantum computing languages
and found that having a foundational understanding aided in making sense of how
these languages and compilers were implemented.

Looking toward the future, the interviewee foresees a potential hype cycle for
quantum computing, similar to what machine learning experienced. They antici-
pated initial excitement, followed by a period of disillusionment and, eventually,
the emergence of practical applications as the field matures. They stressed the
need for real impact or significant advancements in quantum computing to sustain
momentum in the area, expressing cautious optimism for the potential of quantum
computing to contribute to specific scientific and technological advances.

5.3 Third Interview

The interviewee is a professional in the field of quantum computing with several
years of industry experience. They specialize in the interface aspect of quantum



350 M. De Stefano et al.

computing projects and have actively created educational resources for the com-
munity. Their work primarily focuses on software engineering within quantum
computing, and they have a dedicated team to ensure code quality.

During the discussion, the interviewee highlighted several challenges and con-
siderations in the quantum computing field. One primary concern is the lack of
adequate documentation, which can be a barrier for newcomers or those not deeply
versed in the science behind quantum computing. They emphasized the importance
of understanding the input and output of specific modules in quantum computing
projects, which is crucial for effective implementation and debugging.

The conversation also touched on the accessibility of the quantum computing
community. The interviewee believes that while the community is robust, it may
not be well advertised or easy to find for newcomers. They suggested that better
communication and information distribution could help bridge this gap, making the
community more accessible to those interested in quantum computing.

Regarding realism and expectations, the interviewee acknowledged that the field
is not yet usable, and much of the work is about paving the way for future usability.
They compared the hype around quantum computing to machine learning in its
early stages, indicating that the field might face similar challenges in meeting high
expectations.

Regarding code quality and debugging, the interviewee mentioned the challenges
when code is written by scientists who might not have strong coding practices. They
highlighted the difference in code quality when a dedicated software engineering
team is involved versus when researchers or academics write the code.

Regarding the accessibility to quantum computers, the interviewee mentioned
that they have never actually run anything on a real quantum computer but have
used simulators instead. They speculated about the future accessibility of quantum
computers to the public, comparing it to the current accessibility of supercomputers.

The interviewee also mentioned creating educational resources, such as blog
posts and podcasts, to help others in the quantum computing community. They
are willing to share these resources, indicating a collaborative spirit within the
community.

Lastly, the interviewer expressed interest in the open-source software the inter-
viewee is working on, indicating a willingness to share and collaborate within the
community, further emphasizing the collaborative nature of quantum computing.

6 Synthesizing Academic Findings and Practical Insights

Exploring the quantum software engineering landscape involved conducting a
mining study, a practitioner survey, and expert interviews. The mining study
involved analyzing vast amounts of data to identify patterns and trends in quantum
programming. The practitioner survey was conducted to gather feedback from pro-
fessionals working in the quantum programming domain. Lastly, expert interviews



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 351

were conducted to gain insights from knowledgeable individuals well versed in the
field.

The findings from these diverse sources provide a rich tapestry of insights into the
current state and challenges of the quantum programming domain. These insights
include the tools and technologies currently being used, the challenges practitioners
face, and the potential for future advancements.

This section synthesizes these findings to understand the quantum programming
domain fully. By doing so, we hope to provide a comprehensive overview of the
current state of the field as well as its potential for future growth and development.

Early Adoption and Experiments The study on quantum programming revealed
that the field is still in its early stages, with many repositories dedicated to didactic
purposes or personal experimentation. This early experimentation is further sup-
ported by the first interviewee, who discussed the challenges in practical application,
and the second interviewee, who emphasized the need for a solid foundation before
tackling complex frameworks. Moreover, the survey results of 20 participants,
along with the second interviewee’s comments, highlighted the steep learning
curve in the current quantum programming landscape, which further underlines the
experimental nature of this field. The findings indicate that, at this stage, quantum
programming is primarily used for educational and exploratory purposes, with few
practical applications. However, with further research and development, quantum
programming could have significant implications for various industries.

