
Embedded Systems

Peter Marwedel

Embedded
System
Design
Embedded Systems Foundations
of Cyber-Physical Systems, and
the Internet of Things

Fourth Edition

Embedded Systems

Series editors
Nikil D. Dutt, Irvine, CA, USA
Grant Martin, Santa Clara, CA, USA
Peter Marwedel, Dortmund, Germany

This Series addresses current and future challenges pertaining to embedded hard-
ware, software, specifications and techniques. Titles in the Series cover a focused
set of embedded topics relating to traditional computing devices as well as high-
tech appliances used in newer, personal devices, and related topics. The material
will vary by topic but in general most volumes will include fundamental material
(when appropriate), methods, designs, and techniques.

More information about this series at http://www.springer.com/series/8563

http://www.springer.com/series/8563

Peter Marwedel

Embedded System Design

Embedded Systems Foundations
of Cyber-Physical Systems,
and the Internet of Things

Fourth Edition

123

Peter Marwedel
TU Dortmund
Dortmund, Germany

ISSN 2193-0155 ISSN 2193-0163 (electronic)
Embedded Systems
ISBN 978-3-030-60909-2 ISBN 978-3-030-60910-8 (eBook)
https://doi.org/10.1007/978-3-030-60910-8

1st edition: Springer US 2006
2nd edition: Springer Netherlands 2011
3rd edition: Springer International Publishing 2018
© The Editor(s) (if applicable) and The Author(s) 2021. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-60910-8
http://creativecommons.org/licenses/by/4.0/

This book is dedicated to my family members
Veronika, Malte, Gesine, and Ronja.

Preface

Why Should You Read This Book?

While this book was written, i.e., in the year 2020, the so-called smart and intelligent
systems were becoming available in increasing numbers. Such systems use comput-
ers and other forms of information and communication technology (ICT) to provide
services to humans, partially employing various kinds of artificial intelligence
(AI). For example, recently introduced cars are increasingly capable of driving
autonomously. In avionics and rail-based transportation, driver-less transportation
is already available or on the horizon. The power grid is becoming smarter and the
same applies to buildings. All these systems are based on a combination of ICT
and physical systems called cyber-physical systems (CPS). Such systems can be
defined as “engineered systems that are built from and depend upon the synergy of
computational and physical components” [412]. Due to the direct interface between
the physical and the cyber-world, cyber-physical systems have to be dependable.

The physical world also plays a key role in the definition of the related
term “Internet of Things” (IoT), referring to the physical world as “things.” IoT
“describes . . . a variety of devices . . . able to interact and cooperate with each
other to reach common goals” [185]. Examples of IoT applications include sensor
networks or E-bikes that can be recollected due to available GPS information.

Both terms, CPS and IoT, are generalizing and extending the earlier term
“embedded systems” (ES). Embedded systems are information processing systems
that are embedded into an enclosing product [371]. Compared to the term “embed-
ded systems,” the terms CPS and IoT place more emphasis on physical objects, e.g.,
cars, airplanes, or smart devices.

The steep rise in the availability of embedded and, correspondingly, also cyber-
physical systems was already predicted in 2001: “Information technology (IT) is
on the verge of another revolution. . . . networked systems of embedded computers
. . . have the potential to change radically the way people interact with their
environment by linking together a range of devices and sensors that will allow
information to be collected, shared, and processed in unprecedented ways. . . . The

vii

viii Preface

use . . . throughout society could well dwarf previous milestones in the information
revolution.” This citation from a report of the National Research Council in the
USA [410] describes very nicely the dramatic impact of information technology
in embedded systems. This revolution has already had a major impact and is still
continuing.

Terms like pervasive and ubiquitous computing, ambient intelligence, and
“Industry 4.0” are also referring to the dramatic impact of changes caused by
information technology.

This importance of embedded/cyber-physical systems and IoT is so far not
well reflected in many of the current curricula. However, designing the mentioned
systems requires interdisciplinary knowledge and skills beyond the traditional
boundaries of disciplines. Obtaining an overview of such broad knowledge is very
difficult, due to the wide range of relevant areas. This book aims at facilitating the
acquisition of knowledge from a kernel of relevant areas. It is already a challenge
to identify the kernel of this knowledge. The book aims at being a remedy in this
situation. It provides material for a first course on such systems and includes an
overview of key concepts for the integration of ICT with physical objects. It covers
hardware as well as software aspects. This is in-line with the ARTIST1 guidelines
for curricula of embedded systems: “The development of embedded systems cannot
ignore the underlying hardware characteristics. Timing, memory usage, power
consumption, and physical failures are important” [85].

This book has been designed as a textbook. However, the book provides more
references than typical textbooks do and also helps to structure the area. Hence,
this book should also be useful for faculty members and engineers. For students,
the inclusion of a rich set of references facilitates access to relevant sources of
information.

The book focuses on the fundamental bases of software and hardware. Specific
products and tools are mentioned only if they have outstanding characteristics.
Again, this is in-line with the ARTIST guidelines: “It seems that fundamental bases
are really difficult to acquire during continuous training if they haven’t been initially
learned, and we must focus on them” [85]. As a consequence, this book goes beyond
teaching embedded system design by programming micro-controllers. The book
presents the fundamentals of embedded systems design, which are needed for
the design of CPS and IoT systems. With this approach, we would like to make
sure that the material taught would not be outdated too soon. The concepts covered
in this book should be relevant for a number of years to come.

The proposed positioning of the current textbook in engineering curricula related
to ICT is explained in a paper [372]. We want to relate the most important topics
in this area to each other. This way, we avoid a problem mentioned in the ARTIST
guidelines: “The lack of maturity of the domain results in a large variety of industrial
practices, often due to cultural habits. . . . curricula . . . concentrate on one technique

1ARTIST is the acronym of an European network of excellence for embedded systems (see http://
www.artist-embedded.org and http://www.emsig.net).

http://www.artist-embedded.org
http://www.artist-embedded.org
http://www.emsig.net

Preface ix

and do not present a sufficiently wide perspective... As a result, industry has difficulty
finding adequately trained engineers, fully aware of design choices” [85].

The book should also help to bridge the gap between practical experiences with
programming micro-controllers and more theoretical issues. Furthermore, it should
help to motivate students and teachers to look at more details. While the book covers
a number of topics in detail, others are covered only briefly. These brief sections
have been included in order to put a number of related issues into perspective.
Furthermore, this approach allows lecturers to have appropriate links in the book for
adding complementary material of their choice. Due to the rich set of references, the
book can also be used as a comprehensive tutorial, providing pointers for additional
reading. Such references can also stimulate taking benefit of the book during labs,
projects, and independent studies as well as a starting point for research.

The scope of this book includes specification techniques, system software,
application mapping, evaluation and validation, hardware components, and the
interface between the cyber- and the physical world (the cyphy-interface) as well
as exemplary optimizations and test methods. The book covers embedded systems
and their interface to the physical environment from a wide perspective but cannot
cover every related area. Legal and socio-economic aspects, human interfaces, data
analysis, application-specific aspects, and a detailed presentation of physics and
communication are beyond the scope of this book. The coverage of the Internet
of Things is limited to areas linked to embedded systems.

Who Should Read the Book?

This book is intended for the following audience:

• Computer science (CS), computer engineering (CE), and electrical engineering
(EE) students as well as students in other information and communication
technology (ICT)-related areas who would like to specialize in embedded/cyber-
physical systems or IoT. The book should be appropriate for third-year students
who do have a basic knowledge of computer hardware and software. This means
that the book primarily targets senior undergraduate students.2 However, it can
also be used at the graduate level if embedded system design is not part of the
undergraduate program or if the discussion of some topics is postponed. This
book is intended to pave the way for more advanced topics that should be
covered in follow-up courses. The book assumes a basic knowledge of computer
science. EE students may have to read some additional material in order to fully
understand the topics of this book. This should be compensated by the fact that
some material covered in this book may already be known to EE students.

2This is consistent with the curriculum described by T. Abdelzaher in a report on CPS education
[411].

x Preface

• Engineers who have so far worked on system’s hardware and who have to move
more toward software of embedded systems. This book should provide enough
background to understand the relevant technical publications.

• PhD students who would like to get a quick, broad overview of key concepts in
embedded system technology before focusing on a specific research area.

• Professors designing a new curriculum for the mentioned areas.

How Is This Book Different from Earlier Editions?

The first edition of this book was published in 2003. The field of embedded systems
is moving fast, and many new results became available. Also, there are areas for
which the emphasis shifted. In some cases, a more detailed treatment of the topic
became desirable. These changes were considered when the first German edition of
the book was published in 2007. Corresponding updates were also incorporated into
the second English edition published in the late 2010/early 2011.

In the last decade, more technological changes occurred. There was a clear shift
from single core systems toward multi-core systems. Cyber-physical systems (CPS)
and the Internet of Things (IoT) gained more attention. Power consumption, thermal
issues, safety, and security became more important. Overall, it became necessary to
publish a third edition of this textbook. The changes just described had a major
impact on several chapters of the third edition. This edition included and linked
those aspects of embedded systems that provide foundations for the design of
CPS and IoT systems. The preface and the introduction were rewritten to reflect
these changes. Partial differential equations and transaction-level modeling (TLM)
were added to the chapter on specifications and modeling. The use of this book
in flipped classroom-based teaching led to the consideration of more details, in
particular of specification techniques. For the third edition, the chapter on embedded
system hardware includes multi-cores, a rewritten section on memories, and more
information on the cyphy-interface (including pulse-width modulation [PWM]).
Descriptions of field programmable gate arrays (FPGAs) were updated and a brief
section on security issues in embedded systems included. The chapter on system
software was extended by a section on Linux in embedded systems and more
information on resource access protocols. In the context of system evaluation, new
subsections on quality metrics, safety/security, energy models, and thermal issues
were included. For this edition, the chapter on mapping to execution platforms
was restructured: a standard classification of scheduling problems was introduced,
and multi-core scheduling algorithms were added. The description of hardware–
software codesign was dropped. The chapter on optimizations was updated and
graphics were improved. Assignments (problems) and a clearer distinction between
definitions, theorems, proofs, code, and examples were added.

The current fourth edition is the first edition, which is available under an
Open Access license. This change reflects the increasing importance of access to
knowledge via the Internet. A key benefit is that this textbook becomes available to

Preface xi

students free of charge. During the preparation of this fourth edition, all chapters
of the third edition have been carefully reviewed and updated if required. Errors
found in the third edition have been corrected. The description of the bouncing ball
experiment has been extended. The presentation of safety and security aspects has
been restructured. More links to data analysis and artificial intelligence have been
added. References have been updated. The distinction between jobs, tasks, threads,
and processes has been clarified as much as possible. For this edition, it is typically
not feasible to cover the complete book in a single course for undergraduates and
lecturers can select a subset that fits the local needs and preferences.

Dortmund, Germany Peter Marwedel
January 2021

Acknowledgments

Publication of this book under an Open Access license has been supported by

• Informatik Centrum Dortmund (ICD) e.V.

Michael Engel and Heiko Falk proofread the current edition. Michael Engel
provided invaluable help during various iterations of our course, including the
generation of videos, which are now available on YouTube.

This book includes the results from many funded research projects. In particular,
the author acknowledges the support of the Collaborative Research Center 876 by
Deutsche Forschungsgemeinschaft (DFG), of research grant Ma 943/10 (FEHLER),
and earlier grants by the same organization, as well as the funding of projects
MORE, Artist2, ArtistDesign, Hipeac(2), PREDATOR, MNEMEE, and MADNESS
by the European Commission. These projects provided an excellent context for
writing the third and fourth editions of this book. Synopsys® Inc. provided access
to their Virtualizer™ virtual platform.

The author is thankful for hints and material provided by the following col-
leagues: R. Dömer, D. Gajski, N. Dutt (UC Irvine), A. B. Kahng, R. Gupta (UC
San Diego), W. Kluge, R. von Hanxleden (U. Kiel), P. Buchholz, M. Engel, H.
Krumm, O. Spinczyk (TU Dortmund), W. Müller, F. Rammig (U. Paderborn), W.
Rosenstiel (U. Tübingen), L. Thiele (ETH Zürich), R. Wilhelm (U. des Saarlandes),
G. C. Buttazzo (U. Pisa), H. Kopetz (TU Vienna), J. P. Hayes (U. Michigan), and H.
Takada (U. Nagoya). Corrections and contributions were also provided by my PhD
students and by David Hec, Thomas Wiederkehr, Thorsten Wilmer, and Henning
Garu. Of course, the author is responsible for all errors and mistakes contained in
the final manuscript.

The book has been produced using the LATEX type setting system from the
TeXnicCenter user interface. Graphics were generated with GNU Octave, with a
variant of the xfig graphical editor, and with PowerPoint®. Program code is using
font package Inconsolata zi4(varl,varqu) designed by Raph Levien, Kirill Tkachev,
Michael Sharpe, and mirabilos. The author would like to thank the authors of this
software for their contribution to this work.

xiii

xiv Acknowledgments

Acknowledgments also go to all those who have patiently accepted the author’s
additional workload during the writing of this book and his resulting reduced
availability.

Contents

1 Introduction . 1

2 Specifications and Modeling . 29

3 Embedded System Hardware . 127

4 System Software . 203

5 Evaluation and Validation . 239

6 Application Mapping . 295

7 Optimization . 349

8 Test . 381

A Integer Linear Programming . 393

B Kirchhoff’s Laws and Operational Amplifiers . 395

C Paging and Memory Management Units . 401

References . 403

Index . 431

xv

About the Author

PeterMarwedel was born in Hamburg, Germany. He
received a Dr. rer. nat. degree in Physics in 1974 and a
Dr. habil. degree in Computer Science in 1987, both
from the University of Kiel (Germany). From 1974
to 1989, he was a faculty member of the Institute for
Computer Science and Applied Mathematics at the
same university. He has been a professor at the TU
Dortmund, Germany, since 1989. He held a chair for
embedded systems at the Computer Science Depart-
ment from 1989 until 2014. He is chairing Informatik
Centrum Dortmund, a local company specializing in
technology transfer. He was a visiting professor of
the University of Paderborn in 1985/1986 and of the
University of California at Irvine in 1995. He served
as Dean of the Computer Science Department from
1992 to 1995 and as a cluster leader for ArtistDesign,
a European Network of Excellence on Embedded and
Real-Time Systems. He was the vice-chair of the
collaborative research center SFB 876 on resource-
constrained machine learning3 until 2015. He started
to work on high-level synthesis in 1975 (in the
context of the MIMOLA project) and focused on
the synthesis of very long instruction word (VLIW)
machines. Later, he added efficient compilation for
embedded processors to his scope, with an emphasis
on retargetability, memory architecture, and opti-
mization for the worst case execution time. His
scope also includes synthesis of self-test programs for

3See http://www.sfb876.tu-dortmund.de.

xvii

http://www.sfb876.tu-dortmund.de

xviii About the Author

processors, automatic parallelization, reliable com-
puting, multimedia-based teaching, cyber-physical
systems, and statistical optimization on multi-core
systems. He placed emphasis on teaching, resulting in
the current textbook, corresponding YouTube videos,
talks at summer schools, and other teaching-related
activities. He won the teaching award of his univer-
sity in 2003.

He is an IEEE and a DATE Fellow. In addition, he
won the ACM SIGDA Distinguished Service Award,
the EDAA Lifetime Achievement Award, and the
ESWEEK Lifetime Achievement Award.

He is married and has two daughters and a son.
His hobbies include hiking, photography, bike riding,
and model railways.

E-mail: peter.marwedel@tu-dortmund.de
Web sites: http://ls12-www.cs.tu-dortmund.de/

∼marwedel,
https://www.marwedel.eu/peter

mailto:peter.marwedel@tu-dortmund.de
http://ls12-www.cs.tu-dortmund.de/~marwedel
http://ls12-www.cs.tu-dortmund.de/~marwedel
https://www.marwedel.eu/peter

Frequently Used Mathematical Symbols

Due to covering many areas in this book, there is a high risk of using the same
symbol for different purposes. Therefore, symbols have been selected such that the
risk of confusion is low. This table is supposed to help maintaining a consistent
notation.

a Weight
a Allocation
A Availability (→ reliability)
A Area
A Ampere
b.. Communication bandwidth
B Communication bandwidth
cR Characteristic vector for Petri net
cp Specific thermal capacitance
cv Volumetric heat capacity
Ci Execution time
C Capacitance
C Set of Petri net conditions
Cth Thermal capacity
◦C Degree Celsius
di Absolute deadline
Di Relative deadline
e(t) Input signal
e Euler’s number (≈2.71828)
E Energy
E Graph edge
f Frequency
f () General function
f Probability density
fi Finishing time of task/job i

F Probability distribution

xix

xx Frequently Used Mathematical Symbols

F Flow relation of Petri net
g Gravity
g Gain of operational amplifier
g(t) Signal
G Graph
h Height
h(t) Signal
i Index, task/job number
I Current
j Index, dependent task/job
J Set of jobs
J Joule
Jj Job j

J Jitter
k Index, processor number
k Boltzmann constant (≈1.3807 * 10−23 J/K)
K Kelvin
l Processor number
li Laxity of task/job i

L Processor type
L Length of conductor
Li Lateness of task τi

Lmax Maximum lateness
m Number of processors
m Mass
m Meter
m Milli-prefix
M Marking of Petri net
MSmax Makespan
n Index
n Number of tasks/jobs
N Net
N Natural numbers
O() Landauer’s notation
pi Priority of task τi

pi Place i of Petri net
P Power
P(S) Semaphore operation
Q Resolution
Q Charge
ri Release time of task/job i

R Reliability
Rth Thermal resistance
R Real numbers
s Time index

Frequently Used Mathematical Symbols xxi

s Restitution
sj Starting time of task/job j

s Second
S State
S Semaphore
S Schedule
Sj Size of memory j

t Time
ti Transition i of Petri net
T Period
Ti Period of task τi

ui Utilization of task τi

U.. Utilization
Umax Maximum utilization
v Velocity
V Graph nodes
V Voltage
V Volt
Vt Threshold voltage
V (S) Semaphore operation
V Volume
w(t) Signal
W(p, t) Weight in Petri net
W Watt
x Input variable
x(t) Signal
X.. Decision variable
y(t) Signal
Y.. Decision variable
z(t) Signal
Z Timer
Z High impedance
Z Integer numbers
α.. Arrival curve in real-time calculus
α Switching activity
α First component in Pinedo’s triplet
β.. Service function in real-time calculus
β Second component in Pinedo’s triplet
β Reciprocal of max. utilization
γ .. Work load in real-time calculus
γ Third component in Pinedo’s triplet
� Time interval
θ Temperature
κ Thermal conductivity
λ Failure rate

xxii Frequently Used Mathematical Symbols

π Number pi (≈3.1415926)
π Set of processors
πi Processor i

ρ Mass density
τi Task τi

τ Set of tasks
ξ Threshold for RM-US scheduling

Chapter 1
Introduction

This chapter presents terms used in the context of embedded systems together with
their history as well as opportunities, challenges, and common characteristics of
embedded and cyber-physical systems. Furthermore, educational aspects, design
flows, and the structure of this book are introduced.

1.1 History of Terms

Until the late 1980s, information processing was associated with large mainframe
computers and huge tape drives. Later, miniaturization allowed information process-
ing with personal computers (PCs). Office applications were dominating, but some
computers were also controlling the physical environment, typically in the form of
some feedback loop.

Later, Mark Weiser created the term “ubiquitous computing” [573]. This term
reflects Weiser’s prediction to have computing (and information) anytime, any-
where. Weiser also predicted that computers are going to be integrated into
products such that they will become invisible. Hence, he created the term “invisible
computer.” With a similar vision, the predicted penetration of our day-to-day life
with computing devices led to the terms “pervasive computing” and “ambient
intelligence.” These three terms focus on only slightly different aspects of future
information technology. Ubiquitous computing focuses more on the long-term goal
of providing information anytime, anywhere, whereas pervasive computing focuses
more on practical aspects and the exploitation of already available technology.
For ambient intelligence, there is some emphasis on communication technology
in future homes and smart buildings. Due to the widespread use of small devices
in combination with the mobile Internet, some of the visions about the future have
already become a common practice. This widespread use is pervasive in the sense

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_1

2 1 Introduction

Fig. 1.1 Relationship
between embedded systems
and CPS

Physical environmentEmbedded system

Cyber-physical system (CPS)

that it already had an impact on many areas of our life. Furthermore, artificial
intelligence is influencing our life as well.

Miniaturization also enabled the integration of information processing and the
environment using computers. This type of information processing has been called
an “embedded system”:

Definition 1.1 (Marwedel [371]) “Embedded systems are information processing
systems embedded into enclosing products.”

Examples include embedded systems in cars, trains, planes, and telecommuni-
cation or fabrication equipment. Embedded system products such as self-driving
cars and trains are already available or have been announced. Consequently, we
can expect miniaturization to have an impact on embedded systems comparable
to the one it had on the availability of mobile devices. Embedded systems come
with a large number of common characteristics, including real-time constraints,
and dependability as well as efficiency requirements. For such systems, the link
to physical systems is rather important. This link is emphasized in the following
citation [331]:

“Embedded software is software integrated with physical processes. The techni-
cal problem is managing time and concurrency in computational systems.”
This citation could be used as a definition of the term “embedded software” and
could be extended into a definition of “embedded systems” by just replacing
“software” by “system.”

However, the strong link to physical systems has recently been stressed even
more by the introduction of the term “cyber-physical systems” (CPS for short). CPS
can be defined as follows:

Definition 1.2 (Lee [332]) “Cyber-Physical Systems (CPS) are integrations of
computation and physical processes.”

The new term emphasizes the link to physical processes and the corresponding
physical environment. Emphasizing this link makes sense, since it is frequently
ignored in a world of applications running on servers, PCs, and mobile phones.
For CPS, models should include models of the physical environment as well. The
term CPS comprises an embedded system (the information processing part) and a
(dynamic) physical environment or CPS = ES + (dynamic) physical environment.
This is also reflected in Fig. 1.1.

In their call for proposals, the National Science Foundation in the USA mentions
also communication [412]: “Emerging CPS will be coordinated, distributed, and
connected and must be robust and responsive.”

1.1 History of Terms 3

Fig. 1.2 Importance of
communication
(© European Commission)

Ubiquitous Computing
Pervasive/

- information
anytime, anywhere

Systems
Embedded

- robots
- control systems

- dependability
- real-time

Technology
Communication

- distributed

- quality of service
 applications

- networking

This is also done in the acatech report on CPS [6]: CPS . . . “represent networked,
software-intensive embedded systems in a control loop, provide networked and
distributed services.”

Interconnection and collaboration are also explicitly mentioned in a call for
proposals by the European Commission [155]: “Cyber-Physical Systems (CPS) refer
to next generation embedded ICT systems that are interconnected and collaborating
including through the Internet of Things, and providing citizens and businesses with
a wide range of innovative applications and services.”

The importance of communication was visualized by the European Commission
earlier, as shown in Fig. 1.2.

From these citations, it is clear that the authors do not only associate the
integration of the cyber- and the physical world with the term CPS. Rather, there
is also a strong communication aspect. Actually, the term CPS is not always used
consistently. Some authors emphasize the integration with the physical environment,
others emphasize communication.

Communication is more explicit in the term “Internet of Things” (IoT), which
can be defined as follows:

Definition 1.3 ([185]) The term Internet of Things “describes the pervasive pres-
ence of a variety of devices — such as sensors, actuators, and mobile phones —
which, through unique addressing schemes, are able to interact and cooperate with
each other to reach common goals.”

This term is linking sensors (such that sensed information is available on the
Internet) and actuators (such that things can be controlled from the Internet). The
Internet of Things is expected to allow the communication between trillions of
devices in the world. This vision affects a large amount of businesses.

The exploitation of IoT-technology for production has been called “Industry 4.0”
[68]. Industry 4.0 targets a more flexible production for which the entire life cycle
from the design phase onward is supported by the IoT.

4 1 Introduction

To some extent, it is a matter of preferences whether the linking of physical
objects to the cyber-world is called CPS or IoT. Taken together, CPS and IoT include
most of the future applications of IT.

The design of these future applications requires knowing fundamental
design techniques for embedded systems. This book focuses on such fundamen-
tal techniques and on foundations of embedded system design. Please remember
that these are used in IoT and CPS designs though this is not repeatedly stated in
each context. However, application-specific aspects of CPS and IoT are usually not
covered.

1.2 Opportunities

There is a huge potential for applications of information processing in the context of
CPS and IoT. The following list demonstrates this potential and the large variation
of corresponding areas:

• Transportation and mobility:

– Automotive electronics: Modern cars can be sold in technologically
advanced countries only if they contain a significant amount of electronics
[415]. These include airbag control systems, engine control systems,
navigation systems, anti-braking systems (ABS), electronic stability programs
(ESP), air-conditioning, anti-theft protection, driver assistance systems, and
many more. There is a trend toward autonomous driving. Embedded systems
can improve comfort levels, avoid accidents, and reduce the impact on the
environment. E-mobility would not be feasible without a significant amount
of electronic components.

– Avionics: A significant amount of the total value of airplanes is due to
the information processing equipment, including flight control systems, anti-
collision systems, pilot information systems, autopilots, and others. Depend-
ability is of utmost importance.1 Embedded systems can decrease emissions
(such as carbon dioxide) from airplanes. Autonomous flying is also becoming
a reality, at least for certain application areas.

– Railways: For railways, the situation is similar to the one discussed for cars
and airplanes. Again, safety features contribute significantly to the total value
of trains, and dependability is extremely important. Advanced signaling aims
at safe operation of trains at high speed and short intervals between trains. The
European Train Control System (ETCS) [444] is one step in this direction.
Autonomous rail-based transportation is already used in restricted contexts
like shuttle trains at airports.

1Problems with Boeing’s 737 MAX [419] underline this statement.

1.2 Opportunities 5

– Maritime engineering (ships, ocean technology, and other maritime sys-
tems): Maritime systems, such as modern ships, use large amounts of
ICT equipment, e.g., for navigation, for safety, for optimizing the opera-
tion in general, and for bookkeeping (see, e.g., http://www.smtcsingapore.
com/ and https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-
in-shipping-industry.html).

– New concepts for mobility: The use of ICT technology and its components
is enabling new concepts for mobility. Even untrained people can travel
larger distances with e-bikes. The subtle interaction between human muscles
and electric engines turns e-scooters into a prime example of cyber-physical
systems. The collection of e-scooters at the end of each day, based on a list
of locations in the Internet, lets e-scooters become a perfect example of the
Internet of Things. Also, CPS/IoT-technology is very important for collective
taxis and other taxi-calling services.

• Mechanical engineering (incl. manufacturing): Machinery and fabrication
equipment have been combined with embedded systems for decades. In order to
optimize production technologies further, CPS/IoT-technology can be used.
CPS/IoT-technology is the key toward more flexible manufacturing, being
the target of “Industry 4.0” [68]. Factory automation is enabled by logistics.
There are several ways in which CPS/IoT-systems can be applied to logistics
[297]. For example, radio frequency identification (RFID) technology, if used
in combination with computer networks, provides easy identification of each
and every object, worldwide. Mobile communication allows unprecedented
interaction.

• Robotics: This is also a traditional area in which embedded/cyber-physical
systems have been used. Mechanical aspects are very important for robots.
Hence, they may be linked to mechanical engineering. Robots, modeled after
animals or human beings, have been designed. Figure 1.3 shows such a robot.

• Power engineering and the smart grid: In the future, the production of
energy is supposed to be much more decentralized than in the past. Providing
stability in such a scenario is difficult. ICT technology is required in order to
achieve a sufficiently stable system. Information on the smart grid can be found,
for example, at https://www.smartgrid.gov/the_smart_grid and at http://www.
smartgrids.eu/.

• Civil engineering: CPS devices can be beneficial in many applications of civil
engineering. This includes structural health monitoring. Natural and artificial
structures like mountains, volcanoes, bridges, and dams (see, e.g., Fig. 1.4) are
potentially threatening lives. We can use embedded system technology to enable
advance warnings in case of increased dangers like avalanches or collapsing
dams.2

2The case of the dam in Brumadinho (see https://en.wikipedia.org/wiki/
Brumadinho_dam_disaster) is a counterexample of how modern sensors should be exploited.

http://www.smtcsingapore.com/
http://www.smtcsingapore.com/
https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-in-shipping-industry.html
https://dupress.deloitte.com/dup-us-en/focus/internet-of-things/iot-in-shipping-industry.html
https://www.smartgrid.gov/the_smart_grid
http://www.smartgrids.eu/
http://www.smartgrids.eu/
https://en.wikipedia.org/wiki/Brumadinho_dam_disaster
https://en.wikipedia.org/wiki/Brumadinho_dam_disaster

6 1 Introduction

Fig. 1.3 Humanoid Robot
“Lola”, © Chair of Applied
Mechanics, Technical
University of Munich (TUM)

Fig. 1.4 Example of a dam to be monitored (Möhnesee dam), ©P. Marwedel

• Disaster recovery: In the case of major disasters such as earthquakes or flooding,
it is essential to save lives and provide relief to survivors. Flexible communication
infrastructures are essential for this.

• Smart buildings: Smart buildings are one of the areas of civil engineering.
Information processing can be used to increase the comfort level in buildings,
can reduce the energy consumption within buildings, and can improve safety and
security. Subsystems which traditionally were unrelated must be connected for
this purpose. There is a trend toward integrating air-conditioning, lighting, access
control, accounting, safety features, and distribution of information into a single
system. Tolerance levels of air-conditioning subsystems can be increased for

1.2 Opportunities 7

empty rooms, and the lighting can be automatically reduced. Air-condition noise
can be reduced to a level required for the actual operating conditions. Intelligent
usage of blinds can also optimize lighting and air-conditioning. Available rooms
can be displayed at appropriate places, simplifying ad hoc meetings and cleaning.
Lists of non-empty rooms can be displayed at the entrance of the building
in emergency situations (provided the required power is still available). This
way, energy can be saved on cooling, heating, and lighting. Also safety can
be improved. Initially, such systems might mostly be present in high-tech office
buildings, but the trend toward energy-efficient buildings also affects the design
of private homes. One of the goals is to design so-called zero-energy-buildings
(buildings which produce as much energy as they consume) [426]. Such a design
would be one contribution toward a reduction of the global carbon-dioxide
footprint and global warming.

• Agricultural engineering: There are many agricultural applications. For exam-
ple, the “regulations for traceability3 of agricultural animals and their move-
ments require the use of technologies like IoT, making possible the real time
detection of animals, for example, during outbreaks of (a) contagious disease”
[516].

• Health sector and medical engineering: The importance of healthcare products
is increasing, in particular in aging societies. Opportunities start with new sen-
sors, detecting diseases faster and more reliably. New data analysis techniques
(e.g., based on machine learning) can be used to detect increased risks and
improve chances for healing. Therapies can be supported with personalized
medication based on artificial intelligence methods. New devices can be designed
to help patients, e.g., handicapped patients. Also, surgery can be supported
with new devices. Embedded system technologies also allow for a significantly
improved result monitoring, giving doctors much better means for checking
whether or not a certain treatment has a positive impact. This monitoring also
applies to remotely located patients. Available information can be stored in
patient information systems. Lists of projects in this area can be found, for
example, at http://cps-vo.org/group/medical-cps and at http://www.nano-tera.ch/
program/health.html.

• Scientific experiments: Many contemporary experiments in sciences, in partic-
ular in physics, require the observation of experiment outcomes with IT devices.
The combination of physical experiments and IT devices can be seen as a special
case of CPS.

• Public safety: The interest in various kinds of safety is also increasing. Embed-
ded and cyber-physical systems and the Internet of Things can be used to improve
safety in many ways. This includes public health in times of pandemics and the
identification/authentication of people, for example, with fingerprint sensors or
face recognition systems.

3The importance of traceability in general, beyond animals, became particularly obvious during
the Corona-19 crisis.

http://cps-vo.org/group/medical-cps
http://www.nano-tera.ch/program/health.html
http://www.nano-tera.ch/program/health.html

8 1 Introduction

• Military applications: Information processing has been used in military equip-
ment for many years. Some of the first computers analyzed military radar signals.

• Telecommunication: Mobile phones have been one of the fastest-growing mar-
kets in the recent years. For mobile phones, radio frequency (RF) design, digital
signal processing, and low-power design are key aspects. Telecommunication is
a salient feature of IoT. Other forms of telecommunication are also important.

• Consumer electronics: Video and audio equipment is a major sector of the
electronics industry. The information processing integrated into such equipment
is steadily growing. New services and better quality are implemented using
advanced digital signal processing techniques. Many TV sets (in particular high-
definition TV sets), multimedia phones, and game consoles comprise powerful
high-performance processors and memory systems. They represent special cases
of embedded systems. Compared to other types of embedded systems, safety and
real-time behavior are less important. Nevertheless, certain real-time constraints
must be met in order to achieve a certain frame rate or to meet time constraints
for communication protocols. Also, there is a limited availability of resources
like electrical energy and communication bandwidth. In this sense, limited
availability of resources is a feature which consumer electronics shares with the
other application areas mentioned so far.

The large set of examples demonstrates the huge variety of applications of
embedded systems in CPS and IoT systems. Even more applications are listed in a
report on opportunities and challenges of the IoT [516]. In a way, many of the future
applications of ICT technology can be linked to such systems. From the above list,
we conclude that almost all engineering disciplines will be affected.

The long list of application areas of embedded systems is resulting in a
corresponding economic importance of such systems. The acatech report [6]
mentions that, at the time of writing the report, 98% of all microprocessors were
used in these systems. In a way, embedded system design is an enabler for many
products and has an impact on the combined market volume size of all the areas
mentioned. However, it is difficult to quantify the size of the CPS/IoT market since
the total market volume of all these areas is significantly larger than the market
volume of their ICT components. Referring to the value of semiconductors in the
CPS/IoT market would also be misleading, since that value is only a fraction of the
overall value.

The economic importance of CPS and the IoT is reflected in calls for proposals
by funding organizations, like the NSF [116] and the European Commission [156].

1.3 Challenges

Unfortunately, the design of embedded systems and their integration in CPS and
IoT systems comes with a large number of difficult design issues. Commonly found
issues include the following:

1.3 Challenges 9

• Cyber-physical and IoT systems must be dependable.

Definition 1.4 A system is dependable if it provides its intended service with a
high probability and does not cause any harm.

A key reason for the need of being dependable is that these systems are directly
connected to the physical environment and have an immediate impact on that
environment. The issue needs to be considered during the entire design process.

Dependability encompasses the following aspects of a system:

1. Security:

Definition 1.5 ([75, 255]) Information security can be defined as the “preser-
vation of confidentiality, integrity and availability of information.”

This preservation can be compromised by thefts or damages, resulting from
attacks from the outside. Connecting components in IoT systems enables such
attacks, with cyber-crime and cyber-warfare as special, potentially harmful
cases. Connecting more components enables more attacks and more damages.
This is a serious issue in the design and proliferation of IoT systems.

The only really secure solution is to disconnect components, which
contradicts the idea of using connected systems. Related research is therefore
expected to be one of the fastest-growing areas in ICT-related research.

According to Ravi et al. [300], the following typical elements of security
requirements exist:

– A user identification process validates identities before allowing users to
access the system.

– Secure network access provides a network connection or service access
only if the device is authorized.

– Secure communications include a number of communication features.
– Secure storage requires confidentiality and integrity of data.
– Content security enforces usage restrictions.

2. Confidentiality is one of the aspects of security .

Definition 1.6 ([255]) Confidentiality is “property that information is not
made available or disclosed to unauthorized individuals, entities, or pro-
cesses.”

Confidentiality is typically implemented using techniques which are found in
secure systems, e.g., encryption.

3. Safety:

Definition 1.7 ([250]) Safety can be defined as the absence of “unacceptable
risk of physical injury or of damage to the health of people, either directly or
indirectly as a result of damage to property or to the environment.”

“Functional safety is the part of the overall safety that depends on a system
or equipment operating correctly in response to its inputs.”

10 1 Introduction

“In the context of computer systems, this term is used to distinguish from
threats due to external attacks, e.g., due to malicious software. In contrast
to such threats, safety refers to risks caused by failures occurring without
any external action, e.g., hardware failures, power failures, incorrectly written
software, or operator errors” (translated from German [576]).

4. Reliability: This term refers to malfunctions of systems resulting from
components not working according to their specification at design time.
Lack of reliability can be caused by breaking components. Reliability is the
probability that a system will not fail within a certain amount of time.4 For
an evaluation of reliability, we are not considering malicious attacks from
the outside but only effects occurring within the system itself during normal,
intended operation.

5. Repairability: Repairability (also spelled reparability) is the probability that
a failing system can be repaired within a certain time.

6. Availability: Availability is the probability that the system is available.
Reliability and repairability must be high and security hazards absent in order
to achieve a high availability.

Designers may be tempted to focus just on the functionality of systems initially,
assuming that dependability can be added once the design is working. Typically,
this approach does not work, since certain design decisions will not allow
achieving the required dependability in the aftermath. For example, if the
physical partitioning is done in the wrong way, redundancy may be impossible.
Therefore, “making the system dependable must not be an after-thought”, it
must be considered from the very beginning [303]. Good compromises achieving
an acceptable level of safety, security, confidentiality, and reliability have to be
found [296].

Even perfectly designed systems can fail if the assumptions about the
workload and possible errors turn out to be wrong [303]. For example, a system
might fail if it is operated outside the initially assumed temperature range.

• If we look closely at the interface between the physical and the cyber-world, we
observe a mismatch between physical and cyber models. The following list
shows examples:

– Many cyber-physical systems must meet real-time constraints. Not complet-
ing computations within a given time frame can result in a serious loss of the
quality provided by the system (e.g., if the audio or video quality is affected)
or may cause harm to the user (e.g., if cars, trains, or airplanes do not operate
in the predicted way). Some time constraints are called hard time constraints:

Definition 1.8 (Kopetz [303]) “A time-constraint is called hard if not meet-
ing that constraint could result in a catastrophe.”

All other time constraints are called soft time constraints.

4A formal definition of this term is provided in Definition 5.36 on p. 281 of this book.

1.3 Challenges 11

Many of today’s information processing systems are using techniques for
speeding-up information processing on the average. For example, caches
improve the average performance of a system. In other cases, reliable com-
munication is achieved by repeating certain transmissions. On average, such
repetitions result in a (hopefully) small loss of performance, even though for a
certain message the communication delay can be several orders of magnitude
larger than the normal delay. In the context of real-time systems, arguments
about the average performance or delay cannot be accepted. “A guaranteed
system response has to be explained without statistical arguments” [303].
Many modeling techniques in computer science do not model real time.
Frequently, time is modeled without any physical units attached to it, which
means that no distinction is made between picoseconds and centuries. The
resulting problems are very clearly formulated in a statement made by Edward
Lee: “The lack of timing in the core abstraction (of computer science) is a flaw,
from the perspective of embedded software” [330].

– Many embedded systems are hybrid systems in the sense that they include
analog and digital parts. Analog parts use continuous signal values in con-
tinuous time, whereas digital parts use discrete signal values in discrete
time. Many physical quantities are represented by a pair, consisting of a real
number and a unit. The set of real numbers is uncountable. In the cyber-
world, the set of representable values for each number is finite. Hence, almost
all physical quantities can only be approximated in digital computers.
During simulations of physical systems on digital computers, we are typically
assuming that this approximation gives us meaningful results. In a paper, Taha
considered consequences of the non-availability of real numbers in the cyber-
world [522].

– Physical systems can exhibit the so-called Zeno effect. The Zeno effect can
be introduced with the help of the bouncing ball example. Suppose that we
are dropping a bouncing ball onto the floor from a particular height. After
releasing the ball, it will start to fall, being accelerated by the gravitation of
the earth. When it hits the floor, it will bounce, i.e., it will start to move in
the opposite direction. However, we assume that bouncing will have some
damping effect and that the initial speed of the ball after the bounce will be
reduced by a factor of s < 1, compared to the speed right before the bounce.
The case s < 1 is also called inelastic collision. s is called the restitution. Due
to this, the ball will not reach its initial height. Furthermore, the time to reach
the floor a second time will be shorter than for the initial case. This process
will be repeated, with smaller and smaller intervals between the bounces.
However, according to the ideal model of inelastic collisions, this process will
go on and on. Figure 1.5 visualizes the height as a function of time (a so-called
time/distance diagram) of the inelastic collision.

Now, let � be an arbitrary time interval, anywhere in the time domain.
Would there be an upper bound on the number of bounces in this time interval?
No, there would not be an upper bound, since bouncing is repeated in shorter
and shorter intervals.

12 1 Introduction

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 1.5 Time/distance diagram of the inelastic collision (© Openmodelica)

periodic sampling
t

-

Feedback

Plant

Fig. 1.6 Control loop

This is a special case of the Zeno effect. A system is said to exhibit a Zeno
effect, when it is possible to have an unlimited number of events in an interval
of finite length [403]. Mathematically speaking, this is feasible since infinite
series may be converging to a finite value. In this case, the infinite series of
times at which bouncing occurs is converging to a finite instance in time. See
the discussion starting on p. 46 for more details. On digital computers, the
unlimited number of events can only be approximated.

– Many CPS comprise control loops, like the one shown in Fig. 1.6.
Control theory was initially based on analog continuous feedback systems.

For digital, discrete time feedback, periodic sampling of signals has been
the default assumption for decades and it worked reasonably well. However,
periodic sampling is possibly not the best approach. We could save resources
if we would extend sampling intervals during times of relatively constant
signals. This is the idea of adaptive sampling. Adaptive sampling is an area
of active research [209].

1.3 Challenges 13

– Traditional sequential programming languages are not the best way to describe
concurrent, timed systems.

– Traditionally, the process of verifying whether or not some product is a correct
implementation of the specification is generating a Boolean result: either the
product is correct or not. However, two physically existing products will never
be exactly identical. Hence, we can only check with some level of imprecision
whether a product is a correct implementation of the design. This introduces
fuzziness and Boolean verification is replaced by fuzzy verification [184, 446].

– Edward Lee pointed out that the combination of a deterministic physical
model and a deterministic cyber model will possibly be a non-deterministic
model [333]. Non-deterministic sampling can be one reason for this.

Overall, we observe a mismatch between the physical and the cyber-world.
Effectively, we are still looking for appropriate models for CPS, but cannot expect
to completely eliminate the mismatch.

• Embedded systems must use resources efficiently. This requires that we must be
aware of the resources needed. The following metrics can be considered in order
to evaluate resource efficiency:

1. Energy: Electronic information and communication technology (ICT) uses
electrical energy for information processing and communication. The amount
of electrical energy used is frequently called “consumed energy.” Strictly
speaking, this term is not correct, since the total amount of energy is invariant.
Actually, we are converting electrical energy into some other form of energy,
typically thermal energy. For embedded systems, the availability of electrical
power and energy (as the integral of power over time) is a deciding factor. This
was already observed in a Dutch road mapping effort: “Power is considered
as the most important constraint in embedded systems” [150].

Why should we care about the amount of electrical energy converted, i.e.,
why should there be energy awareness? There are many reasons for this. Most
reasons are applicable to most types of systems, but there are exceptions, as
shown in Table 1.1.

Table 1.1 Relevance of reasons to be energy-aware

Relevant during use?

System type Plugged Charged Unplugged

Example Factory Laptop Sensor network

Global warming Yes Hardly No

Cost of energy Yes Hardly Typically not

Increasing performance Yes Yes Yes

Unplugged uptime No Yes Yes

Problems with cooling, avoiding hot spots Yes Yes Yes

Avoiding high currents, metal migration Yes Yes Yes

Energy a very scarce resource No Hardly Yes

14 1 Introduction

Global warming is of course a very important reason for trying to be
energy-aware. However, typically very limited amounts of energy are avail-
able to unplugged systems, and, hence, their contribution to global warming
is small.5

The cost of energy is relevant whenever the amount of energy needed is
expensive. For plugged systems, this could happen due to large amounts of
consumed energy. For unplugged systems, these amounts are typically small,
but there could be cases for which it is very expensive to provide even a small
amount.

Increased computing performance usually requires additional energy and,
hence, has an impact on the resulting energy consumption.

Thermal effects are becoming more important and have to be considered
as well. The reliability of circuits decreases with increasing temperatures.
Hence, increased energy consumptions are typically decreasing the reliability.
It may be necessary to power-down parts of the system completely to cope
with thermal constraints. This effect has been called the dark silicon effect
(certain areas of silicon chips have to remain unpowered or “dark”) [153].

In some cases (like remote sensor nodes), energy is a really scarce resource.
It is interesting to look at those cases where certain reasons to save energy

can be considered irrelevant: For systems connected to the power grid, energy
is not a really scarce resource. Unplugged systems, due to the limited capacity
of batteries, consume very small amounts of energy, and their impact on global
warming is small. Systems which are only temporarily connected to the power
grid are somewhere between their plugged and unplugged counterparts.

The importance of power and energy efficiency was initially recognized
for embedded systems. The focus on these objectives was later taken up for
general-purpose computing as well and led to initiatives such as the green
computing initiative [11].

In general, not only the energy consumption during the use of some device
is important. Rather, the fabrication of the device should be considered as
well, due to the energy consumption during fabrication. Hence, we should
consider the entire life cycle of a product in the form of a so-called life-cycle
assessment (LCA) [374]. It is feasible to reduce the impact on the environment
by purchasing new devices less frequently.

2. Run-time: Embedded systems should exploit the available hardware architec-
ture as much as possible. Inefficient use of execution time (e.g., wasted pro-
cessor cycles) should be avoided. This implies an optimization of execution
times across all levels, from algorithms down to hardware implementations.

5This can be demonstrated by means of an example. Consider a mobile phone battery having a
capacity of 3600 mAh. We assume an average voltage of 4 V. This results in an energy of 14.4 Wh.
A fully charged battery stores as much energy as is consumed by a typical residential gateway
(turned on 24/7) in about 1–2.5 h or a TV set in a fraction of an hour.

1.3 Challenges 15

3. Code size: For some embedded systems, code typically has to be stored on
the system itself. There may be tight constraints on the storage capacity of
the system. This is especially true for systems on a chip (SoCs), systems for
which all the information processing circuits are included on a single chip. If
the instruction memory is to be integrated onto this chip, it should be used
very efficiently. For example, there may be medical devices implanted into
the human body. Due to size and communication constraints of such devices,
code has to be very compact.

However, the importance of this design goal might change, when dynam-
ically loading code becomes acceptable or when larger memory densities
(measured in bits per volume unit) become available. Flash-based memories
and new memory technologies will potentially have a large impact.

4. Weight: All portable systems must be lightweight. A low weight is frequently
an important argument for buying a particular system.

5. Cost: For high-volume embedded systems in mass markets, especially in
consumer electronics, competitiveness on the market is an extremely crucial
issue, and efficient use of hardware components and the software development
budget are required. A minimum amount of resources should be used for
implementing the required functionality. We should be able to meet require-
ments using the least amount of hardware resources and energy. In order to
reduce the energy consumption, clock frequencies and supply voltages should
be as low as possible. Also, only the necessary hardware components should
be present, and over-provisioning should be avoided. Components which do
not improve the worst case execution time (such as many caches or memory
management units) can sometimes be omitted.

Due to resource awareness targets, software designs cannot be done indepen-
dently of the underlying hardware. Therefore, software and hardware must be
taken into account during the design steps. This, however, is difficult, since
such integrated approaches are typically not taught at educational institutes. The
cooperation between electrical engineering and computer science has not yet
reached the required level.

A mapping of specifications to custom hardware would provide the best
energy efficiency. However, hardware implementations are very expensive and
require long design times. Therefore, hardware designs do not provide the
flexibility to change designs as needed. We need to find a good compromise
between efficiency and flexibility.

• CPS and IoT systems are frequently collecting huge amounts of data. These large
amounts of data have to be stored and they have to be analyzed. Hence, there is a
strong link between the problems of big data (or machine learning) and CPS/IoT.
This is exactly the topic of our collaborative research center SFB 876.6 SFB 876
focuses on machine learning under resource constraints.

6See http://www.sfb876.tu-dortmund.de.

http://www.sfb876.tu-dortmund.de

16 1 Introduction

• Impact beyond technical issues: Due to the major impact on society, legal,
economic, social, human, and environmental impacts must be considered as
well:

– The integration of many components, possibly by different providers, raises
serious issues concerning liability. These issues are being discussed, for
example, for self-driving cars. Also, ownership issues must be solved. It is
unacceptable to have one of the involved companies own all rights.

– Social issues include the impact of new IT devices on society. This has led
to the introduction of the term Cyber-Physical-Social Systems (CPSS) [140].
Currently, this impact is frequently only detected long after the technology
became available.

– Human issues comprise user-friendly man-machine interfaces.
– Contributions to global warming and the production of waste should be at an

acceptable level. The same applies to the consumption of resources.

• Real systems are concurrent. Managing concurrency is therefore another major
challenge.

• Cyber-physical and IoT systems are typically consisting of heterogeneous hard-
ware and software components from various providers and have to operate in
a changing environment. The resulting heterogeneity poses challenges for the
correct cooperation of components. It is not sufficient to consider only software
or only hardware design. Design complexity requires adopting a hierarchical
approach. Furthermore, real embedded systems consist of many components and
we are interested in compositional design. This means, we would like to study
the impact of combining components [213]. For example, we would like to know
whether we could add a GPS system to the sources of information in a car without
overloading the communication bus.

• CPS design involves knowledge from many areas. It is difficult to find staff
members with a sufficient amount of knowledge in all relevant areas. Even
organizing the knowledge transfer between relevant areas is already challenging.
Designing a curriculum for a program in CPS design is even more challenging,
due to the tight ceilings for the total workload for students [379]. Overall, tearing
down walls between disciplines and departments or at least lowering them
would be required.

A list of challenges is also included in a report on IoT by Sundmaeker et al. [516].

1.4 Common Characteristics

In addition to the challenges listed above, there are more common characteristics of
embedded, cyber-physical and IoT systems, independently of the application area.

1.4 Common Characteristics 17

• CPS and IoT systems use sensors and actuators to connect the embedded system
to the physical environment. For IoT, these components are connected to the
Internet.

Definition 1.9 Actuators are devices converting numbers into physical effects.

• Typically, embedded systems are reactive systems, which are defined as follows:

Definition 1.10 (Bergé [567]) “A reactive system is one that is in continual
interaction with its environment and executes at a pace determined by that
environment.”

Reactive systems are modeled as being in a certain state, waiting for an input.
For each input, they perform some computation and generate an output and a
new state. Hence, automata are good models of such systems. Mathematical
functions, describing the problems solved by most algorithms, would be an
inappropriate model.

• Embedded systems are under-represented in teaching and in public discus-
sions. Real embedded systems are complex. Hence, comprehensive equipment is
required for realistically teaching embedded system design. However, teaching
CPS design can be appealing, due to the visible impact on the physical behavior.

• These systems are frequently dedicated toward a certain application. For
example, processors running control software in a car or a train will typically
always run that software, and there will be no attempt to run a game or
spreadsheet program on the same processor. There are mainly two reasons for
this:

1. Running additional programs would make those systems less dependable.
2. Running additional programs is only feasible if resources such as memory are

unused. No unused resources should be present in an efficient system.

However, the situation is slowly changing. For example, the AUTOSAR
initiative [28] demonstrates more dynamism in the automotive industry.

• Most embedded systems do not use keyboards, mice, and large computer
monitors for their user interface. Instead, there is a dedicated user interface
consisting of push buttons, steering wheels, pedals, etc. Because of this, the user
hardly recognizes that information processing is involved. This is consistent with
the introduction of the term disappearing computer.

Table 1.2 highlights some distinguishing features between the designs of PC-like
or data center server-like systems and embedded systems.

Compatibility with traditional instruction sets employed for PCs is less impor-
tant for embedded systems, since it is typically possible to compile software
applications for architectures at hand. Sequential programming languages do not
match well with the need to describe concurrent real-time systems, and other
ways of modeling applications may be preferred. Several objectives must be
considered during the design of embedded/cyber-physical systems. In addition to the
average performance, the worst case execution time, energy consumption, weight,

18 1 Introduction

Table 1.2 Distinction between PC-like and embedded system designs

Embedded PC-/server-like

Frequently heterogeneous Mostly homogeneous

Architectures very compact not compact (x86, etc.)

x86 compatibility Less relevant Very relevant

Architecture fixed? Rarely Yes

Models of computation (MoCs) C+multiple models (data flow,
discrete events, . . .)

Mostly von Neumann (C,
C++, Java)

Optimization objectives Multiple (energy, size, . . .) Average performance
dominates

Safety-critical? Possibly Usually not

Real-time relevant Frequently Hardly

Apps. known at design time Yes, for real-time systems Only some (e.g., WORD)

reliability, operating temperatures, etc. may have to be optimized. Meeting real-
time constraints is very important for CPS but hardly so for PC-like systems. Time
constraints can be verified at design time only if all the applications are known
at this time. Also, it must be known, which applications should run concurrently.
For example, designers must ensure that a GPS application, a phone call, and data
transfers can be executed at the same time without losing voice samples. For PC-like
systems, knowledge about concurrently running software is almost never available
and best effort approaches are typically used.

Why does it make sense to consider all types of embedded systems in one book?
It makes sense because information processing in embedded systems has many
common characteristics, despite being physically so different.

Actually, not every embedded system will have all the above characteristics. We
can define the term “embedded system” also in the following way:

Definition 1.11 Information processing systems meeting most of the characteris-
tics listed above are called embedded systems.

This definition includes some fuzziness. However, it seems to be neither neces-
sary nor possible to remove this fuzziness.

1.5 Curriculum Integration of Embedded Systems,
CPS, and IoT

Unfortunately, embedded systems are hardly covered in the 2013 edition of the
Computer Science Curriculum, as published by ACM and the IEEE Computer
Society [10]. However, the growing number of applications results in the need for
more education in this area. This education should help overcome the limitations of
currently available design technologies. Surveys of requirements and approaches
to CPS education have been published by the National Academies of Sciences,

1.5 Curriculum Integration of Embedded Systems, CPS, and IoT 19

Engineering, and Medicine [409] and by Marwedel et al. [379]. There is still a
need for better specification languages, models, tools generating implementations
from specifications, timing verifiers, system software, real-time operating systems,
low-power design techniques, and design techniques for dependable systems. This
book should help in teaching the essential issues and should be a stepping stone for
starting more research in the area. Additional information related to the book can
be obtained from the following web page: http://ls12-www.cs.tu-dortmund.de/~
marwedel/es-book

This page includes links to slides, videos, simulation tools, error corrections, and
other related materials. Videos are directly accessible from: https://www.youtube.
com/user/cyphysystems

Users of this material who discover errors or who would like to make
comments on how to improve the material should send an e-mail to:
peter.marwedel@tu-dortmund.de

Due to the availability of this book and of videos, it is feasible and recommended
to try out flipped classroom teaching [375]. With this style of teaching, students
are requested to watch the videos (or read the book) at home. The presence of the
students in the classroom is then used to interactively solve problems. This helps to
strengthen problem-solving competences, team work, and social skills. In this way,
the availability of the Internet is exploited to improve teaching methods for students
actually present at their university. Assignments could use the information in this or
in complementary books (e.g., [593], [81], and [174]).

With flipped classroom teaching, existing lab session slots can be completely
dedicated to gaining some practical experience with CPS. Toward this end, a course
using this textbook should be complemented by an exciting lab, using, for example,
small robots, such as Lego Mindstorms™ or micro-controllers (e.g., Raspberry
Pie, Arduino, or Odroid). For micro-controller boards which are available on the
market, educational material is typically available. Another option is to let students
gain some practical experience with finite state machine tools. Teaching from this
book should be complemented by a course on machine learning (or data analysis)
[188, 204, 453, 560], since the (possibly noisy) values returned by sensors must be
interpreted.

1.5.1 Prerequisites

The book assumes a basic understanding in several areas:

• Computer programming (including foundations of software engineering and
some experiences with programming of micro-controllers)

• Algorithms (graph algorithms, optimization algorithms, algorithm complexity)
• Computer organization, for example, at the level of the introductory book by J.L.

Hennessy and D.A. Patterson [212], including finite state automata
• Fundamentals of operating systems

http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book
http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book
https://www.youtube.com/user/cyphysystems
https://www.youtube.com/user/cyphysystems

20 1 Introduction

data
analysis

cations
...

middle-
ware

gramming
OS &
networks

+courses
for minor

graduates

undergraduates

appli-roboticscontrol
systems

mentals
EE funda-

real-time
systems

....

vision
machinedigital signal

processing

pro-
algorithms

math
education

computer
organization

thesis

project

lab

cyber-physical and IoT systems
embedded system fundamentals of

Fig. 1.7 Positioning of the topics of this book

• Fundamentals of computer networks (important for IoT!)
• Fundamental mathematical concepts (tuples, integrals, and linear algebra)
• Electrical networks and fundamental digital circuits such as gates and registers

These prerequisites can be grouped into the courses in the top row of Fig. 1.7.
Missing fundamental knowledge on electrical circuits, operational amplifiers,

memory management, and integer linear programming can be compensated by
reading appendices of this book. Knowledge in statistics and Fourier transforms
are welcome.

1.5.2 Recommended Additional Courses

The book should be complemented by follow-up courses providing a more special-
ized knowledge in some of the following areas (see the bottom row in Fig. 1.7):7

• Control systems
• Digital signal processing
• Machine vision
• Real-time systems, real-time operating systems, and scheduling
• Robotics
• Application areas such as telecommunications, automotive, medical equipment,

and smart homes
• Middleware

7The partitioning between undergraduate courses and graduate courses may differ between
universities.

1.6 Design Flows 21

• Specification languages and models for embedded systems
• Sensors and actuators
• Dependability of computer systems
• Low-power design techniques
• Physical aspects of CPS
• Computer-aided design tools for application-specific hardware
• Formal verification of hardware systems
• Testing of hardware and software systems
• Performance evaluation of computer systems
• Ubiquitous computing
• Advanced communication techniques for IoT
• The Internet of Things (IoT)
• Impact of embedded, CPS, and IoT systems
• Legal aspects of embedded, CPS, and IoT systems

1.6 Design Flows

The design of the considered systems is a rather complex task, which has to be
broken down into a number of subtasks to be tractable. These subtasks must be
performed one after the other and some of them must be repeated.

The design information flow starts with ideas in people’s heads. These ideas
should incorporate knowledge about the application area. They must be captured
in a design specification. In addition, standard hardware and system software
components are typically available and should be reused whenever possible (see
Fig. 1.8). In Fig. 1.8 (as well as in other similar diagrams in this book), we are
using boxes with rounded corners for stored information and rectangles for
transformations on information. In particular, information is stored in the design
repository. The repository allows keeping track of design models. In most cases,
the repository should provide version management or “revision control,” such as
CVS [87], SVN [108], or “git” (see https://www.git-scm.com). A good design
repository should also come with a design management interface which would also
keep track of the applicability of design tools and sequences, all integrated into
a comfortable graphical user interface (GUI). The design repository and the GUI
can be extended into an integrated development environment (IDE), also called
design framework (see, e.g., [345]). An integrated development environment keeps
track of dependencies between tools and design information.

Using the repository, design decisions can be taken in an iterative fashion. At
each step, design model information must be retrieved. This information is then
considered.

During design iterations, applications are mapped to execution platforms,
and new (partial) design information is generated. The generation comprises the
mapping of operations to concurrent tasks, the mapping of operations to either

https://www.git-scm.com

22 1 Introduction

test

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

test

(RTOS, ...)

HW-components

ap
pl

ic
at

io
n

mapping
application

Fig. 1.8 Simplified design information flow

hardware or software (called hardware/software partitioning), compilation, and
scheduling.

Designs should be evaluated with respect to various objectives including
performance, dependability, energy consumption, and thermal behavior. At the
current state of the art, usually none of the design steps can be guaranteed to be
correct. Therefore, it is also necessary to validate the design. Validation consists of
checking intermediate or final design descriptions against other descriptions. Thus,
each design decision should be evaluated and validated.

Due to the importance of the efficiency of embedded systems, optimizations
are important. There are a large number of possible optimizations, including high-
level transformations (such as advanced loop transformations) and energy-oriented
optimizations.

Design iterations could also include test generation and an evaluation of the
testability. Testing needs to be included in the design iterations if testability issues
are already considered during the design steps. In Fig. 1.8, test generation has been
included as optional step of design iterations (see the dashed box). If test generation
is not included in the iterations, it must be performed after the design has been
completed.

At the end of each step, the repository should be updated. Version support would
be welcome.

Details of the flow between the repository, application mapping, evaluation, vali-
dation, optimization, testability considerations, and storage of design information
may vary. These actions may be interleaved in many different ways, depending
on the design methodology used. This book presents embedded system design
from a broad perspective, and it is not tied toward particular design flows or tools.
Therefore, we have not indicated a particular list of design steps. For any particular
design environment, we can “unroll” the loop in Fig. 1.8 and attach names to
particular design steps.

For example, this leads to the particular case of the SpecC [173] design flow
shown in Fig. 1.9. In this case, a particular set of design steps, such as architecture
exploration, communication synthesis, and software and hardware compilation are
included. The precise meaning of these terms is not relevant in this book. In the case

1.6 Design Flows 23

specification
model

architecture
model

communication
model

implementation
model

simulation,
architecture
exploration,

evaluation, validation

simulation,
communication

synthesis,
evaluation, validation

simulation,
hardware compilation,
software compilation,
evaluation, validation

m
an

u
-

fa
ct

ur
in

g

Fig. 1.9 Design flow for SpecC tools (simplified)

Requirements analysis

System architecture

System design

Software architecture

Software design

Unit tests

Integration testing

System integration

Acceptance & use

Fig. 1.10 Design flow for the V-model

of Fig. 1.9, validation and evaluation are explicitly shown for each of the steps but
are wrapped into one larger box.

A second instance of an unfolded Fig. 1.8 is shown in Fig. 1.10. It is the V-model
of design flows [550], which has to be adhered to for many German IT projects.

The model is used especially in the public sector but also beyond. Figure 1.10
very clearly shows the different steps that must be performed. The steps correspond
to certain phases during the software development process (the precise meaning is
again not relevant in the context of this book). Note that taking design decisions
and evaluating and validating designs are lumped into a single box in this diagram.
Application knowledge, system software, and system hardware are not explicitly
shown. The V-model also includes a model of the integration and testing phase
(right “wing”) of the diagram. This corresponds to an inclusion of testing into the
integration phase. The shown model corresponds to the V-model version “97”. The
more recent V-model XT allows a more general set of design steps. This change
matches very well to our interpretation of design flows in Fig. 1.8. Other iterative
approaches include the waterfall model and the spiral model. More information
about software engineering for embedded systems can be found in a book by J.
Cooling [109].

Our generic design flow model is also consistent with flow models used in
hardware design. For example, Gajski’s Y-chart [171] (see Fig. 1.11) is a very

24 1 Introduction

Fig. 1.11 Gajski’s Y-chart
and design path (red, bold)

Behavioral Structural

Geometrical

high level of abstraction

low level of abstraction

design path

popular model. Gajski considers design information in three dimensions: behavior,
structure, and layout. The first dimension just reflects the behavior. A high-level
model would describe the overall behavior, while finer-grained models would
describe the behavior of components. Models at the second dimension include
structural information, such as information about hardware components. High-
level descriptions in this dimension could correspond to processors and low-level
descriptions to transistors. The third dimension represents geometrical layout infor-
mation of chips. Design paths will typically start with a coarse-grained behavioral
description and finish with a fine-grained geometrical description. Along this path,
each step corresponds to one iteration of our generic design flow model. In the
example of Fig. 1.11, an initial refinement is done in the behavioral domain. The
second design step maps the behavior to structural elements and so on. Finally, a
detailed geometrical description of the chip layout is obtained.

The previous three diagrams demonstrate that a number of design flows are using
the iterative flow of Fig. 1.8. The nature of the iterations in Fig. 1.8 can be a source
of discussions. Ideally, we would like to describe the properties of our system and
then let some smart tool do the rest. Automatic generation of design details is called
synthesis.

Definition 1.12 (Marwedel [370]) “Synthesis is the process of generating the
description of a system in terms of related lower-level components from some high-
level description of the expected behavior.”

Automatic synthesis is assumed to perform this process automatically. Automatic
synthesis, if successful, avoids many manual design steps. The goal of using
automatic synthesis for the design of systems has been considered in the “describe-
and-synthesize” paradigm by Gajski [172]. This paradigm is in contrast to the more
traditional “specify-explore-refine” approach, also known as “design-and-simulate”
approach. The second term stresses the fact that manual design typically has to be
combined with simulation, for example, for catching design errors. In the traditional
approach, simulation is more important than in automatic synthesis.

1.7 Structure of This Book 25

1.7 Structure of This Book

Consistent with the design information flow shown above, this book is structured as
follows: Chapter 2 provides an overview of specification techniques, languages, and
models. Key hardware components of embedded systems and the cyphy-interface
are presented in Chap. 3. Chapter 4 deals with system software components, partic-
ularly embedded operating systems. Chapter 5 contains the essentials of embedded
system design evaluation and verification. Mapping applications to execution
platforms is one of the key steps in the design process of embedded systems.
Standard techniques (including scheduling) for achieving such mapping are listed
in Chap. 6. Due to the need for generating efficient designs, many optimization
techniques are needed. From among the abundant set of available optimization
techniques, several groups are mentioned in Chap. 7. Chapter 8 contains a brief
introduction to testing mixed hardware/software systems. The Appendix comprises
prerequisites for understanding the book, and it can be skipped by students familiar
with the topics covered there.

It may be necessary to design special-purpose hardware or to optimize processor
architectures for a given application. However, hardware design is not covered in
this book. Coussy and Morawiec [113] provide an overview of high-level hardware
synthesis techniques.

The content of this book is different from the content of most other books on
embedded systems or CPS design. Traditionally, the focus of many such books is on
explaining the use of micro-controllers, including their memory, I/O, and interrupt
structure. There are many such books [38, 175–177, 279, 317, 425]. We believe
that, due to the increasing complexity of embedded and cyber-physical systems,
this focus has to be extended to include at least different specification paradigms,
fundamentals of hardware building blocks, the mapping of applications to execution
platforms, as well as evaluation, validation, and optimization techniques. In the
current book, we will be covering all these areas. The goal is to provide students
with an introduction to embedded systems and CPS, enabling students to put the
different areas into perspective.

For further details, we recommend a number of sources (some of which have also
been used in preparing this book):

• Symposia dedicated toward embedded/cyber-physical systems include the
Embedded Systems Week (see http://www.esweek.org) and the Cyber-Physical
Systems Week (see http://www.cpsweek.org).

• The web site of the virtual CPS Organization in the USA contains numerous links
to current projects and their results [115].

• The web page of a special interest group of ACM [9] focuses on embedded
systems.

• The web site of the European network of excellence on embedded and real-time
systems [25] also provides numerous links for the area.

• A book written by Edward Lee et al. also includes physical aspects of cyber-
physical systems [335].

http://www.esweek.org
http://www.cpsweek.org

26 1 Introduction

• Approaches for embedded system education are covered in the Workshops on
Embedded Systems Education (WESE; see [89] for results from the workshop
held in 2018) and in proceedings of the first (and only) Workshop on CPS
Education [424].

• Other sources of information about embedded systems include books by Laplante
[322], Vahid [552], the ARTIST road map [63], the “Embedded Systems
Handbook” [614], and books by Gajski et al. [174], and Popovici et al. [457].

• There are a large number of sources of information on specification languages.
These include earlier books by Young [609], Burns and Wellings [80], Bergé
[567], and de Micheli [124]. There are a huge amount of information on
languages such as SystemC [407], SpecC [173], and Java [71, 131, 574].

• Real-time scheduling is covered comprehensively in the books by Buttazzo [81],
by Krishna and Shin [310], and by Baruah et al. [41].

• Approaches for designing and using real-time operating systems (RTOSes) are
presented in a book by Kopetz [303].

• Robotics is an area that is closely linked to embedded and cyber-physical
systems. We recommend the book by Siciliano et al. [487] for information on
robotics.

• There are specialized books and articles on the Internet of Things [185, 192, 193].
• Languages and verification are covered in a book by Haubelt and Teich (in

German) [206].

1.8 Problems

We suggest solving the following problems either at home or during a flipped
classroom session [375].

1.1 Please list possible definitions of the term “embedded system”!

1.2 How would you define the term “cyber-physical system (CPS)”? Do you
see any difference between the terms “embedded systems” and “cyber-physical
systems”?

1.3 What is the “Internet of Things” (IoT)?

1.4 What is the goal of “Industry 4.0”?

1.5 In which way does this book cover CPS and IoT design?

1.6 In which application areas do you see opportunities for CPS and IoT systems?
Where do you expect major changes caused by information technology?

1.7 Use the sources available to you to demonstrate the importance of embedded
systems!

1.8 Which challenges must be overcome in order to fully take advantage of the
opportunities?

1.8 Problems 27

1.9 What is a hard timing constraint? What is a soft timing constraint?

1.10 What is the “Zeno effect”?

1.11 What is adaptive sampling?

1.12 Which objectives must be considered during the design of embedded and
cyber-physical systems?

1.13 Why are we interested in energy-aware computing?

1.14 What are the main differences between PC-based applications and embed-
ded/CPS applications?

1.15 What is a reactive system?

1.16 On which web sites do you find companion material for this book?

1.17 Compare the curriculum of your educational program with the description
of the curriculum in this introduction. Which prerequisites are missing in your
program? Which advanced courses are available?

1.18 What is flipped classroom teaching?

1.19 How could we model design flows?

1.20 What is the “V-model”?

1.21 How could we define the term “synthesis”?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Specifications and Modeling

How can we describe the system which we would like to design and how can we
represent intermediate design information? Models and description techniques for
initial specifications as well as for intermediate design information will be shown
in this chapter. First of all, we will capture requirements for modeling techniques.
Next, we will provide an overview of models of computation. This will be followed
by a presentation of popular models of computations, in combination with examples
of the corresponding languages. The presentation includes models for early design
phases, automata-based models, data-flow, Petri nets, discrete event models, von
Neumann languages, and abstraction levels for hardware modeling. Finally, we will
compare different models of computation and present exercises.

2.1 Requirements

Consistent with the simplified design flow (see Fig. 1.8), we will first of all describe
requirements and approaches for specifying embedded and cyber-physical systems.
Specifications for such systems provide models of the system under design (SUD).
Models can be defined as follows:

Definition 2.1 (Jantsch [268]) “Amodel is a simplification of another entity, which
can be a physical thing or another model. The model contains exactly those
characteristics and properties of the modeled entity that are relevant for a given
task. A model is minimal with respect to a task if it does not contain any other
characteristics than those relevant for the task”.

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_2

30 2 Specifications and Modeling

Models are described in languages. Languages should be capable of representing
the following features:1

• Hierarchy: Humans generally cannot comprehend systems containing many
objects (states, components) having complex relations with each other. The
description of all real-life systems needs more objects than humans can under-
stand. Hierarchy (in combination with abstraction) is a key mechanism helping
to solve this dilemma. Hierarchies can be introduced such that humans need to
handle only a small number of objects at any time.

There are two kinds of hierarchies:

– Behavioral hierarchies: Behavioral hierarchies are hierarchies containing
objects necessary to describe the system behavior. States, events, and output
signals are examples of such objects.

– Structural hierarchies: Structural hierarchies describe how systems are
composed of physical components.

For example, embedded systems can be comprised of components such
as processors, memories, actuators, and sensors. Processors, in turn, include
registers, multiplexers, and adders. Multiplexers are composed of gates.

• Component-based design [489]: It must be “easy” to derive the behavior of a
system from the behavior of its components. If two components are connected,
the resulting new behavior should be predictable. For example, suppose that
we add another component (say, some GPS unit) to a car. The impact of the
additional component on the overall behavior of the system (including buses,
etc.) should be predictable.

• Concurrency: Real-life systems are distributed, concurrent systems composed
of components. It is therefore necessary being able to specify concurrency
conveniently. Unfortunately, humans are not very good at understanding con-
current systems, and many problems with real systems are actually a result of an
incomplete understanding of possible behaviors of concurrent systems.

• Synchronization and communication: Components must be able to com-
municate and to synchronize. Without communication, components could not
cooperate, and we would use each of them in isolation. It must also be possible
to agree on the use of resources. For example, it is necessary to express mutual
exclusion.

• Timing behavior: Many embedded and cyber-physical systems are real-time
systems. Therefore, explicit timing requirements are one of the characteristics
of such systems. The need for explicit modeling of time is very obvious
from the term “cyber-physical system.” Time is one of the key dimensions in
physics. Hence, timing requirements must be captured in the specification of
embedded/cyber-physical systems.

1Information from the books of Burns et al. [80], Bergé et al. [567], and Gajski et al. [172] is used
in this list.

2.1 Requirements 31

However, standard theories in computer science model time only in a very
abstract way. The O-notation is one of the examples.2 This notation just reflects
growth rates of functions. It is frequently used to model run-times of algorithms,
but it fails to describe real execution times. In physics, quantities have units,
but the O-notation does not even have units. So, it would not distinguish between
femtoseconds and centuries. A similar remark applies to termination properties of
algorithms. Standard theories are concerned with proving that a certain algorithm
eventually terminates. For real-time systems, we need to show that certain
computations are completed in a given amount of time, but the algorithm as a
whole should possibly run until power is turned off.

According to Burns and Wellings [80], modeling time must be possible in the
following four contexts:

– Techniques for measuring elapsed time:
For many applications, it is necessary to check how much time has elapsed
since some computation was performed. Access to a timer would provide a
mechanism for this.

– Means for delaying of processes3 for a specified time:
Typically, real-time languages provide some delay construct. Unfortunately,
typical implementations of embedded systems in software do not guarantee
precise delays. Let us assume that process τ should be delayed by some
amount �. Usually, this delay is implemented by changing τ ’s state in
the operating system from “ready” or “run” to “suspended.” At the end of
this time interval, τ ’s state is changed from “suspended” to “ready.” This does
not mean that the process actually executes. If some higher-priority task is
executing or if preemption is not used, the delay will be larger than �.

– Possibility to specify timeouts:
There are many situations in which we must wait for a certain event to occur.
However, this event may actually not occur within a given time interval, and
we would like to be notified about this. For example, we might be waiting
for a response from some network connection. We would like to be notified
if this response is not received within some amount of time, say �. This
is the purpose of timeouts. Real-time languages usually also provide some
timeout construct. Implementations of timeouts frequently come with the
same problems which we mentioned for delays.

– Methods for specifying deadlines and schedules:
For many applications, it is necessary to complete certain computations in a
limited amount of time. For example, if the sensors of some car signal an
accident, airbags must be ignited within about 10 ms. In this context, we must
guarantee that the software will decide whether or not to ignite the airbags
in that given amount of time. The airbags could harm passengers if they go

2We assume that readers are familiar with this notation, as explained on p. 19.
3Processes are programs currently being executed; see Definition 2.3.

32 2 Specifications and Modeling

off too late. Unfortunately, most languages do not allow to specify timing
constraints. If they can be specified at all, they must be specified in separate
control files, pop-up menus, etc. But the situation is still bad even if we are
able to specify these constraints: many modern hardware platforms do not
have a very predictable timing behavior. Caches, stalled pipelines, speculative
execution, process preemption, interrupts, etc. may have an impact on the
execution time which is very difficult to predict. Accordingly, timing analysis
(verifying the timing constraints) is a very hard design task.

• State-oriented behavior: It was already mentioned in Chap. 1 on p. 17 that
automata provide a good mechanism for modeling reactive systems. Therefore,
the state-oriented behavior provided by automata should be easy to describe.
However, classical automata models are insufficient, since they cannot model
timing and since hierarchy is not supported.

• Event-handling: Due to the reactive nature of embedded systems, mechanisms
for describing events must exist. Such events may be external events (caused by
the environment) or internal events (caused by components of the system under
design).

• Exception-oriented behavior: In many practical systems, exceptions do occur.
In order to design dependable systems, it must be possible to describe actions to
handle exceptions easily. It is not acceptable that exceptions must be indicated
for each and every state (such as in the case of classical state diagrams).

Example 2.1 In Fig. 2.1, input k might correspond to an exception.
Specifying this exception at each state makes the diagram very complex. The

situation would get worse for larger state diagrams with many transitions. On
p. 52 we will show how all the transitions can be replaced by a single one (see
Fig. 2.12). ∇

• Presence of programming elements: Popular programming languages have
proven to be a convenient means of expressing computations that must be
performed. Hence, programming language elements should be available in
the specification technique used. Classical state diagrams do not meet this
requirement.

• Executability: Specifications are not automatically consistent with the ideas in
people’s heads. Executing the specification is a means of plausibility checking.
Specifications using programming languages have a clear advantage in this
context.

Fig. 2.1 State diagram with
exception k

m k
Z

k k
k

D
i j

E

f

A B C
hg

k

2.1 Requirements 33

• Support for the design of large systems: There is a trend toward large
and complex embedded software programs. Software technology has found
mechanisms for designing such large systems. For example, object orientation
is one such mechanism. It should be available in the specification methodology.

• Domain-specific support: It would of course be nice if the same specification
technique could be applied to all the different types of embedded systems, since
this would minimize the effort for developing specification techniques and tool
support. However, due to the wide range of application domains including those
listed in Sect. 1.2, there is little hope that one language can be used to efficiently
represent specifications in all such domains. For example, control-dominated,
data-dominated, centralized, and distributed application domains can all benefit
from language features dedicated toward those domains.

• Readability: Of course, specifications must be readable by humans. Otherwise,
it would not be feasible to validate whether or not the specification meets
the real intent of the persons specifying the system under design. All design
documents should also be machine-readable in order to process them in a
computer. Therefore, specifications should be captured in languages which are
readable by humans and by computers.

Initially, such specifications could use a natural language such as English
or Japanese. Even this natural language description should be captured in a
design document, so that the final implementation can be checked against
the original document. However, natural languages are not sufficient for later
design phases, since natural languages lack key requirements for specification
techniques: it is necessary to check specifications for completeness and absence
of contradictions. Furthermore, it should be possible to derive implementations
from the specification in a systematic way. Natural languages do not meet these
requirements.

• Portability and flexibility: Specifications should be independent of specific
hardware platforms so that they can be easily used for a variety of target
platforms. Ideally, changing the hardware platform should have no impact on
the specification. In practice, small changes may have to be tolerated.

• Termination: It should be feasible to identify terminating processes from the
specification. This means that we would like to use specifications for which the
halting problem (the problem of figuring out whether or not a certain algorithm
will terminate; see, e.g., [494]) is decidable.

• Support for non-standard I/O devices: Many embedded systems use I/O
devices other than those typically found in a PC. It should be possible to describe
inputs and outputs for those devices conveniently.

• Non-functional properties: Actual systems under design must exhibit a number
of non-functional properties, such as fault tolerance, size, extendability, expected
lifetime, power consumption, weight, disposability, user-friendliness, and elec-
tromagnetic compatibility (EMC). There is no hope that all these properties can
be defined in a formal way.

34 2 Specifications and Modeling

• Support for the design of dependable systems: Specification techniques should
provide support for designing dependable systems. For example, specification
languages should have unambiguous semantics, facilitate formal verification, and
be capable of describing security and safety requirements.

• No obstacles to the generation of efficient implementations: Since embedded
systems must be efficient, no obstacles prohibiting the generation of efficient
realizations should be present in the specification.

• Appropriate model of computation (MoC): The von Neumann model of
sequential execution combined with some communication technique is a com-
monly used MoC. In this model, specifications will typically consist of tasks,
processes, or threads, which can be defined as follows:

Definition 2.2 ([393]) A task is an “assigned piece of work often to be finished
within a certain time”.

In the context of embedded systems, tasks will typically correspond to computa-
tions that have to be performed.

Definition 2.3 ([525]) A process is a program being executed.

A more precise definition will be provided in Definition 4.1. Sometimes, tasks are
more abstract than processes. In this case, they have to be mapped to processes
within an operating system. However, sometimes the terms “process” and “task”
are used interchangeably. The term “thread” is very similar to the term “process.”

Definition 2.4 A thread is a lightweight process. This means that switching
between the execution of threads causes less overhead than switching between
processes. Usually, threads can communicate with each other via shared memory.

The term “thread” will be more precisely defined in Definition 4.2.
The von Neumann model has a number of serious problems, in particular for

embedded system applications. Problems include:

– Facilities for describing timing are lacking.
– von Neumann computing is implicitly based on accesses to globally shared

memory (such as in Java). It has to guarantee mutually exclusive access to
shared resources. Otherwise, multithreaded applications allowing preemp-
tions at any time can lead to very unexpected program behaviors.4 Using
primitives for ensuring mutually exclusive access can, however, very easily
lead to deadlocks. Possible deadlocks may be difficult to detect and may
remain undetected for many years.

Example 2.2 Edward Lee [331] provided a very alarming example in this
direction. Lee studied implementations of a simple observer pattern in Java.
For this pattern, changes of values must be propagated from some producer to
a set of subscribed observers. This is a very frequent pattern in embedded sys-

4Examples are typically provided in courses on operating systems.

2.1 Requirements 35

tems but is difficult to implement correctly in a multithreaded von Neumann
environment with preemptions. Lee’s code is a possible implementation of the
observer pattern in Java for a multithreaded environment:

public synchronized void addListener(listener) {...}
public synchronized void setValue(newvalue) {

myvalue=newvalue;
for (int i=0; i<mylisteners.length; i++) {
myListeners[i].valueChanged(newvalue);

}
}

Method addListener subscribes new observers; method setValue prop-
agates new values to subscribed observers. In general, in a multithreaded
environment, threads can be preempted any time, resulting in an arbitrarily
interleaved execution of these threads. Adding observers while setValue
is already active could result in complications, i.e., we would not know if
the new value had reached the new listener. Moreover, the set of observers
constitutes a global data structure of this class. Therefore, these methods are
synchronized in order to avoid changing the set of observers while values are
already partially propagated. This way, only one of the two methods can be
active at a given time. This mutual exclusion is necessary to prevent unwanted
interleavings of the execution of methods in a multithreaded environment.
Why is this code problematic? It is problematic since valueChanged could
attempt to get exclusive access to some resource (say, R). If that resource is
allocated to some other method (say, A), then this access is delayed until A
releases R. If A calls (possibly indirectly) addListener or setValue before
releasing R, then these methods will be in a deadlock: setValue waits for
R; releasing R requires A to proceed; A cannot proceed before its call of
setValue or addListener is serviced. Hence, we will have a deadlock.

This example demonstrates the existence of deadlocks resulting from using
multiple threads which can be arbitrarily preempted and therefore require
mutual exclusion for their access to critical resources. Lee showed [331] that
many of the proposed “solutions” of the problem are problematic themselves.
So, even this very simple pattern is difficult to implement correctly in a multi-
threaded von Neumann environment. This example shows that concurrency
is really difficult to understand for humans and there may be the risk of
oversights, even after very rigorous code inspections. ∇

Lee came to the drastic conclusion that “nontrivial software written with
threads, semaphores, and mutexes is incomprehensible to humans” and that
“threads as a concurrency model are a poor match for embedded systems.
. . . they work well only . . . where best-effort scheduling policies are sufficient”
[330].

The underlying reasons for deadlocks have been studied in detail in the con-
text of operating systems (see, e.g., [507]). From this context, it is well-known
that four conditions must hold at run-time to get into a deadlock: mutual

36 2 Specifications and Modeling

exclusion, no preemption of resources, holding resources while waiting for
more, and a cyclic dependency between threads. All four conditions are met
in the above example. The theory of operating systems provides no general
way out of this problem. Rare deadlocks may be acceptable for a PC, but they
are clearly unacceptable for a safety-critical system.

We would like to specify our SUD such that we do not have to care about possible
deadlocks. Therefore, it makes sense to study non-von Neumann MoCs avoiding
this problem. We will study such MoCs from the next section onward. It will be
shown that the observer pattern can be easily implemented in other MoCs.

From the list of requirements, it is already obvious that there will not be any
single formal language meeting all these requirements. Therefore, in practice, we
must live with compromises and possibly also with a mixture of languages (each of
which would be appropriate for describing a certain type of problems). The choice
of the language used for an actual design will depend on the application domain and
the environment in which the design has to be performed. In the following, we will
present a survey of languages that can be used for actual designs. These languages
will demonstrate the essential features of the corresponding MoC.

2.2 Models of Computation

Models of computation (MoCs) describe the mechanism assumed for performing
computations. In the general case, we must consider systems comprising compo-
nents. It is now common practice to strictly distinguish between the computations
performed in the components and communication. This distinction paves the way
for reusing components in different contexts and enables plug-and-play for system
components. Accordingly, we define models of computation as follows [267–
269, 329]:

Definition 2.5 Models of computation (MoCs) define

• Components and the organization of computations in components: Procedures,
processes, functions, and finite state machines are possible components.

• Communication protocols: These protocols describe methods for communica-
tion between components. Asynchronous message passing and rendezvous-based
communication are examples of communication protocols.

Relations between components can be captured in graphs. In such graphs, we
will refer to the computations also as processes or tasks. Accordingly, relations
between these will be captured by task graphs and process networks. Nodes in
the graph represent components performing computations. Computations map input
data streams to output data streams. Computations are sometimes implemented in
high-level programming languages. Typical computations contain (possibly non-
terminating) iterations. In each cycle of the iteration, they consume data from their

2.2 Models of Computation 37

Fig. 2.2 Dependence graph

τ

ττ

τ

τ
2

1 5

43

inputs, process the data received, and generate data on their output streams. Edges
represent relations between components. We will now introduce these graphs at a
more detailed level.

The most obvious relation between computations is their causal dependence:
many computations can only be executed after other computations have terminated.
This dependence is typically captured in dependence graphs. Figure 2.2 shows a
dependence graph for a set of computations.

Definition 2.6 A dependence graph is a directed graph G = (τ, E), where τ is the
set of vertices or nodes and E is the set of edges. E ⊆ τ × τ imposes a relation on
τ . If (τ1, τ2) ∈ E with τ1, τ2 ∈ τ , then τ1 is called an immediate predecessor of τ2,
and τ2 is called an immediate successor of τ1. Let E∗ be the transitive closure of E.
If (τ1, τ2) ∈ E∗, then τ1 is called a predecessor of τ2, and τ2 is called a successor
of τ1.

Such dependence graphs form a special case of task graphs. Task graphs may
contain more information than modeled in Fig. 2.2. For example, task graphs may
include the following extensions of dependence graphs:

1. Timing information: Tasks may have arrival times, deadlines, periods, and
execution times. In order to show them graphically, it may be useful to include
this information in the graphs. However, we will indicate such information
separately from the graphs in this book.

2. Distinction between different types of relations between computations: Prece-
dence relations just model constraints for possible execution sequences. At a
more detailed level, it may be useful to distinguish between constraints for
scheduling and communication between computations. Communication can also
be described by edges, but additional information may be available for each of
the edges, such as the time of the communication and the amount of information
exchanged. Precedence edges may be kept as a separate type of edges, since there
could be situations in which computations must execute sequentially even though
they do not exchange information.

In Fig. 2.2, input and output (I/O) are not explicitly described. Implicitly it
is assumed that computations without any predecessor in the graph might be
receiving input at some time. Also, they might generate output for the successor,
and this output could be available only after the computation has terminated. It
is often useful to describe input and output more explicitly. In order to do this,
another kind of relation is required. Using the same symbols as Thoen [538],
we use partially filled circles for denoting input and output. In Fig. 2.3, partially
filled circles identify I/O edges.

38 2 Specifications and Modeling

Fig. 2.3 Graph including I/O
nodes and edges

τ τ

τ

τ

τ1 5

2

43

Fig. 2.4 Graph including
jobs 1-1 n+JnJJ n

3. Exclusive access to resources: Computations may be requesting exclusive
access to some resource, for example, to some input/output device or some
communication area in memory. Information about necessary exclusive access
should be taken into account during scheduling. Exploiting this information
might, for example, be used to avoid the priority inversion problem (see p. 213).
Information concerning exclusive access to resources can be included in the
graphs.

4. Periodic schedules: Many computations, especially in digital signal processing,
are periodic. This means that we must distinguish more carefully between a task
and its execution (the latter is frequently called a job [347]).5 Graphs for such
schedules are infinite. Figure 2.4 shows a graph including jobs Jn−1 to Jn+1 of a
periodic task.

5. Hierarchical graph nodes: The complexity of the computations denoted by
graph nodes may be quite different. On the one hand, specified computations may
be quite involved and contain thousands of lines of program code. On the other
hand, programs can be split into small pieces of code so that in the extreme
case, each of the nodes corresponds only to a single operation. The graph node
complexity is also called their granularity. Which granularity should be used?
There is no universal answer to this. For some purposes, the granularity should
be as large as possible. For example, if we consider each of the nodes as one
process to be scheduled by a real-time operating system (RTOS), it may be wise
to work with large nodes in order to minimize context switches between different
processes. For other purposes, it may be better to work with nodes modeling just a
single operation. For example, nodes must be mapped to hardware or to software.
If a certain operation (such as the frequently used discrete cosine transform, or
DCT) can be mapped to special-purpose hardware, then it should not be buried in
a complex node that contains many other operations. It should rather be modeled
as its own node. In order to avoid frequent changes of the granularity, hierarchical
graph nodes are very useful. For example, at a high hierarchical level, the nodes
may denote complex tasks, at a lower-level basic blocks,6 and at an even lower-

5This term will be defined more precisely in Definitions 4.4 and 6.1.
6Basic blocks are code blocks of maximum length not including any branch except possibly at
their end and not being branched into.

2.2 Models of Computation 39

Fig. 2.5 Hierarchical task
graph 2

1 5

43

τ

τ

τ

τ

τ

level individual arithmetic operations. Figure 2.5 shows a hierarchical version of
the dependence graph in Fig. 2.2, using a rectangle to denote a hierarchical node.

As indicated above, MoCs can be classified according to the models of communi-
cation (reflected by edges in the task graphs) and the model of computations within
the components (reflected by the nodes in the task graphs). In the following, we will
explain prominent examples of such models:

• Models of communication:
We distinguish between two communication paradigms: shared memory and

message passing. Other communication paradigms exist (e.g., entangled states
in quantum mechanics [62]), but are not considered in this book.

– Shared memory: For shared memory, communication is performed by
accesses to the same memory from all components. Access to shared memory
should be protected, unless access is restricted to reads. If writes are involved,
exclusive access to the memory must be guaranteed while components are
accessing shared memories. Segments of program code, for which exclusive
access must be guaranteed, are called critical sections. Mechanisms for
guaranteeing exclusive access to resources include semaphores, mutexes,
conditional critical regions, monitors, and spin locks (see books on operating
systems like Stallings [507]). Shared memory-based communication can be
fast but is difficult to implement in multiprocessor systems without a common
physical memory.

– Message passing: In this case, messages are sent and received. Message
passing can be implemented easily even if no common memory is available.
However, message passing is generally slower than shared memory-based
communication. We distinguish between three kinds of message passing:

· Asynchronous message passing, also called non-blocking communi-
cation: In asynchronous message passing, components communicate by
sending messages through channels which can buffer the messages. The
sender does not need to wait for the recipient to be ready to receive
the message. In real life, this corresponds to sending a letter or an e-
mail. A potential problem is the fact that messages must be stored and
that message buffers can overflow. There are variations of this scheme,
including communicating finite state machines (see p. 62) and data-flow
models (see p. 68).

· Synchronous message passing or blocking communication, rendezvous-
based communication: In synchronous message passing, available com-

40 2 Specifications and Modeling

ponents communicate in atomic, instantaneous actions called rendezvous.
The component reaching the point of communication first has to wait
until the partner has also reached its point of communication. In real life,
this corresponds to physical meetings or phone calls. There is no risk of
overflows, but performance may suffer. Examples of languages following
this model of computation include CSP (see p. 110) and Ada (see p. 111).

· Extended rendezvous, remote invocation: In this case, the sender is
allowed to continue only after an acknowledgment has been received from
the recipient. The recipient does not have to send this acknowledgment
immediately after receiving the message but can do some preliminary
checking before actually sending the acknowledgment.

• Organization of computations within the components:

– Differential equations: Differential equations are capable of modeling analog
circuits and physical systems. Hence, they can find applications in cyber-
physical system modeling.

– Finite state machines (FSMs): This model is based on the notion of a finite
set of states, inputs, outputs, and transitions between states. Several of these
machines may need to communicate, forming so-called communicating finite
state machines (CFSMs).

– Data flow: In the data-flow model, the availability of data triggers the possible
execution of operations.

– Discrete event model: In this model, there are events carrying a totally
ordered time stamp, indicating the time at which the event occurs. Discrete
event simulators typically contain a global event queue sorted by time. Entries
from this queue are processed according to this order. The disadvantage is that
this model relies on a global notion of event queues, making it difficult to map
the semantic model onto parallel implementations. Examples include VHDL
(see p. 98), SystemC (see p. 97), and Verilog (see p. 109).

– von Neumann model: This model is based on the sequential execution of
sequences of primitive computations.

• Combined models: Actual languages are typically combining a certain model
of communication with an organization of computations within components. For
example, StateCharts (see p. 51) combines finite state machines with shared
memories. SDL (see p. 62) combines finite state machines with asynchronous
message passing. Ada (see p. 111) and CSP (see p. 111) combine von Neumann
execution with synchronous message passing. Table 2.1 gives an overview of
combined models most of which we will consider in this chapter. This table also
includes examples of languages for many of the MoCs.

Let us look at MoCs with a defined model for computations within compo-
nents. For differential equations, Modelica [399], commercial languages such as
Simulink® [533], and the extension VHDL-AMS [245] of the hardware description
language VHDL are examples of languages.

2.2 Models of Computation 41

Table 2.1 Overview of MoCs and languages considered

Communication/ Message passing
organization of components Shared memory Synchronous Asynchronous

Undefined components Plain text or graphics, use cases

(Message) sequence charts

Differential equations Modelica, Simulink®, VHDL-AMS

Communicating finite StateCharts SDL
state machines (CFSMs)

Data flow Scoreboarding, Kahn networks
Tomasulo algorithm SDF

Petri nets C/E nets, P/T nets, . . .

Discrete event (DE) VHDL, Verilog (Only experimental systems)
modela SystemC Distributed DE in Ptolemy

von Neumann C, C++, Java C, C++, Java, . . . with libraries
model CSP, Ada

aThe classification of VHDL, Verilog, and SystemC is based on the implementation of these
languages in simulators. Message passing can be modeled in these languages “on top” of the
simulation kernel

Scoreboarding and the Tomasulo algorithm are data flow-driven techniques for
dynamically scheduling instructions in computer architectures. They are described
in books in computer architecture (see, e.g., Hennessy and Patterson [211]) and not
presented in this book.

Some MoCs have advantages in certain application areas, while others have
advantages in others. Choosing the “best” MoC for a certain application may be
difficult. Being able to mix MoCs (such as in the Ptolemy framework [120, 460]) can
be a way out of this dilemma. Also, models may be translated from one MoC into
another one. Non-von Neumann models are frequently translated into von Neumann
models. The distinction between the different models is blurring if the translation
between them is easy.

Designs starting from non-von Neumann models are frequently called model-
based designs [421]. The key idea of model-based design is to have some abstract
model of the system under design (SUD). Properties of the SUD can then be studied
at the level of this model, without having to care about software code. Software
code is generated only after the behavior of the model has been studied in detail,
and this software is generated automatically [477]. The term “model-based design”
is usually associated with models of control systems, comprising traditional control
system elements such as integrators, differentiators, etc. However, this view may be
too restricted, since we could also start with abstract models of consumer systems.

In the following, we will present different MoCs, using existing languages as
examples for demonstrating their features. A related (but shorter) survey is provided
by Edwards [147]. For a more comprehensive presentation, see [187].

42 2 Specifications and Modeling

2.3 Early Design Phases

The very first ideas about systems are frequently captured in a very informal way,
possibly on paper. Frequently, only descriptions of the SUD in a natural language
such as English or Japanese exist in the early phases of design projects. They
are typically using a very informal style. These descriptions should be captured
in some machine-readable document. They should be encoded in the format of
some word processor and stored by a tool managing design documents. A good
tool would allow links between the requirements, a dependence analysis as well as
version management. DOORS® [228] exemplifies such a tool.

2.3.1 Use Cases

For many applications, it is beneficial to envision potential usages of the SUD. This
way, we can make sure that the final system performs as expected in the envisioned
context. Usages are captured in use cases. Use cases describe possible applications
of the SUD. Different notations for use cases could be used.

Support for a systematic approach to early specification phases is the goal of the
so-called UML™ standardization effort [166, 207, 432]. UML stands for “Unified
Modeling Language.” UML was designed by leading software technology experts
and is supported by commercial tools. UML primarily aims at the support of the
software design process. UML provides a standardized form for use cases.