Community and Collaborative Initiatives The importance of building a stronger
and more collaborative community platform was a recurring theme that emerged
from all sources. The mining study revealed a skewed distribution of project con-
tributors toward a limited number of toy projects, denoting a lack of collaboration on
a larger scale. This finding underscores the need for better community-building and
collaboration platforms. Practitioners also expressed their desire for a more robust
community to provide peer support, facilitate collaboration, and improve commu-
nication within the quantum computing field. The third interviewee emphasized
the importance of information distribution and better communication within the
quantum computing community. The first interviewee appreciated the supportive
nature of the community around specific platforms, which further highlights the
significance of a collaborative ecosystem in advancing the field. In summary,
building a collaborative and supportive community is crucial for advancing the
quantum computing field, and there is a need for better platforms to facilitate
communication, collaboration, and information sharing.

Software and Hardware Infrastructure Challenges The survey and interviews
with practitioners in the quantum computing field have brought to light several key
challenges in the software and hardware infrastructure. A prominent concern among
practitioners is the frequent and unpredictable changes in quantum computing
APIs, as highlighted by 15 survey participants. This issue complicates the process
of keeping software up to date with the latest developments. Another significant
challenge is the integration of quantum systems with traditional computing systems.



352 M. De Stefano et al.

This was particularly emphasized by the first interviewee, who stressed the impor-
tance of seamless integration of quantum software with conventional software. For
effective integration, software developers must comprehensively understand both
quantum and traditional software systems, along with their distinct characteristics.
The hardware challenges in quantum computing were also addressed, particularly
the limited availability of qubits and the inherent noise in quantum mechanics.
These factors restrict the complexity of calculations that can be performed and limit
the depth of circuits on real quantum devices, posing a hurdle for practitioners
undertaking complex quantum computations. A possible future direction for the
hardware support might be seen in co-design [14]. Co-design has been a foun-
dational element in the evolution of computer architecture since the inception of the
first systems. This concept, where end-user applications influence the design and
capabilities of the hardware and vice versa, is crucial in quantum computing (QC).
Especially in its resource-constrained early stages, QC heavily relies on co-design
strategies. This approach involves tailoring the quantum hardware and software
to optimize performance and functionality. The article explores the significance
of co-design in the QC context, illustrating its benefits and proposing essential
attributes for effective QC co-design strategies moving forward. This perspective
suggests a future direction where addressing the current challenges in quantum
computing infrastructure could involve a more integrated and co-evolutionary
approach between software and hardware, aligning with the principles of quantum
co-design.

Real-World Application and Quantum Advantage The concept of realism quo-
tient, explored in a survey conducted among practitioners, seems to align with expert
opinions on the practical implementation of quantum programming. Introducing the
concept of “quantum utility, ” which measures the effectiveness and practicality of
quantum computers in various applications, provides a more holistic view of the
field’s progress. This new metric, focusing on achieving a quantum advantage in
terms of speed, accuracy, or energy efficiency compared to classical machines of
similar size, weight, and cost, enhances the realism quotient by considering the
physical footprint and industrial value of quantum processors [7, 15]. The first
interviewee’s insights on achieving quantum advantage echo the goals set forth in
the quantum utility concept [7, 15], and the second interviewee’s doubts regarding
the timeline for quantum computing to become a significant part of data center
infrastructure indicate that the field is still struggling to establish a strong foothold in
real-world applications. Moreover, the proposed application readiness levels (ARLs)
and extended classification labels further refine the criteria for assessing quantum
computing’s practical applications in fields like quantum chemistry and machine
learning [7, 15]. The second interviewee’s expectation of a hype cycle similar
to that experienced by the machine learning industry reflects a cautious optimism
toward the potential of quantum computing to contribute to specific scientific
and technological advancements. Overall, the survey and interviews highlight
the ongoing challenges and possibilities that quantum programming presents for
the future of computing, and underscore the importance of structured analysis



Quantum Software Engineering Issues and Challenges: Insights from Practitioners 353

and tooling, as emphasized in the concept of quantum computing optimization
middleware (QCOM) [7, 15].