For use cases, there is neither a precisely specified model of the computations
nor a precisely specified model of the communication. It is frequently argued that
this is done intentionally in order to avoid caring about too many details during the
early design phases. Nevertheless, attempts have been made to define the semantics
more formally.

Example 2.3 Figure 2.6 shows some use cases for an answering machine.7 There
are five use cases for the owner of the answering machine and one for potential
callers. We have to make sure that all six use cases can be implemented correctly.∇

Use cases identify different classes of users as well as the applications to be
supported by the SUD. In this way, it is possible to capture expectations at a very
high level.

7We assume that UML is covered in depth in a software engineering course included in the
curriculum. Therefore, UML is only briefly discussed in this book.

2.3 Early Design Phases 43

Owner

Caller

Turn answering machine off

Turn answering machine on

Erase all messages

Erase last message

Play next message

Welcome+beep+voice mail

Fig. 2.6 Use case example

2.3.2 (Message) Sequence Charts and Time/Distance Diagrams

At a more detailed level, we might want to explicitly indicate the sequences of
messages which must be exchanged between components in order to implement
some use of the SUD. Sequence charts (SCs)—earlier called message sequence
charts (MSCs)—provide a mechanism for this. Sequence charts use one dimension
(usually the vertical dimension) of a two-dimensional chart to denote sequences
and the second dimension to reflect the different communication components. SCs
describe partial orders between message transmissions, and they display a possible
behavior of a SUD. SCs are also standardized in UML. UML 2.0 has extended SCs
with elements allowing a more detailed description than UML 1.0.

Example 2.4 Figure 2.7 shows one of the use cases of the answering machine as an
example. Dashed lines are so-called lifelines. Messages are assumed to be ordered
according to their sequence along the lifeline. We assume that, in this example, all
information is sent in the form of messages. Arrows used in this diagram denote
asynchronous messages. This means several messages can be sent by a sender
without waiting for the receipt to be confirmed. Boxes on top of lifelines represent
active control at the corresponding component. In the example, the answering
machine is waiting for the user to pick up the phone within a certain amount of
time. If he or she fails to do so, the machine signals a pick-up itself and sends a
welcome message to the caller. The caller is then supposed to leave a voice-mail
message. Alternative sequences (e.g., an early termination of the call by the caller
or the callee picking up the phone) are not shown. ∇

Complex control-dependent actions cannot be described by SCs. Other MoCs
must be used for this. Frequently, certain preconditions must be met for a SC to
apply. Such preconditions, a distinction between sequences which might happen and
those which must happen, as well as other extensions are available in the so-called
Live Sequence Charts [117].

44 2 Specifications and Modeling

transmit voice mail
voice mail

return hand-set
signal end of call

transmit beep

signal pick-up wait

signal call

type numbers

:Caller :Phone :Answering machine

Calling an answering machine

beep

send welcomewelcome

Fig. 2.7 Answering machine in UML™

Fig. 2.8 Time/distance
diagram

t

ParisBrusselsAmsterdamAachenCologne

Time/distance diagrams (TDDs) are a commonly used variant of SCs. In
time/distance diagrams, the vertical dimension reflects real time, not just sequence.
In some cases, the horizontal dimension also models the real distance between the
components. TDDs provide the right means for visualizing schedules of trains or
buses.

Example 2.5 Figure 2.8 exemplifies modeling a schedule of trains between Ams-
terdam, Cologne, Brussels, and Paris using a TDD. Trains can run from either
Amsterdam or Cologne to Paris via Brussels. Aachen is included as an intermediate
stop between Cologne and Brussels. Vertical segments correspond to times spent
at stations. For one of the trains, there is a timing overlap between the trains
coming from Cologne and Amsterdam at Brussels. There is a second train which
travels between Paris and Cologne which is not related to an Amsterdam train.
This example and other examples can be simulated with the levi simulation software
[498].

2.3 Early Design Phases 45

.40

.50

12.00

1828

.20

.30

43065

835
950

.30

.40

.50

11.00

.10

4748

1825

1826

951

47
47

940

53857

44063

4758

653

2154

18
27

3965

1941

2143

51459

4923

49

49
26

18
29

9664

830

1952

37

1951

.30

.40

.50

11.00

.10

.20

.30

.40

.50

12.00

51362

3846

44
05

8

53856

43966

43854

38

44
16

8

53964
V

I

B
R

S
G

A
A

IS V
A

R

M
O

G
N

P
R

E

D
O

D
O

II

10.00

.10

.20

53837

2133

3945

9

51452

43835
51439

2144

44148

44043

51342
53944

513

49
24

43946831

53025

1822

1942

4921

6

832

53065

T
H

G
W

S
P

R
E

IK

W
E

N
F

R
F

R
S

P

F
R

D

S
T

G
E

10.00

.10

.20

53836

826

43855

94038

941
43045

47
37

833

53045

43834

44153
3

44
03

81824

Fig. 2.9 Railway traffic displayed by a time/distance diagram (courtesy H. Brändli, IVT, ETH
Zürich), ©ETH Zürich

Example 2.6 A larger, more realistic example is shown in Fig. 2.9. This example
[224] describes simulated Swiss railway traffic in the Lötschberg area. Different
station names are shown along the horizontal lines. The vertical dimension reflects
real time. Slow and fast trains can be distinguished by their slope in the graph.
Slow trains are characterized by steep slopes, possibly also containing significant
waiting time at the stations (vertical slopes). For fast trains, slopes are almost flat.
Trains are stopping only at a subset of the stations. In the presented example,
it is not known whether the timing overlap at stations happens coincidentally or
whether some real synchronization for connecting trains is required. Furthermore,
permissible deviations from the schedule (min/max timing behavior) are not visible.
∇

SCs and TDDs are very frequently used in practice. For example, they are
valuable for applications of the IoT. One of the key distinctions between SCs and
TDDs is that SCs do not include any reference to real time. TDDs are appropriate
means for representing typical schedules. However, SCs and TDDs both fail to
provide information about necessary synchronization.

46 2 Specifications and Modeling

UML was initially not designed for real-time applications. UML 2.0 includes
timing diagrams as a special class of diagrams. Such diagrams enable referring to
physical time, similar to TDDs. Also, certain UML “profiles” (see p. 121) allow
additional annotations to refer to time [368].

2.3.3 Differential Equations

Differential equations can be written in the language of mathematics. Inputs for
design tools typically require certain variants of this language. We exemplify such a
variant with Modelica [399], a language aiming at modeling cyber-physical systems.
Modelica has graphical as well as textual forms. Using the graphical form, systems
can be described as sets of interconnected blocks. Each block can be described by
equations. Connections between blocks denote common variables in the sense of
mathematics. The information about each block together with information about
connections can be transformed into a global set of equations. This process is called
flattening of the hierarchy. Just like in mathematics, equations (and connections)
have a bidirectional meaning (in contrast to programming languages).

Example 2.7 The following model8 represents the bouncing ball example of p. 11:

model StickyBall
type Height = Real(unit = "m");
type Velocity = Real(unit = "m/s");
parameter Real s = 0.8 "Restitution";
parameter Height h0 = 1.0 "Initial height";
constant Velocity eps = 1e-3 "small velocity";
Boolean stuck;
Height h;
Velocity v;

initial equation
v = 0;
h = h0;
stuck = false;

equation
v = der(h);
der(v) = if stuck then 0 else -9.81;
when h <= 0.0 then

stuck = abs(v) < eps;
reinit(v, if stuck then 0 else -s*v);

end when;
end StickyBall;

In the equations part, the velocity v is defined as the derivative of the height h.
The derivative of v (the acceleration) is set to standard gravity (−9.81), unless

8This model has been derived from a model published by M. Tiller [541].

2.3 Early Design Phases 47

the ball is already sticking to the surface. Equations have a bidirectional meaning.
For this set of equations, there are boundary conditions defined in the initial
equation part. Mathematical equations can be integrated numerically. This pro-
cedure is exploited in the description of the bouncing: when clauses can be used to
define events which happen while solving the equations. In the particular example,
an event is generated when the height becomes less or equal to zero. Whenever this
event is generated while the velocity is still sufficiently large, the velocity is inverted
and reduced by a factor of s, called restitution. The reinit clause effectively
defines another boundary condition.

However, if the velocity is smaller than eps, the ball is assumed to become sticky,
and the velocity is set to zero, suppressing all future activities. The resulting model
can be simulated, for example, with OpenModelica.9

After being released, the ball travels at a speed and a distance as shown in the
mathematical background below:

v = gt (2.1)

x = g

2
t2 (2.2)

This stops when the ball reaches the bottom (x = h0). We call this partially
elastic collision 0 (or bounce 0), the corresponding time t0, and the corresponding
velocity v0. From Eqs. (2.1) and (2.2), we compute

v0 = gt0 (2.3)

h0 = g

2
t2
0 (2.4)

and, hence

t0 = v0

g
(2.5)

t0 =
√

2

g
h0 (2.6)

v0 = √
2gh0 (2.7)

After bouncing, the ball travels at speed

v = −sv0 + gt (2.8)

until the velocity becomes 0. Let this happen at time t ′1. Equation (2.8) leads to

9See https://openmodelica.org/.

https://openmodelica.org/

48 2 Specifications and Modeling

0 = −sv0 + gt ′1

t ′1 = s
v0

g
(2.9)

Compared to Eq. (2.5), the partially elastic collision has reduced the trip time by
a factor of s. Next, the ball drops again, traveling downward as long as it traveled
upward. Hence, the next collision (bounce 1) happens

t1 = 2t ′1 = 2s
v0

g
(2.10)

time units after the initial bounce. In each direction, trip times for bounce 1 are
shorter by a factor of s compared to the time for bounce 0. The same shortening of
times will happen for the other bounces. Hence, bounce n happens at time

tn = v0

g
+ 2v0

g

n∑
k=1

sk = 2v0

g

n∑
k=0

sk − v0

g
(2.11)

As long as s < 1, this (geometric) series converges to

tf inal = lim
n→∞

2v0

g

n∑
k=0

sk − v0

g
= 2v0

g(1 − s)
− v0

g
(2.12)

This means that there is an upper bound on the time for the bounces, but not on
the number of bounces. This corresponds to the fact that, mathematically speaking,
infinite series may be converging to a finite value.10

Using sets of equations involving derivatives in Modelica brings us close to
the language of mathematics and physics. However, events introduce sequential
behavior. The implicit numerical integration procedure also introduces the hazard
of numerical precision problems. In fact, already the test h <= 0.0 reflects that
we might miss the case of h being exactly 0. Another hazard is present in the
published model for the non-sticky ball [541]: numerical precision problems result
in an OpenModelica solution for which the ball penetrates the floor for large times
t. This problem is caused by not generating events if the time distance between
bounces is too small.

This example demonstrates very nicely the advantages and limitations of Model-
ica: on the one hand, it is feasible to describe even the physical part of cyber-physical
systems. On the other hand, we are not exactly using the language of mathematics,
and in this way, we are introducing modeling hazards. ∇

10Note the link to the paradox of Achilles and the turtle [585].

2.4 Communicating Finite State Machines (CFSMs) 49

2.4 Communicating Finite State Machines (CFSMs)

In the following sections, we will consider the design of digital systems only.
Compared to early design phases, we need more precise models of our SUD. We
mentioned already on p. 17 and on p. 32 that we need to describe state-oriented
behavior. State diagrams are a classical means of doing this. Figure 2.10 (the same
as Fig. 2.1) shows an example of a state diagram, representing a finite state machine
(FSM).

Circles denote states. We will consider FSMs for which only one of their states
is active. Such FSMs are called deterministic FSMs. Edges denote state transitions.
Edge labels represent events. Let us assume that a certain state of the FSM is active
and that an event happens which corresponds to one of the outgoing edges for the
active state. Then, the FSM will change its state from the currently active state to
the one indicated by the edge. FSMs may be implicitly clocked. Such FSMs are
called synchronous FSMs. For synchronous FSMs, state changes will happen only
at clock transitions. FSMs may also generate output (not shown in Fig. 2.10). For
more information about classical FSMs, refer to, for example, Kohavi et al. [301].

2.4.1 Timed Automata

Classical FSMs do not provide information about time. In order to model time,
classical automata have been extended to also include timing information. Timed
automata are essentially automata extended with real-valued variables. “The vari-
ables model the logical clocks in the system, that are initialized with zero when
the system is started, and then increase synchronously with the same rate. Clock
constraints, i.e., guards on edges, are used to restrict the behavior of the automaton.
A transition represented by an edge can be taken when the clocks’ values satisfy
the guard labeled on the edge. Clocks may be reset to zero when a transition is
taken” [45].

Example 2.8 Figure 2.11 shows the state diagram of an answering machine. The
machine is usually in the initial state on the left. Whenever a ring signal is received,
clock x is reset to 0, and a transition into a waiting state is made. If the called person
lifts off the handset, talking can take place until the handset is returned.

Otherwise, a transition to state play text can take place if time has reached a value
of 4. Once the transition took place, a recorded message is played and this phase is

Fig. 2.10 State diagram

m k
Z

k k
k

D
i j

E

f

A B C
hg

k

50 2 Specifications and Modeling

x <=9
ring

beep record beep
silent

start

play
text

deadtalk

wait

lift-off
return hand-set

x

y

<=5

y
yx x
x

y y

y
x
y

 :=0
 >=4 :=0

 <=2 :=0
:=0

 >=1
<=2 >=8

>=1

:=0

end
of text

Fig. 2.11 Servicing an incoming line in an answering machine

terminated with a beep. Clock y ensures that this beep lasts at least one time unit.
After the beep, clock x is reset to 0 again and the answering machine is ready for
recording. If time has reached a value of 8 or if the caller remains silent, the next
beep is played. This second beep again lasts at least one time unit. After the second
beep, a transition is made into the final state. In this example, transitions are either
caused by inputs (such as lift-off) or by so-called clock constraints. ∇

Clock constraints describe transitions which can take place, but they do not have
to. In order to make sure that transitions actually take place, additional location
invariants can be defined. Location invariants x <= 5, x <= 9, and y <= 2 are
used in the example such that transitions will take place no later than one time unit
after the enabling condition became true. Using two clocks is for demonstration
purposes only; a single clock would be sufficient.

Formally speaking, timed automata can be defined as follows [45]: Let C be a set
of real-valued, non-negative variables representing clocks. Let
 be a finite alphabet
of possible inputs.

Definition 2.7 A clock constraint is a conjunctive formula of atomic constraints
of the form x ◦ n or (x − y) ◦ n for x, y ∈ C, ◦ ∈ {≤,<,=,>,≥} and n ∈ N.

Note that constants n used in the constraints must be integers, even though clocks
are real-valued. An extension to rational constants would be easy, since they could
be turned into integers with simple multiplications. Let B(C) be the set of clock
constraints.

Definition 2.8 (Bengtson [45]) A timed automaton is a tuple (S, s0, E, I)

where:

• S is a finite set of states.
• s0 is the initial state.
• E ⊆ S × B(C) ×
 × 2C × S is the set of edges. B(C) models the conjunctive

condition which must hold and
 models the input which is required for a
transition to be enabled. 2C reflects the set of clock variables which are reset
whenever the transition takes place.

2.4 Communicating Finite State Machines (CFSMs) 51

• I : S → B(C) is the set of invariants for each of the states. B(C) represents the
invariant which must hold for a particular state S. This invariant is described as a
conjunctive formula.

This first definition is usually extended to allow parallel compositions of timed
automata. Timed automata having a large number of clocks tend to be difficult to
understand. More details about timed automata can be found, for example, in papers
by Dill et al. [133] and Bengtsson et al. [45].

Simulation and verification of timed automata is possible with the popular tool
UPPAAL.11 UPPAAL supports concurrency and data variables.

Timed automata extend classical automata with timing information. However,
many of our requirements for specification techniques are not met by timed
automata. In particular, in their standard form, they do not provide hierarchy and
concurrency.

2.4.2 StateCharts: Implicit Shared Memory Communication

The StateCharts language is presented here as a very prominent example of
a language based on automata and supporting hierarchical models as well as
concurrency. It does include a limited way of specifying timing.

The StateCharts language was introduced by David Harel [203] in 1987 and later
described more precisely in [141]. According to Harel, the name was chosen since
it was “the only unused combination of flow or state with diagram or chart”.

Modeling of Hierarchy

The StateCharts language describes extended FSMs. Due to this, they can be used
for modeling state-oriented behavior. The key extension is hierarchy. Hierarchy is
introduced by means of superstates.

Definition 2.9 States comprising other states are called superstates.

Definition 2.10 States included in superstates are called substates of the super-
states.

Example 2.9 The StateCharts diagram in Fig. 2.12 is a hierarchical version of the
diagram in Fig. 2.10. Superstate S includes states A,B,C,D, and E.

Suppose the FSM is in state Z (Z will also be called an active state). Now, if
input m is applied to the FSM, then A and S will be the new active states. If the
FSM is in S and input k is applied, then Z will be the new active state, regardless

11See http://www.uppaal.org for the academic and http://www.uppaal.com for the commercial
version.

http://www.uppaal.org
http://www.uppaal.com

52 2 Specifications and Modeling

Fig. 2.12 Hierarchical state
diagram

m k

Z

E
j

D
i

C
h

f
S

B
g

A

of whether the FSM is in substates A,B,C,D, or E of S. In this example, all states
contained in S are non-hierarchical states. ∇
In general, substates of S could again be superstates consisting of substates them-
selves. Also, whenever a substate of some superstate is active, the superstate is
active as well.

Definition 2.11 States which are not composed of other states are called basic
states.

The FSM of Fig. 2.12 can only be in one of the substates of substate S at any
time. Superstates of this type are called OR-superstates.12

Definition 2.12 Superstate S is called an OR-superstate if the system comprising
S is in exactly one substate of S whenever it is in S.

In Fig. 2.12, k might correspond to an exception for which state S has to be left.
The example already shows that the hierarchy introduced in StateCharts enables a
compact representation of exceptions.

StateCharts allows hierarchical descriptions of systems in which a system
description comprises descriptions of subsystems which, in turn, may contain
descriptions of subsystems. The hierarchy of the entire system can be represented
by a tree. The root of the tree corresponds to the system as a whole, and all inner
nodes correspond to hierarchical descriptions (called super-nodes in StateCharts).
The leaves of the hierarchy are non-hierarchical descriptions (called basic states in
StateCharts).

So far, we have used explicit, direct edges to basic states to indicate the next
state. With this approach, the internal structure of superstates cannot be hidden from
the environment. In a true hierarchical environment, we should be able to hide the
internal structure so that it can be described later or changed later without affecting
the environment. This is possible with other mechanisms for describing the next
state.

The first additional mechanism is the default state mechanism. It can be used
in superstates to indicate the particular substates that will become active if the

12More precisely, they should be called XOR-superstates, since the FSM is in either A,B,C,D,
or E. However, this name is not commonly used in the literature.

2.4 Communicating Finite State Machines (CFSMs) 53

Fig. 2.13 State diagram
using the default state
mechanism

m
k

Z

E
j

D
i

C
h

S
f

B
g

A

Fig. 2.14 State diagram
using the history and the
default state mechanism

H A
g

f

B
h

C
i

D
j

E

Z

km

S

Fig. 2.15 Combining the
symbols for the history and
the default state mechanism H

A
g

f

B
h

C
i

D
j

E

Z

k
m

S

superstates become active. In diagrams, default states are identified by edges starting
at small filled circles.

Example 2.10 Figure 2.13 shows a state diagram using the default state mechanism.
The diagram is equivalent to Fig. 2.12. The filled circle itself is not a state. ∇
Another mechanism for specifying next states is the history mechanism. With

this mechanism, it is possible to return to the last substate that was active before a
superstate was left. The history mechanism is symbolized by a circle containing the
letter H. Do not confuse circles comprising this letter with states! We will be using
a different font for states and the history mechanism in order to reduce the risk of
confusion. In order to define the next state for the initial transition into a superstate,
the history mechanism is frequently combined with the default mechanism.

Example 2.11 Consider the state diagram in Fig. 2.14. The behavior of the FSM
is now somewhat different. If we input m while the system is in Z, then the
FSM will enter A if this is the very first time we enter S, and otherwise it will
enter the last state that we were in before leaving S. This mechanism has many
applications. For example, if k denotes an exception, we could use input m to
return to the state we were in before the exception. States A,B,C,D, and E

could also call Z like a procedure. After completing “procedure” Z, we would
return to the calling state. In this way, we are adding elements of programming
languages to StateCharts. Figure 2.14 can also be redrawn as shown in Fig. 2.15.
In this case, the symbols for the default and the history mechanism are combined.

∇

54 2 Specifications and Modeling

(excl. on/off)

off

line-monitoring
ring

Lwait

on
answering-machine

key pressed

done

KprocKwait

key-offkey-on

hangup
(caller)

key-monitoring

Lproc

Fig. 2.16 Answering machine

Specification techniques must be able to describe concurrency conveniently. For
this, StateCharts provides a second class of superstates, so-called AND-superstates.

Definition 2.13 Superstates S are called AND-superstates if the system containing
S will be in all of the substates of S whenever it is in S.

Example 2.12 An AND-superstate is included in the answering machine example
shown in Fig. 2.16. An answering machine normally performs two tasks concur-
rently: it is monitoring the line for incoming calls and the keys for user input. In
Fig. 2.16, the corresponding states are called Lwait and Kwait. Incoming calls are
processed in state Lproc, while the response to pressed keys is generated in state
Kproc. State Lproc is left whenever the caller hangs up the phone. Returning to
state Lwait due to call termination by the owner is not modeled. Hence, this model
provides no protection against stalking.

For the time being, we assume that the on/off switch (generating events key-off
and key-on) is decoded separately and pushing it does not result in entering Kproc.
If the machine is switched off, the line monitoring state and the key monitoring state
are left and reentered only if the machine is switched on. At that time, default states
Lwait and Kwait are entered. While switched on, the machine will always be in the
line monitoring state as well as in the key monitoring state. ∇

For AND-superstates, the substates entered as a result of entering the superstate
can be defined independently. There can be any combination of history, default
and explicit transitions. It is crucial to understand that all substates will always
be entered, even if there is just one explicit transition to one of the substates.
Accordingly, transitions out of an AND-superstate will always result in leaving all
the substates.

2.4 Communicating Finite State Machines (CFSMs) 55

answering-machine

on
line-monitoring

ring

Lwait Lproc

key-on
key-off

done

key pressed

KprocKwait

hangup
(caller)

off

key-monitoring

Fig. 2.17 Answering machine with modified on/off switch processing

Fig. 2.18 Timer in
StateCharts

a 20 ms timeout

Example 2.13 For example, let us modify our answering machine such that the
on/off switch, like all other switches, is decoded in state Kproc (see Fig. 2.17).

If pushing that key is detected in Kwait, transitions are assumed first into state
Kproc and then into the off state. The second transition results in leaving the line-
monitoring state as well. Switching the machine on again results in also entering the
line-monitoring state. ∇

AND-superstates provide the key mechanism for describing concurrency in
StateCharts. Each substate can be considered a state machine by itself. These
machines are communicating with each other, forming communicating finite state
machines (CFSMs). This term has been used as the title of this section.

Summarizing, we can state the following: states in StateCharts diagrams are
either AND-superstates, OR-superstates, or basic states.

Timers

Due to the requirement to model time in embedded systems, StateCharts also
provides timers. Timers are denoted by the symbol shown in Fig. 2.18 on the left.

After the system has been in the state containing the timer for the specified time,
a timeout will occur, and the system will leave the specified state. Timers can also
be used hierarchically.

Timers can be employed, for example, at the next lower level of the hierarchy of
the answering machine in order to describe the behavior of state Lproc. Figure 2.19

56 2 Specifications and Modeling

Fig. 2.19 Servicing the
incoming line in Lproc

timeout

play
text beep

record silent

timeout
beep

deadreturntalklift off

Lproc

(callee)

8 s

4 s

shows a possible behavior for that state. The timing specification is slightly different
from the one in Fig. 2.11.

Due to the exception-like transition for hangups by the caller in Fig. 2.16, state
Lproc is terminated whenever the caller hangs up. For hangups (returns) by the
callee, the design of state Lproc results in an inconvenience: if the callee hangs up
the phone first, the telephone will be dead (and quiet) until the caller has also hung
up the phone.

The StateCharts language includes a number of other language elements. For a
full description, refer to Harel [203]. A more detailed description of the semantics
of StateCharts is described by Drusinsky and Harel [141].

Edge Labels and StateMate Semantics

Until now, we have not considered outputs generated by our extended FSMs.
Generated outputs can be specified using edge labels. The general form of an edge
label is “event [condition]/reaction.” All three label parts are optional. The reaction
part describes the reaction of the FSM to a state transition. Possible reactions include
the generation of events and assignments to variables. The condition part implies
a test of the values of variables or a test of the current state of the system. The
event part refers to a test of current events. Events can be generated either internally
or externally. Internal events are generated as a result of some transition and are
described in reaction parts. External events are usually described in the model
environment.

Examples:

• on-key/on:=1 (Event test and variable assignment),
• [on=1] (Condition test for a variable value),
• off-key [not in Lproc]/on:=0 (Event test, condition test for a state, variable

assignment. The assignment is performed if the event has occurred and the
condition is true).

The semantics of edge labels can only be explained in the context of the seman-
tics of StateMate [141], a commercial implementation of StateCharts. StateMate
assumes a step-based execution of StateMate descriptions, as shown in Fig. 2.20.

2.4 Communicating Finite State Machines (CFSMs) 57

Fig. 2.20 Steps during the
execution of a StateMate
model

3 phases 3 phases 3 phases

Status Status StatusStatus Step Step Step

Steps are assumed to be executed each time events or variables have changed.
The set of all values of variables, together with the set of events generated (and
the current time), is defined as the status13 of a StateMate model. After executing
the third phase, a new status is obtained.

The notion of steps allows us to define the semantics of events more precisely.
The visibility of events is limited to the step following the one in which they
are generated. Thus, events behave like single bit values which are stored in
permanently enabled registers at one clock transition and have an effect on the
values stored at the next clock transition. They do not live forever.

Variables, in contrast, retain their values until they are reassigned. According to
StateMate semantics, new values of variables are visible to all parts of the model
from the step following the step in which the assignment was made onward. That
means that StateMate semantics implies that new values of variables are propagated
to all parts of a model between two steps.

Each step consists of three phases:

1. In the first phase, the impact of external changes on conditions and events is
evaluated. This includes the evaluation of functions which depend on external
events. This phase does not include any state changes. In our simple examples,
this phase is not actually needed.

2. The next phase is to calculate the set of transitions that should be made in the
current step. Variable assignments are evaluated, but the new values are only
assigned to temporary variables.

3. In the third phase, state transitions become effective and variables obtain their
new values.

The separation into phases 2 and 3 is important in order to guarantee a
reproducible behavior of StateMate models.

Example 2.14 Consider the StateMate model of Fig. 2.21.
In the second phase, new values for a and b are stored in temporary variables,

say a’ and b’. In the final phase, these variables are copied into the user-defined
variables:

phase 2: a’:=b; b’:=a;
phase 3: a:=a’; b:=b’;

13We would normally use the term “state” instead of “status”. However, the term “state” has a
different meaning in StateMate.

58 2 Specifications and Modeling

Fig. 2.21 Mutually
dependent assignments

1 0

swap

/a:= ; b:=

e/a:=b e/b:=a

Fig. 2.22 Cross-coupled
D-type registers

clock

D D
ba

As a result, the values of the two variables will be swapped each time an event e

happens. This behavior corresponds to that of two cross-coupled registers (one for
each variable) connected to the same clock (see Fig. 2.22) and reflects the operation
of a synchronous (clocked) finite state machine including those two registers.14

Without the separation into phases, the same value would be assigned to both
variables. The result would depend on the sequence in which the assignments were
performed. ∇
The separation into (at least) two phases is quite typical for languages that try to
reflect the operation of synchronous hardware. We will find the same separation in
VHDL (see p. 107). Due to the separation, the results do not depend on the order in
which parts of the model are executed by the simulation. This property is extremely
important. Otherwise, there could be simulation runs generating different results,
all of which would be considered correct. This is not what we expect from the
simulation of a real circuit with a fixed behavior, and it could be very confusing
in design procedures. There are different names for this property:

• Kahn [278] calls this property determinate.
• In other papers, this property is called deterministic. However, the term “deter-

ministic” is employed with different meanings:

– It is used in the context of deterministic finite state machines, FSMs which
can only be in one state at a time. In contrast, non-deterministic finite state
machines can be in several states at the same time [221].

– Languages may have non-deterministic operators. For these operators, dif-
ferent behaviors are legal implementations. Approximate, non-deterministic
computations would be a relevant special case of non-deterministic operators.

– Many authors consider systems to be non-deterministic if their behavior
depends on some input not known before run-time.

14We adopt IEEE standard schematic symbols [238] for gates and registers for all the schematics
in this book. The symbols in Fig. 2.22 denote clocked D-type registers.

2.4 Communicating Finite State Machines (CFSMs) 59

Fig. 2.23 Left, conflict
between different nesting
levels; right, conflict at the
same nesting level

A

A >10<20 xx

– The term “deterministic” has also been used in the sense of “determinate,” as
introduced by Kahn.

In this book, we prefer to reduce possible confusion by following Kahn.15 Note
that StateMate models can be determinate only if there are no other reasons for an
undefined behavior. For example, conflicts between transitions may be allowed (see
Fig. 2.23).

Consider Fig. 2.23 (left). If event A takes place while the system is in the left
state, we must figure out which transition will take place. If these conflicts would
be resolved arbitrarily, then we would have a non-determinate behavior. Typically,
priorities are defined such that this type of a conflict is eliminated. Now, consider
Fig. 2.23 (right). There will be a conflict for, e.g., x = 15. Such conflicts are difficult
to detect. Achieving a determinate behavior requires the absence of conflicts that are
resolved in an arbitrary manner.

Note that there may be cases in which we would like to describe non-determinate
behavior (e.g., if we have a choice to read from two inputs). In such a case, we would
typically like to explicitly indicate that this choice can be taken at run-time (see the
select statement of Ada on p. 112).

Implementations of hierarchical state charts other than StateMate typically do
not exhibit determinate behavior. These implementations correspond to a software-
oriented view onto hierarchical state charts. In such implementations, choices are
usually not explicitly described.

Evaluation and Extensions

StateMate implicitly assumes a broadcast mechanism for updates on variables.
Hence, StateCharts or StateMate can be implemented easily for shared memory-
based platforms but are less appropriate for message passing and distributed
systems. These languages essentially assume shared memory-based communica-
tion, even though this is not explicitly stated. For distributed systems, it will be very
difficult to update all variables between two steps. Due to this broadcast mechanism,
StateMate is not an appropriate language for modeling distributed systems.

Hence, StateCharts’ main application domain is that of local, control-dominated
systems. The capability of nesting hierarchies at arbitrary levels, with a free choice

15In the first edition of the book, we used the term “deterministic” together with an additional
explanation.

60 2 Specifications and Modeling

of AND-and OR-superstates, is a key advantage of StateCharts. Another advantage
is that the semantics of StateMate is defined at a sufficient level of detail [141].
Furthermore, there are quite a number of commercial tools based on StateCharts.
StateMate [229] and StateFlow [382] are examples of commercial tools based on
StateCharts. Many of them are capable of translating StateCharts into equivalent
descriptions in C or VHDL (see p. 98). From VHDL, hardware can be generated
using synthesis tools. Therefore, StateCharts-based tools provide a complete path
from StateCharts-based specifications down to hardware. Generated C programs
can be compiled and executed. Hence, a path to software-based realizations exists
as well.

Unfortunately, the efficiency of the automatic translation is sometimes a concern.
For example, we could map substates of AND-superstates to processes at the
operating system level. This would hardly lead to efficient implementations on small
processors. The productivity gain from object-oriented programming is not available
in StateCharts, since it is not object-oriented. StateCharts do not comprise program
constructs for describing complex computation and cannot describe hardware
structures or non-functional behavior. StateCharts allows timeouts. There is no
straightforward way of specifying other timing requirements.

Commercial implementations of StateCharts typically provide some mechanisms
for removing the limitations of the model. For example, C code can be used
to represent program constructs, and module charts of StateMate can represent
hardware structures.

UML includes a variation of StateCharts and hence allows modeling state
machines. In UML, these diagrams are called state diagrams in version 1 of UML
and state machine diagrams from version 2.0 onward. Unfortunately, the semantics
of state machine diagrams in UML is different from StateMate: the three simulation
phases are not included.

2.4.3 Synchronous Languages

Motivation

Describing complex SUDs in terms of state machine diagrams is difficult. Such dia-
grams cannot express complex computations. Standard programming languages can
express complex computations, but the sequence of executing several threads may
be unpredictable. In a multithreaded environment with preemptive scheduling, there
can be many different interleavings of the different computations. Understanding
all possible behaviors of such concurrent systems is difficult. A key reason for this
is that, in general, many different execution orders are feasible, i.e., the execution
order is not specified. The order of execution may well affect the result. The
resulting non-determinate behavior can have a number of negative consequences,
such as problems with verifying a certain design. For distributed systems with
independent clocks, determinate behavior is difficult to achieve. However, for

2.4 Communicating Finite State Machines (CFSMs) 61

non-distributed systems, we can try to avoid the problems of unnecessary non-
determinate semantics.

For synchronous languages, finite state machines and programming languages
are merged into one model. Synchronous languages can express complex computa-
tions, but the underlying execution model is that of finite automata. They describe
concurrently operating automata. Determinate behavior is achieved by the following
key feature: “. . . when automata are composed in parallel, a transition of the product
is made of the “simultaneous” transitions of all of them” [197]. This means we do
not have to consider all the different sequences of state changes of the automata that
would be possible if each of them had its own clock. Instead, we can assume the
presence of a single global clock. In each clock tick, all inputs are considered, new
outputs and states are calculated, and then the transitions are made. This requires
a fast broadcast mechanism for all parts of the model. This idealistic view of
concurrency has the advantage of guaranteeing determinate behavior. This is a
restriction if compared to the general communicating finite state machines (CFSM)
model, in which each FSM can have its own clock. Synchronous languages reflect
the principles of operation in synchronous hardware and also the semantics found in
control languages such as IEC 60848 [231] and STEP 7 [488]. See Potop-Butucaru
et al. [458] for a survey on synchronous languages.

Examples of Synchronous Languages: Esterel, Lustre, and SCADE

Guaranteeing a determinate behavior for all language features has been a design goal
for the synchronous languages Esterel [61, 154], Lustre [199], and Quartz [480].

Esterel is a reactive language: when activated with an input event, Esterel models
react by producing an output event. Esterel is a synchronous language: all reactions
are assumed to be completed in zero time, and it is sufficient to analyze the behavior
at discrete moments in time. This idealized model avoids all discussions about
overlapping time ranges and about events that arrive while the previous reaction
has not been completed. Like other concurrent languages, Esterel has a parallelism
operator, written ||. Similar to StateCharts, communication is based on a broadcast
mechanism. In contrast to StateCharts, however, communication is instantaneous.
Instantaneous in this context means “within the same clock cycle.” This means that
all signals generated in a particular clock cycle are also seen by the other parts of
the model in the same clock cycle, and these other parts, if sensitive to the generated
signals, react in the same clock cycle. Several rounds of evaluations may be required
until a stable state is reached. The computation of resulting worst case reaction
times is performed, for example, by Boldt et al. [56]. The propagation of values
during the same macroscopic instant of time corresponds to the generation of a
next status for the same moment in time in StateMate, except that the broadcast
is now instantaneous and not delayed until the next round of evaluations like in
StateMate. For more and updated information about Esterel, refer to the Esterel
home page [154].

62 2 Specifications and Modeling

Esterel and Lustre use different syntactic techniques to denote CFSMs. Esterel
appears as a kind of imperative language, whereas Lustre looks more like a data-
flow language (see p. 68 for a description of data flow). SyncCharts is a graphical
version of Esterel. In all three cases, semantics are explained by the closely related
underlying CFSMs. The commercial graphical language SCADE [19] combines
elements of all three languages. The so-called SCADE suite® is used for a number
of safety-critical software components, for example, by Airbus.

Due to the three simulation phases in StateMate, this tool has the key attributes
of synchronous languages, and it is determinate if conflicts are resolved. According
to Halbwachs, “StateMate is almost a synchronous language and the only feature
missing in StateMate is the instantaneous broadcast” [198].

2.4.4 Message Passing: SDL as an Example

Features of the Language

StateCharts is not appropriate for modeling distributed communicating finite state
machines. For distributed systems, message passing is the better communication
paradigm. Therefore, we present a case of communicating finite state machines with
asynchronous message passing.

We use SDL (specification and description language) as an example. SDL was
designed for distributed applications. It dates back to the 1970s. Formal semantics
have been available since the 1980s. The language was standardized by the ITU
(International Telecommunication Union). The first standards document is the Z.100
Recommendation published in 1980 with updates, for example, in 1992, 1999, 2011,
and 2016 [482]. The update of 1999 is known as SDL-2000.

Many users prefer graphical specification languages, while others prefer textual
ones. SDL pleases both types of users since it provides textual as well as graphical
formats. Processes are the basic elements of SDL. Processes represent components
modeled as extended finite state machines. Figure 2.24 shows the symbols used in
the graphical representation of SDL.

Example 2.15 Let us consider an FSM similar to that of Fig. 2.13. The FSM of
Fig. 2.25 is similar to that of Fig. 2.13, except that output has been added, state Z

has been deleted, and the effect of signal k has been changed.
Figure 2.26 contains the corresponding graphical SDL representation.
The representation in Fig. 2.26 is equivalent to the state diagram of Fig. 2.25. ∇

Fig. 2.24 Symbols used in
the graphical form of SDL

input output

stateidentifies initial state

2.4 Communicating Finite State Machines (CFSMs) 63

Fig. 2.25 FSM to be
described in SDL

k

E
j/z

D
i/y

CBA
g/w

f/v

h/x

Process P1

A

g

w

B C

x

h

B C

i

y

D E

z

j

D E

f

v

A

k

A

Fig. 2.26 SDL representation of Fig. 2.25

Fig. 2.27 Declarations,
assignments, and decisions
in SDL Date String;

Counter Integer;
DCL Counter := Counter + 3;

Counter

ELSE(11:30)(1:10)

As an extension to FSMs, SDL processes can perform operations on data.
Variables can be declared locally for processes. Their type can either be predefined
or defined in the SDL description itself. SDL supports abstract data types (ADTs).
The syntax for declarations and operations is similar to that in other languages.
Figure 2.27 shows how declarations, assignments, and decisions can be represented
in SDL.

SDL also contains programming language elements such as procedures. Pro-
cedure calls can also be represented graphically. Object-oriented features became
available with version SDL-1992 of the language and were extended with SDL-
2000.

Extended FSMs are just the basic elements of SDL descriptions. In general, SDL
descriptions will consist of a set of interacting processes, or FSMs. Processes can
send signals to other processes. Semantics of interprocess communication in SDL
is based on asynchronous message passing and conceptually implemented through
first-in first-out (FIFO) queues associated with processes. There is exactly one
input queue per process. Signals sent to a particular process will be placed into
the corresponding FIFO queue (see Fig. 2.28).

64 2 Specifications and Modeling

Fig. 2.28 SDL interprocess
communication process 1

process 3

process 2

Signal A, B;

process P2process P1

[A]

[A,B]

Sw2

Sw1

BLOCK B1

Fig. 2.29 Process interaction diagram

Counter
VIA Sw1

Counter
TO OFFSPRING

Fig. 2.30 Left, process name identifies recipient; right, channel identifies recipient

Each process is assumed to fetch the next available entry from the FIFO queue
and check whether it matches one of the inputs described for the current state. If
it does, the corresponding state transition takes place and output is generated. The
entry from the FIFO queue is ignored if it does not match any of the listed inputs
(unless the so-called SAVE mechanism is used). FIFO queues are conceptually
thought of as being of infinite length. This means in the description of the semantics
of SDL models, FIFO overflow is never taken into account. In actual systems,
however, infinite FIFO queues cannot be implemented. They must be of finite
length. This is one of the problems of SDL: in order to derive realizations from
specifications, safe upper bounds on the length of the FIFO queues must be proven.

Process interaction diagrams can be used for visualizing which of the processes
are communicating with each other. Process interaction diagrams include channels
used for sending and receiving signals. In the case of SDL, the term “signal” denotes
inputs and outputs of modeled automata.

Example 2.16 Figure 2.29 shows a process interaction diagram B1 with channels
Sw1 and Sw2. Brackets include the names of signals propagated along a certain
channel. ∇

There are three ways of indicating the recipient of signals:

1. Through process identifiers: By using identifiers of recipient processes in the
graphical output symbol (see Fig. 2.30 (left)).

2.4 Communicating Finite State Machines (CFSMs) 65

The number of processes does not need to be fixed at compile time, since
processes can be generated dynamically at run-time. OFFSPRING represents
identifiers of child processes generated dynamically by a process.

2. Explicitly: By indicating the channel name (see Fig. 2.30 (right)). Sw1 is the
name of a channel.

3. Implicitly: If signal names imply the channel names, those channels are used.
Example: For Fig. 2.29, signal B will implicitly always be communicated via
channel Sw1.

No process can be defined within any other (processes cannot be nested).
However, they can be grouped hierarchically into so-called blocks. Blocks at the
highest hierarchy level are called systems. A system will not have any channels
at its boundary if the environment is also modeled as a block. Process interaction
diagrams are special cases of block diagrams. Process interaction diagrams are one
level above the leaves of the hierarchical description.

Example 2.17 Block B1 of Example 2.16 can be used within intermediate level
blocks (such as within B in Fig. 2.31).

At the highest level in the hierarchy, we have the system (see Fig. 2.32).
Figure 2.33 shows the hierarchy modeled by the block diagrams in Figs. 2.29, 2.30,
2.31, and 2.32.

This example demonstrates that process interaction diagrams are next to the
leaves of the hierarchical description, while system descriptions represent their root.

∇

Fig. 2.31 SDL block

B2
C4

Block B
C2

C3

B1

Fig. 2.32 SDL system

C

C'
B A

System S

Fig. 2.33 SDL hierarchy S

P2P1

B2B1

BA C

.......

...

66 2 Specifications and Modeling

AA

v

f

ED

j

ED

y

i

CB

h

x

EB

w

g

A

Process S

Z

RESET(Z)

SET(now+T,Z)

Timer Z;

Fig. 2.34 Using timer Z

Some of the restrictions of modeling hierarchy are removed in version SDL-2000
of the language. With SDL-2000, the descriptive power of blocks and processes is
harmonized and replaced by a general agent concept.

In order to support the modeling of time, SDL includes timers. Timers can
be declared locally for processes. They can be set using the SET primitive. This
primitive has two parameters: an absolute time and a timer name. The absolute time
defines a time at which the timer elapses. The built-in function now can be used to
refer to the time at which the SET primitive is executed. Once a timer is elapsed,
a signal is stored in the input queue. The name of this signal is obtained from the
second parameter of the SET call. The signal will then typically cause a certain
transition to take place in the FSM. However, this transition may be delayed by other
entries in the input queue which have to be processed first. Hence, this timer concept
is designed for soft timing constraints typically found in telecommunications and
inappropriate for hard timing constraints. A second built-in function expirytime can
be used to avoid some of the limitations of the now function.

Timers can be reset using the RESET primitive. This primitive will stop the
counting process and—in case the signal has already been stored in the input
queue—removes the signal from it. An implicit RESET is executed at the very
beginning of executing a SET.

Example 2.18 Figure 2.34 shows the use of a timer Z. The diagram corresponds to
that of Fig. 2.26, with the exception that timer Z is set to the current time now plus
T during the transition from state D to E. For the transition from E to A, we now
have a timeout of T time units. If these time units have elapsed before signal f has
arrived, a transition to state A is taken without generating output signal v. Strictly
periodic processing with a period of T is difficult to achieve this way, due to the
possible delays by other entries in the input queue. ∇

2.4 Communicating Finite State Machines (CFSMs) 67

Fig. 2.35 Small computer
network described in SDL

C2
C3

C1

Processor A Router Processor B Processor C

System

layer-1

layer-2

Block Router

.....

layer-n

.....

layer-n

.....

layer-n

layer-1 layer-1layer-1

Block Processor A Block Processor B Block Processor C

Fig. 2.36 Protocol stacks represented in SDL

Example 2.19 SDL can be used to describe protocol stacks found in computer
networks, and SDL is very appropriate for this. Figure 2.35 shows three processors
connected through a router. Communication between processors and the router is
based on FIFOs. The processors as well as the router implement layered protocols
(see Fig. 2.36). Each layer describes communication at a more abstract level.
The behavior of each layer is typically modeled as a finite state machine. The
detailed description of these FSMs depends on the network protocol and can be
quite complex. Typically, this behavior includes checking and handling of error
conditions, as well as sorting and forwarding of information packets. ∇

Available tools for SDL include interfaces to UML (see p. 120) and SCs (see
p. 43). A comprehensive list of tools is available from the SDL forum [483].

Estelle [74] is another language which was designed to describe communication
protocols. Similar to SDL, Estelle assumes communication via channels and FIFO
buffers. Attempts to unify Estelle and SDL failed.

Evaluation of SDL

SDL is excellent for distributed applications, and it is very useful as a reference
model for asynchronous message passing. SDL is not necessarily determinate (the
order, in which signals arriving at some FIFO at the same time are processed, is not
specified). Reliable implementations require the knowledge of an upper bound on
the length of the FIFOs. This upper bound may be difficult to compute. The timer
concept is sufficient for soft deadlines, but not for hard ones. Hierarchies are not
supported in the same way as in StateCharts. There is no full programming support

68 2 Specifications and Modeling

(but revisions of the standard changed this) and no description of non-functional
properties. SDL has been used, for example, for specifying ISDN. Currently, there
seems to be a trend for a generalization of discussions, from the specific case of
SDL toward general system description techniques [482].

2.5 Data Flow

2.5.1 Scope

Data flow is a very “natural” way of describing real-life applications. Data-flow
models reflect the way in which data flows from component to component [146].
Each component transforms the data in one way or the other. The following is a
possible definition of data flow:

Definition 2.14 ([582]) Data-flow modeling “is the process of identifying, model-
ing, and documenting how data moves around an information system. Data flow
modeling examines processes (activities that transform data from one form to
another), data stores (the holding areas for data), external entities (what sends data
into a system or receives data from a system), and data flows (routes by which data
can flow).”

A data flow program is specified by a directed graph where the nodes (vertices),
called actors, represent computations and the arcs represent communication chan-
nels. The computation performed by each actor is assumed to be functional, that is,
based on the input values only. Each process in a data flow graph is decomposed into
a sequence of firings, which are atomic actions. Each firing produces and consumes
tokens.

Example 2.20 Figure 2.37 describes the flow of data in a video-on-demand (VOD)
system [298]. Viewers are entering the system via the network interface. Their
admission request is added to the customer queue. Once they are admitted, their
requests are scheduled for the file system. The file system, in cooperation with
storage control, makes videos available to the customer. ∇

For unrestricted data flow, it is difficult to prove requested system properties.
Therefore, restricted models are commonly used.

A special type of data flow is used for implementing out-of-order execution of
instructions in computer architectures. This type of execution is also known as
dynamic scheduling of instructions. Two algorithms for dynamic scheduling are
well-known: scoreboarding and the Tomasulo algorithm [544]. Both algorithms are
covered in detail in books on computer architecture (see, e.g., Hennessy et al. [211]).
Therefore, they are not included in this book. There are variants of these algorithms
which are applied at task level (e.g., see Wang et al. [564]).

2.5 Data Flow 69

Network
Interface

Customer List

File System

Customer
Queue

Storage
Subsystem

Admission
Control

Scheduler

Storage Control

N
et

 V
ie

w
er

s

Video
Viewers

Video Data

N
et

w
or

k
A

dd
re

ss

Viewer Commands

Data

Fig. 2.37 Video-on-demand system (blue, storage; yellow, processing; green, I/O)

2.5.2 Kahn Process Networks

Kahn process networks (KPN) [278] are a special case of data-flow models. Like
other data-flow models, KPNs consist of nodes and edges. Nodes correspond to
computations performed by some program or task. KPN graphs, like all data-flow
graphs, show computations to be performed and their dependencies, but not the
order in which the computations must be performed (in contrast to specifications
in von Neumann languages such as C). Edges imply communication via channels
containing potentially infinite FIFOs. Computation times and communication times
may vary, but communication is guaranteed to happen within a finite amount of
time. Writes are non-blocking, since the FIFOs are assumed to be as large as needed.
Reads must specify a single channel to be read from. A node cannot check whether
data is available before attempting a read. A process cannot wait for data on more
than one port at a time. Read operations block whenever an attempt is made to read
from an empty FIFO queue. Only a single process is allowed to read from a certain
queue, and only a single process is allowed to write into a queue. So, if output
data has to be sent to more than a single process, data must be duplicated inside
processes. There is no other way for communication between processes except
through FIFO queues. In the following example, τ1 and τ2 are incrementing and
decrementing the value received from the partner:

70 2 Specifications and Modeling

Fig. 2.38 Graphical
representation of KPN

ττ
u

v
FIFO

FIFO

1 2

process τ1(in int u, out int v){
int i;
i = 0;
for (;;) {
send(i,v); /* send i via channel v */
i = wait(u); /* read i from channel u */
i = i-1;
}

}
process τ2(in int v, out int u){

int i;
for (;;) {
i = wait(v);
i = i+1;
send(i,u);
}

}

Figure 2.38 shows a graphical representation of this KPN.
Obviously, we do not really need the FIFOs in this example, since messages

cannot accumulate in the channels. This example and other examples can be
simulated with the levi simulation software [496].

The mentioned restrictions for read and write operations are resulting in the key
beauty of KPNs: the order in which a node is reading data from its channels is
fixed by the sequence of read operations and does not depend on the order in which
producers are transmitting data over the channels. This means that the sequence of
operations is independent of the speed of the nodes producing data. For a given set
of input data, KPNs will always generate the same results, independently of the
speed of the nodes. This property is important, for example, for simulations: it does
not matter how fast we are simulating the KPN; the result will always be the same.
In particular, the result does not depend on using hardware accelerators for some of
the nodes, and a distributed execution will give the same result as a centralized one.
This property has been called “determinate” and we are following this use. SDL-like
conflicts at FIFOs do not exist. Due to this nice property, KPNs are frequently used
as an internal representation within a design flow.

Sometimes, KPNs are extended with a “merge” operator (corresponding to Ada’s
select statement, see p. 112). This operator allows for queuing read commands
containing a list of channels. The operator completes execution after the first of
these channels has generated data. Such an operator introduces a non-determinate
behavior: the order of processing inputs is not specified if both inputs arrive at

2.5 Data Flow 71

the same time. This extension is useful in practice, but it destroys the key beauty
of KPNs.

In general, Kahn processes require scheduling at run-time, since it is difficult to
predict their precise behavior over time. These problems result from the fact that we
do not make any assumptions regarding the speed of the channels and the nodes.
Nevertheless, execution times are actually unknown during early design phases, and
therefore this model is very adequate.

KPNs are Turing-complete, which means whatever can be computed by a Turing
machine (the standard model for computability) can also be computed by a KPN.
The proof is based on the fact that KPNs are a superset of so-called Boolean dataflow
(BDF) and according to Buck [73] BDF can simulate Turing machines. However,
the number of processes has to be fixed at design time, which is an important
limitation for many applications.

Whether or not finite-length FIFOs are sufficient for an actual KPN model is
undecidable in the general case. However, useful scheduling algorithms [293] or
proofs of the boundedness of the FIFOs [99] exist for some special cases. For
example, bounds can be derived for polyhedral process networks (PPNs). For PPNs,
the code for each of the nodes includes loops with bounds known at compile time.
Derin [125] exploits knowledge about the code of the nodes for dynamic task
migration.

2.5.3 SDF

Scheduling becomes significantly easier, and questions regarding buffer sizes can
decidably be answered if we impose sufficient restrictions on the timing of nodes
and channels. For SDF [328], this is the case. Initially, the acronym SDF was a
shorthand for synchronous data flow. Today, it is increasingly interpreted to denote
static data flow.

SDF can be introduced by referring to its graphical notation. SDF models include
a directed graph, i.e., SDF models contain nodes and directed edges. Nodes are also
called actors. Edges can store tokens, by default an unlimited number of them.
Some of the edges will initially contain some tokens. Each edge has an incoming
and an outgoing weight. The execution of an SDF model assumes a clock. For an
actor to be enabled, it is necessary that for each of the edges leading to that actor,
the number of tokens on that edge is at least equal to the outgoing weight for the
edge.

Example 2.21 Figure 2.39 (left) shows an SDF graph. Actors A and B denote
computations. Input edges like the one shown at the top for actor A are assumed
to supply an infinite stream of tokens. Actor B is enabled since there is a sufficient
number of tokens on the edges leading to B. Actor A is not enabled. At each clock
tick, enabled actors can fire, but they do not have to. If they fire, the number of
tokens on the incoming edges gets decreased by the incoming weight, and the

72 2 Specifications and Modeling

..

1 2

2

1 1

2

21

..
1

BA A B

1

Fig. 2.39 Graphical representation of SDF: left, initial situation; right, after firing B

2
1BB 1

1

1

AA

1

1
2

3

3
1

2

1

3

Fig. 2.40 Replacing explicit FIFO buffers by backward edges

Fig. 2.41 SDF loop 6423

e 1

2e

.......

A B

number of tokens on the outgoing edges is increased by the outgoing weight. In
our example, the resulting number of tokens is shown in Fig. 2.39 on the right.
Obviously, the number of tokens produced or consumed in a particular firing is
static (does not vary during the execution of the model). ∇
In practice, tokens will represent data, actors will represent computations, and
edges should correspond to FIFO buffers. Buffers on the edges imply that SDF
uses asynchronous message passing. Instead of using the default unlimited buffer
capacities, we can express limited buffer capacities with backward edges. The initial
number of tokens on these backward edges corresponds to the capacity of the FIFO
buffer. This is shown in Fig. 2.40. The two models shown in Fig. 2.40 are equivalent.
For example, the first firing of A will consume three tokens from the backward edge,
leaving only one token on the backward edge, corresponding to the one empty FIFO
slot after the first firing of A on the left.

The property of producing and consuming a static number of tokens makes it
possible to determine execution order and memory requirements at compile time.
Hence, complex run-time scheduling of executions is avoided. SDF graphs can be
translated into periodic schedules.

Example 2.22 Let us have a closer look at schedules of SDF models. Consider the
example shown in Fig. 2.41. Suppose that initially there are six tokens for edge e1.
Then, Table 2.2 (left) shows the resulting schedule for firings. Due to the limited
number of initial tokens, only sequential firings are feasible. Now, let us assume
that there are nine initial tokens for edge e1. Assuming that all actors fire as soon

2.5 Data Flow 73

Table 2.2 Schedules for loop in SDF: left, six initial tokens on e1; right, nine initial tokens on e1

Tokens on edges Next actor action

Clock e1 e2 A or B

0 6 0 A
1 3 2 A
2 0 4 B
3 6 0 A
4 3 2 A

Tokens on edges Next actor action

Clock e1 e2 A or B or (A and B)

0 9 0 A
1 6 2 A
2 3 4 A and B
3 6 2 A
4 3 4 A and B

Fig. 2.42 SDF delay

..

..

D
1

1 BA

1

1
1 1

as possible, the schedule of Table 2.2 (right) is produced. Under this assumption, A
and B fire synchronously. ∇

During the generation of schedules, we could also consider constraints and
objectives such as a limited number of available processors [57].

In this example, using edge labels 2, 3, 4, and 6 resulted in different execution
rates of actors A and B. In general, edge labels facilitate the modeling of multi-rate
signal processing applications, applications for which certain signals are generated
at frequencies that are multiples of other frequencies. For example, in a TV set, some
computations might be performed at a rate of 100 Hz, while others are performed
at a rate of 50 Hz. Ignoring some initial transient phase and considering longer
periods, the number of tokens sent to an edge must be equal to the number of
tokens consumed. Otherwise, tokens would accumulate in the FIFO buffers, and no
finite FIFO capacity would be sufficient. Let ns be the number of tokens produced
by some sender per firing, and let fs be the corresponding rate. Let nr be the
corresponding number of tokens consumed per firing at the receiver, and let fr be
the corresponding rate. Then, we must have

ns ∗ fs = nr ∗ fr (2.13)

This condition is met in the steady state for the example shown in Table 2.2.
SDF graphs may include delays, denoted by the symbol D on an edge (see

Fig. 2.42).
The observer pattern, mentioned as a problem for modeling with von Neumann

languages on p. 35, can be easily implemented correctly in SDF (see Fig. 2.43).
There is no risk of deadlocks. However, SDF does not allow adding new observers
at run-time.

The letter S in SDF initially was meant to stand for the term synchronous,
since enabled nodes fire synchronously. However, the two schedules in Table 2.2

74 2 Specifications and Modeling

Fig. 2.43 Observer pattern
in SDF

1

1

1

B3

B2

B1

A

1

1

1

1

demonstrate that cases of firing all actors synchronously may indeed be very rare.
Therefore, the “S” in SDF has also been reinterpreted to denote the term “static”
instead of “synchronous.”

SDF models are determinate [206], but they are not appropriate for modeling
control flow, such as branches, etc. Several extensions and variations of SDF models
have been proposed (see, e.g., Stuijk [515]):

• For example, we can have modes corresponding to states of an associated finite
state machine. For each of the modes, a different SDF graph could be relevant.
Certain events could then cause transitions between these modes. We could have
modes for different video resolutions and could have a transition whenever we
change the resolution.

• Homogeneous synchronous data-flow (HSDF) graphs are a special case of SDF
graphs. For HSDF graphs, the number of tokens consumed and produced per
firing is always 1.

• For cyclo-static data flow (CSDF), the number of tokens produced and con-
sumed per firing can vary over time but has to be periodic.

Complex SUDs including control flow must be modeled using more general
computational graph structures.

2.5.4 Simulink

Computational graph structures are also frequently used in control engineering. For
this domain, the Simulink® toolbox of MATLAB® [529, 533] is very popular.
MATLAB is a modeling and simulation tool based on mathematical models
including, for example, partial differential equations. Figure 2.44 shows an example
of a Simulink model [365].

The amplifier Gain6 and the saturation component Saturation on the right demon-
strate the inclusion of analog modeling. In the general case, the “schematic” could
contain symbols denoting analog components such as integrators and differentiators.
The switch in the center indicates that Simulink also allows some control flow
modeling.

The graphical representation is intuitive and allows control engineers to focus
on the control function, without caring about the code necessary to implement the

2.5 Data Flow 75

3 teta10
teta_in

pitch_mode

not_teta

teta0

teta10

teta0

teta_com_select goto

[A]

vc_cmd

Vc_sens

Speed_com

air_speed_net
[A]

From

speed_com

2

6

5

ineg_rst
Vc_sens

stick_cmd

sticks

teta_com

elev_com

stick_com

1

4

pitch_net

Gain6

1.1235

Saturation

1

elevator
control

sticks

Fig. 2.44 Simulink model

function. The graphical symbols suggest that analog circuits are used as traditional
components in control designs. A key goal is to synthesize software from such
models. This approach is typically associated with the term model-based design.

Semantics of Simulink models reflect the simulation on a digital computer, and
the behavior may be similar to that of analog circuits, but possibly not quite the
same. What is actually the semantics of a Simulink model? Marian and Ma [365]
describe the semantics as follows: “Simulink uses an idealized timing model for
block (node) execution and communication. Both happen infinitely fast at exact
points in simulated time. Thereafter, simulated time is advanced by exact time steps.
All values on edges are constant in between time steps.” This means that we execute
the model time step after time step. For each step, we compute the function of
the nodes (in zero time) and propagate the new values to connected inputs. This
explanation does not specify the distance between time steps. Also, it does not
immediately tell us how to implement the system in software, since even slowly
varying outputs may be recomputed frequently.

This approach is appropriate for modeling physical systems such as cars or trains
at a high level and then simulating the behavior of these systems. Also, digital signal
processing systems can be conveniently modeled with MATLAB® and Simulink®.
In order to generate implementations, MATLAB/Simulink models first must be
translated into a language supported by software or hardware design systems, such
as C or VHDL. This way of generating software can be considered a case of model-
based design. Model-based design could be a way of avoiding time-consuming
manual code generation, but this requires that the issues mentioned above do not
block the applicability of this approach.

Components in Simulink models provide a special case of actors. We can assume
that actors are waiting for input and perform their operation once all required inputs

76 2 Specifications and Modeling

have arrived. SDF and KPNs are other cases of actor-based languages. In actor-
based languages, there is no need to pass control to these actors, like in von
Neumann languages. This has the advantage of providing freedom for scheduling
of computations in software.

2.6 Petri Nets

2.6.1 Introduction

Very comprehensive descriptions of control flow are feasible with computational
graphs known as Petri nets. Actually, Petri nets model only control and control
dependencies. Modeling data as well requires extensions of Petri nets. Petri nets
focus on the modeling of causal dependencies.

In 1962, Carl Adam Petri published his method for modeling causal depen-
dencies, which became known as Petri nets [450]. Petri nets do not assume any
global synchronization and are therefore especially suited for modeling distributed
systems.

Conditions, events, and a flow relation are the key elements of Petri nets.
Conditions are either satisfied or not satisfied. Events can happen. The flow relation
describes the conditions that must be met before events can happen, and it also
describes the conditions that become true if events happen. Graphical notations for
Petri nets typically use circles to denote conditions and boxes to denote events.
Arrows represent flow relations.

Example 2.23 Our first example, shown in Fig. 2.45, describes mutual exclusion
for trains on a railroad track that must be used in both directions. A token is used
to prevent collisions of trains going into opposite directions. In the Petri net, that
token is symbolized by a condition in the center of the model. A partially filled
circle (a circle containing a second, filled circle) denotes that a condition is met (this
means the track is available). When a train wants to travel to the right (also denoted

train wanting to go right train going

single-laned
to the left
train going

track available

to the right

train entering track from the left train leaving track to the right

Fig. 2.45 Single-track railroad segment

2.6 Petri Nets 77

train wanting to go right

to the left
train going

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.46 Using resource “track”

train wanting to go right

to the left
train going

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.47 Freeing resource “track”

by a partially filled circle in Fig. 2.45), the two conditions that are necessary for
the event “train entering track from the left” are met. We call these two conditions
preconditions. If the preconditions of an event are met, it can happen.

As a result of that event happening, the token is no longer available, and there is
no train waiting to enter the track. Hence, the preconditions are no longer met, and
the partially filled circles disappear (see Fig. 2.46).

However, there is now a train going on that track from the left to the right, and
thus the corresponding condition is met (see Fig. 2.46). A condition which is met
after an event happened is called a postcondition. In general, an event can happen
only if all its preconditions are true (or met). If it happens, the preconditions are no
longer met, and the postconditions become valid. Arrows identify those conditions
which are preconditions of an event and those that are postconditions of an event.
Continuing with our example, we see that a train leaving the track will return the
token to the condition at the center of the model (see Fig. 2.47).

Now, consider two trains competing for the single-track segment (see Fig. 2.48).
Only one train can enter. In such situations, the next transition to be fired is

non-deterministically chosen. Analyses of the net must consider all possible firing
sequences. For Petri nets, we are intentionally modeling non-determinism. ∇

A key advantage of Petri nets is that they can be the basis for formal proofs about
system properties and that there are standardized ways of generating such proofs. In
order to enable such proofs, we need a more formal definition of Petri nets. We will

78 2 Specifications and Modeling

train wanting to go right

train going
to the left

track available

train going
to the right

train entering track from the left train leaving track to the right

Fig. 2.48 Conflict for resource “track”

consider three classes of Petri nets: condition/event nets, place/transitions nets, and
predicate transition nets.

2.6.2 Condition/Event Nets

Condition/event nets are the first class of Petri nets that we will define more
formally.

Definition 2.15 N = (C,E, F) is called a net iff the following holds:

1. C and E are disjoint sets.
2. F ⊆ (E × C) ∪ (C × E) is a binary relation, called flow relation.

The set C is called conditions and the set E is called events.

Definition 2.16 Let N be a net and let x ∈ (C ∪ E). •x := {y|yFx, y ∈ (C ∪
E)} is called the pre-set of x. If x denotes an event, •x is also called the set of
preconditions of x.

Definition 2.17 Let N be a net and let x ∈ (C ∪ E). x• := {y|xFy, y ∈ (C ∪
E)} is called the post-set of x. If x denotes an event, x• is also called the set of
postconditions of x.

The terms preconditions and postconditions are preferred if these sets actually
denote conditions ∈ C, that is, if x ∈ E.

Definition 2.18 Let (c, e) ∈ C × E. (c, e) is called a loop if cFe ∧ eFc.

Definition 2.19 Let (c, e) ∈ C × E. N is called pure if F does not contain any
loops (see Fig. 2.49 (left)).

Definition 2.20 A net is called simple if no two transitions t1 and t2 have the same
set of pre- and postconditions (see Fig. 2.49 (center) and (right)).

2.6 Petri Nets 79

Fig. 2.49 Nets which are not pure (left) and not simple (center and right)

Simple nets with no isolated elements meeting some additional restrictions are
called condition/event nets. Condition/event nets are a special case of bipartite
graphs (graphs with two disjoint sets of nodes). We will not discuss those additional
restrictions in detail since we will consider more general classes of nets in the
following.

2.6.3 Place/Transition Nets

For condition/event nets, there is at most one token per condition. For many applica-
tions, it is useful to remove this restriction and to allow more tokens per condition.
Nets allowing more than one token per condition are called place/transition nets.
Places correspond to what we so far called conditions, and transitions correspond to
what we so far called events. The number of tokens per place is called a marking.
Mathematically, a marking is a mapping from the set of places to the set of natural
numbers extended by a special symbol ω denoting infinity.

Let N0 denote the natural numbers including 0. Then, formally speaking,
place/transition nets can be defined as follows:

Definition 2.21 (P, T , F,K,W,M0) is called a place/transition net ⇐⇒
1. N = (P, T , F) is a net with places p ∈ P , transitions t ∈ T , and flow relation F .
2. Mapping K : P → (N0∪{ω})\{0} denotes the capacity of places (ω symbolizes

infinite capacity).
3. Mapping W : F → (N0 \ {0}) denotes the weight of graph edges.
4. Mapping M0 : P → N0 ∪ {ω} represents the initial marking of places.

Edge weights affect the number of tokens that are required before transitions
can happen and also identify the number of tokens that are generated if a certain
transition takes place. Let M(p) denote a current marking of place p ∈ P , and
let M ′(p) denote a marking after some transition t ∈ T took place. The weight of
edges belonging to preconditions represents the number of tokens that are removed
from places in the pre-set. Accordingly, the weight of edges belonging to the
postconditions represents the number of tokens that are added to the places in the
post-set. Formally, marking M ′ is computed as follows:

80 2 Specifications and Modeling

Fig. 2.50 Generation of a
new marking

1

2
1

2
3

jt 1

2
1

2
3

tj

M ′(p) =

⎧⎪⎪⎨
⎪⎪⎩

M(p) − W(p, t), if p ∈ •t \ t•
M(p) + W(t, p), if p ∈ t• \ •t
M(p) − W(p, t) + W(t, p), if p ∈ •t ∩ t•
M(p) otherwise

Figure 2.50 demonstrates how transition tj affects the current marking. By
default, unlabeled edges are considered to have a weight of 1, and unlabeled places
are considered to have unlimited capacity ω.

We now need to explain the two conditions that must be met before a transition
t ∈ T can take place:

• for all places p in the pre-set, the number of tokens must at least be equal to the
weight of the edge from p to t and

• for all places p in the post-set, the capacity must be large enough to accommodate
the new tokens which t will generate.

Transitions meeting these two conditions are called M-activated. Formally, this
can be defined as follows:

Definition 2.22 Transition t ∈ T is said to be M-activated ⇐⇒

(∀p ∈ •t : M(p) ≥ W(p, t)) ∧ (∀p′ ∈ t• : M(p′) + W(t, p′) ≤ K(p′))

Activated transitions can happen, but they do not need to. If several transitions are
activated, the sequence in which they happen is not deterministically defined.

The impact of a firing transition t on the number of tokens can be represented
conveniently by a vector t associated with t . t is defined as follows:

t(p) =

⎧⎪⎪⎨
⎪⎪⎩
−W(p, t), if p ∈ •t \ t•
+W(t, p), if p ∈ t• \ •t
−W(p, t) + W(t, p), if p ∈ •t ∩ t•
0 otherwise

The new number M ′ of tokens, resulting from the firing of transition t , can be
computed for all places p as follows:

M ′(p) = M(p) + t(p)

Using “+” to denote vector addition, we can rewrite this equation as follows:

2.6 Petri Nets 81

Fig. 2.51 Transition with a
constant number of tokens

tj
3

2

1

M ′ = M + t

The set of all vectors t forms an incidence matrix N . N contains vectors t as
columns.

N : P × T → Z; ∀t ∈ T : N(p, t) = t(p)

It is possible to formally prove system properties by using matrix N . For
example, we are able to compute sets of places, for which firing transitions will not
change the overall number of tokens [468]. Such sets are called place invariants.
Let us initially consider a single transition tj in order to find such invariants. Let
us search for sets R ⊆ P of places such that the total number of tokens does not
change if tj fires. The following must hold for such sets:

∑
p∈R

tj (p) = 0 (2.14)

Figure 2.51 shows a transition for which the total number of tokens does not
change if it fires.

We are now introducing the characteristic vector cR of some set R of places:

cR(p) =
{

1 iff p ∈ R

0 iff p �∈ R

With this definition, we can rewrite Eq. (2.14) as

∑
p∈R

tj (p) =
∑
p∈P

tj (p) · cR(p) = tj · cR = 0 (2.15)

· denotes the scalar product. Now, we search for sets of places such that firings of
any transition will not change the total number of tokens. This means that Eq. (2.15)
must hold for all transitions tj :

t1 · cR = 0

t2 · cR = 0 (2.16)

. . .

tn · cR = 0

82 2 Specifications and Modeling

Fig. 2.52 Model of Thalys
trains running between
Amsterdam, Cologne,
Brussels, and Paris

Break

Paris

Amsterdam Cologne

Connecting

Brussels

4

Disconnecting

Gare de Lyon

12

10 3

10

1311

8

7

7

2

1

6

6

5

5

1

329

4

8

9

Gare du Nord

Equations (2.16) can be combined into the following equation by using the
transposed incidence matrix NT :

NT · cR = 0 (2.17)

Equation (2.17) represents a system of linear, homogeneous equations. Matrix N

represents edge weights of our Petri nets. We are looking for solution vectors cR for
this system of equations. Solutions must be characteristic vectors. Therefore, their
components must be 1 or 0 (integer weights can be accepted if we use weighted
sums of tokens). This is more complex than solving systems of linear equations
with real-valued solution vectors. Nevertheless, it is possible to obtain information
by solving Eq. (2.17). Using this proof technique, we can, for example, show that
we are correctly implementing mutually exclusive access to shared resources.

Example 2.24 Let us now consider a larger example: We are again considering the
synchronization of trains. In particular, we are trying to model high-speed Thalys
trains traveling between Amsterdam, Cologne, Brussels, and Paris. Segments of
the train run independently from Amsterdam and Cologne to Brussels. There, the
segments get connected and then they run to Paris. On the way back from Paris, they
get disconnected at Brussels again. We assume that Thalys trains must synchronize
with some other train at Paris. The corresponding Petri net is shown in Fig. 2.52.

Places 3 and 10 model trains waiting at Cologne and Amsterdam, respectively.
Transitions 2 and 9 model trains driving from these cities to Brussels. After their

2.6 Petri Nets 83

Table 2.3 NT for the Thalys example

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

t1 1 −1 −1 1

t2 1 −1

t3 1 −1

t4 1 −1 1

t5 1 −1 −1 1

t6 −1 1

t7 1 −1

t8 1 −1

t9 1 −1

t10 1 −1 −1

arrival at Brussels, places 2 and 9 contain tokens. Transition 1 denotes connecting
the two trains. Place 13 models the driver of one of the trains, who will have a break
at Brussels while the other driver is continuing on to Paris. Transition 5 models
synchronization with other trains at the Gare du Nord station of Paris. These other
trains connect Gare du Nord with some other station (we have used Gare de Lyon
as an example, even though the situation at Paris is somewhat more complex). Of
course, Thalys trains do not use steam engines; they are just easier to visualize than
modern high-speed trains. Table 2.3 shows matrix NT for this example.

For example, row 2 indicates that firing t2 will increase the number of tokens
on p2 by 1 and decrease the number of tokens on p3 by 1. Using techniques from
linear algebra, we are able to show that the following four vectors are solutions for
this system of linear equations:

cR,1 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)

cR,2 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0)

cR,3 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)

cR,4 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0)

These vectors correspond to the places along the track for trains from Cologne,
to the places along the track for trains from Amsterdam, to the places along the
path for drivers of trains from Amsterdam, and to the places along the track within
Paris, respectively. Therefore, we are able to show that the number of trains and
drivers along these tracks is constant (something which we actually expect). This
example demonstrates that place invariants provide us with a standardized technique
for proving properties about systems. ∇

84 2 Specifications and Modeling

Fig. 2.53 The dining
philosophers’ problem

Fig. 2.54 Place/transition net
model of the dining
philosophers’ problem

1t

1e

3t

2t

3

2

1f

f

f

e
2

e
3

Fig. 2.55
Predicate/transition net model
of the dining philosophers’
problem

t

f

x

v

x

r(x)

x

u

x

l(x)
r(x)
l(x)

3
p
2

p

1
p

3f

e

2.6.4 Predicate/Transition Nets

Condition/event nets as well as place/transition nets can quickly become very large
for large examples. A reduction of the size of the nets is frequently possible with
predicate/transition nets.

Example 2.25 We will demonstrate this, using the so-called dining philosophers’
problem as an example. The problem is based on the assumption that a set of
philosophers is dining at a round table. In front of each philosopher, there is a plate
containing spaghetti (see Fig. 2.53). Between each of the plates, there is just one
fork. Each philosopher is either eating or thinking. Eating philosophers need their
two adjacent forks for that, so they can only eat if their neighbors are not eating.

2.6 Petri Nets 85

This situation can be modeled as a condition/event net, as shown in Fig. 2.54.
Conditions tj correspond to the thinking states, conditions ej correspond to the
eating states, and conditions fj represent available forks. Considering the small size
of the problem, this net is already very large. The size of this net can be reduced
by using predicate/transition nets. Figure 2.55 is a model of the same problem as
a predicate/transition net. With predicate/transition nets, tokens have an identity
and can be distinguished from each other. Predicate/transition nets have also been
called colored Petri nets (CPN). See Jensen [272] for a survey of applications of
CPNs for modeling of ICT systems, including communication protocols. We use
this in Fig. 2.55 in order to distinguish between the three different philosophers p1
to p3 and to identify fork f3. Furthermore, edges can be labeled with variables and
functions. In the example, we use variables to represent the identity of philosophers
and functions l(x) and r(x) to denote the left and right forks of philosopher x,
respectively. These two forks are required as a precondition for transition u and
returned as a postcondition by transition v. This model can be easily extended to
n > 3 philosophers. We just need to add more tokens. In contrast to the net in
Fig. 2.54, the structure of the net does not have to be changed. ∇

2.6.5 Evaluation

The key advantage of Petri nets is their power for modeling causal dependencies.
Standard Petri nets have no notion of time, and all decisions can be taken locally
by just analyzing transitions and their pre- and postconditions. Therefore, they can
be used for modeling geographically distributed systems. Furthermore, there is a
strong theoretical foundation for Petri nets, simplifying formal proofs of system
properties. Petri nets are not necessarily determinate: different firing sequences can
lead to different results. The descriptive power of Petri nets encompasses that of
other MoCs, including finite state machines.

In certain contexts, their strength is also their weakness. If time is to be modeled,
standard Petri nets cannot be used. Furthermore, standard Petri nets have no notion
of hierarchy and no programming language elements, let alone object-oriented
features. In general, it is difficult to represent data.

There are extended versions of Petri nets avoiding the mentioned weaknesses.
However, there is no universal extended version of Petri nets meeting all require-
ments mentioned at the beginning of this chapter. Nevertheless, due to the increasing
amount of distributed computing, Petri nets became more popular.

UML includes extended Petri nets called activity diagrams. Extensions include
symbols denoting decisions (like in ordinary flow charts). The placement of symbols
is similar to SDL.

Example 2.26 Figure 2.56 shows an activity chart of the procedure to be followed
during a standardization process. Forks and joins of control correspond to transitions
in Petri nets, and they use the symbols (horizontal bars) that were initially used

86 2 Specifications and Modeling

branch

activity

of control
join & fork

guard

fork of control

start activity

co
nd

iti
on

al
 th

re
ad

input value

object flow

control flow

[Issued]
RFP

[initial proposal]
Specification

[if NO]

[final proposal]
Specification

[optional]

adopted
Specification

............

Issue RFP

Evaluate initial
submissions

submissions
Evaluate final

[if YES]

logy specification
Develop techno-

Submit specifi-
cation draft

Collaborate with
other submitters

Finalize
specification

Vote to
recommend

Begin

Fig. 2.56 Activity diagram [299]

for Petri nets as well. The diamond at the bottom shows the symbol used for
decisions. Activities can be organized into “swim lanes” (areas between vertical
dotted lines) such that the different responsibilities and the documents exchanged
can be visualized. ∇
Interestingly, Petri nets were initially not a mainstream technique. Decades after
their invention, they have become a popular technique due to their inclusion
in UML.

2.7 Discrete Event-Based Languages 87

Fig. 2.57 Two cross-connected NOR-gates forming an RS latch

Table 2.4 Sequence of
values at inputs and outputs
of RS latch

t < 0 t = 0 t > 0

R '0' '1' '1' '1' '1'

S '0' '0' '0' '0' '0'

Q '1' '1' '0' '0' '0'

nQ '0' '0' '0' '1' '1'

2.7 Discrete Event-Based Languages

2.7.1 Basic Discrete Event Simulation Cycle

The discrete event-based model of computation is based on simulating the genera-
tion of events and processing them over time. We use a queue of future events, and
these are sorted by the time at which they should be processed. Semantics is defined
by fetching the event at the head of the queue, performing the corresponding actions,
and possibly entering new events into the queue. Time is advanced whenever no
action exists which should be performed at the current time. This is the basic
algorithm:

loop
fetch next entry from queue;
perform function (e.g., assignment of variables as listed in the entry)
(this may include the generation of new events);

until termination criterion is met;

Hardware description languages (HDLs) are typically based on the discrete event
model. We will use HDLs as a prominent example of discrete event modeling.

Example 2.27 We demonstrate the application of this general scheme to simulate
an RS-latch (see Fig. 2.57). The latch consists of two cross-coupled NOR-gates.
The corresponding code in a hardware description language, in this case VHDL, is
included in Fig. 2.57 as well. A representative sequence of values at the inputs and
outputs is shown in Table 2.4.

Let us assume that initially, the latch is set, and this state is maintained, i.e.,
output Q is '1' and R = S = '0'. The operation of both NOR-gates is described by
processes gate1 and gate2. These processes are initially inactive, waiting for some

88 2 Specifications and Modeling

event on their inputs a or b. This waiting is expressed by the lists (a,b). gate1 and
gate2 are said to be sensitive to the entries in that list.

Now, suppose that at time 0, input R, the reset input, is changed to '1'. We expect
the latch to be reset. In terms of events, this works as follows: The change at input
R is an event, which is stored in the queue of future events.

This event is immediately processed, since it is the only event in the queue. This
event will wake up gate2, since this gate is sensitive to changes on its input b.
gate2 will compute the nor function, with a result of '0', and will then perform
the assignment c <= '0'. This notation indicates a signal assignment. This means
that the new values will initially be stored only in the entries of future events. The
actual assignment to the variable on the left becomes effective only when the time
for processing this entry in the list of future events has been reached. In our example,
an event requesting output c of gate2 to be set to '0' will be created and stored in
the event queue.

This event will be immediately fetched, since it is the only event. The event will
set output c to '0'. This wakes up gate1, due to its sensitivity. gate1 will compute
the nor function as well. This computation results in an event, requesting output c
of gate1 to be set to '1'. This event will also be stored in the queue

This event will also be immediately processed, setting the output as requested.
This change will wake up gate2 again. gate2 will again compute an output of '0'.
Further details will depend somewhat on the mechanism which is used to detect
stable situations not requiring further events to be generated.

We could have added delays in terms of real physical units to each of the signal
assignments, which would have allowed us to keep track of elapsed time. Overall,
this event-based simulation approximates the behavior of a real latch. ∇

2.7.2 Multi-Valued Logic

Which values could we use for the signals in the above example? In this book,
we are restricting ourselves to embedded systems implemented with binary logic.
Nevertheless, it may be advisable or necessary to use more than two values for
modeling such systems. For example, our systems might contain electrical signals
of different strengths. It may be necessary to compute the strength and the logic
level resulting from a connection of two or more sources of electrical signals. In
the following, we will therefore distinguish between the level and the strength of
a signal. While the former is an abstraction of the signal voltage, the latter is an
abstraction of the impedance (resistance) of the voltage source. We will be using
discrete sets of signal values representing the signal level and the strength. Using
discrete sets of strengths avoids the problems of having to solve Kirchhoff’s
network equations and enables us to avoid analog models used in electrical
engineering. We will also model unknown electrical signals by special signal
values.

2.7 Discrete Event-Based Languages 89

In practice, electronic design systems use a variety of value sets. Some systems
allow only 2, while others allow 9 or 46. The overall goal of developing discrete
value sets is to avoid the problems of solving network equations and still model
existing systems with sufficient precision.

In the following, we will present a systematic technique for building up value
sets and relating these to each other. We will use the strength of electrical signals as
the key parameter for distinguishing between various value sets. A systematic way
of building up value sets, called CSA theory, was presented by Hayes [208]. CSA
stands for “connector, switch, attenuator.” These three elements are key elements of
this theory. We will later show how the standard value set used for most cases of
VHDL-based modeling can be derived as a special case.

One Signal Strength (Two Logic Values)

In the simplest case, we will start with just two logic values, called '0' and '1'.
These two values are considered to be of the same strength. This means if two wires
connect values '0' and '1', we will not know anything about the resulting signal
level.

A single signal strength may be sufficient if no two wires carrying values '0'
and '1' are connected and no signals of different strength meet at a particular node
of electronic circuits.

Two Signal Strengths (Three and Four Logic Values)

In many circuits, there may be instances in which a certain electrical signal is not
actively driven by any output. This may be the case, when a certain wire is not
connected to ground, the supply voltage, or any circuit node. For example, systems
may contain open-collector outputs (see Fig. 2.58 (left)).16

VDD

A
Input

PD
Ground

Input → A disconnected

&

PD

Aenable
&

f

f
VDD

Ground

enable=' ' → A disconnected=' '

Fig. 2.58 Effectively disconnectable outputs: left, open collector output; right, tristate output

16Schematics should help students to understand signal values, not make it more difficult. Students
unfamiliar with schematics could just study logic values.

90 2 Specifications and Modeling

enable=' '

VDD

Ground

&

PD
&

f

f &

PD'
& g

g
bus

' ' →
enable='1'

Fig. 2.59 Right output dominates bus

Fig. 2.60 Partial order for
value set {'0','1','Z',
'X'}

If the “pull-down” transistor PD is non-conducting, the output is effectively
disconnected. For the tristate outputs (see Fig. 2.58 (right)), an enable signal of '0'
will generate a '0' at the outputs of the AND-gates (denoted by &) and will make
both transistors non-conducting. As a result, output A will be disconnected.17 Hence,
using appropriate input signals, such outputs can be effectively disconnected from a
wire.

The signal strength of disconnected outputs is the smallest strength that we
can think of. We will denote the value at disconnected outputs as 'Z'. The signal
strength of 'Z' is smaller than that of '0' and '1'. Furthermore, the signal level of
'Z' is unknown. If a signal of value 'Z' is connected to another signal, that other
signal will always dominate. For example, if two tristate outputs are connected to
the same bus and if one output contributes a value of 'Z', the resulting value on the
bus will always be the value contributed by the second output (see Fig. 2.59).

In most cases, three-valued logic sets {'0','1','Z'} are extended by a fourth
value called 'X'. 'X' represents an unknown signal level of the same strength as '0'
or '1'. More precisely, we are using 'X' to represent unknown values of signals that
can be either '0' or '1' or some voltage representing neither '0' nor '1'.18

If multiple signals get connected, we have to compute the resulting value. This
can be done easily if we make use of a partial order among the four signal values
'0', '1', 'Z', and 'X'. The partial order is depicted in the Hasse diagram in Fig.
2.60.

Edges in this figure reflect the domination of signal values. Edges define a
relation >. If a > b, then a dominates b. '0' and '1' dominate 'Z'. 'X' dominates
all other signal values. Based on the relation >, we define a relation ≥. a ≥ b holds
iff a > b or a = b.

17Pull-up transistors may be depletion transistors, and the tristate outputs may be inverting.
18There are other interpretations of 'X' [65], but ours is the most useful in our context.

2.7 Discrete Event-Based Languages 91

We define an operation sup on two signals, which returns the supremum of the
two signal values.

Definition 2.23 Let a and b be two signal values from a partially ordered set (S,≥).
The supremum c ∈ S of the two values a and b is the smallest value for which c ≥ a

and c ≥ b holds.

For example, sup ('Z', '0') = '0', sup('Z','1') = '1', sup ('0', '1') = 'X', etc.

Lemma 2.1 Let a and b be two signals having values from a partially ordered set,
where the partial order has been selected as shown above. Then, the sup function
computes resulting signal values if the two signals get connected.

The supremum corresponds to the connect element of the CSA theory.

Three Signal Strengths (Seven Signal Values)

In many circuits, two signal strengths are not sufficient. A common case that
requires more values is the use of depletion transistors (see Fig. 2.61).

The effect of the depletion transistor is similar to that of a resistor providing a
low conductance path to the supply voltage VDD. The depletion transistor and the
“pull-down transistor” PD act as drivers for node A of the circuit, and the signal value
at node A can be computed using the supremum function. The pull-down transistor
provides a driver value of '0' or 'Z', depending upon the input to PD. The depletion
transistor provides a signal value, which is weaker than '0' and '1'. Its signal
level corresponds to the signal level of '1'. We represent the value contributed by
the depletion transistor by 'H', and we call it a “weak logic one.” Similarly, there
can be weak logic zeros, represented by 'L'. The value resulting from the possible
connection between 'H' and 'L' is called a “weak logic undefined,” denoted as 'W'.
As a result, we have three signal strengths and seven logic values {'0', '1', 'L',
'H', 'W', 'X', 'Z'}. Computing the resulting signal value can again be based on a
partial order among these seven values. The corresponding partial order is shown in
Fig. 2.62.

sup is also defined for this partially ordered set. For example, sup('H','0') =
'0', sup('H','Z') = 'H'; sup('H'; 'L') = 'W'.

Fig. 2.61 Output using
depletion transistor

f

GROUND

VDD

transistor
depletion

A

PD

92 2 Specifications and Modeling

'0' and 'L' represent the same signal levels but a different strength. The same
holds for the pairs '1' and 'H'. Devices increasing signal strengths are called
amplifiers; devices reducing signal strengths are called attenuators.

Four Signal Strengths (Ten Signal Values)

In some cases, three signal strengths are not sufficient. For example, there are cir-
cuits using charges stored on wires. Such wires are charged to levels corresponding
to '0' or '1' during some phases of the operation of the electronic circuit. This
stored charge can control the (high impedance) inputs of some transistors. However,
if these wires get connected to even the weakest signal source (except 'Z'), they
lose their charge, and the signal value from that source dominates.

Example 2.28 In Fig. 2.63, we are driving a bus from a specialized output. The
bus has a high capacitive load C. While function f is still '0', we set pre to
'1', charging capacitor C. Then we set pre to '0'. If the real value of function
f becomes known and it turns out to be '1', we discharge the bus. ∇

The key reason for using precharging is that charging a bus using an output such
as the one shown in Fig. 2.61 is a slow process, since the resistance of depletion
transistors is large. Discharging through regular pull-down transistors PD is a much
faster process.

In order to model such cases, we need signal values which are weaker than
'H' and 'L' but stronger than 'Z'. We call such values “very weak signal values”
and denote them by 'h' and 'l'. The corresponding very weak unknown value is

Fig. 2.62 Partial order for
value set {'0','1','L',
'H','W','X','Z'}

strongest

medium strength

weakest

Fig. 2.63 Precharging a bus

pre

f PD

Bus

C

VDD

GROUND

2.7 Discrete Event-Based Languages 93

Fig. 2.64 Partially
ordered set {'0','1',
'Z','X','H','L',
'W','h','l','w'}

strongest

medium strength

precharged

weakest

denoted by 'w'. As a result, we obtain ten signal values {'0', '1', 'L', 'H', 'l',
'h', 'X', 'W', 'w', 'Z'}. Using signal strengths, we can again define a partial order
among these values (see Fig. 2.64).

Note that precharging is not without risks. Once a precharged wire is discharged
due to a transient signal, it cannot be recharged during the same clock period.

Five Signal Strengths

So far, we have ignored power supply signals. These are stronger than the strongest
signals we have considered so far. Signal value sets taking power supply signals
into account have resulted in the definition of initially popular 46-valued value sets
[106]. However, such models are hardly used anymore.

2.7.3 Transaction-Level Modeling (TLM)

Discrete event simulation allows us to keep track of simulated time. However, it is
not obvious how precisely we will be modeling time. A very precise model reflecting
detailed timing of hardware signals will require long simulation times. In particular,
very long simulation times are needed when we model electrical circuits. Faster
simulation is feasible with cycle-accurate models reflecting the number of clock
cycles in a clocked (synchronous) system implementation. More simulation speed
can be gained from more coarse-grained timing models. In particular, transaction-
level modeling (TLM) has received much attention. TLM has been defined as
follows:

Definition 2.24 ([191]) “Transaction-level modeling (TLM) is a high-level
approach to modeling digital systems where details of communication among

94 2 Specifications and Modeling

Computation

Communication

Untimed

timed
Approximate-

Cycle-timed

Cycle-timedApproximate-Untimed
timed

C

D F

E

A B

Fig. 2.65 Distinction between different timing models

modules are separated from the details of the implementation of functional units
or of the communication architecture. Communication mechanisms such as buses
or FIFOs are modeled as channels, and are presented to modules using SystemC
interface classes. Transaction requests take place by calling interface functions
of these channel models, which encapsulate low-level details of the information
exchange. At the transaction level, the emphasis is more on the functionality of
the data transfers — what data are transferred to and from what locations — and
less on their actual implementation, that is, on the actual protocol used for data
transfer. This approach makes it easier for the system-level designer to experiment,
for example, with different bus architectures (all supporting a common abstract
interface) without having to recode models that interact with any of the buses,
provided these models interact with the bus through the common interface.”

A more detailed distinction between different timing models was described by
Cai and Gajski [83]. They distinguish between timing models for communication
and for computation19, and they consider different cases of timing models, depend-
ing upon how precisely communication and computation are modeled. Six cases are
shown in Fig. 2.65.

For communication as well as for computations, we distinguish between
untimed, approximately timed, and cycle-timed models. In the diagram in Fig. 2.65,
crosses mark three unbalanced combinations of timing models, which have not been
considered by Cai and Gajski. As a result, we consider six remaining cases [83]:

A Untimed models: In this case, we model only the functionality and do not
consider timing at all. Such models are appropriate for early design phases.
They can be called specification model.

B In the specification model, we can replace pure functionality descriptions
by descriptions of components using rough timing models. For example, we
might know the WCET of some code running on a processor. We would still

19This is very much in line with the same distinction which we have made in Table 2.1 on p. 41.

2.7 Discrete Event-Based Languages 95

model communication by abstract communication primitives. As a result, we
obtain node B in Fig. 2.65. Such a model can be called component assembly
model.

C In a model of type B, we could replace abstract communication primitives by
communication models which are approximately timed. This means that we
try to model access conflicts and their impact on the timing, but we do not
model the impact of each and every signal, nor do we model any links to clock
cycles. Such a model can be called bus arbitration model.

D In a model of type C, we could replace rough communication timing models
with cycle-timed models. This implies that we keep track of elapsed clock
cycles in our simulation. We might even consider real, physical time. The
resulting model, denoted as node D in Fig. 2.65, can be called a bus functional
model [83].

E In a model of type C, we could also replace rough computation timing models
by cycle-accurate timing models of the computation. This allows us, for
example, to capture memory references in detail. The resulting model can be
called a cycle-accurate computation model.

F The node labeled F is obtained when communication and computation are
modeled in a cycle-accurate way. Such a model can be called an implementa-
tion model.

Design procedures need to traverse the diagram in Fig. 2.65 from A to F, from the
bottom left to the top right.

2.7.4 SpecC

The SpecC language [173] provides us with a nice example for demonstrating TLMs
and a clear separation between communication and computation. SpecC models
systems as hierarchical networks of behaviors communicating through channels.
SpecC descriptions consist of behaviors, channels, and interfaces. Behaviors include
ports, locally instantiated components, private variables and functions, and a public
main function. Channels encapsulate communication. They include variables and
functions, which are used for the definition of a communication protocol. Interfaces
are linking behaviors and channels together. They declare the communication
protocols which are defined in a channel. SpecC can model hierarchies with nested
behaviors.

Example 2.29 Figure 2.66 [173] shows a component G including sub-components
g1 and g2 as leaves in the hierarchy. The channel can be changed without changing
the interfaces or components.

96 2 Specifications and Modeling

Fig. 2.66 Structural
hierarchy of SpecC example

This structural hierarchy is described in the following SpecC model:

01: interface L { void Write(int x); };
02: interface R { int Read(void); };
03: channel H implements L,R {
04: int Data; bool Valid;
05: void Write(int x) { Data=x; Valid=true; }
06: int Read(void) {
07: while (!Valid) waitfor (10);
08: return (Data);
09: }
11: };
11: behavior G1(in int p1, L p2, out int p3) {
12: void main (void) { /*...*/ p2.Write(p1); } };
13: behavior G2(in int p1, R p2, out int p3) {
14: void main(void) { /*...*/ p3=p2.Read(); } };
15: behavior G(in int p1, out int p2) {
16: int h1; H h2; G1 g1(p1, h2, h1); G2 g2(h1, h2, p2);
17: void main (void) {
18: par { g1.main(); g2.main(); }
19: }
20: };

Concurrent execution of sub-components is denoted by the keyword par in line
18. As indicated in line 16, sub-components are communicating through integer h1
and through channel h2. Note that the interface protocol implemented in channel
H (see line 03), consisting of methods for read and write operations (lines 05
and 06), can be changed without changing behaviors G1 and G2. For example,
communication can be bit-serial or parallel, and the choice does not affect the
models of G1 and G2. This is a necessary feature for reuse of hardware components
or intellectual property (IP). The presented SpecC model does not include any
timing information. Hence, it is a specification model (model of type A in Fig. 2.65).

∇
The design flow for SpecC was already shown in Fig. 1.9 on p. 23. The path in
Fig. 2.65 is A, B, D, F [83]. At the specification level, SpecC can model any kind of

2.7 Discrete Event-Based Languages 97

communication and typically uses message passing. The communication model of
SpecC has inspired the communication model in SystemC 2.0.

Note that SpecC is based on C and C++ syntax. The reason for this is the
following: There is the trend of implementing more and more functionality in
software and using C for this purpose. For example, embedded systems implement
standards such as MPEG 1/2/4 or decoders for mobile phone standards such as
GSM, UMTS, or LTE. These standards are frequently available in the form of
“reference implementations,” consisting of C programs not optimized for speed
but providing the required functionality. The disadvantage of design methodologies
based on special hardware description languages (like VHDL or Verilog, see below)
is that these standards must be rewritten in order to generate systems. Further-
more, simulating hardware and software together requires interfacing software and
hardware simulators. Typically, this involves a loss of simulation efficiency and
inconsistent user interfaces. Also, designers would need to learn several languages.

Therefore, there has been a search for techniques for representing hardware
structures in software languages. Some fundamental problems had to be solved
before hardware could be modeled with software languages:

• Concurrency, as it is found in hardware, has to be modeled in software.
• There has to be a representation of simulated time.
• Multiple-valued logic as described earlier must be supported.
• Almost all useful hardware circuits should simulate deterministically.

For the SpecC language, as well as for other hardware description languages,
these problems were solved.

2.7.5 SystemC

TLM modeling and the separation between communication and computation are
also available in SystemC™. SystemC (like SpecC) is based on C and C++. Similar
to SpecC, SystemC provides channels, ports, and interfaces as abstract components
for communication. The introduction of these mechanisms facilitates TLM.

SystemC™ [243, 521] is a C++ class library. With SystemC, specifications can
be written in C or C++, making appropriate references to the class library. SystemC
comprises a notion of processes executed concurrently. Their execution is controlled
by calls to wait primitives and sensitivity lists (lists of signals for which value
changes start a re-execution of code). The sensitivity list concept includes dynamic
sensitivity lists, i.e., the list of relevant signals can change during the execution.

SystemC includes a model of time. Earlier SystemC 1.0 used floating-point num-
bers to denote time. In the current standard, an integer model of time is preferred.
SystemC also supports physical units such as nanoseconds and microseconds.
SystemC data types include all common hardware types: four-valued logic ('0',
'1', 'X' and 'Z') and bitvectors of different lengths are supported. Writing digital
signal processing applications is simplified due to available fixed-point data types.

98 2 Specifications and Modeling

Determinate behavior (see p. 58) of SystemC is not guaranteed in general, unless
a certain modeling style is used. Using a command line option, the simulator can
be directed to run processes in different orders. This way, the user can check if
the simulation results depend on the sequence in which the processes are executed.
However, for models of realistic complexity, only the presence of non-determinate
behavior can be shown, not its absence.

Transaction-level modeling with SystemC has been described by Montoreano
[401]. The paper distinguishes only between two types of TLM models:

• Loosely timed models are described as follows [401]: “These models have a
loose dependency between timing and data, and are able to provide timing
information and the requested data at the point when a transaction is being
initiated. These models do not depend on the advancement of time to be able
to produce a response. Normally, resource contention and arbitration are not
modeled using this style. Due to the limited dependencies and minimal context
switches, these models can be made to run the fastest and are particularly useful
for doing software development on a Virtual Platform.”

• Approximately timed models are described as follows [401]: “These models
can depend on internal/external events firing and/or time advancing before they
can provide a response. Resource contention and arbitration can be modeled
easily with this style. Since these models must synchronize/order the transactions
before processing them, they are forced to trigger multiple context switches in the
simulation, resulting in performance penalties.”

Hardware synthesis starting from SystemC has become available [215, 216].
A synthesizable subset of the language has been defined [8]. There are also
commercial synthesis offerings. Commercial offerings are expected to support the
synthesizable subset as a minimum. Methodology and applications for SystemC-
based design are described in a book on that topic [407]. At the time of writing, the
most recent version of SystemC is SystemC 2.3.1 [7].

2.7.6 VHDL

Introduction

VHDL is another HDL which is based on the discrete event paradigm. Unfor-
tunately, it does not support a clear distinction between communication and
computation, and reusing components is more difficult. However, VHDL is sup-
ported by many industrial and academic tools and is in widespread use. Having
presented an initial example of event-based modeling already on p. 87, we would
like to delve deeper into VHDL.

VHDL uses processes for modeling concurrency. Each process models one com-
ponent of the potentially concurrent hardware. For simple hardware components,
a single process may be sufficient. More complex components may need several

2.7 Discrete Event-Based Languages 99

processes for modeling their operations. Processes communicate through signals.
Signals roughly correspond to physical connections (wires).

The origin of VHDL can be traced back to the 1980s. At that time, most design
systems used graphical HDLs. The most common building block was the gate.
However, in addition to using graphical HDLs, we can also use textual HDLs. The
strength of textual languages is that they can easily represent complex computations
including variables, loops, function parameters, and recursion. Accordingly, when
digital systems became more complex in the 1980s, textual HDLs almost completely
replaced graphical HDLs. Textual HDLs were initially a research topic at universi-
ties. See Mermet et al. [392] for a survey of languages designed in Europe at that
time. MIMOLA was one of these languages, and the author of this book contributed
to its design and applications [373, 377]. Textual languages became popular when
VHDL and its competitor Verilog (see p. 109) were introduced.

VHDL was designed in the context of the VHSIC program of the Department of
Defense (DoD) in the USA. VHSIC stands for very high speed integrated circuits.
Initially, the design of VHDL (VHSIC hardware description language) was done
by three companies: IBM, Intermetrics, and Texas Instruments. A first version of
VHDL was published in 1984. Later, VHDL became an IEEE standard, called IEEE
1076. The first IEEE version was standardized in 1987; updates were published in
1993, in 2000, in 2002, and in 2008 [237, 239–242]. VHDL-AMS [245] allows
modeling analog and mixed-signal systems by including differential equations in
the language. The design of VHDL used Ada (see p. 111) as the starting point, since
both languages were designed for the DoD. Since Ada is based on PASCAL, VHDL
has some of the syntactical flavor of PASCAL. However, the syntax of VHDL is
much more complex, and it is necessary not to get distracted by the syntax. In the
current book, we will just focus on some concepts of VHDL which are useful also
in other languages. A full description of VHDL is beyond the scope of this book.
The standard is available from IEEE (see, e.g., [242]).

Entities and Architectures

VHDL, like all other HDLs, includes support for modeling concurrent operation
of hardware components. Components are modeled by so-called design entities or
VHDL entities. Entities contain processes used to model concurrency. According
to the VHDL grammar, design entities are composed of two types of ingredients: an
entity declaration and one or several architectures (see Fig. 2.67).

For each entity, the most recently analyzed architecture will be used by default.
The use of other architectures can be specified. Architectures may contain several
processes.

Example 2.30 We will discuss a full adder as an example. Full adders have three
input ports and two output ports (see Fig. 2.68).

An entity declaration corresponding to Fig. 2.68 is the following:

100 2 Specifications and Modeling

Fig. 2.67 Entity consisting of an entity declaration and architectures

Fig. 2.68 Full adder and its
interface signals

entity full_adder is -- entity declaration
port (a, b, carry_in: in BIT; -- input ports

sum, carry_out: out BIT); -- output ports
end full_adder;

Two hyphens (--) are starting comments. They extend until the end of the line. ∇
Architectures consist of architecture headers and architectural bodies. We can

distinguish between different styles of bodies, in particular between structural and
behavioral bodies. We will show how the two are different using the full adder as
an example. Behavioral bodies include just enough information to compute output
signals from input signals and the local state (if any), including the timing behavior
of the outputs.

Example 2.31 The following is an example of this:

architecture behavior of full_adder is -- architecture
begin

sum <= (a xor b) xor carry_in after 10 ns;
carry_out <= (a and b) or (a and carry_in) or

(b and carry_in) after 10 ns;
end behavior;

VHDL-based simulators can display output signal waveforms resulting from
stimuli applied to the inputs of the full adder described above.

In contrast, structural bodies describe the way entities are composed of simpler
entities. For example, the full adder can be modeled as an entity consisting of three
components (see Fig. 2.69). These components are called i1 to i3 and are of type
half_adder or or_gate.

In the 1987 version of VHDL, these components must be declared in a so-
called component declaration. This declaration is very similar to (and it serves the
same purpose) forward declarations in other languages. This declaration provides
the necessary information about the component even if the full description of that

2.7 Discrete Event-Based Languages 101

Fig. 2.69 Schematic describing structural body of the full adder

component is not yet stored in the VHDL database (this may happen in the case
of so-called top-down designs). From the 1993 version of VHDL onward, such
declarations are not required if the relevant components are already stored in the
component database.

Connections between local component and entity ports are described in port
maps. The following VHDL code represents the structural body of Fig. 2.69:

architecture structure of full_adder is -- architecture head
component half_adder

port (in1, in2: in BIT; carry: out BIT; sum: out BIT);
end component;
component or_gate

port (in1, in2: in BIT; o: out BIT);
end component;
signal x, y, z: BIT; -- local signals
begin -- port map section
i1: half_adder -- introduction of half_adder i1

port map (a, b, x, y); -- connections between ports
i2: half_adder port map (y, carry_in, z, sum); -- connections
i3: or_gate port map (x, z, carry_out); -- connections
end structure;

∇

Assignments

Example 2.31 contains several assignments. Assignments are special cases of
statements. In VHDL, there are two kinds of assignments:

• Variable assignments: The syntax of variable assignments is

variable := expression

Whenever control reaches such an assignment, the expression is computed and
assigned to the variable. Such assignments behave like assignments in common
programming languages.

102 2 Specifications and Modeling

• Signal assignments: Signal assignments (as mentioned already on pages 88 and
100) are evaluated concurrently. Signals and signal assignments are introduced in
an attempt to model electrical signals in real hardware systems. Signals associate
values with instances in time. In VHDL, such a mapping from time to values is
represented by waveforms. Waveforms are computed from signal assignments.
The syntax of signal assignments is

signal <= expression;
signal <= transport expression after delay;
signal <= expression after delay;
signal <= reject time inertial expression after delay;

Whenever control reaches such an assignment, the expression is computed and
used to extend predicted future values of the waveform. In VHDL, each signal
is associated with a so-called signal driver. Computing the value resulting from
the contributions of multiple drivers to the same signal is called resolution, and
resulting values are computed by functions called resolution functions. In this
way, the sup function mentioned in the context of CSA theory is implemented if
signals are connected.

In order to compute future values, simulators are assumed to include a
queue of events to happen later than the current simulated time. This queue
is sorted by the time at which future events (e.g., updates of signals) should
happen. Executing a signal assignment results in the creation of entries in this
queue. Each entry contains a time for executing the event, the affected signal,
and the value to be assigned. For signal assignments not containing any after
clause (first syntactical form), the entry will contain the current simulation time
as the time at which this assignment has to be performed. In this case, the change
will take place after an infinitesimally small amount of time, called δ-delay (see
below). This allows us to update signals without changing macroscopic time.

For signal assignments containing a transport prefix (second syntactical
form), the update of the signal will be delayed by the specified amount. This
form of the assignment is following the so-called transport delay model. This
model is based on the behavior of simple wires: wires are (as a first order
of approximation) delaying signals. Even short pulses propagate along wires.
The transport delay model can be used for logic circuits, even though its main
application is to model wires.

Example 2.32 Suppose that we model a simple OR-gate using a transport delay
signal assignment:

c <= transport a or b after 10 ns;

Such a model would propagate even short pulses (see Fig. 2.70).
Output signal c includes a short pulse of 5 ns, which would be suppressed for

an inertial delay model. ∇

2.7 Discrete Event-Based Languages 103

Fig. 2.70 Gate modeled with
transport delay a

b

c

8070605040302010

Pulse of 5 ns

[ns]t

Fig. 2.71 Gate modeled with
inertial delay a

b

c

8070605040302010

No pulse of 5 ns

t [ns]

Transport delay signal assignments will delete all entries in the queue
corresponding to the time of the computed update or later times (if we first
execute an assignment with a rather large delay and then execute an assignment
with a smaller delay, then the entry resulting from the first assignment will be
deleted).

For signal assignments containing an after clause, but no transport clause,
inertial delay is assumed. The inertial delay model reflects the fact that
real circuits come with some “inertia.” This means that short spikes will be
suppressed. For the third syntactical form of the signal assignment, all signal
changes which are shorter than the specified delay are suppressed. For the fourth
form, all signal changes which are shorter than the indicated amount are removed
from the predicted waveform. The subtle rules for removals are not repeated here.

Example 2.33 Suppose that we model a simple OR-gate using inertial delay:

c <= a or b after 10 ns;

For such a model, short spikes would be suppressed (see Fig. 2.71).
There is no short pulse of 5 ns at c, but the 15 ns pulse arrives at the output.

∇

VHDL Processes

Assignments are just a shorthand for VHDL processes. More control over signal
evaluations is available with processes. The general syntax for processes is as
follows:

104 2 Specifications and Modeling

label: -- optional
process
declarations -- optional
begin
statements -- optional
end process;

In addition to assignments, processes may contain wait statements. Such
statements can be used to explicitly suspend a process. These are the following
kinds of wait statements:

wait on signal list; -- suspend until one of the signals changes;
wait until condition; -- suspend until condition is met
wait for duration; -- suspend for specified interval;
wait; -- suspend process indefinitely.

As an alternative to explicit wait statements, a list of signals can be added to the
process header. In that case, the process is activated whenever one of the signals in
that list changes its value.

Example 2.34 The following model of an AND-gate will execute its body once and
will restart from the beginning every time one of the inputs changes its value:

process(x,y) begin
prod <= x and y ;

end process;

This model is equivalent to

process begin
prod <= x and y ;
wait on x,y;

end process;

where there is an explicit wait statement at the end. ∇

The VHDL Simulation Cycle

According to the original standards document [237], the execution of a VHDL
model is described as follows:

“The execution of a model consists of an initialization phase followed by the
repetitive execution of process statements in the description of that model. Each
such repetition is said to be a simulation cycle. In each cycle, the values of all
signals in the description are computed. If as a result of this computation an event
occurs on a given signal, process statements that are sensitive to that signal will
resume and will be executed as part of the simulation cycle.”

2.7 Discrete Event-Based Languages 105

The initialization phase takes signal initializations into account and executes each
process once. It is described in the standards as follows:20

“At the beginning of initialization, the current time, Tc is assumed to be 0 ns. The
initialization phase consists of the following steps:21

• The driving value and the effective value of each explicitly declared signal are
computed, and the current value of the signal is set to the effective value. This
value is assumed to have been the value of the signal for an infinite length of time
prior to the start of the simulation. . . .

• Each . . . process in the model is executed until it suspends. . . .
• The time of the next simulation cycle (which in this case is the first simulation

cycle), Tn is calculated according to . . . step (e) of the simulation cycle, below.”

Each simulation cycle starts with setting the current time to the next time at
which changes must be considered. This time Tn was either computed during
the initialization or during the last execution of the simulation cycle. Simulation
terminates when the current time reaches its maximum, T IME′HIGH . The
standard describes the simulation cycle as follows:

“A simulation cycle consists of the following steps:

(a) The current time, Tc is set equal to Tn. Simulation is complete when Tn =
T IME′HIGH and there are no active drivers or process resumptions at Tn.

(b) Each active explicit signal in the model is updated. (Events may occur as a
result.)” . . .

In the cycle preceding the current cycle, future values for some signals have
been computed. If Tc corresponds to the time at which these values become
valid, they are now assigned. Values of newly computed signals are not assigned
before the next simulation cycle, at the earliest. Signals that change their value
generate events which, in turn, may release processes that are sensitive to that
signal.

(c) “For each process P , if P is currently sensitive to a signal S and if an event
has occurred on S in this simulation cycle, then P resumes.

(d) Each . . . process that has resumed in the current simulation cycle is executed
until it suspends.

(e) Tn (the time of the next simulation cycle) is set to the earliest of

1. TIME’HIGH (this is the end of simulation time).
2. The next time at which a driver becomes active (this is the next instance in

time, at which a driver specifies a new value), or
3. The next time at which a process resumes (as computed from wait for

statements).

If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.”

20We leave out the discussion of implicitly declared signals and so-called postponed processes.
21Some sections of the standard are omitted in the citation (indicated by “. . . ”).

106 2 Specifications and Modeling

Fig. 2.72 VHDL simulation
cycles

Evaluate processesAssign new values to signals

Future values for signal drivers

Activate all processes sensitive to signal changes

Start of simulation

Fig. 2.73 RS flipflop

≥1

≥1

The iterative nature of simulation cycles is shown in Fig. 2.72.
Delta (δ) simulation cycles have been the source of discussions. They introduce

an infinitesimally small delay if the user did not specify any.

Example 2.35 Let us come back to our latch example and look more closely at
timing. Figure 2.73 shows the latch again, this time using standard schematic
symbols.

The flipflop is modeled in VHDL as follows:

entity RS_Flipflop is
port (R: in BIT; -- reset

S: in BIT; -- set
Q: inout BIT; -- output
nQ: inout BIT); -- Q-bar

end RS_Flipflop;
architecture one of RS_Flipflop is
begin
process: (R,S,Q,nQ)
begin

Q <= R nor nQ; nQ <= S nor Q;
end process;

end one;

Ports Q and nQ must be of mode inout since they are also read internally, which
would not be possible if they were of mode out. Table 2.5 shows the simulation
times at which signals are updated for this model. During each cycle, updates are
propagated through one of the gates. Simulation terminates after three δ cycles. The
last cycle does not change anything, since Q is already '0'. ∇

δ cycles correspond to an infinitesimally small unit of time, which will always
exist in reality. δ cycles ensure that simulation respects causality.

2.7 Discrete Event-Based Languages 107

Table 2.5 δ cycles for RS
flipflop

<0 ns 0 ns 0 ns +δ 0 ns +2 ∗ δ 0 ns +3 ∗ δ

R '0' '1' '1' '1' '1'

S '0' '0' '0' '0' '0'

Q '1' '1' '0' '0' '0'

nQ '0' '0' '0' '1' '1'

The results do not depend on the order in which parts of the model are executed
by the simulation. This feature is enabled by the separation between the computation
of new values for signals and their actual assignment. In a model containing the lines

a <= b;
b <= a;

signals a and b will always be swapped. If the assignments were performed
immediately, the result would depend on the order in which we execute the
assignments (see also p. 57). VHDL models are therefore determinate. This is
what we expect from the simulation of a real circuit with a fixed behavior.

There can be arbitrarily many δ cycles before the current time Tc is advanced.
This possibility of infinite loops can be confusing. One way of avoiding this
possibility is to disallow zero delays, which we used in our model of the flipflop.

The propagation of values using signals also allows an easy implementation of
the observer pattern (see p. 35). In contrast to SDF, the number of observers can
vary, depending on the number of processes waiting for changes on a signal.

What is the communication model behind VHDL? The description of the seman-
tics of VHDL relies heavily on a single, centralized queue of future events, storing
values of all signals in the future. The purpose of this queue is not to implement
asynchronous message passing. Rather, this queue is supposed to be accessed by
the simulation kernel, one entry at a time, in a non-distributed fashion. Attempts
to perform distributed VHDL simulations are typically suffering from a poor
performance. All modeled components can access values of signals and variables
which are in their scope without any message-based communication. Therefore, we
tend toward associating VHDL with a shared memory-based implementation of the
communication. However, FIFO-based message passing could be implemented in
VHDL on top of the VHDL simulator as well.

IEEE 1164

In VHDL, there is no predefined number of signal values, except for some basic
support for two-valued logic. Instead, the used value sets can be defined in VHDL
itself, and different VHDL models can use different value sets.

However, portability of models would suffer in a very severe manner if this
capability of VHDL was applied in this way. In order to simplify exchanging

108 2 Specifications and Modeling

VHDL models, a standard value set was defined and standardized by the IEEE.
This standard is called IEEE 1164 and is employed in many system models. IEEE
1164 has nine values: {'0', '1', 'L', 'H', 'X', 'W', 'Z', 'U', '-'}. The first seven
values correspond to the seven signal values described in Sect. 2.7.2. 'U' denotes an
uninitialized value. It is used by simulators for signals that have not been explicitly
initialized.

'-' denotes the input don’t care. This value needs some explanation. Fre-
quently, hardware description languages are used for describing Boolean functions.
The VHDL select statement is a very convenient means for doing that. The select
statement corresponds to switch and case statements found in other languages, and
its meaning is different from the select statement in Ada (see p. 112).

Example 2.36 Suppose that we would like to represent the Boolean function:

f (a, b, c) = ab + bc

Furthermore, suppose that f should be undefined for the case of a = b = c ='0'.
A very convenient way of specifying this function would be the following:

f <= select a & b & c -- & denotes concatenation
'1' when '10-' -- corresponds to first term
'1' when '-11' -- corresponds to second term
' X' when '000'

This way, functions given above could be easily translated into VHDL. Unfortu-
nately, the select statement denotes something completely different. Since IEEE
1164 is just one of a large number of possible value sets, it does not include any
knowledge about the “meaning” of '-'. Whenever VHDL tools evaluate select
statements such as the one above, they check if the selecting expression (a & b & c
in the case above) is equal to the values in the when clauses. In particular, they
check if, e.g., a & b & c is equal to '10-'. In this context, '-' behaves like any other
value: VHDL systems check if c has a value of '-'. Since '-' is never assigned to
any of the variables, these tests will never be true. ∇

Therefore, '-' is of limited benefit. The non-availability of convenient input
don’t care values is the price that one has to pay for the flexibility of defining value
sets in VHDL itself.22

The nice property of the general discussion on pages 89 to 93 is the following:
it allows us to immediately draw conclusions about the modeling power of IEEE
1164. The IEEE standard is based on the seven-valued value set described on p. 91

22This problem was corrected in VHDL 2006 [341].

2.7 Discrete Event-Based Languages 109

and, therefore, is capable of modeling circuits containing depletion transistors. It is,
however, not capable of modeling charge storage.23

2.7.7 Verilog and SystemVerilog

Verilog[539] is another hardware description language. Initially it was a proprietary
language, but it was later standardized as an IEEE standard 1364, with versions
called IEEE standard 1364–1995 (Verilog version 1.0) and IEEE standard 1364–
2001 (Verilog 2.0). Some features of Verilog are quite similar to VHDL. Just
like in VHDL, designs are described as a set of connected design entities, and
design entities can be described behaviorally. Also, processes are used to model
concurrency of hardware components. Just like in VHDL, bitvectors and time units
are supported. There are, however, some areas in which Verilog is less flexible and
focuses more on comfortable built-in features. For example, standard Verilog does
not include the flexible mechanisms for defining enumerated types such as the ones
defined in the IEEE 1164 standard. However, support for four-valued logic is built
into the Verilog language, and the standard IEEE 1364 also provides multiple-valued
logic with eight different signal strengths. Multiple-valued logic is more tightly
integrated into Verilog than into VHDL. The Verilog logic system also provides
more features for transistor-level descriptions. However, VHDL is more flexible.
For example, VHDL allows hardware entities to be instantiated in loops. This can
be used to generate a structural description for, e.g., n-bit adders without having to
specify n adders and their interconnections manually.

Verilog has a similar number of users as VHDL. While VHDL is more popular
in Europe, Verilog is more popular in the USA.

Verilog versions 3.0 and 3.1 are also known as SystemVerilog. They include
numerous extensions to Verilog 2.0. These extensions include [244, 517]:

• additional language elements for modeling behavior,
• C data types such as int and type definition facilities such as typedef and

struct,
• definition of interfaces of hardware components as separate entities,
• standardized mechanism for calling C/C++ functions and, to some extent, to call

built-in Verilog functions from C,
• significantly enhanced features for describing an environment (called test bench)

for the hardware circuit under design (called CUD), and for using the test bench
to validate the CUD by simulation,

• classes known from object-oriented programming for use within test benches,
• dynamic process creation,

23As an exception, if the capability of modeling depletion transistors or pull-up resistors is not
needed, one could interpret weak values as stored charges. This is, however, not very practical
since pull-up resistors are found in most actual systems.

110 2 Specifications and Modeling

• standardized interprocess communication and synchronization, including sema-
phores,

• automatic memory allocation and deallocation,
• language features that provide a standardized interface to formal verification (see

p. 239).

Due to the capability of interfacing with C and C++, interfacing to SystemC
models is also possible. Improved facilities for simulation based and formal
verification based design validation and the possible interfacing to SystemC create
a good acceptance.

2.8 von Neumann Languages

The sequential execution and explicit control flow of von Neumann languages
are their common characteristics. Also, such languages allow an almost unre-
stricted access to global variables, and we may need explicit communication and
synchronization. Model-based design using CFSMs and computational graphs is
very appropriate for embedded system design. Nevertheless, the use of standard
von Neumann languages is still widespread. Therefore, we cannot ignore these
languages. Also, the distinction between models like KPNs and properly restricted
von Neumann languages is blurring. For KPNs, we do also have sequential
execution of the code for each of the nodes. We are still keeping the distinction
between KPN and von Neumann languages since the KPN style of modeling has its
advantages like determinate execution.

For the first two languages covered next, communication is built into the
languages. For the remaining languages, focus is on the computations, and com-
munication can be replaced by selecting different libraries.

2.8.1 CSP

CSP (communicating sequential processes) [217] is one of the first languages
comprising mechanisms for interprocess communication. Communication is based
on channels.

Example 2.37 Consider input/output for channel c in this example:

process A process B
.....
var a .. var b ...
a := 3; ...
c!a; -- output to channel c c?b; -- input from channel c

end; end;

2.8 von Neumann Languages 111

Both processes will wait for the other process to arrive at the input or output
statement. This is a case of rendezvous-based, blocking, or synchronous message
passing. ∇

CSP is determinate, since it relies on the commitment to wait for input from
a particular channel, like in Kahn process networks. CSP has laid the foundation
for the OCCAM language that was proposed as a programming language of the
transputer [435]. The focus on communication channels has been picked up again
in the design of the XS1 processor [603].

2.8.2 Ada

During the 1980s, the Department of Defense (DoD) in the USA realized that the
dependability and maintainability of the software in its military equipment could
soon become a major source of problems, unless some strict policy was enforced.
It was decided that all software should be written in the same real-time language.
Requirements for such a language were formulated.

No existing language met the requirements, and, consequently, the design of
a new one was started. The language which was finally accepted was based on
PASCAL. It was called Ada (after Ada Lovelace, regarded as being the first (female)
programmer). Ada’95 [80, 287] is an object-oriented extension of the original
standard.

One of the interesting features of Ada is the ability to have nested declarations of
processes (called tasks in Ada). Tasks are started whenever control passes into the
scope in which they are declared.

Example 2.38 The following code has been adopted from Burns et al. [80]:

procedure example1 is
task a;
task b;
task body a is

-- local declarations for a
begin

-- statements for a
end a;

task body b is
-- local declarations for b
begin

-- statements for b
end b;

begin
-- body of procedure example1
end;

Tasks a and b will start before the first statement of the code of example1. ∇

112 2 Specifications and Modeling

The communication concept of Ada is another key concept. It is based on the syn-
chronous rendezvous paradigm. Whenever two tasks want to exchange information,
the task reaching the “meeting point” first has to wait until its partner has also
reached a corresponding point of control. Syntactically, procedures are used for
describing communication. Procedures which can be called from other tasks must
be identified by the keyword entry.

Example 2.39 This code has also been adopted from Burns et al. [79]:

task screen_out is
entry call (val: character; x, y: integer);

end screen_out;

Task screen_out includes a procedure named call which can be called from
other processes. Some other task can call this procedure by prefixing it with the
name of the task:

screen_out.call(’Z’,10,20);

The calling task has to wait until the called task has reached a point of control,
at which it accepts calls from other tasks. This point of control is indicated by the
keyword accept:

task body screen_out is
...
begin

...
accept call (val: character; x, y: integer) do
...
end call;

...
end screen_out;

Obviously, task screen_out may be waiting for several calls at the same time.
The Ada select statement provides this capability:

task screen_output is
entry call_ch(val: character; x, y: integer);
entry call_int(z, x, y: integer);

end screen_out;
task body screen_output is
...
select

accept call_ch ... do...
end call_ch;

or
accept call_int ... do ..
end call_int;

end select;
...

2.8 von Neumann Languages 113

In this case, task screen_out will be waiting until either call_ch or call_int
is called. ∇
Due to the presence of the select statement, Ada is not determinate. Ada has been
the preferred language for military equipment produced in the Western hemisphere
for some time. Information about Ada is available from a number of web sites (see,
e.g., [288]).

2.8.3 Communication Libraries

Standard von Neumann languages do not come with built-in communication primi-
tives. However, communication can be provided by libraries. There is a trend toward
supporting communication within some local system as well as communication over
longer distances. The use of Internet protocols is becoming more popular.

MPI

Multi-core programming with imperative programs is possible with the message
passing interface MPI. MPI is a very frequently used library, initially designed
for high-performance computing. It allows a choice between synchronous and
asynchronous message passing. For example, synchronous message passing is
possible with the MPI_Send library function [395]:

MPI_Send(buffer,count,type,dest,tag,comm) where:

• buffer is the address of data to be sent,
• count is the number of data elements to be sent,
• type is the data type of data to be sent (e.g., MPI_CHAR, MPI_SHORT, MPI_INT),
• dest is the process id of the target process,
• tag is a message id (for sorting incoming messages),
• comm is the communication context (set of processes for which destination field

is valid), and
• function result indicates success.

The following is an asynchronous library function:
MPI_Isend(buffer,count,type,dest,tag,comm,request) where

• buffer, count, type, dest, tag, comm are same as above, and
• the system issues a unique “request number”. The programmer uses this system

assigned “handle” later (in a WAIT type routine) to determine completion of the
non-blocking operation.

For MPI, the partitioning of computations among various processors must be
done explicitly, and the same is true for the communication and the distribution of
data. Synchronization is implied by communication, but explicit synchronization is

114 2 Specifications and Modeling

also possible. As a result, much of the management code is explicit and causes a
major amount of work for the programmer. Also, it does not scale well when the
number of processors is significantly changed [554].

In order to apply the MPI style of communication to real-time systems, a real-
time version of MPI, called MPI/RT, has been defined [501]. MPI/RT does not cover
issues such as thread creation and termination. MPI/RT is conceived as a potential
layer between the operating system and standard (non-real-time) MPI.

MPI is available on a variety of platforms and also considered for multiple
processors on a chip. However, it is based on the assumption that memory accesses
are faster than communication operations. Also, MPI is mainly targeting at homo-
geneous multiprocessors. These assumptions are not true for multiple processors on
a chip.

MPI has recently been extended to cover shared memory-based communication
as well.

OpenMP

OpenMP is a compiler-based solution for shared memory-based communication.
For OpenMP, parallelism is mostly explicit, whereas computation partitioning,
communication, synchronization, etc. are implicit. Parallelism is expressed with
pragmas: for example, loops can be preceded by pragmas indicating that they should
be parallelized.

Example 2.40 The following program demonstrates a small parallel loop [439]:

void a1(int n, float *a, float *b) {
int i;
#pragma omp parallel for
for (i=1; i<n; i++) /* i is private by default */

b[i] = (a[i] + a[i-1]) / 2.0;
}

Note that a simple pragma is sufficient to indicate parallel programming. ∇
This means that OpenMP requires a relatively small amount of effort for paralleliza-
tion for the user. However, this also means that the user cannot control partitioning
[554]. There are some applications for MPSoCs (see, e.g., Marian et al. [366]).

More techniques for multi-core programming will be described in the section on
system software (see p. 232).

2.8.4 Additional Languages

The Java language was not designed for embedded systems. There have been
attempts to solve some of the resulting problems [12, 270]. However, Android and

2.9 Levels of Hardware Modeling 115

Java for smart cards are the only major applications of Java in small systems. At
the time of writing, the JTRES workshop on “Java Technologies for Real-time and
Embedded Systems” (siehe http://jtres2016.compute.dtu.dk/) reflects the latest state
of the art in using Java for such systems.

Pearl [127] was designed for industrial control applications. It does include a
large repertoire of language elements for controlling processes and referring to time.
It requires an underlying real-time operating system. Pearl has been very popular in
Europe, and a large number of industrial control projects have been implemented
in Pearl. Pearl supports semaphores which can be used to protect communication
based on shared buffers.

Chill [592] was designed for telephone exchange stations. It was standardized by
the CCITT and used in telecommunication equipment. Chill is a kind of extended
PASCAL.

IEC 60848 [231] and STEP 7 [488] are specialized languages that are used in
control applications. Both provide graphical elements for describing the system
functionality.

2.9 Levels of Hardware Modeling

In practice, designers start design cycles at various levels of abstraction. In some
cases, these are high levels describing the overall behavior of the system to be
designed. In other cases, the design process starts with the specification of electrical
circuits at lower levels of abstraction. For each of the levels, a variety of languages
exists, and some languages cover various levels. In the following, we will describe a
set of possible levels. Some lower-end levels are presented here for context reasons.
Specifications should not start at those levels. The following is a list of frequently
used names and attributes of levels:

• System-level models: The term system level is not clearly defined. It is used here
to denote the entire embedded system and the system into which information
processing is embedded (“the product”) and possibly also the environment (the
physical input to the system, reflecting, e.g., the roads and weather conditions).
Obviously, such models include mechanical as well as information processing
aspects, and it may be difficult to find appropriate simulators. Possible solutions
include VHDL-AMS (the analog extension to VHDL), Verilog-AMS, SystemC,
Modelica, COMSOL (see https://www.comsol.com/), or MATLAB/Simulink.
MATLAB/Simulink and VHDL-AMS support modeling partial differential equa-
tions, which is a key requirement for modeling mechanical systems. It is a
challenge to model information processing parts of the system in such a way
that the simulation model can also be used for the synthesis of the embedded
system. If this is not possible, error-prone manual translations between different
models may be needed.

http://jtres2016.compute.dtu.dk/
https://www.comsol.com/

116 2 Specifications and Modeling

• Algorithmic level: At this level, we are simulating the algorithms that we intend
to use within the embedded system. For example, we might be simulating MPEG
video encoding algorithms in order to evaluate the resulting video quality. For
such simulations, no reference is made to processors or instruction sets.

Data types may still allow a higher precision than the final implementation.
For example, MPEG standards use double-precision floating-point numbers. The
final embedded system will hardly include such data types. If data types have
been selected such that every bit corresponds to exactly one bit in the final
implementation, the model is said to be bit-true. Translating non-bit-true into
bit-true models should be done with tool support (see p. 357).

Models at this level may consist of single processes or of sets of cooperating
processes.

• Instruction set level: In this case, algorithms have already been compiled for
the instruction set of the processor(s) to be used. Simulations at this level allow
counting the executed number of instructions. There are several variations of the
instruction set level:

– In a coarse-grained model, only the effect of the instructions is simulated,
and their timing is not considered. The information available in assembly
reference manuals (instruction set architecture (ISA)) is sufficient for defining
such models.

– Transaction-level modeling: In transaction-level modeling (see also p. 93),
transactions, such as bus reads and writes, and communication between
different components are modeled. Transaction-level modeling includes fewer
details than cycle-true modeling (see below), enabling significantly superior
simulation speeds [105].

– In a more fine-grained model, we might have cycle-true instruction set
simulation. In this case, the exact number of clock cycles required to run an
application can be computed. Defining cycle-true models requires a detailed
knowledge about processor hardware in order to correctly model, for example,
pipeline stalls, resource hazards, and memory wait cycles.

• Register-transfer level (RTL): At this level, we model all the components
at the register-transfer level, including arithmetic/logic units (ALUs), registers,
memories, multiplexers, and decoders. Models at this level are always cycle-true.
Automatic synthesis from such models is not a major challenge.

• Gate-level models: In this case, models contain gates as the basic components.
Gate-level models provide accurate information about signal transition probabili-
ties and can therefore also be used for power estimations. Also delay calculations
can be more precise than for the RTL. However, typically no information about
the length of wires and hence no information about capacitances is available.
Hence, delay and power consumption calculations are still estimates.

The term “gate-level model” is sometimes also employed in situations in
which gates are only used to denote Boolean functions. Gates in such a model
do not necessarily represent physical gates; we are only considering the behavior
of the gates, not the fact that they also represent physical components. More

2.10 Comparison of Models of Computation 117

precisely, such models should be called “Boolean function models,”24 but this
term is not frequently used.

• Switch-level models: Switch-level models use switches (transistors) as their
basic components. Switch-level models use digital values models (refer to p. 88
for a description of possible value sets). In contrast to gate-level models, switch-
level models are capable of reflecting bidirectional transfer of information.
Switch-level models can be simulated with ternary simulation [72].

• Circuit-level models: Circuit theory and its components (current and voltage
sources, resistors, capacitances, inductances, and frequently possible macro-
models of semiconductors) form the basis of simulations at this level. Simu-
lations involve partial differential equations. These equations are linear if and
only if the behavior of semiconductors is linearized (approximated). The most
frequently used simulator at this level is SPICE [557] and its variants.

• Layout models: Layout models reflect the actual circuit layout. Such models
include geometric information. Layout models cannot be simulated directly,
since the geometric information does not directly provide information about
the behavior. Behavior can be deduced by correlating the layout model with a
behavioral description at a higher level or by extracting circuits from the layout,
using knowledge about the representation of circuit components at the layout
level.

In a typical design flow, the length of wires and the corresponding capac-
itances are extracted from the layout and back-annotated to descriptions at
higher levels. This way, more precision can be gained for delay and power
estimations. Also, layout information may be essential for thermal modeling.

• Process and device models: At even lower levels, we can model fabrication
processes. Using information from such models, we can compute parameters
(gains, capacitances, etc) for devices (transistors). Due to a growing complexity
of the fabrication process, these models are also becoming more complex.

2.10 Comparison of Models of Computation

2.10.1 Criteria

Models of computation can be compared according to several criteria. For example,
Stuijk [515] compares MoCs according to the following criteria:

• Expressiveness and succinctness indicate which systems can be modeled and
how compact they are.

• Analyzability relates to the availability of schedulability tests and scheduling
algorithms. Also, analyzability is affected by the need for run-time support.

24These models could be represented with binary decision diagrams (BDDs) [571].

118 2 Specifications and Modeling

Homogeneous SDF (HSDF)

Expressiveness and succinctness

Analyzability Implementation efficiency

Kahn process networks
SDF

Fig. 2.74 Comparison between data-flow models

• The implementation efficiency is influenced by the required scheduling policy
and the code size.

Figure 2.74 classifies data-flow models according to these criteria.
This figure reflects the fact that Kahn process networks are expressive: they

are Turing-complete, meaning that any problem which can be computed on a
Turing machine can also be computed in a KPN. Turing machines are used as
the standard model of universal computers [214]. However, termination properties
and upper bounds on buffer sizes of KPNs are difficult to analyze. While Kahn
process networks are Turing-complete, cyclo-static data flow (CSDF, see p. 74) is
not Turing-complete. Also, SDF graphs are not Turing-complete. The underlying
reason is that they cannot model control flow. However, deadlock properties and
upper bounds on buffer sizes of SDF graphs are easier to analyze. Homogeneous
SDF (HSDF) graphs (graphs for which all rates are equal to one) are even less
expressive but also easier to analyze.

We could compare MoCs also with respect to the type of processes supported:

• The number of processes can be either static or dynamic. A static number of
processes simplifies the implementation and is sufficient if each process models
a piece of hardware and if we do not consider “hot-plugging” (dynamically
changing the hardware architecture). Otherwise, dynamic process creation (and
termination) should be supported.

• Processes can either be statically nested or all declared at the same level. For
example, StateCharts allows nested process declarations, while SDL (see p. 62)
does not. Nesting provides encapsulation of concerns.

• Different techniques for process creation exist. Process creation can result from
an elaboration of the process declaration in the source code, through the fork
and join mechanism (supported for example in Unix) and also through explicit
process creation calls.

The expressiveness of different data flow-oriented models of computation is also
shown in Fig. 2.75 [42]. MoCs not discussed in this book are indicated by dashed
lines.

2.10 Comparison of Models of Computation 119

Fig. 2.75 Expressiveness of
data-flow models

HSDF

SDF

CSDF

KPN

Table 2.6 Language comparison

Behavioral Structural Programming Exceptions Dynamic process
Language hierarchy hierarchy language elements supported creation

StateCharts + − − + −
VHDL + + + − −
SDL +− +− +− − +
Petri nets − − − − +
Java + − + + +
SpecC + + + + +
SystemC + + + + +
Ada + − + + +

None of the MoCs and languages presented so far meets all the requirements for
specification languages for embedded systems. Table 2.6 presents an overview over
some of the key properties of some of the languages.

Interestingly, SpecC and SystemC meet all listed requirements. However, some
other requirements (like a precise specification of deadlines, etc.) are not included.
It is not very likely that a single MoC or language will ever meet all requirements,
since some of the requirements are essentially conflicting. A language supporting
hard real-time requirements may well be inconvenient to use for less strict real-time
requirements. A language appropriate for distributed control-dominated applica-
tions may be poor for local data-flow-dominated applications. Hence, we can expect
that we will have to live with compromises and possibly with mixed models.

Which compromises are actually used in practice? In practice, assembly lan-
guage programming was very common in the early years of embedded systems
programming. Programs were small enough to handle the complexity of problems
in assembly languages. The next step was the use of C or derivatives of C. Due to
the increasing complexity of embedded system software, higher-level languages are
to follow the introduction of C. Object-oriented languages and SDL are languages
which provide the next level of abstraction. Also, languages like UML are required
to capture specifications at an early design stage. The trend is to move toward model-
based designs [477]. In practice, languages can be used like shown in Fig. 2.76.

According to Fig. 2.76, languages like SDL or StateCharts can be translated into
C. These C descriptions are then compiled. Starting with SDL or StateCharts also
opens the way to implementing the functionality in hardware, if translators from

120 2 Specifications and Modeling

Object codeObject code

(RT-) Java

(RT-) UML or equivalent

Assembly programs

C-programs

SDL

(RT-) UML or equivalent

VHDL

Net list

Hardware

Fig. 2.76 Using various languages in combination

these languages to VHDL are provided. Both C and VHDL will certainly survive as
intermediate languages for many years. Java does not need intermediate steps but
does also benefit from good translation concepts to assembly languages. In a similar
way, translations between various graphs are feasible. For example, SDF graphs can
be translated into a subclass of Petri nets [515]. Also, they correspond to a subclass
of the computation graph model proposed by Karp and Miller [282]. Linking the
various models of computation is facilitated by formal techniques [95].

Several languages for embedded system design are covered in a book edited
by M. Radetzki [464]. Popovici et al. [457] use a combination of Simulink and
SystemC.

We have skipped the discussion of algebraic languages like LOTOS [256] and
Z [504]. These languages enable precise specifications and formal proofs, but they
are not executable.

2.10.2 Unified Modeling Language (UML)

UML™ is a language including diagrams reflecting several MoCs. Table 2.7 classi-
fies the UML diagrams mentioned so far with respect to our table of MoCs.

This figure shows how UML covers several models of computation, with a
focus on early design phases. Semantics of communication is typically imprecisely
defined. Therefore, our classification cannot be precise in this respect. In addition to
the diagrams already mentioned, the following diagrams can be modeled:

• Deployment diagrams: These diagrams are important for embedded systems.
They describe the “execution architecture” of systems (hardware or software
nodes).

• Package diagrams: Package diagrams represent the partitioning of software into
software packages. They are similar to module charts in StateMate.

• Class diagrams: These diagrams describe inheritance relations of object classes.

2.10 Comparison of Models of Computation 121

Table 2.7 Models of computation available in UML™

Communication/ Shared memory Message passing
organization of components Synchronous Asynchronous

Undefined components Use cases

Sequence charts, timing diagrams

Differential equations –

Finite state machines State diagrams – –

Data flow – Data-flow diagrams

Petri nets (Not useful) Activity charts

Distributed event model – –

von Neumann model – –

• Communication diagrams (called Collaboration diagrams in UML™ 1.x):
These graphs represent classes, relations between classes, and messages that are
exchanged between them.

• Component diagrams: They represent the components used in applications or
systems.

• Object diagrams, interaction overview diagrams, composite structure dia-
grams: This list consists of three types of diagrams which are less frequently
used. Some of them may actually be special cases of other types of diagrams.

Available tools provide some consistency checking between the different dia-
gram types. Complete checking, however, seems to be impossible. One reason
for this is that the semantics of UML initially was left undefined. It has been
argued that this was done intentionally, since one does not like to bother about
the precise semantics during the early phases of the design. As a consequence,
precise, executable specifications can only be obtained if UML is combined with
some other, executable language. Available design tools have combined UML with
SDL [227] and C++. There are, however, also some first attempts to define the
semantics of UML.

Version 1.4 of UML was not designed for embedded systems. Therefore, it
lacks a number of features required for modeling embedded systems (see p. 29).
In particular, the following features are missing [386]:

• the partitioning of software into tasks and processes cannot be modeled,
• timing behavior cannot be described at all,
• the presence of essential hardware components cannot be described.

Due to the increasing amount of software in embedded systems, UML is gaining
importance for embedded systems as well. Hence, several proposals for UML
extensions to support real-time applications have been made [137, 386]. These
extensions have been considered during the design of UML 2.0. UML 2.0 includes
13 diagram types (up from nine in UML 1.4) [13]. Special profiles are taking
the requirements of real-time systems into account [368]. Profiles include class

122 2 Specifications and Modeling

diagrams with constraints, icons, diagram symbols, and some (partial) semantics.
There are UML profiles for [368]:

• Schedulability, Performance, and Time Specification (SPT) [429],
• Testing [431],
• Quality of Service (QoS) and Fault Tolerance [431],
• a Systems Modeling Language called SysML [434],
• Modeling and Analysis of Real-Time Embedded Systems (MARTE), [430]
• UML and SystemC interoperability [469],
• the SPRINT profile for reuse of intellectual property (IP) [505].

Using such profiles, we can—for example—attach timing information to
sequence charts. However, profiles may be incompatible. Also, UML has been
designed for modeling and frequently leaves too many semantical issues open to
allow automatic synthesis of implementations [368].

2.10.3 Ptolemy II

The Ptolemy project [460] focuses on modeling, simulation, and design of hetero-
geneous systems. Emphasis is on embedded systems that mix different technologies
and, accordingly, also MoCs. For example, analog and digital electronics, hardware
and software, and electrical and mechanical devices can be described. Ptolemy
supports different types of applications, including signal processing, control appli-
cations, sequential decision-making, and user interfaces. Special attention is paid
to the generation of embedded software. The idea is to generate this software from
the MoC which is most appropriate for a certain application. Version 2 of Ptolemy
(Ptolemy II) supports the following MoCs and corresponding domains (see also
p. 40):

1. Communicating sequential processes (CSP).
2. Continuous time (CT): This model is appropriate for mechanical systems and

analog circuits. Hence, this model supports differential equations. Tools include
extensible differential equation solvers.

3. Discrete event model (DE): this is the model used by many simulators, e.g.,
VHDL simulators.

4. Distributed discrete events (DDE). Discrete event systems are difficult to simu-
late in parallel, due to the inherent centralized queue of future events. Attempts
to distribute this data structure have not been very successful so far. Therefore,
this special (experimental) domain is introduced. Semantics can be defined such
that distributed simulation becomes more efficient than in the DE model.

5. Finite state machines (FSM).
6. Process networks (PN), using Kahn process networks (see p. 69).
7. Synchronous data flow (SDF).

2.11 Problems 123

8. Synchronous/reactive (SR) MoC: This model uses discrete time, but signals do
not need to have a value at every clock tick. Esterel (see p. 61) is a language
following this style of modeling.

This list shows the focus on different models of computation in the Ptolemy project.

2.11 Problems

We suggest solving the following problems at home or during a flipped classroom
session:

2.1 What is a (design) model?

2.2 Prepare a list of up to six requirements for specification/modeling languages
for embedded systems!

2.3 Why could our specification lead to deadlocks?

2.4 What is a “model of computation (MoC)”?

2.5 What is a “job” and how is it different from “tasks”?

2.6 Which are the two key techniques for communication in computers?

2.7 Which description techniques can be used for capturing initial ideas about the
system to be designed?

2.8 Simulate trains between Paris, Brussels, Amsterdam, and Cologne, using the
levi simulation software [498]! Modify the examples included with the software
such that two independent tracks exist between any two stations and demonstrate
an (arbitrary) schedule involving ten trains!

2.9 Download the OpenModelica simulation software. Develop a simulation model
for Newton’s cradle (see, e.g., https://en.wikipedia.org/wiki/Newton%27s_cradle).

2.10 Modify the answering machine of Example 2.8 such that the owner can
intervene at any time during the playing of pre-corded text or the recording of the
message.

2.11 Model your daily schedule with a timed automaton. Hours are reflected by a
variable h, days by a variable d. d = 1 means Monday, d = 7 means Sunday. On a
weekend (d = 6 or d = 7), you leave the sleeping state between h = 10 and h = 11,
spend 1–2 h getting yourself ready for the day, stay with your friend until some time
in the range h = 20 to h = 21, and walk back home and enter the sleeping state
between h = 22 and h = 23. During the week (d = 1 or . . . or d = 5), you leave
the sleeping state between h = 7 and h = 8, spend 1–2 h getting yourself ready for
the day, study until some time in the range h = 20 to h = 21, and walk back home
and enter the sleeping state between h = 22 and h = 23. Model your schedule! Do
not forget to increase the day d at the end of each day.

https://en.wikipedia.org/wiki/Newton%27s_cradle

124 2 Specifications and Modeling

H

T
a b

c

d
f

e

Z

X

Y

R SH

Q

P
gh

M N

M N P Q R S T X Y Z
(Reset) v
b
c
f
h
g
h
e
a
b
c

Fig. 2.77 StateCharts example: left, graphical model; right, table of states

2.12 Suppose the StateCharts model in Fig. 2.77 (left) model is given.
Also, suppose that we have the following sequence of input events: b c f h g h e a

b c. In the diagram in Fig. 2.77 (right), mark all the states the StateCharts model will
be in after a particular input has been applied! H denotes the history mechanism.

2.13 Are StateCharts determinate models if we follow the StateMate semantics?
Please explain your answer!

2.14 Is SDL a determinate language? Please explain your answer!

2.15 Let us assume that you have been asked to help modeling the flow of visitors
in the hypothetical Museum of Fine Future Information Nuggets (MUFFIN). We
consider a steady state with no visitors entering or exiting the museum. The museum
will have three exhibition halls. In front of each hall, there is space for a waiting line.
The exit of this space is connected to the entry of the hall. Each of the hall exits is
connected to each entry of the waiting spaces. Visitors leaving one of the halls are
free to chose any of the other halls as their next one. We assume that each hall can
be described as a process in a meaningful way, with some randomness of the time
that a visitor stays in a hall. Assume that you would like to model this situation is
SDL. Show a diagram with explicit processes and FIFO queues!

2.16 Download the levi simulation software for KPNs [496], and develop a KPN
model computing Fibonacci numbers in a distributed fashion (i.e., just using a single
KPN node is illegal).

2.17 Which three types of Petri nets did we discuss in this book?

2.18 One of the types of Petri nets allows several non-distinguishable tokens per
place. Which components are used in a mathematical model of such nets? Hint:
N=(P,)

2.11 Problems 125

2.19 Draw the following condition/event system: N = (C,E, F), given

• Conditions: C = {c1, c2, c3, c4},
• Events: E = {e1, e2, e3},
• Relation: F = {(c1, e1), (c1, e2), (e1, c2), (e1, c3), (e2, c2), (e2, c3), (e2, c4),

(c2, e3), (c3, e3), (c4, e3), (e3, c1), (e3, c4)}
Specifiy the precondition of e3 as well as the postcondition of e1. Is N simple or/and
pure? Given it is not, which edge(s) need(s) to be removed in order to turn N into a
pure net? Substantiate or prove your answers concisely.

2.20 What does a compact model of the dining philosopher’s problem look like?

2.21 CSA theory leads to 2, 3, and 4 logic strengths, corresponding to 4, 7, and 10
logic values. How many strengths and values are we using in IEEE 1164? Show the
partial order among the values of IEEE 1164 in a diagram! Which of the values of
IEEE 1164 are not included in the partial order, and what is the meaning of these?

2.22 Which of the following circuits can be modeled with IEEE 1164: comple-
mentary CMOS outputs, outputs with a depletion transistor, open collector outputs,
tristate outputs, or precharging on buses (if depletion transistors are used as well)?

2.23 Suppose that a bus as shown in Fig. 2.78 is given. Rectangles containing an &
sign denote AND-gates. Which of the IEEE 1164 values will be on the bus if both
enable inputs are set to '0' (ena1 = ena2 ='0')? Which of the IEEE 1164 values
will be on the bus if ena1='0', ena2 ='1', and f 2 ='1'?

2.24 Which of the following languages use asynchronous message passing: State-
Charts, SDL, VHDL, CSP, Petri nets, or MPI?

2.25 Which of the following languages use a broadcast mechanism for updating
variables: StateCharts, SDL, or Petri nets?

2.26 Which of the following diagram types are supported by UML: sequence
charts, record charts, Y-charts, use cases, activity diagrams, or circuit diagrams?

Fig. 2.78 Bus driven by
tristate outputs

2

2

2

f

f

1

1

f

1f

bus

&

&

&

&

PD1

PU1 PU2

PD2

GROUND

VDD

ena ena

126 2 Specifications and Modeling

2.27 UML™ is a frequently used modeling technique. In the table below, enter
models of computation for the components in the left column and for communica-
tion in the top row. Then enter as many UML diagram types as feasible into the
remaining table cells.

Communication/

organization of components

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Embedded System Hardware

In this chapter, we will present the interface between the physical environment and
information processing (the cyphy-interface) together with the hardware required
for processing, storing, and communicating information. Due to considering CPS,
covering the cyphy-interface is indispensable. The need to cover other hardware
components as well is a consequence of their impact on the performance, timing
characteristics, power consumption, safety, and security.

Regarding the cyphy-interface, we will present circuits for sampling and digi-
tization of physical quantities as well as for the reverse process. We will present
the sampling theorem and its impact. Regarding information processing, we will
provide details of efficient hardware, in particular of digital signal processors,
general-purpose computing on graphics processors, multi-core systems, and field
programmable gate arrays (FPGAs). With respect to information storage, we will
explain the memory hierarchy as it is used in embedded systems. We will also
explain if and how existing communication technologies can be used.

Electronic information processing requires electrical energy. Accordingly, this
chapter includes a section on the generation (e.g., harvesting), storage, and efficient
use of electrical energy in embedded systems, including battery and energy con-
sumption models. This chapter closes with a survey on the challenges of supporting
security in hardware.

3.1 Introduction

Frequently, hardware designs are reused, either in the form of real hardware
components or in the form of intellectual property (IP). The reuse of available hard-
and software components is at the heart of the platform-based designmethodology
(see also p. 296). This methodology is seen as a key method for mastering the
growing complexity of embedded systems. Consistent with the need to consider

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_3

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_3

128 3 Embedded System Hardware

evaluation & validation

specification

optimizationkn
ow

le
dg

e

design repository

system software

design

test
HW-components

ap
pl

ic
at

io
n

(RTOS, ...)

mapping
application

Fig. 3.1 Simplified design information flow

A/D converter +
sample-and-hold

display
processing
information

sensors
actuators

(physical)
environment

pulse-width modulation
D/A conversion / energy storage

energy source

heat removal

Fig. 3.2 Hardware in the loop

available hardware components and with the design information flow shown in
Fig. 3.1, we are now going to describe some of the essentials of embedded system
hardware.

Hardware for embedded systems is much less standardized than hardware for
personal computers. Due to the huge variety of embedded system hardware, it
is impossible to provide a comprehensive overview of all types of hardware
components. Nevertheless, we will try to provide a survey of some of the essential
components which can be found in most systems. In many cyber-physical systems,
especially in control systems, hardware is used in a loop (see Fig. 3.2). We will use
this loop to structure the presentation of components in this chapter. In this (con-
trol) loop, information about the physical environment is made available through
sensors. Typically, sensors generate continuous sequences of analog values. In this
book, we will restrict ourselves to information processing where digital computers
process discrete sequences of values. Appropriate conversions are performed by two
kinds of circuits: sample-and-hold circuits and analog-to-digital converters (ADCs).
After such conversion, information can be processed digitally. Generated results can
be displayed and also be used to control the physical environment through actuators.
Since many actuators are analog actuators, conversion from digital to analog signals
may also be needed. We will see how this conversion can be achieved either
by digital-to-analog converters (DACs) or indirectly by pulse-width modulation
(PWM).

Due to the prevailing electronic information processing, we assume that we
require electrical energy. Some source of this energy must be available. If our energy
source does not provide energy permanently, we may need to store energy, e.g., in
rechargeable batteries or capacitors. During system operation, much of the electrical

3.2 Input: Interface Between Physical and Cyber-World 129

Fig. 3.3 Acceleration sensor
(courtesy S. Büttgenbach,
IMT, TU Braunschweig),
©TU Braunschweig,
Germany

energy will be converted into thermal energy (heat). It may be necessary to remove
thermal energy from the system.

This model is obviously appropriate for control applications. For other applica-
tions, it can be employed as a first-order approximation. In the following, we will
describe essential hardware components of embedded and cyber-physical systems
following the structure of Fig. 3.2.

3.2 Input: Interface Between Physical and Cyber-World

3.2.1 Sensors

Sensors are key components of the cyphy-interface. Sensors can be designed for
virtually every physical quantity. There are sensors for weight, velocity, accelera-
tion, electrical current, voltage, temperature, etc. A wide variety of physical effects
can be exploited in the construction of sensors [151]. Examples include the law
of induction (generation of voltages in an electric field) and photoelectric effects.
There are also sensors for chemical substances [152].

Recent years have seen the design of a huge range of sensors, and much of the
progress in designing smart systems can be attributed to modern sensor technology.
The availability of sensors has enabled the design of sensor networks (see, e.g.,
Tiwari et al. [543]), a key element of the Internet of Things. It is impossible to
cover this subset of cyber-physical hardware technology comprehensively, and we
can only give characteristic examples:

• Acceleration sensors: Figure 3.3 shows a small sensor manufactured using
microsystem technology. The sensor contains a small mass in its center. When
accelerated, the mass will be displaced from its standard position, thereby
changing the resistance of the tiny wires connected to the mass.

Acceleration sensors are included in the powerful inertial measurement units
(IMUs) (see, e.g., Siciliano et al. [487], Section 20.4). They contain gyros and

130 3 Embedded System Hardware

accelerometers, and they capture up to six degrees of freedom, comprising
position (x, y, and z) and orientation (roll, pitch, and yaw) [575]. They are
contained in airplanes, cars, robots, and other products in order to provide inertial
navigation.

• Image sensors: There are essentially two kinds of image sensors: charge-coupled
devices (CCDs) and CMOS sensors. In both cases, arrays of light sensors are
used. The architecture of CMOS sensor arrays is similar to that of standard
memories: individual pixels can be randomly addressed and read out. CMOS
sensors use standard CMOS technology for integrated circuits. Due to this,
sensors and logic circuits can be integrated on the same chip. This allows
some preprocessing to be done already on the sensor chip, leading to so-called
smart sensors. CMOS sensors require only a single standard supply voltage and
interfacing in general is easy. Therefore, CMOS-based sensors can be cheap.

In contrast, CCD technology is optimized for optical applications. In CCD
technology, charges must be transferred from one pixel to the next until they can
finally be read out at an array boundary. This sequential charge transfer also gave
CCDs their name. For CCD sensors, interfacing is more complex.

Selecting the most appropriate image sensor depends on several constraints,
which change as technology evolves. The image quality of CMOS sensors has
been improved over the recent years, and the initial image superiority of CCDs
became questionable. Therefore, achieving a good image quality is feasible with
CCD and with CMOS sensors. Due to their faster readout speed, CMOS sensors
are preferred for cameras with live view modes or video recording functionality
[404]. Also, CMOS sensors are preferred for low-cost devices and if smart
sensors are to be designed. Several application areas for CCDs have disappeared,
but they are still used in areas such as scientific image acquisition.

• Biometric sensors: Demands for higher security standards as well as the need
to protect mobile and removable equipment have led to an increased interest in
authentication. Due to the limitations of password-based security (e.g., stolen
and lost passwords), biometric sensors and biomedical authentication receive
attention. Biometric authentication tries to identify whether or not a certain
person is actually the person she or he claims to be. Methods for biometric
authentication include iris scans, fingerprint sensors, and face recognition. False
accepts as well as false rejects are an inherent problem of biometric authenti-
cation (see definitions on p. 257). In contrast to password-based authentication,
exact matches are not possible.

• Artificial eyes: Artificial eye projects have received significant attention. Some
projects have an impact on the eye, but others provide vision in an indirect way.
For example, the Dobelle Institute experimented with a camera attached to a
computer sending electrical pulses to a direct brain contact [532]. More recently,
the less invasive translation of images into audio has been preferred.

• Radio frequency identification (RFID): RFID technology is based on the
response of a tag to radio frequency signals [226]. The tag consists of an
integrated circuit and an antenna, and it provides its identification to RFID
readers. The maximum distance between tags and readers depends on the type

3.2 Input: Interface Between Physical and Cyber-World 131

of the tag. The technology is used to identify objects, animals, or people and is a
key enabler for the Internet of Things.

• Automotive sensors: Today’s cars contain a large number of sensors. This
includes rain sensors, tire pressure sensors, collision sensors, etc. The overall
goal is to provide comfort and safety to the passengers and the environment.

• Other sensors: Other common sensors include thermal sensors, engine control
sensors, Hall effect sensors, and many more.

Machine learning algorithms [188, 204, 453, 560] may need to be used to obtain
meaningful information from noisy sensor readouts.

Sensors are generating signals. Mathematically, the following definition applies:

Definition 3.1 A signal σ is a mapping from a time domain DT to a value domain
DV :

σ : DT → DV

Signals may be defined over a continuous or a discrete time domain as well as over
a continuous or a discrete value domain.

3.2.2 Discretization of Time: Sample-and-Hold Circuits

All known digital computers work in a discrete time domain DT . This means that
they can process discrete sequences or streams of values. Hence, incoming signals
over the continuous time domain must be converted to signals over the discrete time
domain. This is the purpose of sample-and-hold circuits. These are included in
the cyphy-interface. Figure 3.4 (left) shows a simple sample-and-hold circuit. In
essence, the circuit consists of a clocked transistor and a capacitor. The transistor
operates like a switch. Each time the switch is closed by the clock signal, the
capacitor is charged so that its voltage h(t) is practically the same as the incoming
voltage e(t). After opening the switch again, this voltage will remain essentially
unchanged until the switch is closed again. Each of the values stored on the capacitor
can be considered as an element of a discrete sequence of values h(t), generated
from a continuous function e(t) (see Fig. 3.4 (right)). If we sample e(t) at times
{ts}, then h(t) will be defined only at those times.

An ideal sample-and-hold circuit would be able to change the voltage at the
capacitor in an arbitrarily short amount of time. This way, the input voltage at a
particular instance in time could be transferred to the capacitor, and each element
in the discrete sequence would correspond to the input voltage at a particular point
in time. In practice, however, the transistor has to be kept closed for a short time
window in order to really charge or discharge the capacitor. The voltage stored on
the capacitor will then correspond to a voltage reflecting that short time window.

132 3 Embedded System Hardware

e(t)D
V

h(t)

h(t)e(t)

t

Clock

Fig. 3.4 Sample-and-hold phase: left, circuit; right, signals

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 0 2 4 6 8-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3.5 Approximation of a square wave by sine waves for K = 1 (left) and K = 3 (right)

3.2.3 Fourier Approximation of Signals

Would we be able to reconstruct the original signal e(t) from the sampled signal
h(t)? In order to answer this question, we revert to the fact that arbitrary signals can
be approximated by summing (possibly phase-shifted) sine functions of different
frequencies (Fourier approximation).1

Example 3.1 A square wave can be approximated by Eq. (3.1) [440]:

e′K(t) =
K∑

k=1,3,5,7,9,...

(
4

πk
sin(

2πkt

T
)

)
(3.1)

In this equation, T is the period and approximation is improved for increasing K .
Figures 3.5 and 3.6 visualize Eq. (3.1).

1This presentation is based on the assumption that a comprehensive coverage of Fourier approx-
imations cannot be included in our course. Therefore, only the impact of these approximations is
demonstrated by examples. Knowing the theory behind these examples would be beneficial (see,
e.g., http://www.dspguide.com).

http://www.dspguide.com

3.2 Input: Interface Between Physical and Cyber-World 133

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3.6 Approximation of a square wave by sine waves for K = 7 (left) and K = 11 (right)

The larger difference between the square wave and its approximation at the
jump discontinuities of the square wave (best visible for K=11) is called Gibbs
phenomenon [440]. ∇
Definition 3.2 A signal transformation Tr is linear if for all signals e1(t) and e2(t)

we have

T r(e1 + e2) = T r(e1) + T r(e2) (3.2)

Next, we restrict ourselves to linear systems. Then, in order to answer the question
raised above, we study sampling each of the sine waves independently.

Example 3.2 Consider signals described by either of the two functions e3 or e4:

e3(t) = sin(
2πt

8
) + 0.5 sin

(
2πt

4

)
(3.3)

e4(t) = sin

(
2πt

8

)
+ 0.5 sin

(
2πt

4

)
+ 0.5 sin

(
2πt

1

)
(3.4)

The sine waves used in these functions have periods of T = 8, 4, and 1, respectively
(this can be seen by comparing these sine waves with those of Eq. (3.1)). A graphical
representation of these functions is shown in Fig. 3.7. Suppose that we will be
sampling these signals at integer times. It then so happens that both signals have the
same value whenever they are sampled. Obviously, it is not possible to distinguish
between e3(t) and e4(t) if we sample at these instances in time and if only the
sampled signal is available. ∇
In general, sampled signals will not allow us to distinguish between some slow
signal e3(t) and some other faster varying signal e4(t) if e3(t) and e4(t) are identical
each time we are sampling the signals. The fact that two or more unsampled signals
can have the same sampled representation is called aliasing. We are not sampling

134 3 Embedded System Hardware

Fig. 3.7 Visualization of
functions e3(t) (blue) and
e4(t) (red)

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

e4(t) frequently enough to notice, for example, that it has slope changes between
integer times. So, from this counterexample we can conclude that reconstruction
of the original unsampled signal is not feasible unless we have additional
knowledge about the frequencies or the waveforms present in the input signal.

How frequently do we have to sample signals to be able to distinguish between
different sine waves? Let us assume that we are sampling the input signal at constant
time intervals, such that Ts is the sampling period:

∀s : Ts = ts+1 − ts (3.5)

Let

fs = 1

Ts

(3.6)

be the sampling rate or sampling frequency. Then, sampling theory provides us
with the following theorem (see, e.g., [440]):

Theorem 3.1 (Sampling Theorem) Given the above definitions of variables,
aliasing is avoided if we restrict the frequencies of the incoming signal to less
than half of the sampling frequency fs:

Ts <
TN

2
where TN is the period of the “fastest” sine wave, or (3.7)

fs > 2fN where fN is the frequency of the “fastest” sine wave (3.8)

Definition 3.3 fN is called the Nyquist frequency; fs is the sampling rate.

3.2 Input: Interface Between Physical and Cyber-World 135

Fig. 3.8 Anti-aliasing placed
in front of the
sample-and-hold circuit

e(
t)

aliasing
anti−

& hold
Sample− h(

t)

g(
t)

Fig. 3.9 Ideal and realizable
anti-aliasing filters (low-pass
filters)

/2f

filter
realizable

ideal filter

sf f

Attenuation

s

The condition in Eq. (3.8) is called sampling criterion, and sometimes the Nyquist
sampling criterion.

Therefore, reconstruction of input signals e(t) from discrete samples h(t) can be
successful only if we make sure that higher-frequency components such as the one
in e4(t) are removed. This is the purpose of anti-aliasing filters. Anti-aliasing filters
are placed in front of the sample-and-hold circuit (see Fig. 3.8).

Figure 3.9 demonstrates the ratio between the amplitudes of the output and the
input waves as a function of the frequency for this filter. Ideally, such a filter would
remove all frequencies at and above half the sampling frequency and keep all other
components unchanged. This way, it would convert signal e4(t) into signal e3(t).

In practice, such ideal filters (so-called brick-wall filters) do not exist.2 Real-
izable filters will already start attenuating frequencies smaller than fs/2 and will
still not eliminate all frequencies larger than fs/2 (see Fig. 3.9). Attenuated high-
frequency components will exist even after filtering. For frequencies smaller than
fs/2, there may also be some “overshooting,” i.e., frequencies for which there is
some amplification of the input signal.

The design of good anti-aliasing filters is an art by itself. This art has been
studied, for example, in great detail for high-quality audio equipment, involving
detailed hearing tests. Many of the perceived differences between high-quality
equipment have been attributed to the design of such filters.

3.2.4 Discretization of Values: Analog-to-Digital Converters

Since we are restricting ourselves to digital computers, we must also replace signals
that map time to a continuous value domain DV by signals that map time to a

2This would require knowing the signal to be filtered for an infinite amount of time.

136 3 Embedded System Hardware

w(t)

h(t)

Comparators

outputs
Digital

E
nc

od
in

g
_
4
1

_
4
2

3
4
_

refV

refV

Vref

refV

-
+

-
+

R

R

R

R

+-

1

w

0 hVref Vref2

Fig. 3.10 Flash ADC: left, schematic; right, w as a function of h

discrete value domain D′
V . This conversion from analog-to-digital values is done by

analog-to-digital converters (ADCs). There is a large range of ADCs with varying
speed/precision characteristics. Typically, fast ADCs have a low precision and high-
precision converters are slow.

We will present several converters in the next subsections.

Flash ADC

This type of ADCs uses a large number of comparators. Each comparator has two
inputs, denoted as + and -. If the voltage at input + exceeds that at input -, the output
corresponds to a logical '1', and it corresponds to a logical '0' otherwise.3

In the ADC, all - inputs are connected to a voltage divider. If input voltage h(t)

exceeds 3
4Vref , the comparator at the top of Fig. 3.10 (left) will generate a '1'. The

encoder at the output of the comparators will try to identify the most significant '1'
and will encode this case as the largest output value. The case h(t) > Vref should
normally be avoided since Vref is typically close to the supply voltage of the circuit
and input voltages exceeding the supply voltage can lead to electrical problems. In
our case, input voltages larger than Vref generate the largest digital value as long as
the converter does not fail due to the high input voltage.

Now, if input voltage h(t) is less than 3
4Vref , but still larger than 2

4Vref , the
comparator at the top of Fig. 3.10 will generate a '0', while the next comparator
will still signal a '1'. The encoder will encode this as the second largest value.

Similar arguments hold for cases 1
4Vref < h(t) < 2

4Vref and 0 < h(t) < 1
4Vref ,

which will be encoded as the third largest and the smallest value, respectively.

3In practice, the case of equal voltages is not relevant, as the actual behavior for very small
differences between the voltages at the two inputs depends on many factors (like temperatures,
manufacturing processes, etc.) anyway.

3.2 Input: Interface Between Physical and Cyber-World 137

Figure 3.10 (right) shows the relation between input voltages and generated digital
values.

The outputs of the comparators encode numbers in a special way: if a certain
comparator output is equal to '1', then all the less significant outputs are all
equal to '1'. The encoder transforms this representation of numbers into the usual
representation of natural numbers. The encoder is actually a so-called priority
encoder, encoding the most significant input number carrying a '1' in binary.4

The circuit can convert positive analog input voltages into digital values.
Converting both positive and negative voltages and generating two’s complement
numbers requires some extensions.

One nice property of the flash ADC is the fact that it is automatically monotonic:
For any increase in the analog voltage from 0 to the maximum, the corresponding
digital value increases as well. This property is maintained even if the actual value
of the resistors would deviate from the nominal value. However, such a deviation
would have an impact on the precision of the linear relation expected between
analog and digital values.

Unfortunately, the chain of resistors forms a conducting path, which exists even
if the converter is not used. This could make it impossible to use this converter for
low-power equipment.

In general, ADCs are also characterized by their resolution. This term has several
different but related meanings [15]. The resolution (measured in bits) is the number
of bits produced by an ADC. For example, ADCs with a resolution of 16 bits are
needed for many audio applications. However, the resolution is also measured in
volts, and in this case it denotes the difference between two input voltages causing
the output to be incremented by 1:

Q = VFSR

n
(3.9)

where: Q : is the resolution in volts per step,

VFSR : is the difference between the largest and the smallest voltage and

n : is the number of voltage intervals (not the number of bits).

Example 3.3 For the ADC of Fig. 3.10, the resolution is 2 bits or 1
4Vref volts, if we

assume Vref as the largest voltage. ∇
The key advantage of the flash ADC is its speed. It does not need any clock.
The delay between the input and the output is very small, and the circuit can be
used easily, for example, for high-speed video applications. The disadvantage is its
hardware complexity: we need n − 1 comparators in order to distinguish between
n values. Imagine using this circuit in generating digital audio signals for CD

4Such encoders are also useful for finding the most significant '1' in the mantissa of floating-point
numbers.

138 3 Embedded System Hardware

Fig. 3.11 Circuit using
successive approximation

V −
w(t)

h(t)
successive approximation register−

+

D/A−conversion

control logic

digital output

Fig. 3.12 Successive
approximation

h(t)

V

tV-

recorders. We would need 216 − 1 comparators! High-resolution ADCs must be
built differently.

Successive Approximation

Distinguishing between a large number of digital values is possible with ADCs
using successive approximation. The circuit is shown in Fig. 3.11.

The key idea of this circuit is to use binary search. Initially, the most significant
output bit of the successive approximation register is set to '1'; all other bits are
set to '0'. This digital value is then converted to an analog value, corresponding to
0.5∗ the maximum input voltage.5 If h(t) exceeds the generated analog value, the
most significant bit is kept at '1'; otherwise it is reset to '0'.

This process is repeated with the next bit. It will remain set to '1' if the input
value is either within the second or the fourth quarter of the input value range. The
same procedure is repeated for all the other bits.

Figure 3.12 shows an example. Initially the most significant bit is set to '1'.
This value is kept, since the resulting V− is less than h(t). Then, the second most
significant bit is set to '1'. It is reset to '0', since the resulting V− is exceeding h(t).
Next, the third most significant bit is tried. It is set to '1', and this value is kept.
Finally, the least significant bit is also set, and it remains set after the comparison has
been completed. Obviously, h(t) must be constant during the conversion, otherwise

5Fortunately, the conversion from digital-to-analog values (D/A conversion) can be implemented
very efficiently and can be very fast (see p. 180).

3.2 Input: Interface Between Physical and Cyber-World 139

... + B) Bits(B + B +

Stage 1

B Bits
1

Stage 2

B Bits
2

Align and Combine Data

Digital Output

Vres1 Vres2Vin

k
B Bits

Stage k

1 2 k

MSB LSB

Fig. 3.13 Pipelined ADC [291]

the whole procedure would be jeopardized. This requirement is met if we employ a
sample-and-hold circuit as shown above. The resulting digital signal is called w(t).

The key advantage of the successive approximation technique is its hardware
efficiency. In order to distinguish between n digital values, we need �log2(n)� bits
in the successive approximation register and the D/A converter. The disadvantage is
its speed, since it needs O(log2(n)) steps. These converters can therefore be used for
high-resolution applications, where moderate speeds are required. Examples include
audio applications.

Pipelined Converters

These converters consist of a chain of converters, where each stage in the chain is
in charge of converting a few bits (see Fig. 3.13). Each stage passes the remaining
residue of the voltage to the next stage (if any). For example, each stage could
convert a single bit and subtract the corresponding voltage. The resulting residue
would typically be scaled up by a factor of two (in order to avoid too small voltages)
and be passed on to the next stage. Typically, each stage would include a flash
ADC of a few bits and a D/A converter to compute the voltage to be subtracted.
Resulting digital values must be aligned in time. Required hardware resources
increase linearly with the number of bits. With this structure, a good throughput
can be achieved, but the latency is larger than for flash converters.

Other Converters

Integrating converters use (at least) two phases for the measurement. During the
first phase of length t1, the integral of the input voltage over time is computed.6

For constant inputs, the resulting value Vout is proportional to the input voltage
(Vout ∼ Vin ∗ t1). During the second phase, this value is decreased at a constant rate,

6This can be done with a capacitor in the feedback loop of an operational amplifier (see p. 397).

140 3 Embedded System Hardware

Pipeline

Flash

Effective number of bits at bandwidth

Input bandwidth (MHz)

5

10

15

20

1 10 1000.001 0.01 0.1

Integrating types

Delta-Sigma

Approximation

Folding

Successive

Fig. 3.14 Comparison of the speed/resolution characteristics of various ADCs [558]

and the time to reach a value of zero is counted. The final count is proportional
to the input voltage. Hence, using proper scaling, the final count represents the
input voltage. If the input voltage contains some noise, its impact is likely to
be averaged out during the first integration phase. Hence, these converters are
capable of compensating noise. They are typically found in slow, high-resolution
multimeters.

For folding ADCs, the input voltage range is divided into 2m segments [100,
321]. A coarse-grained converter detects the segment of the current input voltage,
yielding the m most significant output bits. A fine-grained converter computes the
value within a segment, yielding the less significant output bits.

For delta-sigma ADCs (�
 ADCs), the name indicates that signal differences
(�s) are encoded and that they are summed up (
). A description of these converters
is beyond the scope of this book. For details refer to Khorramabadi [292].

Comparison of ADCs

Figure 3.14 provides an overview of the speed/resolution trade-offs of ADCs, using
a trade-off analysis of Vogels et al. [558]. Flash ADCs are clearly the fastest but
provide only a small resolution. Pipelining is frequently superior to successive
approximation. Another overview of ADCs is provided by IEEE TV [437].

3.2 Input: Interface Between Physical and Cyber-World 141

Fig. 3.15 h(t) (blue), w(t)

(red), w(t) − h(t) (black)

0 1 2 3 4
-0.5

0

0.5

1

1.5

Quantization Noise

Figure 3.15 shows the behavior of a flash ADC when the input signal is that
of Eq. (3.3). Only the behavior for a positive input signal is shown. The figure
includes the voltage corresponding to the digital value, the original voltage, and
the difference between the two. Obviously, the converter is “truncating” the digital
representation of the analog signal to the number of available bits (i.e., the digital
value is always less than or equal to the analog value). This is a consequence of
the way in which the flash converter is doing comparisons. “Rounding” converters
would need an internal correction by “half a bit.” Effectively, the digital signal
encodes values corresponding to the sum of the original analog values and the
difference w(t) − h(t). This means, it appears as if the difference between the
two signals had been added to the original signal. This difference is a signal
called quantization noise:

Definition 3.4 Let h(t) be some analog signal. Let w(t) be derived from h(t) by
quantization. The difference between the two is called quantization noise:

quantization noise(t) = w(t) − h(t) < Q (3.10)

Increasing the resolution of the ADC decreases quantization noise. The impact of
quantization noise is captured in the definition of the signal-to-noise ratio (SNR),
measured in decibels (tenth of a bel, named after Alexander G. Bell).

142 3 Embedded System Hardware

Definition 3.5 The SNR is defined as follows:

SNR (in dB = decibels) = 10 ∗ log
power of the “useful” signal

power of the noise signal
(3.11)

= 20 ∗ log
voltage of the “useful” signal

voltage of the noise signal
(3.12)

We have used that, for any given impedance R, the power of a signal is proportional
to the square of the voltage. Decibels are no physical units, since the SNR is
dimensionless.

For any signal h(t), the power of the quantization noise is equal to α ∗ Q, where
α ≤ 1 depends on the waveform of h(t). If h(t) can always be represented exactly
by a digital value, then α = 0. If h(t) is always “just a little” below the next value
that can be represented, α may be close to 1.

Example 3.4 The SNR of 16 bit CD audio is (for α ≈ 1) about 20 ∗ log(216) =
96 dB. Values of α < 1 and imperfect ADCs change this number. ∇

3.3 Processing Units

Let us now discuss the next hardware element in the loop of Fig. 3.2, pro-
cessing units. For information processing in embedded systems, we will con-
sider ASICs (application-specific integrated circuits) using hardwired multiplexed
designs, reconfigurable logic, and programmable processors. We will consider
ASICs first.

3.3.1 Application-Specific Integrated Circuits (ASICs)

For high-performance applications and for large markets, application-specific inte-
grated circuits (ASICs) can be designed. In general, ASICs are very energy-efficient
(see Sect. 3.7.3 on p. 193). However, the cost of designing and manufacturing
such chips is quite high. The cost of the mask set (which is used for transferring
geometrical patterns onto the chip) has grown.7

It is feasible to decrease this cost by using less advanced semiconductor
fabrication technologies and by using multi-project wafers (MPW) containing
several designs. But there is a lack of flexibility: correcting design errors typically
requires a new mask set and a new fabrication run (unless the ASIC contains

7In 2017, http://anysilicon.com/semiconductor-wafer-mask-costs/ mentioned an average cost of
about $ 1.5M for a 28 nm technology.

http://anysilicon.com/semiconductor-wafer-mask-costs/

3.3 Processing Units 143

processors with writable memories). This approach also has to cope with potentially
large design efforts requiring dedicated skills and expensive tools. Therefore,
ASICs are appropriate only under special circumstances, like large market volumes,
ultimate energy efficiency demands, special voltage or temperature ranges, mixed
analog/digital signals, or security-driven designs. Hence, the design of ASICs is not
covered in this book.

3.3.2 Processors

The key advantage of processors is their flexibility. With processors, the behavior
of embedded systems can be changed by changing the software running on those
processors. Changes of the behavior may be required in order to correct design
errors, to update the system to a new standard, or to add features. Because of
this, processors have found widespread use in embedded systems. In particular,
processors which are available commercially “off-the-shelf” (COTS) have become
very popular.

Embedded processors must be used in a resource-aware manner, i.e., we need
to care about resources required for running applications on them. Furthermore,
they do not need to be instruction set compatible with commonly used personal
computers (PCs) or servers. Therefore, their architectures may be different from
those processors. Efficiency has different aspects (see p. 13), some of which are
discussed next.

Energy Efficiency

The energy E for an application is related to the power P as a function of time,
since

E =
∫

Pdt (3.13)

Let us assume that we start with some design having a power consumption of P0(t),
leading to an energy consumption of

E0 =
∫ t0

0
P0(t)dt

after t0 units of execution time. Suppose that a modified design finishing computa-
tions already at time t1 comes with a power consumption of P1(t) and an energy
consumption of

144 3 Embedded System Hardware

Fig. 3.16 Comparison of
energies E0 and E1

0()tP

P t()1
E

0

1

P

t

more power; less energy?

E

0
tt

1

E1 =
∫ t1

0
P1(t)dt

If P1(t) is not too much larger than P0(t), then a reduction of the execution time also
reduces the energy consumption. However, in general this is not necessarily always
true. The situation is also shown in Fig. 3.16: E1 may be smaller than E0, but E1 can
also be larger than E0. So, if the energy consumption is to be minimized, it should
be used as a cost function. Just minimizing the execution time can be misleading.

Minimization of power and energy consumption are both important. Power
consumption has an effect on the size of the power supply, the design of the
voltage regulators, the dimensioning of the interconnect, and short-term cooling.
Minimizing the energy consumption is required especially for mobile applications,
since battery technology is only slowly improving and since the cost of energy may
be quite high. Also, a reduced energy consumption decreases cooling requirements
and improves the reliability (since the lifetime of electronic circuits decreases for
high temperatures).

Next, we would like to demonstrate that for CMOS technology, it is preferable
to replace high-speed sequential computations by reduced speed parallel computa-
tions. This is shown by—first of all—considering the power consumption of CMOS
devices. The dynamic power consumption is the power consumption caused by
switching (in contrast to the static power consumption which exists even if no
switching takes place). The average dynamic power consumption Pdyn of CMOS
circuits is given by Chandrakasan et al. [90]

Pdyn = α CL V 2
dd f (3.14)

where α is the switching activity, CL is the load capacitance, Vdd is the supply
voltage, and f is the clock frequency. This means that the power consumption of
CMOS processors increases (at least)8 quadratically with the supply voltage Vdd .

8In practice, the increase may actually come with a larger exponential.

3.3 Processing Units 145

The delay of CMOS circuits can be approximated as [90]

� = kCL

Vdd

(Vdd − Vt)2 (3.15)

where k is a constant and Vt is the threshold voltage. Vt has an impact on the
transistor input voltage required to switch the transistor on. For example, for a
maximum supply voltage of Vdd,max = 3.3 V, Vt may be in the order of 0.8 V.
Consequently, the maximum clock frequency is a function of the supply voltage.
However, decreasing the supply voltage reduces the power quadratically, while the
run-time of algorithms is only linearly increased (ignoring the effects of the memory
system).

We can use this to reduce the amount of energy required for a certain amount
of computations. Let us assume that we are initially performing computations
sequentially at voltage Vdd , constant power P , clock frequency f , run-time of t ,
and energy consumption E = P ∗ t .

Now let us assume that we are moving toward executing β operations in parallel.
Due to parallel execution, we can extend the time for each operation by a factor of
β. In turn, we can also reduce frequency f by a factor of β and use a new frequency

f ′ = f

β
(3.16)

This allows us to also reduce the voltage to a new voltage

V ′
dd = Vdd

β
(3.17)

This reduces the power P 0 per operation quadratically:

P 0 = P

β2 (3.18)

Due to executing β operations in parallel, the overall power P ′ can be computed as

P ′ = β ∗ P 0 = P

β
(3.19)

The time t ′ to execute operations in parallel is the same as the time to compute them
sequentially (t ′ = t). Hence, the energy to execute the operations in parallel is

E′ = P ′ ∗ t = E

β
(3.20)

We conclude that it is more energy-efficient to execute β operations in parallel
instead of computing them sequentially. However, our derivation contains a number

146 3 Embedded System Hardware

of approximations. On the one hand, power may be depending even cubically
on the voltage, and we have ignored the fact that memory speed is frequently a
limiting constraint. Faster processor clock speeds might just lead to more waiting for
memory accesses (but there may be also conflicts for memory access from multiple
cores). The energy would decrease quadratically if we would be able to keep the
power consumption independent of the level of parallelism. On the other hand, we
need to be able to find β operations which can be executed in parallel. Overall,
we keep in mind that parallel execution is a means for deriving energy-efficient
implementations, regardless of which hardware technology we are using.

Architectures must be optimized for their energy efficiency, and we must make
sure that we are not losing efficiency in the software generation process. For
example, compilers generating 50% overhead in terms of the number of cycles will
take us further away from the efficiency of ASICs, possibly by even more than
50%, if the supply voltage and the clock frequency must be increased in order to
meet timing deadlines.

There is a large amount of techniques available that can make processors
energy-efficient, and energy efficiency should be considered at various levels of
abstraction, from the design of the instruction set down to the design of the chip
manufacturing process [77]. Gated clocking and power gating are examples of such
techniques. With gated clocking, parts of the processor are disconnected from the
clock during idle periods. In a similar way, the power can be disconnected for some
components. For example, direct memory access (DMA) hardware or bus bridges
can be disconnected if they are not needed. Also, there are attempts, to get rid of
the clock for major parts of the processor altogether. There are two contrasting
approaches: globally synchronous locally asynchronous (GSLA) processors [436]
and globally asynchronous locally synchronous (GALS) processors [262]. Further
information about low-power design techniques is available in a book by E. Macii
[359] and in the PATMOS proceedings (see http://www.patmos-conf.org/).

At least three techniques can be applied at a rather high level of abstraction:

• Parallel execution: According to Eq. (3.20), parallel execution is an effective
means of improving the overall energy efficiency.

• Dynamic power management (DPM): With this approach, processors have
several power-saving states in addition to the standard operating state. Each
power-saving state has a different power consumption and a different time for
transitions into the operating state. Figure 3.17 shows the three states for the
StrongARM SA-1100 processor.

The processor is fully operational in the run state. In the idle state, it is just
monitoring the interrupt inputs. In the sleep state, on-chip activity is shut down,
the processor is reset, and the chip’s power supply is shut off [593]. A separate
I/O power supply provides power to power manager hardware. The processor can
be restarted by the power manager hardware by a preprogrammed wake-up event.
Note the large difference in the power consumption between the sleep state and
the other states, and note also the large delay for transitions from the sleep to the
run state.

http://www.patmos-conf.org/

3.3 Processing Units 147

Fig. 3.17 Dynamic power
management states of the
StrongARM SA-1100
processor [47]

90 µs
sleep

run

idle

160m
s

90µs10
µs

10
µs

160µW

400 mW

50 mW

• Dynamic voltage and frequency scaling (DVFS): Equation (3.14) can be
exploited in a technique called dynamic voltage and frequency scaling
(DVFS). For example, the Crusoe™ processor by Transmeta [295] provided
32 voltage levels between 1.1 and 1.6 V, and the clock could be varied
between 200 MHz and 700 MHz in increments of 33 MHz. Transitions from
one voltage/frequency pair to the next took about 20 ms. Design issues for
DVFS-capable processors are described in a paper by Burd and Brodersen [76].
In 2004, Intel SpeedStep® Technology provided six different voltage/frequency
combinations for Pentium™ M processors [246]. More recent processors include
more comprehensive mechanisms for power management.

Code Size Efficiency

Minimizing the code size is very important for embedded systems, since large
hard disk drives (HDDs) or solid-state disks (SSDs) are typically not available and
since the capacity of memory is typically also very limited.9 This is even more
pronounced for systems on a chip (SoCs). For SoCs, the memory and processors are
implemented on the same chip. In this particular case, memory is called embedded
memory. Embedded memory may be more expensive to fabricate than separate
memory chips, since the fabrication processes for memories and processors must be
compatible. Nevertheless, a large percentage of the total chip area may be consumed
by the memory. There are several techniques for improving the code size efficiency:

• CISC machines: Standard RISC processors have been designed for speed,
not for code size efficiency. Earlier complex instruction set processors (CISC
machines) were actually designed for code size efficiency, since they had to
be connected to slow memories. Caches were not frequently used. Therefore,
“old-fashioned” CISC processors are finding applications in embedded systems.
ColdFire processors [170], which are based on the Motorola 68000 family of
CISC processors, are an example.

• Compression techniques: In order to reduce the amount of silicon needed for
storing instructions as well as in order to reduce the energy needed for fetching

9The availability of large flash memories and 3D integration make memory size constraints less
tight.

148 3 Embedded System Hardware

ROM

ROM

µP µP

Instruction

Decoder

InstructionA
dd

re
ss

A
dd

re
ss

Fig. 3.18 Schemes for instruction fetch: left, uncompressed; right, compressed

these instructions, instructions are stored in memory in compressed form.
This reduces both the area and the energy necessary for fetching instructions.
Due to the reduced bandwidth requirements, fetching can also be faster. A
(hopefully small and fast) decoder is placed between the processor and the
(instruction) memory in order to generate the original instructions on the fly (see
Fig. 3.18 (right)).10 Instead of using a potentially large memory of uncompressed
instructions, we are storing the instructions in a compressed format.

The goals of compression can be summarized as follows:

– We would like to save ROM and RAM areas, since these may be more
expensive than the processors themselves.

– We would like to use some encoding technique for instructions and possibly
also for data with the following properties:

· There should be little or no run-time penalty for these techniques.
· Decoding should work from a limited context (it is, e.g., impossible to read

the entire program to find the destination of a branch instruction).
· Word sizes of the memory, of instructions, and of addresses must be taken

into account.
· Branch instructions branching to arbitrary addresses must be supported.
· Fast encoding is only required if writable data is encoded. Otherwise, fast

decoding is sufficient.

There are several variations of this scheme:

– For some processors, there is a second instruction set. This second instruc-
tion set has a narrower instruction format. An example of this is the ARM®

processor family. The original ARM instruction set is a 32 bit instruction set.
Most ARM processors also provide a second instruction set, with 16 bit wide
instructions, called THUMB instructions. THUMB instructions are shorter,

10We continue denoting multiplexers, arithmetic units, and memories by shape symbols, due to
their widespread use in technical documentation. For memories, we adopt shape symbols including
an explicit address decoder (included in the shape symbols for the ROMs on the right). These
decoders identify the address input.

3.3 Processing Units 149

16-bit Thumb instruction
ADD Rd, #constant

ARM-instruction

always

m
ajor

opcode

m
inor opcode

Fig. 3.19 Re-encoding THUMB into ARM instructions

since they do not support predication,11 use shorter and less register fields,
and use shorter immediate fields (see Fig. 3.19).

THUMB instructions are dynamically converted into ARM instructions
while programs are decoded. THUMB instructions can use only half the
registers in arithmetic instructions. Therefore, register fields of THUMB
instructions are concatenated with a '0' bit.12 In the THUMB instruction set,
source and destination registers are identical, and the length of constants that
can be used is reduced by 4 bits. During decoding, pipelining is used to keep
the run-time penalty low.

Similar techniques also exist for other processors. The disadvantage of this
approach is that the tools (compilers, assemblers, debuggers, etc.) must be
extended to support a second instruction set. Therefore, this approach can be
quite expensive in terms of software development cost.

– A second approach is the use of dictionaries. With this approach, each
instruction pattern is stored only once. For each value of the program counter,
a look-up table provides a pointer to the corresponding instruction in the
instruction table, the dictionary (see Fig. 3.20).

This approach relies on using only very few different instruction patterns.
Therefore, only few entries are required for the instruction table. Hence, the
bit width of the pointers can be quite small. Many variations of this scheme

11Instructions using predicated execution have an effect only if a certain condition encoded in
the instruction evaluates to true. This condition typically involves values stored in condition code
registers, resulting from previous instructions. For example, instructions might have an effect
only if a previous <=-expression was true. Predication can be used to implement if statements
efficiently: the condition is stored in one of the condition registers, and if-statement bodies are
implemented as predicated instructions which depend on this condition. For ARM processors, the
condition is encoded in the first 4 bits of the instruction format. As a special case, an “always”
condition can be encoded, like in Fig. 3.19. The more recently introduced 64 bit instruction set
places less emphasis on predicated execution.
12Using VHDL notation (see p. 98), concatenation is denoted by an & sign, and constants are
enclosed in quotes in Fig. 3.19.

150 3 Embedded System Hardware

µP

Instruction address

Table of used instructions

32 bits

Pointers to instructions

Few entries

<< 32 bits

Fig. 3.20 Dictionary approach for instruction compression

h(
t)

conv.
A/D−

sing

proces−Sample−
& hold

anti−
aliasing

....

x(
t)

w
(t)

e(
t)

g(
t)

Fig. 3.21 Naming conventions for signals

exist. Some are called two-level control store [118], nanoprogramming [514],
or procedure ex-lining [551].

Beszedes [52] and Latendresse [324] provide overviews of a large number
of known compression techniques. In addition, Bonny et al. [58] published a
Huffman-based technique.

Execution Time Efficiency Using Digital Signal Processing as an Example

In order to meet time constraints without having to use high clock frequencies,
architectures can be customized to certain application domains, such as digital signal
processing (DSP). Let us have a closer look at DSP now! In digital signal processing,
digital filtering is a very frequent operation. Let us assume that we are extending the
pipeline of Fig. 3.8 on p. 135. We add a processing component, supposed to perform
filtering. Names of signals are shown in Fig. 3.21.

Equation (3.21) describes a digital filter generating an output signal x(t) from an
input signal w(t). Both signals are defined over the (usually unbounded) domain
{ts} of sampling instances. We write xs instead of x(ts) and ws−n+k+1 instead of
w(ts−n+k+1):13

13In our notation, a0 is the weight of the oldest input value. If we would define a0 as the weight
of the youngest value of w, the first term would take the more commonly used form ws−k . Our
notation simplifies understanding the program code shown below.

3.3 Processing Units 151

address

generation

unit (AGU)

address

registers

w
a

akws-n+k+1

k+1

xs

s-n+k+2

Fig. 3.22 Internal architecture of the ADSP 2100 processor family (simplified)

xs =
n−1∑
k=0

ws−n+k+1 ∗ ak (3.21)

Output element xs corresponds to a weighted average over the last n signal elements
of w and can be computed iteratively, adding one product at a time. Processors for
DSP are designed such that each iteration can be encoded as a single instruction.

Example 3.5 This is feasible with DSP processors from the ADSP 2100 family,
whose architecture is shown in Fig. 3.22.

The processor has two memories, called DM and PM. A special address generating
unit (AGU) can be used to provide the pointers for accessing these memories in
index registers I0-I7. There are separate units for additions and multiplications,
each with their own argument registers AX0, AY0, AF, MX0, MY0, and MF. The
multiplier is connected to a second adder in order to compute the combination
of a multiplication and an addition (so-called MAC operation) quickly. For this
processor, one iteration is performed in a single cycle. For this purpose, the two
memories are allocated to hold the two arrays w and a.

Pointers to array elements can be kept in index registers. At each iteration, the
value contained in one of the modify registers M0-M7 is added to the used index
register. This is typically encoded as a side effect of accessing an array element.

Partial sums are stored in MR.
We would need unlimited memory space if, at each time instance ts , we would

be storing a new value in the next unused memory element. However, a bounded

152 3 Embedded System Hardware

memory is sufficient, since we only need to access the most recent n values. This is
feasible with a ring buffer, implemented with modulo operations for index values.
The size of this buffer can be stored in length registers L0 to L7.

Obviously, mentioned registers serve different purposes. Therefore, they are
called heterogeneous registers. Heterogeneous registers are frequently found in
DSP processors.

In order to avoid extra cycles for testing for the end of the loop, zero-
overhead loop instructions are frequently provided in DSP processors. With such
instructions, a single or a small number of instructions can be executed a fixed
number of times.