Educational Resources and Code Quality During the third interview, the inter-
viewee’s efforts in creating educational resources and ensuring code quality were
discussed at length. It was noted that these efforts resonate with the concerns of
practitioners in the quantum programming community regarding the comprehen-
sibility and quality of documentation. Interestingly, when written by scientists, as
opposed to a dedicated software engineering team, the mention of challenges in code
quality reflects a broader concern in the community regarding the accessibility and
readability of code. This highlights the need for collaborations between scientists
and software engineering teams in the quantum programming community to ensure
the development of high-quality, understandable, and readable code.

Future Usability and Accessibility During the third interview, the interviewee
expressed their opinion on the field’s current state, highlighting its unusability and
speculating on the future accessibility of quantum computers to the public. This
encapsulates the overall sentiment of cautious optimism prevalent in the field. While
the field is full of potential and possibilities, it faces substantial challenges that
need addressing before it can transition from a stage of experimentation to one of
significant real-world impact. These challenges include infrastructure, community
collaboration, and real-world application. Addressing these challenges is crucial for
the field to realize its potential and significantly impact the real world.

7 Conclusion and Future Directions

The field of quantum software engineering is still in its nascent stages, facing a
range of potential and significant obstacles that pose challenges to the development
and application of quantum computing. However, combining the results of a
comprehensive mining study, practitioner survey, and expert interviews provides
a detailed and thorough understanding of the current state of the field, as well as its
trajectory.

A closer look at the opportunities and challenges identified in this study reveals a
range of factors shaping the field of quantum software engineering. For instance,
there is great enthusiasm and interest in quantum programming, with abundant
educational and experimental repositories indicating a fertile ground for innovation.
The potential applications of quantum computing, especially in fields like chemistry,
physics, and cryptography, are promising, and this has led to a growing community
of developers and researchers eager to explore and contribute to this emerging field.

However, many challenges must be overcome before the full potential of quan-
tum software engineering can be realized. These challenges include a steep learning
curve, a lack of standardized frameworks, hardware limitations, and a nascent
stage of community collaboration. Developers face significant hurdles in integrating
quantum systems with traditional ones, frequent API changes, and complexities.



354 M. De Stefano et al.

The lack of large-scale collaborative projects and robust community support further
exacerbates the challenges in advancing quantum software engineering. Moreover,
the struggle in harnessing quantum programming for tangible real-world tasks
remains a significant concern.

Addressing the identified challenges requires a concerted effort from academia,
industry, and the quantum computing community. Standardizing frameworks,
improving documentation quality, and fostering a collaborative ecosystem are
essential for nurturing the growth of quantum software engineering. Investments
in educational initiatives to lower the entry barrier and nurture a new generation
of quantum programmers are crucial. Creating platforms facilitating large-scale
collaborative projects can accelerate the transition from experimentation to
substantial real-world impact.

Moreover, continued research and development are vital in overcoming hardware
limitations and enhancing the software infrastructure. Establishing partnerships
between academia and industry can expedite the translation of academic findings
into practical solutions, driving the field closer to achieving quantum advantage.
In addition, managing the hype around quantum computing and setting realistic
expectations can help navigate the hype cycle, ensuring sustained momentum in the
field. The cautious optimism expressed by the interviewees and survey participants
reflects a collective acknowledgment of the long yet promising journey ahead.

In conclusion, the quantum software engineering landscape presents a frontier of
opportunities awaiting exploration and innovation. The insights garnered from the
current state of the field provide a compass for navigating the uncharted waters of
quantum software engineering, steering toward a future where quantum computing
realizes its transformative potential.

Acknowledgments This work has been partially supported by the project ‘QUASAR: QUAntum
software engineering for Secure, Affordable, and Reliable systems, grant 2022T2E39C, under the
PRIN 2022 MUR program funded by the EU NextGenerationEU.