Next, we are able to present the pipelined computation of Eq. (3.21), using
processors from the ADSP 2100 family (adopted from [14]):

/* outer loop over sampling times ts */ {
L0 = n; L4 = n; /* length of ring buffer(s) */
M1 = 1; M5 = 1; /* increment for index registers */
I0 = address of oldest value in w; I4 = start of weight table a;
MX0 = DM[I0]; MY0 = PM[I4]; /* loading oldest w[] & a0 */
MR = 0; I0 = I0 + M1; I4 = I4 + M5; /* ring buffer aware add */
for (k=0; k < (n − 1); k++) { /* n-1 iterations */

MR = MR + MX0 * MY0; MX0 = DM[I0]; MY0 = PM[I4]; /* MAC operation */
I0 = I0 + M1; I4 = I4 + M5; /* ring buffer aware add */

}
MR = MR + MX0 * MY0; x[s] = MR; /* MAC for youngest elem. */

}

The outer loop corresponds to the progressing time. For each iteration of the outer
loop, we initialize some registers. For the inner loop, a single instruction encodes
the inner loop body, comprising the following operations:

• reading of two arguments from argument registers MX0 and MY0, multiplying
them, and adding the product to register MR storing partial sums (so-called MAC
operation),

• fetching the next elements of arrays a and w from memories PM and DM and
storing them in argument registers MX0 and MY0,

• updating pointers to the next arguments, stored in address registers I0 and I4, by
adding values stored in M1 and M5 and considering lengths in L0 and L4,

• testing for the end of the loop.

For given computational requirements, this (limited) form of parallelism leads to
relatively low clock frequencies. Processors not optimized for DSP would probably
need several instructions per iteration and would therefore require a higher clock
frequency if available. ∇

In addition to allowing single instruction realizations of loop bodies for filtering,
DSP processors provide a number of other application domain-oriented features:

• Saturating arithmetic changes overflow and underflow handling. In standard
binary arithmetic, wrap-around is used for the values returned after an overflow

3.3 Processing Units 153

or underflow. Table 3.1 shows an example in which two unsigned 4 bit numbers
are added. A carry is generated which cannot be returned in any of the standard
registers. The result register will contain a pattern of all zeros. No result could be
further away from the true result than this one.

In saturating arithmetic, the result is as close as possible to the true result.
For saturating arithmetic, the largest value is returned in the case of an overflow,
and the smallest value is returned in the case of an underflow. This approach
makes sense especially for video and audio applications: the user will hardly
recognize the difference between the true result value and the largest value that
can be represented. Also, it would be useless to raise exceptions if overflows
occur, since it is difficult to handle exceptions in real time. Returning the right
value is feasible only if we know whether we are dealing with signed or unsigned
numbers.

• Fixed-point arithmetic: Sometimes, properties of floating-point computations
[186] are not welcome, and floating-point hardware increases the cost and power
consumption of processors. Hence, it has been estimated that 80% of the DSP
processors do not include floating-point hardware [1]. However, in addition to
supporting integers, many processors support fixed-point numbers. Fixed-point
data types can be specified by a 3-tuple (wl, iwl, sign), where wl is the total
word length, iwl is the integer word length (the number of bits left of the binary
point), and sign s ∈ {s, u} denotes whether numbers are unsigned or signed.
See also Fig. 3.23. Furthermore, there may be different rounding modes (e.g.,
truncation) and overflow modes (e.g., saturating and wrap-around arithmetic).

For fixed-point numbers, the position of the binary point is maintained after
multiplications (some low-order bits are truncated or rounded). For fixed-point
processors, this operation is supported by hardware.

• Real-time capability: Some of the features of modern processors used in PCs
are designed to improve the average execution time of programs. In many cases,
it is difficult if not impossible to formally verify that they improve the worst case
execution time. In such cases, it may be better not to implement these features.
For example, it is difficult (though not impossible [4]) to guarantee a certain
speed-up resulting from the use of caches. Therefore, caches are sometimes not

Table 3.1 Wrap-around vs.
saturating arithmetic for
unsigned integers

0 1 1 1

+ 1 0 0 1

Standard wrap-around arithmetic 1 0 0 0 0

Saturating arithmetic 1 1 1 1

Fig. 3.23 Parameters of a
fixed-point number system

s

fwl
wl

iwl

sign binary point

154 3 Embedded System Hardware

64 bits

16 bit value 3 16 bit value 2 16 bit value 1 16 bit value 0

Fig. 3.24 Using 64 bit registers for 16 bit data types

used for embedded applications. Also, virtual addressing and demand paging14

are frequently not found in embedded systems. Techniques for computing worst
case execution times will be presented in subsection 5.2.2.

Due to the importance of signal processing, instructions for DSP have been added
to many instruction sets.

Multimedia and Short Vector Instruction Sets

Registers and arithmetic units of many modern architectures are at least 64 bit wide.
Two 32 bit data types, four 16 bit data types, or eight 8 bit data types (“bytes”) can
be packed into a single 64 bit register (see Fig. 3.24).

Arithmetic units can be designed such that they suppress carry bits at 32 bit, 16
bit, or byte boundaries. Multimedia instruction sets exploit this fact by supporting
operations on packed data types. Such instructions are sometimes called single-
instruction, multiple-data (SIMD) instructions, since a single instruction encodes
operations on several data elements. With bytes packed into 64 bit registers, speed-
ups of up to about eight over non-packed data types are possible. Data types are
typically stored in packed form in memory. Unpacking and packing are avoided
if arithmetic operations on packed data types are used. Furthermore, multimedia
instructions can usually be combined with saturating arithmetic and therefore pro-
vide a more efficient form of overflow handling than standard instructions. Hence,
the overall speed-up achieved with multimedia instructions can be significantly
larger than the factor of eight enabled by operations on packed 64 bit data types. Due
to the advantages of operations on packed data types, new instructions have been
added to several processors. For example, so-called streaming SIMD extensions
(SSE) have been added to Intel’s family of Pentium®-compatible processors [247].
New instructions have also been called short vector instructions and introduced by
Intel® as Advanced Vector Extensions (AVX) [248].

14See Appendix C on p. 401 for an introduction to paging.

3.3 Processing Units 155

floating point
unit

instruction 1

instruction packet

integer
unit

instruction 2

integer
unit

instruction 3 instruction 4

load/store
unit

Fig. 3.25 VLIW architecture (example)

Very Long Instruction Word (VLIW) Processors

Computational demands for embedded systems are increasing, especially when
multimedia applications, advanced coding techniques, or cryptography are involved.
Performance improvement techniques used in high-performance microprocessors
are not appropriate for embedded systems: driven by the need for instruction set
compatibility, processors found, for example, in PCs spend a huge amount of
resources and energy on automatically finding parallelism in application programs.
Still, their performance is frequently not sufficient. For embedded systems, we can
exploit the fact that instruction set compatibility with PCs is not required. Therefore,
we can use instructions which explicitly identify operations to be performed in
parallel. This is possible with explicit parallelism instruction set computers
(EPICs). With EPICs, detection of parallelism is moved from the processor to the
compiler. This avoids spending silicon and energy on the detection of parallelism
at run-time. As a special case, we consider very long instruction word (VLIW)
processors. For VLIW processors, several operations or instructions are encoded
in a long instruction word (sometimes called instruction packet) and are assumed
to be executed in parallel. Each operation/instruction is encoded in a separate field
of the instruction packet. Each field controls certain hardware units. Four such fields
are used in Fig. 3.25, each one controlling one of the hardware units.

For VLIW architectures, the compiler has to generate instruction packets. This
requires that the compiler is aware of the available hardware units and schedules
their use.

Instruction fields must be present, regardless of whether or not the corresponding
functional unit is actually used in a certain instruction cycle. As a result, the code
density of VLIW architectures may be low if insufficient parallelism is detected to
keep all functional units busy. The problem can be avoided if more flexibility is
added.

For example, the Texas Instruments TMS 320C6xx family of processors imple-
ments a variable instruction packet size of up to 256 bits. In each instruction field,
1 bit is reserved to indicate whether or not the operation encoded in the next field
is still assumed to be executed in parallel. No instruction bits are wasted for unused
functional units. Due to its variable length instruction packets, TMS 320C6xx
processors do not quite correspond to the classical model of VLIW processors. Due
to their explicit description of parallelism, they are EPIC processors, though.

156 3 Embedded System Hardware

instruction fetch

tregister writeback

delay slots

branch

stages
pipeline

instruction execute

instruction decode

Fig. 3.26 Branch instruction and delay slots

Implementing register files for VLIW and EPIC processors is far from trivial.
Due to the large number of operations that can be performed in parallel, a large
number of register accesses has to be provided in parallel. Therefore, a large number
of ports is required. However, the delay, size, and energy consumption of register
files increase with their number of ports. Hence, register files with very large
numbers of ports are inefficient. As a consequence, many VLIW/EPIC architectures
use partitioned register files. Functional units are then only connected to a subset of
the registers.

VLIW Pipelines

A potential problem of VLIW and EPIC architectures is their possibly large delay
penalty: this delay penalty might originate from branch instructions found in some
instruction packets. Instruction packets normally must pass through pipelines. Each
stage of these pipelines implements only part of the operations to be performed by
the instructions executed. Branch instructions cannot be detected in the first stage
of the pipeline. When the execution of the branch instruction is finally completed,
additional instructions have already entered the pipeline (see Fig. 3.26).

There are essentially two ways to deal with these additional instructions:

1. They are executed as if no branch had been present. This case is called delayed
branch. Instruction packet slots that are still executed after a branch are called
branch delay slots. These branch delay slots can be filled with instructions
which would be executed before the branch if there were no delay slots. However,
it is normally difficult to fill all delay slots with useful instructions, and some
must be filled with no-operation instructions (NOPs). The term branch delay
penalty denotes the loss of performance resulting from these NOPs.

2. The pipeline is stalled until instructions from the branch target address have been
fetched. There are no branch delay slots in this case. In this organization, the
branch delay penalty is caused by the stall.

3.3 Processing Units 157

Processor 0

Core 0

CPU

system bus

L1Cache

Core 1

CPU

L1Cache

L2 Cache

Processor 1

Core 2

CPU

L1Cache

Core 3

CPU

L1Cache

L2 Cache

system memory

Fig. 3.27 Intel® Core™ Duo Processor

Branch delay penalties can be significant, and efficiency can be improved by
avoiding branches if possible. In order to avoid branches originating from if
statements, predicated instructions have been introduced (see p. 149).

The Crusoe™ processor is a (commercially finally unsuccessful) example of an
EPIC processor designed for PCs [295]. Its instruction set includes 64 bit and 128
bit VLIW instructions. Efforts for making EPIC instruction sets available in the PC
sector resulted in Intel’s IA-64 instruction set [249] and its implementation in the
Itanium® processor. Due to legacy problems, it has been used mainly in the server
market. Many MPSoCs (see p. 162) are based on VLIW and EPIC processors.

Multi-core Processors

Processor features for single processors described above have helped to design high-
performance processors in a resource-aware manner. However, it turned out that a
further performance increase for single processors hits the power wall: a further
increase in clock speeds would result in a too large power consumption and in
too hot circuits. Further increase in the level of VLIW parallelism was not feasible
either. Due to advances in fabrication technology, it is now feasible to manufacture
multiple processors on the same semiconductor die. Multiple processors integrated
on the same chip are called multicores. This is in contrast to multiprocessor
systems which have been used in computing centers for decades. The integration
of multiple cores on the same die enables a much faster communication, compared
to multiprocessor systems. Also, this approach facilitates the sharing of resources
(such as caches) among the cores. As an example, Fig. 3.27 demonstrates the
architecture of the Intel® Core™ Duo [540].

In this case, L1 caches are private, whereas L2 caches are shared. Implementing
efficient accesses to caches needs some consideration [540]. With such architec-
tures, cache coherence is becoming an issue also within one die. This means, we
have to know whether updates of data and possibly also instructions by one core
are seen by the others. Protocols for automatic cache coherence (like the MESI

158 3 Embedded System Hardware

E3

E3 E10

WB

WB

WB

WB

WB

E1

E1

R2 P1 P2

(variable length)
Complex Cluster pipe

I1

I1

I1

I1

I1 E1 E2 E4 E5 E6 E7 E8 E9

E10E1

E1

E2

E2

Single Cluster 0 pipe

Single Cluster 1 pipe

MAC pipe

F1 F5

D1

F2 F3 F4 D1

D1

D2

D2

D2

D3

D3

D3

R1

Fig. 3.28 ARM® Cortex® -A15 pipeline

protocol) are known for many years in computer architecture [211]. Now, they have
to be implemented on the chip. Scalability is an issue: for how many cores can we
reasonably provide enough bandwidth in the communication architecture to always
keep caches coherent? Also, the system memory bandwidth may be insufficient for
a growing number of cores. Architectures other than the above Intel architecture
exist.

In the architecture of Fig. 3.27, all processors are of the same type. Such
an architecture is called a homogeneous multi-core architecture. Advantages of
homogeneous multi-core architectures include the fact that the design effort is
limited (processors will be replicated) and that software can easily be migrated from
one processor to another one. This is very useful in case one of the cores fails.

In contrast to homogeneous multi-core architectures, there are also hetero-
geneous multi-core architectures incorporating processors of different types.
Processors which are best suited for certain applications can be selected. Typically,
heterogeneous architectures achieve the best energy efficiency that is feasible.

In order to find a good compromise between homogeneous and (totally) het-
erogeneous architectures, architectures with a single instruction set but different
internal architectures, so-called single-ISA heterogeneous multi-cores [316], have
been proposed. The ARM® big.LITTLE architecture is a very prominent example
of this.

Figure 3.28 contains the pipeline architecture of the Cortex® -A15 processor
[165].

It is a complex pipeline, containing multiple pipeline stages for instruction fetch,
instruction decoding, instruction issue, execution, and write-back. Instructions have
to pass through at least 15 pipeline stages before their result is stored. Dynamic
scheduling of instructions allows executing instructions in a sequence different from

3.3 Processing Units 159

F1 F2 F3 De

(fixed length)
Floating pipe

MAC pipe WB

WBInteger pipe

Iss

Ex1

F1 F2

M1 M2

Ex2

F3 F4 F5

Fig. 3.29 ARM® Cortex® -A7 pipeline

at the same desired performancePower benefit from Cortex A-7

Cortex A-7

Corte
x A-15

Highest Cortex-A7 Operating Point

Overdrive Condition

Performance

Power Highest Cortex A-15 Operating Point

Lo
w

es
t C

or
te

x
A

-7
 O

pe
ra

tin
g

P
oi

nt

Lo
w

es
t C

or
te

x
A

-1
5

O
pe

ra
tin

g
P

oi
nt

Fig. 3.30 DVFS curves for a large, representative workload on a single A7 or A15

the one in which they are fetched from memory (so-called out-of-order execution).
Several instructions can be issued in one clock cycle (so-called multi-issue). The
architecture offers a high performance but requires much power.

In contrast, Fig. 3.29 shows the pipeline of the Cortex® -A7 architecture [165].
It is a simple pipeline. Instructions pass through 8 to 11 stages; they are

always processed in the order in which they are fetched from memory (so-
called in-order execution). There are few situations in which two instructions are
issued concurrently. Hence, the architecture is power-efficient but has a limited
performance.

Figure 3.30 [165] demonstrates trade-offs between power consumption and
performance. For each of the two architectures shown, there is flexibility for these
two objectives, depending upon the supply voltage and the clock frequency.

Obviously, the Cortex® -A15 is more appropriate for more demanding high-
performance applications, e.g., in video processing. The Cortex® -A7 is more
appropriate for “always-on applications” like low-volume message processing. It
would be a waste of energy if mobile phones would only contain Cortex® -A15
cores.

160 3 Embedded System Hardware

Fig. 3.31 ARM® big.
LITTLE architecture
comprising Cortex® -A7 and
Cortex® -A15 cores

Interrupt control

Cortex -A15

Core

L1Cache

Core

CCI-400 Coherent Interconnect

Cortex -A7

Core

L1Cache

Core

Therefore, today’s multi-core chips typically are heterogeneous in that they
contain a mixture of high-performance and energy-efficient processors, as in
Fig. 3.31.

Graphics Processing Units (GPUs)

In the last century, many computers used specialized graphics processing units
(GPUs) in order to generate an appealing graphical representation of computer
output. This hardwired solution suffered from being unable to support non-standard
computer graphics algorithms. Therefore, these highly specialized GPUs have been
replaced by programmable solutions. Current GPUs try to run a large number
of computations concurrently in order to achieve the desired performance. The
standard approach to concurrency is to run many fine-grained threads at the same
time. The goal is to keep many processing units busy and to hide memory latencies
by fast switching between threads.

Example 3.6 Let us consider the multiplication of two large matrices on a GPU.
Figure 3.32 [211] shows how the computations can be mapped to a GPU.

The matrix is partitioned into so-called thread blocks. Each thread block can be
allocated to one of the cores contained in a GPU. Each thread block, in turn, contains
a number of threads, and each thread includes a number of instructions. In Fig. 3.32,
the overall set of computations is called a grid. ∇
Each core will try to achieve progress by executing threads. If some thread gets
blocked, e.g., due to waiting for memory, the core will execute some other thread.
The instructions contained in a thread can also be executed concurrently, e.g.,
by using multiple pipelines. The thread blocks can be executed concurrently on
contemporary GPUs. Fast switching between the execution of threads and in this
way hiding memory latencies is an essential feature for GPUs.

Example 3.7 Figure 3.33 shows the architecture of the ARM® Mali™ -T880 GPU
[23].

The architecture is defined as intellectual property (IP), comprising a synthe-
sizable model. In this model, the number of SC cores is configurable between
1 and 16. Each core includes several pipelines for the execution of arithmetic,

3.3 Processing Units 161

A[480] = B[480] * C[480]

A[7680] = B[7680] * C[7680]

Grid

15

Block

Thread

0

Block

Thread

15

SIMD
Thread

Thread
SIMD

0

.........

.........

.........

A[8191] = B[8191] * C[8191]

A[8161] = B[8161] * C[8161]
A[8160] = B[8160] * C[8160]

A[7711] = B[7711] * C[7711]

A[7681] = B[7681] * C[7681]

15

SIMD
Thread

SIMD

0
Thread

.........

.........

.........

.........

A[481] = B[481] * C[481]

A[511] = B[511] * C[511]

A[31] = B[31] * C[31]

A[1] = B[1] * C[1]
A[0] = B[0] * C[0]

Fig. 3.32 Partitioning of matrix multiplication for execution of a GPU

Inter -Core Task Management

SC SC SCSC SCSC SC

SC SC SCSC SCSC SC

Advanced Tiling Unit

Memory Management Unit

L2 Cache L2 Cache

AMBA 4 ACE -Lite AMBA 4 ACE -Lite

Thread Issue

Thread Completion

A
rit

hm
et

ic
P

ip
el

in
e

A
rit

hm
et

ic
P

ip
el

in
e

A
rit

hm
et

ic
P

ip
el

in
e

A
rit

hm
et

ic
P

ip
el

in
e

A
rit

hm
et

ic
P

ip
el

in
e

Fig. 3.33 ARM® Mali™ -T880 GPU

162 3 Embedded System Hardware

DMC

Cortex® -A57

Core

L2 Cache

Core

Cortex® -A53

Core

L2 Cache

Core

MaliTM -T760 GPU

Shader Shader

Shader

Shader

ShaderShader

L2 Cache

Core Core

2k-4k
Display

and
Video
Sub-

System

CoreLink TM GIC-400 Interrupt Control IO Coherent Masters

ADB-400 ADB-400

MMU-400

CoreLink TM CCI-400 Cache Coherent Interconnect

To peripheral devices

TZC-400

MMU-400

DDR/LPDDR DDR/LPDDR

MMU-400MMU-400

ADB-400ADB-400

Fig. 3.34 ARM® big.LITTLE system on a chip (SoC)

load/store, or texture-related instructions. In the thread issue hardware, as many
threads as possible are issued each clock phase. The GPU also contains additional
components like a memory management unit (see Appendix C), up to two caches
and an AMBA® bus interface. Programming support includes an interface to the
OpenGL library [484] and to OpenCL (see https://www.khronos.org/opencl/). ∇

In general, GPU computing achieves high performances in an energy-efficient
way (see also Sect. 3.7.3 on p. 193).

Multiprocessor Systems on a Chip (MPSoCs)

Going one step further, heterogeneous multi-core systems have also been merged
with GPUs.

Example 3.8 Figure 3.34 shows a contemporary heterogeneous multi-core system,
also comprising a Mali GPU [22].

The architecture shown in Fig. 3.34 does not only contain processor cores.
Rather, it comprises a number of additional system components, such as memory
management units (see Appendix C) and interfaces for peripheral devices. Overall,
the idea behind this integration is to avoid extra chips for such functionality. As a
result, a whole system is integrated on one chip. Therefore, we are calling such an
architecture a system-on-a-chip (SoC) or even a multiprocessor system-on-a-chip
(MPSoC) architecture. ∇

https://www.khronos.org/opencl/

3.3 Processing Units 163

ARM
Cortex A -15

DSP C66x
up to

1.4 GHz

ARM
Cortex A -15

ARM
Cortex A -15

ARM
Cortex A -15

4 MB ARM
Shared L2

515 kB L2

System Services

Power Manager

System -Monitor

Debug EDMA PktDMA

T
er

aN
et

Accellerators
Security Packet Processing

Switches

8-Port x 1 GbE 2-Port x 10 Gb

High Speed SerDesLanes

Hyperlink x4 1 GbE x8

Multicore Shared Memory Contr .

2 MB MSMC SRAM

DDR3/3L
72bit – 1600 MHz

EMIF and I/O
EMIF16

IC x3

Multicore Navigator

USB3 x2 SPI x3

UART x2 TSIP

Fig. 3.35 MPSoC 66AK from Texas Instruments® containing ARM® and C6xxx processors

Fig. 3.36 Floor-plan of the
SH-MobileG1 chip

DDR

3G

mobile

GSM

MPEG

JPEG
Camera

real-time

CPU

Media
RAM

Sys-CPU

Sound

3D G

Misc

CPU

BB-
Misc

S
R

A
M

Mapping techniques for such processors are important, since examples demon-
strate that a power efficiency close to that of ASICs can be achieved. For example,
for IMEC’s ADRES processor, an efficiency of 55 ∗ 109 operations per watt (about
50% of the power efficiency of ASICs) has been predicted [363, 481]. However, the
design effort for such architectures is larger than in the homogeneous case.

Example 3.9 There are MPSoCs comprising processors which we introduced
earlier: 66AK2x MPSoCs from Texas Instruments contain ARM® and C66xxx pro-
cessors [530] (see Fig. 3.35), demonstrating relevance of the presented processors.
∇

The number and the diversity of components can be even larger. For example,
there may be specialized processors for mobile communication or image processing.

Example 3.10 Figure 3.36 contains a simplified floor-plan of the SH-MobileG1
chip [205]. The chip demonstrates that highly specialized processors are being used.
There are special processors for image processing (red), for GSM and 3G mobile

164 3 Embedded System Hardware

Matrix Multiply
Unit

(256x256x8b
MAC per cycle)

Accumulators

Systolic
Data

Setup

Unified
Buffer
(Local

Activation
Storage)

Weight FIFO
(Weight Fetcher)

H
os

t I
nt

er
fa

ce
Memory

interfaces

Control

Control

Control

ControlControl

P
C

Ie
In

te
rf

ac
e

DRAM memory

Activation

Normalize/PoolIn
st

r.

Off -Chip I/O

Computation

Data Buffer

Control

Fig. 3.37 Tensor processing unit (TPU), v1, for fast classification [277, 448]

communication (green), etc. In order to save energy, power is shut down for unused
areas, causing these areas to be a special case of dark silicon (c.f. p. 14). ∇

Specialized processors are used since progress in semiconductor manufacturing
and the design of new architectures is slowing down. Hence, specialized processors
are needed to meet performance targets. This view is supported by the architecture
which we will present next.

Example 3.11 Around 2013, Google predicted that it would soon become very
expensive to provide the expected pattern recognition performance in their data
centers with conventional CPUs or GPUs. As a result, the design of specialized
machine learning processors for fast classification with deep neural networks
(DNNs) was started with a high priority. The resulting so-called Tensor Processing
Unit (TPU) architecture is shown in Fig. 3.37.

At the core of the architecture, there is a 256 by 256 array of MAC units.
64k 8 bit MAC operations can be performed in a single cycle; 16 bit operations
require more cycles. DNNs consist of layers of computations, where at each
layer MAC operations involving weight factors are required. These are performed
by “pumping” input data or data from intermediate layers through the MAC
matrix. Each cycle, 256 result values become available. TPU version 1 outperforms

3.3 Processing Units 165

commonly used CPUs and GPUs by a factor of 29.2 and 13.3, respectively. The
performance/power ratio is improved by factors of 34 and 16, respectively. More
recently, Google announced second- and third-generation TPUs [93]. They do also
support training DNNs. ∇

3.3.3 Reconfigurable Logic

In many cases, full-custom hardware chips (ASICs) are too expensive, and software-
based solutions are too slow or too energy-consuming. Reconfigurable logic
provides a solution if algorithms can be efficiently implemented in custom hardware.
It can be almost as fast as special-purpose hardware, but in contrast to special-
purpose hardware, the performed function can be changed by using configuration
data. Due to these properties, reconfigurable logic finds applications in the following
areas:

• Fast prototyping: Modern ASICs can be very complex and the design effort can
be large and take a long time. It is therefore frequently desirable to generate a
prototype, which can be used for experimenting with a system which behaves
“almost” like the final system. The prototype can be more costly and larger than
the final system. Also, its power consumption can be larger than the final system,
some timing constraints can be relaxed, and only the essential functions need
to be available. Such a system can then be used for checking the fundamental
behavior of the future system.

• Low-volume applications: If the expected market volume is too small to justify
the development of special-purpose ASICs, reconfigurable logic can be the right
hardware technology for applications, for which software would be too slow or
too inefficient.

• Real-time systems: The timing of reconfigurable logic-based designs is typically
known very precisely. Therefore, they can be used to implement timing-predic-
table systems.

• Applications benefiting from a very high level of parallel processing: For
example, parallel searches for certain patterns can be implemented as parallel
hardware. Therefore, reconfigurable logic is employed in searches for genetic
information, for patterns in Internet messages, in stock data, in seismic analysis,
and more.

Reconfigurable hardware frequently includes random access memory (RAM) to
store configurations. We distinguish between persistent and volatile configuration
memory. For persistent memory, information is retained when power is shut off.
For volatile memory, the information is lost once power is shut down. If the
configuration memory is volatile, its content must be loaded from some persistent
storage technology such as read-only memories (ROMs) or flash memories at
startup.

166 3 Embedded System Hardware

Fig. 3.38 Floor-plan of
column-based
Xilinx® UltraScale FPGAs

T
ra

ns
ce

iv
er

s

C
LB

, D
S

P
, B

lo
ck

 R
A

M

I/O
, C

lo
ck

in
g,

 M
em

or
y

In
te

rf
ac

e
Lo

gi
c

C
LB

, D
S

P
, B

lo
ck

 R
A

M

I/O
, C

lo
ck

in
g,

 M
em

or
y

In
te

rf
ac

e
Lo

gi
c

C
LB

, D
S

P
, B

lo
ck

 R
A

M

T
ra

ns
ce

iv
er

s

Fig. 3.39 Xilinx® UltraScale
CLB (one of eight blocks
shown)

6

8x

LUT

D

D

Field programmable gate arrays (FPGAs) are the most common form of
reconfigurable hardware. As the name indicates, such devices are programmable
“in the field” (after fabrication). Furthermore, they consist of arrays of processing
elements. As an example, Fig. 3.38 shows the column-based structure of the
Xilinx® UltraScale architecture [602].15 Some columns contain I/O interfaces,
clock devices, and/or RAM. Other columns comprise configurable logic blocks
(CLBs), special hardware for digital signal processing, and some RAM. CLBs
are the key components. They provide configurable functions. The architecture of
Xilinx® UltraScale CLBs is shown in Fig. 3.39 [599].

In this architecture, each CLB contains eight blocks. Each block comprises a
RAM which is used to implement logic functions by a look-up table (LUT, shown
in red), two registers, multiplexers, and some additional logic.Each LUT has six
address inputs and two outputs. It can implement any single Boolean function of
six variables or two functions of five variables (provided that the two functions
share input variables). This means that all 264 functions of 6 variables or all 232

functions of 5 inputs can be implemented! This is the key means for achieving

15Rotation of this figure would improve its readability but would contradict the official designation
of this layout style.

3.3 Processing Units 167

configurability. In addition, the logic contained in such a block can also be
configured. This includes the control of the two registers, which can be programmed
to store results of the LUT or some direct input values. Blocks in a CLB can be
combined to form adders, multiplexers, shift registers, or memories. Configuration
data determines the setting of multiplexers in the CLBs, the clocking of registers
and RAM, the content of RAM components, and the connections between CLBs.
Some of the LUTs can also be used as RAM. A single CLB can store up to 512 bits.

Several CLBs can be combined to create, for example, adders having a larger bit
width, memories having a larger capacity, or complex logic functions.

Currently available FPGAs comprise a large number of specialized blocks,
like hardware for digital signal processing (DSP), some memory, high-speed I/O
devices for various I/O standards, a decryption facility for FPGA configuration data,
debugging support, ADCs, high-speed clocking, etc.

Example 3.12 Virtex® UltraScale™ VU13P devices include 1728 k LUTs, 48 Mbit
distributed RAM, 94.5 Mbit “Block RAM,” 360 Mbit “UltraRAM,” about 12 k
specialized DSP devices, 4 PCIe® devices, Ethernet interfaces, and up to 832 I/O
pins [601]. ∇

Integration of reconfigurable computing with processors and software is simpli-
fied if processors are available in the FPGAs. There may be either hard cores or
soft cores. For hard cores, the layout contains a special area implementing a core in
a dense way. This area cannot be used for anything but the hard core. Soft cores are
available as synthesizable models which are mapped to standard CLBs. Soft cores
are more flexible but less efficient than hard cores. Soft cores can be implemented
on any FPGA chip.

Example 3.13 The MicroBlaze processor [598] is an example of a soft core. ∇
Example 3.14 At the time of writing this book, hard cores are available, for
example, on Zynq UltraScale+ MPSoCs. They contain up to four ARM® Cortex-
A53 cores, two ARM Cortex-R5 cores, and a Mali-400MP2 GPU processor [602]. ∇

Typically, configuration data is generated from a high-level description of the
functionality of the hardware, for example, in VHDL. FPGA vendors provide the
necessary design kits. Ideally, the same description could also be used for generating
ASICs automatically. In practice, some interaction is required. Exploitation of the
available parallelism typically requires manually parallelized applications, since
automatic parallelization is frequently very limited. The parallelism offered by
FPGAs is typically not fully exploited if all computations are mapped to processor
cores. Overall, FPGAs allow implementing a huge variety of hardware devices
without any need to create hardware other than FPGA boards.

Example 3.15 Currently (in 2020), alternate providers of FPGAs include Altera®

(see http://www.altera.com, acquired by Intel®), Lattice Semiconductor (see http://
www.latticesemi.com), QuickLogic (see http://www.quicklogic.com), Microsemi
(formerly Actel; see http://www.microsemi.com), and Chinese vendors. ∇

http://www.altera.com
http://www.latticesemi.com
http://www.latticesemi.com
http://www.quicklogic.com
http://www.microsemi.com

168 3 Embedded System Hardware

Fig. 3.40 Delay and access
time of random access
memory as predicted by
CACTI

128 512 2k 8k 32k

2

4

6

8

10

12

Memory size [bytes]

Energy [nJ]

Access time [ns]

3.4 Memories

3.4.1 Conflicting Goals

Data, programs, and FPGA configurations must be stored in some kind of memory.
Memories must have a capacity as large as required by the applications, provide
the expected performance, and still be efficient in terms of cost, size, and energy
consumption. Requirements for memories also include the expected reliability and
access granularity (e.g., bytes, words, pages). Furthermore, we distinguish between
persistent and volatile memory (see p. 165). The mentioned requirements are
conflicting, as has already been observed by Burks, Goldstine, and von Neumann
in 1946 [78]:

“Ideally one would desire an indefinitely large memory capacity such that any
particular . . . word . . . would be immediately available — i.e. in a time which is
. . . shorter than the operation time of a fast electronic multiplier. . . . It does not seem
possible physically to achieve such a capacity.”

Access times of some currently available memories can be estimated with CACTI.
These estimates are based on the tentative generation of a memory layout and the
extraction of capacitances [589]. Many different parameters enable the selection of
an appropriate fabrication technology.16

Example 3.16 Figure 3.40 shows the results for a range of exponentially increasing
sizes [36]. Obviously, the access time increases as a function of the capacity of
memories: the larger the memory, the longer it takes to access information. In
addition, Fig. 3.40 also includes the energy consumption. Large memories also tend
to be energy-inefficient. The impact of the capacity of the memory on the energy
consumption is even larger than the impact on the access time. ∇

16In fact, it is frequently difficult to select the right parameters.

3.4 Memories 169

Fig. 3.41 Historical speed
gap increase (until about
2003)

0 1 2 3 4 5

2

8

1

Speed

years

DRAM (x 1.07 per year)

.

CPU (x
 1.5-2.0 per y

ear)

4

> 2x every 2 years

For a number of years, the difference in speeds between processors and memories
increased (see Fig. 3.41) until processor clock rates saturated (around 2003). While
the speed of memories increased by only a factor of about 1.07 per year, overall
processor performance increased by a factor of 1.5–2 per year [358]. Overall, the gap
between processor performance and memory speeds has become large. Accordingly,
a further increase of the overall performance is made at least very difficult due
to memory access times. This fact has also been called the memory wall [358].
Further increase of clock rates of single processors has come to a standstill, but the
large gap remains which existed when clock speeds became essentially saturated
and multi-cores require additional memory bandwidth. As a result, we have to find
compromises between the different requirements for the memory architecture.

3.4.2 Memory Hierarchies

Due to the observed conflicts, Burks, Goldstine, and von Neumann wrote already
in 1946 [78]: “We are therefore forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding but
which is less quickly accessible.”

The exact structure of the hierarchy depends on technological parameters and
also on the application area. Typically, we can identify at least the following levels
in the memory hierarchy:

• Processor registers can be seen as the fastest level in the memory hierarchy, with
only a limited capacity of at most a few hundred words.

• The working memory (or main memory) of computer systems implements
the storage implied by processor memory addresses. Usually it has a capacity
between a few megabytes and some gigabytes and is volatile.

• Typically there is a large access speed difference between the main memory and
registers. Hence, many systems include some type of buffer memory. Frequently
used buffer memories include caches, translation look-aside buffers (TLBs;
see Appendix C), and scratchpad memory (SPM). In contrast to PC-like

170 3 Embedded System Hardware

Fig. 3.42 Cycle time and
power as a function of the
register file size

16 32

0.18µ

Register
file size

Cycle time[ns]

1.7

1.5

1.3

1.1

12864

12
14

16 32 64 128

2
4
6
8

10

Power[W]

Register
file size

0.18µ

systems and compute servers, the architecture of these small memories should
guarantee a predictable real-time performance. A combination of small memories
containing frequently used data and instructions and a larger memory containing
the remaining data and instructions is generally also more energy efficient than a
single, large memory.

• Memories introduced so far are normally implemented in volatile memory
technologies. In order to provide persistent storage, some different memory
technology must be used. For embedded systems, flash memory is frequently
the best solution. In other cases, hard disks or Internet-based storage solutions
(like the “cloud”) may be used.

Memory hierarchies can be exploited in order to achieve a compromise between
the design goals for the memory. Memory partitioning has been considered, for
example, by A. Macii [360]. New memory technologies (including persistent
memories) have the potential to change currently dominating hierarchies [388].

3.4.3 Register Files

The mentioned impact of the storage capacity on access times and energy consump-
tion applies even to small memories such as register files. Figure 3.42 shows the
cycle time and the power as a function of the size of memories used as register files
[471]. The power needs to be considered due to frequent accesses to registers, as a
result of which they can get very hot.

3.4.4 Caches

For caches it is required that the hardware checks whether or not the cache has a
valid copy of the information associated with a certain address. This check involves
comparing the tag fields of caches, containing a subset of the relevant address bits
[211]. If the cache has no valid copy, the information in the cache is automatically
updated.

3.4 Memories 171

Fig. 3.43 Average number of
cycles per access for
NPAD=0

0

1

2

3

4

5

6

7

8

9

10

cy
cl

es
/a

cc
es

s

2 2 2 2 2 2 210 13 16 19 22 25 28

Working Set Size (Bytes)

Caches were initially introduced in order to provide good run-time efficiency.
The name is derived from the French word cacher (to hide), indicating that
programmers do not need to see or to be aware of caches, since updating information
in caches is automatic. However, when large amounts of information need to be
accessed, caches are not so invisible anymore. This has been demonstrated very
nicely by Drepper [139]. Drepper analyzed execution times of a program traversing
a linear list of entries. Each entry contained one 64 bit pointer to the next entry plus
NPAD 64 bit words. Execution times were measured for a Pentium P4 processor
comprising a 16 kB level 1 cache requiring 4 processor cycles per access, a 1 MB
level 2 cache requiring 14 processor cycles per access, and a main memory requiring
200 cycles per access. Figure 3.43 shows the average number of cycles per access
to one list element as a function of the total size of the list for the case NPAD=0.
For small sizes of the list, four cycles are required per list element. This means
that we are almost always accessing the level 1 cache, since it is large enough for
this size of the list. If we increase the size of the list, we need eight cycles per
access on average. In this case, we are accessing the level 2 cache. However, since
the cache block size is large enough to hold two list elements, only every second
access is actually an access to the level 2 cache. For even larger lists, the access time
increases to nine cycles. In these cases, the list is larger than the level 2 cache, but
automatic prefetching of level 2 cache entries hides some of the access latency of
the main memory.

Figure 3.44 shows the average number of cycles per access to one list element as
a function of the total size of the list for cases NPAD=0, 7, 15, and 31. For NPAD=7,
15, and 31, prefetching fails due to the larger size of list items. Obviously, we see
a dramatic increase of access times. This means that the cache architecture has a
strong impact on the execution times of applications. Increasing cache size will
only change the size of the application at which this increase in execution times

172 3 Embedded System Hardware

350

300

250

200

150

100

50

Working Set Size (Bytes)

28252219161310 2222222

cy
cl

es
/a

cc
es

s

0

NPAD=31

NPAD=15

NPAD=7

NPAD=0

Fig. 3.44 Average number of cycles per access for NPAD=0, 7, 15, 31

Fig. 3.45 Memory map with
scratchpad included

m
em

or
y

ad
dr

es
se

s

large memory

scratch pad memory

happens. Clever exploitation of hierarchies can have a large impact on execution
times.

So far, we have just looked at the impact of capacity on access times. In the
context of Fig. 3.40 however, it is obvious that caches potentially also improve the
energy efficiency of a memory system. Accesses to caches are accesses to small
memories and therefore require less energy per access than large memories.

Predicting cache misses and hits at design time is difficult and is a burden for the
accurate prediction of real-time performance (see p. 246).

3.4.5 Scratchpad Memories

Alternatively, small memories can be mapped into the address space (see Fig. 3.45).
Such memories are called scratchpad memories (SPMs) or tightly coupled

memories (TCM). SPMs are accessed by a proper selection of memory addresses.
There is no need for checking tags, as for caches. Instead, the SPM is accessed

3.5 Communication 173

Fig. 3.46 Energy
consumption per scratchpad
and cache access

0.5µ SRAM

Size

Energy per 64bit access[nJ]

Caches, 2 way
set associative

1MB address space
4GB address space

scratch pad

163844096256 1024

7

5

3

1

whenever some simple address decoder is signaling an address to be in the address
range of the SPM. SPMs are typically integrated together with processors on the
same die. Hence, they are a special case of on-chip memories. For n-way set
associative caches, reads are usually reading n entries in parallel and select the right
entry only afterward. These energy-hungry parallel reads are avoided for SPMs. As
a result, SPMs are very energy-efficient.

Figure 3.46 shows a comparison between the energy required per access to the
scratchpad (SPM) and the energy required per access to the cache.

For a two-way set associative cache, the two values differ by a factor of about
three. The values in this example were computed using the energy consumption for
RAM arrays as estimated by CACTI [589]. A detailed comparison between figures
of merit for caches and scratchpads was published by Banakar et al. [36].

Frequently used variables and instructions should be allocated to the address
space of SPMs. SPMs can improve the memory access times very predictably if
the compiler is in charge of keeping frequently used variables in the SPM (see p.
363).

3.5 Communication

Information must be communicated before it can be processed in an embedded
system. Communication is particularly important for the Internet of Things. Infor-
mation can be communicated through various channels. Channels are abstract
entities characterized by the essential properties of communication, like maximum
information transfer capacity and noise parameters. The probability of communica-
tion errors can be computed using communication theory techniques. The physical
entities enabling communication are called communication media. Important media
classes include wireless media (radio frequency media, infrared), optical media
(fibers), and wires.

There is a huge variety of communication requirements between the various
classes of embedded systems. In general, connecting the different embedded
hardware components is far from trivial. Some common requirements can be
identified.

174 3 Embedded System Hardware

3.5.1 Requirements

The following list contains some of the requirements that must be met:

• Real-time behavior: This requirement has far-reaching consequences on the
design of the communication system. Several low-cost solutions such as standard
Ethernet fail to meet this requirement.

• Efficiency: Connecting different hardware components can be expensive. For
example, point-to-point connections in large buildings are almost impossible.
Also, it has been found that separate wires between control units and external
devices in cars significantly add to the cost and the weight of the car. With
separate wires, it is also difficult to add new components. The need for cost
efficiency also affects the way in which power is made available to external
devices. There is frequently the need to use a central power supply to reduce
the cost.

• Appropriate bandwidth and communication delay: Bandwidth requirements
of embedded systems may vary. It is important to provide sufficient bandwidth
without making the communication system too expensive.

• Support for event-driven communication: Polling-based systems provide a
very predictable real-time behavior. However, their communication delay may
be too large, and there should be mechanisms for fast, event-oriented communi-
cation. For example, emergency situations should be communicated immediately
and should not remain unnoticed until some central controller polls for messages.

• Security/privacy: Ensuring security/privacy of confidential information (confi-
dentiality) may require the use of encryption.

• Safety/robustness: For safety-critical systems, the required level of safety must
be achieved. This includes robustness: cyber-physical systems may be used at
extreme temperatures, close to major sources of electromagnetic radiation, etc.
Car engines, for example, can be exposed to temperatures of, e.g., less than −20
and up to +180 ◦C (−4–356 ◦F). Voltage levels and clock frequencies could be
affected due to this large variation in temperatures. Still, reliable communication
must be maintained.

• Fault tolerance: Despite all the efforts for robustness, faults may occur. Cyber-
physical systems should be operational even after faults, if at all feasible.
Restarts, like the ones found in PCs, cannot be accepted. This means that retries
may be required after attempts to communicate failed. A conflict exists with
the first requirement: if we allow retries, then it is difficult to meet real-time
requirements.

• Maintainability, diagnosability: Obviously, it should be possible to repair
embedded systems within reasonable time frames.

These communication requirements are a direct consequence of the general
characteristics of embedded/cyber-physical systems mentioned in Chap. 1. Due to
the conflicts between some of the requirements, compromises must be made. For
example, there may be different communication modes: one high-bandwidth mode

3.5 Communication 175

single−ended
output standard input

Ground

Fig. 3.47 Single-ended signaling

output

−

+

differential comparator

(local) ground(local) ground

Fig. 3.48 Differential signaling

guaranteeing real-time behavior but no fault tolerance (this mode is appropriate
for multimedia streams) and a second fault-tolerant, low-bandwidth mode for short
messages that must not be dropped.

3.5.2 Electrical Robustness

There are some basic techniques for electrical robustness. Digital communication
within chips is normally using so-called single-ended signaling. For single-ended
signaling, signals are propagated on a single wire (see Fig. 3.47).

Such signals are represented by voltages with respect to a common ground (less
frequently by currents). A single ground wire is sufficient for a number of single-
ended signals. Single-ended signaling is very much susceptible to external noise.
If external noise (originating from, e.g., motors being switched on) affects the
voltage, messages can easily be corrupted. Also, it is difficult to establish high-
quality common ground signals between a large number of communicating systems,
due to the resistance (and self-inductance) on the ground wires. This is different for
differential signaling. For differential signaling, each signal needs two wires (see
Fig. 3.48).

Using differential signaling, binary values are encoded as follows: if the voltage
on the first wire with respect to the second is positive, then this is decoded as '1';
otherwise values are decoded as '0'. The two wires will typically be twisted to form
so-called twisted pairs. There will be local ground signals, but a non-zero voltage
between the local ground signals does not hurt. Advantages of differential signaling
include the following:

• Noise is added to the two wires in essentially the same way. The comparator
therefore removes almost all the noise.

176 3 Embedded System Hardware

Guard
timeMessage & Gap

Time slice

Frame period

gap
Frame

sync
Slice 0... ...

Frame
Slice n-1...Slice 1Frame

sync

Fig. 3.49 TDMA-based communication

• The logic value depends just on the polarity of the voltage between the two wires.
The magnitude of the voltage can be affected by reflections or because of the
resistance of the wires; this has no effect on the decoded value.

• Signals do not generate any currents on the ground wires. Hence, the quality of
the ground wires becomes less important.

• No common ground wire is required. Hence, there is no need to establish a high-
quality ground wiring between a large number of communicating partners.

• As a consequence of the properties mentioned so far, differential signaling allows
a larger throughput than single-ended signaling.

However, differential signaling requires two wires for every signal, and it also
requires negative voltages (unless it is based on complementary logic signals using
voltages for single-ended signals). Differential signaling is used, for example, in
standard Ethernet-based networks and the universal serial bus (USB).

3.5.3 Guaranteeing Real-Time Behavior

For internal communication, computers may be using dedicated point-to-point
communication or shared buses. Point-to-point communication can have a good
real-time behavior but requires many connections, and there may be congestion
at the receivers. Wiring is easier with common, shared buses. Typically, such
buses use priority-based arbitration if several access requests to the communication
media exist (see, e.g., [211]). Priority-based arbitration comes with poor timing
predictability, since conflicts are difficult to anticipate at design time. Priority-
based schemes can even lead to “starvation” (low-priority communication can be
completely blocked by higher-priority communication). In order to get around
this problem, time division multiple access (TDMA) can be used. In a TDMA
scheme, each partner is assigned a fixed time slot. The partner is only allowed to
transmit during that particular time slot. Typically, communication time is divided
into frames. Each frame starts with some time slot for frame synchronization and
possibly some gap to allow the sender to turn off (see Fig. 3.49, [302]).

3.5 Communication 177

This gap is followed by a number of slices, each of which serves for communi-
cating messages. Each slice also contains some gap and guard time to take clock
speed variations of the partners into account. Slices are assigned to communication
partners. Variations of this scheme exist. For example, truncation of unused slices
or the assignment of partners to several slices are feasible. TDMA reduces the
maximum amount of data available per frame and partner but guarantees a certain
bandwidth for all partners. Starvation can be avoided. The ARM AMBA bus [21]
includes TDMA-based bus allocation.

Communication between computers is frequently based on Ethernet standards.
For 10 and 100 Mbit/s versions of Ethernet, there can be collisions between various
communication partners. This means several partners are trying to communicate
at about the same time and the signals on the wires are corrupted. Whenever this
occurs, the partners must stop communications, wait for some time, and then retry.
The waiting time is chosen at random, so that it is not very likely that the next
attempt to communicate results in another collision. This method is called carrier-
sense multiple access with collision detection (CSMA/CD). For CSMA/CD,
communication time can become huge, since conflicts can repeat a large number
of times, even though this is not very likely. Hence, CSMA/CD cannot be used
when real-time constraints must be met.

This problem can be solved with CSMA/CA (carrier-sense multiple access
with collision avoidance). As the name indicates, collisions are completely
avoided, rather than just detected. For CSMA/CA, priorities are assigned to all
partners. Communication media are allocated to communication partners during
arbitration phases, which follow communication phases. During arbitration
phases, partners wanting to communicate indicate this on the media. Partners finding
such indications of higher priority must immediately remove their indication.

Provided that there is an upper bound on the time between arbitration phases,
CSMA/CA guarantees a predictable real-time behavior for the partner having the
highest priority. For other partners, real-time behavior can be guaranteed if the
higher priority partners do not continuously request access to the media.

Note that high-speed versions of Ethernet (≥1 Gbit/s) also avoid collisions.
TDMA schemes are also used for wireless communication. For example, mobile
phone standards like GSM use TDMA for accesses to the communication medium.

3.5.4 Examples

• Sensor/actuator buses: Sensor/actuator buses provide communication between
simple devices such as switches or lamps and the processing equipment. There
may be many such devices and the cost of the wiring needs special attention for
such buses.

• Field buses: Field buses are similar to sensor/actuator buses. In general, they
are supposed to support larger data rates than sensor/actuator buses. Examples of
field buses include the following:

178 3 Embedded System Hardware

– Controller Area Network (CAN): This bus was developed in 1981 by
Bosch and Intel for connecting controllers and peripherals. It is popular in
the automotive industry, since it allows the replacement of a large amount
of wires by a single bus. Due to the size of the automotive market, CAN
components are relatively cheap and are therefore also used in other areas
such as smart homes and fabrication equipment. CAN is based on differential
signaling and arbitration using CSMA/CA. The encoding of signals is similar
to that of serial (RS-232) lines of early PCs, with modifications for differential
signaling. CSMA/CA-based arbitration does not prevent starvation. This is an
inherent problem of the CAN protocol. Extensions exist.

– The Time-Triggered Protocol (TTP) [304]: This is a protocol for fault-
tolerant safety systems like airbags in cars.

– FlexRay™ [253]: This is a TDMA protocol which has been developed by
the FlexRay consortium (BMW, Daimler AG, General Motors, Ford, Bosch,
Motorola, and Philips Semiconductors).

FlexRay includes a static as well as a dynamic arbitration phase. The static
phase uses a TDMA-like arbitration scheme. It can be used for real-time com-
munication and starvation can be avoided. The dynamic phase provides a good
bandwidth for non-real-time communication. Communicating partners can be
connected to up to two buses for fault-tolerance reasons. Bus guardians may
protect partners against partners flooding the bus with redundant messages,
so-called babbling idiots. Partners may use their own local clock periods.
Periods common to all partners are defined as multiples of such local clock
periods. Time slots allocated to partners for communication are based on these
common periods.

The levi simulation allows simulating the protocol in a lab environment
[495].

– LIN (Local Interconnect Network): This is a low-cost communication stan-
dard for connecting sensors and actuators in the automotive domain [346].

– MAP: MAP is a bus designed for car factories.
– EIB: The European Installation Bus (EIB) is a bus designed for smart homes.

• The Inter-Integrated Circuit (I2C) Bus : This is a simple low-cost bus designed
to communicate at short distances (meter range) with relatively low data rates.
The bus needs only four wires: ground, SCL (clock), SDA (data), and a voltage
supply line. Data and clock lines are open collector lines (see pp. 89–91). This
means that connected devices pull these lines only toward ground. Separate
resistors are needed to pull these lines up. The standard speed of I2C is 100 kb/s,
but versions for 10 kb/s and up to 3.4 Mb/s do also exist. The voltage on the
supply voltage line may vary between interfaces. Only the standards for detecting
high and low logic levels are defined relative to the supply voltage. The bus is
supported on some micro-controller boards.

• Wired multimedia communication: For wired multimedia communication,
larger data rates are required. For example, MOST (Media Oriented Systems

3.6 Output: Interface Between Cyber and Physical World 179

Transport) is a communication standard for multimedia and infotainment equip-
ment in the automotive domain [402]. Standards like IEEE 1394 (FireWire) may
be used for the same purpose.

• Wireless communication: This kind of communication is becoming more
popular. Standards for wireless communication include the following:

– Mobile communication is becoming available at increased data rates. 7
Mbit/s are obtained with HSPA (High Speed Packet Access). About ten times
higher rates are available with long-term evolution (LTE). 5G networks are
expected to provide data rates between 50 Mbit/s and more than a gigabit/s,
with latencies less than those of earlier networks.

– Bluetooth is a standard for connecting devices such as mobile phones and
their headsets over short distances.

– Wireless local area networks (WLANs) are standardized as IEEE standard
802.11, with several supplementary standards.

– ZigBee (see http://www.zigbee.org) is a communication protocol designed to
create personal area networks using low-power radios. Applications include
home automation and the Internet of Things.

– Digital European cordless telecommunications (DECT) is a standard used
for wireless phones. It is being used throughout the world, except for different
frequencies used in North America (see https://en.wikipedia.org/wiki/Digital_
Enhanced_Cordless_Telecommunications).

3.6 Output: Interface Between Cyber and Physical World

Output devices are key components of the cyphy-interface. Examples include:

• Displays: Display technology is an area which is extremely important. Accord-
ingly, a large amount of information [503] exists on this technology. Major
research and development efforts lead to new display technology such as organic
displays [342]. Organic displays are emitting light and can be fabricated with
very high densities. In contrast to LCDs, they do not need backlight and
polarizing filters. Major changes are therefore expected in these markets.

• Electro-mechanical devices: These influence the environment through motors
and other electro-mechanical equipment.

Analog as well as digital output devices are used. In the case of analog
output devices, the digital information must first be converted by digital-to-analog
converters (DACs). These converters can be found on the path from analog inputs
of embedded systems to their outputs. Figure 3.50 shows the naming convention
of signals along the path which we use. Purpose and function of the boxes will be
explained in this section.

http://www.zigbee.org
https://en.wikipedia.org/wiki/Digital_Enhanced_Cordless_Telecommunications
https://en.wikipedia.org/wiki/Digital_Enhanced_Cordless_Telecommunications

180 3 Embedded System Hardware

z(
t)

aliasing
anti−

& hold
Sample− D/A−

conv.

proces−

sing
A/D−
conv.

filterh(
t)

g(
t)

e(
t)

w
(t)

x(
t)

y(
t)

Fig. 3.50 Naming convention for signals between analog inputs and outputs

Fig. 3.51 DAC

yI
0

I

Amplifier
Operational

Vref

I
R

I'

R*8

R*2
R*4

R

x
x
x
x

1

3
2
1
0

LSB
+

-

V-

3

3.6.1 Digital-to-Analog Converters

Digital-to-analog converters (DACs) are also included in the cyphy-interface. They
are not very complex. Figure 3.51 shows the schematic of a simple so-called
weighted-resistor DAC.

The key idea of the converter is to first generate a current which is proportional
to the value represented by a digital signal x. Such a current can hardly be used by
a following system. Therefore, this current is converted into a proportional voltage
y. This conversion is done with an operational amplifier (depicted by a triangle
in Fig. 3.51). Essential characteristics of operational amplifiers are described in
Appendix B of this book.

How do we compute the output voltage y? Consider the four resistors on the left
in Fig. 3.51. The current through any resistor is zero if the corresponding element of
digital signal x is '0'. If it is '1', the current corresponds to the weight of that bit,
since resistor values are chosen accordingly. Now, consider the loop indicated by the
red dashed line in Fig. 3.51. We can apply Kirchhoff’s loop rule (see Appendix B) to
the loop turned on by the least significant bit x0 of x. Let us start the loop traversal at
the corresponding resistor and continue in a clockwise fashion. The second term is
the voltage V− between the inputs of the operational amplifier, counted as positive,
since we proceed in the direction of the arrow. The third term is contributed by the
constant voltage source, counted as negative, since we proceed against the direction
of the arrow. Overall, we have

x0 ∗ I0 ∗ 8 ∗ R + V− − Vref = 0 (3.22)

V− is approximately 0 (see Appendix B, Eq. (B.14)). Therefore, we have

I0 = x0 ∗ Vref

8 ∗ R
(3.23)

3.6 Output: Interface Between Cyber and Physical World 181

Corresponding equations hold for the currents I1 to I3 through the other resistors.
We can now apply Kirchhoff’s node rule to the circuit node connecting all resistors.
At this node, the outgoing current must be equal to the sum of the incoming currents.
Therefore, we have

I = I3 + I2 + I1 + I0 (3.24)

I = x3 ∗ Vref

R
+ x2 ∗ Vref

2 ∗ R
+ x1 ∗ Vref

4 ∗ R
+ x0 ∗ Vref

8 ∗ R

= Vref

R
∗

3∑
i=0

xi ∗ 2i−3 (3.25)

Now, we can apply Kirchhoff’s loop rule to the loop comprising R1, y, and V−.
Since V− is approximately 0, we have

y + R1 ∗ I ′ = 0. (3.26)

Next, we can apply Kirchhoff’s node rule to the node connecting I , I ′, and the
inverting signal input of the operational amplifier. The current into this input is
practically zero, and currents I and I ′ are equal: I = I ′. Hence, we have

y + R1 ∗ I = 0 (3.27)

From Eqs. (3.25) and (3.27), we obtain

y = −Vref ∗ R1

R
∗

3∑
i=0

xi ∗ 2i−3 = −Vref ∗ R1

8 ∗ R
∗ nat (x) (3.28)

nat denotes the natural number represented by digital signal x. Obviously, y is
proportional to the value represented by x. Positive output voltages and bit vectors
representing two’s complement numbers require minor extensions.

From a DSP point of view, y(t) is a function over a discrete time domain: it
provides us with a sequence of voltage levels. In our running example, it is defined
only over integer times. From a practical point of view, this is inconvenient, since
we would typically observe the output of the circuit of Fig. 3.51 continuously.
Therefore, DACs are frequently extended by a “zero-order hold” functionality.
This means that the converter will keep the previous value until the next value is
converted. Actually, the DAC of Fig. 3.51 will do exactly this if we do not change
the settings of the switches until the next discrete time instant. Hence, the output of

182 3 Embedded System Hardware

Fig. 3.52 y′(t) (red)
generated from signal e3(t)

(blue) (Eq. (3.3)) sampled at
integer times

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

the converter is a step function y′(t) corresponding to the sequence y(t).17 y′(t) is
a function over the continuous time domain.

As an example, let us consider the output resulting from the conversion of the
signal of Eq. (3.3), assuming a resolution of 0.125. For this case, Fig. 3.52 shows
y′(t) instead of y(t), since y′(t) is a bit easier to visualize.

DACs enable a conversion from time- and value-discrete signals to signals in
the continuous time and value domain. However, neither y(t) nor y′(t) reflects the
values of the input signal in between the sampling instances.

3.6.2 Sampling Theorem

Suppose that the processors used in the hardware loop forward values from ADCs
unchanged to the DACs. We could also think of storing values x(t) on a CD and
aiming at generating an excellent analog audio signal. Would it be possible to
reconstruct the original analog voltage e(t) (see Figs. 3.8, 3.21, and 3.50) at the
outputs of the DACs?

It is obvious that reconstruction is not possible if we have aliasing of the type
described in Fig. 3.7 on p. 134.18 So, we assume that the sampling rate is larger
than twice the highest frequency of the decomposition of the input signal into sine

17In practice, due to rise and fall times being > 0, transitions from one step to the next will not be
ideal, but take some time.
18Reconstruction may be possible if additional information about the signal is available, e.g., if we
restrict ourselves to certain signal types.

3.6 Output: Interface Between Cyber and Physical World 183

waves (sampling criterion; see Eq. (3.8)). Does meeting this criterion allow us to
reconstruct the original signal? Let us have a closer look!

Feeding DACs with a discrete sequence of digital values will result in a
sequence of analog values being generated. Values of the input signal in between
the sampling instances are not generated by DACs. The simple zero-order hold
functionality (if present) would generate only step functions. This seems to indicate
that reconstruction of e(t) would require an infinitely large sampling rate, such that
all intermediate values can be generated.

However, there could be some kind of smart interpolation computing values in
between the sampling instances from the values at sampling instances. And indeed,
sampling theory [440] tells us that a corresponding time-continuous signal z(t) can
be constructed from the sequence y(t) of analog values.

Let {ts}, s = . . . ,−1, 0, 1, 2, . . . be the time points at which we sample our input
signal. Let us assume a constant sampling rate of fs = 1

Ts
(∀s : Ts = ts+1 − ts).

Then, sampling theory tells us that we can approximate e(t) from y(t) as follows:

z(t) =
∞∑

s=−∞

y(ts)sin
π
Ts

(t − ts)

π
Ts

(t − ts)
(3.29)

This equation is known as the Shannon-Whittaker interpolation. y(ts) is the
contribution of signal y at sampling instance ts . This means, all 264 Boolean
functions of 6 inputs respectively all 232 Boolean functions of 5 inputs can be
implemented. The decrease follows a weighting factor, also known as the sinc

function

sinc(t − ts) =
sin(π

Ts
(t − ts))

π
Ts

(t − ts)
(3.30)

which decreases non-monotonically as a function of |t − ts |. This weighting factor
is used to compute values in between the sampling instances. Figure 3.53 shows the
weighting factor for the case Ts = 1.

Using the sinc function, we can compute the terms of the sum in Eq. (3.29).
Figures 3.54 and 3.55 show the resulting terms if e(t) = e3(t) and processing
performs the identify function (x(t) = w(t)).

At each of the sampling instances ts (integer times in our case), z(ts) is computed
just from the corresponding value y(ts), since the sinc function is zero in this
case for all other sampled values. In between the sampling instances, all of the
adjacent discrete values contribute to the resulting value of z(t). Figure 3.56 shows
the resulting z(t) if e(t) = e3(t) and processing performs the identify function
(x(t) = w(t)).

The figure includes signals e3(t) (blue), y′(t) (red), and z(t) (magenta). z(t) is
computed by summing up the contributions of all sampling instances shown in the
diagrams in Figs. 3.54 and 3.55. e3(t) and z(t) are very similar.

184 3 Embedded System Hardware

Fig. 3.53 Visualization of
Eq. (3.30) used for
interpolation

-15 -10 -5 0 5 10 15
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.54 y′(t) (red) and the
first three terms of Eq. (3.29)

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

How close could we get to the original input signal by implementing Eq. (3.29)?
Sampling theory tells us (see, e.g., [440]) that Eq. (3.29) computes an exact
approximation if the sampling criterion (Eq. (3.8)) is met. Therefore, let us see
how we can implement Eq. (3.29).

How do we compute Eq. (3.29) in an electronic system? We cannot compute
this equation in the discrete time domain using a digital signal processor for this,
since this computation has to generate a time-continuous signal. Computing such a
complex equation with analog circuits seems to be difficult at first sight.

Fortunately, the required computation is a so-called folding operation between
signal y(t) and the sinc function. According to the classical theory of Fourier
transforms, a folding operation in the time domain is equivalent to a multiplication
with frequency-dependent filter function in the frequency domain. This filter
function is the Fourier transform of the corresponding function in the time domain.

3.6 Output: Interface Between Cyber and Physical World 185

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3.55 y′(t) (red) and the last three non-zero terms of Eq. (3.29)

Fig. 3.56 e3(t) (blue), y′(t)
(red), z(t) (magenta)

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

z(
t)

y(
t)

x(
t)

w
(t)

e(
t)

g(
t)

h(
t)

filter
conv.
A/D-

sing
proces-

conv.
D/A-Sample-

& hold
anti-
aliasing

Fig. 3.57 Converting signal e(t) from the analog time/value domain to the digital domain and
back

Therefore, Eq. (3.29) can be computed with some appropriate filter. Figure 3.57
shows the corresponding placement of the filter.

Which frequency-dependent filter function is the Fourier transform of the sinc

function? Computing the Fourier transform of the sinc function yields a low-pass

186 3 Embedded System Hardware

Fig. 3.58 Low-pass filter:
ideal (blue, dashed) and
realistic (red, solid)

/2f

filter
realizable

ideal filter

sf f

Attenuation

s

filter function [440]. So, “all” we must do to compute Eq. (3.29) is to pass signal
y(t) through a low-pass filter, filtering frequencies as shown for the ideal filter
in Fig. 3.58. The representation of function y(t) as a sum of sine waves would
require very high-frequency components, making such a filtering non-redundant,
even though we have already assumed an anti-aliasing filter to be present at the
input.

Unfortunately, ideal low-pass filters do not exist. We must live with compromises
and design filters approximating the low-pass filters. Actually, we must live with
several imperfections preventing a precise reconstruction of the input signals:

• Ideal low-pass filters cannot be designed. Therefore, we must use approximations
of such filters. Designing good compromises is an art (performed extensively,
e.g., for audio equipment).

• Similarly, we cannot completely remove input frequencies beyond the Nyquist
frequency.

• The impact of value quantization is visible in Fig. 3.56. Due to value quantiza-
tion, e3(t) is sometimes different from z(t). Quantization noise, as introduced by
ADCs, cannot be removed during output generation. Signal w(t) from the output
of the ADC will remain distorted by the quantization noise. However, this effect
does not affect the signal h(t) from the output of sample-and-hold circuits.

• Equation (3.29) is based on an infinite sum, involving also values at future
instances in time. In practice, we can delay signals by some finite amount to know
a finite number of “future” samples. Infinite delays are impossible. In Fig. 3.56,
we did not consider contributions of sampling instances outside the diagram.

The functionality provided by low-pass filters demonstrates the power of analog
circuits: there would be no way of implementing the behavior of analog filters in the
digital domain, due to the inherent restriction to discretized time and values.

Many authors have contributed to sampling theory. Therefore, many names can
be associated with the sampling theorem. Contributors include Shannon, Whittaker,
Kotelnikov, Nyquist, Küpfmüller, and others. Therefore, the fact that the original
signal can be reconstructed should simply be called the sampling theorem, since
there is no way of attaching all names of relevant contributors to the theorem.

3.6 Output: Interface Between Cyber and Physical World 187

Fig. 3.59 Duty cycles

t

PWM
period

75%

25 %

3.6.3 Pulse-Width Modulation

In practice, the presented generation of analog signals has a number of disadvan-
tages:

• DACs using an array of resistors are difficult to build. The precision of the
resistors must be excellent. The deviation of the resistor handling the most
significant bit from its nominal value must be less than the overall resolution of
the converter. For example, this means that, for a 14 bit converter, the deviation
of the real resistance from its nominal value must be in the order of 0.01%. This
precision is difficult to achieve in practice, in particular over the full temperature
range. If this precision is not achieved, the converter is not linear, possibly not
even monotone.

• In order to generate a sufficient power for motors, lamps, loudspeakers, etc.,
analog outputs would need to be amplified in a power amplifier. Analog power
amplifiers, such as so-called class A power amplifiers, are very power-inefficient,
since they contain an always conducting path between the two rails of the power
supply. This path results in a constant power consumption, irrespective of the
actual output signal. For very small output signals, the ratio between the actually
used power and the consumed power is therefore very small. As a result, the
efficiency of audio power amplifiers for low-volume audio would be terribly bad.

• It is not easy to integrate analog circuitry on digital micro-controller chips.
Adding external analog active components increases costs substantially.

Therefore, pulse-width modulation (PWM) is very popular. With PWM, we are
using a digital output and generate a digital signal whose duty cycle corresponds to
the value to be converted. Figure 3.59 shows digital signals with duty cycles of 25%
and 75%. Such signals can be represented by Fourier series like in Eq. (3.1). For
applications of PWM, we try to eliminate effects of higher-frequency components.

PWM signals can be generated by comparing a counter against a value stored
in a programmable register (see Fig. 3.60). A high voltage is output whenever the
value in the counter exceeds the value in the register. Otherwise, a voltage close to
zero is generated. The clock signal of the counter must be programmable to select
the basic frequency of the PWM signals. In our schematic, we have assumed that
the PWM frequency is identical for all PWM outputs. Registers must be loaded with
the values to be converted, typically at the sampling rate of the analog signals.

188 3 Embedded System Hardware

Fig. 3.60 Hardware for
PWM output

m
ic

ro
co

nt
ro

lle
r

bu
s

si
gn

al
s

P
W

M

register 3

register 2

register 0

register 1

counter

>

>

>

Programmable
clock

>

M

L

The effort required for filtering higher-frequency components depends upon the
application. For driving a motor, the averaging takes place in the motor, due to the
mass of the moving parts in the motor and possibly also due to the self-inductance
of the motor. Hence, no external components are needed (see Fig. 3.60). For lamps,
the averaging takes place in the human eye, as long as the frequencies are not too
low. It may also be okay to drive simple buzzers directly. In other cases, filtering
out higher-frequency components may be needed. For example, electromagnetic
radiation caused by higher-frequency components may be unacceptable, or audio
applications may be demanding filtered high-frequency signals. In Fig. 3.60, two
capacitors and one inductor have been used to filter out high-frequency components
for the loudspeakers. In our example, we are showing four PWM outputs. Having
several PWM outputs is a common situation. For example, Atmel 32 bit AVR micro-
controllers in the AT32UC3A Series have seven PWM outputs [27]. In practice,
there are many options for the detailed behavior of PWM hardware.

The choice of the basic frequency (the reciprocal of the period) of the PWM
signal and the filter is a matter of compromises. The basic frequency has to be
higher than the highest-frequency component of the analog signal to be converted.
Higher frequencies simplify the design of the filter if any is present. Selecting a too
high frequency results in more electromagnetic radiation and in unnecessary energy
consumption, since switching will consume energy. Compromises typically use a
basic PWM frequency that is larger than the highest frequency of the analog signal
by a factor between 2 and 10.

3.6.4 Actuators

There is a huge amount of actuators [151]. Actuators range from large ones that are
able to move tons of weight to tiny ones with dimensions in the μm area, like the
one shown in Fig. 3.61.

3.7 Electrical Energy 189

Fig. 3.61 Detail of a rotary
stepper micromotor: top:
stationary part; lower left:
rotary part. The micromotor
uses three-phase electrostatic
power [478]. © Sarajlic et al.
(2010)

Figure 3.61 shows a tiny motor manufactured with microsystem technology. The
dimensions are in the μm range. The rotating center is controlled by electrostatic
forces.

As an example, we mention only a special kind of actuators which will become
more important in the future: microsystem technology enables the fabrication of
tiny actuators, which can be put into the human body, for example. Using such tiny
actuators, the amount of drugs fed into the body can be adapted to the actual need.
This allows a much better medication than needle-based injections.

Actuators are important for the Internet of Things. It is impossible to provide a
complete overview over actuators.

3.7 Electrical Energy

General constraints and objectives for the design of embedded and cyber-physical
systems (see pp. 8–16 and Table 1.2) have to be obeyed for hardware design. Among
the different objectives, we will focus on energy efficiency. Reasons for caring about
the energy efficiency were listed in Table 1.1 on p. 13.

3.7.1 Energy Sources

For plugged devices (i.e., for those connected to the power grid), energy is easily
available. For all others, energy must be made available via other techniques. In
particular, this applies to sensor networks used in IoT systems where energy can
be a very scarce resource. Batteries store energy in the form of chemical energy.
Their main limitation is that they must be carried to the location where the energy

190 3 Embedded System Hardware

Fig. 3.62 Photovoltaic material: left, panel; right, solar-powered watch

is required. If we would like to avoid this limitation, we have to use energy
harvesting, also called energy scavenging. A large amount of techniques for
energy harvesting is available [570, 577], but the amount of energy is typically much
more limited:

• Photovoltaics allows the conversion of light into electrical energy. The conver-
sion is usually based on the photovoltaic effect of semiconductors. Panels of
photovoltaic material are in widespread use. Examples can be seen in Fig. 3.62.

• The piezoelectric effect can be used to convert mechanical strain into electrical
energy. Piezoelectric lighters exploit this effect.

• Thermoelectric generators (TEGs) allow turning temperature gradients into
electrical energy. They can be used even on the human body.

• Kinetic energy can be turned into electrical energy. This is exploited, for
example, for some watches. Also, wind energy falls into this category.

• Ambient electromagnetic radiation can be turned into electrical energy as well.
• There are many other physical effects allowing us to convert other forms of

energy into electrical energy.

3.7.2 Energy Storage

For many applications of embedded systems, power sources are not guaranteed to
provide power whenever it is needed. However, we may be able to store electrical
energy. Methods for storing electrical energy include the following:

1. Non-rechargeable batteries can be used only once and will not be considered.
2. Capacitors are a very convenient means of storing electrical energy. Their

advantages include a potentially fast charging process, very high output currents,
close to 100% efficiency, low leakage currents (for high-quality capacitors), and

3.7 Electrical Energy 191

a large number of charge/discharge cycles. The limited amount of energy that
can be stored is their main disadvantage.

3. Rechargeable batteries allow storing and using electrical energy, very much
like capacitors. Storing electrical energy is based on certain chemical processes,
and using this energy is based on reversing these chemical processes.

Due to their importance for embedded systems, we will discuss rechargeable
batteries. If we want to include sources of electrical energy in our system model, we
will need models of rechargeable batteries. Various models can be used. They differ
in the amount of details that are included, and there is not a single model that fits all
needs [467]. The following models are popular:

• Chemical and physical models: They describe the chemical and/or physical
operation of the battery in detail. Such models may include partial differential
equations, including many parameters. These models are beneficial for battery
manufacturers but typically too complex for designers of embedded systems
(who will typically not know the parameters).

• Simple empirical models: Such models are based on simple equations for which
some parameter fitting has been performed. Peukert’s law [451] is a frequently
cited empirical model. According to this law, the lifetime of a battery is

lifetime = C/Iα (3.31)

where α > 1 is the result of some empirical fitting process. Peukert’s law reflects
the fact that higher currents will typically lead to an effective decrease of the
battery capacity. Other details of battery behavior are not included in this model.

• Abstract models: These provide more details than the very simple empirical
models, but do not refer to chemical processes. We would like to present two
such models:

– The model proposed by Chen and Ricón [94]. The model is an electrical
model, as shown in Fig. 3.63. According to this model, a charging current
IBatt controls a current source in the left part of the schematic. The current
generated by the current source is equal to the charging current entering on the
right. This current will charge the capacitor CCapacity . The amount of charge
on the capacitor is called state of charge (SoC). The state of charge is reflected
by the voltage VSOC on the capacitor, since the charge on the capacitor can
be computed as Q = CCapacity ∗ VSOC . Resistor RSelf−Discharge models the
self-discharge (leakage) of this capacitor which happens even when no current
is drawn at the terminal pins of the battery.

Let us consider the voltage which is available at the battery terminals when
the current through these terminals is zero. The voltage at the battery terminals
will typically non-linearly depend on VSOC . This dependency can be modeled
by a non-linear function VOC(VSOC), representing the open terminal output
voltage of the battery. This voltage decreases when the battery provides some
current. For a constant discharging current, RSeries + RT ransient_S models

192 3 Embedded System Hardware

VSOC
BattVVOC SOCV() TCBattI

C C
ap

ac
ity

R Se
lf-

D
is

ch
ar

ge

-+

I Batt

RTransient_SRSeries

Fig. 3.63 Battery model according to Chen et al. (simplified)

the corresponding voltage drop. For short current spikes, the decrease is
determined by the value of RSeries only, since CT will act as a buffer. When
the current consumption increases, time constant RT ransient_S∗CT determines
the speed for the transition from only RSeries causing the voltage drop to
RSeries + RT ransient_S causing the voltage drop. The original proposal by
Chen et al. includes a second resistor/capacitor pair in order to model transient
output voltage behavior more precisely. Overall, this model captures the
impact of high output currents on the voltage, the non-linear dependency of
the output voltage, and self-discharge reasonably well. Simpler versions of
this model exist, i.e., ones that do not model all three effects.

– Actual batteries exhibit the so-called charge recovery effect: whenever the
discharge process of batteries is paused for some time interval, the battery
recovers, i.e., more charge becomes available, and the voltage is typically also
increased. This effect is not considered in Chen’s model. However, it is the
focus of the so-called kinetic battery model (KiBaM) of Manwell et al. [364].
The name reflects the analogy upon which this model is based. The model
assumes two different bins of charge, as shown in Fig. 3.64. The right bin
contains the charge y1 which is immediately available. The left bin contains
charge y2 which exists in the battery but which needs to flow into the right
bin to become available. An interval of heavy usage of the battery may almost
empty the right bin. It will then take some time for charge to become available
again. The speed of the recovery process is determined by parameter k, the
width of the pipe connecting the two bins. The details of the model (like the
amount of charge flowing) reflect the physical situation of the bins. This model
describes the charge recovery process with some reasonable precision but fails
to describe transients and self-discharge as captured in Chen’s model. The
kinetic model has an impact on how embedded systems should be used. For
example, it has been demonstrated that it is beneficial to plan for intervals,
during which wireless transmission is turned off [144].

Overall, the two models demonstrate nicely that models must be selected to
reflect the effects that should be taken into account.

• There may be mixed models which are partially based on abstract models and
partially on chemical and physical models.

3.7 Electrical Energy 193

k
available charge

cl-c

y
1

y
2

bound charge

Fig. 3.64 Kinetic battery model

3.7.3 Energy Efficiency of Hardware Components

We will continue our discussion of energy efficiency by comparing the energy
efficiency for the different technologies which we have at our disposal. Hardware
components discussed in this chapter are quite different as far as their energy
efficiency is concerned. A comparison between these technologies and changes over
time (corresponding to a certain fabrication technology) can be seen in Fig. 3.65.19

The figure reflects the conflict between efficiency and flexibility of currently
available hardware technologies.

The diagram shows the energy efficiency GOP/J in terms of number of operations
per unit of energy of various target technologies as a function of time and the target
technology. In this context, operations could be 32 bit additions. Obviously, the
number of operations per joule is increasing as technology advances to smaller
and smaller feature sizes of integrated circuits. However, for any given technology,
the number of operations per joule is largest for hardwired application-specific
integrated circuits (ASICs). For reconfigurable logic usually coming in the form
of field programmable gate arrays (FPGAs; see p. 165), this value is about one
order of magnitude less. For programmable processors, it is even lower. However,
processors offer the largest amount of flexibility, resulting from the flexibility of
software. There is also some flexibility for reconfigurable logic, but it is limited to
the size of applications that can be mapped to such logic. For hardwired designs,
there is no flexibility. The trade-off between flexibility and efficiency also applies to
processors: for processors optimized for an application domain, such as processors
optimized for digital signal processing (DSP), power-efficiency values approach
those of reconfigurable logic. For general standard microprocessors, the values for
this figure of merit are the worst. This can be seen from Fig. 3.65, comprising
values for microprocessors such as ×86-like processors (see “MPU” entries), RISC
processors, and the cell processor designed by IBM, Toshiba, and Sony.

Figure 3.65 does not identify exactly the applications which are compared, and it
does not allow us to study the type of application mapping that has been performed.

19The figure approximates information provided by H. De Man [363] and is based on information
provided by Philips.

194 3 Embedded System Hardware

DSP

FPGA

ASIC

x

o o
o

o o

oo
o

o

o oo oo o

o

o

oo ooo
oooooooo

oo
oo o

o

o
oo
ooo ooo o

+

+
+

+++ ++
+

+

+

++
+

1000

100

10

1

0.1

0.01

0.001

20
10

20
05

20
00

19
95

19
90

MPU cell

RISC

+

G
O

P
/J

ASIC
FPGA
DSP

x
o
+ RISC

MPU
cell

Fig. 3.65 Hardware efficiency (©De Man and Philips)

More detailed and more recent comparisons have been made, enabling us to study
the assumptions and the approach of these comparisons in a more comprehensive
manner. A survey of comparisons involving GPUs has been published by Mittal
et al. [398]. The survey includes a list of 28 publications for which GPUs have
been found to be more energy-efficient than CPUs and 2 publications for which
the reverse was true. Also, the survey comprises a list of 26 publications for which
FPGAs have been found to be more energy-efficient than GPUs and 1 for which
the reverse was true. For example, Hamada et al. [200] found for a gravitational n-
body simulation that the number of operations per watt was by a factor of 15 higher
for FPGAs than for GPUs. For a comparison against CPUs, the factor was 34. The
exact factors certainly depend on the application, but as a rule of thumb, we can state
the following: If we aim at top power- and energy-efficient designs, we should use
ASICs. If we cannot afford ASICs, we should go for FPGAs. If FPGAs are also not
an option, we should select GPUs. Also, we have already seen that heterogeneous
processors are in general more energy-efficient than homogeneous processors. More
detailed information can be computed for particular application areas.

3.7 Electrical Energy 195

The Case of Mobile Phones

Among the different applications of embedded systems (see pp. 4–8), we are now
looking at telecommunication and smart phones. For smart phones, computational
requirements are increasing at a rapid rate, especially for multimedia applications.
De Man and Philips estimated that advanced multimedia applications need about
10–100 billion operations per second. Figure 3.65 demonstrates that advanced hard-
ware technologies provided us more or less with this number of operations per joule
(=Ws) in 2007. This means that the most power -efficient platform technologies
hardly provided the efficiency which was needed. Standard processors (entries
for MPU and RISC) were hopelessly inefficient. It also meant that all sources of
efficiency improvements needed to be exploited. More recently, the power efficiency
has been improved. However, all such improvements are typically compensated by
trends to provide a higher quality, e.g., by an increase of the resolution of still and
moving images as well as a higher bandwidth for communication.

A detailed analysis of the power consumption has been published by Berkel [553]
and by Carroll et al. [84]. A more recent analysis including LTE mobile phones has
been published by Dusza et al. [144]. A power consumption of up to around 4 watts
has been observed. The display itself caused a consumption of up to around 1 watt,
depending on the display brightness.

Improving battery technology would allow us to consume power over longer
periods, but the thermal limitation prevents us from going significantly beyond
the current consumption in the near future. Due to thermal issues, it has become
standard to design mobile phones with temperature sensors and to throttle devices
in case of overheating. Of course, a larger power consumption would be feasible for
larger devices. Nevertheless, environmental concerns also result in the need to keep
the power consumption low.

Technology forecasts have been published as so-called International Technology
Roadmap for Semiconductors. In the ITRS edition of 2013 [261], it is explic-
itly stated that mobile phones are driving technological development: “System
integration has shifted from a computational, PC-centric approach to a highly
diversified mobile communication approach. The heterogeneous integration of
multiple technologies in a limited space (e.g., GPS, phone, tablet, mobile phones,
etc.) has truly revolutionized the semiconductor industry by shifting the main goal
of any design from a performance driven approach to a reduced power driven
approach. In few words, in the past performance was the one and only goal; today
minimization of power consumption drives IC design.”

Sensor Networks

Sensor networks used for the Internet of Things are another special case. For sensor
networks, there may be even much less energy available than for mobile phones.
Hence, energy efficiency is of utmost importance, comprising of course energy-
efficient communication [543].

196 3 Embedded System Hardware

3.8 Secure Hardware

The general requirements for embedded systems can often include security (see
p. 9). In particular, security is important for the Internet of Things. If security is a
major concern, special secure hardware may need to be developed. Security may
need to be guaranteed for communication and for storage [309]. Security has to be
provided despite possible attacks and countermeasures must be designed. Attacks
can be partitioned into the following [300]:

• Software attacks are based on the execution of software. The deployment of
software Trojans is an example of such an attack. Also, software defects can
be exploited. Buffer overflows are a frequent cause of security hazards. Side-
channel attacks try to exploit additional sources of information complementing
the specified interfaces. Side-channel attacks based on software execution are
difficult, but not infeasible. For example, it may be possible to exploit execution
time information.20 Security-relevant algorithms should be designed such that
their execution time does not depend on data values. This requirement also affects
the implementation of computer arithmetic: instructions should not have data-
dependent execution times.

• Attacks which require physical access and which can be classified into the
following:

– Physical attacks try to open a side channel by physically tampering with the
system. For example, silicon chips can be opened and analyzed. The first step
in this procedure is de-packaging (removing the plastic covering the silicon).
Next, micro-probing or optical analysis can be used. Such attacks are difficult,
but they reveal many details of the chip.

– Power analysis is another class of attacks. Power analysis techniques include
simple power analysis (SPA) and differential power analysis (DPA). In some
cases, SPA may be sufficient to compute encryption keys. In other cases,
advanced statistical methods may be needed to directly compute keys from
small statistical fluctuations of measured currents.

– Analysis of electromagnetic radiation is another class of side-channel
attacks.

Different classes of people might try these attacks, and different classes of
people may have an interest in blocking these attacks. The attacker may actually
be the user of an embedded device trying to obtain unauthorized network access or
unauthorized access to protected media such as music.

We can distinguish between the following countermeasures:

20Side-channel attacks based on timing information have been published under the names Spectre
and Meltdown. They apply to modern processors using speculative execution; see https://en.
wikipedia.org/wiki/Spectre_(security_vulnerability).

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)

3.8 Secure Hardware 197

• A security-aware software development process is required as a shield against
software attacks.

• Tamper-resistant devices include special mechanisms for physical protection
(shielding, or sensors to detect tampering with the modules).

• Devices can be designed such that processed data patterns have very little impact
on the power consumption. This requires special devices which are typically not
used in complex chips.

• Logical security, typically provided by cryptographic methods: encryption can
be based on either symmetric or asymmetric ciphers.

– For symmetric ciphers, sender and receiver are using the same secret key
to encrypt and decrypt messages. DES, 3DES, and AES are examples of
symmetric ciphers.

– For asymmetric ciphers, messages are encrypted with a public key and
decrypted with a private key. RSA and Diffie-Hellman are examples of
asymmetric ciphers.

– Also, hash codes can be added to messages, allowing the detection of message
modifications. MD5 and SHA are examples of hashing algorithms.

Due to the performance gap, some processors may support encryption and
decryption with dedicated instructions. Also, specialized solutions such as
ARM’s TrustZone computing exist. “At the heart of the TrustZone approach is
the concept of secure and non-secure worlds that are hardware separated, with
non-secure software blocked from accessing secure resources directly. Within the
processor, software either resides in the secure world or the non-secure world; a
switch between these two worlds is accomplished via software referred to as the
secure monitor (Cortex-A) or by the core logic (Cortex-M). This concept of secure
(trusted) and non-secure (non-trusted) worlds extends beyond the processor
to encompass memory, software, bus transactions, interrupts, and peripherals
within an SoC” (see https://www.arm.com/products/security-on-arm/trustzone).

The Kalray MPPA2® -256 multi-core processor chip contains as many as
128 specialized crypto co-processors connected to a matrix of 288 “regular”
cores (see http://www.kalrayinc.com/kalray/products/). Cores are 64 bit VLIW
processors.

The following challenges exist for the design of countermeasures [300]:

1. Performance gap: Due to the limited performance of embedded systems,
advanced encryption techniques may be too slow, in particular if high data rates
have to be processed.

2. Battery gap: Advanced encryption techniques require a significant amount of
energy. This energy may be unavailable in a portable system. Smart cards are a
special case of hardware that must run using a very small amount of energy.

3. Lack of flexibility: Frequently, many different security protocols are required
within one system, and these protocols may have to be updated from time to
time. This hinders using special hardware accelerators for encryption.

https://www.arm.com/products/security-on-arm/trustzone
http://www.kalrayinc.com/kalray/products/

198 3 Embedded System Hardware

4. Tamper resistance: Mechanisms against malicious attacks need to be built in.
Their design is far from trivial. For example, it may be difficult if not impossible
to guarantee that the current consumption is independent of the cryptographic
keys that are processed.

5. Assurance gap: The verification of security requires extra efforts during the
design.

6. Cost: Higher security levels increase the cost of the system.

Ravi et al. have analyzed these challenges in detail for a Secure Sockets Layer (SSL)
protocol [300].

More information on secure hardware is available, for example, in a book by
Gebotys [180] and in proceedings of a workshop series dedicated to this topic (see
[183] for the most recent edition).

3.9 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

3.1 It is suggested that locally available small robots are used to demonstrate
hardware in the loop, corresponding to Fig. 3.2. The robots should include sensors
and actuators. Robots should run a program implementing a control loop. For
example, an optical sensor could be used to let a robot follow a black line on the
ground. The details of this assignment depend on the availability of robots.

3.2 Define the term “signal”!

3.3 Which circuit do we need for the transition from continuous time to discrete
time?

3.4 What does the sampling theorem tell us?

3.5 Assume that we have an input signal x consisting of the sum of sine waves
of 1.75 kHz and 2 kHz. We are sampling x at a rate of 3 kHz. Will we be able
to reconstruct the original signal after discretization of time? Please explain your
result!

3.6 Discretization of values is based on ADCs. Develop the schematic of a flash-
based ADC for positive and negative input voltages! The output should be encoded
as 3 bit two’s complement numbers, allowing to distinguish between eight different
voltage intervals.

3.7 Suppose that we are working with a successive approximation-based 4 bit
ADC. The input voltage range extends from Vmin =1 V (="0000") to Vmax =4.75 V
(="1111"). Which steps are used to convert voltages of 2.25 V, 3.75 V, and 1.8 V?
Draw a diagram similar to Fig. 3.12 which depicts the successive approximation to
these voltages!

3.9 Problems 199

Table 3.2 Complexity of ADCs

Flash-based converter Successive approximation converter

Time complexity

Space complexity

3.8 Compare the complexity of flash-based and successive approximation-based
ADC. Assume that you would like to distinguish between n different voltage
intervals. Enter the complexity into Table 3.2, using the O-notation.

3.9 Suppose a sine wave is used as an input signal to the converter designed in
Problem 3.6. Depict the quantization noise signal for this case!

3.10 Create a list of features of DSP processors!

3.11 Which components do FPGAs comprise? Which of these are used to imple-
ment Boolean functions? How are FPGAs configured? Are FPGAs energy-efficient?
Which kind of applications are FPGAs good for?

3.12 What is the key idea of VLIW processors?

3.13 What is a “single-ISA heterogeneous multi-core architecture”? Which advan-
tages do you see for such an architecture?

3.14 Explain the terms “GPU” and “MPSoC”!

3.15 Some FPGAs support an implementation of all Boolean functions of six
variables. How many such functions exist? We ignore that some functions differ
only by a renaming of variables.

3.16 In the context of memories, we are sometimes saying “small is beautiful.”
What could be the reason for this?

3.17 Some levels of the memory hierarchy may be hidden from the application pro-
grammer. Why should such a programmer nevertheless care about the architecture
of such levels?

3.18 What is a “scratchpad memory” (SPM)? How can we ensure that some
memory object is stored in the SPM?

3.19 Develop the following FlexRay™ cluster: The cluster consists of the five nodes
A, B, C, D, and E. All nodes should be connected via two channels. The cluster uses a
bus topology. The nodes A, B, and C are executing a safety critical task, and therefore
their bus requests should be guaranteed at the time of 20 macroticks. The following
is expected from you:

• Download the levi FlexRay simulator [495]. Unpack the ZIP file and install!
• Start the training module by executing the file leviFRP.jar.
• Design the described FlexRay cluster within the training module.

200 3 Embedded System Hardware

• Configure the communication cycle such that the nodes A, B, and C have a
guaranteed bus access within a maximal delay of 20 macroticks. The nodes D
and E should use only the dynamic segment.

• Configure the node bus requests. The node A sends a message every cycle. The
nodes B and C send a message every second cycle. The node D sends a message
of the length of 2 minislots every cycle, and the node E sends every second cycle
a message of the length of 2 minislots.

• Start the visualization and check if the bus requests of the nodes A, B, and C are
guaranteed.

• Swap the positions of nodes D and E in the dynamic segment. What is the
resulting behavior?

3.20 Develop the schematic of a 3 bit DAC! The conversion should be done for a 3
bit vector x encoding positive numbers. Prove that the output voltage is proportional
to the value represented by the input vector x. How would you modify the circuit if
x represented two’s complement numbers?

3.21 The circuit shown in Fig. B.4 in Appendix B is an amplifier, amplifying input
voltage V1:

Vout = gclosed ∗ V1

Compute the gain gclosed for the circuit of Fig. B.4 as a function of R and R1!

3.22 How do different hardware technologies differ with respect to their energy
efficiency?

3.23 The computational efficiency is sometimes also measured in terms of billions
of operations per second per watt. How is this different from the figure of merit used
in Fig. 3.65?

3.24 Why is it so important to optimize embedded systems? Compare different
technologies for processing information in an embedded system with respect to their
efficiency!

3.25 Suppose that your mobile phone uses a lithium battery rated at 720 mAh. The
nominal voltage of the battery is 3.7 V. Assuming a constant power consumption
of 1 W, how long would it take to empty the battery? All secondary effects such as
decreasing voltages should be ignored in this calculation.

3.26 Which challenges do you see for the security of embedded systems?

3.27 What is a “side-channel attack”? Please provide examples of side-channel
attacks!

3.9 Problems 201

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
System Software

In order to cope with the complexity of applications of embedded systems, reuse
of components is a key technique. As pointed out by Sangiovanni-Vincentelli
[476], software and hardware components must be reused in the platform-based
design methodology (see p. 296). These components comprise knowledge from
earlier design efforts and constitute intellectual property (IP). Standard software
components that can be reused include system software components such as
embedded operating systems (OSs) and middleware. The last term denotes software
that provides an intermediate layer between the OS and application software. This
chapter starts with a description of general requirements for embedded operating
systems. This includes real-time capabilities as well as adaptation techniques to
provide just the required functionality. Mutually exclusive access to resources
can result in priority inversion, which is a serious problem for real-time systems.
Priority inversion can be circumvented with resource access protocols. We will
present three such protocols: the priority inheritance, priority ceiling, and stack
resource protocols. A separate section covers the ERIKA real-time system kernel.
Furthermore, we will explain how Linux can be adapted to systems with tight
resource constraints. Finally, we will provide pointers for additional reusable
software components, like hardware abstraction layers (HALs), communication
software, and real-time data bases. Our description of embedded operating systems
and of middleware in this chapter is consistent with the overall design flow (see also
Fig. 4.1).

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_4

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_4

204 4 System Software

evaluation & validation

design

system software

design repository

kn
ow

le
dg

e

optimization

specification

test

(RTOS, ...)

ap
pl

ic
at

io
n

HW-components mapping
application

Fig. 4.1 Simplified design information flow

4.1 Embedded Operating Systems

4.1.1 General Requirements

Except for very simple systems, I/O, scheduling, and context switching require the
support of an operating system suited for embedded applications. Switching from
the execution of one code object such that some other code object is executed is
called context switching. Context switching multiplexes processors such that each
code object seems to have its own processor. For code objects, we distinguish
between processes and threads. First of all, we define the term “process”:

Definition 4.1 (Adopted from Tanenbaum [525]) A process is an executed
program (or a part of a program) including memory content.

Courses on operating systems provide additional information about this term (e.g.,
in German [472]). In this chapter, we will be using this term in the sense of an entity
within the operating system (and not in the sense of processes in SDL, VHDL,
process networks, or semiconductor fabrication).

For systems with virtual addressing1, we can distinguish between different
address spaces. For such systems, we have to distinguish between executions of
code objects within separate or within the same address spaces. If they are executed
within separate address spaces, we will call them processes. If they are executed
within the same address space, we will call them threads (or lightweight processes).

Definition 4.2 A thread is an executed program using the same address space as
other programs.

For processes, there is some form of memory protection, since processes cannot
corrupt other process memory areas. However, context switches have to change
address translation information. Hence, they come with some overhead. For threads,
this protection does not exist. In fact, threads sharing an address space will typically
communicate via shared memory. Context switching for threads is typically faster

1See Appendix C.

4.1 Embedded Operating Systems 205

than for processes. We do not need to distinguish between threads and processes if
there is just one address space. More information about the just touched standard
topics in system software can be found in textbooks on operating systems, such as
the book by Tanenbaum [525]. Operating systems have to provide communication
and synchronization methods for threads and processes.

The following are essential features of embedded operating systems:

• Due to the large variety of embedded systems, there is also a large variety
of requirements for the functionality of embedded OSs. Due to efficiency
requirements, it is not possible to work with OSs which provide the union of
all functionalities. For most applications, the OS must be small. Hence, we need
operating systems which can be flexibly tailored toward the application at hand.
Configurability is therefore one of the main characteristics of embedded OSs.
There are various techniques of implementing configurability, including:2

– Object orientation, used for a derivation of proper subclasses: for example,
we could have a general scheduler class. From this class we could derive
schedulers having particular features. However, object-oriented approaches
typically come with an additional overhead. For example, dynamic binding
of methods does create run-time overhead. Ideas for reducing this overhead
exist (see, e.g., https://github.com/lefticus/cppbestpractices/blob/master/08-
Considering_Performance.md). Nevertheless, remaining overhead and poten-
tial timing unpredictability may be unacceptable for performance-critical
system software.

– Aspect-oriented programming [352]: with this approach, orthogonal aspects
of software can be described independently and then can be added automat-
ically to all relevant parts of the program code. For example, some code for
profiling can be described in a single module. It can then be automatically
added to or dropped from all relevant parts of the source code. The CIAO
family of operating systems has been designed in this way [350].

– Conditional compilation: in this case, we are using some macro preproces-
sor, and we are taking advantage of #if and #ifdef preprocessor commands.

– Advanced compile-time evaluation: configurations could be performed by
defining constant values of variables before compiling the OS. The compiler
could then propagate the knowledge of these values as much as possible.
Advanced compiler optimizations may also be useful in this context. For
example, if a particular function parameter is always constant, this parameter
can be dropped from the parameter list. Partial evaluation [275] provides a
framework for such compiler optimizations. In a sophisticated form, dynamic
data might be replaced by static data [26]. A survey of operating system
specialization was published by McNamee et al. [387].