References

1. Aleksandrowicz, G., Alexander, T., Barkoutsos, P., Bello, L., Ben-Haim, Y., Bucher, D.,
Cabrera-Hernández, F.J., Carballo-Franquis, J., Chen, A., Chen, C.F., et al.: Qiskit: An open-
source framework for quantum computing. Accessed on: Mar 16, (2019)

2. De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: Software engineering
for quantum programming: How far are we? J. Syst. Softw. 190, 111326 (2022)

3. De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: The quantum frontier
of software engineering: a systematic mapping study. Preprint (2023). arXiv:2305.19683

4. Developers, C.: Cirq (2021). https://doi.org/10.5281/zenodo.4750446. See full list of authors
on Github: https://github.com/quantumlib/Cirq/graphs/contributors

5. El aoun, M.R., Li, H., Khomh, F., Openja, M.: Understanding quantum software engineering
challenges: An empirical study on stack exchange forums and github issues. In: 37th
International Conference on Software Maintenance and Evolution (ICSME) (2021)

https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors


Quantum Software Engineering Issues and Challenges: Insights from Practitioners 355

6. Galitski, V.: Quantum computing hype is bad for science. https://www.linkedin.com/pulse/
quantum-computing-hype-bad-science-victor-galitski-1c. Accessed: 2021-07-21

7. Herrmann, N., Arya, D., Doherty, M.W., Mingare, A., Pillay, J.C., Preis, F., Prestel, S.:
Quantum utility–definition and assessment of a practical quantum advantage. Preprint (2023).
arXiv:2303.02138

8. Hoare, T., Milner, R.: Grand challenges for computing research. Comput. J. 48(1), 49–52
(2005)

9. Knight, W.: Serious quantum computers are finally here. What are we going to do with them.
MIT Technol. Rev. 30, 2018 (2018). Retrieved on October

10. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: A new software engineer-
ing golden age. ACM SIGSOFT Softw. Eng. Notes 45(3), 12–14 (2020)

11. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A., Hernández, G.,
de Guzmán, I.G.R., Paradela, C.A., Polo, M., Murina, E., et al.: The talavera manifesto for
quantum software engineering and programming. In: QANSWER, pp. 1–5 (2020)

12. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: Toward a quantum
software engineering. IT Prof. 23(1), 62–66 (2021)

13. Quantum Development Kit.: https://azure.microsoft.com/it-it/resources/development-kit/
quantum-computing/ (2021). Accessed: 2021-06-05

14. Tomesh, T., Martonosi, M.: Quantum codesign. IEEE Micro 41(5), 33–40 (2021)
15. Tsymbalista, M., Maksymenko, M., Katernyak, I.: Approaching quantum utility by leveraging

quantum software stack. In: 2023 IEEE 13th International Conference on Electronics and
Information Technologies (ELIT), pp. 210–215. IEEE (2023)

16. Zhao, J.: Quantum software engineering: Landscapes and horizons. Preprint (2020).
arXiv:2007.07047

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
https://azure.microsoft.com/it-it/resources/development-kit/quantum-computing/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Correction to: Trapped-Ion Quantum
Computing

Albert Frisch, Alexander Erhard, Thomas Feldker, Florian Girtler, Max
Hettrich, Wilfried Huss, Georg Jacob, Christine Maier, Gregor Mayramhof,
Daniel Nigg, Christian Sommer, Juris Ulmanis, Etienne Wodey, Mederika
Zangerl, and Thomas Monz

Correction to:
Chapter 10 in: I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_10

The original version of the chapter “Trapped-Ion Quantum Computing” was
inadvertently published with an incorrect acronym, which has now been corrected
as follows:

• On page 251, the acronym “Advanced Query Tool (AQT)” has been corrected to
“Alpine Quantum Technologies (AQT)” in the “Abstract and Keywords” section.

• On page 252, the acronym “Advanced Query Tool (AQT)” has been corrected to
“Alpine Quantum Technologies (AQT)” in the third paragraph.