– Linker-based removal of unused functions: at link-time, there may be more
information about used and unused functions than during earlier phases. For

2This list is sorted by the position of the technique in the development process or tool chain.

https://github.com/lefticus/cppbestpractices/blob/master/08-Considering_Performance.md
https://github.com/lefticus/cppbestpractices/blob/master/08-Considering_Performance.md

206 4 System Software

example, the linker can figure out, which library functions are used. Unused
library functions can be accordingly dropped and specializations can take
place [91].

These techniques are frequently combined with a rule-based selection of files
to be included in the operating system. Tailoring the OS can be made easy

through a graphical user interface hiding the techniques employed for achieving
this configurability. For example, VxWorks [590] from Wind River is configured
via a graphical user interface.

Verification is a potential problem of systems with a large number of derived
tailored OSs. Each and every derived OS must be tested thoroughly. Takada
mentions this as a potential problem for eCos (an open-source RTOS; see
http://ecos.sourceware.org and Massa [381]), comprising 100–200 configuration
points [523]. For Linux, this problem is even larger [526]. Software product line
engineering [456] can contribute toward solving this problem.

• There is a large variety of peripheral devices employed in embedded systems.
Many embedded systems do not have a hard disk, a keyboard, a screen, or
a mouse. There is effectively no device that needs to be supported by all
variants of the OS, except maybe the system timer. Frequently, applications
are designed to handle particular devices. In such cases, devices are not shared
between applications, and hence there is no need to manage the devices by the
OS. Due to the large variety of devices, it would also be difficult to provide all
required device drivers together with the OS. Hence, it makes sense to decouple
OS and drivers by using special processes instead of integrating their drivers into
the kernel of the OS. Due to the limited speed of many embedded peripheral
devices, there is also no need for an integration into the OS in order to meet
performance requirements. This may lead to a different stack of software layers.
For PCs, some drivers, such as disk drivers, network drivers, or audio drivers, are
implicitly assumed to be present. They are implemented at a very low level of the
stack. The application software and middleware are implemented on top of the
application programming interface, which is standard for all applications. For an
embedded OS, device drivers are implemented on top of the kernel. Applications
and middleware may be implemented on top of appropriate drivers, not on top of
a standardized API of the OS (see Fig. 4.2). Drivers may even be included in the
application itself.

• Protection mechanisms are sometimes not necessary, since embedded systems
are sometimes designed for a single purpose (they are not supposed to support

application software application software

OS kernel
OS kerneldevice driver

device driver device driver

middleware middleware
device driver

Fig. 4.2 Device drivers implemented on top of (left) or below (right) the OS kernel

http://ecos.sourceware.org

4.1 Embedded Operating Systems 207

the so-called multiprogramming). Untested programs have traditionally hardly
ever been loaded. After the software has been tested, it could be assumed to be
reliable. This also applies to input/output. In contrast to desktop applications,
it is possibly not always necessary to implement I/O instructions as privileged
instructions and processes can sometimes be allowed to do their own I/O.
This matches nicely with the previous item and reduces the overhead of I/O
operations.

Example 4.1 Let switch correspond to the (memory-mapped) I/O address of
some switch which needs to be checked by some program. We can simply use a

load register,switch

instruction to query the switch. There is no need to go through an OS service
call, which would create overhead for saving and restoring the context (registers,
etc.). ∇

However, there is a trend toward more dynamic embedded systems. Also,
safety and security requirements might make protection necessary. Special
memory protection units (MPUs) have been proposed for this (see Fiorin [164]
for an example). For systems with a mix of critical and non-critical applications
(mixed-criticality systems), configurable memory protection [351] may be a
goal.

• Interrupts can be connected to any thread or process. Using OS service calls,
we can request the OS to start or stop them if certain interrupts happen. We could
even store the start address of a thread or process in the interrupt vector address
table, but this technique is very dangerous, since the OS would be unaware of the
thread or process actually running. Also composability may suffer from this: if
a specific thread is directly connected to some interrupt, then it may be difficult
to add another thread which also needs to be started by some event. Application-
specific device drivers (if used) might also establish links between interrupts and
threads and processes. Techniques for establishing safe links have been studied
by Hofer et al. [218].

• Many embedded systems are real-time (RT) systems, and, hence, the OS used in
these systems must be a real-time operating system (RTOS).

Additional information about embedded operating systems can be found in a
book chapter written by Bertolotti [51]. This chapter comprises information about
the architecture of embedded operating systems, the POSIX standard, open-source
real-time operating systems, and virtualization.

4.1.2 Real-Time Operating Systems

Definition 4.3 (A) “real-time operating system is an operating system that sup-
ports the construction of real-time systems” [523].

208 4 System Software

What is needed from an OS to be an RTOS? There are four key requirements:3

• The timing behavior of the OS must be predictable. For each service of the
OS, an upper bound on the execution time must be guaranteed. In practice, there
are various levels of predictability. For example, there may be sets of OS service
calls for which an upper bound is known and for which there is not a significant
variation of the execution time. Calls like “get me the time of the day” may
fall into this class. For other calls, there may be a huge variation. Calls like
“get me 4MB of free memory” may fall into this second class. In particular,
the scheduling policy of any RTOS must be deterministic.

There may also be times during which interrupts must be disabled to avoid
interferences between components of the OS. Less importantly, they can also
be disabled to avoid interferences between processes. The periods during which
interrupts are disabled must be quite short in order to avoid unpredictable delays
in the processing of critical events.

For RTOSs implementing file systems still using hard disks, it may be
necessary to implement contiguous files (files stored in contiguous disk areas)
to avoid unpredictable disk head movements.

• The OS must manage the scheduling of threads and processes. Scheduling
can be defined as mapping from sets of threads or processes to intervals of
execution time (including the mapping to start times as a special case) and to
processors (in case of multiprocessor systems). Also, the OS possibly has to be
aware of deadlines so that the OS can apply appropriate scheduling techniques.
There are, however, cases in which scheduling is done completely off-line and the
OS only needs to provide services to start threads or processes at specific times
or priority levels. Scheduling algorithms will be discussed in detail in Chap. 6.

• Some systems require the OS to manage time. This management is mandatory
if internal processing is linked to an absolute time in the physical environment.
Physical time is described by real numbers. In computers, discrete time standards
are typically used instead. The precise requirements may vary:

1. In some systems, synchronization with global time standards is necessary.
In this case, global clock synchronization is performed. Two standards are
available for this:

– Universal Time Coordinated (UTC): UTC is defined by astronomical
standards. Due to variations regarding the movement of the Earth, this
standard has to be adjusted from time to time. Several seconds have been
added during the transition from 1 year to the next. The adjustments
can be problematic, since incorrectly implemented software could get the
impression that the next year starts twice during the same night.

– International atomic time (in French: temps atomic internationale or
TAI). This standard is free of any artificial artifacts.

3This section includes information from Hiroaki Takada’s tutorial [523].

4.1 Embedded Operating Systems 209

Some connection to the environment is used to obtain accurate time informa-
tion. External synchronization is typically based on wireless communication
standards such as the Global Positioning System (GPS) [413], mobile net-
works, or special atomic time services typically based on long wavelength
stations [580], such as DCF77 in Germany.

2. If embedded systems are used in a network, it is frequently sufficient to syn-
chronize time information within the network. Local clock synchronization
can be used for this. In this case, connected embedded systems try to agree on
a consistent view of the current time.

3. There may be cases in which provision for precise local delays is all that is
needed.

For several applications, precise time services with a high resolution must be
provided. They are required, for example, in order to distinguish between original
and subsequent errors. For example, they can help to identify the power plant(s)
that are responsible for blackouts (see [427]). The precision of time services
depends on how they are supported by a particular execution platform. They are
very imprecise (with precisions in the millisecond range) if they are implemented
through processes at the application level and very precise (with precisions in
the microsecond range) if they are supported by communication hardware. More
information about time services and clock synchronization is contained in a book
by Kopetz [303].

• The OS must be fast. An operating system meeting all the requirements
mentioned so far would be useless if it were very slow. Therefore, the OS must
obviously be fast.

Each RTOS includes a so-called real-time OS kernel. This kernel manages the
resources which are found in every real-time system, including the processor, the
memory, and the system timer. Major functions in the kernel include the process
and thread management, interprocess synchronization and communication, time
management, and memory management.

While some RTOSs are designed for general embedded applications, others focus
on a specific area. For example, OSEK/VDX-compatible operating systems focus on
automotive control. Operating systems for a selected area can provide a dedicated
service for that particular area and can be more compact than operating systems for
several application areas.

Similarly, while some RTOSs provide a standard API, others come with their
own, proprietary API. For example, some RTOSs are compliant with the stan-
dardized POSIX RT-extension [201] for Unix, with the OSEK ISO 17356-3:2005
standard or with the ITRON specification developed in Japan (see http://www.ertl.
jp/ITRON/). Many RT-kernel types of OSs have their own API. ITRON, mentioned
in this context, is a mature RTOS which employs link-time configuration.

http://www.ertl.jp/ITRON/
http://www.ertl.jp/ITRON/

210 4 System Software

Fig. 4.3 Hybrid OSs non-real-time non-real-time
process 2process 1process 2

real-time-
process 1
real-time

Standard OS

real-time kernel
device driverdevice driver

Available RTOSs can further be classified into the following categories [194]:

• Fast proprietary kernels: According to Gupta, “for complex systems, these
kernels are inadequate, because they are designed to be fast, rather than to be
predictable in every respect”. Examples include QNX, PDOS, VCOS, VTRX32,
and VxWorks.

• Real-time extensions to standard OSs: In order to take advantage of com-
fortable mainstream operating systems, hybrid systems have been developed.
For such systems, there is an RT-kernel running all RT-processes. The standard
operating system is then executed as one of these processes (see Fig. 4.3).

This approach has some advantages: for example, the system can be equipped
with a standard OS API and can have graphical user interfaces (GUIs) and
file systems. Enhancements to standard OSs become quickly available in the
embedded world as well. Also, problems with the standard OS and its non-RT-
processes do not negatively affect the RT-processes. The standard OS can even
crash and this would not affect the RT-processes. On the down side, and this is
already visible from Fig. 4.3, there may be problems with device drivers, since
the standard OS will have its own device drivers. In order to avoid interference
between the drivers for RT-processes and those for the other processes, it may
be necessary to partition devices into those handled by RT-processes and those
handled by the standard OS. Also, RT-processes cannot use the services of
the standard OS. So all the nice features like file-system access and GUIs are
normally not available to those processes, even though some attempts may be
made to bridge the gap between the two types of processes without losing the RT
capability. RT-Linux is an example of such hybrid OSs.

According to Gupta [194], trying to use a version of a standard OS is “not the
correct approach because too many basic and inappropriate underlying assump-
tions still exist such as optimizing for the average case (rather than the worst
case), . . . ignoring most if not all semantic information, and independent CPU
scheduling and resource allocation.” Indeed, dependencies between processes
are not very frequent for most applications of standard operating systems and
are therefore frequently ignored by such systems. This situation is different for
embedded systems, since dependencies between processes are quite common
and they should be taken into account. Unfortunately, this is not always done
if extensions to standard operating systems are used. Furthermore, resource
allocation and scheduling are rarely combined for standard operating systems.
However, integrated resource allocation and scheduling algorithms are required
in order to guarantee meeting timing constraints.

4.1 Embedded Operating Systems 211

• There is a number of research systems which aim at avoiding the above
limitations. These include Melody [569] and (according to Gupta [194]) MARS,
Spring, MARUTI, Arts, Hartos, and DARK.

Takada [523] mentions low overhead memory protection, temporal protection of
computing resources (targeting at preventing processes from computing for longer
periods of time than initially planned), RTOSs for on-chip multiprocessors (espe-
cially for heterogeneous multiprocessors and multi-threaded processors), support
for continuous media, and quality of service control as research issues.

Due to the potential growth in the Internet of Things (IoT) system market,
vendors of standard OSs are offering variations of their products and obtain market
shares from traditional vendors such as Wind River Systems [591]. Due to the
increasing connectedness, Linux and its derivative Android® are becoming popular.
Advantages and limitations of using Linux in embedded systems will be described
in Sect. 4.4.

4.1.3 Virtual Machines

In certain environments, it may be useful to emulate several processors on a
single real processor. This is possible with virtual machines executed on the bare
hardware. On top of such a virtual machine, several operating systems can be
executed. Obviously, this allows several operating systems to be run on a single
processor. For embedded systems, this approach has to be used with care since the
temporal behavior of such an approach may be problematic and timing predictability
may be lost. Nevertheless, sometimes this approach may be useful. For example, we
may need to integrate several legacy applications using different operating systems
on a single hardware processor. A full coverage of virtual machines is beyond the
scope of this book. Interested readers should refer to books by Smith et al. [502]
and Craig [114]. PikeOS is an example of a virtualization concept dedicated toward
embedded systems [520]. PikeOS allows the system’s resources (e.g., memory,
I/O devices, CPU-time) to be divided into separate subsets. PikeOS comes with a
small micro-kernel. Several operating systems, application programming interfaces
(APIs), and run-time environments (RTEs) can be implemented on top of this kernel
(see Fig. 4.4).

Fig. 4.4 PikeOS
virtualization (©SYSGO)

Application 3

PikeOS

OS 1

Application 1

API 1

Application 2

RTE 1

Hardware

212 4 System Software

4.2 Resource Access Protocols

In this section, we will be using the term job.

Definition 4.4 A particular execution of a (possibly repeatedly executed) task is
called a job.

Compared to processes and threads used in operating systems, jobs can be seen as
a more abstract view of required computations. During the design procedure, jobs
will have to be mapped to entities handled by the operating system. A more precise
definition will be provided in Definition 6.1.

4.2.1 Priority Inversion

There are cases in which jobs must be granted exclusive access to resources such as
global shared variables or devices in order to avoid non-deterministic or otherwise
unwanted program behavior. Such exclusive access is very important for embedded
systems, e.g., for implementing shared memory-based communication or exclusive
access to some special hardware device. Program sections during which such
exclusive access is required are called critical sections. Critical sections should be
short. Operating systems typically provide primitives for requesting and releasing
exclusive access to resources, also called mutex primitives. Jobs not being granted
exclusive access must wait until the resource is released. Accordingly, the release
operation has to check for waiting processes and resume the job of highest priority.

In this book, we will call the request operation or lock operation P(S) and the
release or unlock operation V(S), where S corresponds to the particular resource
requested. P(S) and V(S) are so-called semaphore operations. Semaphores allow up
to n (with n being a parameter) threads or processes to use a particular resource
protected by S concurrently. S is a data structure maintaining a count on how
many resources are still available. P(S) checks the count and blocks the caller if
all resources are in use. Otherwise, the count is modified and the caller is allowed
to continue. V(S) increments the number of available resources and makes sure that
a blocked caller (if it exists) is unblocked. The names P(S) and V(S) are derived
from the Dutch language. We will use these operations only in the form of binary
semaphores with n = 1, i.e., we will allow only a single caller to use the resource.

For embedded systems, dependencies between processes are the rule, rather
than an exception. Also, the effective job priority of real-time applications is
more important than for non-real applications. Mutually exclusive access can lead
to priority inversion, an effect which changes the effective priority of processes.
Priority inversion exists on non-embedded systems as well. However, due to the
reasons just listed, the priority inversion problem can be considered a more serious
problem in embedded systems.

4.2 Resource Access Protocols 213

Fig. 4.5 Blocking of a job by
a lower-priority job

J

J

J

tttttt 10 2 3 4

1

2
V(S)P(S)

1
blocked

P(S) V(S)

critical sectionnormal execution

Fig. 4.6 Priority inversion
with potentially large delay

J

J

J

P(S)

2

1

3 t

P(S) [sleep]

V(S)

resume

blocking

normal execution critical section

A first case of the consequences resulting from the combination of “mutual
exclusion” with “no preemption” can be seen in Fig. 4.5.

Bold upward pointing arrows indicate the times at which jobs are released
or “ready”. At time t0, job J2 enters a critical section after requesting exclusive
access to some resource via an operation P. At time t1, job J1 becomes ready and
preempts J2. At time t2, J1 fails getting exclusive access to the resource in use by
J2 and becomes blocked. Job J2 resumes and after some time releases the resource.
The release operation checks for pending jobs of higher priority and preempts J2.
During the time J1 has been blocked, a lower-priority job has effectively blocked a
higher-priority job. The necessity of providing exclusive access to some resources
is the main reason for this effect. Fortunately, in the particular case of Fig. 4.5, the
duration of the blocking cannot exceed the length of the critical section of J2. This
situation is problematic but difficult to avoid.

In more general cases, the situation can be even worse. This can be seen, for
example, from Fig. 4.6.

We assume that jobs J1, J2, and J3 are given. J1 has the highest priority, J2 has
a medium priority, and J3 has the lowest priority. Furthermore, we assume that J1
and J3 require exclusive use of some resource via operation P(S). Now, let J3 be
in its critical section when it is preempted by J2. When J1 preempts J2 and tries
to use the same resource that J3 is having exclusive access of, it blocks and lets J2
continue. As long as J2 is continuing, J3 cannot release the resource. Hence, J2 is
effectively blocking J1 even though the priority of J1 is higher than that of J2. In
this example, the blocking of J1 continues as long as J2 executes. J1 is blocked by a
job of lower priority, which is not in its critical section. This effect is called priority

214 4 System Software

inversion.4 In fact, priority inversion happens even though J2 is unrelated to J1 and
J3. The duration of the priority inversion situation is not bounded by the length of
any critical section. This example and other examples can be simulated with the levi
simulation software [497].

A prominent case of priority inversion happened in the Mars Pathfinder, where
exclusive use of a shared memory area led to priority inversion on Mars [276].

4.2.2 Priority Inheritance

One way of dealing with priority inversion is to use the priority inheritance
protocol (PIP). This protocol is a standard protocol available in many real-time
operating systems. It works as follows:

• Jobs are scheduled according to their active priorities. Jobs with the same
priorities are scheduled on a first-come, first-served basis.

• When a job J1 executes P(S) and exclusive access is already granted to some
other job J2, then J1 will become blocked. If the priority of J2 is lower than that
of J1, J2 inherits the priority of J1. Hence, J2 resumes execution. In general,
every job inherits the highest priority of jobs blocked by it.

• When a job J2 executes V(S), its priority is decreased to the highest priority of
the jobs blocked by it. If no other job is blocked by J2, its priority is reset to the
original value. The highest priority job so far blocked on S is resumed.

• Priority inheritance is transitive: if Jx blocks Jy and Jy blocks Jz, then Jx inherits
the priority of Jz.

This way, high-priority jobs being blocked by low-priority jobs propagate
their priority to the low-priority jobs such that the low-priority jobs can release
semaphores as soon as possible.

In the example of Fig. 4.6, J3 would inherit the priority of J1 when J1 executes
P(S). This would avoid the problem mentioned since J2 could not preempt J3 (see
Fig. 4.7).

Figure 4.8 shows an example of nested critical sections [81]. Note that the
priority of job J3 is not reset to its original value at time t0. Instead, its priority
is decreased to the highest priority of the jobs blocked by it, in this case it remains
at priority p1 of J1.

Transitiveness of priority inheritance is shown in Fig. 4.9 [81].
At time t0, J1 is blocked by J2 which in turn is blocked by J3. Therefore, J3

inherits the priority p1 of J1.
Priority inheritance is also used by Ada: during a rendezvous, the priority of two

threads is set to their maximum. Priority inheritance also solved the Mars Pathfinder

4Some authors do already consider the case of Fig. 4.5 as a case of priority inversion. This was also
done in earlier versions of this book.

4.2 Resource Access Protocols 215

Fig. 4.7 Priority inheritance
for the example of Fig. 4.6

J

J

J

3

2

1

t

resumedP(S) [sleep]
V(S)

P(S) V(S)

critical sectionnormal execution

Fig. 4.8 Nested critical
sections

J
3

3
J

J

J

Priority
of

p
p
p

tt0

3

2

1

2

1

priority does not change
a

V(a)

V(b)

V(b)

V(a)
a

b

bb

P(a)

P(b)

P(b)P(a)
ba

3J 3J

1J
JJ

J
J

J

J

J

3

p
p
p

t

&

inherits priority from

blocked byblocked by
1

2

3

b
P(b)

P(b)

P(a)

b b

b

a
V(a)

V(b)

V(b)
a

P(a)
a

V(a)
1

2

3

2 21

t0

Priority of

Fig. 4.9 Transitiveness of priority inheritance

problem: the VxWorks operating system used in the pathfinder implements a flag
for the calls to mutex primitives. This flag allows priority inheritance to be set to
“on.” When the software was shipped, it was set to “off.” The problem on Mars
was corrected by using the debugging facilities of VxWorks to change the flag to
“on,” while the Pathfinder was already on Mars [276]. Priority inheritance can be
simulated with the levi simulation software [497].

While priority inheritance solves some problems, it does not solve others. For
example, there may be a large number of jobs having a high priority. There may
also be deadlocks. The possible existence of deadlocks can be shown by means of
an example [81]. Suppose that we have two jobs J1 and J2:

• For job J1 we assume a code sequence of the form . . . ; P(a); P(b); V(b); V(a); . . . ;
• For job J2 we assume a code sequence of the form . . . ; P(b); P(a); V(a); V(b); . . . ;.

216 4 System Software

Fig. 4.10 Priority
inheritance deadlock J

J

t

t

t t t t t
0 1 2 3 4

P(b)

P(a) P(b)

b

P(a)

a

b

1

2

A possible execution sequence for these two jobs is shown in Fig. 4.10.
We assume that the priority of J1 is higher than that of J2. Hence, J1 preempts

J2 at time t1 and runs until it calls P(b), while b is held by J2. Hence, J2 resumes.
However, it runs into a deadlock when it calls P(a). Such a deadlock would also exist
if we were not using any resource access protocol.

4.2.3 Priority Ceiling Protocol

Deadlocks can be avoided with the priority ceiling protocol [485] (PCP). PCP
requires jobs to be known at design time. With PCP, a job is not allowed to enter
a critical section if there are already locked semaphores which could block it
eventually. Hence, once a job enters a critical section, it cannot be blocked by lower-
priority jobs until its completion. This is achieved by assigning a priority ceiling.
Each semaphore S is assigned a priority ceiling C(S). It is the static priority of the
highest-priority job that can lock S.

PCP works as follows:

• Let us assume that some job J is running and wants to lock semaphore S. Then, J
can lock S only if the priority of J exceeds the priority ceiling C(S’) of semaphore
S’ where S’ is the semaphore with the highest-priority ceiling among all the
semaphores which are currently locked by jobs other than J . If such a semaphore
exists, then J is said to be blocked by S’ and the job currently holding S’. When
J gets blocked by S’, the job currently holding S’ inherits the priority of J .

• When some job J leaves a critical section guarded by S, it unlocks S and the
highest-priority job, if any, which is blocked by S is awakened. The priority of J

is set to the highest priority among all the jobs which are still blocked by some
semaphore which J is still holding. If J is not blocking any other job, then the
priority of J is set to its normal priority.

Figure 4.11 shows an example [59]. In this example, semaphores a, b, and c are
used. The highest priority of a and b is p1, and the highest priority of c is p2.

At time t2, J2 wants to lock c, but c is already locked. Furthermore, the priority
of J2 does not exceed the ceiling of c. Nevertheless, the attempt to lock c results in
an increase of the priority of J3 to p2.

4.2 Resource Access Protocols 217

J3

J

J

J

3

2

1

t

V(a) V(b)

V(b)

a b

bb

P(a)

3

2

1

c c c

1 t t tt t
2 3 4

t
5 6 t7 8 9

t

P(c) P(b)

c

V(c)

V(c)P(c)

P(b)

t

Priority
of

p
p
p

Fig. 4.11 Locking with the priority ceiling protocol

At time t5, J1 tries to lock a. a is not yet locked, but J3 has locked b and the
current priority of J1 does not exceed the ceiling for b. So, J1 gets blocked. This is
the key property of PCP: this blocking avoids potential later deadlocks. J3 inherits
the priority of J1, reflecting that J1 is waiting for the semaphore b to be released by
J3.

At time t6, J3 unlocks b. J1 is the highest-priority job so far blocked by b and
now awakened. The priority of J3 drops to p2. J1 locks and unlocks a and b and
runs to completion. At time t7, J2 is still blocked by c, and for all jobs with priority
p2, J3 is the only one that can be resumed. At time t8, J3 unlocks c and its priority
drops to p3. J2 is no longer blocked, it preempts J3 and locks c. J3 is only resumed
after J2 has run to completion.

Let us consider a second example, to be used later for comparison with an
extended PCP. Figure 4.12 shows this second example [59]. The highest priority of
all semaphores is the priority of J1. At time t2, there is a request by J3 for semaphore
c, but the priority of J3 is lower than the ceiling for the already locked semaphore a,
and J4 inherits the priority of J3. At time t3, there is a request for b, but the priority
of J2 is again lower than for the ceiling of the already locked semaphore a, and J4
inherits the priority of J2. At time t5, there is a request for a, but the priority of J1 is
not exceeding the ceiling for a, and J4 inherits the priority of J1. When J4 releases
a, no semaphore is blocked and its priority drops to its normal priority. At this time,
J1 has the highest priority and executes until it terminates. Remaining executions
are determined by the regular priorities.

It can be proven that PCP prevents deadlocks (see [81], Theorem 7.3). There are
certain variants of PCP with different times at which the priority is changed. The
Distributed Priority Ceiling Protocol (DPCP) [466] and the Multiprocessor Priority
Ceiling Protocol (MPCP) [465] are extensions of PCP for multiprocessors.

218 4 System Software

Fig. 4.12 Second PCP
example

J2

J

J3

1J

V
(a

)

P
(c

)

P
(a

)

4

a

aaa

c

P
(b

)

P
(c

)

V
(c

)

V
(c

)

P
(b

)

c

P
(a

)

b

b

a

V
(b

)

V
(b

)

V
(a

)

tt4 5t1 2t 3t

4.2.4 Stack Resource Policy

In contrast to PCP, the stack resource policy (SRP) supports dynamic priority
scheduling, i.e., SRP can be used with dynamic priorities as computed by EDF
scheduling (see Sect. 6.2.1 on p. 306). For SRP, we have to distinguish between
jobs and tasks. Tasks may be describing repeating computations. Each computation
is a job in the sense the term has been used so far. The notion of tasks captures
features that apply to a set of jobs, e.g., the same code which needs to be executed
periodically. Accordingly, for each task τi there is a corresponding set of jobs.
See also Definition 6.1 on p. 297. SRP does not just consider each job of a task
separately but defines properties which apply to tasks globally. Furthermore, SRP
supports multi-unit resources, for example, memory buffers. The following values
are defined:

• The preemption level li of a task τi provides information about which tasks
can be preempted by jobs of τi . A task τi can preempt some other task τj only if
li > lj . We require that, if task τi arrives after τj and τi has a higher priority, then
τi must have a higher preemption level than τj . For sporadic EDF scheduling (see
p. 316), this means that the preemption levels are ordered inversely with respect
to the relative deadlines. The larger the deadline, the easier it is to preempt the
job. li is a static value.

• The resource ceiling of a resource is the highest preemption level of the tasks that
could be blocked by issuing their maximum request for units of this resource. The
resource ceiling is a dynamic value which depends on the number of currently
available resource units.

• The system ceiling is the highest resource ceiling of all the resources which are
currently blocked. This value is dynamic and changes with resource accesses.

SRP blocks the job at the time it attempts to preempt, instead of the time at which
it tries to lock: a job can preempt another job if it has the highest priority and its
preemption level is higher than the system ceiling. A job is not allowed to start until

4.3 ERIKA 219

Fig. 4.13 SRP example

J2

J1

3J

J

V
(a

)

V
(b

)

V
(b

)

a

b

b

P
(a

)

c

P
(b

)

V
(c

)

V
(c

)

P
(c

)

P
(b

)

c

a

4

P
(a

)

P
(c

)

V
(a

)

t t t1 2 3 t4t
5

the resources currently available are sufficient to meet the maximum requirement of
every job that could preempt it.

Figure 4.13 demonstrates the difference between PCP and SRP by means of the
example shown in Fig. 4.12 [59]. For SRP, at time t1 there is no preemption since
the preemption level is not higher than the ceiling. The same happens at t4. Overall,
SRP has significantly less preemptions than PCP. This property has made SRP a
popular protocol.

SRP is called stack resource policy, since jobs cannot be blocked by jobs with a
lower li and can resume only when the job completes. Hence, jobs on the same level
li can share stack space. With many jobs at the same level, a substantial amount of
space can be saved.

SRP is also free of deadlocks (see Baker [34]). For more details about SRP,
refer also to Buttazzo [81]. PIP, PCP, and SRP protocols have been designed for
single processors. A first overview of resource access protocols for multiprocessors
was published by Rajkumar et al. [466]. At the time of writing this book, there is
not yet a standard resource access protocol for multi-cores (see Baruah et al. [41],
Chapter 23).

4.3 ERIKA

Several embedded systems (such as automotive systems and home appliances)
require the entire application to be hosted on small micro-controllers.5 For that
reason, the operating system services provided by the firmware on such systems
must be limited to a minimal set of features allowing multi-threaded execution of
periodic and aperiodic jobs, with support for shared resources to avoid the priority
inversion phenomenon.

5This section was contributed by G. Buttazzo and P. Gai (Pisa).

220 4 System Software

Such requirements have been formalized in the 1990s by the OSEK/VDX
Consortium [18], which defined the minimal services of a multi-threaded real-time
operating system allowing implementations of 1–10 kilobytes of code footprint
on 8 bit micro-controllers. The OSEK/VDX API has been recently extended by
the AUTOSAR Consortium [28] which provided enhancements to support time
protection, scheduling tables for time triggered systems, and memory protection to
protect the execution of different applications hosted on the same micro-controller.
This section briefly describes the main features and requirements of such systems,
considering as a reference implementation the open-source ERIKA Enterprise real-
time kernel [157].

The first feature that distinguishes an OSEK kernel from other operating systems
is that all kernel objects are statically defined at compile time. In particular, most of
these systems do not support dynamic memory allocation and dynamic creation of
jobs. To help the user in configuring the system, the OSEK/VDX standard provides a
configuration language, named OIL, to specify the objects that must be instantiated
in the application. When the application is compiled, the OIL compiler generates the
operating system data structures, allocating the exact amount of memory needed.
This approach allows allocating only the data really needed by the application, to
be put in flash memory (which is less expensive than RAM memory on most micro-
controllers).

The second feature distinguishing an OSEK/VDX system is the support for
stack sharing. The reason for providing stack sharing is that RAM memory is
very expensive on small micro-controllers. The possibility of implementing a stack
sharing system is related to how the code is written.

In traditional real-time systems, we consider the repetitive execution of code. A
job corresponds to a single execution of the code. The code to be executed repeatedly
is called a task. In particular, tasks may be periodically causing the execution of a
job. The typical implementation of such a periodic task is structured according to
the following scheme:

task(x) {
int local;
initialization();
for (;;) {

do_instance();
end_instance();

}
}

Such a scheme is characterized by a forever loop containing an instance (job) of
the periodic task that terminates with a blocking primitive (end_instance()), which
has the effect of blocking the task until the next activation. When following such
a programming scheme (called extended task in OSEK/VDX), the task is always
present in the stack, even during waiting times. In this case, the stack cannot be
shared, and a separate stack space must be allocated for each task.

4.3 ERIKA 221

The OSEK/VDX standard also provides support for basic tasks, which are
special tasks that are implemented in a way more similar to functions, according
to the following scheme:

int local;
task x() {

do_instance();
}
System_initialization() {

initialization();
}

With respect to extended tasks, in basic tasks, the persistent state that must be
maintained between different instances is not stored in the stack, but in global
variables. Also, the initialization part is moved to system initialization, because
tasks are not dynamically created, but they exist since the beginning. Finally, no
synchronization primitive is needed to block the task until its next period, because
the task is activated every time a new instance starts. Also, the task cannot call
any blocking primitive; therefore it can either be preempted by higher-priority tasks
or execute until completion. In this way, the task behaves like a function, which
allocates a frame on the stack, runs, and then cleans the frame. For this reason, the
task does not occupy stack space between two executions, allowing the stack to be
shared among all tasks in the system. ERIKA Enterprise supports stack sharing,
allowing all basic tasks in the system to share a single stack, so reducing the overall
RAM memory used for this purpose.

Concerning task management, OSEK/VDX kernels provide support for fixed
priority scheduling with Immediate Priority Ceiling to avoid the priority inversion
problem. The usage of Immediate Priority Ceiling is supported through the speci-
fication of the resource usage of each task in the OIL configuration file. The OIL
compiler computes the resource ceiling of each task based on the resource usage
declared by each task in the OIL file.

OSEK/VDX systems also support non-preemptive scheduling and preemption
thresholds to limit the overall stack usage. The main idea is that limiting the
preemption between tasks reduces the number of tasks allocated on the system stack
at the same time, further reducing the overall amount of required RAM. Note that
reducing preemptions may degrade the schedulability of the tasks set; hence the
degree of preemption must be traded off with the system schedulability and the
overall RAM memory used in the system.

Another requirement for operating systems designed for small micro-controllers
is scalability, which means supporting reduced versions of the API for smaller
footprint implementations. In mass production systems, in fact, the footprint
significantly impacts on the overall cost. In this context, scalability is provided
through the concept of conformance classes, which define specific subsets of the
operating system API. Conformance classes are also accompanied by an upgrade
path between them, with the final objective of supporting partial implementation

222 4 System Software

of the standard with reduced footprint. The conformance classes supported by the
OSEK/VDX standard (and by ERIKA Enterprise) are:

• BCC1: this is the smallest conformance class, supporting a minimum of eight
tasks with different priority and one shared resource.

• BCC2: compared to BCC1, this conformance class adds the possibility to have
more than one task at the same priority. Each task can have pending activations,
that is, the operating system records the number of instances that have been
activated but not yet executed.

• ECC1: compared to BCC1, this conformance class adds the possibility to have
extended tasks that can wait for an event to appear.

• ECC2: this conformance class adds both multiple activations and extended tasks.

ERIKA Enterprise further extends these conformance classes by providing the
following two conformance classes:

• EDF: this conformance class does not use a fixed priority scheduler but an
Earliest Deadline First (EDF) Scheduler (see Sect. 6.2.1) optimized for the
implementation on small micro-controllers.

• FRSH: this conformance class extends the EDF scheduler class by providing a
resource reservation scheduler based on the IRIS scheduling algorithm [380].

Another interesting feature of OSEK/VDX systems is that the system provides
an API for controlling interrupts. This is a major difference when compared to
POSIX-like systems, where interrupts are an exclusive domain of the operating
system and are not exported to the operating system API. The rationale for this
is that on small micro-controllers users often want to directly control interrupt
priorities; hence it is important to provide a standard way to deal with interrupt
disabling/enabling. Moreover, the OSEK/VDX standard specifies two types of
Interrupt Service Routines (ISR):

• Category 1: simpler and faster, does not implement a call to the scheduler at the
end of the ISR

• Category 2: this ISR can call some primitives that change the scheduling
behavior. The end of the ISR is a rescheduling point. ISR1 has always a higher
priority of ISR2.

An important feature of OSEK/VDX kernels is the possibility to fine-tune the
footprint by removing error-checking code from the production versions, as well as
to define hooks that will be called by the system when specific events occur. These
features allow for a fine-tuning of the application footprint that will be larger (and
safer) when debugging and smaller in production when most bugs will be found and
removed from the code.

To support a better debugging experience, the OSEK/VDX standard defines a
textual language, named ORTI, which describes where the various objects of the
operating system are allocated. The ORTI file is typically generated by the OIL
compiler and is used by debuggers to print detailed information about operating

4.4 Embedded Linux 223

system objects defined in the system (e.g., the debugger could print the list of the
tasks in an application with their current status).

All the features defined by the OSEK/VDX standard have been implemented
in the open-source ERIKA Enterprise kernel [157], for a set of embedded micro-
controllers, with a final footprint ranging between 1 and 5 kilobytes of object code.
ERIKA Enterprise also implements additional features, like the EDF scheduler,
providing an open and free-of-charge operating system that can be used to learn,
test, and implement real applications for industrial and educational purposes.

4.4 Embedded Linux

Increasing requirements to the functionality of embedded systems, such as Internet
connectivity (in particular for the Internet of Things) or sophisticated graphics
displays, demand that a large amount of software is added to a typical embedded
system’s simple operating system. It has been shown that it is possible to add
some of this functionality to small embedded real-time operating systems, e.g., by
integrating a small Internet protocol (IP) network stack [142]. However, integrating
a number of different additional software components is a complex task and may
lead to functional as well as security deficiencies.

A different approach, enabled by the exponential growth of semiconductor
densities according to Moore’s law, is the adaptation of a well-tested code base
with the required functionality to run in an embedded context. Here, Linux6 has
become the OS of choice for a large number of complex embedded applications
following this approach, such as Internet routers, GPS satellite navigation systems,
network-attached storage devices, smart television sets, and mobile phones. These
applications benefit from easy portability—Linux has been ported to more than
30 processor architectures, including the popular embedded ARM, MIPS, and
PowerPC architectures—as well as the system’s open-source nature, which avoids
the licensing costs arising for commercial embedded operating systems.

Adapting Linux to typical embedded environments poses a number of challenges
due to its original design as a server and desktop OS. Below, we detail solutions
available in Linux to tackle the most common problems that arise in its use in
embedded systems.

4.4.1 Embedded Linux Structure and Size

Strictly speaking, the term “Linux” denotes only the kernel of a Linux-based operat-
ing system. To create a complete, working operating system, a number of additional

6This section on Embedded Linux was contributed by M. Engel (NTNU Trondheim).

224 4 System Software

Hardware

Architecture-Dependent Code

System Call Interface

I/O Related Process RelatedKernel
Modules

Device
Drivers

System Libraries (e.g. libc)

Applications

File Systems

Networking

Device Support

Scheduler

Memory Mgmt.

IPC

Fig. 4.14 Structure of typical Linux-based system

components are required that run on top of the Linux kernel. A configuration for a
typical Linux system, including system-level user mode components, is shown in
Fig. 4.14. On top of the Linux kernel reside a number of—commonly dynamically
linked—libraries, which form the basis for system-level tools and applications.
Device drivers in Linux are usually implemented as loadable kernel modules;
however, restricted user mode access to hardware is also possible.

The open-source nature of Linux allows to tailor the kernel and other system
components to the requirements of a given application and platform. This, in turn,
results in a small system which enables the use of Linux in systems with restricted
memory sizes.

One of the essential components of a Unix-like system is the C library, which
provides basic functionality for file I/O, process synchronization and communi-
cation, string handling, arithmetic operations, and memory management. The libc
variant commonly used in Linux-based systems is GNU libc (glibc). However, glibc
was designed with server and desktop systems in mind and, thus, provides much
more functionality than typically required in embedded applications. Linux-based
Android® systems replace glibc with Bionic, a libc version derived from BSD
Unix. Bionic is specifically designed to support systems running at lower clock
speeds, e.g., by providing a tailored version of the Pthreads multithreading library
to efficiently support Android’s Dalvik Java VM. Bionic’s size is estimated to be
about half the size of a typical glibc version.7

Several significantly smaller implementations of libc exist, such as newlib, musl,
uClibc, PDCLib, and dietlibc. Each of these is optimized for a specific use case; e.g.,

7The glibc-shared library size includes internationalization support.

4.4 Embedded Linux 225

libc version musl uClibc dietlibc glibc
Static library size 426 kB 500 kB 120 kB 2.0 MB
Shared library size 527 kB 560 kB 185 kB 7.9 MB
Minimal static C program size 1.8 kB 5 kB 0.2 kB 662 kB
Minimal static “Hello, World” size 13 kB 70 kB 6 kB 662 kB

Fig. 4.15 Size comparison of different Linux libc configurations

musl is optimized for static linking, uClibc was originally designed for MMU-less8

Linux systems (see below), whereas newlib is a cross-platform libc also available for
a number of other OS platforms. Sizes of the related shared library binary files range
from 185 kB (dietlibc) to 560 kB (uClibc), whereas the glibc binary is 7.9 MB in size
(all numbers taken from ×86 binaries) according to a comprehensive comparison of
different libc implementation features and sizes, compiled by Eta Labs.9 Figure 4.15
gives an overview of the sizes of various libc variants and programs built using the
different libraries.

In addition to the C library, the functionality, size, and number of utility programs
bundled with the OS can be adapted according to application requirements. These
utilities are required in a Linux system to control system startup, operation,
and monitoring; examples are tools to mount file systems, to configure network
interfaces, or to copy files. As is the case for glibc, a typical Linux system includes
a set of tools appropriate for a large number of use cases, most of which are not
required on an embedded system.

An alternative to a traditional set of diverse tools is BusyBox, a software that
provides a number of simplified essential Unix utilities in a single executable
file. It was specifically created for embedded operating systems with very limited
resources. BusyBox reduces the overhead introduced by the executable file format
and allows code to be shared between multiple applications without requiring a
library. A comparison of BusyBox with alternative approaches to provide a small
user mode tool set can be found in [531].

4.4.2 Real-Time Properties

Achieving real-time guarantees in a system based on a general-purpose operating
system kernel is one of the most complex challenges in adapting an OS to run
in an embedded context. As shown above in Fig. 4.3, one common approach is
to run the Linux kernel and all Linux user mode processes as a dedicated task
of an underlying RTOS, only to be activated when no real-time task needs to
run. In Linux, competing approaches exist that follow this design pattern. RTAI

8See Appendix C for an introduction to MMUs.
9Available online at http://www.etalabs.net/compare_libcs.html.

http://www.etalabs.net/compare_libcs.html

226 4 System Software

(real-time application interface) [138] is based on the Adeos hypervisor,10 which
is implemented as a Linux kernel extension. Adeos enables multiple prioritized
domains (one of which is the Linux kernel itself) to exist simultaneously on the
same hardware. On top of this, RTAI provides a service API, for example, to
control interrupts and system timers. Xenomai [182] was co-developed with RTAI
for several years but became an independent project in 2005. It is based on its own
abstract “nucleus” RTOS core, which provides real-time scheduling, timer, memory
allocation, and virtual file handling services. Both projects differ in their aims and
implementations. However, they share the support for the Real-Time Driver Model
(RTDM), a method to unify interfaces for developing device drivers and related
applications in real-time Linux systems. The third approach using an underlying
real-time kernel is RTLinux [608], developed as a project at the New Mexico
Institute of Mining and Technology and then commercialized at the company
FSMLabs, which was acquired by Wind River in 2007. The related product was
discontinued in 2011. The use of RTLinux in products was controversial, since its
initiators vigorously defended their intellectual property, for which they obtained a
software patent [607]. The decision to patent the RTLinux methods was not well
received by the Linux developer community, leading to spin-offs resulting in the
abovementioned RTAI and Xenomai projects.

A more recent approach to add real-time capabilities to Linux, integrated into the
kernel as of version 3.14 (2014), is SCHED_DEADLINE, a CPU scheduling policy
based on the Earliest Deadline First (EDF) and Constant Bandwidth Server (CBS)
[3] algorithms and supporting resource reservations. The SCHED_DEADLINE policy
is designed to co-exist with other Linux scheduling policies. However, it takes
precedence before all other policies to guarantee real-time properties.

Each task τi scheduled under SCHED_DEADLINE is associated with a runtime
budget Ci and a period Ti , indicating to the kernel that Ci time units are required
by that task every Ti time units, on any processor. For real-time applications,
Ti corresponds to the minimum time elapsing between subsequent activations
(releases) of the task, and Ci corresponds to the worst case execution time needed
by each execution of the task. On addition of a new task to this scheduling policy,
a schedulability test is performed and the task is only accepted if the test succeeds.
During scheduling, a task is suspended when it tries to run for longer than the
pre-allocated budget and deferred to its next execution period. This non work-
conserving strategy11 is required to guarantee temporal isolation between different
tasks. Thus, on single-processor or partitioned multi-processor systems (with tasks
pinned to a specific CPU), all accepted SCHED_DEADLINE tasks are guaranteed to
be scheduled for an overall time equal to their budget in every time window as long
as their period.

10See http://home.gna.org/adeos/.
11This means that the processor may be idle even when tasks could be executed. A definition of
the term can be found in Chap. 6 on p. 309.

http://home.gna.org/adeos/

4.4 Embedded Linux 227

Bitmask Node Type

0x1985

Total Node
Length

Node Header
CRC

Inode/Direntry

Common Node Header

Fig. 4.16 Structure of the JFFS2 inode content

In the general case of tasks which are free to migrate on a multi-processor, as
SCHED_DEADLINE implements global EDF (as described in detail in Sect. 6.3.3),
the general tardiness bound for global EDF applies [128]. Benchmarks performed
in [336] give an amount of missed deadlines of less than 0.2% when running
SCHED_DEADLINE on a four-processor system with a utilization of 380% and
0.615% with a utilization of 390%. The numbers cited for a six-processor system
are of similar magnitude. Of course, no deadline misses occur on single-processor
systems or multi-core systems with processes pinned to a fixed processor core.

4.4.3 Flash Memory File Systems

Embedded systems pose different requirements to permanent storage than server
or desktop environments. Often, there is a large amount of static (read-only) data,
whereas the amount of varying data is in many cases quite limited.

Accordingly, file system storage can benefit from these special conditions. Since
most of the read-only data in current embedded SoCs is implemented as flash ROM,
optimization for this storage is an important aspect for the use of Linux in embedded
systems. Accordingly, a number of different file systems specifically designed for
using NAND-based flash storage have been developed.

One of the most stable flash-specific file systems available is the log-structured
Journaling Flash File System version 2 (JFFS2) [596]. In JFFS2, changes to files and
directories are “logged” to flash memory in so-called nodes. Two types of nodes
exist, inodes (shown in Fig. 4.16), which consist of a header with file metadata
followed by an optional payload of file data, and dirent nodes, which are directory
entries each holding a name and an inode number. Nodes start out as valid when
they are created and become obsolete when a newer version has been created in a
different place in flash memory. JFFS2 supports transparent data compression by
storing compressed data as inode payloads.

However, compared to other log-structured file systems such as Berkeley lfs
[473], there is no circular log. Instead, JFFS2 uses blocks, a unit the same size as
the erase segment of the flash medium. Blocks are filled with nodes in a bottom-up
manner one at a time, as shown in Fig. 4.17.

Clean blocks contain only valid nodes, whereas dirty blocks contain at least one
obsolete node. In order to reclaim memory, a background garbage collector collects

228 4 System Software

Version Inode #

001

Parent Inode # Name

Nodes written in Flash memory

Directory entry node

inode node

Version Offset

001

Length Data

0x10 0x0 Filename.txt

aaaaa...0x2000x00

Open a file and
write 512 bytes

'aaaaa...' at offset 0

User actions

inode node

Version Offset

002

Length Data

bbbbb...0x10000x200

inode node

Version Offset

003

Length Data

bbbbb...0x8000x1200

inode node

Version Offset

004

Length Data

ccccc...0x4000x100

Write 6 kB
'bbbbb...' at
offset 512

Write 1 kB
'ccccc...' at
offset 256

Fig. 4.17 Changes to flash when writing data to JFFS2

dirty blocks and frees them. Valid nodes from dirty blocks are copies into a new
block, whereas obsolete blocks are skipped. After copying, the dirty block is marked
as free. The garbage collector is also able to consume clean blocks in order to even
out the flash memory wear-leveling and prevent localized erasure of blocks in a
mostly static file system, as is common in many embedded systems.

4.4.4 Reducing RAM Usage

Traditionally, Unix-like operating systems treat main memory (RAM) as a cache
for secondary storage on disk, i.e., swap space [385]. While this is a useful
assumption for desktop and server systems with large disks and equally large
memory requirements, it results in a waste of resources for embedded systems, since
programs which exist in a system’s non-volatile memory have to be loaded into
volatile memory for execution. This commonly includes the rather large operating
system kernel.

To eliminate this duplication of memory requirements, a number of execute-in-
place (XiP) techniques have been developed which allow the direct execution of

4.4 Embedded Linux 229

program code from flash memory, which is the common approach in most smaller,
microcontroller-based systems. However, XiP techniques face two challenges. On
the one hand, the non-volatile memory storing the executable code needs to support
accesses in byte or word granularity. On the other hand, executable programs are
commonly stored in a data format such as ELF, which contains meta information
(e.g., symbols for debugging) and needs to be linked at runtime before execution.

Support for XiP techniques is commonly implemented as a special file system,
such as the Advanced XiP Filesystem (AXFS) [43], which provides compressed
read-only functionality. The use of XiP is especially useful for the kernel itself,
which would normally consume a large part of non-swappable memory. Running the
kernel from flash memory would make more memory available for user-space code.
XiP for user mode code itself is less useful, since the kernel only loads required text
pages of an executable in virtual memory-enabled systems. Thus, RAM usage for
program code is automatically minimized.

Providing the byte- or word-granularity accesses required for XiP is mostly a
question of cost in current systems. The commonly used NAND flash technology,
as used in flash disks, SD cards, and SSDs, is inexpensive but only allows block-
level accesses, similar to hard disks. NOR flash is a flash technique supporting
random accesses; thus it is suitable for implementing XiP techniques. However,
NOR flash tends to be an order of magnitude more expensive than NAND flash and
is commonly somewhat slower than system RAM. As a consequence, equipping a
system with more RAM instead of a large NOR flash and not using XiP techniques
is a sensible design choice for most systems.

4.4.5 uClinux: Linux for MMU-Less Systems

One final resource restriction is apparent in low-end microcontroller systems, such
as ARM’s Cortex-M series. The processor cores in these SoCs were developed for
typical real-time OS scenarios, which often use a simple library OS approach, as
described for ERIKA above. Thus, they lack crucial OS support hardware such as a
paging memory management unit (see Appendix C). However, the large address
space and relatively high clock speeds of these microcontrollers enable running
a Linux-like operating system with some restrictions. Thus, uClinux was created
as a derivative of the Linux kernel for MMU-less systems. Since kernel version
2.5.46, uClinux support is available in the mainstream kernel source tree for a
number of architectures including ARM7TDMI, ARM Cortex-M3/4/7/R, MIPS,
M68k/ColdFire, as well as FPGA-based softcores such as Altera Nios II, Xilinx
MicroBlaze, and Lattice Mico32.

The lack of memory management hardware in uClinux-supported platforms
comes with a number of disadvantages. An obvious drawback is the lack of memory
protection, so any process is able to read and write other processes’ memory. The
lack of an MMU also has consequences for the traditional Unix process creation
approach. Commonly, processes in Unix are created as a copy of an existing process

230 4 System Software

using the fork() system call [470]. Instead of creating a physical copy in memory,
which would require copying potentially large amounts of data, only the page table
entries of the process executing fork() are replicated and point to physical page
frames of the parent process. When the newly created process memory starts to
differ from its parent due to data writes, only the affected page frames are copied on
demand using a copy-on-write strategy. The lack of hardware support for copy-on-
write semantics and the overhead involved in actually copying pages result in the
fork() system call being unavailable in uClinux.

Instead, uClinux provides the vfork() system call. This system call makes use of
the fact that most Unix-style processes immediately call exec() after a fork to start
a different executable file by overloading their memory image with text and data
segments of that different binary:

pid_t childPID;
childPID = vfork();
if (childPID == 0) { // in child process

execl("/bin/sh", "sh", 0);
}
printf("Parent program running again, child PID is %d", childPID);

The direct calling of exec() after vfork() implies that the complete address space
of the newly created process will be replaced in any case and only a small part of the
executable calling vfork() is actually used. In contrast to standard Unix behavior, vfork
guarantees that the parent process is stopped after forking until the child process
has called the exec() system call. Thus, the parent process is unable to interfere
with the execution of the child process until the new program image has been
loaded. However, some restrictions have to be observed to guarantee safe operation
of vfork(). It is not permitted to modify the stack in the created child process, i.e., no
function calls may be executed before exec. As a consequence, returning from vfork
in case of an error, e.g., insufficient memory or inability to execute the new program,
is impossible, since this would modify the stack. Instead, it is recommended to exit()
from the child process in case of a problem.

To summarize, uClinux is a way to use some Linux functionality on low-
end, microcontroller-style embedded systems. However, the on-chip memory even
in high-end microcontrollers is restricted to several hundreds of kB. A minimal
uClinux version, however, requires about 8 MB RAM, so the addition of an external
RAM chip is essential. For systems offering a smaller memory footprint, more
traditional RTOS systems are still the more feasible solution.

4.4.6 Evaluating the Use of Linux in Embedded Systems

In addition to technical criteria, the decision whether to base an embedded system
on Linux also has to consider legal and business questions.

4.4 Embedded Linux 231

On the technical side, Linux includes support for a large number of CPU
architectures, SoCs, and peripheral devices as well as communication protocols
commonly used in embedded applications, such as Internet protocol TCP/IP,
CAN, Bluetooth® or IEEE802.15.4/ZigBee®. It provides a POSIX-like API that
enables easy porting of existing code, not only written in C or C++ but also in
scripting languages such as Python or Lua and even more specialized languages
like Erlang. Linux development tools are available free of charge and can easily be
integrated into development toolflows utilizing IDEs such as Eclipse and continuous
integration testing services such as Jenkins. While in general, the Linux code base is
well tested, the quality of support varies with the targeted platform. When utilizing
a less common hardware platform, it is recommended to thoroughly investigate the
stability of CPU and driver support. One drawback of using Linux is the inherent
complexity of the large code base, requiring a good insight into and experience with
the system to debug problems. However, a number of semiconductor manufacturers
and third-party companies offer commercial support for embedded Linux, including
the provisioning of complete board support packages (BSPs) for a number of
reference designs.

From a business perspective, the obvious benefit of using Linux is the availability
of its source code free of cost. However, the GPL License version 212 governing
the kernel source code also requires that the source code for modifications to the
existing code base is provided along with the binary code. This might jeopardize
trade secrets of hardware components or violate non-disclosure agreements with
hardware intellectual property owners. For some hardware, such as GPU drivers,
this is circumvented by the inclusion of binary code “blobs” which are loaded
by an open-source device driver stub. However, this approach is being actively
discouraged by the Linux kernel developers.

An increasingly serious problem is the security of embedded systems built on
Linux, especially in the context of the Internet of Things. Many security problems
affecting the Linux kernel also apply to embedded Linux. Inexpensive consumer
devices, such as Internet-based cameras, routers, and mobile phones, rarely receive
software updates but may be in active use for many years. This exposes them
to security vulnerabilities which are already being actively exploited, e.g., for
distributed denial-of-service attacks (DDOS) emanating from thousands of hijacked
embedded Linux devices. As a consequence, the cost of continually updating
devices in production as well as legacy devices in the field has to be considered
in order to provide secure systems.

12See http://www.gnu.org/licenses/gpl-2.0.html.

http://www.gnu.org/licenses/gpl-2.0.html

232 4 System Software

4.5 Hardware Abstraction Layer

Hardware abstraction layers (HALs) provide a way for accessing hardware through
a hardware-independent application programming interface (API). For example,
we could come up with a hardware-independent technique for accessing timers,
irrespective of the addresses to which timers are mapped. Hardware abstraction
layers are used mostly between the hardware and operating system layers. They
provide software intellectual property (IP), but they are neither part of operating
systems nor can they be classified as middleware. A survey over work in this area is
provided by Ecker, Müller, and Dömer [145].

4.6 Middleware

Communication libraries provide a means for adding communication functionality
to languages lacking this feature. They add communication functionality on top of
the basic functionality provided by operating systems. Due to being added on top
of the OS, they can be independent of the OS (and obviously also of the underlying
processor hardware). As a result, we will obtain communication-oriented cyber-
physical systems. Such communication is needed for the Internet of Things (IoT).
There is a trend toward supporting communication within some local system as well
as communication over longer distances. The use of Internet protocols in general is
becoming more popular. Frequently, such protocols enable secure communication,
based on en- and decryption (see p. 196). The corresponding algorithms are a
special case of middleware.

4.6.1 OSEK/VDX COM

OSEK/VDX® COM is a special communication standard for the OSEK automotive
operating systems [441].13 OSEK COM provides an “Interaction Layer” as an
application programming interface (API) through which internal communication
(communication within one ECU) and external communication (communication
with other ECUs) can be performed. OSEK COM specifies just the functionality of
the Interaction Layer. Conforming implementations must be developed separately.

The Interaction Layer communicates with other ECUs via a “Network Layer”
and a “Data Link” layer. Some requirements for these layers are specified by
OSEK COM, but these layers themselves are not part of OSEK COM. This way,
communication can be implemented on top of different network protocols.

13OSEK is a trademark of Continental Automotive GmbH.

4.6 Middleware 233

Fig. 4.18 Access to remote
objects using CORBA

IIOP−protocol
ORB2

Skeleton
ObjectClient

ORB1

Stub

OSEK COM is an example of communication middleware dedicated toward
embedded systems. In addition to middleware tailored for embedded systems, many
communication standards developed for non-embedded applications can be adopted
for embedded systems as well.

4.6.2 CORBA

CORBA® (Common Object Request Broker Architecture) [433] is one example
of such adopted standards. CORBA facilitates the access to remote services.
With CORBA, remote objects can be accessed through standardized interfaces.
Clients are communicating with local stubs, imitating the access to the remote
objects. These clients send information about the object to be accessed as well as
parameters (if any) to the Object Request Broker (ORB; see Fig. 4.18). The ORB
then determines the location of the object to be accessed and sends information
via a standardized protocol, e.g., the IIOP protocol, to where the object is located.
This information is then forwarded to the object via a skeleton, and the information
requested from the object (if any) is returned using the ORB again.

Standard CORBA does not provide the predictability required for real-time
applications. Therefore, a separate real-time CORBA (RT-CORBA) standard has
been defined [428]. A very essential feature of RT-CORBA is to provide end-to-
end predictability of timeliness in a fixed priority system. This involves respecting
thread priorities between client and server for resolving resource contention and
bounding the latencies of operation invocations. One particular problem of real-time
systems is that thread priorities might not be respected when threads obtain mutually
exclusive access to resources. The priority inversion problem (see p. 212) has to be
addressed in RT-CORBA. RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen. RT-CORBA also includes facilities
for thread priority management. This priority is independent of the priorities
of the underlying operating system, even though it is compatible with the real-
time extensions of the POSIX standard for operating systems [201]. The thread
priority of clients can be propagated to the server side. Priority management is
also available for primitives providing mutually exclusive access to resources. The
priority inheritance protocol just described must be available in implementations of
RT-CORBA. Pools of pre-existing threads avoid the overhead of thread creation and
thread construction.

234 4 System Software

4.6.3 POSIX Threads (Pthreads)

The POSIX thread (Pthread) library is an application programming interface (API)
to threads at the operating system level [37]. Pthreads are consistent with the IEEE
POSIX 1003.1c operating system standard. A set of threads can be run in the
same address space. Therefore, communication can be based on shared memory
communication. This avoids the memory copy operations typically required for MPI
(see Sect. 2.8.3 on p. 113). The library is therefore appropriate for programming
multi-core processors sharing the same address space, and it includes a standard
API with mechanisms for mutual exclusion. Pthreads use completely explicit
synchronization [554]. The exact semantics depends on the memory consistency
model used. Synchronization is hard to program correctly. The library can be
employed as a back end for other programming models.

4.6.4 UPnP and DPWS

Universal Plug and Play (UPnP) is an extension of the plug-and-play concept of PCs
toward devices connected within a network. Connecting network printers, storage
space, and switches in homes and offices easily can be seen as the key target [438].
Due to security concerns, only data is exchanged. Code cannot be transferred.

Devices Profile for Web Services (DPWS) aims at being more general than
UPnP. “The Devices Profile for Web Services (DPWS) defines a minimal set of
implementation constraints to enable secure Web Service messaging, discovery,
description, and eventing on resource-constrained devices” [597]. DPWS specifies
services for discovering devices connected to a network, for exchanging information
about available services, and for publishing and subscribing to events.

In addition to libraries designed for high-performance computing (HPC), several
comprehensive network communication libraries can be used. These are typically
designed for a loose coupling over Internet-based communication protocols.

MPI (see p. 113), OpenMP (see p. 114), OSEK/VDX COM, CORBA, Pthreads,
UPnP, and DPWS are special cases of communication middleware (software to be
used at a layer between the operating system and applications). Initially, they were
essentially designed for communication between desktop computers. However,
there are attempts to leverage the knowledge and techniques also for embedded
systems. In particular, MPI (Message Passing Interface) is designed for message
passing-based communication, and it is rather popular. It has recently been extended
to also support-shared memory-based communication.

For mobile devices like smart phones, using standard middleware may be
appropriate. For systems with hard time constraints (see Definition 1.8 on p. 10),
their overhead, their real-time capabilities, and their services may be inappropriate.

4.7 Real-Time Databases 235

4.7 Real-Time Databases

Databases provide a convenient and structured way of storing and accessing infor-
mation. Accordingly, data bases provide an API for writing and reading information.
A sequence of read and write operations is called a transaction. Transactions may
have to be aborted for a variety of reasons: there could be hardware problems,
deadlocks, problems with concurrency control, etc. A frequent requirement is that
transactions do not affect the state of the database unless they have been executed to
their very end. Hence, changes caused by transactions are normally not considered
to be final until they have been committed. Most transactions are required to be
atomic. This means that the end result (the new state of the database) generated by
some transaction must be the same as if the transaction has been fully completed or
not at all. Also, the database state resulting from a transaction must be consistent.
Consistency requirements include, for example, that the values from read requests
belonging to the same transaction are consistent (do not describe a state which never
existed in the environment modeled by the database). Furthermore, to some other
user of the database, no intermediate state resulting from a partial execution of a
transaction must be visible (the transactions must be performed as if they were
executed in isolation). Finally, the results of transactions should be persistent. This
property is also called durability of the transactions. Together, the four properties
printed in bold are known as ACID properties (see the book by Krishna and Shin
[310], Chapter 5).

For some databases, there are soft real-time constraints. For example, time-
constraints for airline reservation systems are soft. In contrast, there may also be
hard constraints. For example, automatic recognition of pedestrians in automobile
applications and target recognition in military applications must meet hard real-time
constraints. The above requirements make it very difficult to guarantee hard real-
time constraints. For example, transactions may be aborted various times before
they are finally committed. For all databases relying on demand paging and on hard
disks, the access times to disks are hardly predictable. Possible solutions include the
main memory databases and predictable use of flash memory. Embedded databases
are sometimes small enough to make this approach feasible. In other cases, it may
be possible to relax the ACID requirements. For further information, see the book
by Krishna and Shin as well as Lam and Kuo [319].

236 4 System Software

Table 4.1 Set of jobs requesting exclusive use of resources

Job Priority Arrival Run-time Printer Comm line

tP,P tV,P tP,C tV,C

J1 1 (high) 3 4 1 4 – –

J2 2 10 3 – – 1 2

J3 3 5 6 – – 4 6

J4 4 (low) 0 7 2 5 – –

4.8 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

4.1 Which requirements must be met for an embedded operating system?

4.2 Which techniques can be used to customize an embedded operating system in
the necessary way?

4.3 Which requirements must be met for a real-time operating system? How do
they differ from the requirements of a standard OS? Which features of a standard
OS like Windows or Linux could be missing in an RTOS?

4.4 How many seconds have been added at New Year’s Eve to compensate for the
differences between UTC and TAI since 1958? You may search in the Internet for
an answer to this question.

4.5 Find processors for which memory protection units are available! How are
memory protection units different from the more frequently used memory manage-
ment units (MMUs)? You may search in the Internet for an answer to this question.

4.6 Describe classes of embedded systems for which protection should definitely
be provided! Describe classes of systems, for which we would possibly not need
protection!

4.7 Provide an example demonstrating priority inversion for a system comprising
three jobs!

4.8 Download the levi learning module leviRTS from the levi web site [497]. Model
a job set as described in Table 4.1.

tP,P and tP,C are the times relative to the start times, at which a job requests
exclusive use of the printer or the communication line, respectively (called �tP in
levi). tV ,P and tV ,C are the times relative to the start times at which these resources
are released. Use priority-based, preemptive scheduling! Which problem occurs?
How can it be solved?

4.9 Which resource access protocols prevent deadlocks caused by exclusive access
to resources?

4.8 Problems 237

4.10 How is the use of the system stack optimized in ERIKA?

4.11 Which problems have to be solved if Linux is used as an operating system for
an embedded system?

4.12 Which impact does the priority inversion problem have on the design of
network middleware?

4.13 How could flash memory have an influence on the design of real-time
databases?

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Evaluation and Validation

During the design procedure, we have to check repeatedly whether or not the
system under design is likely to perform its function and to satisfy all relevant
design objectives. This is the purpose of validations and evaluations which must be
performed during the design process. This chapter starts with a presentation of tech-
niques for the evaluation of (partial) designs with respect to objectives. In particular,
we consider (worst case) execution time, quality of results, thermal behavior, and
dependability as objectives. We provide an introduction into fundamental techniques
for computing the worst case execution time. Examples of energy models will
be presented in order to demonstrate the need for an adjustment of the level of
model details to the particular application at hand. Thermal modeling is reduced
to the problem of equivalent electrical modeling. With respect to dependability, an
introduction to statistical models of reliability as well as an introduction to fault
trees are included. As a means for relating results for the different objectives against
each other, we introduce the concept of Pareto optimality. This chapter closes with
hints regarding validation techniques, including simulation, rapid prototyping, and
formal verification.

5.1 Introduction

5.1.1 Scope

Specification, hardware platforms, and system software provide us with the basic
ingredients which we need for designing embedded systems. During the design
process, we must validate and evaluate designs rather frequently. These activities
can be defined as follows:

Definition 5.1 Evaluation is the process of computing quantitative information of
some key characteristics (or “objectives”) of a certain (possibly partial) design.

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_5

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_5

240 5 Evaluation and Validation

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

(RTOS, ...)

HW-components

ap
pl

ic
at

io
n

test
mapping
application

Fig. 5.1 Context of the current chapter

Definition 5.2 Validation is the process of checking whether or not a certain
(possibly partial) design is appropriate for its purpose, meets all constraints, and
will perform as expected.

Definition 5.3 Validation with mathematical rigor is called (formal) verification.

Validation and evaluation are required at various phases during the design
procedure (see Fig. 5.1). Validation and design should be intertwined and not be
considered as two completely independent activities. Validation and evaluation,
even though different from each other, are very much linked. Due to their impact,
we will describe validation and evaluation before we talk about design steps.

5.1.2 Multi-Objective Optimization

Design evaluations will, in general, lead to a characterization of the design by
several criteria, such as execution time, energy consumption, quality of results,
thermal behavior, and dependability. Merging all these criteria into a single objective
function (e.g., by using a weighted average) is usually not advisable, as this would
hide some of the essential characteristics of designs. Rather, it is recommended to
return to the designer a set of designs among which the designer can then select an
appropriate design. Such a set should, however, only contain “reasonable” designs.
Finding such sets of designs is the purpose of multi-objective optimization
techniques.

In order to perform multi-objective optimization, we do consider an m-dimen-
sional space X of possible solutions of the optimization problem. These dimensions
could, for example, reflect the number of processors, the sizes of memories, as well
as the number and types of buses. For this space X, we define an n-dimensional
function

f (x) = (f1(x), . . . , fn(x)) where x ∈ X

5.1 Introduction 241

O1

(e.g. energy)

2 (e.g. memory space)O

min

min

(1)

designs)
(superior

dominating (1)

(inferior designs)
indifferent

dominated by (1)

indifferent

min O1

(e.g. energy)

2 (e.g. memory space)O

+

+

+

+

dominated
design points

min

Fig. 5.2 Pareto optimality: left, Pareto point; right, Pareto front

which evaluates designs with respect to several criteria or objectives (e.g., cost and
performance). Let F be the n-dimensional space of values of these objectives (the
so-called objective space). Suppose that, for each of the objectives, some total order
< and the corresponding ≤ order are defined. In the following, we assume that the
goal is to minimize our objectives.

Definition 5.4 Vector u = (u1, . . . , un) ∈ F dominates vector v = (v1, . . . , vn) ∈
F iff u is “better” than v with respect to at least one objective and not worse than v

with respect to all other objectives:

∀ i ∈ {1, . . . n} : ui ≤ vi ∧ (5.1)

∃ j ∈ {1, .., n} : uj < vj (5.2)

Definition 5.5 Vector u ∈ F is called indifferent with respect to vector v ∈ F iff
neither u dominates v nor v dominates u.

Definition 5.6 A design x ∈ X is called Pareto optimal with respect to X iff there
is no design y ∈ X such that u = f (x) is dominated by v = f (y).

The previous definition defines Pareto optimality in the solution space. The next
definition serves the same purpose in the objective space.

Definition 5.7 Let S ⊆ F be a subset of vectors in the objective space. v ∈ F is
called a non-dominated solution with respect to S iff v is not dominated by any
element ∈ S. v is called Pareto optimal iff v is non-dominated with respect to all
solutions F .

Figure 5.2 highlights the different areas in an objective space with objectives O1
and O2, relative to design point (1).

The upper right area corresponds to designs that would be dominated by design
(1), since they would be “worse” with respect to both objectives. Designs in the
lower left rectangle would dominate design (1), since they would be “better” with

242 5 Evaluation and Validation

1/quality of results

worst case execution time

1/battery lifetime
maximum

temperature

security

vulnerabilities

failure rate

cost average response time

Fig. 5.3 Kiviat diagram: top (red), mid-range (green, dashed), and entry-level (blue) models

respect to both objectives. Designs in the upper left and the lower right area are
indifferent: they are “better” with respect to one objective and “worse” with respect
to the other. Figure 5.2 (right) shows a set of Pareto points, i.e., the so-called Pareto
front.

Definition 5.8 Design space exploration (DSE) based on Pareto points is the
process of finding and returning a set of Pareto optimal solutions to the designer,
enabling the designer to select the most appropriate implementation.

In order to visualize objectives in multiple dimensions, so-called radar charts,
spider charts, or Kiviat diagrams can be used [579]. They are extensions of the type
of diagram which we have used in Fig. 2.74 to multiple dimensions.

Example 5.1 As shown in Fig. 5.3, we can compare several designs (e.g., of mobile
phones) according to objectives similar to the ones presented in the next subsection.

Minimization of all objectives is assumed. The top model minimizes most
objectives, except for costs. For the entry level model, it is the other way around. ∇

5.1.3 Relevant Objectives

For servers and PCs, the average performance plays a dominating role. For
embedded and cyber-physical systems, multiple objectives need to be considered.
The following list explains if and where this objective is discussed in this book:

5.2 Performance Evaluation 243

1. Average performance: Some comments on this objective will be made in
Sect. 5.2. This objective is frequently computed from simulations, which will
be introduced in Sect. 5.7.

2. Worst case performance/real-time behavior: Some fundamental techniques
for computing the worst case execution time (WCET) will be presented in
Sect. 5.2.2. This will be complemented by an introduction to real-time calculus
in Sect. 5.2.3.

3. Quality metrics: Quality metrics will be presented in Sect. 5.3. In addition,
transformations between number systems are discussed in Sect. 7.1.5.

4. Energy/power consumption: A brief overview of techniques for evaluating this
objective will be presented in Sect. 5.4.

5. Thermal models: An introduction to this topic will be presented in Sect. 5.5.
6. Dependability: Dependability is the topic of Sect. 5.6, with subsections on

safety, security, and reliability.
7. Electromagnetic compatibility: This objective will not be considered here.
8. Testability: Costs for testing systems can be very large, sometimes larger even

than production costs. Hence, testability should be considered as well, preferably
already during the design. Testability will be discussed in Chap. 8.

9. Cost: Cost in terms of silicon area or real money will not be considered here.
10. Weight, robustness, usability, extendability, and environmental friendliness:

These objectives will also not be considered.

There are more objectives than the ones listed above. For example, we could use
standards for the evaluation of software quality, like standards ISO/IEC 25022 [258],
ISO/IEC 25023 [259], and ISO/EIC 25024 [257]. The next section presents some
approaches for performance evaluation, focusing on the worst case performance.

5.2 Performance Evaluation

Performance evaluation aims at predicting the performance of systems. This is a
major challenge (especially for cyber-physical systems) since we might need worst
case information, rather than just average case information. Such information is
necessary in order to guarantee real-time constraints.

5.2.1 Early Phases

Two different classes of techniques have been proposed for obtaining performance
information already during early design phases:

• Estimated cost and performance values: Quite a number of estimators have
been developed for this purpose. Examples include the work by Jha and Dutt

244 5 Evaluation and Validation

Fig. 5.4 WCET-related
terms

ESTEST

WCETBCET

WCETBCET

execution times

t

Distribution of

[274] for hardware and Jain et al. [266] and Franke [167] for software. Generating
sufficiently precise estimates requires considerable efforts.

• Accurate cost and performance values: We can also use the real binary soft-
ware code on a close-to-real hardware platform. This is only possible if interfaces
to compilers exist. This method can be more precise than the previous one but
may be significantly (and sometimes prohibitively) more time-consuming.

In order to obtain sufficiently precise information, communication needs to be
considered as well. Unfortunately, it is typically difficult to compute communication
cost already during early design phases.

Formal performance evaluation techniques have been proposed by many
researchers. For embedded systems, the work of Thiele et al., Henia and Ernst et al.,
and Wilhelm et al. is particularly relevant (see, e.g., [210, 536] and [587]). These
techniques require some knowledge of architectures. They are less appropriate for
early design phases, but some of them can be used without knowing all details about
target architectures. These approaches model real, physical time.

5.2.2 WCET Estimation

Scheduling of tasks requires knowledge about the duration of task executions,
especially if meeting time constraints has to be guaranteed, as in real-time (RT)
systems. The worst case execution time (WCET) is the basis for most scheduling
algorithms. Some definitions related to the WCET are shown in Fig. 5.4.

Definition 5.9 The worst case execution time (WCET) is the largest execution
time of a program for any input and any initial execution state.

Unfortunately, the WCET is extremely difficult to compute. In general, it is
undecidable whether or not the WCET is finite. This is obvious from the fact
that it is undecidable whether or not a program terminates. Hence, the WCET
can only be computed for certain programs/tasks. For example, for programs
without recursion, without while loops, and with loops having statically known
iteration counts, decidability is not an issue. But even with such restrictions, it is
usually practically impossible to compute the WCET exactly. The effect of modern
processor architectures’ pipelines with their different kinds of hazards and memory
hierarchies with limited predictability of hit rates is difficult to precisely predict

5.2 Performance Evaluation 245

at design time. Computing the WCET for systems containing interrupts, virtual
memory, and multiple processors is an even greater challenge. As a result, we must
be happy if we are able to compute good upper bounds on the WCET.

Such upper bounds are usually called estimated worst case execution times, or
WCETEST . Such bounds should have at least two properties:

1. The bounds should be safe (WCETEST ≥ WCET).
2. The bounds should be tight (WCETEST -WCET � WCET).

Note that the term “estimated” does not mean that the resulting times are unsafe.
Sometimes, architectural features which reduce the average execution time but

cannot guarantee to reduce WCETEST are completely omitted from the real-time
designs (see p. 154). Computing tight upper bounds on the execution time may still
be difficult. The architectural features described above also present problems for the
computation of WCETEST . The computation of such bounds is extremely difficult
for multi-cores. In fact, potential conflicts might even cause multi-cores to have
larger worst case bounds than the corresponding single cores.

Definition 5.10 The best-case execution time (BCET) is the smallest execution
time of a program, considering all feasible inputs and initial states. The BCETEST

is a safe and tight lower bound on the execution time.

Computing tight bounds from a program written in a high-level language such
as C without any knowledge of the generated assembly code and the underlying
architectural platform is impossible. Therefore, a safe analysis must start from real
machine code. Any other approach would lead to unsafe results.

We will study WCET estimation more closely, using a description of the tool aiT
by R. Wilhelm [587]. The architecture of aiT is shown in Fig. 5.5.

Consistent with our remark about the problems with high-level code, aiT starts
from an executable object file comprising the code to be analyzed. From this code, a
control flow graph (CFG) is extracted. Next, loop transformations are applied. These
include transformations between loops and recursive function calls as well as virtual
loop unrolling. This unrolling is called “virtual” since it is performed internally,
without actually modifying the code to be executed. Results are represented in
the CRL (control flow representation language) format. The next phase employs
different static analyses. Static analyses read the AIP-file comprising designer’s
annotations. These annotations contain information which is difficult or impossible
to extract automatically from the program (e.g., bounds of complex loops). Static
analyses include value analysis, cache analysis, and pipeline analyses.

A value analysis computes enclosing intervals for possible values in registers
and local variables. The resulting information can be used for control flow analysis
and for data cache analysis. Frequently, values such as addresses are precisely
known (especially for “clean” code), and this helps in predicting accesses to
memories.

246 5 Evaluation and Validation

Loop transformation

CFG builder

visualization
WCET

Cache/pipeline analyzer

AnalysesStatic Path Analyses

ILP-generator

LP-solver

Evaluation

PER file

AIP file

CRL file

Value Analyzer

Loop bounds

Executable program

Fig. 5.5 Architecture of the aiT timing analysis tool

The next step is cache and pipeline analysis. We will present a few details about
the cache analysis. Suppose using an n-way set associative cache (see Fig. 5.6).1

We consider that part of the cache (the row) corresponding to a certain index
(shown in bold and blue in Fig. 5.6). We assume that eviction from the row is
controlled by the least recently used (LRU) strategy.2 This means that among all
references for a particular index, the last n referenced memory blocks are stored in
the row. We assume that the necessary LRU management hardware is available for
each index and that each index is handled independently of other indexes. Under
this assumption, all evictions for a particular index are completely independent
of decisions for other indexes. This independence is extremely important, since it
allows us to consider each of the indexes independently.

Let us now consider a row and a particular index. Suppose that we have
information about potential entries for each of the cache ways (columns). What
will happen in case of an access to a particular index? First of all, let us consider
the case of an access to a variable e known to be in the cache. After that access, that
variable is known to be the youngest (see Fig. 5.7). Entries on the left are assumed
to be younger than the ones on the right.

Now, assume that we have an access to some variable (say c) which is not yet in
the cache. This access will remove the oldest entry from the cache (see Fig. 5.8).

1We assume that students are familiar with concepts of caches.
2Unfortunately, this strategy is typically not available for processors.

5.2 Performance Evaluation 247

cache

address

Tag Index Offset
LRU-based eviction

set associative
4-way

= = = =

row shown in bold

Fig. 5.6 Set associative cache (for n = 4)

{e} {a} {d} {f}{e}{a} {d} {f}

Fig. 5.7 Access to variable e makes it the youngest

}d{ }f{}e{ }a{ {c} {e} {a} {d}

Fig. 5.8 Access to variable c causes eviction of f

Furthermore, consider control flow joins. What do we know about the content of
the partial cache after the join?

We must distinguish between may- and must-information and the corresponding
analysis. Must-analysis reveals the entries which must be in the cache. This
information is useful for computing the WCET. May-analysis identifies the entries
which may be in the cache. This information is typically used to conclude that
certain information will definitely not be in the cache. This knowledge is then
exploited during the computation of the BCET.

As an example of must- and may-analysis, we consider must information at
control flow joins. Figure 5.9 shows the corresponding situation. In Fig. 5.9,
memory object c is assumed to be the youngest object for one path to the join and
a is assumed to be the youngest object for the other path. The age of the other
entries is defined accordingly. What do we know about the “worst” case after the
join? A certain entry is guaranteed to be in the cache only if it is guaranteed to
be in the cache for both paths. This means that the intersection of the memory
objects defines the result of the must-analysis after the join. As a worst case, we
must assume the maximum of the ages along the two paths. Figure 5.9 shows the
result. This analysis uses sets of entries for each cache way.

Now, consider may-analysis for control flow joins. Figure 5.10 depicts the
situation. Some object being in the cache on either of the two paths to the join may
be in the cache after the join. Hence, the set of objects which may be in the cache

248 5 Evaluation and Validation

{a} {} {c,f} {d}

Intersection+maximum age
{c} {e} {a} {d}

{} {} {a,c} {d}

Fig. 5.9 Must-analysis at program joins for LRU caches

{d}{a}

{d}{a,c}

}c{ }e{ }a{ }d{
Union+minimum age

{} {c,f}

{e} {f}

Fig. 5.10 May-analysis at program joins for LRU caches

after the join consists of the union of the objects that were in the cache before the
join. As a best case, we use the minimum of the ages before the join. Figure 5.10
shows the result.

Static analyses also comprise pipeline analysis. Pipeline analysis has to compute
safe bounds on the number of cycles required to execute code in the machine
pipeline. Details of pipeline analysis are explained by Hahn et al. [196] and Thesing
[534]. The result of static analyses consists of bounds on the execution times for
each of the basic blocks of a program. Results are written to the PER-file shown in
Fig. 5.5.

aiT’s next phase exploits these bounds to derive WCETEST values for the
entire program, using an integer linear programming (ILP) model (see p. 393),
comprising two types of information:

• The objective function: In our application of ILP modeling, this function
represents the overall execution time. This time is calculated as

WCETEST =
∑

basic blocks

ei ∗ fi (5.3)

where ei is the worst case execution time of basic block i (as computed during
static analysis) and fi its worst case execution count. Only some of these counts
can be determined automatically, and additional designer-provided information,
e.g., about loop bounds, may be required.

• Linear constraints: These reflect the structure of the control flow graph.

5.2 Performance Evaluation 249

x4

start

x2
x0

_main

_L5
x16

x18
_L6

_L2: 20

_L6: 13
_L5: 20
_L4: 2
_L3: 2

_L1: 27
_main: 21 cycles

_L2 _L1 _L3

_L4
x8

x6
x7

x10
x9

exit

x5

x3
x20

x19 x11

x14

x1

Fig. 5.11 Sample program: left: extended control flow graph; right: WCETEST of basic blocks

Example 5.2 Let us consider the simple code shown next:

int main() { int i,j=0;
_Pragma("loopbound min 100 max 100") /* hint for bound analysis */

for (i=0; i <100; i++) {
if (i<50) j+=i;
else j+=(i*13) % 42;

}
return j;

}

Figure 5.11 (left) shows the control flow graph (CFG) corresponding to this small
program. This graph is extended by additional start and exit nodes. Node _L1 reflects
the for-testing, _L3 the if-testing, _L4 and _L5 the two cases of the if-statement,
and _L6 its join operation. Variables x0 to x20 denote the number of executions
of the blocks and the number of transitions between blocks. For example, we are
transitioning from node main into node _L1 x6 times and are executing the target
node x7 times. We assume that the analysis of the WCET for each of the basic
blocks has resulted in the list shown on the right of Fig. 5.11. The following is a
partial list of the ILP constraints:

01: 21 x2 + 27 x7 + 2 x11 + 2 x14 + 20 x16 + 13 x18 + 20 x19; /*objective*/
02: x7 - x8 - x6 = 0; /* Constraint for flow entering CFG node _L1 */
03: x7 - x9 - x10 = 0; /* Constraint for flow leaving CFG node _L1 */
04: x7 - 101 x9 >= 0; /* Constraint for lower loop bound of _L1 */
05: x7 - 101 x9 <= 0; ... /* Constraint for upper loop bound of _L1 */
06: x0 - x4 = 0; /* CFG Start Constraint */
07: x2 - x4 = 0; /* Constraint for flow entering function _main */
08: x2 - x6 = 0; /* Constraint for flow leaving CFG node _main */
09: ...

250 5 Evaluation and Validation

Line 01 contains the cost function. All other lines model constraints reflecting the
structure of the graph. Consider, for example, node _L1. Constraints for this node
are shown in lines 02 and 03. The number of times that we are branching into the
node (x6+x8) is equal to its number of executions (x7). The number of times that
we are leaving from the node (x9+x10) is also equal to its number of executions.
Lines 04 and 05 reflect the number of loop iterations. This number is taken from
the pragma in the code. Line 06 describes the fact that node start is executed exactly
as many times as we are branching into the code. The other lines are reflecting the
structure in a similar way. ∇

The ILP problem can be solved with some standard ILP solver. Maximizing the
objective function yields a safe upper bound on the WCET.

This technique for modeling execution time is called implicit path enumeration
(IPET) [343], since the problem of enumerating the potentially large number of
execution paths is avoided.

aiT visualizes the results as annotated control flow graphs. The designer could
optimize the system under design by exploiting these graphs. Due to the pre-
sented approach, aiT has limitations: preemption by other processes, interrupts,
input/output, and direct memory transfers (DMA) are not supported.

Only few approaches exist for the WCET analysis of multi-cores [264, 265, 286].
New probabilistic approaches [2] aim at complementing available methods. They
are usually based on extreme value theory [123].

5.2.3 Real-Time Calculus

WCET estimates allow us to predict the execution of some algorithm for a single
input event. However, the overall goal is more comprehensive. Overall, we should
make sure that our hardware platform is capable of processing streams of events
in a timely manner (which may be important for some parts of the Internet of
Things).

This can be checked with Thiele’s real-time calculus (RTC). This calculus
(RTC) is based on the description of the rate of incoming events.3 This description
also includes fluctuations of this rate. Toward this end, the timing characteristics of
a sequence (or stream) of events are represented by a tuple of arrival curves:

α u(�), α l(�) ∈ R ≥ 0,� ∈ R ≥ 0

These curves represent the maximal resp. the minimal number of events arriving
within a time interval of length �. There are at most α u(�) and at least α l(�)

3Our presentation of the real-time calculus is based on Thiele’s presentation in the book edited
by Zurawski [536]. Resulting considerations at the system level have been called modular
performance analysis (MPA).

5.2 Performance Evaluation 251

Fig. 5.12 Arrival curves: left: periodic stream; right: periodic stream with jitter J

events arriving within the time interval (t, t+�) for all t ≥ 0. Figure 5.12 shows the
number of possibly arriving events for some possible models of arriving events. For
example, in the case of periodic event streams with period T , there is a maximum
of a single event happening in time interval (0, T).4 Similarly, there is an upper
bound of two events within time interval (T , 2T). Now, let us consider the lower
bound for time interval (0, T). There is possibly not a single event in this interval.
Hence, the bound is zero. For time interval (T , 2T), there has to be at least one
event. Therefore, the bound is one. So, for � = 0.5T , there will be at least zero
and at most one incoming event (see Fig. 5.12 (left)). In the case of periodic event
streams with jitter J , these curves are shifted by this amount (see Fig. 5.12 (right)).
The upper bound is shifted to the left; the lower bound is shifted to the right. The
jitter is assumed not to be accumulating.

We are using bars on top of symbols (like α) for all entities referring to incoming
events.

Available computational and communication service capacity can be described
by service functions:

β u(�), β l(�) ∈ R ≥ 0,� ∈ R ≥ 0

These functions allow us to model situations in which the available service capacity
is fluctuating. Figure 5.13 shows the communication capacity of some time division
multiple access (TDMA) bus (see p. 176). Allocation is done periodically with a
period of T . Bus arbitration allocates this bus during a time window s time units
long. During this window, the bus achieves a bandwidth of b. The upper bound is
obtained if the bus is allocated exactly at the time we are starting our observation.
The transferred amount is then increasing linearly. The lower bound is obtained if
the bus was just deallocated when we started our observation of length �. Then we
must wait T − s time units until the bus gets allocated again.

Separate methods are required to determine α and β for streams of (“external”)
events arriving at the system to be modeled. Their computation is not part of RTC. In
contrast, bounds for events generated within the system are derived by the calculus
(see below).

4We leave out the subtle discussion of discontinuities at � = n ∗ T .

252 5 Evaluation and Validation

Fig. 5.13 Service functions for a TDMA bus

Up till now, there is no information about the workload required by each
of the incoming events. This workload is represented by additional functions
γ u(e), γ l(e) ∈ R ≥ 0 for each sequence e of incoming events. This information
can be derived from bounds on the execution time of code required for each of the
events. Figure 5.14 shows an example of such functions. This example is based on
the assumption that between three and four time units are required for processing
a single event. Accordingly, the workload for a single event varies between three
and four time units, the work load for two events varies between six and eight time
units, etc. The dashed lines are not part of the function, since it is defined only for
an integer number of events. The work load resulting from an incoming stream of
events can now be easily computed. Upper and lower bounds are characterized by
the functions

αu(�) = γ u(αu(�)) and (5.4)

α l(�) = γ l(α l(�)) (5.5)

There should be enough computational or communication capacity to handle
this workload. The number of events which can be processed with the available
computational capacity can be computed as

β u(�) = (γ l)−1(β u(�)) and (5.6)

β l(�) = (γ u)−1(β l(�)) (5.7)

Equations (5.6) and (5.7) use the inverse of functions γ u and γ l to convert bounds
on the available capacity (measured in real time units) into bounds measured in
terms of the number of events that can be processed.

Based on this information, it is possible to derive the properties of outgoing
streams of events from incoming streams of events. Suppose the incoming stream
is characterized by bounds [α l, α u]. We can then compute characteristics of the
outgoing streams such as the corresponding bounds [α l′ , α u′] of the outgoing
stream of events and the remaining service capacity, available for other tasks. This
remaining capacity is derived by transforming service curves [β l, β u] into service
curves [β l′ , β u′] (see Fig. 5.15). This remaining service capacity can be employed
for lower-priority tasks to be executed on the same processor.

5.2 Performance Evaluation 253

Fig. 5.14 Workload
characterization (WCETEST

may be used instead of
WCET)

Fig. 5.15 Transformation of event stream and service capacities by real-time components

According to Thiele et al., outgoing streams and remaining service capacities are
bounded by the following functions [536]:

αu′ = [(αu⊗β u)�β l] ∧ β u (5.8)

α l′ = [(α l �β u)⊗β l] ∧ β l (5.9)

β u′ = (β u − α l)� 0 (5.10)

β l′ = (β l − αu)⊗ 0 (5.11)

Operators used in these equations are defined as follows:

(f ⊗ g)(t) = inf 0≤u≤t {f (t − u) + g(u)} (5.12)

(f ⊗ g)(t) = sup0≤u≤t {f (t − u) + g(u)} (5.13)

(f � g)(t) = supu≥0{f (t + u) − g(u)} (5.14)

(f � g)(t) = inf u≥0{f (t + u) − g(u)} (5.15)

∧ denotes the minimum operator.

254 5 Evaluation and Validation

In essence, these equations characterize outgoing streams and capacities. These
equations have been adopted from communications theory. Proofs regarding these
equations are provided by Network Calculus [327]. The easiest way of using these
equations is to download a MATLAB® toolbox [561].

The same theory also allows to compute the delay caused by the real-time
components as well as the size of the buffer required to temporarily store incom-
ing/outgoing events. This way, performance and other characteristics of the system
can be computed from information about the components.

A second performance analysis method has been proposed by Henia and Ernst
et al. In this so-called SymTA/S approach [210], the different curves in Thiele’s
approach are replaced by standard models of event streams such as periodic event
streams, periodic event streams with random jitter, and periodic event streams with
bursts. SymTA/S explicitly supports the combination and integration of different
kinds of analysis techniques known from real-time research.

5.3 Quality Metrics

5.3.1 Approximate Computing

Sometimes, computing the best possible output of some algorithm requires a
significant amount of resources (in terms of computing time, energy, thermal
headroom, etc.). For some applications, the best possible output is not actually
needed, since minor degradations will possibly not even be recognized by users.
This can be exploited in a resource-constrained environment in order to trade off
the quality of the output against needed resources. A certain deviation of the actual
output from the best possible output is accepted, for example, for lossy audio, video,
and image encoding. This leads us to consider approximate computing.

Definition 5.11 Computing which tolerates a certain deviation of generated output
of some algorithm from the best possible result is called approximate computing
[397].

With approximate computing, it is necessary to consider the quality of the
generated output as one of the objectives. Unfortunately, it is not easy to evaluate
the quality of some generated result, and several metrics can be used.

5.3.2 Simple Criteria of Quality

Some simple metrics can be applied whenever the true (or the best possible) output
is known. Suppose that x1, . . . , xn are n samples of some signal x in discrete time.

5.3 Quality Metrics 255

Furthermore, suppose that instead of the real (or the best possible) values x1, . . . , xn

we measure or compute approximate values y1, . . . , yn.
Then, our first metric, the mean-squared error (MSE), is defined as follows:

Definition 5.12 The mean-squared error (MSE) is defined as

MSE(x, y) = 1

n

n∑
i=1

(xi − yi)
2 (5.16)

The second metric is the root-mean-squared error.

Definition 5.13 The root-mean-squared error (RMSE) is defined as

RMSE(x, y) =
√√√√1

n

n∑
i=1

(xi − yi)2 (5.17)

RMSE has the same dimension as the difference between the actual and the real
value, but it should not be confused with the “average error” which is defined next:

Definition 5.14 The mean absolute error (MAE) is defined as

MAE(x, y) = 1

n

n∑
i=1

|xi − yi | (5.18)

For identical deviations of the measured signal y from real values x, the MAE is
equal to the RMSE. However, the RMSE emphasizes large deviations between real
and measured values (so-called outliers).

The signal-to-noise ratio (SNR) was already defined on p. 142. Next, we define
the peak signal-to-noise ratio, which is similar to the SNR. Let x be a signal, xmax

its maximum, and y its noisy approximation.

Definition 5.15 The peak signal-to-noise ratio (PSNR) is defined as

PSNR(x, y) = 10 log10

(
x2
max

MSE(x, y)

)
(5.19)

= 20 log10

(
xmax

RMSE(x, y)

)
(5.20)

The PSNR, just like the SNR, is measured in decibels (dB).

The above values are easy to compute, but they are agnostic of the impression
which humans might have of certain errors [315]. It is known that certain deviations
between real and computed signal values are hardly noticed by humans. This is the
foundation of lossy coding techniques such as MP3, JPEG, or digital TV standards.
None of the metrics presented so far reflects the impression of deviations by humans.

256 5 Evaluation and Validation

Next, we will present the universal image quality index (UIQI) [562]. This index
tries to capture changes in the structure of images, since the human eye is very
sensitive to it. We will present the computation of this index for gray-scale images.
Several values need to be computed [315]:

μx = 1

n

n∑
i=1

xi (5.21)

μy = 1

n

n∑
i=1

yi (5.22)

�(x, y) = 2μxμy

μ2
x + μ2

y

(5.23)

Equations (5.21) and (5.22) compute the average brightness of each of the images,
and these averages are used to compute �(x, y). For images of the same average
brightness, �(x, y) will be equal to 1. Otherwise, this value will be less than 1.

Furthermore, we consider variances. Equations (5.24) and (5.25) compute the
contrast of each of the images, and these averages are used to compute c(x, y):

σx =
√√√√ 1

(n − 1)

n∑
i=1

(xi − μx)2 (5.24)

σy =
√√√√ 1

(n − 1)

n∑
i=1

(yi − μy)2 (5.25)

c(x, y) = 2σxσy

σ 2
x + σ 2

y

(5.26)

For images of the same average contrast, c(x, y) will be equal to 1. Otherwise, this
value will be less than 1. Equation (5.27) computes the cross-correlation of the two
images:

σx,y = 1

n − 1

n∑
i=1

(xi − μx)(yi − μy) (5.27)

s(x, y) = σx,y

σxσy

(5.28)

Positive values of s(x, y) as computed from Eq. (5.28) correspond to a good
correlation of the two images; negative values correspond to an inverse correlation.

An overall quality index is then computed by Eq. (5.29):

5.3 Quality Metrics 257

Q(x, y) = 2μxμy

μ2
x + μ2

y

∗ 2σxσy

σ 2
x + σ 2

y

∗ σx,y

σxσy

(5.29)

Q = 1 for identical images, and Q will be negative for inversely correlated images.
It does not make sense to consider the correlation of images globally, since some

inverse correlation in a particular block will already provide a negative impression
about the image. Hence, Eq. (5.29) is computed only for blocks of pixels. The global
UIQI value takes the values of Q for the different blocks into account.

The structural similarity index measure (SSIM) [563] is an extension of the UIQI
objective.

Kühn compared the different metrics and found that none of these is really
superior to others [315]. He recommends that several of these metrics should be
computed and a careful comparison should be performed in practice. An overview
over some useful objectives is also provided by Mittal [397].

In digital communications, the bit error ratio (BER) is an important metric.

Definition 5.16 The bit error ratio (BER) is ratio of the number of bit errors
divided by total number of communicated bits.

5.3.3 Criteria for Data Analysis

Sensors are typically not ideal in sense that some readouts deviate from the real
values. Furthermore, it may be necessary to fuse data generated by various sensors.
Hence, it is necessary to use data analysis techniques, e.g., machine learning (see
p. 15). Generated results will not always be correct as well, either because sensor
readouts were already compromised or due to imperfect data analysis techniques. In
a way, we are dealing with approximate computing even though this term was not
used in this context.

For data analysis, classification of objects is a very frequent goal. Let X be a
set of objects which we would like to classify. Suppose that we restrict ourselves to
binary classification.

Example 5.3 For example, consider the case of searching for amber at a beach.
Unfortunately, white phosphorus as a leftover from bombs found, e.g., at the Baltic
ocean, looks very much like amber but starts to suddenly burn at 1300 ◦C when
it dries. Classifying some found objects as either amber or phosphorus is thus a
very delicate task (and hence, inexperienced people should not touch such objects
anyway). ∇

In this context, four cases are possible:

• True positives (TP): we classify some object as amber, and it is actually valuable
amber.

258 5 Evaluation and Validation

• False positive (FP): we classify some object as amber, and it is actually
dangerous.

• True negative (TN): we classify some object as dangerous and it is actually
dangerous.

• False negative (FN): we classify some object as dangerous, and it is actually
valuable amber.

Absolute numbers have to be related to each other. Hence, the following metrics
have been defined:

Definition 5.17 The precision p is defined as the fraction

p = T P

T P + FP
(5.30)

In the case of searching for amber, we aim at a precision of 1, since we do not
want to get burnt.

Definition 5.18 The recall r (or sensitivity) is defined as the fraction

r = T P

T P + FN
(5.31)

In order to obtain a good precision, we will have to accept some false negatives
(e.g., amber classified as phosphorus).

Definition 5.19 The accuracy acc is defined as the fraction

acc = T P + T N

T P + FP + T N + FN
(5.32)

In the case of searching for amber, we might tolerate a non-optimal accuracy, due
to the importance of keeping false positives as close to zero as possible, and, hence,
we might have several false negatives.

Definition 5.20 The specificity is defined as the fraction

specificity = T N

T N + FP
(5.33)

Definition 5.21 The F1 score or F-measure is defined as the harmonic mean of
precision and recall:

F1 = 2
p ∗ r

p + r
(5.34)

In a more general context, the quality of service (QoS) is another well-known
metric. Frequently, it is related to the quality of communication channels, where bit
error rates, latency, and bandwidth are indicators of quality.

5.4 Energy and Power Models 259

In an even wider sense, we may also consider not just those technical parameters
but also the overall experience for the user. This is captured in the quality of
experience (QoE) metric, which refers to the overall user experience including all
aspects which might be considered by a user. There is a number of metrics which
can be used to estimate the overall quality of experience [400].

5.4 Energy and Power Models

5.4.1 General Properties

Energy models and power models are essential for evaluating the corresponding
objectives. Such models are needed for optimizations aiming at a reduction of power
and energy consumptions. They are also required for optimizations trying to reduce
operating temperatures and to improve reliability. Power estimation is used in power
management algorithms (see p. 373).

Energy and power models are closely related, as can be seen from Eq. (3.13).
Energy can be computed as the integral of power over time. Once the energy
consumption is known, we can compute the average power consumption. In general,
we can use:

1. Measurements on real hardware: measurements can be very precise, but they
apply only to the hardware at hands. Measuring voltages is typically rather easy
and does not require complex procedures.

Measuring currents can be done with a current clamp or a shunt resistor.

• Current clamps have to enclose one of the wires of the power supply cable.
They measure the magnetic field caused by the current flowing through the
cable. The advantage of this approach is that no power wires have to be broken
and power will remain connected unchanged to the device being analyzed. The
disadvantage is that current clamps do not allow precise measurements.

• Using an ammeter typically results in a better precision. However, an
insertion of the ammeter directly into the power line has some disadvantages.
For example, the system is unpowered if we remove the ammeter. Also, long
cables might add noise. Therefore, it is typically preferable if we include a
shunt resistor. A typical circuit containing a shunt is shown in Fig. 5.16 (left).

The advantage of using a shunt resistor over using a simple ammeter is that
the shunt can be integrated into the power wires. Due to the shunt resistor,
currents flowing into the device under test will cause a voltage drop across
the shunt, and this voltage can be measured and used to compute the current
from Ohm’s law. Finding the right resistance of the shunt is an issue. If the
resistance is too large, the device under test will be powered with a voltage
lower than the original voltage and might even fail to work. If the resistance
is too small, the voltage across the shunt will be too small to be reliably

260 5 Evaluation and Validation

Device to
be tested

Shunt

supply
Power

be tested
Device to Power

supply

Shunt

V V

Fig. 5.16 Measuring current: left, two-wire connection; right, feedback into voltage regulator

measured and will be subject to a substantial amount of noise. Selecting the
right resistance depends on the current flowing into the device under test. If
this current varies substantially, it may even be necessary to employ several
shunt resistors and switch between them, depending on the current actually
flowing. The problem regarding the voltage drop can be partially avoided
when regulated power supplies are used and the regulator feedback input
can be connected to the voltage actually powering the device (see Fig. 5.16
(right)). The power supply would then try to keep the voltage at the device
at its nominal level. However, the voltage across the shunt is affected by the
current flowing back into the voltage regulator input.

Unfortunately, there will not be a separate power pin or wire for every
component within the device and we can compute only a lumped sum of
currents drawn by the device. We may have to stimulate the device in a
particular way in order to get information about the consumption of the
different components.

• Models can be used even when real hardware is not available, but they
can be very imprecise. Models have to be validated; otherwise they would
remain very questionable. Two validation methods can be found for many of
the available power and energy models: either models are validated against
more detailed models at a lower level of abstraction, or they are compared
with measurement for real devices, resulting in a hybrid model. Validation
against measurements requires a method for selecting model parameters.
Frequently, linear models are selected, and parameters are selected with using
the least square method (minimizing the MSE as per Eq. (5.16)). Curve fitting
with this method is typically available in mathematical tool boxes such as
MATLAB®. More recently, using machine learning for this purpose became
more preferable. For example, Falkenberg et al. [161] used machine learning
for modeling the power consumption of transmitters in mobile phones.

There is no one-approach-fits-all solution for energy consumption modeling.
Instead, the usual approach is to combine ideas for modeling to fit the needs at hand.
Therefore, we will present representative examples of power models and hope that
the reader will identify the combination of methods which fits his/her constraints
best.

5.4 Energy and Power Models 261

5.4.2 Energy Model for Memories

As described in the section on memory hardware (see p. 168), the energy con-
sumption of caches and other memories can be computed with CACTI [408, 589].
CACTI assumes an abstract layout of the memory, extracts capacitances from the
layout, and computes access times, cycle times, area, leakage, and dynamic power
consumption from this information. CACTI has been validated against models of
the same memories at a more detailed level, employing SPICE [519] as the solver
at that level. Currently (in 2020), the most recent version of CACTI (version 6.5)
is available from http://www.hpl.hp.com/research/cacti/.5 Recent enhancements
include detailed modeling of the interconnect and modeling of non-uniform memory
accesses. Models of transmitters and sense amplifiers have been included. Also,
used architectural and technological parameters can be specified.

5.4.3 Energy Model for Instructions

One of the first power models was proposed by Tiwari [542]. The model includes so-
called base costs and inter-instruction costs. Base costs of an instruction correspond
to the energy consumed per instruction execution if an infinite sequence of instances
of that instruction is executed. Base costs have been computed by running programs
consisting of 120 identical instructions and a branch back to the beginning of this
sequence. Programs are designed such that no stall cycles appear. This may require
the adding of no-operation instructions and some simple calculations to eliminate
their contribution to the energy consumption.

Inter-instruction costs model the additional energy consumed by the processor
if instructions change. This additional energy is required, for example, due to
switching functional units on and off. Inter-instruction costs reflect the impact of
the initial circuit state on the overall energy consumption of an instruction. These
costs can be computed by running programs containing an alternating sequence of
instructions pairs.

Base costs and inter-instruction costs are computed for a program not generating
any cache misses. The effect of cache misses has to be added to these two costs.
This requires the knowledge of the cache miss ratio and the memory access
energy. The memory energy depends on the addresses accessed. No attempt is
made to statically predict memory addresses. Hence, this contribution can only be
determined dynamically, during the execution of the program.

The model has been applied to two real systems, an Intel 486 DX2 and a Fujitsu
SPARClite 934. Measurements of the currents have been used to calibrate the model.

5It is recommended to use this URL, since there are several tools with the same name. Currently, a
modifiable C++-version is available. Previously available web interfaces do not exist any longer.

http://www.hpl.hp.com/research/cacti/

262 5 Evaluation and Validation

5.4.4 Energy Model for Functional Processor Units

The Wattch power estimation tool [70] estimates the power consumption of micro-
processor systems at the architectural level. Wattch uses the SimpleScalar simulator
to simulate processors. SimpleScalar can be configured to model the processor
at hand as closely as possible. The number of pipeline stages and functional
units is typically correctly modeled, whereas some more specialized features are
possibly not. Wattch is based on detailed information on the energy consumption
of the different components which we could find in a microprocessor. While
running, SimpleScalar keeps track of invoked functional units. Wattch exploits this
information in order to compute an overall energy consumption.

Wattch requires much more information about the architecture than Tiwari’s
instruction-set level approach. For example, Wattch includes its own detailed model
of the energy consumption in memories. Also, clocking is taken explicitly into
account, including conditional clocking if clock gating is used. In the original paper
[70], results have been validated for three different processors.

5.4.5 Energy Model for Processor and Memory

The level of details of the model by Steinke et al. [510] lies between that of Tiwari
and that of Wattch. For instructions and for data, the model considers the sum of the
energies consumed in the CPU and the memory:

Etotal = Ecpu_instr + Ecpu_data + Emem_instr + Emem_data (5.35)

Each of the four terms is then computed from detailed equations. The following
notation is used in these equations: m is the number of instructions considered, w(b)

returns the number of ones in its argument (either code or data), h(b1, b2) returns
the Hamming distance between its two arguments, dir denotes the direction of data
transfer, and αi and βi (i ∈ {1..10}) are constants computed from curve fitting of
measured energies. Using this notation, Ecpu_data can be computed as follows:

Ecpu_data =
m∑

i=1

{α5 ∗ w(DAddri) + β5 ∗ h(DAddri−1,DAddri)

+α6,dir ∗ w(Datai) + β6,dir ∗ h(Datai−1,Datai)} (5.36)

where Datai is the data value used in instruction i, and DAddri is its address.
Furthermore, consider Emem_data , a term which is relevant only when the data is

actually loaded from the main memory:

5.4 Energy and Power Models 263

Emem_data =
m∑

i=1

{BaseMem(DataMem, dir,Word_width)

+α9 ∗ w(DAddri) + β9 ∗ h(DAddri−1,DAddri) (5.37)

+α10,dir ∗ w(Datai) + β10,dir ∗ h(Datai−1,Datai)}

where BaseMem is the base cost for accessing a memory object of a particular
width in direction dir .

Emem_instr can be computed as follows:

Emem_instr =
m∑

i=1

{BaseMem(InstrMem,Word_widthi)

+α7 ∗ w(IAddri) + β7 ∗ h(IAddri−1, IAddri) (5.38)

+α8 ∗ w(IDatai) + β8 ∗ h(IDatai−1, IDatai)}

where BaseMem is the base cost for accessing a memory word of a particular width
from the instruction memory, IAddri is the address of the instruction, and IDatai

is instruction i itself.
Ecpu_instr can be computed from the following equation:

Ecpu_instr =
m∑

i=1

{BaseCPU(Opcodei) + FUChange(Instri−1, Instri)

+α4 ∗ w(IAddri) + β4 ∗ h(IAddri−1, IAddri)

+
s∑

j=1

(α1 ∗ w(Immi,j) + β1 ∗ h(Immi−1,j , Immi,j)) (5.39)

+
t∑

k=1

(α2 ∗ w(Regi,k) + β2 ∗ h(Regi−1,k, Regi,k))

+
t∑

k=1

(α3 ∗ w(RegV ali,k) + β3 ∗ h(RegV ali−1,k, RegV ali,k))}

where BaseCPU is the base cost for Opcodei , FUChange(..) reflects the costs
caused by the transition from instruction i − 1 to i, Imm reflects the impact of up
to s immediate values per instruction, Reg reflects the register numbers of up to t

registers per instruction, and RegV al reflects up to t register values per instruction.
To determine constants, dedicated code sequences have to be designed in order

to attribute energy consumption to particular terms of the equations.

264 5 Evaluation and Validation

Example 5.4 The following code sequence allows measuring the energy required
for executing a load word instruction:

start: lw R1, address /* load word */
lw R1, address /* load word */
... /* lw instruction repeated 50-100 times */
bra start /* back to the start */

The impact of the branch back to the beginning on the energy consumption can be
neglected. The impact of different addresses, register numbers, and register content
can be studied by varying these values. For example, we can initially set all these
values to zero and then incrementally study the impact of additional ones. ∇

In our own experiments, constants were determined by running a linear regres-
sion method on the data. A significant impact of the number of ones in the data was
found, which would have been unnoticed for Tiwari’s model.

5.4.6 Energy Model for an Application

The Odroid-XU3 [202] platform (see Fig. 5.17) comprises current sensors. The
sensors enable precise measurement of the consumed power during the execution
of applications, measuring the consumption of ARM® big cores, little cores, GPU,
and DRAM individually. This possibility is exploited by several researchers. For
example, Neugebauer et al. [416] have integrated Odroid-XU3 processors into their
design space exploration for one application. Hence, design space exploration is
based on a realistic analysis of the consumed energy. This approach eliminates
the use of models of unknown precision. The overall approach for design space
exploration enabled by the XU3 is shown in Fig. 5.18.

Fig. 5.17 Odroid-XU3

5.4 Energy and Power Models 265

Energy Meter

Energy Meter

Fitness Evaluation

Fitness Evaluation

Algorithm
Genetic

Odroid-XU3

A7 A15

RAMT628
Mali

Mali
T628 RAM

A15A7

Odroid-XU3

Master PC

Fig. 5.18 Evolutionary algorithm, fitness estimation based on real measurements

The design space exploration is based on a genetic algorithm. The evaluation of
a particular solution is based on real execution of the code on an XU3. The resulting
optimized algorithm has been used by Neugebauer et al. [417] within the cyber-
physical system PAMONO which is capable of detecting bio-viruses online. It is
based on the physical so-called Plasmon effect of visualization of small objects.
Unfortunately, the Odroid-XU3 has been discontinued and replaced by the XU4 not
including current sensors.

5.4.7 Energy Model for Multiple Applications with Hardware
Multithreading

Kerrison and Eder analyzed the energy consumption of the XMOS XS1-L multi-
threaded processor design for real-time applications [290]. One of the particular
features of that processor is its hardware-supported multithreading: it performs fast
context switching between four threads in hardware. One of the research questions
was: how much does the hardware context switching between threads cost? Due
to the availability of real hardware, this question could be answered with real
measurements. The power consumed by the XMOS XS1-L was measured with
a shunt resistor inserted into its power cable, and the resistor was connected to
an INA219 power measurement chip (see http://www.ti.com/product/ina219). The
software running on the processor was controlled from a second processor. It turned
out that the best energy efficiency was reached when all four hardware threads
are used. However, hardware multithreading leads to many charging/discharging
operations and a corresponding energy consumption. The interesting experimental
results include an analysis of the impact of executed instructions on the energy
consumption, as shown in Fig. 5.19 for the case of 8 bit data.

Figure 5.20 displays the corresponding information for the case of 16 bit data.
The two dimensions of the diagrams encode the applications which are run in

the odd and even threads, respectively. In these figures, a change in the number of
operands is indicated by dashed lines. Instructions with three or more operands are

http://www.ti.com/product/ina219

266 5 Evaluation and Validation

ze
xt

ru
s

se
xt

ru
s

an
dn

ot
2r

ze
xt

2r
se

xt
2r

cl
z

l2
r

no
t

2r
bi

tr
ev

l2
r

by
te

re
v

l2
r

mk
ms

k
ru

s
mk

ms
k

2r
ne

g
2r

eq
2r

us
eq

3r
sh

r
2r

us
ls

s
3r

ls
u

3r
sh

l
3r

sh
r

3r
ad

d
2r

us
an

d
3r

or
3r

sh
l

2r
us

ad
d

3r
as

hr
l3

r
as

hr
l2

ru
s

su
b

2r
us

xo
r

l3
r

cr
c3

2
l3

r
su

b
3r

cr
c8

l4
r

ma
cc

s
l4

r
ma

cc
u

l4
r

la
dd

l5
r

ls
ub

l5
r

lm
ul

l6
r

zext rus
sext rus

andnot 2r
zext 2r
sext 2r
clz l2r
not 2r

bitrev l2r
byterev l2r

mkmsk rus
mkmsk 2r

neg 2r
eq 2rus
eq 3r

shr 2rus
lss 3r
lsu 3r
shl 3r
shr 3r
add 2rus
and 3r
or 3r

shl 2rus
add 3r

ashr l3r
ashr l2rus
sub 2rus
xor l3r

crc32 l3r
sub 3r

crc8 l4r
maccs l4r
maccu l4r
ladd l5r
lsub l5r
lmul l6r

12
0

12
8

13
6

14
4

15
2

16
0

16
8

17
6

18
4

19
2

20
0

Power (mW)

Fig. 5.19 Power analysis for multithreading for 8 bit data, top, power consumption as a function
of instructions on 8 bit data executed in the even threads (vertical axis) and in the odd threads
(horizontal axis) ©Kerrison, Eder; bottom, color encoding of temperatures

shown at the top and at the right end of each diagram. Obviously, the consumed
energy increases with the number of operands. Figure 5.20 demonstrates that
processing 16 bit data requires more energy than processing 8 bit data. Kerrison
et al. use these results in order to optimize embedded software.

5.4 Energy and Power Models 267

ze
xt

ru
s

se
xt

ru
s

ze
xt

2r
se

xt
2r

an
dn

ot
2r

mk
ms

k
ru

s
cl

z
l2

r
no

t
2r

bi
tr

ev
l2

r
mk

ms
k

2r
by

te
re

v
l2

r
ne

g
2r

eq
2r

us
eq

3r
ls

s
3r

sh
r

2r
us

ls
u

3r
ad

d
2r

us
sh

l
2r

us
sh

l
3r

sh
r

3r
su

b
2r

us
an

d
3r

or
3r

as
hr

l2
ru

s
as

hr
l3

r
ad

d
3r

su
b

3r
cr

c3
2

l3
r

xo
r

l3
r

cr
c8

l4
r

ma
cc

s
l4

r
ma

cc
u

l4
r

la
dd

l5
r

ls
ub

l5
r

lm
ul

l6
r

zext rus
sext rus
zext 2r
sext 2r

andnot 2r
mkmsk rus

clz l2r
not 2r

bitrev l2r
mkmsk 2r

byterev l2r
neg 2r
eq 2rus
eq 3r

lss 3r
shr 2rus
lsu 3r
add 2rus
shl 2rus
shl 3r
shr 3r
sub 2rus
and 3r
or 3r

ashr l2rus
ashr l3r
add 3r
sub 3r

crc32 l3r
xor l3r

crc8 l4r
maccs l4r
maccu l4r
ladd l5r
lsub l5r
lmul l6r

Fig. 5.20 Power analysis for multithreading for 16 bit data, power consumption as a function
of instructions on 16 bit data executed in the even threads (vertical axis) and in the odd threads
(horizontal axis); temperature encoding as in Fig. 5.19 (bottom) ©Kerrison, Eder

5.4.8 Energy Model for an Android Mobile Phone

Zhang et al. [612] describe a power model construction technique for an HTC
Android phone, called PowerBooter. Their technique uses the following equation:

E = (βuh ∗ f reqh + βul ∗ f reql) ∗ util + βCPU ∗ CPUon

+βbr ∗ brightness + βGon ∗ GPS_on + βGsl ∗ GPS_sl

+βWiF i_l ∗ WiF il + βWiF i_h ∗ WiF ih + β3G_idle ∗ 3Gidle

+β3G_FACH ∗ 3GFACH + β3G_DCH ∗ 3GDCH (5.40)

268 5 Evaluation and Validation

where

β.. : constants to be determined

f reqi : CPU frequencies

util : CPU utilization

CPUon : refers to processor utilization

brightness : takes illumination into account

GPS.. : relates to GPS usage

WiF il : amount of time, Wi-Fi is in low-speed mode

WiF ih : amount of time, Wi-Fi is in high-speed mode

3G3G_idle : amount of time, 3G is idle

3GFACH : amount of time, a shared 3G channel is used

3GDCH : amount of time, a dedicated 3G channel is used

Obviously, PowerBooter is abstracting much more from the details of the hardware
implementation. Note that PowerBooter also includes communication, which was not
taken into account in our previous models. Parameters are determined, as before,
by measuring currents in dedicated setups and using some curve fitting method.
Measurements are based on a Monsoon power monitor (see http://www.msoon.com/
LabEquipment/PowerMonitor/).

The model construction technique allows, in combination with a battery model,
a prediction of battery lifetime. The resulting information is made available to a
tool called PowerTutor. PowerTutor is intended to provide some help for adjusting
applications to different hardware platforms and as an aid for application developers
to exploit power-saving techniques in their application without digging deep into the
peculiarities of the available hardware.

Another model for the energy consumption in mobile phones was presented by
Dusza et al. [144]. Several commercial tools also provide power and/or energy
estimation.

All of the energy consumption models considered so far were designed to
model an average case power or energy consumption, where term “average case”
might still need some clarification. Computed models might apply only for certain
inputs or for certain initial states. Average case results are valuable for predicting
temperatures and battery lifetime for certain time intervals.

5.4.9 Worst Case Energy Consumption

In certain contexts, the worst case power consumption or worst case energy
consumption is of interest.

http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

5.5 Thermal Models 269

Definition 5.22 The worst case energy consumption (WCEC) of an embedded
system is defined as the largest energy consumption, computed as the maximum of
the energy consumption for all inputs and initial states.

Definition 5.23 The worst case power consumption (WCPC) of an embedded
system is defined as the largest power consumption, computed as the maximum of
the power consumption for all inputs and initial states.

The WCPC is relevant in the context of the dimensioning of the interconnect
and the power supply. The WCEC is relevant in the context of the design of battery
systems. We need to guarantee that the chosen battery system meets the WCEC
requirements. A safe upper bound on the WCEC can be computed as follows:

WCEC ≤
∫ WCET

0
WCPC dt = WCET ∗ WCPC

Techniques for tighter WCEC estimation have been proposed, for example, by
Jayaseelan et al. [271], by Pallister et al. [443], and by Wägemann et al. [559].
Similar to the computation of worst case execution times, these tighter bounds may
still be an overestimation, and the actual worst case power and energy consumption
are still unknown.

5.5 Thermal Models

The quest for higher performances of embedded systems increased the chances of
components becoming hot. Temperatures of the various components of embedded
systems can have a serious impact on their usability, e.g., on sensor readouts. In the
worst case, overheated components cause damages to other systems. For example,
they may cause fire hazards. Hot components might also have other consequences,
even in the absence of immediate failures. For example, the system life might be
shortened, sometimes by large factors (see Black’s equation on p. 283). Also, it may
be necessary to power down parts of silicon chips in order to avoid overheating. This
has been called the dark silicon problem [153].

The thermal behavior of embedded systems is closely linked to the transforma-
tion of electrical energy into heat. Therefore, thermal models are usually linked to
energy models. Thermal models are based on the laws of physics.6

6We will denote temperatures by θ in order to avoid confusion with periods denotes by T .

270 5 Evaluation and Validation

Fig. 5.21 Plate of
thickness L

L
A

Table 5.1 Approximate thermal characteristics of materials for air, copper, and silicon

κ: thermal conductivity cp: specific heat cv : volumetric heat capacity

Material (W/(K m)) (J/(K g)) (J/(K m3))

Air (25 C) 0.025 [583] 1.012 [578] 1.21 * 103 [578]

Copper 401 [583] 0.385 [568, 578] 3.45 * 106 [578]

Silicon (≈26 C) 148 [148] 0.705 [148, 568] 1.64 * 106 [148]a

aCalculated using Eq. (5.56)

5.5.1 Steady-State Behavior

Consider a homogeneous plate made of a particular material and of area A and
thickness L (see Fig. 5.21). Suppose that there is a temperature difference of �θ

between the opposite sides. We assume that heat will be propagating independently
of the direction (isotropy), and we assume being in the steady state (no transients).
Furthermore, the sides of area are supposed to be much larger than the thickness of
the plate, and we can ignore effects at the boundary of the plate. Then, the thermal
power which gets transferred across the plate is equal to

Pth = κ
�θ ∗ A

L
where: (5.41)

Pth: thermal power transferred; κ:thermal conductivity; A: area; �θ : temperature
difference; L: thickness

Equation (5.41) is also known as Fourier’s law.

Definition 5.24 Due to Eq. (5.41), we can define thermal conductivity κ as the
amount of the thermal power Pth transferred through a plate made of some material
of unit area and unit thickness when the temperatures at the opposite side differ by
one temperature unit (typically Kelvin).

Frequently, λ is used instead of κ . κ depends on the material and environmental
conditions. Values for some common materials for common conditions are included
in Table 5.1. Refer to the cited sources for more information on the dependency on
environmental conditions.

Definition 5.25 Thermal conductance [169] is defined as the amount of thermal
energy which passes through a plate per unit of time if the temperatures at the two
ends differ by one unit of temperature (typically Kelvin).

From Eq. (5.41), we have

5.5 Thermal Models 271

Fig. 5.22 Thermal model of
microprocessor with fan

Pth

�θ
= κ ∗ A

L
(5.42)

The reciprocal of this value is called thermal resistance Rth:

Rth = �θ

Pth

= L

κ ∗ A
(5.43)

Lemma 5.1 Thermal resistances add up like electrical resistances. This allows us
to map thermal modeling to electrical modeling.

Example 5.5 Figure 5.22 shows a microprocessor generating a thermal power Pth

together with the thermal resistance Rth,die of the die (chip) and the thermal
resistance Rth,f an of the fan.

Adding resistances results in the following equations

Rth = Rth,die + Rth,f an (5.44)

�θ = Rth ∗ Pth (5.45)

Let us assume the following:

Rth,die = 0.4 W/K (5.46)

Rth,f an = 0.3 W/K (5.47)

Pth = 10 W (5.48)

Then, we compute:

�θ = 7 K (5.49)

�θf an = 3 K (5.50)

Consumed power and thermal resistances are related to the estimation of the thermal
design power. ∇
Definition 5.26 ([584]) “The thermal design power (TDP), sometimes called ther-
mal design point, is the maximum amount of heat generated by a computer chip
or component (often the CPU or GPU) that the cooling system in a computer is

272 5 Evaluation and Validation

designed to dissipate in typical operation. Rather than specifying CPU’s real power
dissipation, TDP serves as the nominal value for designing CPU cooling systems.”

We could try to derive the TDP from the WCPC. In practice, however, published
TDP values are typically smaller. Hence, temperature sensors are required in order
to obtain a safe operation.

5.5.2 Transient State Behavior

So far, we have just considered the steady state. In general, transients and thermal
capacitance (heat capacity) have to be considered.

Definition 5.27 The thermal capacitance (heat capacity) of some object is
defined as the amount of thermal energy Eth which can be stored per difference
�θ in temperatures:

Cth = Eth

�θ
(5.51)

Primarily, Cth depends on the amount and type of matter contained in the object:

Cth = cp ∗ m (5.52)

where cp is the specific heat and m the mass. We can also interpret Eq. (5.52) as the
definition of the specific heat:

Definition 5.28 The specific heat cp of some object made of some material of mass
m is defined as

cp = Cth

m
(5.53)

cp depends on the type of matter used. cp is temperature-dependent, but can be
considered constant for small temperature ranges.

In our context, it is frequently more convenient to consider the heat capacity per
volume instead of per unit of mass.

Definition 5.29 The volumetric heat capacity cv is defined as

cv = Cth

V
(5.54)

whereV is the volume of the object.

cv and cp are related by the mass density:

Definition 5.30 The mass density or volume density ρ is defined as

5.5 Thermal Models 273

ρ = m

V
(5.55)

InsertingV = m/ρ into the definition of cv , we have

cv = Cth

V
= Cth ∗ ρ

m
= cp ∗ ρ (5.56)

This allows us to convert between tables published for cp and cv (see, e.g.,
Table 5.1). Due to the correspondence to electrical circuits, we can also compute
the transient behavior.

Example 5.6 We extend our microprocessor example as shown in Fig. 5.23 (left).
The resulting transient for the temperature across the die and the fan is shown in

Fig. 5.23 (right). The system approaches the stable state like a network of resistors
and capacitors. ∇

Overall, it is feasible to model thermal behavior by using an equivalent electrical
model. Equivalences are shown in Table 5.2.

Fig. 5.23 Microprocessor with fan: left, thermal model; right, transient

Table 5.2 Equivalences between electrical and thermal models

Electrical model Thermal model

Current I Thermal flow, “power flow” Pth = Q̇

Total charge Q = ∫
I dt Thermal energy Eth = ∫

Pth dt

Potential φ Temperature θ

Voltage = potential difference V = �φ Temperature difference �θ

Resistancea R = ρel
L
A

Thermal resistance Rth = 1
κ

L
A

Ohm’s law V = R ∗ I � temperature at Rth �θ = Rth ∗ Pth

Capacitance C Thermal capacitance Cth

Charge on capacitor Q = C ∗ V Energy at capacitance Eth = Cth ∗�T

Capacitance of objectb C = ρqV Capacitance of object Cth = cvV
aρel is the specific electrical resistance or volume resistivity
bρq is the volume charge density

274 5 Evaluation and Validation

Heat sink

Die

Capacitance
Node

Block 1 Block 2

Block 3

Heat Spreader

Ambient temperature

convectionR

R

R

hs

sp

Thermal

Thermal
Resistance

Fig. 5.24 HotSpot model of a chip mounted on a heat spreader and a heat sink

Well-known techniques for solving electrical network equations (see, e.g., Chen
et al. [96]) apply. However, there is no component corresponding to inductances
on the thermal side. This equivalence between thermal and electrical models is
exploited in tools such as HotSpot [500]. Figure 5.24 shows a HotSpot model of a chip
mounted on a heat spreader which in turn is mounted on a heat sink [499]. Skadron
et al. [499] emphasize the fact that large temperature gradients can exist within a
chip, a heat spreader, or a heat sink. Hence, it is important not to assume a uniform
temperature for these parts. In Fig. 5.24, the chip is assumed to comprise three
micro-architectural components with each component forming one thermal zone.

The heat spreader and the heat sink are modeled as five zones each. One zone of
the heat spreader is located beneath the chip, and four zones are located on the sides.
Zones on the sides possess a trapezoid-like shape and are indicated by dotted lines.
The same partitioning has been done for the heat sink. Zones in the center cannot
be shown in Fig. 5.24; they are hidden. Otherwise, each of the zones is shown as
a node in the equivalent network in Fig. 5.24. The ambient temperature is assumed
to be homogeneous. Rconvection is the thermal resistance to the environment. It is
connected to the five zones of the heat sink. Rhs is thermal resistance between the
heat spreader and the heat sink. The heat sink is also modeled as five zones. The one
in the center is connected to the chip via Rsp. The heat source is actually not shown.
For each of the zones, there is one thermal capacitance. Each of them models the
difference in temperatures if compared to the environment. Accordingly, it is always

5.6 Dependability and Risk Analysis 275

considered to be connected to the ground. Furthermore, for each of the zones, there
is a pair of thermal resistors connecting adjacent zones.

In their experiments, Skadron at al. have used the Wattch (see p. 262) power
simulator as heat source. Microarchitectural simulators such as SimpleScalar can be
used to drive Wattch. HotSpot contains mechanisms to create a system of partial
differential equations for models such as the one in Fig. 5.24. These equation
systems are then solved using a Runge-Kutta equation solver.

Skadron et al. found that it is necessary to consider different thermal zones.
Furthermore, they found that power consumption has an impact on the temperature,
but in order to really check whether thermal constraints are met, one needs to model
temperature explicitly. Several power-saving optimizations had only a small impact
on crucial temperatures. For example, register files tend to get hot. Saving power on
memory references is of little help in this context and might even have a negative
impact.

Example 5.7 As an example of the results of thermal modeling, we consider
an MPSoC of STMicroelectronics, comprising 64 P2012 cores [506]. Thermal
modeling of this MPSoC has been performed with the 3D-ICE [24] tool. Relative
temperatures for this MPSoC are shown in Fig. 5.25.7 High temperatures are shown
in red and low temperatures in blue.

The MPSoC contains four clusters, each including 16 cores. Each of the corners
of the layout corresponds to one cluster. The 16 processors are located at the center
of the clusters. Memories are located below and above the processors. Simulation
confirms that the processors are hotter than the memories. The higher utilization
of Fig. 5.25 (bottom) leads to higher temperatures. Detailed modeling of the layout
avoided temperature overestimation. ∇

Validation of thermal models requires precise temperature measurements [394].

5.6 Dependability and Risk Analysis

Next, we are going to look at dependability and possible risks.

5.6.1 Aspects of Dependability

Embedded and cyber-physical systems (like other products) can cause damages to
properties and lives. The fact that such systems are potentially safety-critical was
already included in Table 1.2 on p. 18. Hence, in general, we have to take this fact
into account. It is not possible to reduce the risk of damages to zero. The best that we

7Images are included with permission of David Atienza (EPFL). Images were obtained as part of
the cooperation between EPFL and STMicroelectronics in the FP7 EU Project titled: “PRO3D:
Programming for Future 3D Architectures with Many Cores”.

276 5 Evaluation and Validation

Fig. 5.25 Thermal simulation results for MPSoC: 50% utilization

can do is to make the probability of damages small, hopefully orders of magnitude
smaller than other risks. Dependability comprises various aspects, most importantly
safety and data security. These, in turn, contain aspects such as reliability and
confidentiality. Designs must be evaluated with respect to these aspects.

5.6.2 Security Analysis

Security of embedded and cyber-physical systems was not seen as a serious issue
when these systems were not electronically accessible from the outside. This has
changed for systems which can be accessed through communication channels,
and the two are now much more related, since security holes can cause physical
malfunctions resulting in accidents.

Security analysis needs to consider attacker models mentioned already in
Sect. 3.8. This analysis needs to find out if attacks are feasible even without having
physical access to the embedded system. If the system can be physically accessed,
physical attacks must be considered as well.

5.6 Dependability and Risk Analysis 277

Fig. 5.25 (continued): 50% utilization

Furthermore, relationships between encryption and decryption protocols and
achievable data rates must be analyzed, since it could easily happen that resource-
constrained embedded devices do not provide the expected encryption and decryp-
tion rates.

5.6.3 Safety Analysis

Damages should also be avoided, as much as possible, by designing safe systems.
In practice, at best we can expect to design a system such that the probability of
damages is orders of magnitude less than the probability of damages from other
risks.

Typically, the minimum requirement for manufacturing safety-related products
is to be ISO 9001 compliant. This standard defines requirements for quality
management systems in general. Requirements as per this standard include the
following principles [254]: customer focus, leadership, engagement of people,
process approach, improvement, evidence-based decision-making, and relationship
management. The first four principles are more or less self-explaining. The improve-
ment principle requires work to proceed in plan, do, check, and act (PDCA) cycles.
The goal of planning includes establishing objectives and addressing risks and

278 5 Evaluation and Validation

opportunities. The goal of the do phase is to implement the plan. This should be
followed by checking the results and taking actions to improve if necessary.

For the design of safety-related systems, more specific guidelines have been
developed and published as the IEC 61508 international standard [527]. Part 1 [232]
of this standard defines standard techniques for technical systems in general. Part
2 [233] specifies requirements for electrical/electronic/programmable electronic
safety-related systems. Software requirements are listed in part 3 [234]. Parts 4 to
6 contain less formal further recommendations. These standards assume that it is
not feasible to design technical systems which always provide the expected service.
Emphasis is placed on documented design procedures capable of tracing underlying
reasons for incorrect decisions.

In standard IEC 61508, a distinction is made between four different levels of
risks, called safety integrity levels (SIL). For continuously operating devices, the
standard specifies failure rates per hour of 10−5 to 10−6 for SIL-1, 10−6 to 10−7 for
SIL-2, 10−7 to 10−8 for SIL-3, and 10−8 to 10−9 for SIL-4 [581]. SIL-4 is difficult
to achieve and typically requires redundant execution. Problems arise from the
current trend toward mixed-criticality, which means that subsystems of different
SIL-levels are implemented, for example, on the same multi-core processor. Proper
shielding of the different levels of criticality is difficult.

Standard IEC 61508 is expected to apply to several industries. There are specific
extensions for specific industries. These consider, for example, the amount of time
which is available for human interventions, the possibility of transitioning into a fail-
safe mode, and the impact of malfunctions. For example, there is very little time to
react if something goes wrong in a car. However, cars can usually be stopped and
parked in a “fail-safe” mode and a safe place (with the exception of some tunnels,
etc.). In contrast, there is usually some more time available in an airplane, but some
safety-critical systems in an airplane cannot simply be turned off.

MISRA-C defines rules to be followed when using the C programming language
for safety-critical systems [396].

ISO 26262 [252] is a standard more tailored for the automotive industry.
Standards IEC 62279 and CENELEC 50128 take the special situation for rail-

based transportation into account [60].
For avionics, systems should comply with the Airworthiness Certification Spec-

ifications FAR-CS 25.1309 “Equipment, Systems and Installations” and with AC-
AMC 25.1309 “System design and analysis” [549]. This is extended for hardware by
standard DO-254 and for software by standard DO-178B (“Software Considerations
in Airborne Systems and Equipment Certification”) [163, 474], in Europe also called
ED-12B. DO-178C is a follow-up standard for DO-178B.

IEC 61511 [236] has been defined for applications in manufacturing, and IEC
61513 [235] is a special standard for nuclear power plants.

Allowed failures may be in the order of 1 failure per 109 hours of operation
or even significantly less for highly safety-critical systems like nuclear power
plants. This may be several orders of magnitude less than the failure rates of
chips. Hence, Kopetz [303] stressed that the system as a whole must be more
dependable than any of its parts and that safety requirements cannot come in as
an afterthought but must be considered right from the beginning. Obviously, fault-

5.6 Dependability and Risk Analysis 279

tolerance mechanisms must be used. Due to the low acceptable failure rate, systems
are not 100% testable. Instead, safety must be shown by a combination of testing
and reasoning. Abstraction must be used to make the system explainable using a
hierarchical set of behavioral models. Design faults and human faults must be taken
into account.

In order to address these challenges, Kopetz proposed the following 12 design
principles:

1. Safety considerations may have to be used as the important part of the specifica-
tion, driving the entire design process.

2. Precise specifications of design hypotheses must be made right at the beginning.
These include expected failures and their probability.

3. Fault-containment regions (FCRs) must be considered. Faults in one FCR should
not affect other FCRs.

4. A consistent notion of time and state must be established. Otherwise, it will be
impossible to differentiate between original and follow-up errors.

5. Well-defined interfaces must hide the internals of components.
6. It must be ensured that components fail independently.
7. Components should consider themselves to be correct unless two or more other

components pretend the contrary to be true (principle of self-confidence).
8. Fault-tolerance mechanisms must be designed such that they do not create any

additional difficulty in explaining the behavior of the system. Fault-tolerance
mechanisms should be decoupled from the regular function.

9. The system must be designed for diagnosis. For example, it has to be possible to
identify existing (but masked) errors.

10. The man-machine interface must be intuitive and forgiving. Safety should be
maintained despite mistakes made by humans.

11. Every anomaly should be recorded. These anomalies may be unobservable at
the regular interface level. This recording should involve internal effects, since
otherwise they may be masked by fault-tolerance mechanisms.

12. Provide a never-give-up strategy. Embedded systems may have to provide
uninterrupted service. The generation of pop-up windows or going off line is
unacceptable.

Definition 5.31 As system is resilient if internal or external changes of the
assumptions made at design time will change the overall user experience only in
a limited way.

A system which is self-repairing would provide some level of resiliency.
Resiliency is beyond the scope of this book.

5.6.4 Reliability Analysis

The design of dependable systems also requires an analysis of the reliability
(the likelihood of initially correctly designed systems not to malfunction due to

280 5 Evaluation and Validation

some internal fault). This task is expected to become more important and more
difficult in the future, since decreasing feature sizes of semiconductors will be
resulting in a reduced reliability of semiconductor devices (see, e.g., http://
variability.org). Transient as well as permanent faults are expected to become more
frequent. Shrinking feature sizes will also cause an increased variability among
device parameters. Therefore, dependability analysis and fault-tolerant designs are
becoming extremely important [179, 406]. Faults within semiconductors might lead
to failures of the system. The terms faults, failures, and the related terms error and
service were defined by Laprie et al. [29, 323].

Definition 5.32 “The service delivered by a system (in its role as a provider) is its
behavior as it is perceived by its user(s); . . . The delivered service is a sequence
of the provider’s external states. . . .Correct service is delivered when the service
implements the system function.”

Definition 5.33 “A service failure, often abbreviated here to failure, is an event
that occurs when the delivered service of a system deviates from the correct service.
. . . A service failure is a transition from correct service to incorrect service.”

Definition 5.34 An error exists if one of the system’s states is incorrect and may
lead to its subsequent service failure.

Definition 5.35 “The adjudged or hypothesized cause of an error is called a fault.
Faults can be internal or external of a system.”

Some faults will not cause a system failure.
As an example, we might consider a transient fault flipping a bit in memory.

After this bit flip, the memory cell will be in error. A failure will occur if the system
service is affected by this error.

In line with these definitions, we will talk about failure rates when we consider
systems that do not provide the expected system function. We will talk about faults
whenever we consider the underlying reasons that might cause failures. There are
a large number of possible reasons for faults, some of them resulting from reduced
feature sizes of semiconductors. Errors will not be considered in the remaining part
of this book.

Reaching a level of dependability corresponding to SIL-4 is only feasible if
design evaluation also comprises the analysis of the reliability, the expected lifetime,
and related objectives. Such an analysis is usually based on the probability of
failures.

More precisely, we consider the probability densities of failures. Let x be the time
until the first failure. x is a random variable. Let f (x) be the probability density of
this random variable.

As an example, we are frequently using the exponential probability density
f (x) = λe−λx . For this density function, failures are becoming less and less likely
over time (after some time, it is likely that the system is not working anymore and
a system which is not working cannot fail). This density function is frequently used
since it has a constant failure rate and, hence, describes in an appropriate way cases

http://variability.org
http://variability.org

5.6 Dependability and Risk Analysis 281

Fig. 5.26 Exponential distribution: left, density function; right, probability distribution

for which the failure rate is constant. We might even use this density function when
the actual failure rate is unknown since a constant failure rate may be a good starting
point. Moreover, this density function has nice mathematical properties. Figure 5.26
(left) shows this density function.

The probability distribution is frequently more interesting than the density. This
distribution represents the probability of a system not working at time t . It can be
obtained by integrating the density function until time t .

F(t) = Pr(x ≤ t) (5.57)

F(t) =
∫ t

0
f (x)dx (5.58)

For example, for the exponential distribution, we obtain:

F(t) =
∫ t

0
λe−λxdx = −[e−λx]t0 = 1 − e−λt (5.59)

Figure 5.26 (right) contains the corresponding function. As time advances, this
probability approaches 1. This means that, as time progresses, it becomes more
likely that the system will have failed.

Definition 5.36 The reliability R(t) of a system is the probability of the time until
the first failure being larger than t :

R(t) = Pr(x > t), t ≥ 0 (5.60)

R(t) =
∫ ∞

t

f (x)dx (5.61)

F(t) + R(t) =
∫ t

0
f (x)dx +

∫ ∞

t

f (x)dx = 1 (5.62)

R(t) = 1 − F(t) (5.63)

f (x) = −dR(t)

dt
(5.64)

For the exponential distribution, we have R(t) = e−λt (see Fig. 5.27).

282 5 Evaluation and Validation

Fig. 5.27 Reliability for
exponential distribution

The probability for the system to be functional after time t = 1/λ is about 37%.

Definition 5.37 The failure rate λ(t) is the probability of a system failing between
time t and time t + �t .

λ(t) = lim
�t→0

Pr(t < x ≤ t + �t |x > t)

�t
(5.65)

Pr(t < x ≤ t + �t |x > t) is the conditional probability for the system failing
within this time interval provided that it was working at time t . For conditional
probabilities, there is the general equation Pr(A|B) = Pr(AB)/P r(B), where
Pr(AB) is the probability of A and B happening. Pr(AB) is equal to F(t +�t)−
F(t) in our case. Pr(B) is the probability of the system working at time t , which is
R(t) in our notation. Therefore, Eq. (5.65) leads to:

λ(t) = lim
�t→0

F(t + �t) − F(t)

�tR(t)
= f (t)

R(t)
(5.66)

For example, for the exponential distribution, we obtain:8

λ(t) = f (t)

R(t)
= λe−λt

e−λt
= λ (5.67)

Failure rates are frequently measured as multiples (or fractions) of 1 FIT, where
“FIT” stands for Failure unIT and is also known as Failures In Time. 1 FIT
corresponds to 1 failure per 109 hours.

However, failure rates of real systems are frequently not constant. For many
systems, we have a “bath tub curve”-like behavior (see Fig. 5.28).

For this behavior, we are starting with an initially larger failure rate. This higher
rate is a result of an imperfect production process or “infant mortality.” The rate
during the normal operating life is then essentially constant. At the end of the useful
product life, the rate is then increasing again, due to wear-out.

8This result motivates denoting the failure rate and the constant of the exponential distribution with
the same symbol.

5.6 Dependability and Risk Analysis 283

Fig. 5.28 Bath tub curve-
like failure rates

Definition 5.38 The mean time to failure (MTTF) is the average time until the
next failure, provided that the system was initially working. This average can be
computed as the expected value of random variable x:

MTTF = E{x} =
∫ ∞

0
xf (x)dx (5.68)

For example, for the exponential distribution, we obtain:

MTTF =
∫ ∞

0
xλe−λxdx (5.69)

This integral can be computed using the product rule (
∫

uv′ = uv − ∫
u′v where

in our case we have u = x and v′ = λe−λx). Therefore, Eq. (5.69) leads to the
following equation:

MTTF = −[xe−λx]∞0 +
∫ ∞

0
e−λxdx (5.70)

= −1

λ
[e−λx]∞0 = −1

λ
[0 − 1] = 1

λ
(5.71)

This means that, for the exponential distribution, the expected time until the next
failure is the reciprocal value of the failure rate.

There is the following empirical relationship between MTTF and operating
temperatures:

Lemma 5.2 (Black’s equation [49, 55])

MTTF = A

jn
e

e
Ea
kθ (5.72)

where

A : constant

je : current density

n : constant (1..7), controversial, 2 according to Black

284 5 Evaluation and Validation

not available

available

MTBFMTTF

MTTR

MTBF

t

Fig. 5.29 Illustration of MTTF, MTTR, and MTBF

Ea : activation energy (e.g., ≈ 0.6 eV)

k : Boltzmann constant (≈ 8.617 * 10−5 eV/K)

θ : temperature

Regardless of discussions about the correct value of n, this equation shows that
the temperature has an exponential impact on the MTTF. Furthermore, current
densities are also important: the larger the current densities, the shorter the lifetime
of the product.

Definition 5.39 The mean time to repair (MTTR) is the average time to repair a
system, provided that the system is initially not working. This time is the expected
value of the random variable denoting the time to repair.

Definition 5.40 The mean time between failures (MTBF) is the average time
between two failures.

MTBF is the sum of MTTF and MTTR:

MTBF = MTTF + MTTR (5.73)

Figure 5.29 shows a simplistic view of this equation: it is not reflecting the fact
that we are dealing with probabilistic events, and actual MTBF, MTTF, and MTTR
values may vary randomly. For many systems, repairs are not considered. Also, if
they are considered, the MTTR should be much smaller than the MTTF. Therefore,
the terms MTBF and MTTF are frequently mixed up. For example, the lifetime
of a hard disk may be quoted as a certain MTBF, even though it will never be
repaired. Quoting this number as the MTTF would be more correct. Still, the MTTF
provides only very rough information about dependability, especially if there are
large variations in the failure rates over time.

Definition 5.41 The availability is the probability of a system being in an opera-
tional state.

The availability varies over time (just consider the bath tub curve!). Therefore,
we can model availability by a time-dependent function A(t). However, we are
frequently only considering the availability A for large time intervals. Hence, we
define

5.6 Dependability and Risk Analysis 285

Fig. 5.30 Failure rates of TriQuint’s gallium arsenide devices (courtesy of TriQuint, Inc., Hills-
boro), ©TriQuint

A = lim
t→∞A(t) = MTTF

MTBF
(5.74)

For example, assume that we have a system which is repeatedly available for 999
days and then needs 1 day for repair. Such a system would have an availability of
A = 0.999.

Allowed failure rates can be in the order of 1 FIT. This may be several orders
of magnitude less than the failure rates of chips. This means that systems must
be more reliable than their components! Obviously, the required level of reliability
makes fault-tolerance techniques a must!

Obtaining actual failure rates is difficult. Figure 5.30 shows one of the few
published results [546]. This figure contains failure rates for different gallium
arsenide (GaAs) devices with the hottest transistor operating at a temperature of
150 ◦C.

This example is used here to demonstrate that there exist devices for which the
assumptions of constant failure rates or a bath tub-like behavior are oversimpli-
fying.9 As a result, citing a single MTTF number may be misleading. The actual
distribution of failures over time should be used instead. In the particular case of
this example, failure rates are less than 100 FIT for the first 20 years (175,300 h) of
product lifetime, despite the high temperature. FIT numbers are actually very much
temperature dependent, and temperatures up to 275 ◦C and known temperature
dependences have been used at TriQuint to compute failure rates for periods larger
than the time available for testing. TriQuint claims that their GaAs devices are more

9Therefore, the so-called log-normal distribution is sometimes considered.

286 5 Evaluation and Validation

AND

_>1

&

&

OS hazard

TCP/IP port open + OS bug
.....

User receives mail

No firewall used

User clicks on attachment

PC connected to internet

Attachment has virus

OR

.....

Fig. 5.31 Fault tree

reliable than average silicon devices. Reports on FIT testing are also available for
Xilinx FPGAs (see, e.g., [600]).

5.6.5 Fault Tree Analysis, Failure Mode, and Effect Analysis

It is frequently not possible to experimentally verify failure rates of complete
systems. Requested failure rates are too small, and failures may be unacceptable.
We cannot fly 105 airplanes 104 hours each in an attempt to check if we reach a
failure rate of less than 10−9 (SIL-4)! The only way out of this dilemma is to use
a combination of checking failure rates of components and formally deriving from
this guarantees for a reliable operation of the system. Design- and user-generated
failures also must be taken into account. It is state of the art to use decision diagrams
to compute the reliability of a system from that of its components [260].

Damages are resulting from hazards (chances for a failure). For each possible
damage caused by a failure, there is a severity (the cost) and a probability. Risk can
be defined as the product of the two. Information concerning the damages resulting
from component failures can be derived with at least two techniques [143, 459]:

• Fault tree analysis (FTA): FTA is a top-down method of analyzing risks. The
analysis starts with a possible damage and then tries to come up with possible
scenarios that lead to that damage. FTA is based on modeling a Boolean function
reflecting the operational state of the system (operational or not operational).
FTA typically includes symbols for AND- and OR-gates, representing conditions
for possible damages. OR-gates are used if a single event could result in a
hazard. AND-gates are used when several events or conditions are required
for that hazard to exist. Figure 5.31 shows an example.10 FTA is based on a
structural model of the system, i.e., it reflects the partitioning of the system into
components.

10Consistent with the ANSI/IEEE standard 91, we use the symbols &, =1 and ≥1 to denote AND-,
XOR-, and OR-gates, respectively.

5.7 Simulation 287

Table 5.3 FMEA table

Component Failure Consequences Probability Critical?

.

Processor Metal migration No service 10−7/h Yes

.

The simple AND- and OR-gates cannot model all situations. For example,
their modeling power is exceeded if shared resources of some limited amount
(like energy or storage locations) exist. Markov models [67] may have to be used
to cover such cases. Markov models are based on the notion of states, rather than
on the structure of the system.

• Failure mode and effect analysis (FMEA): FMEA starts at the components
and tries to estimate their reliability. Using this information, the reliability of the
system is computed from the reliability of its parts (corresponding to a bottom-
up analysis). The first step is to create a table containing components, possible
failures, probability of failures, and consequences on the system behavior. Risks
for the system as a whole are then computed from the table. Table 5.3 shows an
example.

Tools supporting both approaches are available. Both approaches may be used
in “safety cases”. In such cases, an independent authority has to be convinced
that certain technical equipment is indeed safe. One of the commonly requested
properties of technical systems is that no single failing component should potentially
cause a catastrophe.

The design of safe and dependable systems is a topic on its own. This book can
only provide a few hints into this direction. There is an abundant amount of recent
publications on the impact of reliability issues on system design. Examples include
publications by Huang [223], Zhuo [613], and Pan [445]. For more information
about dependability, consult books [181, 323, 339, 418, 513] on those areas.

5.7 Simulation

In this chapter, we have so far placed an emphasis on design evaluation. Starting
with this section, we are now also considering validation. Simulation is a very
common technique for evaluating and validating designs. Simulation consists of
executing a design model on appropriate computing hardware, typically on general-
purpose digital computers. Obviously, this requires models to be executable. All the
executable models and languages introduced in Chap. 2 can be used in simulations,
and they can be used at various levels as described starting at p. 115. The level at
which designs are simulated is always a compromise between simulation speed and
accuracy. The faster the simulation, the less accuracy is available.

288 5 Evaluation and Validation

So far, we have used the term behavior in the sense of the functional behavior
of systems (their input/output behavior). There are also simulations of some
non-functional behaviors of designs, including the thermal behavior and the elec-
tromagnetic compatibility (EMC) with other electronic equipment. Due to the
integration with physics, there is a large range of physical effects which may have
to be included in the simulation model. As a result, it is impossible to cover all
relevant approaches for simulating cyber-physical systems in this book. Law [325]
provides an overview of approaches and topics in simulations on digital systems. A
large amount of additional information on the simulation of systems (in particular
of heterogeneous, cyber-physical systems) is available (see, e.g., [126, 362, 442]).
Some simulators specialize on specific application areas. Due to the large number
of physical effects, it is impossible to provide a complete list of references.

For cyber-physical systems, simulations have serious limitations:

• Simulations are typically a lot slower than the actual design. Hence, if we
interface the simulator with the actual environment, we can have quite a number
of violations of timing constraints.

• Simulations in the physical environment may even be dangerous (who would
want to drive a car with unstable control software?).

• For many applications, there may be huge amounts of data, and it may be
impossible to simulate enough data in the available time. Multimedia applications
are notoriously known for this. For example, simulating the compression of some
video stream takes an enormous amount of time.

• Most actual systems are too complex to allow simulating all possible cases
(inputs). Hence, simulations can help us to find errors in our designs. They cannot
guarantee absence of errors, since simulations cannot exhaustively be done for all
possible combinations of inputs and internal states.

Due to these limitations, there is an increased emphasis on validation by formal
verification (see p. 290). Nevertheless, sophisticated simulation techniques continue
to play a key role for validation (see, e.g., Braun et al. [66]). Academic solutions
like gem5 (see http://gem5.org), SimpleScalar, and OpenModelica as well as
commercial solutions like the Synopsys® Virtualizer™ (see http://synopsys.com)
are available. There are several tools for the simulation of networks (as required for
the Internet of Things), including OMNET++ (see https://omnetpp.org/).

5.8 Rapid Prototyping and Emulation

Simulations are based on models, which are approximations of real systems. In
general, there will be some difference between the real system and the model. We
can reduce the gap by implementing some parts of our system under design (SUD)
more precisely than in a simulator (e.g., in a real, physical component).

http://gem5.org
http://synopsys.com
https://omnetpp.org/

5.8 Rapid Prototyping and Emulation 289

Definition 5.42 Adopting a definition phrased by McGregor [383], we define
emulation as the process of executing a model of the SUD where at least one
component is not represented by simulation on some kind of host computer.

According to McGregor, “Bridging the credibility gap is not the only reason
for a growing interest in emulation — the above definition of an emulation model
remains valid when turned around — an emulation model is one where part of the
real system is replaced by a model. Using emulation models to test control systems
under realistic conditions, by replacing the . . . (real system) . . . with a model, is
proving to be of considerable interest to those responsible for commissioning, or
the installation and start-up of automated systems of many kinds.”

In order to further improve credibility, we can continue replacing simulated
components by real components. These components do not have to be the final
components. They can be approximations of the real system itself but should exceed
the precision of simulations.

Note that it is now common to discuss the “emulation” of one computer on
another computer by means of software. There is a lack of a precise definition of
the use of the term in this context. However, it can be considered consistent with our
definition, since the emulated computer is not just simulated. Rather, a speed faster
than simulation speed is expected.

Definition 5.43 Fast prototyping is the process of executing a model of the SUD
where no component is represented by simulation on some kind of host computer.
Rather, all components are represented by realistic components. Some of these
components should not yet be the finally used components (otherwise, this would
be the real system).

There are many cases in which the designs should be tried out in realistic
environments before final versions are manufactured. Control systems in cars are
an excellent example for this. Such systems should be used by drivers in different
environments before mass production is started. Accordingly, the automotive
industry designs prototypes. These prototypes should essentially behave like the
final systems, but they may be larger, have more power consuming, and have other
properties which test drivers can accept. The term “prototype” can be associated
with the entire system, comprising electrical and mechanical components. However,
the distinction between rapid prototyping and emulation is also blurring. Rapid
prototyping is by itself a wide area which cannot be comprehensively covered in
this book.

Prototypes and emulators can be built, for example, using FPGAs. Racks
containing FPGAs can be stored in the trunk while test drivers exercise the car. This
approach is not limited to the automotive industry. There are several other fields in
which prototypes are built from FPGAs. Commercially available emulators consist
of a large number of FPGAs. They come with the required mapping tools which map
specifications to these emulators. Using these emulators, experiments with systems
which behave “almost” like the final systems can be run. However, catching errors

290 5 Evaluation and Validation

by prototyping and emulation is already a problem for non-distributed systems. For
distributed systems, the situation is even more difficult (see, e.g., Tsai [547]).

5.9 Formal Verification

Formal verification11 is concerned with formally proving a system correct, using
the language of mathematics. First of all, a formal model is required to make formal
verification applicable. This step can hardly be automated and may require some
effort. Once the model is available, we can try to prove certain properties.

Formal verification techniques can be classified by the type of logic employed:

• Propositional logic: In this case, models consist of Boolean expressions. Tools
are called Boolean checkers, tautology checkers, or equivalence checkers.
They can be used to verify that two representations of Boolean functions (or sets
of Boolean functions) are equivalent. Since propositional logic is decidable, it is
also decidable whether or not the two representations are equivalent (there will
be no cases of doubt). For example, one representation might correspond to gates
of an actual circuit and the other to its specification. Proving the equivalence then
proves the effect of all design transformations (e.g., optimizations for power or
delay) to be correct. Boolean checkers can cope with designs which are too large
to allow simulation-based exhaustive validation. The key reason for the power
of Boolean checkers is the use of binary decision diagrams (BDDs) [571]. The
complexity of equivalence checks of Boolean functions represented with BDDs
is linear in the number of BDD nodes. The number of BDD nodes can potentially
grow exponentially with the number of variables, but, in practice, many relevant
functions can be represented with compact BDDs.12 In contrast, the equivalence
check for functions represented by sums of products is NP-hard. BDD-based
equivalence checkers have therefore replaced simulators for this application and
handle circuits with millions of transistors.

• First-order logic (FOL): FOL adds ∃ and ∀ quantifiers to propositional logic.
Some automation for verifying FOL models is feasible. However, since FOL is
undecidable, there may be cases of doubt. Popular techniques include the Hoare
calculus. Typically, operations on integers are also supported.

• Higher-order logic (HOL): Higher-order logic is based on lambda calculus and
allows functions to be manipulated like other objects [423]. For higher-order
logic, proofs can hardly ever be automated and typically must be done manually
with some proof support.

11This initial text on formal verification was based on a guest lecture given by Tiziana Margaria at
TU Dortmund.
12Multiplication is a prominent exception [284].

5.10 Problems 291

Propositional logic can be used to verify stateless logic networks but cannot
directly model finite state machines. For short input sequences, it may be sufficient
to cut the feedback loop in FSMs and to effectively deal with several copies of
these FSMs, each copy representing the effect of one input pattern. However, this
method does not work for longer input sequences. Such sequences can be handled
with model checking.

For model checking, we have two inputs to the verification tool:

1. The model to be verified
2. Properties to be verified

States can be quantified with ∃ and ∀; numbers cannot. Verification tools can
prove or disprove the properties. In the latter case, they can provide a counterexam-
ple. Model checking is easier to automate than FOL. It has been implemented for
the first time in 1987, using BDDs. It was possible to locate several errors in the
specification of the future bus protocol [104]. UPPAAL is a very popular tool for
model checking.13

This technique could be used, for example, to prove properties of the railway
model of Fig. 2.52 (see p. 82). It should be possible to convert the Petri net into a
state chart and then confirm that the number of trains commuting between Cologne
and Paris is indeed constant, confirming our discussion of Petri net place invariants
on p. 81.

5.10 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

5.1 Let us consider an example demonstrating the concept of Pareto optimality.
In this example, we study the results generated by task concurrency management
(TCM) tools designed at the IMEC research center (Interuniversitair Micro-
Electronica Centrum). TCM tools aim at establishing efficient mappings from
applications to processors. Different multiprocessor systems are evaluated and
represented as sets of Pareto optimal designs. Wong et al. [595] describe different
options for the design of an MPEG-4-player. The authors assume that a combination
of StrongARM processors and specialized accelerators should be used. Four designs
meet the timing constraint of 30 ms (see Table 5.4). These different designs are
shown in Fig. 5.32. For combinations 1 and 4, the authors report that only one
mapping of tasks to processors meets the timing constraints. For combinations 2 and
3, different time budgets lead to different task to processor mappings and different
energy consumptions.

13See http://www.uppaal.org for the academic and http://www.uppaal.com for the commercial
version.

http://www.uppaal.org
http://www.uppaal.com

292 5 Evaluation and Validation

Table 5.4 Processor
configurations

Processor combination 1 2 3 4

Number of high-speed processors 6 5 4 3

Number of low-speed processors 0 3 5 7

Total number of processors 6 8 9 10

Pareto-optimal design points

1234
5

6

12
3

456

Configuration 2

Configuration 3

Time [ms]

E
ne

rg
y

[m
J]

400

490
480
470
460
450
440
430
420
410

92 038272625242
390

Fig. 5.32 Pareto points for multiprocessor systems 2 and 3

{a}}e{ }f{

{g}{d} {c,f}{}

{d}

Fig. 5.33 Abstract cache states

Which area in the objective space is dominated by at least one design of
configuration 3? Is there any design belonging to configuration 2 which is not
dominated by at least one design of configuration 3? Which area in the objective
space dominates at least one design of configuration 3?

5.2 Which conditions must be met by computations of WCETEST ?

5.3 Let us consider cache states at a control flow join. Figure 5.33 shows abstract
cache states before the join.

Now let us look at abstract cache states after the join. Which state would a must-
analysis derive? Which state would a may-analysis derive?

5.4 Consider an incoming “bursty” event stream. The stream is periodic with a
period of T . At the beginning of each period, two events arrive with a separation
of d time units. Develop arrival curves for this stream! Resulting graphs should
display times from 0 up to 3∗T .

5.5 Suppose that you are working with a processor having a maximum performance
of b.

5.10 Problems 293

1. What do the service curves look like if the performance can deteriorate to b′, due
to cache conflicts?

2. How do the service curves change if some timer is interrupting the executed
program every 100 ms and if servicing the interrupt takes 10 ms? Assume that
there are no cache conflicts.

3. How do the service curves look like if you consider cache conflicts like in (1.)
and interrupts like in (2.)?

Resulting graphs should display times from 0 up to 300 ms.

5.6 Suppose that we try to collect amber. However, there is the risk of also
collecting white phosphorus. Suppose that we collect 50 objects. We keep all of
them in water to avoid fire hazards. We classify 30 objects as amber and 20 as
white phosphorus. However, two of the objects classified as amber are actually
pieces of white phosphorus and 8 objects classified as white phosphorus are actually
consisting of amber. Compute the precision, recall, accuracy, and specificity for this
classification!

5.7 Suppose that you try to compute the power consumption of your mobile phone
using a shunt resistor. The following values are relevant for the computation of the
power consumption at some time t : resistor, 0.47 �; power supply voltage, 5.1 V;
and voltage across shunt, 0.23 V. What is the power consumption of your mobile at
this time t?

5.8 Consider a copper plate of area A=10 cm2 and length 5 mm. How much thermal
power is transferred if the difference between the temperatures at the two ends of
the plate is 10 ◦C?

5.9 Consider a hard disk drive for which we assume that half of the drives have
failed after 5000 h of operation. Let us assume that failures follow an exponential
distribution. Compute the corresponding value of λ!

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Application Mapping

Mapping of applications onto available hardware platforms is a key design step.
We need to map applications both to processors and to particular execution times.
This is feasible with appropriate scheduling techniques. Taking as many scheduling
decisions as reasonable at design time enables us to provide timing guarantees.
In this chapter, we will present a selected subset of the corresponding static
scheduling techniques. They will be classified according to the triplet notation
proposed by Pinedo and others. First of all, we will explain classical scheduling
algorithms for single processors. We will cover algorithms for aperiodic as well as
for periodic task systems, including the well-known earliest deadline first (EDF)
and rate monotonic scheduling (RMS) algorithms. We will briefly explain the use
of bin packing algorithms for homogeneous multiprocessor systems. This will be
followed by a presentation of selected scheduling algorithms for heterogeneous
multiprocessors. We will be presenting algorithms for independent and dependent
jobs. For dependent jobs, the focus is on heuristics. Finally, we will be pointing
toward issues in using dynamic scheduling.

6.1 Definition of Scheduling Problems

6.1.1 Elaboration on the Design Problem

The mentioned mapping to execution platforms is included in the simplified design
flow, as shown in Fig. 6.1.

Selected scheduling algorithms should allow us to use systems with a certain
combination of applications. For example, for a mobile phone, we expect being able
to make a phone call while the Bluetooth stack is transmitting the audio signals to
a headset and while we are looking up information in our “personal information
manager” (PIM). At the same time, there may be a concurrent file transfer or even

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_6

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_6

296 6 Application Mapping

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

(RTOS, ...)

HW-components
ap

pl
ic

at
io

n
test

mapping
application

Fig. 6.1 Simplified design information flow

a video connection. We must make sure that these applications can be used together
and that we are keeping the deadlines (no lost audio samples!). This is feasible
through an analysis of the use cases.

It is a characteristic of embedded and cyber-physical systems that both hardware
and software must be considered during their design. Therefore, this type of design
is also called hardware/software codesign. The overall goal is to find the right
combination of hardware and software resulting in the most efficient product
meeting the specification. Therefore, embedded systems cannot be designed by
a synthesis process taking only the behavioral specification into account. Rather,
available components must be accounted for. There are also other reasons for this
constraint: in order to cope with the increasing complexity of embedded systems
and their stringent time-to-market requirements, reuse is essentially unavoidable.
This led to the term platform-based design:

“A platform is a family of architectures satisfying a set of constraints imposed
to allow the reuse of hardware and software components. However, a hardware
platform is not enough. Quick, reliable, derivative design requires using a platform
application programming interface (API) to extend the platform toward application
software. In general, a platform is an abstraction layer that covers many possi-
ble refinements to a lower level. Platform-based design is a meet-in-the-middle
approach: in the top-down design flow, designers map an instance of the upper
platform to an instance of the lower, and propagate design constraints” [476].

The mapping is an iterative process in which performance evaluation tools guide
the next assignment.

In this book, we focus on embedded system design based on available execution
platforms. This reflects the fact that many modern systems are being built on top
of some existing platform. Techniques other than the ones described in this book
must be used when the execution platform needs to be designed as well. Due to
our focus, the mapping of applications to execution platforms can be seen as
the main design problem. In the general case, mapping will be performed onto
multiprocessor systems.

Even for platform-based design, there may be a number of design options. We
might be able to select between different variants of a platform, where each variant
might have a different number of processors, different speeds of processors, or a

6.1 Definition of Scheduling Problems 297

different communication architecture. Moreover, there may be different applicable
scheduling policies. Appropriate options must be selected.

This leads us to the following definition of our mapping problem [535]:
Given:

• a set of applications,
• use cases describing how the applications will be used,
• a set of possible candidate architectures:

– (possibly heterogeneous) processors,
– (possibly heterogeneous) communication architectures,
– possible scheduling policies.

Find:

• a mapping of applications to processors,
• appropriate scheduling techniques (if not fixed),
• a target architecture (if not fixed).

Objectives:

• Keeping deadlines and/or maximizing performance,
• minimizing cost, energy consumption, and possibly other objectives.

The exploration of possible architectural options is called design space exploration
(DSE). As a special case, we may consider a completely fixed platform architecture.

Designing an AUTOSAR-based automotive system can be seen as an example:
in AUTOSAR [28], we have a number of homogeneous execution units (called
ECUs) and a number of software components. The question is: how do we map
these software components to the ECUs such that all real-time constraints are met?
We would like to use the minimum number of ECUs.

For embedded systems, we can assume that the set of applications comprises
a number of tasks which are released (are ready for execution) repeatedly. The
executed code can be associated with tasks. For example, there may be the need
to execute certain code once for every input sample. We denote each task by τi and
sets of tasks by τ = {τ1, . . . , τn}.
Definition 6.1 Each execution of a task is called a job (cf. Definition 4.4). For each
task τi , there is an associated set of jobs J (τi). Due to the repeated executions, the
set of jobs of task τi is possibly not finite.

Definition 6.2 Tasks τi which are released once every Ti units of time are called
periodic tasks, and Ti is called their period.

Definition 6.3 A task τi is called sporadic if there is a lower bound on the length
of the interval between successive releases of this task. For each sporadic task τi ,
we call this interval length also Ti .

298 6 Application Mapping

rr dd

C

s f

execute

i i i i i

i

i

C l

Di

i i

Fig. 6.2 Notation used for jobs

This minimum separation is important: without such a separation, arrival curves for
any interval � could become unbounded. It would be impossible to find a schedule
for a bounded set of resources.

Definition 6.4 Tasks which are neither periodic nor sporadic are called aperiodic.

For periodic and sporadic task systems, the concept of hyper-periods simplifies
scheduling substantially:

Definition 6.5 Let τ be a periodic or sporadic task system. Its hyper-period is
defined as the least common multiple of the periods of the individual tasks.

If tasks can be scheduled for one hyper-period, they can be scheduled for all hyper-
periods, due to the repeating nature of the task structure.

6.1.2 Types of Scheduling Problems

The following notation is used in the remainder of this chapter for jobs. Let J = {Ji}
be a set of jobs. Let (see Fig. 6.2):

• ri be the release time of Ji (the time at which it becomes available for execution),
• Ci be the worst case execution time (WCET) of Ji ,
• di be the (absolute) deadline of Ji ,
• Di be the relative deadline, that is, the time between a job Ji becoming available

and the time until which the same job Ji has to finish execution (Di = di − ri),
• li be the laxity or slack, defined as

li = Di − Ci (6.1)

(if li = 0, then Ji has to be started immediately after it is released),
• si be the actual starting time of Ji ,
• fi be the actual finishing time of Ji .

In figures like Fig. 6.2, upward pointing vertical arrows indicate the release of jobs,
and downward pointing arrows denote the deadline of jobs.

In the following, we will be using the triplet classification for scheduling
problems which was presented by Pinedo [455], based on an notation introduced

6.1 Definition of Scheduling Problems 299

earlier by Graham et al. [190]. According to the notation, scheduling problems can
be classified by a triplet:

(α|β|γ). (6.2)

The α Field

The α field describes the machine environment and consists of a single entry. Simple
scheduling algorithms handle the case of single processors, whereas more complex
algorithms also handle systems comprising multiple processors. In this book, we
consider the following possible values of the α field:

• A value of 1 indicates a single processor.
• A value of Pm indicates m processors which can be used in parallel. Each job

can be executed with the same speed on any of the m processors. In this case,
processors are said to be identical (or homogeneous). The β field can be used to
express constraints for the allocation of jobs to processors.

• A value of Qm denotes parallel processors with different performances. The
performance is expressed as scaling factors relative to the performance of the
slowest processor. Scaling factors can be represented by a vector (s1, .., sm),
where component sk is the scaling factor of processor πk . In this case, processors
are called uniform. The uniform processor model is very much simplified; we
will hardly refer to it.

• A value of Rm indicates m processors with unrelated processing speeds. The
execution time of the job or task i on processor k is Ci,k . Processors are
called heterogeneous. Heterogeneous processors can be optimized for particular
objectives, e.g., for high performance or a small energy consumption. Hence,
heterogeneous processors are very important for embedded systems. Hardware
accelerators can be modeled as special-purpose processors.

The α field will always contain just a single element.

The β Field

The β field describes processing restrictions. This field may contain several
components. In this book, we will consider the following possible values of this
field:

• An entry ri denotes existing release times that are depending on the job i to be
allocated.

• An entry prmp indicates that preemptions are allowed. Non-preemptive schedul-
ing is assumed if this entry is missing. Non-preemptive schedulers are based on
the assumption that jobs are executed until they are done. As a result, the response

300 6 Application Mapping

time for external events1 may be quite long if some jobs have a large execution
time. Preemptive schedulers must be used if some jobs have long execution times
or if the response time for external events is required to be short. However,
preemption can result in unpredictable execution times of the preempted jobs.
Therefore, restricting preemptions may be required in order to guarantee meeting
the deadline of hard real-time jobs.

• Another possible entry would describe the type of timing constraints. We can
distinguish between soft and hard deadlines (see Definition 1.8 on p. 10).

Scheduling for soft deadlines is frequently based on extensions to standard
operating systems. We will not discuss these systems further in this book.
Therefore, the default assumption in this book is to have hard timing constraints.

• Entries periodic and sporadic may describe the type of task system considered.
• A value of prec expresses the fact that precedence constraints exist. Precedences

among the jobs require jobs to be executed according to certain partial orders.
They may be caused by communication between jobs. For embedded systems,
precedences are the rule rather than an exception.

• For sporadic and periodic task sets, we are frequently differentiating scheduling
problems with respect to their deadlines:

The case Di = Ti , for all i, is called the case of implicit-deadline tasks,
or Liu-and-Layland (L&L) tasks [348]. This case is indicated by an entry
Di = Ti . Task sets which must satisfy ∀i : Di ≤ Ti are called constrained-
deadline tasks.
Tasks whose deadlines do not need to meet any constraints regarding their
period are called arbitrary-deadline tasks. These cases can also be indicated
by corresponding entries.

• We could use this field also to describe the type of scheduling employed. For
example, we could use entries fixed-job-prio and fixed-task-prio for jobs and
tasks with a fixed priority.

Furthermore, we could distinguish between static and dynamic scheduling.
Dynamic schedulers take decisions at run-time. They are quite flexible but
generate overhead at run-time. Also, they are usually not aware of global contexts
such as resource requirements or precedences between jobs. For embedded
systems, such global contexts are typically available at design time, and they
should be exploited.

Static schedulers take their decisions at design time. They are based on
planning the start times of jobs and generate tables of start times forwarded to
a simple dispatcher. The dispatcher does not take any decisions, but is just in
charge of starting jobs at the times indicated in the table. The dispatcher can be
controlled by a timer, causing the dispatcher to analyze the table.

1This is the time from the occurrence of an external event until the completion of the reaction
required for the event.

6.1 Definition of Scheduling Problems 301

Fig. 6.3 TDL in a
time-triggered system

Systems which are totally controlled by a timer are said to be entirely time-
triggered (TT systems). Such systems are explained in detail in the book by
Kopetz [303]:

“In an entirely time-triggered system, the temporal control structure of all
tasks is established a priori by off-line support-tools. This temporal control
structure is encoded in a Task-Descriptor List (TDL) that contains the cyclic
schedule for all activities of the node2 (Fig. 6.3). This schedule considers the
required precedence and mutual exclusion relationships among the tasks such
that an explicit coordination of the tasks by the operating system at run time is
not necessary. . . . The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been planned for this
instant”

The main advantage of static scheduling is that it can be easily checked if
timing constraints are met: “For satisfying timing constraints in hard real-time
systems, predictability of the system behavior is the most important concern; pre-
run-time scheduling is often the only practical means of providing predictability
in a complex system” [604]. The main disadvantage is that the response to events
may be quite poor.

• Multiprocessor scheduling algorithms either can be executed locally on one
processor or can be distributed among a set of processors. Hence, we can also
distinguish between centralized and distributed scheduling. This distinction
could also be expressed in the β field.

The γ Field

The γ field describes the objective function. In this book, we consider the following
possible values of this field:

• An entry of Lmax means that the maximum lateness is to be minimized.

Definition 6.6 Maximum lateness is defined as the difference between the
completion time and the deadline, maximized over all jobs.

Maximum lateness is negative if all tasks complete before their deadline.

2This term refers to a processor in this case.

302 6 Application Mapping

• An entry of MSmax denotes the case of minimizing the makespan (the time at
which the last job finishes).

Definition 6.7 The makespan is defined as3

MSmax = maxi(fi) (6.3)

• In addition to the entries considered by Pinedo, other entries are relevant
for embedded systems. For example, we might want to minimize the energy
consumption, or we might even consider trade-offs between several objectives.

A huge amount of scheduling algorithms is available, and comprehensive
coverage of existing algorithms would be infeasible even if an entire book or
course were available. In a standard undergraduate curriculum, there is typically not
enough headroom for a dedicated course on scheduling (but this may be different
for courses for graduate students). Therefore, we provide only a brief introduction to
scheduling in this book. Many scheduling problems are known to be very complex
[41, 455]. In many cases, only approximately optimal mappings can be guaranteed.
We will provide an overview of scheduling algorithms frequently considered in
embedded systems. Table 6.1 comprises an overview of the techniques in this
chapter. From left to right, columns refer to the processor model, asynchronous
arrival times, preemptiveness, precedences, periodic/sporadic tasks vs. aperiodic
jobs, the deadline model (for periodic/sporadic tasks), job- vs. task-based priorities
(for periodic/sporadic tasks), global vs. local scheduling (for multiprocessors),
the objective, the subsection, and the name of algorithm(s). Algorithms like
earliest deadline first are designed for nonperiodic systems but can be applied in
periodic/sporadic systems as well. Note that only the last three lines correspond to
full support for heterogeneous processors, as can be seen in column one. Uniform
processors will be mentioned only as a possible use of the 0/1 multi-knapsack
model. If all jobs arrive at the same time (indicated by an entry of “–” for the second
column), preemption is useless, and hence, the third column is not marked by an
X. Entries for column Di are relevant only for periodic/sporadic tasks. Regarding
the objectives, we observe that lateness is the relevant objective in many cases.
However, for periodic/sporadic scheduling, the key question is: is there a schedule
which meets the deadlines? Bin packing is designed to minimize the number
of processors. For the HEFT and CPOP heuristics, the makespan is the relevant
objective. Only the last line corresponds to a minimization of several objectives, in
the form either of a single objective at a time or of real multi-objective optimization
using Pareto optimality.

Scheduling is similar to performance evaluation in that it cannot be constrained
to a single design step. Rather, scheduling algorithms may be required a number
of times during the design of such systems. Very rough calculations may already be
required while fixing the specification. Later, more detailed predictions of execution

3Pinedo denotes the makespan as Cmax . We prefer to avoid confusion with execution times Ci .

6.1 Definition of Scheduling Problems 303

Ta
bl
e
6.
1

Sc
he

du
lin

g
te

ch
ni

qu
es

de
sc

ri
be

d
or

m
en

tio
ne

d
in

th
is

ch
ap

te
r

α
β

γ
Se

ct
io

n
A

lg
or

ith
m

Pr
oc

.
r i

pr
m
p

pr
ec

pe
ri
od

ic
a

D
i

pr
io

gl
ob

O
bj

ec
tiv

e

1
–

–
–

–
L

m
a
x

6.
2.

1
E

ar
lie

st
du

e
da

te

1
X

X
–

–
L

m
a
x

6.
2.

1
E

ar
lie

st
de

ad
lin

e
fir

st

1
X

X
–

–
L

m
a
x

6.
2.

1
L

ea
st

la
xi

ty

1
X

–
–

–
L

m
a
x

6.
2.

1
(T

he
or

em
6.

3)

1
X

X
X

-
Jo

b
L

m
a
x

6.
2.

2
L

at
es

td
ea

dl
in

e
fir

st

1
X

–
X

–
L

m
a
x

6.
2.

2
Sp

ri
ng

O
S

[5
08

]

1
X

X
–

X
=

T
i

Ta
sk

≤
D

i
6.

2.
3

R
at

e
m

on
ot

on
ic

1
X

X
–

X
�=

T
i

Ta
sk

≤
D

i
6.

2.
3

D
ea

dl
in

e
m

on
ot

on
ic

P
m

–
–

–
–

X
m

=
|π
|

6.
3.

1
B

in
pa

ck
in

g

P
m

–
–

–
–

X
∑ b

i
6.

3.
1

0/
1

M
ul

ti-
kn

ap
sa

ck

P
m

X
X

–
X

=
T

i
≤

D
i

6.
3.

1
Fi

rs
tfi

td
ec

re
as

in
g

P
m

X
X

–
X

=
T

i
Jo

b
X

≤
D

i
6.

3.
2

Pf
ai

r

P
m

X
X

–
–

Jo
b

X
≤

D
i

6.
3.

3
G

-E
D

F,
fp

E
D

F,
E

D
Z

L

P
m

X
X

–
X

=
T

i
Ta

sk
X

≤
D

i
6.

3.
4

G
-R

M
,R

M
-U

S,
R

M
Z

L

P
m

X
X

–
X

�=
T

i
Ta

sk
X

≤
D

i
6.

3.
4

D
en

si
ty

-b
as

ed

P
m

–
–

X
–

M
S

m
a
x

6.
4

A
SA

P,
A

L
A

P

R
m

b
–

–
X

–
M

S
m

a
x

6.
4.

3
L

is
ts

ch
ed

ul
in

g

P
m

–
–

X
–

M
S

m
a
x

6.
4.

4
In

te
g.

L
in

.P
ro

gr
.(

IL
P)

R
m

–
–

X
–

M
S

m
a
x

6.
5.

2
H

E
FT

,C
PO

P

R
m

–
–

X
–

M
S

m
a
x

6.
5.

3
IL

P,
e.

g.
,[

36
1]

R
m

X
X

X
–

(X
)

va
ri

ou
s

6.
5.

4
D

O
L

,H
O

PE
S,

M
A

PS
,.

.
a A

lg
or

ith
m

s
fo

r
ap

er
io

di
c

ta
sk

se
ts

ca
n

be
ap

pl
ie

d
to

pe
ri

od
ic

/s
po

ra
di

c
ta

sk
se

ts
b
L

is
ts

ch
ed

ul
in

g
su

pp
or

ts
he

te
ro

ge
ne

ou
s

pr
oc

es
so

rs
on

ly
in

a
lim

ite
d

w
ay

304 6 Application Mapping

times may be required. After compilation, even more detailed knowledge exists
about the execution times, and accordingly, more precise schedules can be made.
Finally, it may be necessary to decide at run-time which task is to be executed next.
In contrast, in time-triggered systems, RTOS scheduling may be limited to simple
table look-ups for tasks to be executed.

In practice, it is very important to know whether or not a schedule exists for
a given set of tasks and constraints. A set of tasks is said to be schedulable
under a given set of constraints if a schedule exists for that set of tasks and
constraints. For many applications, schedulability tests are important. Tests which
always return precise results (called exact tests) are NP-hard in many situations
[178]. Therefore, sufficient and necessary tests are used instead. For sufficient tests,
sufficient conditions for guaranteeing a schedule are checked. There is a (hopefully
small) probability of indicating that scheduling cannot be guaranteed even when a
schedule exists. Necessary tests are based on checking necessary conditions. They
can be used to show that no schedule exists. However, there may be cases in which
necessary tests are passed and the schedule still does not exist.

6.2 Scheduling for Uniprocessors

Let us first consider the case of uniprocessor systems. According to the triplet
notation, this corresponds to the case (1|..|..). We are using some of the material
from the book by Buttazzo [81] for this section. Refer to this book for additional
references.

6.2.1 Scheduling for Independent Jobs

Furthermore, we are restricting our discussion initially to the even more special case
of independent jobs executed on uniprocessors.

Earliest Due Date (EDD) Algorithm

First of all, we are looking at the situation where all jobs arrive at the same time,
and we try to minimize lateness. If all jobs arrive at the same time, preemption is
obviously useless. Therefore, according to the triplet notation, we are considering
the case (1| |Lmax). A very simple rule for this case was found by Jackson in 1955
[263].

Theorem 6.1 (Jackson’s Rule) Given a set of n independent jobs with deadlines,
any algorithm that executes the jobs in order of nondecreasing deadlines is optimal
with respect to minimizing the maximum lateness.

6.2 Scheduling for Uniprocessors 305

Fig. 6.4 Schedules S and S′

The algorithm following this rule is called the earliest due date (EDD) algorithm.
If the deadlines are known in advance, EDD can be implemented as a static
scheduling algorithm. EDD requires all jobs to be sorted by their deadlines. Hence,
its complexity is O (n log(n)).

Proof of the Optimality of EDD Let S be a schedule generated by any algorithm A.
Suppose A does not lead to the same result as EDD. Then, there are jobs Ja and
Jb such that the execution of Jb precedes the execution of Ja in J , even though the
deadline of Ja is earlier than that of Jb (da < db). Now, consider a schedule S′. S′
is generated from S by swapping the execution orders of Ja and Jb (see Fig. 6.4).

In schedule S, the deadline of Ja is earlier than that of Jb, but Jb is executed first.
Hence, the maximum lateness among jobs Ja and Jb is that of Ja , or Lmax(a, b) =
fa − da .

For schedule S′, L′max(a, b) = max(L′a, L′b) is the maximum lateness among
jobs Ja and Jb. L′a is the maximum lateness of job Ja in schedule S′. L′b is defined
accordingly. There are two possible cases:

1. L′a > L′b: In this case, we have
L′max(a, b) = f ′a − da

Ja terminates earlier in the new schedule. Therefore, we have
L′max(a, b) = f ′a − da < fa − da .
The right side of this inequality is the maximum lateness in schedule S. Hence,
the following holds:
L′max(a, b) < Lmax(a, b)

2. L′a ≤ L′b:
In this case, we have
L′max(a, b) = f ′b − db = fa − db (see Fig. 6.4).
The deadline of Ja is earlier than the one of Jb.
This leads to
L′max(a, b) < fa − da

Again, we have
L′max(a, b) < Lmax(a, b)

As a result, any schedule (which is not an EDD schedule) can be turned into an EDD
schedule by a finite number of swaps. Maximum lateness can only decrease during
these swaps. Therefore, EDD is optimal for this class of scheduling problems. ��

306 6 Application Mapping

Earliest Deadline First (EDF) Algorithm

Let us consider the case of different release times for uniprocessor systems
next. Under this scenario, preemption can potentially reduce maximum lateness.
According to the triplet notation, this corresponds to the case (1|ri, prmp|Lmax).

The earliest deadline first (EDF) algorithm is optimal with respect to minimizing
the maximum lateness. It is based on the following theorem [222]:

Theorem 6.2 Given a set of n independent jobs with arbitrary arrival times, any
algorithm that at any instant executes the job with the earliest absolute deadline
among all the ready jobs is optimal with respect to minimizing the maximum
lateness.

EDF requires that each time a new ready job arrives, it is inserted into a queue
of ready jobs, sorted by their deadlines. Hence, EDF is a dynamic scheduling
algorithm. If a newly arrived job is inserted at the head of the queue, the currently
executing job is preempted. If sorted lists are used for the queue, the complexity of
EDF is O (n2). Bucket arrays could be used for reducing the execution time, but this
option is typically not considered.

Example 6.1 Figure 6.5 shows a schedule derived with the EDF algorithm. At time
4, job J2 has an earlier deadline. Therefore, it preempts J1. At time 5, job J3 arrives.
Due to its later deadline, it does not preempt J2. The deadline of J1 is lather than that
of J3, and hence, it resumes only after J3 has terminated. Priorities are obviously
dynamic: they depend on which deadline is next. Since EDF uses dynamic priorities,
it cannot be used with an operating system providing only fixed priorities. However,
it has been shown that operating systems can be extended to simulate an EDF policy
at the application level [132]. ∇
Proof of Theorem 6.2 Let S be a schedule generated by some algorithm A, where A

is different from EDF. LetSEDF be a schedule generated by EDF. Now, we partition
time into disjoint intervals of length 1.4 Each interval comprises times within the

J1

J2

J3

2J

3J

1J
arrivals

deadlinedurationarrival

42 62 82

0

4

5

10

3

10

28

29

33

0 2 4 6 8 01 21 41 61 81 02 22 t30 32

Fig. 6.5 EDF schedule

4This proof assumes a discrete time domain. It can be extended to a continuous time domain.

6.2 Scheduling for Uniprocessors 307

Fig. 6.6 Schedule S

Fig. 6.7 Schedule after swapping jobs S(t) and E(t)

range [t , t+1). Let S(t) be the job which—according to schedule S—is executed
during the interval [t , t+1). Let E(t) be the job which at time t has the earliest
deadline among all jobs. Let tE(t) be the time (≥ t) at which job E(t) is starting its
execution in schedule S. S is not an EDF schedule. Therefore, there must be a time
t at which we are not executing the job having the earliest deadline. For t , we have
S(t) �= E(t) (see Fig. 6.6).

Using the same arguments as for Jackson’s rule, we can show that swapping
S(t) �= E(t) like in Fig. 6.7 does not increase maximum lateness. Therefore, by
a number of swaps, any non-EDF schedule can be turned into an EDF schedule
without increasing maximum lateness. This proves that EDF is optimal among all
possible scheduling algorithms.

We can show that swapping will keep all deadlines, provided they were kept
in schedule S. According to the initial assumption, the maximum lateness in
the schedule S is 0. Since EDF returns the optimal schedule for minimizing the
maximum lateness, the maximum lateness of the EDF schedule is also 0. Hence, for
this problem class, the EDF schedule is the optimal schedule to meet the deadlines.

��

Least Laxity (LL) Algorithm

Focusing on laxity, we are now considering the case (1 | ri , prmp, .. |..), with the goal
of finding a schedule if one exists. Least laxity (LL), least slack time first (LST), and
minimum laxity first (MLF) are three names for a laxity-based scheduling strategy

308 6 Application Mapping

Fig. 6.8 Least laxity schedule

[347]. According to LL scheduling, job priorities are a monotonically decreasing
function of the laxity (see Eq. (6.1); the less laxity, the higher the priority). Laxity is
dynamically changing and needs to be dynamically recomputed.

Example 6.2 Figure 6.8 shows an LL schedule. Computation of the laxity is
included. At time 4, job J1 is preempted, as before. At time 5, J2 is now also
preempted, due to the lower laxity of job J3. ∇

LL scheduling is also preemptive. Preemptions are not restricted to times at
which new jobs become available. Negative laxities provide an early warning for
deadlines to be missed. It can be shown (this is left as an exercise in [347]) that
LL is also an optimal scheduling policy for uniprocessor systems with meeting
deadlines as the objective. This means that it will find a schedule if one exists. Due
to its dynamic priorities, it cannot be used with a standard OS providing only fixed
priorities. Furthermore, LL scheduling—in contrast to EDF scheduling—requires
the knowledge of the execution time and typically generates many context switches.
Its use is therefore restricted to special situations where its properties are attractive.
Also, laxity can play a role in multiprocessor scheduling, as will be shown in
Sects. 6.3.3 and 6.3.4.

Scheduling Without Preemption

Let us now consider the case of not allowing preemptions, denoted as (1|ri |Lmax).

Theorem 6.3 If preemption is not allowed, optimal schedules must leave the
processor idle at certain times in order to finish jobs with early deadlines arriving
late.

Proof Let us assume that an optimal non-preemptive scheduler (not having knowl-
edge about the future) never leaves the processor idle. This scheduler must schedule
the example of Fig. 6.9 optimally (it must find a schedule if one exists). For the

6.2 Scheduling for Uniprocessors 309

Fig. 6.9 Scheduler needs to leave processor idle

example of Fig. 6.9, we assume we are given two tasks. Let τ1 be a periodic task
with C1 = 2, T1 = 4, D1 = 4, and r1 = 0. Let τ2 be a sporadic task with C2 = 1,
D2 = 1, T2 = 4, and r2 = 1, i.e., sporadically becoming available at times 4∗n+1.

Under the above assumptions, our scheduler has to start the execution of task τ1
at time 0, since it is supposed not to leave any idle time. Since the scheduler is non-
preemptive, it cannot start τ2 when it becomes available at time 1. Hence, τ2 misses
its deadline. If the scheduler had left the processor idle (as shown in Fig. 6.9 at time
4), a legal schedule would have been found. Hence, the scheduler is not optimal.
This is a contradiction to the assumptions that optimal schedulers not leaving the
processor idle at certain times exist. ��
We conclude in order to avoid missed deadlines, the scheduler needs knowledge
about the future. Such algorithms are called clairvoyant. An algorithm leaving the
processor idle in the presence of executable tasks is not work-conserving:

Definition 6.8 A scheduling algorithm is work-conserving if it does not allow
there to be a time at which a processor is idle and there is an executable task [119].

If no knowledge about the arrival times is available a priori, then no online algorithm
can decide whether or not to keep the processor idle.

If arrival times are known a priori, the scheduling problem becomes NP-hard
in general, and branch and bound techniques are typically used for generating
schedules.

6.2.2 Scheduling with Precedence Constraints

Next, let us consider precedence constraints, according to the triplet notation
denoted as (1| ri , prmp, prec | Lmax).

Task Graphs

Precedence constraints are expressed by directed acyclic graphs (DAGs, cf. Defini-
tion 2.6) G = (τ, E). The set τ represents the vertices (or nodes) of the DAG and
E ⊆ τ × τ its edges.

310 6 Application Mapping

Fig. 6.10 Task DAG

652 3

1

4

9

10

7 8

Fig. 6.11 Precedence graph
and schedule

Example 6.3 In Fig. 6.10, edges express that source nodes (the first components of
the tuples representing edges) must be executed before their sink nodes (the second
components of the tuples representing edges). Vertex labels denote task numbers.

∇
There may be several reasons for describing applications as DAGs:

1. On the one hand, each vertex might correspond to an instance of a task, and edges
would then represent dependencies between tasks.

2. On the other hand, the availability of multiprocessors leads to the idea of splitting
tasks into subtasks and executing these subtasks in an overlapping manner on
different processors. Each vertex could then correspond to a subtask. Automatic
partitioning of tasks into subtasks such that parallel processors can be efficiently
exploited is called automatic parallelization. Automatic parallelization is even
more difficult than automatic scheduling for a given number of subtasks.

Both cases of creating DAGs can be used in combination: we can have dependencies
among tasks, and tasks can be split into subtasks. In the following, we assume that
the DAG represents any of the situations just described, and we will call the DAGs
task graphs. For scheduling, it is not relevant how the DAG was actually generated.

Example 6.4 A legal schedule for a simpler task graph including message transmis-
sion is shown in Fig. 6.11. Task τ3 can be executed only after task τ1 and τ2 have
completed and sent messages to τ3. ∇

6.2 Scheduling for Uniprocessors 311

Latest Deadline First (LDF) Algorithm

An optimal algorithm for minimizing the maximum lateness for the case of
simultaneous arrival times of dependent tasks or jobs was presented by Lawler
[326]. The algorithm is called latest deadline first (LDF). LDF reads the task graph.
Among all tasks with no successors, it picks the one with the latest deadline and puts
it into a queue. It then repeats this process, always selecting the task with the latest
deadline among tasks whose successors have all been selected and inserting it into
the queue. At run-time, the tasks are executed in an order opposite to the order in
which tasks have been entered into the queue. LDF is non-preemptive and is optimal
for uniprocessors.

Example 6.5 Consider the case of Fig. 6.11. LDF would first store τ3 in a queue,
since it has no successor. As a result, successors of τ1 and τ2 have all been selected
already. Which of the two is stored in the queue first depends on their deadline. The
node having the later deadline is stored in the queue first. At run-time, the queue is
processed in reverse order, starting, for example, with τ1. ∇

The case of asynchronous arrival times can be handled with a modified EDF
algorithm. The key idea is to transform the problem from a given set of dependent
jobs into a set of independent jobs with different timing parameters [98]. This
algorithm is again optimal for uniprocessor systems.

If preemption is not allowed, the heuristic algorithm developed by Stankovic
and Ramamritham [508] can be used.

6.2.3 Periodic Scheduling Without Precedence Constraints

Next, we will consider the periodic case. We will consider mostly tasks instead
of jobs, since most properties for periodic systems can be derived for tasks. We
will restrict ourselves to a description of the case in which tasks are independent,
described as (1|ri ,prmp,periodic|. . .) in the triplet notation.