The updated version of this chapter can be found at

https://doi.org/10.1007/978-3-031-64136-7_10

© The Author(s) 2024
I. Exman et al. (eds.), Quantum Software,
https://doi.org/10.1007/978-3-031-64136-7_14

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64136-7protect T1	extunderscore 14&domain=pdf
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_10
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14
https://doi.org/10.1007/978-3-031-64136-7_14


C2 Correction to: Trapped-Ion Quantum Computing

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Overview
	Organization
	Target Readership
	Conclusion

	Acknowledgments
	Contents
	Contributors
	A Novel Perception of Quantum Software: Theoretical, Engineering, and Application Aspects
	1 Introduction
	2 Quantum Software Theory
	3 Quantum Software System Design
	4 Quantum Software Laboratory and Applications
	5 Conclusion and Acknowledgment
	References

	Part I Aspects of Quantum Software Theory
	Simulating Quantum Software with Density Matrices: Reading Feynman on Fast-Forward
	1 Introduction
	1.1 Feynman's Quantum Computing Pioneer Paper
	1.2 Novel Insight: Feynman's Quantum Software
	1.3 Quantum Software Is the Density Matrix
	1.4 Chapter Organization

	2 What Is Software?
	2.1 Liskov Types and Dahl and Hoare Hierarchical Structures
	2.2 Brooks' Conceptual Integrity
	2.3 Jackson's Software Concepts

	3 What Is Quantum?
	3.1 Superposition and Entanglement
	3.2 Density Matrix

	4 What Is Quantum Software?
	4.1 From Tabular Concept to Its Quantum Software Density Matrix
	4.2 Linear Algebraic Constraints for Software Systems
	4.3 Modularity
	4.4 Evolution and Measurement

	5 Sample Quantum Software Concepts
	5.1 Reservation: A Purely Classical Concept
	5.2 Grover Search: A Modular Quantum Concept
	5.3 QFT and Order Finding: The Modularity Viewpoint
	5.4 Modularity Within Hybrid Teleportation

	6 Related Work
	6.1 Operators and Superoperators
	6.2 Extended UML
	6.3 Modules

	7 Discussion
	7.1 Definition and Meaning of Quantum Software Modules
	7.2 Connector Roles Within the Quantum Software Density Matrix
	7.3 Conceptualization: Metaphors and Proper Names as Concepts
	7.4 Applications of Quantum Software
	7.5 Quantum Software's Potential Roles
	7.6 Main Contribution

	References

	Superoperators for Quantum Software Engineering
	1 Introduction
	1.1 Challenges in Quantum Software

	2 Mathematical Foundations
	2.1 The Need for Formalization
	2.2 Linear and Hilbert-Schmid Operators

	3 Modeling Hybrid Quantum-Classical Systems
	3.1 States and Effects
	3.2 Observables
	3.3 Classical Components
	3.4 Composite and Hybrid Systems

	4 Completely Positive Maps and Their Representation
	4.1 Operator-Sum Representation

	5 Applications in Quantum Software and Systems Engineering
	5.1 Formal Semantics and Verification
	5.2 Communicating and Distributed Systems
	5.3 Noise and Imperfection Modeling

	6 Summary and Conclusion
	References


	Part II Quantum Software System Design
	QSandbox: The Agile Quantum Software Sandbox
	1 Introduction
	1.1 Concise QSandbox Characterization
	1.2 Chapter Organization

	2 QSandbox Focused Ideas
	2.1 High Abstraction Level Interface: First Idea
	2.2 Modular Perspective: Second Idea
	2.3 Uniform Quantum and Classical System Representations: Third Idea

	3 QSandbox Software Architecture Overview
	3.1 QSandbox Software Architecture
	3.2 User Interface
	3.3 User Commands' Set

	4 Dual Views in Depth
	4.1 High-Level Quantum Circuit
	4.2 Computations with High-Level Quantum Circuits
	4.3 Compressed Views
	4.4 Density Matrix
	4.5 Computations with a Density Matrix
	4.6 Optional Views

	5 Quantum Circuit for Classical Software: The Recycle Bin Case Study
	5.1 Recycle Bin Overview and High-Level Quantum Circuit
	5.2 Recycle Bin: Density Matrix

	6 Compressed Dual Views of Quantum Software: Grover Search Case Study
	6.1 Grover Search Concise Overview
	6.2 Grover: High-Level Quantum Circuit
	6.3 Grover: Compressed Higher-Level Quantum Circuit
	6.4 Grover: Compressed Density Matrix

	7 Related Work
	7.1 Classical Software Sandbox

	8 Discussion
	8.1 Main QSandbox Assumptions
	8.2 Open Issues: Quantum Circuit for Classical Software
	8.3 Quantum Agile Software?
	8.4 Future Work
	8.5 Main Contribution

	References

	Verification and Validation of Quantum Software
	1 Introduction
	2 Concepts and Definitions
	2.1 Quantum Computing
	2.2 Software Testing

	3 Automatic Verification and Validation of Quantum Software
	3.1 Running Example
	3.2 Automatic Verification of Quantum Software
	3.2.1 Hoare Logic
	3.2.2 Static Analysis

	3.3 Automatic Validation of Quantum Software
	3.3.1 Test Data Generation
	3.3.2 Test Oracle Generation
	3.3.3 Test Data and Oracle Generation
	3.3.4 Test Adequacy Measurements


	4 Benchmarks of Real Faults in Open-Source Quantum Programs
	5 Discussion
	5.1 For Researchers
	5.2 For Developers of Testing Tools
	5.3 For Developers of Quantum Faults Benchmarks

	6 Conclusion
	References

	Quantum Software Quality Metrics
	1 Introduction
	2 State-of-the-Art
	2.1 Quality in Quantum Computing Software
	2.2 Metrics for Quantum Computing Software

	3 Metrics for Quantum Circuits
	3.1 Circuit Size
	3.2 Circuit Density
	3.3 Single-Qubit Gates
	3.4 Multi-Qubit Gates
	3.5 All Gates in the Circuit
	3.6 Oracles
	3.7 Measurement Gates
	3.8 Other Metrics
	3.9 Metrics for Quantum Circuits Calculation Examples

	4 Validation of Quantum Circuits Metrics
	4.1 Experiment Design
	4.2 Experiment Results
	4.3 Experiment Limitations

	5 QMetrics
	6 Conclusions
	Appendix. Example of Experimental Material
	References

	Quantum Software Ecosystem Design
	1 Introduction
	2 Quantum Computing Perspective
	2.1 Achieving the Vision Through the Quantum Software Ecosystem
	2.2 Interested Parties and Their Requirements

	3 Conceptual View
	3.1 Computational Paradigms
	3.1.1 Foundations of Quantum Computing
	3.1.2 Gate-Based Quantum Computing
	3.1.3 Adiabatic Quantum Computation and Quantum Annealing
	3.1.4 Others

	3.2 Hardware
	3.3 Applications
	3.3.1 Simulation
	3.3.2 Optimization

	3.4 Algorithms
	3.4.1 Powerful Algorithms for Fault-Tolerant Devices
	3.4.2 Hybrid Algorithms for Noisy Intermediate Scale Devices

	3.5 Software Engineering
	3.5.1 Requirements
	3.5.2 Software Design
	3.5.3 Models and Representation
	3.5.4 Software Testing

	3.6 Compiling
	3.6.1 Gate-Based Quantum Computing
	3.6.2 Quantum Annealing

	3.7 Error Handling
	3.7.1 Error Models
	3.7.2 Error Mitigation
	3.7.3 Error Correction

	3.8 Verification and Benchmarking

	4 System Architecture and Implementation
	4.1 User Interface
	4.2 Orchestration and Data Management
	4.3 Use of QC Simulators

	5 Conclusion
	References

	Development and Deployment of Quantum Services
	1 Introduction
	2 Background
	3 Quantum Providers
	3.1 IBM Quantum
	3.2 Amazon Braket
	3.3 Azure Quantum
	3.4 Google Quantum AI
	3.5 Analysis and Comparison