Notation

For periodic scheduling, objectives relevant for aperiodic scheduling are less useful.
For example, minimization of the total length of the schedule is not an issue if we
are talking about an infinite repetition of jobs. The best that we can do is to design
an algorithm which will always find a schedule if one exists. This motivates the
definition of optimality for periodic schedules.

Definition 6.9 For periodic scheduling, a scheduler is defined to be optimal iff it
will find a feasible schedule if one exists.

312 6 Application Mapping

Definition 6.10 For periodic and sporadic task systems τ = {τ1, .., τn}, we define
task utilization as

ui = Ci

Ti

(6.4)

This means that for sporadic task systems, we are using the same definition as for
periodic systems, even though Ti just denotes the minimum separation of jobs.

Definition 6.11 For a task system τ = {τ1 . . . τn} with utilization ui of task τi , we
define the maximum and the total utilization by

Umax = max
i

(ui) (6.5)

Usum =
∑

i

ui (6.6)

Rate Monotonic Scheduling

Rate monotonic (RM) scheduling [348] is probably the most well-known scheduling
algorithm for independent periodic tasks. Rate monotonic scheduling is based on the
following assumptions (“RM assumptions”):

1. All tasks that have hard deadlines are periodic.
2. All tasks are independent.
3. Di = Ti , for all tasks.
4. Ci is constant and is known for all tasks. Self-suspension (voluntarily relinquish-

ing the execution) is not allowed.
5. The time required for context switching is negligible.
6. For a single processor and for n tasks, the accumulated utilization Usum does not

exceed the following bound:

Usum =
n∑

i=1

Ci

Ti

≤ n(21/n − 1) (6.7)

Figure 6.12 shows the bound of constraint (6.7).
The bound is about 0.7 for large n:

lim
n→∞ n ∗ (21/n − 1) = loge(2) = ln(2) ≈ 0.7 (6.8)

Then, according to the policy for rate monotonic scheduling, the priority of
tasks is a monotonically decreasing function of their period. In other words,
tasks with a short period will get a high priority, and tasks with a long period will

6.2 Scheduling for Uniprocessors 313

Fig. 6.12 Bound of
constraint (6.7) nn (2 -1)

1

0.2

0.4

0.6

1

0.8

1 3 4 5 6 72 8

0.
72

8

0.
72

4

0.
73

4

0.
74

3

0.
75

7

0.
78

0

0.
82

8

1

n

Fig. 6.13 Example of a schedule generated with RM scheduling ∇

be assigned a low priority. RM scheduling is a preemptive scheduling policy with
fixed priorities.

Example 6.6 Figure 6.13 shows a schedule generated with RM scheduling. Task τ2
is preempted several times. Double-headed arrows indicate the arrival time of a job
as well as the deadline of the previous job. Tasks τ1 to τ3 have a period of 2, 6, and
6, respectively. Execution times are 0.5, 2, and 1.75. Task τ1 has the shortest period
and, hence, the highest rate and priority. Each time task τ1 becomes available, its
jobs preempt the currently active task. Task τ2 has the same period as task τ3, and
neither of them preempts the other.

Constraint (6.7) requires that some of the computing power of the processor is
not used in order to make sure that all requests are honored in time. What is the
reason for this bound on the utilization? The key reason is that RM scheduling, due
to its static priorities, will possibly preempt a task which is close to its deadline in
favor of some higher-priority task with a much later deadline. The task having a
lower priority can then miss its deadline.

Example 6.7 In Fig. 6.14, task parameters are T1 = 5, C1 = 3, T2 = 8, and C2 =
3. In this case, we have Usum = 3

5 + 3
8 = 39

40 = 0.975. This value exceeds the bound:

2 ∗ (2
1
2 − 1) ≈ 0.828. Not enough idle time is available to guarantee schedulability

for RM scheduling. Hence, schedulability is not guaranteed for RM scheduling, and
in fact, the deadline is missed at time 8. We assume that the missing computations
are not scheduled in the next period. ∇

Such missed deadlines cannot happen if the utilization of the processor is very
low, and obviously, they can happen when the utilization is high, as in Fig. 6.14.

314 6 Application Mapping

Fig. 6.14 RM schedule does not meet deadline at time 8

If the constraint (6.7) is met, the utilization is guaranteed to be low enough to prevent
problems like that of Fig. 6.14. Constraint (6.7) is a sufficient condition. This means
we might still find a schedule if the condition is not met. Other sufficient conditions
exist [54].
RM scheduling has the following important advantages:

• We can show that it is an optimal fixed priority preemptive scheduling algorithm
for uniprocessor systems [54].

• It is based on static priorities, enabling its application in an operating system
with fixed priorities.

• If the above six RM assumptions (see p. 312) are met, all deadlines will be met
(see Buttazzo [81]).

RM scheduling is also the basis for a number of formal proofs of schedulability.
Designing examples and proofs is facilitated if the most problematic situations for
scheduling are known. To get started, we assume the following property:

Property 6.1 We assume that every job completes before the next job of the same
task is released.

Definition 6.12 A critical instant for a task τi is defined to be an instant t at which
a release of that task will have the largest response time.

Theorem 6.4 (Critical Instant Theorem) For fixed priority scheduling, the
response time for execution on a uniprocessor system is maximized for each task τi

if τi is released at the same time as all tasks having a higher priority.

Proof Here we present the original proof by Liu and Layland [348], using the
wording of these authors (except for making the notation consistent with ours): “Let
τ = {τ1, . . . , τn} denote a set of priority-ordered tasks with τn being the task with
the lowest priority. Consider a particular request for τn that occurs at t1. Suppose
that between t1 and t1 + Tn, the time at which the subsequent request of τn occurs,
requests for task τi, i < n, occur at t2, t2+Ti, t2+2Ti, . . . , t2+kTi , as illustrated
in Fig. 6.15. Clearly, the preemption of τn by τi will cause a certain amount of delay
in the completion of the request for τn that occurred at t1, unless the request for τn is
completed before t2. Moreover, from Fig. 6.15 we see immediately that advancing
the request time t2 will not speed up the completion of τn. The completion time is
either unchanged or delayed by such an advancement. Consequently, the delay in

6.2 Scheduling for Uniprocessors 315

Fig. 6.15 Delaying task τn by some τi of higher priority

the completion of τn is largest when t2 coincides with t1. Repeating the argument
for all τi, i = 2, . . . , m − 1, we prove the theorem.” ��
Implicitly, we have used Property 6.1 in the proof. If we consider the general case
(i.e., the situation in which the assumption of Property 6.1 does not hold; see, for
example, Baker [35]), Theorem 6.4 remains valid, but the proof becomes more
complex, as shown by Devillers et al. [129] and Bril [69].5

The critical instant theorem is of great help when scheduling uniprocessor
systems. In general, the critical instant theorem does not hold for multiprocessor
systems, which makes proofs much harder. So, the validity of this theorem should
really be appreciated!

Let us look at other properties of RM scheduling now. The idle time or spare
capacity of the processor is not always required.

Theorem 6.5 Let τ be a system of periodic tasks. If the period of all tasks is a
multiple of the period of the task having the next higher priority, τ can be scheduled
with RM scheduling if

Usum ≤ 1 (6.9)

Example 6.8 This requirement is met if tasks in a TV set must be executed at rates
of 25, 50, and 100 Hz (or 30, 60, and 120 Hz). ∇
Proof of Theorem 6.5 Let tasks be sorted by priorities, such that ∀i : Ti ≤ Ti+1.
Consider some task τi and the task with the next lower priority, task τi+1 (see
Fig. 6.16). Note that the second deadline of τi+1 matches the fourth deadline of
τi neatly. Therefore, we can fold the execution times of task τi+1 into the execution
times of τi and create a new task τ ′i+1, containing the execution times of the two
original tasks. This folding is feasible if the total execution time of the two tasks
does not exceed the period of τi+1. The process can be repeated in the same way
with the next lower-priority task. Overall, folding is feasible as long as the overall
utilization does not exceed 1. ��
The bounds in Constraints (6.7) and (6.9) allow us to check for schedulability.

5I owe this hint to J.J. Chen of TU Dortmund.

316 6 Application Mapping

Fig. 6.16 Folding of tasks of adjacent priorities

Fig. 6.17 EDF generated schedule for the example of 6.14

Due to the critical instant theorem, the proof of optimality of RM scheduling
needs to consider only the case in which tasks are released concurrently with all
other tasks of higher priority.

Earliest Deadline First Scheduling

EDF can also be applied to periodic task sets. Obviously, it is sufficient to solve the
scheduling problem for a single hyper-period. This schedule can then be repeated
for the other hyper-periods. The hyper-period for the example of Fig. 6.14 is 40.
It follows from the optimality of EDF for nonperiodic schedules that EDF is
also optimal for a single hyper-period and therefore also for the entire scheduling
problem. No additional constraints must be met to guarantee optimality. This
implies that EDF is optimal also for the case of Usum = 1.

Example 6.9 No deadline is missed if the example of Fig. 6.14 is scheduled with
EDF (see Fig. 6.17). At time 5, the behavior is different from that of RM scheduling:
due to the earlier deadline of τ2, it is not preempted. ∇

Explicit-Deadline Tasks

Now we move toward the consideration of tasks whose deadline is not the same
as the period. Such tasks are called explicit-deadline tasks. Each task τi in such
a system is characterized a triple (Ci,Di, Ti), where Di is the relative deadline.
The case Di ≤ Ti is called the constrained-deadline case. The arbitrary-deadline

6.2 Scheduling for Uniprocessors 317

case is characterized by the absence of such a constraint. Obviously, the class of
explicit-deadline tasks is more general than the class of implicit-deadline tasks, and
each implicit-deadline task is also an explicit-deadline task.

Utilization is of limited value for the characterization of computational demands
of explicit-deadline tasks. To some extent, density plays the role which utilization
played to far. Density is defined as

densi = Ci

min(Di, Ti)
(6.10)

denssum(τ) =
∑
τi∈τ

densi (6.11)

densmax(τ) = max
τi∈τ

(densi) (6.12)

Density values characterize computational requirements. A tighter bound is pro-
vided by the so-called demand bound function (DBF):

Definition 6.13 For any sporadic task τi and any real number t ≥ 0, the demand
bound function DBF(τi, t) is the largest cumulative execution requirement of all
jobs that can be generated by τi to have both their release times and their deadlines
within a contiguous interval of length t .

The overall execution requirements of task τi over an interval [t0, t0 + t) are
maximized if one of its jobs arrives at the start of the interval—i.e., at time
instant t0—and its subsequent jobs arrive as rapidly as permitted, i.e., at instants
t0 + Ti, t0 + 2Ti, t0 + 3Ti, This observation leads to Eq. (6.13) [39, 41]:

DBF(τi, t) = max

(
0,

(⌊
t − Di

Ti

⌋
+ 1

)
∗ Ci

)
(6.13)

Density and the demand bound function are related:

Lemma 6.1 For all tasks τi and for all t ≥ 0:

t ∗ densi ≥ DBF(τi, t) (6.14)

Proof Let us compare the graphs depicting density and DBF as a function of time.
Figure 6.18 shows both functions. The left hand side of Eq. (6.14) is visualized as
the straight line with slope densi . DBF is a step function with steps of height Ci .
Whenever a task must be executed, the step function increases by Ci . The first step
is at t = Di . By definition of the density, this step does not exceed the straight line.
The next steps will be at t = Di + Ti , t = Di + 2Ti , t = Di + 3Ti , and so on, since
these are the intervals of time after which the demand increases by Ci . Again, these
steps will not exceed the straight line. ��

318 6 Application Mapping

Fig. 6.18 Comparison of
density and DBF

i

DBF

dens

Di Di+Ti D
i

T
i

+2 D
i

T
i

+3 t

DBF, dens

EDF can be easily extended to handle the case when deadlines are different
from the periods. For RM scheduling, the extension is called deadline monotonic
scheduling.

Deadline Monotonic Scheduling

Explicit-deadline tasks can be dealt with in deadline monotonic (DM) scheduling.
For DM scheduling, static task priorities are based on nonincreasing deadlines: for
any two tasks τi and τi′ , the priority of τi will be higher than that of τi′ if Di < Di′ .

For constrained-deadline tasks, constraint (6.7) can be generalized into con-
straint (6.15) which is sufficient, but not necessary [81]:

n∑
i=1

Ci

Di

≤ n(21/n − 1) (6.15)

6.2.4 Periodic Scheduling with Precedence Constraints

Scheduling dependent tasks is more difficult than scheduling independent tasks, in
particular in the non-preemptive case ((1| ri , prec, periodic | Lmax) in the triplet
notation). The problem of deciding whether or not a non-preemptive schedule exists
for a given set of dependent tasks and a given deadline is NP-complete [178]. In
order to reduce the scheduling effort, different strategies are used:

• adding additional resources such that scheduling becomes easier,
• partitioning of scheduling into static and dynamic parts. With this approach, as

many decisions as possible are taken at design time, and only a minimum of
decisions is left for run-time.

6.2.5 Sporadic Events

In the case of sporadic events, we could connect sporadic events to interrupts and
execute them immediately if their interrupt priority is the highest in the system.

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 319

However, quite unpredictable timing behavior would result for all the other tasks.
Therefore, special sporadic task servers are used which execute at regular intervals
and check for ready sporadic tasks. This way, sporadic tasks are essentially turned
into periodic tasks, thereby improving the predictability of the whole system.

6.3 Scheduling for Independent Jobs on Identical
Multiprocessors

Next, we are going to consider multiprocessors, due to their widespread use in the
form of multi-cores in contemporary embedded systems. A large number of issues
have to be considered during the transition from uniprocessors to multiprocessors.
Initially, we assume having m identical processors (or “cores”). Furthermore,
we assume dealing with a task system τ = {τ1, . . . , τn} where each task i is
characterized by its worst case execution time (WCET) Ci and—in case of periodic
or sporadic tasks—its period Ti which is considered to also define the deadline
unless otherwise noted. Whenever the periodic or sporadic nature of tasks is not
relevant, we may also consider a set of jobs with explicit deadlines di instead.

For multiprocessor s, it is not sufficient to decide when to execute tasks or their
jobs. Rather, we must decide when to execute jobs and where to execute them.
Thus, a one-dimensional problem becomes a two-dimensional problem.

For m identical processors, obvious necessary conditions for schedulability are

∀i : ui ≤ 1 (6.16)

Usum ≤ m (6.17)

6.3.1 Partitioned Scheduling

Our presentation in the next sections is based predominantly on a book written by
Baruah et al. [41] and complemented by material from other sources like a survey
paper by Davis et al. [119] and slides by I. Puaut [461, 462]. Baruah et al. focus on
sporadic task systems. This is partly motivated by the fact that for such systems—
in contrast to periodic task systems—no global time synchronization is required
for releasing jobs. Rather, it is sufficient to maintain a time base which ensures
that the minimum intervals Ti are kept. Also, sporadic task systems are considered
for complexity reasons. We start by considering sporadic implicit-deadline tasks on
identical multiprocessors. In the triplet notation, this corresponds to the case (Pm |
Di = Ti , sporadic|. . .).

Furthermore, we are initially restricting ourselves to the case of partitioned
scheduling. This means that each task is allocated to a particular processor. Task
migration is not allowed. Partitioned scheduling for synchronous arrival times can

320 6 Application Mapping

be done by bin packing [306], defined in a notation adjusted for real-time scheduling
as follows:

Definition 6.14 Let τ = {1, . . . , n} be a set of items, where each item i ∈ τ has a
size ci ∈ (0, 1]. Let π = {1, . . . m} be a set of bins with capacity one. The problem
of finding an assignment a : τ → π such that the number of nonempty bins m ≤ n

is minimal and such that allocated sizes do not exceed the bin capacity is called the
bin packing problem.

Bin packing is known to be NP-hard [178]. Hence, optimal algorithms such as the
one proposed by Korf [305] need large run-times. Formalization of the scheduling
problem as a bin packing problem aims at the minimization of the number of
processors m.

For a given number m of processors, it is more appropriate to model scheduling
for synchronous arrival times as a knapsack problem, more precisely as a 0/1
multiple knapsack problem. This problem can be defined as follows, again using
a notation adjusted for real-time scheduling:

Definition 6.15 (Martello [367]) Let τ = {1, . . . , n} be a set of n items, each with
a size ci and a benefit bi . Let π be a set of m knapsacks, each with a capacity κk ,
with (m ≤ n). Suppose that we can partially allocate a subset of items to knapsacks
(a : τ → π) such that size constraints are respected:

∀k :
∑

i,a:i→k

ci ≤ κk. (6.18)

The problem of selecting disjoint subsets of items so that the total profit
∑

i bi for
items in knapsacks is maximized is called the 0/1 multiple knapsack problem
(MKP).

Given an algorithm for the 0/1 multiple knapsack problem, we can allocate jobs
to m processors. For identical processors, capacities would all be equal. For uniform
processors, we can use capacities to take processor speeds into account. The 0/1
multiple knapsack problem is NP-hard as well. Note that we would possibly not
schedule all tasks.

Due to the complexity of scheduling for synchronous arrival times, there is
no hope for efficient optimal algorithms for the general problem, and in practice,
heuristics are used. Common heuristics are considering tasks and processors in a
certain sequence. Heuristics differ by the sequence they use. Lopez et al. [355] have
compared several heuristics. They restrict themselves to the so-called reasonable
allocation algorithms, defined as follows:

Definition 6.16 A reasonable allocation (RA) algorithm is defined as one that
fails to allocate a task to a multiprocessor platform only when the task does not fit
into any processor upon the platform.

Definition 6.17 A reasonable allocation decreasing (RAD) algorithm is defined
as an RA algorithm considering tasks in a nonincreasing order of utilization.

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 321

The algorithms studied by Lopez et al. are obtained by combining all possible
combinations of two characteristics:

1. The order in which tasks are considered: tasks can be considered in decreasing
order of utilization (denoted by D), in increasing order of utilization (denoted by
I), and in arbitrary order (denoted by an empty character).

2. The search strategy for processor allocation: we consider processors to be
ordered in some way. Then, the first fit strategy (FF) will allocate the first
processor on which it fits. The worst fit strategy (WF) will allocate the processor
with the largest remaining capacity. The best fit strategy (BF) will allocate the
processor with the minimum remaining capacity on which it fits.

There are a total of nine combinations. All combinations can be implemented
efficiently. For example, algorithm FFD can be detailed as follows:

Sort task set according to nonincreasing utilizations ui = Ci / Ti;
/* Assume task set is renumbered according to the sorting;*/
for (mt=0; mt ≤ m; mt++) K[mt] =1; /* initialize capacity */
for (i=1; i≤n; i++) { /* for each task */

for (mt=1; (ui >K[mt]) and (mt≤m); mt++); /* sufficient capacity? */
if (mt > m) mt=0; /* no solution, use index 0 */
a[i]=mt; /* return processor allocation in array */
K[mt]=K[mt]-ui; /* update remaining capacity */

}

The heuristic algorithm is certainly not optimal. There may be the question: how
far are we off the optimum? Many publications discuss upper bounds on the number
of additional processors needed, if compared to the minimum number of processors
needed for optimal bin packing. The paper by Dosa [136] is an example of this.
For real-time systems, a different question is relevant: is there, for a given number
of processors, any bound on the overall utilization up to which schedulability is
guaranteed? One utilization bound was proved by Lopez et al. [355]:

Theorem 6.6 Any reasonable allocation algorithm has a utilization bound no
smaller than

UB1(Umax) = m − (m − 1)Umax (6.19)

Proof When a task with utilization ui cannot be allocated, every processor must
have tasks allocated to it with a per processor utilization exceeding (1 − ui). The
overall utilization over all allocated tasks and including τi must then exceed:

m(1 − ui) + ui = m − (m − 1)ui (6.20)

≥ m − (m − 1)Umax (6.21)

322 6 Application Mapping

This condition must be met for allocation not to be feasible. ��
Furthermore, define β as

β =
⌊

1

Umax

⌋
(6.22)

β is a lower bound on the number of tasks of our task set which we can run on
a single processor. Let us assume that EDF is used for local scheduling on each
processor. Lopez et al. also showed the following theorem:

Theorem 6.7 No allocation algorithm can have a utilization bound larger than

UB2(β) = βm + 1

β + 1
(6.23)

Proof See Lopez et al. [355]. ��
Lopez et al. also proved that WF and WFI have Eq. (6.19) as their lower bound;
the remaining algorithms have Eq. (6.23) as their lower bound. Whenever Umax

approaches 1, the bound in Eq. (6.19) also approaches 1:

UB1(1) = 1 (6.24)

When Umax gets close to 1, β becomes 1, and UB2 becomes

UB2(1) = m + 1

2
(6.25)

The bound in Eq. (6.25) allows us to use multiple processors in a much more
efficient way compared to the bound in Eq. (6.24). Hence, with respect to these
bounds, WF and WFI are inferior to the other seven algorithms. Experimentally,
it has been shown that FFD seems to be superior to FF or FFI and BFD seems
to be superior to BF and BFI [41]. There is also some theoretical evidence which
supports this observation [41].

The sketched nine algorithms are relatively simple algorithms. We refrain from
presenting more elaborate algorithms for the same problem since the problem
considered is too much simplified to apply to realistic applications:

• The scheduling problem, as it has been addressed in this section, is a very much
restricted one. There are no precedences, no preemption, and only identical
processors.

• Partitioned scheduling may lead to unused processor resources even in situations
where jobs are available. This means that partitioned scheduling is not work-
conserving. Therefore, optimality is not guaranteed.

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 323

Hence, the information in this section provides fundamental knowledge, but practi-
cal applications require more sophisticated approaches, like the ones to be presented
in the following sections.

6.3.2 Global Dynamic-Priority Scheduling

Having unused processors in the presence of available jobs can be avoided with
global scheduling. For global scheduling, the allocation of processors to tasks
or jobs is dynamic. This gives us more flexibility, especially in the presence
of changing workloads or processor availabilities. In the absence of execution
constraints, upper bounds on the utilization like the ones in Constraints (6.19)
and (6.23) are replaced by

Usum ≤ m (6.26)

However, this better utilization bound and flexibility comes at the price of a certain
overhead for scheduling decisions, preemptions, and job migrations.

Proportional Fair (Pfair) Scheduling

The key idea of proportional fair (pfair) scheduling [40] is to execute each task at
a rate corresponding to its utilization.6 For example, if ui = 0.5 for a set of tasks,
then each task should be executed approximately half of the time, regardless of the
number of processors. For pfair scheduling, we assume that time is quantized and
enumerated with integers. Also, Ci and Ti parameters are represented by integers.

Definition 6.18 The lag of a task τi at time t with respect to schedule S, denoted as
lag(S, τi , t), is the difference between the number of slots that a task has received
and the number of slots that it should have received:

lag(S, τi , t) = ui ∗ t −
t−1∑
u=0

alloc(S, τi , u) (6.27)

The first term is the target execution time of task τi ; the second is the time during
which this task has been executed in schedule S. A schedule is said to be a pfair
schedule if the lag remains in the interval (−1,+1).

6The presentation of pfair scheduling is based on slides by I. Puaut [462].

324 6 Application Mapping

+/- 1

executed time

t

Fig. 6.19 Execution time as a function of real time ∇

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0 2 4 6 8 01 21 41 61 81 02 22 42

Fig. 6.20 Intervals for allocated execution time

Example 6.10 Figure 6.19 shows the function of actually executed time as a
function of real time. The amount of executed time should not reach the two dashed
lines.

For pfair scheduling, we divide each task τi into subtasks τ
j
i , where j enumerates

the execution intervals. For each subtask, we define a pseudo-release time and a
pseudo-deadline:

r(τ
j
i) =

⌊
j − 1

ui

⌋
(6.28)

d(τ
j
i) =

⌈
j

ui

⌉
(6.29)

Example 6.11 Consider a task τi with Ci = 8 and Ti = 11. Possible intervals for
the number of allocated execution slots for each j are shown in Fig. 6.20.
For example:

r(τ 6
i) =

⌊
6 − 1

8/11

⌋
=

⌊
55

8

⌋
= 6

d(τ 6
i) =

⌈
6

8/11

⌉
=

⌈
66

8

⌉
= 9

Hence, the sixth subtask of task τi must be executed in time interval (6:9). ∇

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 325

One particular approach for allocation of a correct number of execution slots is
presented in the book by Baruah et al. [41]. In general, there are variations of this
scheme: we can apply EDF to pseudo-deadlines, or we can modify EDF by defining
rules which are applied in case of ties. It is feasible to obtain schedulability for full
processor utilization, i.e., for Usum ≤ m.

Pfair scheduling potentially suffers from a large number of migrations between
processors. Also, due to the integer (over-)approximation of execution times, it is
not work-conserving. Variants have been proposed which reduce the overhead for
job migrations. Also, the overall complexity can be reduced with some variants.

Pfair scheduling finds many applications in operating systems, for example, for
scheduling virtual machines.

6.3.3 Global Fixed-Job-Priority Scheduling

G-EDF Scheduling

We can also try to solve the two-dimensional problem with extensions of uniproces-
sor scheduling algorithms. For example, we could use global EDF (G-EDF). G-EDF,
just like EDF, defines job priorities based on the closeness of the next deadlines.
If m processors are available, those m jobs having the highest priorities among
all available jobs are executed. Obviously, such priorities are job-dependent and
not just task-dependent. In a global scheduling strategy, we would like to keep
preemptions and task migrations to a minimum. For G-EDF, these numbers depend
on how we allocate tasks/jobs to a particular processor [189].

Lemma 6.2 G-EDF is not optimal.

Proof The proof is by counterexample, adopted from Cho et al. [102]. Suppose
m = 2 and C1 = 3, D1 = 4, C2 = 2, D2 = 3, C3 = 2, and D3 = 3. As shown
in Fig. 6.21 (left), G-EDF schedules J2 and J3 first, due to their earlier deadline. J1
misses its deadline. However, a schedule is feasible, as shown in Fig. 6.21 (right).

��

Fig. 6.21 Left, G-EDF violates deadline at t = 4; right, feasible schedule

326 6 Application Mapping

Fig. 6.22 Dhall effect

Obviously, the problem for G-EDF results from not being able to use the second
processor for t > 2.

In general, G-EDF may suffer anomalies like the so-called Dhall effect [130]:
periodic task sets for which one task has a utilization close to one cannot be
scheduled with G-EDF.

Example 6.12 To demonstrate the effect, let us consider the case of n = m+ 1 and

∀i ∈ [1..m] : Ti = 1, Ci = 2ε, ui = 2ε (6.30)

Tm+1 = 1 + ε, Cm+1 = 1, um+1 = 1
1+ε

(6.31)

A corresponding schedule is shown in Fig. 6.22. Initially, only tasks τ1, .., τm

are executed. The execution of task τm+1 starts only after the first m tasks have
completed their execution, and it will miss its deadline. The presence of a single
task τm+1 with a high utilization is sufficient to cause a deadline miss at t = 1 + ε.
This happens even though the utilization of the other tasks is very small. In fact, the
utilization of tasks τ1, ..τm can be arbitrarily small, and we will still have a deadline
miss. ∇

This motivates using variants of algorithms which assign high priorities to tasks
with a high utilization, regardless of their deadline or period.

Algorithm fpEDF is such an algorithm. We assume that we are given an implicit-
deadline sporadic task system τ = {τ1, . . . τn} and that tasks are ordered by
nonincreasing utilizations ui . Our goal is to schedule these tasks on m identical
processors while avoiding the Dhall effect. Algorithm fpEDF works as follows [41]:

for (i=1; i ≤ m − 1; i++){
if (ui >0.5) τi’s jobs obtain highest priority (ties broken arbitrarily)
else break;

} /* Remaining jobs get priorities according to EDF. */

This means that the m − 1 tasks of largest utilization will obtain the highest
priority if their utilization exceeds a value of 0.5.

Theorem 6.8 Algorithm fpEDF has a utilization bound no smaller than m+1
2 .

This is the best bound which we can expect unless some additional information is
known, as is evident from the following theorem.

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 327

Fig. 6.23 G-EDF: left, missed deadlines; right, ZL improvement

Theorem 6.9 No m-processor fixed-job-scheduling algorithm has a schedulable
utilization greater than m+1

2 .

The proofs of both theorems can be found in [41]. As in the case of partitioned
scheduling, stronger bounds are feasible if the largest utilization is known.

A similar idea is used in scheduling algorithm EDF(k): for EDF(k), k tasks of
highest utilization obtain the highest priority, breaking ties arbitrarily. All other tasks
are scheduled according to EDF.

Theorem 6.10 EDF(k) will schedule τ onm unit-speed (homogeneous) processors,
where τ is an implicit-deadline sporadic task system.

m = (k − 1) +
⌈

U(τ (k+1))

1 − uk

⌉
(6.32)

and U(τ (k+1)) is the utilization for the task set with the first k tasks removed.

The proof of this theorem can again be found in [41].

EDZL Scheduling

Obviously, G-EDF can miss deadlines for task sets that are schedulable. We can
improve G-EDF by adding a consideration of laxity: the EDZL algorithm applies
G-EDF as long as the laxity of jobs is greater than zero (see [41, Chapter 20]).
However, whenever the laxity of a job becomes zero, the job gets the highest priority
among all jobs, even including currently executing jobs.

Example 6.13 Consider the example in Fig. 6.23, adopted from Puaut [461]. In this
example, parameters are as follows: n = 3, m = 2, T1 = T2 = T3 = 3, and
C1 = C2 = C3 = 2. For this example, G-EDF misses the deadlines for τ3 at times
t = 3n for n = 1, 2, 3.., as can be seen in Fig. 6.23 (left). However, EDZL keeps
the deadlines as can be seen in Fig. 6.23 (right). The detailed behavior depends
somewhat on the processor allocation used by EDZL. ∇

328 6 Application Mapping

Fig. 6.24 Schedule generated by G-RM

EDZL is strictly superior to EDF, as shown by Choi et al. [101]. Informally,
this can be shown as follows:7 suppose that S is a schedule from EDF, and S′ is a
schedule from EDZL for the same input task set. If a job at time t is scheduled in
EDZL but not in EDF, then the job misses the deadline in EDF but not in EDZL. If
both schedule the job, then the schedule remains the same. That is, the first moment
when S differs from S′ has the following results:

• either EDZL remains feasible but EDF becomes infeasible
• or both EDZL and EDF are infeasible.

Therefore, EDZL is superior to EDF. Piao et al. [452] proved the following
utilization bound for EDZL

Usum ≤ m + 1

2
(6.33)

6.3.4 Global Fixed-Task-Priority Scheduling

Global Rate Monotonic Scheduling

In a similar way, we can extend rate monotonic scheduling to global rate monotonic
scheduling (G-RM). For G-RM, there is an anomaly concerning relaxed schedules:

Lemma 6.3 For G-RM, there may be situations in which schedules exist for a
certain task system, but deadlines are violated if periods are extended.

Proof We prove the existence of such situations by means of an example, adopted
from Puaut [461]. Consider the case m = 2, n = 3, T1 = 3, C1 = 2, T2 = 4,
C2 = 2, T3 = 12, and C3 = 7. Figure 6.24 shows a schedule generated by G-RM.
If we extend the period of τ1 to T1 = 4, τ3 will miss its deadline (see Fig. 6.25).

7I owe this informal explanation to J.J. Chen, TU Dortmund.

6.3 Scheduling for Independent Jobs on Identical Multiprocessors 329

Fig. 6.25 Schedule with a missed deadline at t = 12 generated by G-RM

This counterintuitive result makes the design of proofs and examples much more
complex, compared to the uniprocessor case. ��
The critical instant theorem for uniprocessors (see p. 314) is also not valid for multi-
core systems.
The following utilization bound has been shown for G-RM:8

Theorem 6.11 Any implicit-deadline periodic or sporadic task system τ satisfying

Usum ≤ m

2
(1 − Umax(τ)) + Umax(τ) (6.34)

is successfully scheduled by G-RM onm unit-speed (homogeneous) processors [50].

G-RM also suffers from the Dhall effect: note that Usum in Eq. (6.34) approaches
zero as Umax approaches one. Also, like G-EDF, the algorithm cannot fully exploit
the presence of multiple processors.

Therefore, algorithm RM-US(ξ) with threshold ξ has been proposed, where US
stands for utilization threshold. Given an implicit-deadline sporadic task system τ =
{τ1, . . . τn} and tasks ordered by nonincreasing utilizations ui , the goal is to schedule
these up to (m−1) high utilization tasks on m−1 identical processors while avoiding
the Dhall effect, leaving at least one processor for the remaining tasks. RM-US(ξ)
works as follows:

for (i=1; i≤ m − 1; i++) {
if (ui > ξ) τi is assigned highest priority
else break;

} /* remaining tasks are allocated according to G-RM */

Theorem 6.12 Algorithm RM-US(ξ) has a utilization bound no smaller than
m2

(3m−2)
upon m unit-speed processors.

The proof was published by Andersson et al. [16]. For 3m � 2, this bound
approaches m

3 . A tighter bound was shown by Chen et al. [97].

8A tighter bound has been shown by Chen et al. [97].

330 6 Application Mapping

RMZL Scheduling

G-RM might miss deadlines for task sets that are schedulable, and we can consider
improvements. One such improvement is RMZL scheduling. For RMZL scheduling,
we use (G-)RM scheduling as long as the current laxity is larger than zero. However,
when the laxity becomes zero for one of the jobs, we raise its priority to the highest.
RMZL scheduling is superior to RM scheduling, since schedules are changed only
when RM scheduling could have missed a deadline [41].

Partitioned Scheduling for Explicit Deadlines

Partitioned scheduling for explicit-deadline task systems can be done similar to
partitioned scheduling for implicit-deadline task systems by replacing sorting by
utilization with sorting by density. However, this approach is not recommended,
since density can be unbounded in certain cases. Baruah et al. present a better
approach for partitioned scheduling [41].

6.4 Dependent Jobs on Homogeneous Multiprocessors

Results presented in the previous section constitute fundamental basic knowledge,
but the restriction to independent tasks and identical processors inhibits their appli-
cation for many design problems. Next, we will be dropping these restrictions. First
of all, we will be dropping the restriction to independent tasks and focus on some
simple algorithms used in the design automation community. For example, as-soon-
as-possible (ASAP), as-late-as-possible (ALAP), and list (LS) and force-directed
scheduling (FDS) are very popular for automated synthesis from algorithmic design
descriptions, the so-called high-level synthesis (HLS) (see, for example, Coussy
[113]).

6.4.1 As-Soon-as-Possible Scheduling

Considering precedence constraints, as-soon-as-possible (ASAP) scheduling tries
to schedule each task as soon as feasible. ASAP scheduling, as used in HLS,
considers a mapping of tasks to integer start times: S : τ → N0. Allocation to
specific processors has to be performed after ASAP scheduling. Preemptions are
not allowed.

We assume that the execution times of all tasks are known and that they are
independent of the processor executing the tasks. Hence, we are assuming that
processors are homogeneous. The algorithm does not consider any constraints on

6.4 Dependent Jobs on Homogeneous Multiprocessors 331

the number of processors and assumes that the number of processors needed for the
resulting schedule is available. The ASAP algorithm works as follows:

for (t=0; there are unscheduled tasks; t++) {
τ ′={all tasks for which all predecessors finished};
set start time of all tasks in τ ′ to t;

}

Example 6.14 Let us assume that the task graph of Fig. 6.26 (left) is given.
Each node labeled i represents a task τi . Furthermore, let us assume that

execution times correspond to those listed in Fig. 6.26 (right).
Then, ASAP scheduling will generate the schedule shown in Fig. 6.27. Numbers

in blue denote start times; numbers in green denote finish times. Tasks τ2 to τ6
all start immediately after task τ1 has finished, since they do not depend on any
other task. Also, tasks τ7 to τ9 start as soon as the last of their predecessors has
finished, and the same holds for task τ10. The red line in Fig. 6.27 (right) shows that
a maximum of five processors is needed, since ASAP scheduling does not consider
any constraints on the number of processors. ∇

Fig. 6.26 Left, task graph; right, execution times of tasks

Fig. 6.27 Left: ASAP scheduled task graph; right: time line

332 6 Application Mapping

ASAP scheduling minimizes the makespan, since all tasks are scheduled as early
as possible. The presented algorithm could be extended to also cover real numbers
as execution times. We may consider ASAP scheduling to be of linear complexity,
provided that we use a clever technique for computing τ ′. The algorithm can also
be applied to personal life, corresponding to a situation where each person is eager
to perform available work as early as possible.

6.4.2 As-Late-as-Possible Scheduling

As-late-as-possible (ALAP) scheduling is the second simple scheduling algorithm
for dependent tasks. For ALAP scheduling, all tasks are started as late as possible.
The algorithm works as follows:

for (t=0; there are unscheduled tasks; t--) {
τ ′={all tasks on which no unscheduled task depends};
set start time of all tasks in τ ′ to (t - their execution time);

}
Shift all times such that the first tasks start at t=0.

The algorithm starts with tasks on which no other task depends. These tasks are
assumed to finish at time 0. Their start time is then computed from their execution
time. The loop then iterates backward over time steps. Whenever we reach a time
step, at which a task should finish the latest, its start time is computed, and the task
is scheduled. After finishing the loop, all times are shifted toward positive times
such that the first task starts at time 0. We could also consider ALAP scheduling as
a case of ASAP scheduling starting at the “other” end of the graph.

Example 6.15 For the task graph in Fig. 6.26, ALAP scheduling would generate the
result shown in Fig. 6.28. The color coding is the same as for the ASAP example.
Note that each task finishes as late as possible. In particular, tasks τ7 to τ9 finish only
at time 34. Tasks τ4 to τ6 finish later than for the ASAP schedule. Tasks τ1, τ2, τ9,
and τ10 are scheduled as in the ASAP schedule, since these tasks determine the
makespan. Tasks which determine the makespan are said to be on the critical path.
Five processors are needed, as indicated by the red line. ∇
This scheduling strategy can also be applied to personal life. It corresponds to a
situation where each person (is lazy and) finishes tasks as late as possible. Many
processors are needed if the task graph is very wide at its lower end.9

9This corresponds to a lot of work in the final phase if people start lazy.

6.4 Dependent Jobs on Homogeneous Multiprocessors 333

Fig. 6.28 Left, ALAP scheduled task graph; right, time line

Fig. 6.29 Running example, left: mobility; right, number of successors

6.4.3 List Scheduling

With list scheduling (LS), we try to maintain the low complexity of ASAP and
ALAP scheduling while making the algorithm aware of available processors.
Processors may be of different types, but we do still assume that there is a
one-to-one mapping between tasks and processor types. Hence, processors may
be heterogeneous, but the crucial mapping from tasks to processor types is not
generated by list scheduling.

We assume that we have a set L of processor types. List scheduling respects
upper bounds Bl on the number of processors for each type l ∈ L.

List scheduling requires the availability of a priority function reflecting the
urgency of scheduling a certain task τi . The following urgency metrics are in use
[528]:

• Mobility is defined as the difference between the start times for the ASAP and
ALAP schedule. Figure 6.29 (left) shows the mobility for our running example
in red. Obviously, scheduling is urgent for the four tasks on the critical path for
which mobility is zero.

• The number of nodes below task τi in the tree (see Fig. 6.29 (right)).
• The path length for a task τi is defined as the length of the path from starting

at τi to finishing the entire graph G. The path length is typically weighted by

334 6 Application Mapping

Fig. 6.30 Left, task graph with path lengths; right, time line for path length based list scheduling

the execution time associated with the nodes, assuming that this information is
known. In Fig. 6.30 (left), path lengths have been added.

List scheduling requires the knowledge of the task graph G = (τ, E) to be
scheduled, a mapping from each node of the graph to the corresponding resource
type l ∈ L, an upper bound Bl for each l, a priority function (as just explained), and
the execution time for each task τi ∈ τ . List scheduling then fits nodes of maximum
priority into each of the time steps such that the constraints are not violated [528]:

for (t=0; there are unscheduled tasks; t++) /* loop over times */
for (l ∈ L) { /* loop over resource types */

τ ∗t,l = set of tasks of type l still executing at time t;
τ ∗∗t,l = set of tasks of type l ready to start execution at time t;

Compute set τ ′t ⊆ τ ∗∗t,l of maximum priority such that

|τ ′t | + |τ ∗t,l | ≤ Bl.

Set start times of all τi ∈ τ ′t to t: si = t;
}

Example 6.16 Figure 6.30 shows the result of list scheduling as applied to our
example in Fig. 6.26, using path length as priority. We assume that all processors
are of the same type and that we allow no more than three processors (B1 = 3).
At time 9, tasks τ2, τ4, and τ5 have the longest path length and hence the highest
priority. τ4 finishes at time 17, and τ3 and τ6 have the longest path length of the
remaining tasks. We assume that we schedule τ3. At time 19, τ5 finishes and τ6 can
be started. At time 28, τ3 and τ6 finish, freeing processors for τ7 and τ8. τ7 finishes
at time 35, enabling dependent task τ10 to start and to finish at time 42, only slightly
later than in the ASAP and ALAP schedules, despite using only three processors.

∇
LS—like ASAP and ALAP scheduling—does not allocate tasks to processors,

but there is also no need for doing this for the restricted resource model. LS can also
be extended to real numbers as execution times. The algorithm typically generates
good results and is easy to adapt to various scenarios. These two features make LS
a very popular scheduling algorithm for tasks with precedences.

6.4 Dependent Jobs on Homogeneous Multiprocessors 335

Force-directed scheduling (FDS) is another heuristic scheduling algorithm for
dependent tasks. FDS aims at an efficient use of processors. It tries to balance the
number of processors that may be needed at any particular time [449].

6.4.4 Optimal Scheduling with Integer Linear Programming

Next, we will be describing an approach for mapping tasks to multiple processors for
which decisions are taken on a more global view of the design problem. It is based
on integer linear programming (ILP) (see Appendix A). In this way, constraints and
optimization goals are made explicit. We are adopting material from a publication
of Coscun et al. [112] in our presentation.

ILP models consist of a linear cost function and a set of linear constraints. We
will use the following variables in these two parts of the model:

xi,k : = 1 if task τi is executed on processor πk and =0 otherwise

si : start time of task τi

fi : finish time of task τi

Ci : execution time of task τi

bi,j : = 1 if task τi is executed before τj on the same processor, else = 0

Let us assume that our task graph G = (τ, E) has a common exit node τexit . If no
such node is initially present, we add a virtual node. The finish time of this node is
equivalent to the makespan MSmax . We can use this finish time as our cost function
to be minimized. Hence, the objective of ILP minimization can be expressed as:

Min(fτexit
) (6.35)

First, the set of constraints ensures that each task is executed on some processor:

∀τi ∈ τ :
∑

k∈{1..m}
xi,k = 1 (6.36)

Second, the different times are related by the following equations:

∀τi ∈ τ : fi = si + Ci (6.37)

Third, in order to respect precedence relations, the following equations can be used:

∀(τi, τj) ∈ E : sj − fi ≥ 0 (6.38)

Fourth, in a single core, execution is in a sequence as determined by variable bi,j :

336 6 Application Mapping

∀(τi, τj) : fi ≤ sj if bi,j = 1 (6.39)

Fifth, each processor can execute only a single task at a time:

∀(τi, τj) : bi,j + bj,i = 1 if ∃ πk : xi,k = xj,k = 1 (6.40)

Equations (6.39) and (6.40) can be turned into the linear form required for ILP [112].
The resulting ILP model can be fed into some available ILP solver. ILP

models have the advantage of precisely modeling the design problem and the
objectives. They enable optimizations from a global viewpoint, using mathematical
optimization techniques and stepping away from imperative programming.

The ILP problem is NP-hard. Therefore, run-times of ILP solvers can become
large, but there has been significant progress in the design of ILP solvers. Hence,
moderately large problems can be solved in acceptable times. However, due to
the complexity of ILP, these approaches do not scale to really large designs, and
run-times may be unacceptable. Nevertheless, these models can be used for exact
optimization of moderately large design problems and serve as a good starting point
for heuristics for larger problems.

6.5 Dependent Jobs on Heterogeneous Multiprocessors

6.5.1 Problem Description

Next to dropping the restriction to independent tasks, we would like to drop the
restriction to homogeneous processors. We assume that the processing speeds of
processors of our execution platform π = {π1, . . . , πm} are unrelated. According
to Pinedo’s triplet notation, we are considering the case (Rm|ri, prec, . . . | . . .),
including platforms comprising a mixture of execution units, like FPGAs, GPUs,
etc.

The theory of the resulting scheduling problems has not been studied com-
prehensively. As a result, Baruah et al. [41] state (in Chapter 22): “although
unrelated multiprocessors are becoming increasingly more important in real-time
systems implementation, the resulting scheduling theoretic study of such systems is,
relatively speaking, still in its infancy.” Some first results are presented in the book
by Baruah, but we resort to presenting methods published in the design automation
community. They can handle realistic design tasks, sacrificing proofs of optimality.

6.5 Dependent Jobs on Heterogeneous Multiprocessors 337

6.5.2 Static Scheduling with Local Heuristics

We will now describe the heterogeneous-earliest-finish-time (HEFT) and the
critical-path-on-a-processor (CPOP) algorithms for static scheduling of tasks
in a task graph G = (τ, E) onto a heterogeneous multiprocessor system
π = {π1, . . . , πm} [545]. These two algorithms are standard examples of fast
algorithms. In a way, they extend ASAP and ALAP scheduling for heterogeneous
processors. This is the notation we need:

• We assume that the task graph has a common entry node τentry . If no such node
is initially present, we will add an artificial node having zero execution time and
communication bandwidth requirements.

• We assume that the task graph has a common exit node τexit . If no such node is
initially present, we will add an artificial node having zero execution time and
communication bandwidth requirements.

• Matrix C = (ci,k) denotes the execution time of task τi on processor πk .
• Matrix B = (bk,l) denotes the communication bandwidth for communication

from processor πk to processor πl .
• Matrix data = (datai,j) represents the amount of data which must be

transmitted from task τi to task τj .
• Vector κ = (κk) contains the communication startup costs on processor πk .
• Matrix H = (hi,j,k,l) describes the communication cost from task τi to task τj

under the assumption that τi is mapped to processor πk and task τj is mapped to
processor πl .10

We will use index i for the source of precedences and index k for its allocated
processor. For the sink, we use j and l accordingly.

• For a mapping to processors πk and πl , hi,j,k,l represents the communication cost
from task τi to task τj :

hi,j,k,l = κk + datai,j

bk,l

if k �= l (6.41)

= 0 if k = l (6.42)

• The average communication cost is defined as

hi,j = κ + datai,j

B
(6.43)

where κ is the average communication startup time and B is the average
communication bandwidth.

• Given a partial schedule, se(τi, πk) is the earliest start time for task τi on
processor πk . Obviously, se(τentry, πk) is zero, for any k.

10Indexes k and l are not explicit in the original paper.

338 6 Application Mapping

• We define fe(τi, πk) as the earliest finishing time for task τi on heterogeneous
processor πk . fe(τentry, πk) is equal to centry,k .

• Once the decision to schedule task τi on processor πk has been taken, the actual
start time s(τi, πk) and the actual finish time f (τi, πk) can be computed.

se(τj , πl) and fe(τj , πl) can be computed from a partial schedule iteratively
as follows:

se(τj , πl) = max
{
avail(l),maxτi∈pred(τj)(f (τi) + hi,j,k,l)

}
(6.44)

fe(τj , πl) = cj,l + se(τj , πl) (6.45)

where pred(τj) is the set of immediate predecessor tasks of task τj , k is the
processor task τi is mapped to in the partial schedule, and avail(l) is the time
that processor πl completed the execution of its last task. The max expression in
the inner term is the time when all data needed by τj has arrived at processor πl .

• For HEFT and CPOP, we assume that the makespan is to be minimized. The
makespan is computed from the actual finish time of the exit node:

makespan = f (τexit) (6.46)

• The average execution time ci is the execution time ci,k averaged over all πk .
• The upward rank ranku(τi) of a task τi is the length of the critical path from

the exit node up to and including node τi :

ranku(τexit) = cexit (6.47)

ranku(τi) = ci + max
τj∈succ(τi)

(hi,j + ranku(τj)) (6.48)

succ(τi) is the set of successors of task τi in the task graph.
• The downward rank rankd(τj) of a task τj is the length of the critical path from

the start node up to and excluding node τj :

rankd(τentry) = 0 (6.49)

rankd(τj) = max
τi∈pred(τj)

(rankd(τi) + ci + hi,j) (6.50)

6.5 Dependent Jobs on Heterogeneous Multiprocessors 339

The HEFT algorithm is shown below:

Set the computation and communication costs to mean values;
Compute ranku(τi)∀τi (upward traversal starting at τexit);
Sort tasks in nonincreasing order of ranku values;
while there are unscheduled tasks in the list do {
select the first task τi in the list for scheduling;
for each processor πk ∈ π {
compute fe(τi , πk) using an insertion based scheduling policy;

}
assign task τi to processor πk minimizing fe(τi , πk);
}

In this context, “insertion-based policy” means that the algorithm searches for
a sufficiently large gap among already scheduled tasks such that an allocation into
this gap would respect precedence constraints.

Example 6.17 Suppose that execution times are given by the table in Fig. 6.31 (left).
Note that for each task, the execution times in Fig. 6.26 (right) have been selected
as the minimum time among the three processors. Figure 6.31 (center) shows the
schedule obtained by HEFT for the DAG shown in Fig. 6.26 (left). Precedences
have been correctly taken into account. We cannot expect to generate the same
short schedule as for ASAP or ALAP scheduling as these policies ignore resource
constraints. ∇

Fig. 6.31 Left, execution times; center, results for HEFT; right, results for CPOP

The CPOP algorithm focuses on the critical path in the DAG and uses different
task priorities and different processor allocation strategies. The CPOP algorithm
works as follows:

340 6 Application Mapping

Set the computation and communication costs to mean values;
Compute ∀i : ranku(τi) and rankd(τi);
Compute ∀i : priority(τi) = rankd(τi) + ranku(τi);
|CP | = priority(τentry); /* length of the critical path */
SETCP = {τentry}, where SETCP is the set of tasks on the critical path;
τi = τentry;
while τi is not the exit task {

Select τj ∈ succ(τi), where priority(τj) == |CP |.
SETCP = SETCP ∪ {τj };
τi = τj

};
Select processor πCP minimizing execution time on the critical path;
Initialize the priority queue with the entry task;
while there is an unscheduled task in the priority queue {

Select the highest priority task τi from the priority queue;
if τi ∈ SETCP {assign task τi on πCP }
else{assign task τi to the processor which minimizesfe(τi , πk)};

Update priority queue with successors of τi if they become ready;
}

Example 6.18 Figure 6.31 (right) shows the scheduling result for algorithm CPOP.
∇
The HEFT and CPOP algorithms are fast and relatively simple algorithms. Obvi-
ously, these algorithms make use of several approximations (e.g., average com-
munication costs) and heuristics. They were selected for this book to demonstrate
some key issues of scheduling algorithms for heterogeneous scheduling algorithms.
However, it is possible to improve over the results of these two algorithms.

For example, Kim et al. [294] present more complex algorithms generating better
results. A mapping for KPNs aiming at makespan minimization has been published
by Castrillon et al. [86].

6.5.3 Static Scheduling with Integer Linear Programming

Integer linear programming can also be applied to the case of heterogeneous
processors. One approach has been published by Maculan et al. [361]. Most
importantly, processor-dependent execution times are taken care of. However, the
presented equations require some refinement before they can be fed into an ILP
solver and applications have not been included. Also, it is possible to adapt
techniques published in the context of high-level synthesis [44, 314].

In most of the publications, optimizations aim at optimizing a single objective.
In general, more objectives should be considered. For example, Fard et al. [162]
present an algorithm taking four different objectives into account.

6.5 Dependent Jobs on Heterogeneous Multiprocessors 341

6.5.4 Static Scheduling with Evolutionary Algorithms

Integer programming based approaches potentially suffer from long execution
times. In many cases, the use of evolutionary algorithms allows a better optimization
while still keeping execution times reasonably short. We will demonstrate this by
means of the distributed operation layer (DOL) tools from ETH Zürich [537]. These
tools incorporate

• Automatic selection of computation templates: Processor types can be com-
pletely heterogeneous. Standard processors, micro-controllers, DSP processors,
FPGAs, etc. are all possible options.

• Automatic selection of communication techniques: Various interconnection
schemes like central buses, hierarchical buses, rings, etc. are feasible.

• Automatic selection of scheduling and arbitration: DOL design space explo-
ration tools automatically choose between rate monotonic scheduling, EDF, and
TDMA- and priority-based schemes.

The input to DOL consists of a set of tasks together with use cases. The output
describes the execution platform, the mapping of tasks to processors together with
task schedules. This output is expected to meet constraints (like memory size and
timing constraints) and to minimize objectives (like size, energy, etc.). Applications
are represented by the so-called problem graphs, which in essence are special
task graphs. Figure 6.32 shows a simple DOL problem graph. This graph models
computations (see nodes 1, 2, 3, 4) and communication (see nodes 5, 6, 7).

In addition, possible execution platforms are represented by the so-called
architecture graphs. Figure 6.33 shows a simple hardware platform together with
its architecture graph. Again, communication is modeled explicitly.

The problem graph and the architecture graph are connected in the specification
graph. Figure 6.34 shows a DOL specification graph. Specification graphs consist of
a problem graph and an architecture graph. Edges between the two subgraphs rep-
resent feasible implementations. For example, computation 1 can be implemented
only on the RISC processor and computation 3 on the RISC processor or on HWM1.
Communication 5 can be implemented on the shared bus or locally on the processor
if computations 1 and 3 are both mapped to the processor.

Fig. 6.32 DOL problem
graph

342 6 Application Mapping

Fig. 6.33 DOL architecture graph

Fig. 6.34 DOL specification
graph

Fig. 6.35 DOL
implementation

Implementations are represented by a triple:

• An allocation A: A is a subset of the architecture graph, representing hardware
components allocated (selected) for a particular design.

• A binding b: A selected subset of the edges between specification and architec-
ture identifies a relation between the two. Selected edges are called bindings.

• A schedule S: S assigns start times to each node τi in the problem graph.

Example 6.19 Figure 6.35 shows how the specification of Fig. 6.34 can be turned
into an implementation. HWM2 and the PTP bus are not used and not included in the
set A. A subset b of the edges have been selected for mapping. Nodes 1, 2, 3, and 5
have indeed all been mapped to the RISC processor, turning communication 5 into
local communication. Node 4 is mapped to HWM1 and communicates via shared
bus. Schedule S specifies that computation 1 starts at time 0, communication 5 and

6.5 Dependent Jobs on Heterogeneous Multiprocessors 343

computation 2 start at time 1, computation 3 and communication 6 start at time 21,
communication 7 starts at time 29, and finally computation 4 starts at time 30. ∇

In DOL, implementations are generated with evolutionary algorithms. With such
algorithms, solutions are represented as strings in chromosomes of “individuals”
[31, 32, 107]. Using evolutionary algorithms, new sets of solutions can be derived
from existing sets of solutions. The derivation is based on evolutionary operators
such as mutation, selection, and recombination. The selection of new sets of
solutions is based on fitness values. Evolutionary algorithms are capable of solving
complex optimization problems not tractable by other types of algorithms. Finding
appropriate ways of encoding solutions in chromosomes is not easy. On the one
hand, the decoding should not require too much run-time. On the other hand,
we must deal with the situation after the evolutionary transformations. These
transformations could generate infeasible solutions, except for some carefully
designed encodings.

In DOL, chromosomes encode allocations and bindings. In order to evaluate the
fitness of a certain solution, allocations and bindings must be decoded from the
individuals (see Fig. 6.36). In DOL, schedules are not encoded in the chromosomes.
Rather, they are derived from the allocation and binding. This way, overloading
evolutionary algorithms with scheduling decisions is avoided. Once the schedule
has been computed, the fitness of solutions can be evaluated.

The overall architecture of DOL is shown in Fig. 6.37.

Fig. 6.36 Decoding of solutions from chromosomes of individuals

Fig. 6.37 DOL tool

344 6 Application Mapping

Fig. 6.38 Pareto front of solutions for a design problem, ©ETHZ

Initially, the task graph, use cases, and available resources are defined. This can
be done with a specialized editor called MOSES. This initial information is evaluated
in the evaluation framework EXPO. Performance values computed by EXPO are then
sent to SPEA2, an evolutionary algorithm-based optimization framework. SPEA2
selects good candidate architectures. These are sent back to EXPO for an evaluation.
Evaluation results are then communicated again to SPEA2 for another round of
evolutionary optimizations. This kind of ping-pong game between EXPO and SPEA2
continues until good solutions have been found. The selection of solutions is based
on the principle of Pareto optimality. A set of Pareto optimal designs is returned to
the designer, who can then analyze the trade-off between the different objectives.

Example 6.20 Figure 6.38 shows the resulting visualization of the Pareto front.
Trade-offs between the performance for two applications and the savings in cost
can be seen. ∇

Holzkamp designed a variant of DOL which focuses on memory optimiza-
tions [220]. Evolutionary algorithms have become a standard technique for more
advanced scheduling problems, beyond the problems solved by HEFT or CPOP.

The functionality of the SystemCodesigner [285] is somewhat similar to that
of DOL. However, it differs in the way specifications are described (they can be
represented in SystemC) and in the way the optimizations are performed. The

6.5 Dependent Jobs on Heterogeneous Multiprocessors 345

mapping of applications is modeled as an ILP model. A first solution is generated
using an ILP optimizer. This solution is then improved by switching to evolutionary
algorithms.11

Daedalus [422] incorporates automatic parallelization. For this purpose, sequen-
tial applications are mapped to Kahn process networks. Design space exploration is
then performed using Kahn process networks as an intermediate representation.

Other approaches start from a given task graph and map to a fixed architecture.
For example, Ruggiero maps applications to cell processors [475]. The HOPES
system is able to map to various processors [195], using models of computation
supported by the Ptolemy tools. Some tools take additional objectives into account.
For example, Xu considers the optimization of the dependable lifetime of the
resulting system [605]. Simunic incorporates thermal analysis into her work and
tries to avoid too hot areas on the MPSoC [492]. Further work includes that
of Popovici et al. [457]. This work uses several levels of modeling, employing
Simulink and SystemC as languages.

Auto-parallelizing approaches for fixed architectures include work at the Univer-
sity of Edinburgh [168]. MAPS tools [88] combine automatic parallelization with
a limited DSE. Cordes [110] worked on the automatic parallelization for multi-
cores, using high-level cost models. Neugebauer et al. [417] designed an approach
to parallelization and used it for the optimization of an innovative sensor for bio-
viruses. The combination of sensing and information processing demonstrates the
value of cyber-physical systems.

6.5.5 Dynamic and Hybrid Scheduling

For dynamic scheduling, processor allocation is performed at run-time rather than
at design time. Dynamic scheduling has a number of advantages [493]:

• Adaptability to the available resources: Dynamic scheduling is able to take
changing resource availabilities like energy, memory space, and communication
bandwidth into account.

• Ability to enable unforseeable upgrades: Changing application requirements
are easier to integrate when scheduling is dynamic.

• Resilience to defects: Defective resources like failed processors can be taken
into account by dynamic scheduling.

• Use of non-real-time platforms: Dynamic scheduling is the standard for non-
real-time computing. Hence, techniques for non-real-time computing can be
applied, which helps to reduce development efforts.

However, there are also disadvantages:

• Lacking real-time guarantees: In a fully dynamically scheduled system, it is
difficult if not impossible to give real-time guarantees.

11A more recent version uses a satisfiability (SAT) solver for the same purpose.

346 6 Application Mapping

• Run-time overhead: Dynamic scheduling requires run-time for taking schedul-
ing decisions. Therefore, complex scheduling techniques must be avoided.

• Limited knowledge: At run-time, there is typically limited knowledge concern-
ing the task system and its parameters.

There are two approaches for dynamic scheduling: on-the-fly mapping and hybrid
mapping using previously analyzed (DSE) results.

Singh et al. [493] provide an overview of 25 different approaches for on-the-fly
mapping. This type of mapping is closest to mapping in non-real-time systems.

Hybrid mapping techniques using previously analyzed (DSE) results try to
avoid some of the disadvantages listed above by making results from design time
analysis available at run-time. For example, we could pre-compute schedules for
likely run-time scenarios and then select at run-time the schedule for the current
scenario. Singh et al. distinguish between multiple mappings pre-computed for a
single application, multiple mappings pre-computed for a multiple applications,
and reliability-aware analysis.12 The authors provide an overview of 21 differ-
ent approaches for performing design-time analysis and run-time mapping in a
sequence.

One could go one step further by integrating scheduling with the application. For
example, Kotthaus [307] has designed an approach to mathematical optimization.
In this approach, the number of evaluations of an objective function is not fixed, but
depends also on the progress of parallel function evaluations on a multi-core system.
Similar integration would also be possible for other applications.

6.6 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

6.1 Suppose that we have a set of four jobs. Release times ri , deadlines Di , and
execution times Ci are as follows:

• J1: r1=10, D1=18, C1=4
• J2: r2=0, D2=28, C2=12
• J3: r3=6, D3=17, C3=3
• J4: r4=3, D4=13, C4=6

12We merge Singh’s hybrid mappings with these three classes.

6.6 Problems 347

Fig. 6.39 Precedences

Generate a graphical representation of schedules for this job set, using earliest
deadline first (EDF) and least laxity (LL) scheduling algorithms! For LL scheduling,
indicate laxities for all jobs at all context switch times. Will any job miss its
deadline?

6.2 Suppose that we have a task set of six tasks τ1 to τ6. Their execution times and
their deadlines are as follows:

• τ1: D1=15, C1=3
• τ2: D2=13, C2=5
• τ3: D3=14, C3=4
• τ4: D4=16, C4=2
• τ5: D3=20, C3=4
• τ6: D4=22, C4=3

Precedences are as shown in Fig. 6.39. Tasks τ1 and τ2 are available immediately.
Generate a graphical representation of schedules for this task set, using the latest
deadline first (LDF) algorithm!

6.3 Suppose that we have a system comprising two tasks. Task 1 has a period of
5 and an execution time of 2. The second task has a period of 7 and an execution
time of 4. Let the deadlines be equal to the periods. Assume that we are using rate
monotonic scheduling (RMS). Could any of the two tasks miss its deadline, due to a
too high processor utilization? Compute this utilization, and compare it to a bound
which would guarantee schedulability! Generate a graphical representation of the
resulting schedule! Suppose that tasks will always run to their completion, even if
they missed their deadline.

6.4 Consider the same task set as in the previous assignment. Use earliest deadline
first (EDF) for scheduling. Can any of the tasks miss its deadline? If not, why not?
Generate a graphical representation of the resulting schedule! Suppose that tasks
will always run to their completion.

348 6 Application Mapping

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
Optimization

Embedded systems have to be efficient (at least) with respect to the objectives
considered in this book. In particular, this applies to resource-constrained mobile
systems, including sensor networks embedded in the Internet of Things. In order
to achieve this goal, many optimizations have been developed. Only a small subset
of those can be mentioned in this book. In this chapter, we will present a selected
set of such optimizations. This chapter is structured as follows: first of all, we will
present some high-level optimization techniques, which could precede compilation
of source code or could be integrated into it. We will then describe concurrency
management for tasks. Section 7.3 comprises advanced compilation techniques. The
final Sect. 7.4 introduces power and thermal management techniques.

As indicated in our design flow, these optimizations complement the tools
mapping applications to the final systems, as described in Chap. 6 and as shown
in Fig. 7.1. Mapping tools may be optimizing, and optimization techniques may
involve scheduling. Hence, the scopes of the current and of Chap. 6 are partially
overlapping. The focus of Chap. 6 is on fundamental knowledge for mapping to
platforms, while the current chapter deals mostly with improvements over basic
techniques and is similar to the character of an elective.

7.1 High-Level Optimizations

In the next section, we will be considering optimizations which can be applied to the
source code of embedded software, before compilation or during early compilation
phases. Detecting regular structures such as array access patterns may be easier at
the source code level than at the machine code level. Also, optimization effects can
usually be expressed by rewriting the source program, i.e., the modified code can
be expressed in the source language. This helps in understanding the effect of such
transformations. We do also consider cases in which it may be necessary to annotate

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_7

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_7

350 7 Optimization

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

(RTOS, ...)

HW-components
ap

pl
ic

at
io

n
test

mapping
application

Fig. 7.1 Context of the current chapter

Fig. 7.2 Memory layout for
two-dimensional array
p[j][k] in C

the source code with compiler directives and hints. Such code transformations are
called high-level optimizations. They have the potential to improve the efficiency
of embedded software.

7.1.1 Simple Loop Transformations

There are a number of loop transformations that can be applied to source code. The
following is a list of standard loop transformations:

• Loop permutation: Consider a two-dimensional array. According to the C
standard [289], two-dimensional arrays are laid out in memory as shown in
Fig. 7.2. Adjacent index values of the second index are mapped to a contiguous
block of locations in memory. This layout is called row-major order [405].
For row-major layout, it is usually beneficial to organize loops such that the
last index corresponds to the innermost loop. Note that the layout for arrays
is different for Fortran: adjacent values of the first index are mapped to a

7.1 High-Level Optimizations 351

contiguous block of locations in memory (column-major order). Switching
between publications describing optimizations for Fortran and for C can therefore
be confusing.

Example 7.1 The following is a loop permutation:

for (k=0; k<m; k++) for (j=0; j<n; j++)

for (j=0; j<n; j++) ⇔ for (k=0; k<m; k++)

p[j][k]= . . . p[j][k]= . . .

Such permutations may have a positive effect on the reuse of array elements in
the cache, since the next iteration of the innermost loop will access an adjacent
location in memory. ∇
Caches are normally organized such that adjacent locations can be accessed
significantly faster than locations that are further away from the previously
accessed location. In this way, caches are exploiting spatial locality.

Definition 7.1 Consider memory references to memory addresses a and b.
Suppose that we assume an access to a. We observe spatial locality if—under
this condition—the probability of also accessing b increases for small differences
of addresses a and b.

• Loop unrolling: Loop unrolling is a standard transformation creating several
instances of the loop body.

Example 7.2 In this example, we unroll the loop:

for (j=0; j<n; j++) for (j=0; j<n; j+=2)

p[j]= . . . ; ⇔ {p[j]= . . . ;

p[j+1]= . . . }

In this particular case, the loop is unrolled once. ∇
The number of copies of the loop is called the unrolling factor. Unrolling factors
larger than two are possible. Unrolling reduces the loop overhead (less branches
per execution of the original loop body) and therefore typically improves the
speed. As an extreme case, loops can be completely unrolled, removing control
overhead and branches altogether. Unrolling typically enables a number of
following transformations and may therefore be beneficial even in cases where
just unrolling the program does not give any advantages. However, unrolling
increases code size. Unrolling is normally restricted to loops with a constant
number of iterations.

• Loop fusion, loop fission: There may be cases in which two separate loops can
be merged, and there may be cases in which a single loop is split into two.

352 7 Optimization

Example 7.3 Consider the two versions of the following code:

for (j=0; j<n; j++) for (j=0; j<n; j++)

p[j]= . . . ; {p[j]= . . . ;

for (j=0; j<n; j++) ⇔ p[j]=p[j]+ . . . }

p[j]=p[j]+ . . .

The left version may be advantageous if the target processor provides a zero-
overhead loop instruction which can only be used for small loops. Also, the left
version may provide good candidates for unrolling, due to the simple loops. The
right version might lead to an improved cache behavior (due to the improved
locality of references to array p) and also increases the potential for parallel
computations within the loop body. As with many other transformations, it is
difficult to know which of the transformations leads to the best code. ∇

7.1.2 Loop Tiling/Blocking

Since small memories are faster than large memories (see p. 170), the use of
memory hierarchies may be beneficial. Possible “small” memories include caches
and scratchpad memories. A significant reuse factor for the information in those
memories is required. Otherwise the memory hierarchy cannot be exploited.

Example 7.4 Reuse effects can be demonstrated by an analysis of the following
example. Let us consider matrix multiplication for arrays of size N × N:

for (i=0; i<N; i++)
for(j=0; j<N; j++) {

r=0;
for (k=0; j<N; k++)

r+=X[i][k]*Y[k][j];
Z[i][j]=r;

}

Scalar variable r represents Z[i,j] in all iterations of the innermost loop. This
is supposed to help the compiler to allocate this element temporarily to a register.

Let us consider access patterns for this code, as shown in Fig. 7.3. We assume
that array elements are allocated in row-major order (as it is standard for C).

This means that array elements with adjacent row (right most) index values
are stored in adjacent memory locations. Accordingly, adjacent locations of X are
fetched during the iterations of the innermost loop. This property is beneficial if the
memory system uses prefetching (whenever a word is loaded into the cache, loading
of the next word is started as well). Accesses to Y do not exhibit spatial locality. If
the cache is not large enough to hold a full cache row, every access to Y will be a
cache miss. Hence, there will be N3 references to elements of Y in main memory.

7.1 High-Level Optimizations 353

Fig. 7.3 Access pattern for unblocked matrix multiplication

Research on scientific computing led to the design of blocked or tiled algo-
rithms [320, 606], which improve the locality of references. The following is a
tiled version of the above algorithm1 for a block size parameter B:

for (ii=0; kk<N; ii+=B)
for (jj=0; jj<N; jj+=B)

for (kk=0; kk<N; kk+=B)
for (i=ii; i<min(ii+B-1,N); ii++)

for (j=jj; j<min(jj+B-1,N); jj++) {
r=0;
for (k=kk; k<min(kk+B-1,N); k++)

r+= X[i][k]*Y[k][j];
Z[i][j]=r;

}

Now, the two innermost loops are constrained to traverse a block of size B2 for
array Y. Suppose that a block of size B2 fits into the cache. Then, the first execution of
the innermost loop will load this block into the cache. During the second execution
of the innermost loop, these elements will be reused. Overall, there will be B-1
reuses of elements of Y. Hence, the number of accesses to main memory for elements
of this array will be reduced to N3/(B-1).

∇
Optimizing the reuse factor has been an area of comprehensive research. Initial
research focused on the performance improvements that can be obtained by tiling.
Performance improvements for matrix multiplication by a factor between 3 and 4.3
were reported by Lam [320]. Improvements increase with an increasing gap between
processor and memory speeds. Tiling can also reduce the energy consumption of
memory systems [103].

1This code was adopted from http://www.netlib.org/utk/papers/autoblock/node2.html.

http://www.netlib.org/utk/papers/autoblock/node2.html

354 7 Optimization

Many IF-state-
ments for
margin checking pixels

almost all
No checking, Margin

few pixels
checking,+

Fig. 7.4 Splitting image processing into regular and special cases

7.1.3 Loop Splitting

Next, we discuss loop splitting as another optimization that can be applied before
compilation. Potentially, this optimization could also be added to compilers.

Many image processing algorithms perform some kind of filtering. This filtering
consists of considering the information about a certain pixel as well as that of some
of its neighbors. Corresponding computations are typically quite regular. However,
if the considered pixel is close to the boundary of the image, not all neighboring
pixels exist, and the computations must be modified. In a straightforward description
of the filtering algorithm, these modifications may result in tests being performed in
the innermost loop of the algorithm. A more efficient version of the algorithm can
be generated by splitting the loops such that one loop body handles the regular
cases and a second loop body handles the exceptions. Figure 7.4 is a graphical
representation of this transformation. Margin checking is required for the yellow
areas.

Performing this loop splitting manually is very difficult and error-prone. Falk
et al. have published an algorithm [159] which also works for larger dimensions
automatically. It is based on a sophisticated analysis of accesses to array elements
in loops using polyhedral analysis [586]. Optimized solutions are generated using
genetic algorithms from the PGAPack library [340]. Falk’s algorithm can be
implemented, e.g., as a compiler pre-pass tool.

Example 7.5 The following code shows a loop nest from the MPEG-4 standard
performing motion estimation:

for (z=0; z<20; z++)
for (x=0; x<36; x++) {x1=4*x;
for (y=0; y<49; y++) {y1=4*y;
for (k=0; k<9; k++) {x2=x1+k-4;
for (l=0; l<9; l++) {y2=y1+l-4;
for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) {y3=y1+j; y4=y2+j;
if (x3<0 ‖ 35<x3 ‖ y3<0 ‖ 48<y3)
then_block_1; else else_block_1;
if (x4<0 ‖ 35<x4 ‖ y4<0 ‖ 48<y4)
then_block_2; else else_block_2;

}
}
}

}
}

}

7.1 High-Level Optimizations 355

Falk’s algorithm detects that the conditions x3<0 and y3<0 are never true. The
analysis allows transforming the loop nest into the code below. Instead of complex
tests in the innermost loop, we have a splitting if-statement after the third for-loop
statement. Regular cases are handled in the then part of this statement. The else
part handles the relatively small number of remaining cases:

for (z=0; z<20; z++)
for (x=0; x<36; x++) {x1=4*x;

for (y=0; y<49; y++)
if (x>=10 ‖ y>=14)
for (; y<49; y++)

for (k=0; k<9; k++)
for (l=0; l<9; l++)
for (i=0; i<4; i++)

for (j=0; j<4; j++) {
then_block_1; then_block_2}

else {y1=4*y;
for (k=0; k<9; k++) {x2=x1+k-4;
for (l=0; l<9; l++) {y2=y1+l-4;
for (i=0; i<4; i++) {x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) {y3=y1+j; y4=y2+j;
if (0 ‖ 35 <x3 ‖ 0 ‖ 48 < y3) /* x3<0, y3<0 never true */
then_block_1; else else_block_1;
if (x4 < 0‖ 35 < x4 ‖ y4 < 0 ‖ 48 < y4)
then_block_2; else else_block_2;

}
}

}
}

}
}

∇
Run-times can be reduced by loop splitting for various applications and architec-
tures. Resulting relative run-times are shown in Fig. 7.5. For the motion estimation
algorithm, cycle counts can be reduced by up to about 75% (to 25% of the original
value). Substantial savings (larger than for the simple transformations mentioned
earlier) are possible.

7.1.4 Array Folding

Some embedded applications, especially in the multimedia domain, include large
arrays. Since memory space in embedded systems is limited, options for reducing
the storage requirements of arrays should be explored. Figure 7.6 represents the
addresses used by five arrays as a function of time. At any particular time, only a
subset of array elements is needed. The maximum number of elements needed is
called the address reference window [122]. In Fig. 7.6, this maximum is indicated
by a double-headed arrow. A classical memory allocation for arrays is shown in

356 7 Optimization

architecture

AR
M

 (t
hu

m
b)

TI
 C

6x

0

20

40

60

80

100

Su
n

Pe
nt

iu
m

Po
w

er
PC

 G
3

D
EC

 A
lp

ha
 E

V4

AR
M

 (a
rm

)

Runtime [%]

Cavity detection

QSDPCM

target

Motion
estimation

Fig. 7.5 Results for loop splitting

addresses &A &C

&D &E

&B

t t

t tt

Fig. 7.6 Reference patterns for arrays

addresses

m
em

or
y

si
ze

t t

addresses

m
em

or
y

si
ze

m
em

or
y

si
ze

addresses

t

Fig. 7.7 Unfolded (left), inter-array folded (center), and intra-array folded (right) arrays

Fig. 7.7 (left). Each array is allocated the maximum of the space it requires during
the entire execution time (if we consider global arrays).

One of the possible improvements, inter-array folding, is shown in Fig. 7.7
(center). Arrays which are not needed at overlapping time intervals can share the
same memory space. A second improvement, intra-array folding [121], is shown
in Fig. 7.7 (right). It takes advantage of the limited sets of components needed

7.2 Task-Level Concurrency Management 357

within an array. Storage can be saved at the expense of more complex address
computations. The two kinds of foldings can also be combined.

Other forms of high-level transformations have been analyzed by Chung, Benini,
and De Micheli [103, 524]. There are many additional contributions in this domain
in the compiler community.

7.1.5 Floating-Point to Fixed-Point Conversion

Floating-point to fixed-point conversion is a commonly used optimization tech-
nique. This conversion is motivated by the fact that many signal processing
standards (such as MPEG-2 or MPEG-4) are specified in the form of C-programs
using floating-point data types. It is left to the designer to find an efficient
implementation of these standards.

For many signal processing applications, it is possible to replace floating-point
numbers with fixed-point numbers (see p. 153). The benefits may be significant. For
example, a reduction of the cycle count by 75% and of the energy consumption
by 76% has been reported for an MPEG-2 video compression algorithm [225].
However, some loss of precision is normally incurred. More precisely, there is a
trade-off between the cost of the implementation and the quality of the algorithm
(evaluated, for example, in terms of quality metrics; see Sect. 5.3 on p. 254).
For small word lengths, the quality may be seriously affected. Consequently, the
quality loss has to be analyzed. This replacement was initially performed manually.
However, it is a very tedious and error-prone process.

Therefore, researchers have tried to support this replacement with tools. One
of such tools is FRIDGE (fixed-point programming design environment) [283, 588].
The functionality of FRIDGE has been made available commercially as part of the
Synopsys System Studio tool suite [518].

SystemC can be used for simulating fixed-point data types.
An analysis of the trade-offs between the additional noise introduced and the

word length needed was proposed by Shi and Brodersen [486] and also by Menard
et al. [390]. The topic continues to attract researchers [334], also in the context of
machine learning [454].

7.2 Task-Level Concurrency Management

As mentioned on p. 38, the task graphs’ granularity is one of their most important
properties. Even for hierarchical task graphs, it may be useful to change the
granularity of the nodes. The partitioning of specifications into tasks or processes
does not necessarily aim at the maximum implementation efficiency. Rather, during
the specification phase, a clear separation of concerns and a clean software model
are more important than caring about the implementation too much. For example,
a clear separation of concerns includes a clear separation of the implementation
of abstract data types from their use. As a result of the design process, tasks will

358 7 Optimization

Fig. 7.8 Merging of tasks

Fig. 7.9 Splitting of tasks

typically become objects within the operating system, i.e., processes (cf. Defini-
tion 4.1) or threads. Also, we might be using several tasks in a pipelined fashion
in our specification, while merging some of them might reduce context switching
overhead. Hence, there will not necessarily be a one-to-one correspondence between
the tasks in the specification and those in the implementation. This means that
a regrouping of tasks may be advisable. Such a regrouping is indeed feasible by
merging and splitting of tasks.

Merging of task graphs can be performed whenever some task τi is the immediate
predecessor of some other task τj and if τj does not have any other immediate
predecessor (see Fig. 7.8 with τi = τ3 and τj = τ4). This transformation can lead to
a reduced overhead of context switches if the node is implemented in software, and
it can lead to a larger potential for optimizations in general.

On the other hand, splitting of tasks may be advantageous, since tasks may be
holding resources (like large amounts of memory) while they are waiting for some
input. In order to maximize the use of these resources, it may be best to constrain the
use of these resources to the time intervals during which these resources are actually
needed.

Example 7.6 In Fig. 7.9, we are assuming that task τ2 requires some input some-
where in its code.

In the initial version, the execution of task τ2 can only start if this input is
available. We can split the node into τ ∗2 and τ ∗∗2 such that the input is only required
for the execution of τ ∗∗2 . Now, τ ∗2 can start earlier, resulting in more scheduling
freedom. This improved scheduling freedom might improve resource utilization
and could even enable meeting some deadline. It may also have an impact on the
memory required for data storage, since τ ∗2 could release some of its memory before
terminating and this memory could be used by other tasks while τ ∗∗2 is waiting for
input. ∇

One might argue that the tasks should release resources like large amounts
of memory before waiting for input. However, the readability of the original
specification could suffer from caring about implementation issues in an early
design phase.

7.2 Task-Level Concurrency Management 359

Quite complex transformations of the specifications can be performed with a
Petri net-based technique described by Cortadella et al. [111]. Their technique starts
with a specification consisting of a set of tasks described in a language called FlowC.
FlowC extends C with process headers and inter-task communication specified in
the form of read and write function calls.

Example 7.7 Figure 7.10 shows an input specification using FlowC. The example
uses input ports IN and COEF, as well as an output port OUT. Point-to-point

Fig. 7.10 System specification

360 7 Optimization

interprocess communication between processes is realized through a unidirectional
buffered channel DATA. Task GetData reads data from the environment and sends
it to channel DATA. Each time N samples have been sent, their average value is
also sent via the same channel. Task Filter reads N values from the channel (and
ignores them), then reads the average value, and multiplies the average value by
c. (c can be read from port COEF). Filter writes the result to port OUT. The third
parameter in READ and WRITE calls is the number of items to be read or written.
READ calls are blocking, and WRITE calls are blocking if the number of items in
the channel exceeds a predefined threshold. The SELECT statement has the same
semantics as the statement with the same name in Ada (see p. 112): execution
of this task is suspended until input arrives from one of the ports. This example
meets all criteria for splitting tasks that were mentioned in the context of Fig. 7.9.
Both tasks will be waiting for input while occupying resources. Efficiency could be
improved by restructuring these tasks. However, the simple splitting of Fig. 7.9 is
not sufficient. The technique proposed by Cortadella et al. is more comprehensive:
FlowC programs are first translated into (extended) Petri nets. Petri nets for each of
the tasks are then merged into a single Petri net. Using results from Petri net theory,
new tasks are then generated. Figure 7.11 shows a possible new task structure.

In this new task structure, there is one task which performs all initializations: in
addition, there is one task for each of the input ports. An efficient implementation
would raise interrupts each time new input is received for a port. There should be a

Fig. 7.11 Generated software tasks

7.3 Compilers for Embedded Systems 361

unique interrupt per port. The tasks could then be started directly by those interrupts,
and there would be no need to invoke the operating system for that. Communication
can be implemented as a single shared global variable (assuming a shared address
space). The operating system overhead would be small, if required at all.

The code for task tau_in shown in Fig. 7.11 is the one that is generated by the
Petri net-based inter-task optimization of the task structure. It should be further
optimized by intra-task optimizations, since the test performed for the first if
statement is always false (j is equal to i-1 in this case, and i and j are reset to
0 whenever i becomes equal to N). For the third if statement, the test is always
true, since this point of control is only reached if i is equal to N and i is equal to
j whenever label L0 is reached. Also, the number of variables can be reduced. The
following is an optimized version of tau_in [111]:

tau_in () {
READ(IN,sample,1);
sum+=sample; i++;
DATA=sample; d=DATA; /* merging of DATA & d feasible */

L0: if (i<N) return;
DATA=sum/N; d=DATA;
d=d*c; WRITE(OUT,d,1);
sum=0; i=0;
return;

}

The optimized version of tau_in could be generated by a clever compiler. Hardly
any of today’s compilers will generate this version, but the example shows the type
of transformations required for generating “good” task structures. ∇
For more details about the task generation, refer to Cortadella et al. [111]. Similar
optimizations are described in the book by Thoen [538] and in a publication by
Meijer et al. [389].

7.3 Compilers for Embedded Systems

7.3.1 Introduction

Obviously, optimizations and compilers are available for the processors used in PCs
and servers. Compiler generation for commonly used processors is well understood.
For embedded systems, standard compilers are also used in many cases, since they
are typically cheap or even freely available.

However, there are several reasons for designing special optimizations and
compilers for embedded systems:

• Processor architectures in embedded systems exhibit special features (see p. 143).
These features should be exploited by compilers in order to generate efficient

362 7 Optimization

code. Compilation techniques might also have to support compression techniques
described on p. 148–p. 150.

• A high efficiency of the code is more important than a high compilation speed.
• Compilers could potentially help to meet and prove real-time constraints. First of

all, it would be nice if compilers contained explicit timing models. These could
be used for optimizations which really improve the timing behavior. For example,
it may be beneficial to freeze certain cache lines in order to prevent frequently
executed code from being evicted and reloaded several times.

• Compilers may help to reduce the energy consumption of embedded systems.
Compilers performing energy optimizations should be available.

• For embedded systems, there is a larger variety of instruction sets. Hence, there
are more processors for which compilers should be available. Sometimes, there is
even the request to support the optimization of instruction sets with retargetable
compilers. For such compilers, the instruction set can be specified as an input
to a compiler generation system. Such systems can be used for experimentally
modifying instruction sets and then observing the resulting changes for the
generated machine code. This is one particular case of design space exploration
and is supported, for example, by Tensilica tools [82].

Some approaches for retargetable compilers are described in a book on this topic
[376]. Optimizations can be found in books by Leupers et al. [337, 338]. In
this Section, we will present examples of compilation techniques for embedded
processors.

7.3.2 Energy-Aware Compilation

Many embedded systems are mobile systems which must run on batteries. While
computational demands on mobile systems are increasing, battery technology is
expected to improve only slowly [414]. Hence, the availability of energy is a serious
bottleneck for new applications.

Saving energy can be done at various levels, including the fabrication process
technology, the device technology, the circuit design, the operating system, and the
application algorithms. Adequate translation from algorithms to machine code can
also help. High-level optimization techniques such as those presented on p. 349–p.
357 can also help to reduce the energy consumption. In this subsection, we will look
at compiler optimizations which can reduce the energy consumption (frequently
called low-power optimizations). Energy models are very essential ingredients of
all energy optimizations. Energy models were presented in Chap. 5. Using models
like those, the following compiler optimizations have been used for reducing the
energy consumption:

• Energy-aware scheduling: the order of instructions can be changed as long as
the meaning of the program does not change. The order can be changed such that
the number of transitions on the instruction bus is minimized. This optimization

7.3 Compilers for Embedded Systems 363

can be performed on the output generated by a compiler and therefore does not
require any change to the compiler.

• Energy-aware instruction selection: typically, there are different instruction
sequences for implementing the same source code. In a standard compiler, the
number of instructions or the number of cycles is used as a criterion (cost
function) for selecting a good sequence. This criterion can be replaced by the
energy consumed by that sequence. Steinke and others found that energy-aware
instruction selection reduces the energy consumption by some percent [509].

• Replacing the cost function is also possible for other standard compiler opti-
mizations, such as register pipelining, loop invariant code motion, etc. Possible
improvements are also in the order of a few percent.

• Exploitation of the memory hierarchy: as already explained on p. 168,
smaller memories provide faster access and consume less energy per access.
Therefore, a significant amount of energy can be saved if memory hierarchies
are exploited. Of all the compiler optimizations analyzed by Steinke [511, 512],
the energy savings enabled by memory hierarchies are the largest. It is therefore
beneficial to use small scratchpad memories (SPMs; see p. 172) in addition to
large background memories. All accesses to the corresponding address range
will then require less energy and are faster than accesses to the larger memory.
The compiler should be responsible for allocating variables and instructions to
the scratchpad. This approach does, however, require that frequently accessed
variables and code sequences are identified and mapped to that address range.

7.3.3 Memory-Architecture Aware Compilation

Compilation Techniques for Scratchpads

The advantages of using SPMs have been clearly demonstrated [36]. Therefore,
exploiting SPMs is the most prominent case of memory hierarchy exploitation.
Available compilers are usually capable of mapping memory objects to certain
address ranges in the memory. Toward this end, the source code typically has to
be annotated.

Example 7.8 For ARM® tools, memory segments can be introduced in the source
code by using pragmas like

pragma arm section rwdata = "foo", rodata = "bar"

Variables declared after this pragma would be mapped to read-write segment
"foo," and constants would be mapped to read-only segment "bar." Linker
commands can then map these segments to particular address ranges, including
those belonging to the SPM. ∇

364 7 Optimization

This is the approach taken in compilers for ARM processors [20]. This is not a
very comfortable approach, and it would be nice if compilers could perform such
a mapping automatically for frequently accessed objects. Therefore, optimization
algorithms have been designed. Some of these optimizations have been presented
in a separate book [378]. Available SPM optimizations can be classified into two
categories:

• Non-overlaying (or “static”) memory allocation strategies: for these strategies,
memory objects will stay in the SPM while the corresponding application is
executed.

• Overlaying (or “dynamic”) memory allocation strategies: for these strategies,
memory objects are moved in and out of the SPM at run-time. This is a kind of
“compiler-controlled paging,” except the migration of objects happens between
the SPM and some slower memory and does not involve any disks.

Non-overlaying Allocation

For non-overlaying allocation, we can start by considering the allocation of
functions and global variables to the SPM. For this purpose, each function and each
global variable can be modeled as a memory object. Let

• S be the size of the SPM,
• sfi and svi be the sizes of function i and variable i, respectively,
• g be the energy consumption saved per access to the SPM (i.e., the difference

between the energy required per access to the slow main memory and the one
required per access to the SPM),

• nfi and nvi be the number of accesses to function i and variable i, respectively,
• xfi and xvi be defined as

xfi =
{

1 if function i is mapped to the SPM
0 otherwise

(7.1)

xvi =
{

1 if variable i is mapped to the SPM
0 otherwise

(7.2)

Then, the goal is to maximize the gain

G = g

(∑
i

nfi ∗ xfi +
∑

i

nvi ∗ xvi

)
(7.3)

while respecting the size constraint

∑
i

sfi ∗ xfi +
∑

i

svi ∗ xvi ≤ S (7.4)

7.3 Compilers for Embedded Systems 365

The problem is known as a (simple) knapsack problem (see p. 320 for the more
general case). Standard knapsack algorithms can be used for selecting the objects
to be allocated to the SPM. However, Eqs. (7.3) and (7.4) also have the form of an
integer linear programming (ILP) problem (see Appendix A), and ILP solvers can be
used as well. g is a constant factor in the objective function and is not needed for the
solution of the ILP problem. The corresponding optimization can be implemented
as a pre-pass optimization (see Fig. 7.12).

The optimization impacts addresses of functions and global variables. Compilers
typically allow a manual specification of these addresses in the source code.
Hence, no change to the compiler itself is required. The advantage of such a pre-
pass optimization is that it can be used with compilers for many different target
processors. There is no need to modify a large number of target-specific compilers.

The knapsack model can be extended into various directions:

• Allocation of basic blocks: The approach just described only allows the
allocation of entire functions or variables to the SPM. As a result, a major fraction
of the SPM may remain empty if functions and variables are large. Therefore,
we try to reduce the granularity of the objects which are allocated to the SPM.
The natural choice is to consider basic blocks as memory objects. In addition,
we do also consider sets of adjacent basic blocks, where adjacency is defined
as being adjacent in the control flow graph [509]. We call such sets of adjacent
blocks multi-basic blocks. Figure 7.13 shows a control flow graph and the set of
considered multi-basic blocks.

Target
codecode

Source
optimizations
Pre-pass

compiler
(ARM- or gcc)

Memory hierarchy

(e.g. SPM size)
description

Fig. 7.12 Pre-pass optimization

Fig. 7.13 Basic blocks and
multi-basic blocks

366 7 Optimization

The ILP model can be extended accordingly. Let

– sbi and smi be the sizes of basic blocks i and multi-basic blocks i, respec-
tively,

– nbi and nmi be the number of accesses to basic block i and multi-basic blocks
i, respectively,

– xbi and xmi be defined as

xbi =
{

1 if basic block i is mapped to the SPM
0 otherwise

(7.5)

xmi =
{

1 if multi basic block i is mapped to the SPM
0 otherwise

(7.6)

Then, the goal is to maximize the gain

G = g

(∑
i

nfi · xfi+
∑

i

nbi · xbi+
∑

i

nmi · xmi+
∑

i

nvi · xvi

)
(7.7)

while respecting the constraints

∑
i

sfi ∗ xfi +
∑

i

sbi ∗ xbi +
∑

i

smi ∗ xmi +
∑

i

svi ∗ xvi ≤ S (7.8)

∀ basic blocks i : xbi + xff ct (i) +
∑

i′∈multibasicblock(i)

xmi′ ≤ 1 (7.9)

fct(i) is the function containing basic block i and multibasicblock(i) is the set of
multi-basic blocks containing basic block i.

The constraint (7.9) ensures that a basic block is mapped to the SPM only
once, instead of potentially being mapped as a member of the enclosing function
and a member of a multi-basic block.

Experiments using this model were performed by Steinke et al. [512]. For
some benchmark applications, energy reductions of up to about 80% were found,
even though the size of the SPM was just a small fraction of the total code size
of the application. Results for the bubble sort program are shown in Fig. 7.14.
Obviously, larger SPMs lead to a reduced energy consumption in the main
memory (see white boxes). The energy required in the CPU is also reduced, since
less wait cycles are required. The SPM needs only small amounts of energy (see
the tiny blue boxes). Supply voltages have been assumed to be constant, even
though a faster execution could have allowed us to scale down frequencies and
voltages, leading to an even larger energy reduction.

7.3 Compilers for Embedded Systems 367

Fig. 7.14 Energy reduction
by compiler-based mapping
to a SPM

0 Size

CPU
main memory
scratch pad

204846 821 652 215 4201

Energy [mJ]

6

5

4

3

2

1

• Partitioned memories [572]: Small memories are faster and require less energy
per access. Therefore, it makes sense to partition memories into several smaller
memories. The ILP model can be extended easily to also model several mem-
ories. We do not distinguish between the various types of memory objects
(functions, basic blocks, variables, etc.) in this case. An index i represents any
memory object. Let

– Sj be the size of the memory j ,
– si be the size of object i (as before),
– ej be the energy consumption per access to memory j ,
– ni the number of accesses to object i (as before),
– xi,j be defined as

xi,j =
{

1 if object i is mapped to memory j

0 otherwise
(7.10)

Instead of maximizing the energy saving, we are now minimizing the overall
energy consumption. Hence, the goal is now to minimize

C =
∑
j

ej

∑
i

xi,j ∗ ni (7.11)

while respecting the constraints

∀j :
∑

i

si ∗ xi,j ≤ Sj (7.12)

∀i :
∑
j

xi,j = 1 (7.13)

368 7 Optimization

Partitioned memories are advantageous especially for varying memory require-
ments. Storage locations accessed frequently are called the working set of
an application. Applications with a small working set could use a very small
fast memory, whereas applications requiring a larger working set could be
allocated to a somewhat larger memory. Therefore, a key advantage of partitioned
memories is their ability to adapt to the size of the current working set.

Furthermore, unused memories can be shut down to save additional energy.
However, we are considering only the “dynamic” energy consumption caused
by accesses to the memory. In addition, there may be some energy consumption
even if the memory is idle. This consumption is not considered here. Therefore,
savings from shutting down memories are not reflected in Eqs. (7.11) and (7.12).

• Link/load-time allocation of memory [420]: Optimizing code at compile time
for a certain SPM size has a disadvantage—the code might perform badly if we
run it on different variants of some processor if these variants have differently
sized SPMs. We would like to avoid requiring different executable files for the
different variants of the processor. As a result, we are interested in executables
which are independent of the SPM size. This is feasible if we perform the
optimization at link time. The proposed approach computes the ratio of the
number of accesses divided by the size of a variable at compile time and stores
this value together with other information about variables in the executable. At
load time, the OS is queried for the size of the SPM. Then, the code is patched
such that as many profitable variables as possible are allocated to the SPM.

Overlaying Allocation

Large applications may have multiple hot spots (multiple areas of code containing
compute-intensive loops). Non-overlaying approaches fail to provide the best
possible results in this context. For such applications, the SPM should be exploited
for each of the hot spots. This requires an automatic migration between the layers
in the memory hierarchy. For overlaying algorithms, memory objects are migrated
between different levels of the hierarchy.2 This migration can be either programmed
explicitly in the application or inserted automatically. Overlaying algorithms are
beneficial for applications with multiple hot spots, for which the code or data can
be evicting each other. For overlaying algorithms, we are typically assuming that
all applications are known at design time such that memory allocation can be
considered at this time. Algorithms by Verma [555] and by Udayakumararan et
al. [548] are early examples of such algorithms.

Verma’s algorithm starts with the CFG of the application to be optimized. For
edges of the graph, Verma considers potentially freeing the SPM for locally used

2Some of the material in this subsection has also been included in a separate book by the same
author and publisher [378].

7.3 Compilers for Embedded Systems 369

Use A

Modify A

Load A

Use T3

Use T3

Load T3

Store A

Use A

Define A SP size=|A|=|T3|

T3

B10

B9

B6

B5

B8

B7

B4

B3

B2

B1

Fig. 7.15 Potential spill code

memory objects by storing these objects in some slower memory and later restoring
them. Blocks of code are handled as if they were arrays of data.

Example 7.9 In Fig. 7.15, we are considering control blocks B1–B10 and control
flow branching at B2. We assume that array A is defined, modified, and used along
the left path. T3 is only used in the right part of the branch. We consider potentially
freeing the SPM so that T3 can be locally allocated to the SPM. This requires spill
and load operations in potentially inserted blocks B9 and B10 (dotted lines: potential
inserts). Cost and benefit of these spill operations are then incorporated into a global
ILP. Solving the ILP yields an optimal set of memory copy operations. ∇
For a set of benchmarks, the average reductions in energy consumption and execu-
tion time, compared to the non-overlaying case, are 34% and 18%, respectively.

Udayakumararan’s algorithm is similar, but it evaluates memory objects accord-
ing to their number of memory accesses divided by their size. This metric is then
used to heuristically guide the optimization process. This approach can also take
heap objects into account.