	4 Standardization of Access to Quantum Services Use
	4.1 Quantum API Gateway

	5 Development of Quantum Services
	5.1 OpenAPI Specification for Quantum Services

	6 Deployment of Quantum Services
	6.1 Continuous Deployment of Quantum Services

	7 Conclusion
	References

	Engineering Hybrid Software Systems
	1 Introduction
	2 Classical-Quantum Software Systems
	2.1 Challenges of Hybrid Software

	3 Quantum Software Modernization
	3.1 Traditional Reengineering
	3.2 Architecture-Driven Modernization
	3.3 Software Modernization of Hybrid Software Systems

	4 Example of Application for the Software Modernization Process
	4.1 Reverse Engineering of Quantum Code
	4.2 Restructuring
	4.3 Forward Engineering
	4.3.1 UML Activity Diagrams to Qiskit Code
	4.3.2 UML Class Diagrams to Python Code


	5 Conclusions
	References


	Part III Quantum Software Laboratory
	Trapped-Ion Quantum Computing
	1 Overview
	1.1 Quantum Computing Platforms
	1.2 Ion Traps Background
	1.2.1 Paul Traps
	1.2.2 Ion-Trap Architectures
	1.2.3 Ion Crystals as Qubit Registers


	2 Trapped-Ion Hardware
	2.1 Ion-Trap Device
	2.2 Ion-Trap Setup
	2.3 Quantum Computer in a Rack

	3 Quantum Performance
	3.1 20-Qubit Control
	3.2 Single-Qubit Error Rates
	3.3 Quantum Memory Lifetime
	3.4 Quantum Volume

	4 Software
	4.1 Cloud Platform
	4.2 Circuit Transpilation
	4.3 Radio Frequency Pulse Scheduler
	4.4 High-Performance Computing Integration

	References

	Quantum Software Engineering and Programming Applied to Personalized Pharmacogenomics
	1 Introduction
	2 Quantum Health
	3 Qualitative Description of the Computational Problem
	4 Analytical Description of the Computational Problem
	5 QHealth Information System
	5.1 Functional Overview
	5.2 Technical Features
	5.3 Implementation Details
	5.3.1 Interconnection Layer and Information Protocol
	5.3.2 Execution Layer: Transpilation, Execution, and Post-processing


	6 Conclusion
	References

	Challenges for Quantum Software Engineering: An Industrial Application Scenario Perspective
	1 Introduction
	2 Paradigmatic Application Scenarios
	2.1 Application Scenario 1: Quantum Cloud Services
	2.1.1 Use Cases and Examples
	2.1.2 Approaches and Challenges
	2.1.3 Conclusions

	2.2 Application Scenario 2: Quantum Simulation
	2.2.1 Use Cases and Examples
	2.2.2 Approaches and Challenges
	2.2.3 Conclusions

	2.3 Application Scenario 3: Embedded Quantum Computing
	2.3.1 Use Cases and Examples
	2.3.2 Approaches and Challenges
	2.3.3 Conclusions


	3 Promises and Perils of Quantum Software Engineering
	3.1 Promises and Opportunities
	3.2 Perils

	4 Summary and Outlook
	References

	Quantum Software Engineering Issues and Challenges: Insights from Practitioners
	1 Introduction
	2 Bridging the Gap in Quantum Software Engineering
	3 Current Usage of Quantum Technologies
	4 The Practitioners' Voice
	4.1 The Quantum Environment: Hardware and Software
	4.2 Comprehending the Quantum Realm
	4.3 Quantum Coding Challenges
	4.4 The Realism Quotient
	4.5 Building a Quantum Community

	5 Deepening the Practictioners' Insights
	5.1 First Interview
	5.2 Second Interview
	5.3 Third Interview

	6 Synthesizing Academic Findings and Practical Insights
	7 Conclusion and Future Directions
	References


	Correction to: Trapped-Ion Quantum Computing