Large arrays are difficult to allocate to SPM. In fact, even a single array can be
too large to fit into an SPM. The splitting strategy of Verma [160] is restricted to a
single-array splitting. Loop tiling is a more general technique, which can be applied
either manually or automatically [344]. Furthermore, array indexes can be analyzed
in detail such that frequently accessed array components can be kept in the SPM
[357].

370 7 Optimization

Our explanations have so far mainly addressed code and global data. Stack and
heap data require special attention. In both cases, two trivial solutions may be
feasible: in some cases, we might prefer not to allocate code or heap data to the
SPM at all. In other cases, we could run stack [5] and heap size analysis [219] to
check whether stack or heap fit completely into the SPM and, if they do, allocate
them to the SPM.

For the heap, Dominguez et al. [134] proposed to analyze the liveness of heap
objects. Whenever some heap object is potentially needed, code is generated to
ensure that the object will be in the SPM. Objects will always be at the same address,
so that the problem of dangling references to heap objects in the SPM is avoided.
McIllroy et al. [384] propose a dynamic memory allocator taking characteristics
of SPM into account. Bai et al. [33] suggest that the programmer should enclose
accesses to global pointers by two functions p2s and s2p. These functions provide
conversions between global and local (SPM) addresses and also ensure a proper
copying of memory contents.

For stack variables, Udayakumararan et al. [548] proposed to use two stacks, one
for calls to short functions with their stack being in main memory and one for calls
to computationally expensive functions whose stack area is in the SPM. Kannan et
al. [281] suggested to keep the top stack frames in the SPM in a circular fashion.
During function calls, a check for a sufficient amount of space for the required stack
frame is made. If the space is not available, old stack frames are copied to a reserved
area in main memory. During returns from function calls, these frames can be copied
back. Various optimizations aim at minimizing the necessary checks.

Multiple Threads/Processes

The above approaches are still limited to handling a single process or thread. For
multiple threads, moving objects into and out of the SPM at context switch time has
to be considered. Verma [556] proposed three different approaches:

1. For the first approach, only a single process owns space in the SPM at any given
time. At each context switch, the information of the preempted process in the
occupied space is saved, and the information for the process to be executed is
restored. This approach is called the saving/restoring approach. This approach
does not work well with large SPMs, since the copying would consume a
significant amount of time and energy.

2. For the second approach, the space in the SPM is partitioned into areas for
the various processes. The size of the partitions is determined in a special
optimization. The SPM is filled during initialization. No further compiler-
controlled copying is required. Therefore, this approach is called the non-saving
approach. This approach makes sense only for SPMs large enough to contain
areas for several processes.

7.3 Compilers for Embedded Systems 371

3. The third approach is a hybrid approach: The SPM is split into an area jointly
used by processes and a second area, in which processes obtain some exclusively
allocated space. The size of the two areas is determined in an optimization.

In more dynamic cases, the set of applications may vary during the use of the
system. For such cases, dynamic memory managers are appropriate. Pyka [463]
published an algorithm based on an SPM manager using indirect addressing and
being included in the operating system. This approach also allows the migration
of library elements to the SPM. A reduction of the consumed energy of 25%–35%
could be achieved despite the additional level of indirect addressing.

This additional level of indirection can be avoided if a memory management unit
(see Appendix C) is available. Egger et al. [149] developed a technique exploiting
MMUs: at compile time, sections of code are classified as either benefiting or
not benefiting from an allocation to the SPM. The code benefiting is stored in a
certain area in the virtual address space. Initially, this area is not mapped to physical
memory. Therefore, a page fault occurs when the code is accessed for the very first
time. Page fault handling then invokes the SPM manager (SPMM) and the SPMM
allocates (and deallocates) space in the SPM, always updating the virtual-to-real
address translation tables as needed. The approach is designed to handle code and
is capable of supporting a dynamically changing set of applications. Unfortunately,
the size of current SPMs corresponds to just a few entries in today’s page tables,
resulting in a coarse-grained SPM allocation.

Supporting Different Architectures and Objectives

We have so far considered different allocation types. Another dimension in SPM
allocation is the architectural dimension. Implicitly, we have so far considered
single-core systems with a single-memory hierarchy layer and a single SPM. Other
architectures exist as well. For example, there may be hybrid systems containing
both caches and SPM. We can try to reduce cache misses by selectively allocating
SPM space in case of cache conflicts [92, 280, 611]. Also, we can have different
memory technologies, like flash memory or other types of nonvolatile RAM [565].
For flash memory, load balancing is important. Also, there might be multiple levels
of memories.

SPM can possibly be shared across cores. Also, there may be multiple memory
hierarchy levels, some of which can be shared. Liu et al. [349] present an ILP-based
approach for this.

Still another dimension in SPM allocation is the objective function. So far, we
have focused on energy or run-time minimization. Other objectives can be consid-
ered as well. Implicitly, we have modeled the average case energy consumption.
We could have modeled the worst case energy consumption (WCEC) instead.
The WCEC is an objective considered, for example, by Liu [349]. Reliability and
endurance are relevant for the design of reliable applications, in particular in the
presence of aging [566]. It may also be necessary to avoid overheating of memories.

372 7 Optimization

7.3.4 Reconciling Compilers and Timing Analysis

Almost all compilers which are available today do not include a timing model.
Therefore, the development of real-time software typically has to follow an iterative
approach: software is compiled by a compiler which is unaware of any timing
information. The resulting code is then analyzed using a timing analyzer such as
aiT [4]. If the timing constraints are not met, some of the inputs to the compiler
run must be changed, and the procedure has to be repeated. We call this “trial-
and-error”-based development of real-time software. This approach suffers from
several problems. First of all, the number of required design iterations is initially
unknown. Furthermore, the compiler used in this approach is “optimizing,” but
a precise evaluation of objectives apart from the code size is usually impossible.
Hence, compiler writers can only hope that their “optimizations” have a positive
impact of the quality of the code in terms of relevant objectives. Due to the complex
timing behavior of modern processors, this hope is hardly supported by evidence.
Finally, the “trial-and-error”-based development of real-time software requires the
designer to find appropriate modifications of the input to the compiler such that the
real-time constraints will eventually be met.

This “trial-and-error”-based approach can be avoided if timing analysis is
integrated into the compiler. This has been the aim of the development of the
worst case execution time-aware compiler (WCC). The development of WCC
started at TU Dortmund with an integration of the timing analyzer aiT into an
experimental compiler for the TriCore architecture. Figure 7.16 shows the resulting
overall structure. WCC uses the ICD-C compiler infrastructure [230] to read and
parse C source code. The source is then converted into a “high-level intermediate
representation” (HL-IR). The HL-IR is an abstract representation of the source code.
Various optimizations can be applied to the HL-IR. The optimized HL-IR is passed
to the code selector. The code selector maps source code operations to machine
instructions. Machine instructions are represented in the low-level intermediate
representation (LLIR). In order to estimate the WCETEST , the LLIR is converted
into the CRL2 representation used by aiT (using the converter LLIR2CRL). aiT is
then able to generate WCETEST for the given machine code. This information
is converted back into the LLIR representation (using the converter CRL2LLIR).
WCC uses this information to consider WCETEST as the objective function during
optimizations. This can be done straightforward for optimizations at the LLIR
level. However, many optimizations are performed at the HL-IR-level. WCETEST -
directed optimizations at this level require using back annotation from the LLIR
level to the HL-IR level. ICD-C includes this back annotation.

WCC has been used to study the impact of optimizing for a reduced WCETEST

in the compiler. The numerous results include a study of the impact of this objective
for register allocation [158]. Results shown in Fig. 7.17 indicate a dramatic impact.
WCETEST can be reduced down to 68.8% of the original WCETEST on the average
by just using WCET-aware register allocation in WCC. The largest reduction yields
a WCETEST of only 24.1% of the original WCETEST . The combined effect of

7.4 Power and Thermal Management 373

C
R

L2
LL

IR
LL

IR
2C

R
L

WCET-

Assembly
Optimized

Optimizations

Optimizations

Back-
annotation

LLIR

HL-IR
ICD-C

Parser
C Sources

Selector

Code
CRL2

aiT

CRL2+
WCETEST

Fig. 7.16 Worst case execution time-aware compiler WCC

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

ad
pc
m_

ve
rif
y

cjp
eg
_tr
an
su
pp

co
mp

re
ss crc

dij
ks
tra du

ff

ed
ge
_d
ete

ct ed
n

ep
ic

ex
pin

t
fdc

t

fft
_1
02
4

fft
_2
56 fir

fir
2d
im gs

m

gs
m_

en
co
de h2

63

h2
64
de
c_
blo

ck

h2
64
de
c_
ma

cr
o

iir_
4_
64

iir_
biq

ua
d_
N

jfd
cti
nt

lat
nr
m_

32
_6
4

lm
sfi
r_8

_1

lm
sfi
r_3

2_
64 lpc

lud
cm
p

ma
tm
ult

Re
la
tiv

e
W
CE

T
ES

T
[%

]

Fig. 7.17 Reduction of WCETEST by WCET-aware register allocation

several such optimizations has been analyzed by Lokuciejewski et al. [353]. For
the considered benchmarks, Lokuciejewski found a reduction of down to 57.1% of
the original WCETEST . Lokuciejewski et al. have also used machine learning to
optimize heuristics for WCET reduction [354].

7.4 Power and Thermal Management

7.4.1 Dynamic Voltage and Frequency Scaling (DVFS)

Some embedded processors support dynamic power management (see p. 146) and
dynamic voltage scaling (see p. 144). An additional optimization step can be used to
exploit these features. Typically, such an optimization step follows code generation
by the compiler. Optimizations at this step require a global view of all tasks of the
system, including their dependencies, slack times, etc.

374 7 Optimization

Example 7.10 The potential of dynamic voltage scaling is demonstrated in the
following example [251]. We assume that we have a processor which runs at three
different voltages, 2.5 V, 4.0 V, and 5.0 V. Assuming an energy consumption of 40 nJ
per cycle at 5.0 V, Eq. (3.14) can be used to compute the energy consumption at the
other voltages (see Table 7.1, where 25 nJ is a rounded value).

Furthermore, we assume that our task needs to execute 109 cycles within 25 s.
There are several ways of doing this, as can be seen from Figs. 7.18, 7.19, and 7.20.
Using the maximum voltage (see Fig. 7.18), it is possible to shut down the processor
during the slack time of 5 s (we assume the power consumption to be zero during
this time).

Another option is to initially run the processor at full speed and then reduce
the voltage when the remaining cycles can be completed at the lowest voltage (see
Fig. 7.19).

Finally, we can run the processor at a clock rate just large enough to complete
the cycles within the available time (see Fig. 7.20).

The corresponding energy consumptions can be calculated as

Ea = 109 ∗ 40 ∗ 10−9J = 40 J (7.14)

Eb = 750 ∗ 106 ∗ 40 ∗ 10−9 + 250 ∗ 106 ∗ 10 ∗ 10−9J = 32.5 J (7.15)

Ec = 109 ∗ 25 ∗ 10−9J = 25 J (7.16)

The smallest energy consumption is achieved for the ideal supply voltage of 4 volts,
with no idle time at the end. ∇

In the following, we use the term variable voltage processor only for processors
that allow any supply voltage up to a certain maximum. It is expensive to support

Table 7.1 Characteristics of
processor with DVFS

Vdd [V] 5.0 4.0 2.5

Energy per cycle [nJ] 40 25 10

fmax [MHz] 50 40 25

Cycle time [ns] 20 25 40

Fig. 7.18 Possible voltage
schedule

Fig. 7.19 Second voltage
schedule

7.4 Power and Thermal Management 375

Fig. 7.20 Third voltage
schedule

truly variable voltages, and therefore, actual processors support only a few fixed
voltages.

The observations made for the above example can be generalized into the
following statements. The proofs of these statements are given in the paper by
Ishihara and Yasuura [251].

• If a variable voltage processor completes a task before the deadline, the energy
consumption can be reduced.3

• If a processor uses a single supply voltage Vs and completes a task τ just at
its deadline, then Vs is the unique supply voltage which minimizes the energy
consumption of τ .

If a processor can only use a number of discrete voltage levels, then a voltage
schedule using the two voltages which are the two immediate neighbors of the
ideal voltage Videal can be chosen. These two voltages lead to the minimum energy
consumption except if the need to use an integer number of cycles results in a small
deviation from the minimum.4

The statements can be used for allocating voltages to tasks. Next, we will
consider such an allocation. We will use the following notation:

n : the number of tasks
ECj : the number of executed cycles of task j

L : the number of voltages of the target processor
Vi : the ith voltage, where 1 ≤ i ≤ L

fi : the clock frequency for supply voltage Vi

d : the global deadline at which all tasks must have been completed
SCj : the average switching capacitance during the execution of task j (SCj

comprises the actual capacitance CL and the switching activity α (see
Eq. (3.14) on page 144))

The voltage scaling problem can then be formulated as an integer linear
programming (ILP) problem (see p. 393). Toward this end, we introduce variables
Xi,j denoting the number of cycles executed at a particular voltage:

Xi,j : the number of clock cycles task j is executed at voltage Vi

3This formulation makes an implicit assumption in lemma 1 of the paper by Ishihara and Yasuura
explicit.
4This need is not considered in the original paper.

376 7 Optimization

Simplifying assumptions of the ILP model include the following:

• There is one processor that can be operated at a limited number of discrete
voltages.

• The time for voltage and frequency switches is negligible.
• The worst case number of cycles for each task is known.

Using these assumptions, the ILP problem can be formulated as follows:
Minimize

E =
n∑

j=1

L∑
i=1

SCj ∗ Xi,j ∗ V 2
i (7.17)

subject to

∀j :
L∑

i=1

Xi,j = ECj (7.18)

and

n∑
j=1

L∑
i=1

Xi,j

fi

≤ d (7.19)

The goal is to find the number Xi,j of cycles that each task τj is executed at a
certain voltage Vi . According to the statements made above, no task will ever need
more than two voltages. Using this model, Ishihara and Yasuura show that efficiency
is typically improved if tasks have a larger number of voltages to choose from. If
large amounts of slack time are available, many voltage levels help to find close to
optimal voltage levels. However, four voltage levels do already give good results
quite frequently.

There are many cases in which tasks actually run faster than predicted by their
worst case execution times. This cannot be exploited by the above algorithm. This
limitation can be removed by using checkpoints at which actual and worst case
execution times are compared and then to use this information to potentially scale
down the voltage [30]. Also, voltage scaling in multi-rate task graphs was proposed
[479]. DVFS can be combined with other optimizations such as body biasing [369].
Body biasing is a technique for reducing leakage currents.

7.4.2 Dynamic Power Management (DPM)

In order to reduce the energy consumption, we can also take advantage of power-
saving states, as introduced on p. 146. The essential question for exploiting DPM is:

7.4 Power and Thermal Management 377

when should we go to a power-saving state? Straightforward approaches just use a
simple timer to transition into a power-saving state. More sophisticated approaches
model the idle times by stochastic processes and use these to predict the use of
subsystems with more accuracy. Models based on exponential distributions have
been shown to be inaccurate. Sufficiently accurate models include those based on
renewal theory [490].

A comprehensive discussion of power management was published (see, for
example, [46, 356]). There are also advanced algorithms which integrate DVS and
DPM into a single optimization approach for saving energy [491].

Allocating voltages and computing transition times for DPM may be two of the
last steps of optimizing embedded software.

Power management is also linked to thermal management.

7.4.3 Thermal Management

Design time planning of the thermal behavior would need to leave large margins in
terms of available performance. Hence, it is necessary to use run-time monitoring of
temperatures. This means that thermal sensors must be available in systems which
potentially could get too hot. This information is then used to control the generation
of additional heat and possibly has an impact on cooling mechanisms as well. Many
users of mobile phones may already have observed this: it is, for example, very
common to stop charging a mobile phone when it is already too hot. Controlling
fans (when available) can be considered as another case of thermal management.
Also, systems may be shutting down partially or completely, if temperatures are
exceeding maximum thresholds. Shutdown areas of silicon chips can be called “dark
silicon.” Some systems may be reducing the clock frequencies and voltages. There
are also other options like a reduction of the performance by intentionally not using
some of the available hardware. It is possible, for example, to issue less instructions
per clock cycle or not to use some of the processor pipelines. For multiprocessor
systems, tasks may be automatically migrated between various processors. In all of
these cases, the objective “temperature” is evaluated at run-time and used to have an
impact at run-time. Avoiding overheating is the goal of the work reported by Merkel
et al. [391] and by Donald et al. [135]. Using temperature sensors to control the
system means that control loops are being created. Potentially, such loops could start
to oscillate. Atienza et al. have compared the behavior of various control strategies
and came to the conclusion that an advanced control loop algorithm provides the
best results, with a higher computing performance at a lower temperature, compared
to standard approaches [610]. The details of this control loop design would be
beyond the scope of a textbook useful for undergraduate students.

378 7 Optimization

7.5 Problems

We suggest solving the following problems either at home or during a flipped
classroom session:

7.1 Loop unrolling is one of the potentially useful optimizations. Please name two
potential benefits and two potential problems!

7.2 We assume that you want to use loop tiling. How can you adjust the tiling to
the memory architecture at hand?

7.3 For which architectures would you expect the largest benefits from a replace-
ment of floating-point arithmetic by fixed-point arithmetic?

7.4 Provide an overview over techniques for taking advantage of scratch pad
memories!

7.5 Consider the following program:

1 #include <stdio.h>
2 #define DATALEN 15
3 #define FILTERTAPS 5
4 double x[DATALEN] = { 128.0, 130.0, 180.0, 140.0, 120.0,
5 110.0, 107.0, 103.5, 102.0, 90.0,
6 84.0, 70.0, 30.0, 77.3, 95.7 };
7 const double h[FILTERTAPS]={0.125,-0.25,0.5,-0.25,0.125};
8 double y[DATALEN]; // result;
9 int main(void) {
10 int i,n;
11 for(i=0;i<DATALEN;++i) {
12 y[i] = 0;
13 for(n=0; n < FILTERTAPS; ++n)
14 if ((i-n) > = 0) y[i] += h[n]*x[i-n];
15 }
16 for(i = 0; i < DATALEN; ++i) printf("%.2f ",y[i]);
17 return 0;
18 }

Perform at least the following optimizations:

• Removal of the if in the innermost loop (line 14)
• Loop unrolling (line 13)
• Constant propagation
• Floating-point to fixed-point conversion
• Avoidance of all accesses to arrays

Please provide the optimized version of the program after each of the transforma-
tions and do also check for consistent results!

7.5 Problems 379

Table 7.2 SPM mapping: left, accesses to variables; right, memory characteristics

Number of
Variable Size [bytes] accesses

a 1024 16

b 2048 1024

c 512 2048

d 256 512

e 128 256

f 1024 512

g 512 64

h 256 512

Energy
Memory Size [bytes] per access

Scratchpad 4096 (4 k) 1.3 nJ

Main memory 262,144 (256 k) 31 nJ

7.6 Suppose that your computer is equipped with a main memory and a scratchpad
memory. Sizes and the required energy per access are shown in Table 7.2 (right).
Characteristics of accesses to variables are as indicated in Table 7.2 (left).

Which of those variables should be allocated to the scratchpad memory, provided
that we use a static, non-overlaying allocation of variables? Use the integer linear
problem (ILP) model to select the variables. Your result should include the ILP
model as well as the results. You may use the lp_solve program [17] to solve your
ILP problem.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8
Test

Unfortunately, we cannot rely on designed and possibly already manufactured
systems to operate as expected. These systems may have become defective during
their use, or their function may have been compromised during the fabrication
or their design. The purpose of testing is to verify whether or not an existing
embedded/cyber-physical system can be operated as expected. In this chapter, we
will present fundamental terms and techniques for testing. There will be a brief
introduction to the aims of test pattern generation and their application. We will
be introducing terms such as fault model, fault coverage, fault simulation, and
fault injection. Also, we will be presenting techniques which improve testability,
including the generation of pseudo-random patterns, and signature analysis. It would
be beneficial to consider testability issues already during design. In case of fault-
tolerant systems, resilience must be verified.

8.1 Scope

Testing can be done during or after the fabrication (manufacturing test) and also after
the system has been delivered to the customer (field testing). Testing of embedded
systems contained in a cyber-physical or IoT system needs special attention for
several reasons:

• Embedded systems integrated into a physical environment may be safety-critical.
Therefore, their malfunctioning can be much more dangerous than, say, the
malfunctioning of office equipment. As a result, expectations for the product
quality are higher than for non-safety-critical systems.

• Testing of timing-critical systems has to validate the correct timing behavior. This
means that just testing the functional behavior is not sufficient.

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8_8

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60910-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-60910-8_8

382 8 Test

evaluation & validation

design

system software

design repositoryspecification

kn
ow

le
dg

e

optimization

test

(RTOS, ...)

HW-components
ap

pl
ic

at
io

n
mapping
application

Fig. 8.1 Design flow with testing at its very end

• Testing embedded/cyber-physical systems in their real environment may be
dangerous. For example, testing control software in a nuclear power plant can
be a source of serious, far-reaching problems.

Preparations for testing should be done no later than at the end of the design
phase. Preferably, necessary support for testing should even be considered earlier,
intertwined with the design process and using testability as one of the objectives
for evaluating designs. In order not to overload Chap. 5, we have moved all aspects
of testing into this separate chapter. The presentation corresponds to considering
testing only at the very end of the design flow (see Fig. 8.1), even though an
earlier consideration during an actual design would be advisable. However, an early
consideration is not always common practice, and therefore, Fig. 8.1 might also
correspond to an actual design flow.

In testing, we are typically denoting the system under design (SUD) as the device
under test (DUT). We are applying a set of specially selected input patterns, the so-
called test patterns to the input(s) of the DUT, observe its behavior, and compare
the behavior with the expected behavior. Test patterns are normally applied to
the real, already manufactured system. The main purpose of testing is to identify
systems that have not been correctly manufactured (manufacturing test) and to
identify systems that fail later (field test). Testing includes a number of different
actions:

1. test pattern generation,
2. test pattern application,
3. response observation, and
4. result comparison.

8.2 Test Procedures

8.2.1 Test Pattern Generation for Gate-Level Models

In test pattern generation, we try to identify a set of test patterns which distinguishes
a correctly working from an incorrectly working system. Test pattern generation is

8.2 Test Procedures 383

Fig. 8.2 Test pattern at the
gate level

usually based on fault models. Such fault models are models of possible faults. Test
pattern generation tries to generate tests for all faults that are possible according to
a certain fault model.

The stuck-at-fault model is a frequently used fault model. It is based on the
assumption that any internal wire of an electronic circuit is permanently connected
to either '0' or '1'. It has been observed that many faults actually behave as if
some wire was permanently connected that way.

Example 8.1 As an example, consider the circuit shown in Fig. 8.2.1

Suppose that we would like to check if there is a stuck-at-1 fault for signal f .
Toward this end, we try to set f to '0' by setting a = b ='0'. As a result, f should
be '1' if there is this fault, and otherwise, it should be '0'. In order to observe this
difference, we must propagate it to the output signal i. For this to happen, we must
set e to '1' and set either c or d to '1'. h and i will be '1' if there is no fault and '0'
otherwise. The test pattern comprises all values of inputs a to e. The D-algorithm
can be used to generate this test pattern [318]. ∇

Many techniques for test pattern generation are based on the stuck-at-fault model.
However, CMOS technologies require more comprehensive fault models. In CMOS
technologies, faults can turn combinatorial devices into devices having internal
states. This problem can occur if wires are broken (this case is known as stuck-at-
open fault). As a result of this, gates of transistors can become disconnected. Such
transistors will be conducting or nonconducting, depending on the charge stored on
the gate before the wire was broken. In this way, the gate “remembers” the input
signal due to stored charges. Furthermore, there may be transient faults and delay
faults (faults changing the delay of a circuit). Delay faults may be the result of cross
talk between adjacent wires. Fault models exist which take such hardware faults into
account [311].

While good fault models exist for hardware testing, the same is not true for
software testing.

1Please remember: consistent with standard ANSI/IEEE 91, the symbols ≥1 and & denote OR-
and AND-gates, respectively.

384 8 Test

Fig. 8.3 Processor hardware
components

8.2.2 Self-Test Programs

One of the key problems of testing modern integrated circuits is their limited number
of pins, making it more and more difficult to access internal components. Also, it
is getting very difficult to test these circuits at full speed, since testers must be at
least as fast as the circuits themselves. The fact that many embedded systems are
based on processors provides a way out of this dilemma: processors are capable of
running test programs or diagnostics. Such diagnostics have been used to test main
frame machines for decades.

Example 8.2 Figure 8.3 shows components that might be contained in a processor.
Testing for stuck-at-faults at the input of the ALU is feasible with a small test

program:

store pattern of all '1's in the register file;
perform xor between constant "0000. . . 00" and register;
test if result contains a '0' bit;
if yes, report error;
otherwise start test for next fault;

∇
Similar small programs can be generated for other faults. Unfortunately, the

process of generating diagnostics for main frames has mostly been a manual one.
Some researchers have proposed to generate diagnostics automatically [48, 53, 64,
308, 312, 313].

8.3 Evaluation of Test Pattern Sets and System Robustness

8.3.1 Fault Coverage

The quality of test pattern sets can be evaluated using fault coverage as a metric.

Definition 8.1 Fault coverage is the percentage of potential faults that can be found
for a given test pattern set:

8.3 Evaluation of Test Pattern Sets and System Robustness 385

Coverage = Number of detectable faults for a given test pattern set

Number of faults possible due to the fault model

In practice, achieving a good product quality requires fault coverages in the area
of at least 98–99%. The requirements may be higher for particular systems. Also,
special fault models may be necessary for certain hardware components (e.g., for
batteries).

In addition to achieving a high coverage, we must also achieve a high correctness
coverage. This means that a fault-free system must be recognized as such. Other-
wise, it would be possible to achieve a 100% coverage by classifying all systems as
faulty. Note the link to the metrics in Sect. 5.3.3.

In order to increase the number of options that exists for system validation, it has
been proposed to use test methods already during the design phase. For example, test
pattern sets can be applied to software models of systems in order to check if two
software models behave in the same way. More time-consuming formal methods
need to be applied only to those cases in which the system passed this test-based
equivalence check.

8.3.2 Fault Simulation

It is currently not feasible (and it will probably not be feasible) to completely predict
the behavior of systems in the presence of faults or to analytically compute the
coverage. Therefore, the behavior of systems in the presence of faults is frequently
simulated. This type of simulation is called fault simulation. In fault simulation,
system models are modified to reflect the behavior of the system in the presence of
a certain fault. The goals of fault simulation include:

• to know the effect of a fault of the components at the system level (i.e., to check
whether faults are redundant)

• to know whether or not mechanisms for improving fault tolerance actually help.

Definition 8.2 Faults are called redundant if they do not affect the observable
behavior of the system.

Fault simulation requires the simulation of the system for all faults feasible for
the fault model and also for a possibly large number of different input patterns.
Accordingly, fault simulation is an extremely time-consuming process. Different
techniques have been proposed to speed up fault simulation.

One such technique applies to fault simulation at the gate level. In this case,
internal signals are single-bit signals. This fact enables the mapping of a signal to
a single bit of some machine word of a simulating host machine. AND- and OR-
machine instructions can then be used to simulate Boolean networks. However, only
a single bit would be used per machine word. Efficiency is improved with parallel
fault simulation.

386 8 Test

Definition 8.3 Fault simulation is called parallel fault simulation if n > 1
different test patterns are simulated at the same time, where n is the length of a
bit vector supported as a machine data type of the simulating processor.

The values of each of the n test patterns are mapped to a different bit position in the
machine. Executing the same set of AND- and OR-instructions will then simulate
the behavior of the Boolean network for n test patterns instead of for just one.

AVX instructions mentioned on p. 154 are very useful for this.

8.3.3 Fault Injection

Fault simulation may be too time-consuming for real systems. If actual systems
are available, fault injection can be used instead. In fault injection, real existing
systems are modified, and the overall effect on the system behavior is checked. Fault
injection does not rely on fault models (even though they can be used). Hence, fault
injection has the potential of generating faults that would not have been predicted
by a fault model. We can distinguish between two types of fault injection:

• local faults within the system
• faults in the environment (behaviors which do not correspond to the specifica-

tion). For example, we can check how the system behaves if it is operated outside
the specified temperature or radiation ranges.

Several methods can be used for fault injection:

• fault injection at the hardware level: examples include pin manipulation and
electromagnetic and nuclear radiation

• fault injection at the software level: examples include toggling some memory
bits.

The quality of fault injection depends on the “probe effect”: probing might have an
impact on the behavior of the system. This impact should be as small as possible
and essentially be negligible.

According to experiments reported by Kopetz [303], software-based fault injec-
tion was essentially as effective as hardware-based fault injection. Nuclear radiation
was a noticeable exception in that it generated errors which were not generated with
other methods.

8.4 Design for Testability 387

8.4 Design for Testability

8.4.1 Motivation

Ideas for test pattern generation for Boolean circuits have been presented in
Subsection 8.2.1. For circuits implementing state machines (automata), test pattern
generation is more difficult. Verifying whether or not two finite state machines are
equivalent may require complex input sequences [301].

Example 8.3 The state chart of Fig. 2.25 is shown again in Fig. 8.4 for convenience.
Suppose that we would like to test the transition from state C to state D. This
requires us to get into state C first, by applying an appropriate sequence of input
patterns. Assuming that we start from the default state, we have to generate a
sequence comprising signals g and h. Next, we must generate input event i and
check if output y is generated. Also, we need to check if we reached state D. We
could apply input signal j and check if output z is emitted. Still, we would not
be sure that we actually had reached state D. There could be a fault resulting in
the generation of z for a transition from a different state. This procedure is rather
complicated, takes a lot of time, and is susceptible to interference with other errors.
Nevertheless, the procedure could even be more complicated since the overall test
in our example is simplified by the fact that the FSM contains a linear chain of
transitions (see the assignments of this chapter). ∇
This example demonstrates if testing comes in only as an afterthought, it may be
very difficult to test a system. In order to simplify tests, special hardware can
be added such that testing becomes easier. The process of designing for better
testability is called design for testability (DfT). Special purpose hardware for
testing finite state machines is a prominent example of this.

8.4.2 Scan Design

Reaching certain states and observing states resulting from the application of input
patterns are very much simplified with scan design. In scan design, all flip-flops
storing states are connected to form serial shift registers (see Fig. 8.5). The circuit

Fig. 8.4 Finite state machine to be tested

388 8 Test

Fig. 8.5 Scan path design

contains three D-type flip-flops (DFF) and one multiplexer at each of the flip-flop
inputs. Using the control input of the multiplexers (shown at the bottom of the
multiplexer inputs), either we can connect the flip-flops to the network generating
the next state from the current state and the current input or we can connect flip-flops
to form a serial chain. Setting the multiplexers to scan mode, we can load state bit
after state bit into the scan chain (1 bit at every clock tick). This way, we can load
any state into the three flip-flops serially. In a second phase, we can apply an input
pattern to the FSM while the multiplexers are set to normal mode. After the next
clock tick, the FSM will be in a new state. This new state can be serially shifted out
in the third and final phase, using the serial mode again (1 bit per clock tick). The net
effect is that we do not need to worry about how to get into certain states and how
to observe whether or not the Boolean function δ for computing the next state has
been correctly implemented while we are generating tests for the FSM. Effectively,
the fact that we are dealing with state-based systems has an impact only on the two
(simple) shift phases, and test pattern generation for (stateless) Boolean networks
can be used for checking for correct outputs. This means that it is sufficient to use
test pattern generation methods for Boolean functions (stateless networks) instead
of caring about complex input sequences, etc.

Scan design is a technique which works well for single chips. For board-level
integration, it is necessary to have some technique for connecting scan chains of
several chips. JTAG is a standard designed for this. The standard defines registers
at the boundaries of all chips and a number of test pins and control commands such
that all chips can be connected in scan chains. JTAG is also known as boundary scan
[447].

8.4 Design for Testability 389

Fig. 8.6 Testing a device under test (DUT)

Fig. 8.7 LFSR for response compaction: left, schematic; right, state diagram

8.4.3 Signature Analysis

In order to also avoid shifting out the response of the device under test (DUT),
responses can be compacted. A setup like the pipeline shown in Fig. 8.6 can be used
for this purpose. Generated test patterns are used as inputs (or so-called stimuli) to
the DUT. The response of the DUT is then compacted to form a signature, which
characterizes the response. This response is later compared to the expected response.
The expected response can be computed by simulation.

The compaction is usually performed with linear feedback shift registers
(LFSRs), shift registers with an XOR-feedback.

Example 8.4 Figure 8.7 shows a 4-bit LFSR (left) and the associated state diagram
(right) [318]. Blue dashed lines denote an input of '1'; red solid lines denote an
input of '0'. The selected feedback yields all possible signatures. During testing,
the response of the system tested is sent to the input of the LFSR. The LFSR will
then generate a signature reflecting the response. ∇
Due to storing the signature instead of the full response, several response patterns
can be mapped to the same signature. What is the probability of obtaining a correct
signature from an incorrect response?

In general, an n-bit signature generator can generate 2n signatures. For an m-bit
response of the DUT, the best that we can do is to evenly map 2(m−n) responses to
the same signature. Suppose that we expect a certain signature to be generated for
the correct response of the system. Then, 2(m−n) − 1 incorrect responses would also
map to the same signature. There is a total of 2m−1 incorrect responses if responses
are m-bit long. Hence, the probability of an incorrect response to map to the correct
signature (provided patterns map evenly to signatures) is

390 8 Test

P = Pr

(
other patterns mapping to the same signature

total number of other patterns

)
(8.1)

= 2(m−n) − 1

2m − 1
(8.2)

≈ 2(m−n)

2m
for m � n (8.3)

≈ 1

2n
for m � n (8.4)

This means that the probability of generating correct signatures from an incorrect
test response is very small if the shift register is long. For example, actual shift
registers may be 32 bits long. Nevertheless, it is still feasible to have the correct
signature for wrong inputs. The corresponding effect is called aliasing. A careful
analysis of aliasing is recommended at least for critical applications.

8.4.4 Pseudo-random Test Pattern Generation

For chips with a large number of flip-flops, it can take quite some time to shift in
the test patterns. In order to speed up the process of generating patterns on the chip,
it has been proposed to also integrate hardware for generating test patterns on the
chip. This is especially useful when the bandwidth for accesses from outside the
chip is much less than the internal bandwidth on the chip.

For example, pseudo-random patterns (also generated by LFSRs) can be used as
test patterns. This method typically requires less chip space than patterns stored in
a table.

Example 8.5 We can modify the circuit of Fig. 8.7 as shown in Fig. 8.8. The circuit
generates all possible test patterns, except the pattern consisting of all zeros.

Fig. 8.8 Linear feedback shift register for test pattern generation ∇

8.5 Problems 391

Fig. 8.9 LFSR

=1

clock

4−bit shift register

Patterns consisting of all zeros have to be avoided, since the generator would get
stuck once it arrives at such a pattern. The generated patterns are typically exercising
systems to be tested much better than simple counters.

8.5 Problems

8.1 Consider the circuit shown in Fig. 8.2. Generate a test pattern for a stuck-at-0
fault at signal h!

8.2 Which state diagram corresponds to the LFSR shown in Fig. 8.9?

8.3 Specify test patterns and expected responses for the FSM shown in Fig. 8.4.
These patterns must be specified as a sequence of pairs (test pattern, expected
response). Events shown in Fig. 8.4 can be used as test patterns. We assume that
the FSM will be in the default state after power on. Provide a complete test for all
transitions! Note that the special chain-like structure of the FSM simplifies testing.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Appendix A
Integer Linear Programming

We assume that not all readers of this book are familiar with all the prerequisites
required for understanding all previous chapters. We use appendices to commu-
nicate some of the knowledge which is possibly missing. Three topic areas are
covered in the appendices. In the current appendix, we will be present integer linear
programming. Integer linear programming (ILP) is a mathematical optimization
technique applicable to a large number of optimization problems.

ILP models provide a general approach for modeling optimization problems. ILP
models consist of two parts: a cost function and a set of constraints. Both parts
involve references to a set X = {xi} of integer-valued variables. Cost functions
must be linear functions of those variables. So, they must be of the general form

C =
∑

i

aixi, with ai ∈ R, xi ∈ N0 (A.1)

The set J of constraints must also consist of linear functions of integer-valued
variables. They must be of the form

∀j ∈ J :
∑

i

bi,j xi ≥ cj with bi,j , cj ∈ R (A.2)

Definition A.1 The integer linear programming (ILP) problem is the problem
of minimizing the cost function of Eq. (A.1) subject to the constraints given in
Eq. (A.2). If all variables are constrained to being either 0 or 1, the corresponding
model is called a 0/1-integer linear programming model. In this case, variables
are also denoted as (binary) decision variables.

Note that ≥ can be replaced by ≤ in Eq. (A.2) if constants bi,j are modified
accordingly. Also, the case of negative variables xi (i.e., allowing xi to have any
integer value) can be transformed into the case of non-negative variables shown
above by multiplying constants by −1. Applications requiring maximizing some

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8

393

https://doi.org/10.1007/978-3-030-60910-8

394 A Integer Linear Programming

Table A.1 Possible solutions
of the presented ILP problem

x1 x2 x3 C

0 1 1 10

1 0 1 9

1 1 0 11

1 1 1 15

gain function C′ can be changed into the above form by setting C = −C′. Equations
may be represented by pairs of constraints, but they are typically used to eliminate
some variables.

Example A.1 Assuming that x1, x2, and x3 must be integers, the following set of
equations represent a 0/1-IP model:

C = 5x1 + 6x2 + 4x3 (A.3)

x1 + x2 + x3 ≥ 2 (A.4)

x1 ≤ 1 (A.5)

x2 ≤ 1 (A.6)

x3 ≤ 1 (A.7)

Due to the constraints, all variables are either 0 or 1. There are four possible
solutions. These are listed in Table A.1. The solution with a cost of 9 is optimal. ∇
ILP is a variant of linear programming (LP). For linear programming, variables can
take any real values. ILP and LP models can be solved optimally using mathematical
programming techniques. Unfortunately, ILP is NP-complete (but LP is not), and
ILP execution times may become very large.

Nevertheless, ILP models are useful for modeling optimization problems as
long as the model sizes are not extremely large. Modeling optimization problems
as integer linear programming problems makes sense despite the complexity of
the problem: many problems can be solved in acceptable execution times, and if
they cannot, ILP models provide a good starting point for heuristics. Execution
times depend on the number of variables and on the number and structure of the
constraints. Good ILP solvers (like lp_solve [17] or CPLEX) can solve well-structured
problems containing a few thousand variables in acceptable computation times (e.g.,
minutes). For more information on ILP and LP, refer to books on the topic (e.g., to
Wolsey [594]).

Appendix B
Kirchhoff’s Laws and Operational
Amplifiers

Our presentation of D/A-converters on p. 180 assumes some basic knowledge
about operational amplifiers. This knowledge is frequently lacking among computer
science students, and therefore the necessary fundamentals are presented in this
appendix. These fundamentals require an understanding of Kirchhoff’s laws, of
which students will also be reminded in this Appendix.

B.1 Kirchhoff’s Laws

Kirchhoff’s laws provide a means for analyzing electrical circuits. The first rule is
Kirchhoff’s Current Law, also called Kirchhoff’s Junction Rule, or Kirchhoff’s First
Law. The rule applies to junctions such as the one shown in Fig. B.1.

Theorem B.1 (Kirchhoff’s Current Law) At any point in an electrical circuit,
the sum of currents flowing toward that point is equal to the sum of currents flowing
away from that point [273]. Formally, for any node in a circuit, we have:

∑
k

ik = 0 (B.1)

If Kirchhoff’s law is used in the form of Eq. (B.1), currents denoted by arrows
pointing away from the node must be counted as negative, and this counting is
independent of the direction into which electrons are actually flowing.

Example B.1 For the currents of Fig. B.1, we have

i1 + i2 − i3 + i4 = 0 (B.2)

i1 + i2 + i4 = i3 (B.3)

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8

395

https://doi.org/10.1007/978-3-030-60910-8

396 B Kirchhoff’s Laws and Operational Amplifiers

Fig. B.1 Junction in an
electrical circuit

i

2i R’

R
3

4

1
i

i

Fig. B.2 Loop in an
electrical circuit

R

V
1

V
3

I
3

42
VV 3R

4

This invariance exists due to the conservation of electrical charge. Without this
rule, the total electrical charge would not remain constant, and the voltage would
increase.

Kirchhoff’s second rule applies to loops in a circuit. It is known as Kirchhoff’s
Voltage Law, Kirchhoff’s loop rule, or Kirchhoff’s Second Law. Figure B.2 shows
an example.

Theorem B.2 (Kirchhoff’s Voltage Law) The sum of the potential differences
(voltages) across all elements around any closed circuit must be zero [273].
Formally, for any loop in a circuit, we have:

∑
k

Vk = 0 (B.4)

If we traverse voltages against the arrow direction, we have to count them as
negative.

Example B.2 For the schematic of Fig. B.2, we have

V1 − V2 − V3 + V4 = 0 (B.5)

The underlying reason for this invariance is the conservation of energy. Without
this rule, we could accelerate charge in the loop, and the charge would accumulate
energy without any energy consumption elsewhere.

In general, it is not relevant into which direction electrons are actually flowing
and which of two terminals is actually positive with respect to some other terminal.
Arrows can be selected in an arbitrary way. We just have to make sure that we respect
the direction of the arrows when we apply Kirchhoff’s laws. If arrows for voltages
and currents across components are pointing in opposite directions, the equation for
that component has to take that into account.

B.2 Operational Amplifiers 397

Example B.3 Ohm’s law for resistor R3 in Fig. B.2 reads as follows, due to the
opposite directions of voltage and current arrows:

I3 = − V3
R3

(B.6)

Of course, we will typically try to define the direction of voltages and currents such
that we avoid having too many minus signs.

B.2 Operational Amplifiers

In electronics, there is frequently the need to amplify some signal x(t) in order to
obtain some amplified signal y(t) = a · x(t), with a > 1. a is called the gain.
Designing different circuits for each and every gain would be a laborious task.
Therefore, designers are frequently using a general amplifier which can be easily
configured to have the required gain. Such a general amplifier is called operational
amplifier, or op-amp for short. Op-amps are designed for a very large maximum
gain. The required actual gain can be adjusted with a proper selection of a few
hardware components in the circuit surrounding the op-amp.

More precisely, an operational amplifier is a component having two signal inputs
and one signal output. In addition, there are at least two power supply inputs (see
Fig. B.3).

Op-amps amplify the difference between the voltages at the two signal inputs
with respect to ground by a gain g:

Vout = g ∗ (V+ − V−) (B.7)

g is called the open loop gain and is typically very large (e.g., 104 < g < 106). For
an ideal op-amp, g would approach infinity. Furthermore, op-amps usually come
with a very high input impedance (>1MΩ). Hence, we can frequently ignore signal
input currents. For an ideal op-amp, the input impedance would be infinity and input
currents would be zero.

Op-amps have been commercially available for decades, both as separate inte-
grated circuits and within other circuits. They differ by their speed, their voltage
ranges, their current drive capability, and other characteristics. The actual gain of

Fig. B.3 Operational
amplifier

op−amp

−V
outV

supply voltage

+V
ground

−

+

398 B Kirchhoff’s Laws and Operational Amplifiers

Fig. B.4 Op-amp with
feedback I

R

V1
Vout

R1

V-
op-amp
-

+

Fig. B.5 Op-amp with
feedback (loop highlighted)

ground

loop

op-amp
-V

1I R

outV
1V

R

+

-

the circuit is selected with external resistors. Figure B.4 shows how this can be
done.

Any small voltage between the two signal inputs is amplified by a large factor.
Via resistor R1, the resulting output voltage is fed back. Feedback is to the inverting
input, and therefore, any positive voltage V− results in a negative voltage Vout and
vice versa. This means that the feedback will work against the input voltage and it
does so very strongly, due to the large amplification. Therefore, the feedback will
reduce the voltage at the input pin. The question is: by how much? We can use
Kirchhoff’s rules to find the resulting voltage V− (see Fig. B.5).

Due to the characteristics of op-amps, we have

Vout = −g ∗ V− (B.8)

Due to Kirchhoff’s law for the loop shown by a dashed line in Fig. B.5, we have

I ∗ R1 + Vout − V− = 0 (B.9)

Note that we include a minus sign for V− since we are traversing a segment of the
loop against the direction of the arrow. From Eqs. (B.8) and (B.9), we get

I ∗ R1 + (−g) ∗ V− − V− = 0 (B.10)

(1 + g) ∗ V− = I ∗ R1 (B.11)

V− = I ∗ R1

1 + g
(B.12)

B.2 Operational Amplifiers 399

Hence, we have

V−,ideal = lim
g→∞

I ∗ R1

1 + g
(B.13)

= 0 (B.14)

This means that, for an ideal op-amp, V− is 0. Due to this, the inverting signal input
is called virtual ground. Nevertheless, this input cannot be connected to ground,
since this would change the currents.

Computing the actual gain of the circuit in Fig. B.4 is left as an exercise for
Chap. 3.

Appendix C
Paging and Memory Management Units

In this Appendix, we are discussing a basic technique for managing memories.
In simple systems, physical memories are actually addressed by the addresses
which are seen by (assembly language) programmers. This approach is very easy
to implement from a hardware technology point of view. However, this approach
has disadvantages for using the memory. For example, the allocation of objects to
memory is very static. The size of memory objects needs to be estimated before
actually allocating memory.

More flexibility is obtained when we distinguish between the memory addresses
as seen by the (assembly language) programmer and the ones used to address phys-
ical memory. Addresses as seen by the programmer are called virtual addresses,
and addresses seen at the memory are called real or physical addresses.

For a memory organization called paging, we partition the space of virtual
addresses into chunks of equal size, called pages. The size of these pages is a power
of two, such as 2 k bytes or 4 k bytes. As result, virtual addresses consist of those
bits addressing a particular page and those addressing a word or byte within a page.
The first set of bits is called page number, the second the offset.

Physical memory is partitioned into page frames of the same size. Then, a
mapping table—called page table—contains the information needed to map page
numbers to the corresponding start address in physical memory. The offset is
identical for virtual and real addresses (see Fig. C.1 (left)). This allows for a more
dynamic allocation to memory. Contiguous ranges of virtual addresses do not need
to be allocated to contiguous ranges in real memory, offering much more allocation
freedom (see Fig. C.1 (right)). Certain memory objects (e.g., like stacks) can grow
and shrink in multiples of page sizes.

There may be more than one virtual address space, such as one address space
per process managed by the operating system. In this case, the relevant page table
has to be set during context switches. The actual mapping from virtual to real
addresses is typically performed in a memory management unit (MMU). The
MMU is placed between processors and the memory and converts virtual addresses

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8

401

https://doi.org/10.1007/978-3-030-60910-8

402 C Paging and Memory Management Units

............

space
physical address

space
virtual address

physical address

page table

offsetpage

page offset

virtual address

Fig. C.1 Paging: left, address translation; right, impact on mapping of address spaces

into real addresses. During its operation, the MMU needs to know the contents
of the page table. Page tables may be large, and, hence, fast buffers can be used
as caches specialized for accesses to the page table. These fast buffers are called
translation look-aside buffers (TLB) or address translation memories (ATM).
TLBs are assumed to contain copies of frequently used correspondences between
virtual and real addresses.

For PCs, the presented approach is frequently combined with demand paging,
i.e., fetching page frames currently not in main memory from a slower background
memory on demand. Demand paging is less popular in embedded systems, fre-
quently due to the non-availability of a background memory. The term “paging”
is often used for what we have called demand paging. However, the distinction
between paging as a method for mapping virtual addresses to real addresses and
paging fetching information from a background memory automatically is important
for embedded systems.

In addition to the reasons mentioned above, paging is also useful for memory pro-
tection. Page table entries commonly contain bits which indicate access permissions
to the memory represented by this entry. Common permission bits include read,
write, and execute permissions. These protection bits enable the system designer to
isolate memory spaces of different tasks or processes against each other and also
help to protect the operating system from erroneous memory accesses by tasks or
even rogue processes which try to subvert a system’s security. The latter aspect is
gaining relevance especially in the context of networked embedded systems, as used
in Internet of Things applications.

Please refer to books on computer architecture for more information on memory
management [211].

References

1. Aamodt, T., Chow, P.: Embedded ISA support for enhanced floating-point to fixed-point ANSI
C compilation. In: Proceedings of the International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems (CASES), pp. 128–137 (2000)

2. Abella, J., Hardy, D., Puaut, I., Quiñones, E., Cazorla, F.J.: On the comparison of deterministic
and probabilistic WCET estimation techniques. In: Euromicro Conference on Real-Time
Systems (ECRTS), pp. 266–275 (2014). https://doi.org/10.1109/ECRTS.2014.16

3. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time systems. In:
Proceedings of the Real-Time Systems Symposium (RTSS), pp. 4–13 (1998)

4. Absint: aiT worst-case execution time analyzers (2020). http://www.absint.de/ait
5. AbsInt Angewandte Informatik GmbH: Stack overflow is a thing of the past (2016). https://

www.absint.com/stackanalyzer/index.htm
6. acatech (ed.): Cyber-Physical Systems. Driving Force for Innovation in Mobility,

Health, Energy and Production (2011). https://www.acatech.de/wp-content/uploads/2018/03/
acatech_POSITION_CPS_Englisch_WEB.pdf

7. Accellera Systems Initiative™: Core SystemC Language and Examples (2014). http://
accellera.org/downloads/standards/systemc/files

8. Accellera Systems Initiative™: SystemC Synthesizable Subset – Version 1.4.7 (2016).
http://accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_
7-Apache.pdf

9. ACM SIGBED: Home page (2020). http://www.sigbed.org
10. ACM/IEEE: Computer science curricula 2013: Curriculum guidelines for undergraduate

degree programs in computer science. In: The Joint Task Force on Computing Curricula
Association for Computing Machinery (ACM). IEEE Computer Society, Washington (2013).
http://www.acm.org/education/CS2013-final-report.pdf

11. Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing – Two Volume Set.
CRC Press, Boca Raton (2016)

12. aicas: Real-time specification for Java 2.0 (2016). https://www.aicas.com/cms/en/rtsj
13. Ambler, S.: Introduction to the diagrams of UML 2.X (2020). http://www.agilemodeling.com/

essays/umlDiagrams.htm
14. Analog Devices Inc. Eng.: ADSP-2100 Family User’s Manual. Out of print (1995)
15. Analog Devices Inc. Eng.: Data Conversion Handbook (Analog Devices). Newnes, London

(2004)
16. Andersson, B., Baruah, S., Jonsson, J.: Static-priority scheduling on multiprocessors. In:

Proceedings of the Real-Time Systems Symposium (RTSS), pp. 193–202. IEEE Computer
Society, Washington (2001). http://dl.acm.org/citation.cfm?id=882482.883823

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8

403

https://doi.org/10.1109/ECRTS.2014.16
http://www.absint.de/ait
https://www.absint.com/stackanalyzer/index.htm
https://www.absint.com/stackanalyzer/index.htm
https://www.acatech.de/wp-content/uploads/2018/03/acatech_POSITION_CPS_Englisch_WEB.pdf
https://www.acatech.de/wp-content/uploads/2018/03/acatech_POSITION_CPS_Englisch_WEB.pdf
http://accellera.org/downloads/standards/systemc/files
http://accellera.org/downloads/standards/systemc/files
http://accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7-Apache.pdf
http://accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7-Apache.pdf
http://www.sigbed.org
http://www.acm.org/education/CS2013-final-report.pdf
https://www.aicas.com/cms/en/rtsj
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://dl.acm.org/citation.cfm?id=882482.883823
https://doi.org/10.1007/978-3-030-60910-8

404 References

17. Anonymous: Introduction to lp_solve 5.5.2.5 (2020). http://lpsolve.sourceforge.net
18. Anonymus: OSEK (2020). https://en.wikipedia.org/wiki/OSEK
19. ANSYS: Embedded software - embedded systems and software development (2020). https://

www.ansys.com/products/embedded-software
20. ARM Ltd.: #pragma arm section [section_type_list] (2019). http://www.keil.com/support/

man/docs/armcc/armcc_chr1359124985290.htm
21. ARM Ltd.: AMBA specifications (2020). http://www.arm.com/products/system-ip/amba-

specifications.php
22. ARM Ltd.: big.LITTLE Technology (2020). http://www.arm.com/products/processors/

technologies/biglittleprocessing.php
23. ARM Ltd.: Mali-T860 & Mali-T880 (2020). http://www.arm.com/products/multimedia/mali-

gpu/high-performance/mali-t860-t880.php
24. Arnaud, F., Colquhoun, S., Mareau, A., Kohler, S., Jeannot, S., Hasbani, F., Paulin, R.,

Cremer, S., Charbuillet, C., Druais, G., Scheer, P.: Technology-Circuit Convergence for Full-
SOC Platform in 28 nm and Beyond. In: International Electron Devices Meeting (2011)

25. Artist Consortium: Home page (2009). http://www.artist-embedded.org
26. Atienza, D., Baloukas, C., Papadopoulos, L., Poucet, C., Mamagkakis, S., Hidalgo, J.I.,

Catthoor, F., Soudris, D., Lanchares, J.: Optimization of dynamic data structures in multime-
dia embedded systems using evolutionary computation. In: Proceedings of the International
Workshop on Software and Compilers for Embedded Systems (SCOPES), pp. 31–40 (2007).
http://doi.acm.org/10.1145/1269843.1269849

27. Atmel: 32-Bit AVR Microcontroller (2012). http://www.atmel.com/Images/doc32058.pdf
28. AUTOSAR: Automotive open system architecture (2020). http://www.autosar.org
29. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33
(2004)

30. Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., Nicolau, A.: Profile-
based dynamic voltage scheduling using program checkpoints. In: Proceedings of Design,
Automation and Test in Europe (DATE), pp. 168–175 (2002)

31. Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization.
Evol. Comput. 1, 1–23 (1993)

32. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford
University Press, Oxford (1997)

33. Bai, K., Shrivastava, A.: Heap data management for limited local memory (LLM) multi-core
processors. In: Proceedings of the International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pp. 317–325 (2010)

34. Baker, T.P.: Stack-based scheduling of real-time processes. J. Real-Time Syst. 3, 67–99 (1991)
35. Baker, T.: Rate monotone scheduling (2008). http://www.cs.fsu.edu/~baker/realtime/

restricted/notes/rmscheduling.html
36. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratchpad memory:

A design alternative for cache on-chip memory in embedded systems. In: Proceedings of
the International Symposium on Hardware-Software Codesign (CODES), pp. 73–78 (2002).
http://doi.acm.org/10.1145/774789.774805

37. Barney, B.: POSIX threads programming (2015). https://computing.llnl.gov/tutorials/
pthreads

38. Barrett, S., Pack, D.: Embedded Systems: Design and Applications with the 68HC12 and
HCS12. Prentice Hall, Upper Saddle River (2005)

39. Baruah, S.K., Mok, A.K., Rosier, L.E.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the Real-Time Systems Symposium (RTSS), pp.
182–190 (1990). https://doi.org/10.1109/REAL.1990.128746

40. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15(6), 600–625 (1996). https://doi.org/10.1007/
BF01940883. http://dx.doi.org/10.1007/BF01940883

http://lpsolve.sourceforge.net
https://en.wikipedia.org/wiki/OSEK
https://www.ansys.com/products/embedded-software
https://www.ansys.com/products/embedded-software
http://www.keil.com/support/man/docs/armcc/armcc_chr1359124985290.htm
http://www.keil.com/support/man/docs/armcc/armcc_chr1359124985290.htm
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-t860-t880.php
http://www.arm.com/products/multimedia/mali-gpu/high-performance/mali-t860-t880.php
http://www.artist-embedded.org
http://doi.acm.org/10.1145/1269843.1269849
http://www.atmel.com/Images/doc32058.pdf
http://www.autosar.org
http://www.cs.fsu.edu/~baker/realtime/restricted/notes/rmscheduling.html
http://www.cs.fsu.edu/~baker/realtime/restricted/notes/rmscheduling.html
http://doi.acm.org/10.1145/774789.774805
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1007/BF01940883
https://doi.org/10.1007/BF01940883
http://dx.doi.org/10.1007/BF01940883

References 405

41. Baruah, S., Bertogna, M., Buttazzo, G.: Multiprocessor Scheduling for Real-Time Systems.
Springer, Berlin (2015)

42. Basten, T.: Opening remarks, 2nd Artist workshop on models of computation and communica-
tion, Eindhoven (2008). http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf

43. Benavides, T., Treon, J., Hulbert, J., Chang, W.: The enabling of an execute-in-place
architecture to reduce the embedded system memory footprint and boot time. J. Comput. 3(1),
79–89 (2008). https://doi.org/10.4304/jcp.3.1.79-89. http://dx.doi.org/10.4304/jcp.3.1.79-89

44. Bender, A.: MILP based task mapping for heterogeneous multiprocessor systems. In: Design
Automation Conference, 1996, with EURO-VHDL ’96 and Exhibition, Proceedings EURO-
DAC ’96, European, pp. 190–197 (1996). https://doi.org/10.1109/EURDAC.1996.558204

45. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Advanced Course on Petri Nets 2003. Lecture Notes in Computer
Science, vol. 3098, pp. 87–124. Springer, Berlin (2004)

46. Benini, L., De Micheli, G.: Dynamic Power Management: Design Techniques and CAD
Tools. Kluwer Academic Publishers, Dordrecht (1998)

47. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level
dynamic power management. IEEE Trans. VLSI Syst. 8(3), 299–316 (2000)

48. Bernardi, P., Rebaudengo, M. Reorda, S.: Using infrastructure IPs to support SW-based self-
test of processor cores. In: Workshop on Fibres and Optical Passive Components, pp. 22–27
(2005)

49. Bernstein, J.B., Gurfinkel, M., Li, X., Walters, J., Shapira, Y., Talmor, M.: Electronic
circuit reliability modeling. Microelectron. Reliab. 46(12), 1957–1979 (2006). http://
dx.doi.org/10.1016/j.microrel.2005.12.004. http://www.sciencedirect.com/science/article/pii/
S0026271406000023

50. Bertogna, M., Cirinei, M., Lipari, G.: Improved schedulability analysis of EDF on multipro-
cessor platforms. In: Euromicro Conference on Real-Time Systems (ECRTS), pp. 209–218
(2005). https://doi.org/10.1109/ECRTS.2005.18

51. Bertolotti, I.C.: Real-time embedded operating systems: Standards and perspectives. In:
Zurawski, R. (ed.) Embedded Systems Handbook. CRC Press, Boca Raton (2006)

52. Beszedes, A.: Survey of code size reduction methods. ACM Comput. Surv. 35, 223–267
(2003)

53. Bieker, U., Marwedel, P.: Retargetable self-test program generation using constraint logic
programming. In: Proceedings of the Design Automation Conference (DAC), pp. 605–611
(1995)

54. Bini, E., Buttazzo, G., Buttazzo, G.: A hyperbolic bound for the rate monotonic algorithm.
In: Euromicro Conference on Real-Time Systems (ECRTS), pp. 59–73 (2001)

55. Black, J.R.: Electromigration failure modes in aluminum metallization for semiconductor
devices. Proc. IEEE 57(9), 1587–1594 (1969). https://doi.org/10.1109/PROC.1969.7340

56. Boldt, M., Traulsen, C., von Hanxleden, R.: Compilation and worst-case reaction time
analysis for multithreaded esterel processing. EURASIP J. Embed. Syst. 2008, 4:1–4:21
(2008). https://doi.org/10.1155/2008/594129. http://dx.doi.org/10.1155/2008/594129

57. Bonfietti, A., Benini, L., Lombardi, M., Milano, M.: An efficient and complete approach for
throughput-maximal SDF allocation and scheduling on multi-core platforms. In: Proceedings
of Design, Automation and Test in Europe (DATE), pp. 897–902. European Design and
Automation Association, 3001 Leuven, Belgium (2010). http://dl.acm.org/citation.cfm?id=
1870926.1871143

58. Bonny, T., Henkel, J.: Huffman-based code compression techniques for embedded processors.
ACM Trans. Des. Autom. Electron. Syst. 15(4), 31:1–31:37 (2010). https://doi.org/10.1145/
1835420.1835424. http://doi.acm.org/10.1145/1835420.1835424

59. Bordoloi, U.: Scheduling with shared resources (2020). Originally at http://www.ida.liu.se/~
unmbo/RTS_CUGS_files/Lecture3.pdf, currently, available at https://tams.informatik.uni-
hamburg.de/lehre/2016ss/vorlesung/es/doc/ida.liu.se-rts-Lecture3.pdf

60. Boulanger, J.L.: CENELEC 50128 and IEC 62279 Standards. Wiley, Hoboken (2015)
61. Boussinot, F., de Simone, R.: The Esterel language. Proc. IEEE 79(9), 1293–1304 (1991)

http://www.es.ele.tue.nl/~tbasten/mocc2008/presentations/mocc.pdf
https://doi.org/10.4304/jcp.3.1.79-89
http://dx.doi.org/10.4304/jcp.3.1.79-89
https://doi.org/10.1109/EURDAC.1996.558204
http://dx.doi.org/10.1016/j.microrel.2005.12.004
http://dx.doi.org/10.1016/j.microrel.2005.12.004
http://www.sciencedirect.com/science/article/pii/S0026271406000023
http://www.sciencedirect.com/science/article/pii/S0026271406000023
https://doi.org/10.1109/ECRTS.2005.18
https://doi.org/10.1109/PROC.1969.7340
https://doi.org/10.1155/2008/594129
http://dx.doi.org/10.1155/2008/594129
http://dl.acm.org/citation.cfm?id=1870926.1871143
http://dl.acm.org/citation.cfm?id=1870926.1871143
https://doi.org/10.1145/1835420.1835424
https://doi.org/10.1145/1835420.1835424
http://doi.acm.org/10.1145/1835420.1835424
http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf
http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf
https://tams.informatik.uni-hamburg.de/lehre/2016ss/vorlesung/es/doc/ida.liu.se-rts-Lecture3.pdf
https://tams.informatik.uni-hamburg.de/lehre/2016ss/vorlesung/es/doc/ida.liu.se-rts-Lecture3.pdf

406 References

62. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information:
Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin
(2000)

63. Bouyssounouse, B., Sifakis, J. (eds.): Embedded Systems Design, The ARTIST Roadmap for
Research and Development. Lecture Notes in Computer Science, vol. 3436. Springer, Berlin
(2005)

64. Brahme, D., Abraham, J.A.: Functional testing of microprocessors. IEEE Trans. Comput. 33,
475–485 (1984)

65. Brand, D., Bergamaschi, R.A., Stok, L.: Don’t cares in synthesis: theoretical pitfalls and
practical solutions. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 17(4), 285–304
(1998). https://doi.org/10.1109/43.703819

66. Braun, A., Bringmann, O., Lettnin, D., Rosenstiel, W.: Simulation-based verification of the
MOST netinterface specification revision 3.0. In: Proceedings of Design, Automation and
Test in Europe (DATE) (2010)

67. Bremaud, P.: Markov Chains. Springer, Berlin (1999)
68. Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization

and network building change the manufacturing landscape: An industry 4.0 perspective. Int.
J. Mech. Ind. Sci. Eng. 8(1), 37–44 (2014)

69. Bril, R.J.: Real-time scheduling for media processing using conditionally guaranteed budgets.
PhD Thesis, TU Eindhoven (2004)

70. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power
analysis and optimizations. In: Proceedings of 27th International Symposium on Computer
Architecture (ISCA), pp. 83–94 (2000)

71. Bruno, E., Bollella, G.: Real-Time Java Programming: With Java RTS. Prentice Hall, Upper
Saddle River (2009)

72. Bryant, R.: A switch-level model and simulator for MOS digital circuits. IEEE Trans.
Comput. 33, 160–177 (1984)

73. Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. Thesis, University of California at Berkeley (1993)

74. Budkowski, S., Dembinski, P.: An introduction to Estelle: A specification language
for distributed systems. Comput. Netw. ISDN Syst. 14(1), 3–23 (1987). https://doi.
org/10.1016/0169-7552(87)90084-5. http://www.sciencedirect.com/science/article/B6TYT-
48V22NJ-5C/2/611631c58f275c04f464fba932b8b699

75. Bundesamt für Sicherheit in der Informationstechnik: IT-Grundschutz Compendium (2020).
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/bsi-it-
gs-comp-2019.pdf?__blob=publicationFile&v=1

76. Burd, T., Brodersen, R.: Design issues for dynamic voltage scaling. In: International
Symposium on Low Power Electronics and Design (ISLPED), pp. 9–14 (2000)

77. Burd, T., Brodersen, R.W.: Energy efficient microprocessor design. Kluwer Academic
Publishers, Dordrecht (2003)

78. Burks, A., Goldstine, H., von Neumann, J.: Preliminary discussion of the logical design of an
electronic computing element. Report to U.S. Army Ordnance Department (1946). Reprinted
at https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf

79. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages. Addison-Wesley,
Boston (1990)

80. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages, 4th edn. Addison
Wesley, Boston (2009)

81. Buttazzo, G.: Hard Real-time Computing Systems, 4th Printing. Springer, Berlin (2011)
82. Cadence Design Systems Inc.: Tensilica Customizable Processor IP (2020). http://ip.cadence.

com/ipportfolio/tensilica-ip
83. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: Proceedings of the Interna-

tional Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 19–24. ACM, New York (2003). https://doi.org/10.1145/944645.944651. http://doi.acm.
org/10.1145/944645.944651

https://doi.org/10.1109/43.703819
https://doi.org/10.1016/0169-7552(87)90084-5
https://doi.org/10.1016/0169-7552(87)90084-5
http://www.sciencedirect.com/science/article/B6TYT-48V22NJ-5C/2/611631c58f275c04f464fba932b8b699
http://www.sciencedirect.com/science/article/B6TYT-48V22NJ-5C/2/611631c58f275c04f464fba932b8b699
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/bsi-it-gs-comp-2019.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/International/bsi-it-gs-comp-2019.pdf?__blob=publicationFile&v=1
https://www.cs.princeton.edu/courses/archive/fall10/cos375/Burks.pdf
http://ip.cadence.com/ipportfolio/tensilica-ip
http://ip.cadence.com/ipportfolio/tensilica-ip
https://doi.org/10.1145/944645.944651
http://doi.acm.org/10.1145/944645.944651
http://doi.acm.org/10.1145/944645.944651

References 407

84. Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: Proceedings
of the 2010 USENIX Conference on USENIX Annual Technical Conference, USENIX-
ATC’10, pp. 21–21. USENIX Association, Berkeley (2010). http://dl.acm.org/citation.cfm?
id=1855840.1855861

85. Caspi, P., Sangiovanni-Vincentelli, A., Almeida, L., et al.: Guidelines for a graduate curricu-
lum on embedded software and systems. ACM Trans. Embed. Comput. Syst. 4, 587–611
(2005)

86. Castrillon, J., Tretter, A., Leupers, R., Ascheid, G.: Communication-aware mapping of KPN
applications onto heterogeneous MPSoCs. In: Proceedings of the Design Automation Con-
ference (DAC), pp. 1266–1271. ACM, New York (2012). https://doi.org/10.1145/2228360.
2228597. http://doi.acm.org/10.1145/2228360.2228597

87. Cederqvist, P.: The CVS Manual - Version Management with CVS. Network Theory Ltd,
Bristol (2006)

88. Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G., Meyr,
H., Isshiki, T., Kunieda, H.: MAPS: an integrated framework for MPSoC application
parallelization. In: Proceedings of the Design Automation Conference (DAC), pp. 754–759
(2008)

89. Chamberlain, R., Taha, W., Törngren, M. (eds.): Cyber Physical Systems. In: Model-Based
Design - 2019 8th International Workshop, CyPhy 2018, and 14th International Workshop,
WESE 2018, Revised Selected Papers. Lecture Notes in Computer Science (2019)

90. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design. IEEE J.
Solid-State Circuits 27(4), 119–123 (1992)

91. Chanet, D., Sutter, B.D., Bus, B.D., Put, L.V., Bosschere, K.D.: Automated reduction of the
memory footprint of the Linux kernel. ACM Trans. Embed. Comput. Syst. 6(4), 23 (2007).
http://doi.acm.org/10.1145/1274858.1274861

92. Chang, D.W., Lin, I.C., Chien, Y.S., Lin, C.L., Su, A.W.Y., Young, C.P.: CASA: contention-
aware scratchpad memory allocation for online hybrid on-chip memory management. IEEE
Trans. Comput. Aided Design Integr. Circuits Syst. 33(12), 1806–1817 (2014). https://doi.
org/10.1109/TCAD.2014.2363385

93. Chao, C., Saeta, B.: HotChips 2019 Tutorial – Cloud TPU: Codesigning Architecture and
Infrastructure (2019). https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf

94. Chen, M., Rincón-Mora, G.: Accurate electrical battery model capable of predicting runtime
and i-v performance. IEEE Trans. Energy Convers. 21, 504–511 (2006)

95. Chen, K., Sztipanovits, J., Neema, S.: Compositional specification of behavioral semantics.
In: Design, Automation and Test in Europe (DATE), pp. 906–911 (2007)

96. Chen, X., Dick, R., Shang, L.: Properties of and improvements to time-domain dynamic
thermal analysis algorithms. In: Proceedings of Design, Automation and Test in Europe
(DATE) (2010)

97. Chen, J., Huang, W., Liu, C.: k2Q: A Quadratic-Form Response Time and Schedulability
Analysis Framework for Utilization-Based Analysis. CoRR (2015). http://arxiv.org/abs/1505.
03883

98. Chetto, H., Silly, M., Bouchentouf, T.: Dynamic scheduling of real-time tasks under prece-
dence constraints. J. Real-Time Syst. 2, 181–194 (1990)

99. Cheung, E., Hsieh, H., Balarin, F.: Automatic buffer sizing for rate-constrained KPN
applications on multiprocessor system-on-chip. In: High Level Design Validation and Test
Workshop, 2007. HLVDT 2007. IEEE International, pp. 37–44 (2007). https://doi.org/10.
1109/HLDVT.2007.4392782

100. Chiu, Y.: Folding and Interpolating ADC. University of Texas at Dallas, EECT 7327 (2014).
http://www.utdallas.edu/~yxc101000/courses/7327/slides/intp%20folding%20adc.pptx

101. Cho, S., Lee, S.K., Han, A., Lin, K.J.: Efficient real-time scheduling algorithms for multipro-
cessor systems. IEICE Trans. Commun. 85, 2859–2867 (2002)

102. Cho, H., Ravindran, B., Jensen, E.: An optimal real-time scheduling algorithm for multipro-
cessors. In: Proceedings of the Real-Time Systems Symposium (RTSS) (2006)

http://dl.acm.org/citation.cfm?id=1855840.1855861
http://dl.acm.org/citation.cfm?id=1855840.1855861
https://doi.org/10.1145/2228360.2228597
https://doi.org/10.1145/2228360.2228597
http://doi.acm.org/10.1145/2228360.2228597
http://doi.acm.org/10.1145/1274858.1274861
https://doi.org/10.1109/TCAD.2014.2363385
https://doi.org/10.1109/TCAD.2014.2363385
https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
http://arxiv.org/abs/1505.03883
http://arxiv.org/abs/1505.03883
https://doi.org/10.1109/HLDVT.2007.4392782
https://doi.org/10.1109/HLDVT.2007.4392782
http://www.utdallas.edu/~yxc101000/courses/7327/slides/intp%20folding%20adc.pptx

408 References

103. Chung, E.Y., Benini, L., De Micheli, G.: Source code transformation based on software cost
analysis. In: Proceedings of the International Symposium on System Synthesis (ISSS), pp.
153–158 (2001)

104. Clarke, E.M., Grumberg, O., Hiraishi, H., Jha, S., Long, D.E., McMillan, K.L., Ness, L.A.:
Verification of the Futurebus+ cache coherence protocol. Form. Method Syst. Des. 6(2),
217–232 (2005)

105. Clouard, A., Jain, K., Ghenassia, F., Maillet-Contoz, L., Strassen, J.: Using transactional mod-
els in SoC design flow. In: Müller, W., Rosenstiel, W., Ruf, J. (eds.) SystemC: Methodologies
and Applications, pp. 29–64. Kluwer Academic Publishers, Dordrecht (2003)

106. Coelho, D.R.: The VHDL Handbook. Kluwer Academic Publishers, Dordrecht (1989)
107. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.v.: Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer, Berlin (2007)
108. Collins-Sussman, B., Fitzpatrick, B., Pilato, C.: Version control with subversion – for

subversion 1.5 (2008). http://svnbook.red-bean.com/en/1.5/svn-book.pdf
109. Cooling, J.: Software Engineering for Real-Time Systems. Addison Wesley, Boston (2003)
110. Cordes, D.A.: Automatic parallelization for embedded multi-core systems using high-level

cost models. Ph.D. Thesis, TU Dortmund, Department of Computer Science (2013)
111. Cortadella, J., Kondratyev, A., Lavagno, L., Massot, M., Moral, S., Passerone, C., Watanabe,

Y., Sangiovanni-Vincentelli, A.: Task generation and compile-time scheduling for mixed data-
control embedded software. In: Proceedings of the Design Automation Conference (DAC),
pp. 489–494 (2000)

112. Coskun, A.K., Rosing, T.S., Whisnant, K.A., Gross, K.C.: Temperature-aware MPSoC
scheduling for reducing hot spots and gradients. In: Proceedings of the 2008 Asia and South
Pacific Design Automation Conference, ASP-DAC ’08, pp. 49–54. IEEE Computer Society
Press, Los Alamitos (2008). http://dl.acm.org/citation.cfm?id=1356802.1356815

113. Coussy, P., Morawiec, A.: High-Level Synthesis: From Algorithm to Digital Circuit. Springer,
Berlin (2008)

114. Craig, I.D.: Virtual Machines. Springer, Berlin (2006)
115. Cyber-Physical Systems Virtual Organization: Home page (1920). https://cps-vo.org/
116. Cyber-Physical Systems Virtual Organization: Cyber-physical systems (CPS) – program

solicitation (2019). https://cps-vo.org/node/59030
117. Damm, W., Harel, D.: LSCs: breathing life into message sequence charts. Form. Method Syst.

Des. 19, 45–80 (2001)
118. Dasgupta, S.: The organization of microprogram stores. ACM Comput. Surv. 11, 39–65

(1979)
119. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems.

ACM Comput. Surv. 43(4), 35:1–35:44 (2011). https://doi.org/10.1145/1978802.1978814.
http://doi.acm.org/10.1145/1978802.1978814

120. Davis, J., Hylands, C., Janneck, J., Lee, E.A., Liu, J., Liu, X., Neuendorffer, S., Sachs, S.,
Stewart, M., Vissers, K., Whitaker, P., Xiong, Y.: Overview of the Ptolemy project. Technical
Memorandum UCB/ERL M01/11 (2001). http://ptolemy.eecs.berkeley.edu

121. De Greef, E., Catthoor, F., Man, H.: Memory size reduction through storage order opti-
mization for embedded parallel multimedia applications. In: Proceeding of the Workshop on
Parallel Processing and Multimedia, pp. 84–98 (1997)

122. De Greef, E., Catthoor, F., Man, H.D.: Array placement for storage size reduction in
embedded multimedia systems. In: IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 66–75 (1997)

123. de Haan, L., Ferreira, A.: Extreme Value Theory – An Introduction. Springer, Berlin (2006)
124. De Micheli, G., Ernst, R., Wolf, W.: Readings in Hardware/Software Co-Design. Academic,

Cambridge (2002)
125. Derin, O.: Self-adaptivity of applications on network on chip multiprocessors – the case of

fault-tolerant Kahn Process Networks. Ph.D. Thesis, Università della Svizzera Italiana de
Lugano (2013)

http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://dl.acm.org/citation.cfm?id=1356802.1356815
https://cps-vo.org/
https://cps-vo.org/node/59030
https://doi.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/1978802.1978814
http://ptolemy.eecs.berkeley.edu

References 409

126. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc. IEEE 100(1),
13–28 (2012). https://doi.org/10.1109/JPROC.2011.2160929

127. Deutsches Institut für Normung: DIN 66253, Programmiersprache PEARL, Teil 2 PEARL
90. Beuth-Verlag, Berlin (1997). http://www.din.de

128. Devi, U.M.C., Anderson, J.H.: Tardiness bounds under global EDF scheduling on a multi-
processor. In: Proceedings of the Real-Time Systems Symposium (RTSS), pp. 12 pp.–341
(2005). https://doi.org/10.1109/RTSS.2005.39

129. Devillers, R.R., Goossens, J.: Liu and Layland’s schedulability test revisited. Inf. Process.
Lett. 73, 157–161 (2000)

130. Dhall, K., Liu, C.: On a real-time scheduling problem. Operat. Res. 26(1), 127–140 (1978).
https://doi.org/10.1287/opre.26.1.127. http://dx.doi.org/10.1287/opre.26.1.127

131. Dibble, P.C.: Real-Time Java Platform Programming, 2nd edn. BookSurge Publishing,
Charleston (2008)

132. Diederichs, C., Margull, U., Slomka, F., Wirrer, G.: An application-based EDF scheduler
for OSEK/VDX. In: Proceedings of Design, Automation and Test in Europe (DATE), pp.
1045–1050 (2008)

133. Dill, D., Alur, R.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)
134. Dominguez, A., Udayakumaran, S., Barua, R.: Heap data allocation to scratch-pad memory

in embedded systems. J. Embed. Comput. 1(4), 521–540 (2005)
135. Donald, J., Martonosi, M.: Techniques for multicore thermal management: classification and

new exploration. SIGARCH Comput. Archit. News 34(2), 78–88 (2006). http://doi.acm.org/
10.1145/1150019.1136493

136. Dósa, G.: The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is
FFD(I) ? 11/9OPT(I) + 6/9, pp. 1–11. Springer, Berlin (2007). https://doi.org/10.1007/978-3-
540-74450-4_1. http://dx.doi.org/10.1007/978-3-540-74450-4_1

137. Douglass, B.P.: Real-Time UML, 3rd edn. Addison Wesley, Boston (2004)
138. Dozio, L., Mantegazza, P.: Real time distributed control systems using RTAI. In: Proceedings

of the Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (2003)

139. Drepper, U.: What every programmer should know about memory (2007). http://www.
akkadia.org/drepper/cpumemory.pdf

140. Dressler, F.: Cyber physical social systems: Towards deeply integrated hybridized systems. In:
International Conference on Computing, Networking and Communications (ICNC) (2018)

141. Drusinsky, D., Harel, D.: Using statecharts for hardware description and synthesis. IEEE
Trans. Comput. Design 8, 798–807 (1989)

142. Dunkels, A.: Design and Implementation of the lwIP TCP/IP Stack. Swed. Inst. Comput. Sci.
2, 77 (2001)

143. Dunn, W.: Practical Design of Safety-Critical Computer Systems. Reliability Press, Cam-
bridge (2002)

144. Dusza, B., Marwedel, P., Spinczyk, O., Wietfeld, C.: A context-aware battery lifetime model
for carrier aggregation enabled LTE-A systems. In: IEEE Consumer Communications and
Networking Conference (CCNC) (2014)

145. Ecker, W., Müller, W., Dömer, R.: Hardware-Dependent Software: Principles and Practice.
Springer, Berlin (2009)

146. Edwards, S.: Dataflow languages (2001). http://www.cs.columbia.edu/~sedwards/classes/
2001/w4995-02/presentations/dataflow.ppt

147. Edwards, S.: Languages for embedded systems. In: Zurawski, R. (ed.) Embedded Systems
Handbook. CRC Press, Boca Raton (2006)

148. efunda: Materials home (2017). http://www.efunda.com/materials/elements/element_info.
cfm?Element_ID=Si

149. Egger, B., Lee, J., Shin, H.: Scratchpad memory management for portable systems with a
memory management unit. In: Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES), pp. 321–330 (2006)

https://doi.org/10.1109/JPROC.2011.2160929
http://www.din.de
https://doi.org/10.1109/RTSS.2005.39
https://doi.org/10.1287/opre.26.1.127
http://dx.doi.org/10.1287/opre.26.1.127
http://doi.acm.org/10.1145/1150019.1136493
http://doi.acm.org/10.1145/1150019.1136493
https://doi.org/10.1007/978-3-540-74450-4_1
https://doi.org/10.1007/978-3-540-74450-4_1
http://dx.doi.org/10.1007/978-3-540-74450-4_1
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Si
http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=Si

410 References

150. Eggermont, L.: Embedded systems roadmap. STW (2002). http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.119.6407&rep=rep1&type=pdf

151. Elsevier B.V.: Sensors and actuators A: physical. An Int. J. (2020)
152. Elsevier B.V.: Sensors and actuators B: chemical. An Int. J. (2020)
153. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark silicon and

the end of multicore scaling. In: 2011 38th Annual International Symposium on Computer
Architecture (ISCA), pp. 365–376 (2011)

154. Esterel Technologies SA: Homepage (2014). http://www.esterel-technologies.com
155. European Commission: Topic: Smart cyber-physical systems (2013). http://ec.europa.eu/

research/participants/portal/desktop/en/opportunities/h2020/topics/ict-01-2014.html
156. European Commission: Computing technologies and engineering methods for cyber-physical

systems of systems (2019). https://ec.europa.eu/info/funding-tenders/opportunities/portal/
screen/opportunities/topic-details/ict-01-2019

157. Evidence: Erika enterprise (2016). http://erika.tuxfamily.org/drupal/
158. Falk, H.: WCET-aware register allocation based on graph coloring. In: Proceedings of the

Design Automation Conference (DAC), pp. 726–731 (2009)
159. Falk, H., Marwedel, P.: Control flow driven splitting of loop nests at the source code level. In:

Proceedings of Design, Automation and Test in Europe (DATE), pp. 410–415 (2003)
160. Falk, H., Verma, M.: Combined Data Partitioning and Loop Nest Splitting for Energy

Consumption Minimization. In: Proceedings of the International Workshop on Software and
Compilers for Embedded Systems (SCOPES), pp. 137–151. Amsterdam, The Netherlands
(2004)

161. Falkenberg, R., Sliwa, B., Piatkowski, N., Wietfeld, C.: Machine learning based uplink
transmission power prediction for LTE and upcoming 5G networks using passive downlink
indicators. In: 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pp. 1–7 (2018)

162. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for
workflow scheduling in heterogeneous environments. In: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012),
CCGRID ’12, pp. 300–309. IEEE Computer Society, Washington (2012). https://doi.org/10.
1109/CCGrid.2012.114. http://dx.doi.org/10.1109/CCGrid.2012.114

163. Ferrell, T.K., Ferrell, U.D.: RTCA DO-178-B/EUROCAE ED-12B. In: Spitzer, C. (ed.) The
Avionics Handbook (Electrical Engineering Handbook), chap. 27. CRC Press, Boca Raton
(2001)

164. Fiorin, L., Palermo, G., Lukovic, S., Silvano, C.: A data protection unit for NoC-based archi-
tectures. In: Proceedings of the International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), pp. 167–172 (2007)

165. Flautner, K.: Heterogeneity to the rescue (2011). https://www.bscmsrc.eu/sites/default/files/
media/arm-heterogenous-mp-november-2011.pdf

166. Fowler, M., Scott, K.: UML Distilled: Applying the Standard Object Modeling Language.
Addison-Wesley, Boston (1998)

167. Franke, B.: Fast cycle-approximate instruction set simulation. In: Proceedings of the Interna-
tional Workshop on Software and Compilers for Embedded Systems (SCOPES), pp. 69–78
(2008)

168. Franke, B., O’Boyle, M.F.: A complete compiler approach to auto-parallelizing C programs
for multi-DSP systems. IEEE Trans. Paral. Distrib. Syst. 16, 234–245 (2005)

169. Franke, H., et al.: Lexikon der Physik, Stichwort Wärmeleitvermögen. Deutscher Taschen-
buch Verlag, Munich (1971)

170. Freescale Semiconductor/NXP: ColdFire® Family Programmer’s Reference Manual (2005).
http://www.nxp.com/assets/documents/data/en/reference-manuals/CFPRM.pdf

171. Gajski, D., Kuhn, R.: New VLSI tools. IEEE Comput. 16, 11–14 (1983)
172. Gajski, D., Vahid, F., Narayan, S., Gong, J.: Specification and Design of Embedded Systems.

Prentice Hall, Upper Saddle River (1994)
173. Gajski, D., Zhu, J., Dömer, R., Gerstlauer, A., Zhao, S.: SpecC: Specification Language

Methodology. Kluwer Academic Publishers, Dordrecht (2000)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.6407&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.6407&rep=rep1&type=pdf
http://www.esterel-technologies.com
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/ict-01-2014.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/ict-01-2014.html
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-01-2019
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-01-2019
http://erika.tuxfamily.org/drupal/
https://doi.org/10.1109/CCGrid.2012.114
https://doi.org/10.1109/CCGrid.2012.114
http://dx.doi.org/10.1109/CCGrid.2012.114
https://www.bscmsrc.eu/sites/default/files/media/arm-heterogenous-mp-november-2011.pdf
https://www.bscmsrc.eu/sites/default/files/media/arm-heterogenous-mp-november-2011.pdf
http://www.nxp.com/assets/documents/data/en/reference-manuals/CFPRM.pdf

References 411

174. Gajski, D.D., Abdi, S., Gerstlauer, A., Schirner, G.: Embedded System Design. Springer,
Heidelberg (2009)

175. Ganssle, J.G.: The Art of Designing Embedded Systems. Newnes, London (2000)
176. Ganssle, J. (ed.) Embedded Systems (World Class Designs). Newnes, London (2008)
177. Ganssle, J.G., Noergaard, T., Eady, F., Edwards, L., Katz, D.J., Gentile, R., Arnold, K., Hyder,

K., Perrin, B.: Embedded Hardware: Know it All. Newnes, London (2008)
178. Garey, M.R., Johnson, D.S.: Computers and Intractability. Bell Laboratories, Murray Hill

(1979)
179. Garg, R., Khatri, S.: Analysis and Design of Resilient VLSI Circuits. Springer, Berlin (2009)
180. Gebotys, C.: Security in Embedded Devices. Springer, Berlin (2010)
181. Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Kluwer Academic

Publishers, Dordrecht (2002)
182. Gerum, P.: Xenomai – implementing a RTOS emulation framework on GNU Linux. Xenomai

White Paper (2004)
183. Gierlichs, B., Poschmann, A.: International Workshop on Cryptographic Hardware and

Embedded Systems (CHES) (2016). http://www.chesworkshop.org/
184. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE

Trans. Automat. Contr. 52(5), 782–798 (2007). https://doi.org/10.1109/TAC.2007.895849
185. Giusto, D., Iera, A., Morabito, G., Atzori, L. (eds.) The Internet of Things, 20th Tyrrhenian

Workshop on Digital Communications. Springer, Berlin (2010)
186. Goldberg, D.: What every computer scientist should know about floating point arithmetic.

ACM Comput. Surv. 23, 5–48 (1991)
187. Gomez, L., Fernandes, J.: Behavioral Modeling for Embedded Systems and Technologies.

IGI Global, Pennsylvania (2010)
188. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
189. Goossens, J., Funk, S., Baruah, S.: EDF scheduling on multiprocessor platforms: Some

(perhaps) counterintuitive observations. In: Real-Time Computing Systems and Applications
Symposium (2002)

190. Graham, R., Lawler, E., Lenstra, J.K., Kan, A.H.G.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annal. Discr. Math. 5, 287–326 (1979)

191. Grötker, T., Liao, S., Martin, G.: System Design with SystemC. Springer, Berlin (2002)
192. Gubbia, J., Buyyab, R., Marusica, S., Palaniswamia, M.: Internet of things (IoT): A vision,

architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660
(2013)

193. Guerrieri, A., Loscri, V., Rovella, A., Fortino, G.: Management of Cyber Physical Objects
in the Future Internet of Things: Methods, Architectures and Applications. Springer, Berlin
(2016)

194. Gupta, R.: Tasks and task management. Course ICS 212, Winter 2002, UC Irvine (2002).
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf

195. Ha, S.: Model-based programming environment of embedded software for MPSoC. In:
Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), pp.
330–335 (2007). http://dx.doi.org/10.1109/ASPDAC.2007.358007

196. Hahn, S., Reineke, J., Wilhelm, R.: Toward compact abstractions for processor pipelines. In:
Correct System Design, pp. 205–220. Springer, Cham (2015)

197. Halbwachs, N.: Synchronous programming of reactive systems, a tutorial and com-
mented bibliography. In: Tenth International Conference on Computer-Aided Verification,
CAV’98, LNCS 1427. Springer, Berlin (1998). See also: http://www.springerlink.com/
content/5127074271136j71/fulltext.pdf

198. Halbwachs, N.: Personal communication. South American Artist School on Embedded
Systems, Florianopolis (2008)

199. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow language
LUSTRE. Proc. IEEE Trans. Softw. Eng. 79, 1305–1320 (1991)

http://www.chesworkshop.org/
https://doi.org/10.1109/TAC.2007.895849
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.8704&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ASPDAC.2007.358007
http://www.springerlink.com/content/5127074271136j71/fulltext.pdf
http://www.springerlink.com/content/5127074271136j71/fulltext.pdf

412 References

200. Hamada, T., Benkrid, K., Nitadori, K., Taiji, M.: A comparative study on ASIC, FPGAs,
GPUs and general purpose processors in the O(N2) gravitational N-body simulation. In:
Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware and Systems, AHS
’09, pp. 447–452. IEEE Computer Society, Washington (2009). https://doi.org/10.1109/AHS.
2009.55. http://dx.doi.org/10.1109/AHS.2009.55

201. Harbour, M.G.: RT-POSIX: An overview (1993). http://www.ctr.unican.es/publications/mgh-
1993a.pdf

202. Hardkernel Co, Ltd.: Odroid XU3 (2013). http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G140448267127

203. Harel, D.: StateCharts: A visual formalism for complex systems. Sci.Comput. Program. 8,
231–274 (1987)

204. Hastie, T., Tibshirani, R., Friedman, R.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, Berlin (2009)

205. Hattori, T.: MPSoC approaches for low-power embedded SoC’s (2007). http://www.mpsoc-
forum.org/previous/2007/slides/Hattori.pdf. http://www.mpsoc-forum.org/2007/slides/
Hattori.pdf

206. Haubelt, C., Teich, J.: Digital Hardware/Software-Systems: Specification and Verification
(in German). eXamen.press. Springer, Berlin (2010). https://books.google.de/books?id=
eNwfBAAAQBAJ

207. Haugen, O., Moller-Pedersen, B.: Introduction to UML and the modeling of embedded
systems. In: Zurawski, R. (ed.) Embedded Systems Handbook. CRC Press, Boca Raton (2006)

208. Hayes, J.: A unified switching theory with applications to VLSI design. Proc. IEEE 70,
1140–1151 (1982)

209. Heemels, W., Johansson, K., Tabuada, P.: An introduction to event-triggered and self-
triggered control. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC),
pp. 3270–3285 (2012). https://doi.org/10.1109/CDC.2012.6425820

210. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level performance
analysis - the SymTA/S approach. IEEE Comput. Digital Techniq. 152, 148–166 (2005)

211. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 5th edn.
Morgan Kaufmann, Burlington (2011)

212. Hennessy, J.L., Patterson, D.A.: Computer Organization: The Hardware/Software Interface.
Morgan Kaufmann, Burlington (2013)

213. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: FM 2006: Formal
Methods. Lecture Notes in Computer Science, vol. 4085, pp. 1–15 (2006)

214. Herken, R.: The Universal Turing Machine: A Half-Century Survey. Springer, Berlin (1995)
215. Herrera, F., Fernández, V., Sánchez, P., Villar, E.: Embedded software generation from

SystemC for platform based design. In: Müller, W., Rosenstiel, W., Ruf, J. (eds.) SystemC:
Methodologies and Applications, pp. 247–272. Kluwer Academic Publishers, Dordrecht
(2003)

216. Herrera, F., Posadas, H., Sánchez, P., Villar, E.: Systemic embedded software generation from
SystemC. In: Proceedings of Design, Automation and Test in Europe (DATE), pp. 10142–
10149 (2003)

217. Hoare, C.: Communicating Sequential Processes. Prentice Hall International Series in
Computer Science. Prentice-Hall, Upper Saddle River (1985)

218. Hofer, W., Lohmann, D., Scheler, F., Schröder-Preikschat, W.: Sloth: Threads as interrupts.
In: Proceedings of the Real-Time Systems Symposium (RTSS), pp. 2004–2013 (2009)

219. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional
programs. In: Proceedings of the Symposium on Principles of Programming Languages
(POPL), pp. 185–197. ACM, New York (2003). https://doi.org/10.1145/604131.604148

220. Holzkamp, O.: Memory-aware mapping strategies for heterogeneous MPSoC systems. Ph.D.
Thesis, TU Dortmund (2017). https://eldorado.tu-dortmund.de/handle/2003/35958

221. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, Boston (2006)

222. Horn, W.: Some simple scheduling algorithms. Nav. Res. Logist. Quart. 21, 177–185 (1974)

https://doi.org/10.1109/AHS.2009.55
https://doi.org/10.1109/AHS.2009.55
http://dx.doi.org/10.1109/AHS.2009.55
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.ctr.unican.es/publications/mgh-1993a.pdf
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.mpsoc-forum.org/previous/2007/slides/Hattori.pdf
http://www.mpsoc-forum.org/previous/2007/slides/Hattori.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf
http://www.mpsoc-forum.org/2007/slides/Hattori.pdf
https://books.google.de/books?id=eNwfBAAAQBAJ
https://books.google.de/books?id=eNwfBAAAQBAJ
https://doi.org/10.1109/CDC.2012.6425820
https://doi.org/10.1145/604131.604148
https://eldorado.tu-dortmund.de/handle/2003/35958

References 413

223. Huang, L., Xu, Q.: AgeSim: A simulation framework for evaluating the lifetime reliability
of processor-based SoCs. In: Proceedings of Design, Automation and Test in Europe (DATE)
(2010)

224. Huerlimann, D.: Opentrack home page (2016). http://www.opentrack.ch
225. Hüls, T.: Optimizing the energy consumption of an MPEG application (in German). Master

Thesis, CS Department, University Dortmund (2002). https://ls12-www.cs.tu-dortmund.de/
daes/en/research/publications/completed-theses.html

226. Hunt, V.D., Puglia, A., Puglia, M.: RFID: A Guide to Radio Frequency Identification. Wiley,
Hoboken (2007)

227. IBM: What’s New in Rational Rhapsody 7.5.1 (2009). http://www.ibm.com/developerworks/
rational/library/09/whatsnewinrationalrhapsody-7-5-1

228. IBM: Rational DOORS (2016). http://www-01.ibm.com/software/awdtools/doors/
229. IBM: IBM Rational StateMate 4.6 (2018). http://www.ibm.com/developerworks/rational/

products/statemate/
230. ICD Staff: ICD-C compiler framework (2016). http://www.icd.de/en/embedded-systems/

compiler-tool-development/icd-c
231. IEC: IEC 60848 – GRAFCET specification language for sequential function charts (2002).

https://webstore.iec.ch/publication/3684
232. IEC: IEC 61508-1:2010 functional safety of electrical/electronic/programmable electronic

safety-related systems – Part 1: General requirements (2010). https://webstore.iec.ch/
publication/5515

233. IEC: IEC 61508-2:2010 functional safety of electrical/electronic/programmable electronic
safety-related systems - Part 2: Requirements for electrical/electronic/programmable elec-
tronic safety-related systems (2010). https://webstore.iec.ch/publication/5516

234. IEC: IEC 61508-3:2010 functional safety of electrical/electronic/programmable electronic
safety-related systems - Part 3: Software requirements (2010). https://webstore.iec.ch/
publication/5517

235. IEC: IEC 61513:2011-nuclear power plants - instrumentation and control important to safety
- general requirements for systems (2011). https://webstore.iec.ch/publication/5532

236. IEC: IEC 61511:2016 SER functional safety - safety instrumented systems for the process
industry sector - all parts (2016). https://webstore.iec.ch/publication/5527

237. IEEE: 1076-1987 - IEEE Standard VHDL Language Reference Manual (1987). http://
standards.ieee.org/findstds/standard/1076-1987.html

238. IEEE: IEEE Graphic Symbols for Logic Functions Std 91a-1991 (1991). http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=27895

239. IEEE: 1076-1993 - IEEE Standard VHDL Language Reference Manual (1993). http://
standards.ieee.org/findstds/standard/1076-1993.html

240. IEEE: 1076-2000 - IEEE Standard VHDL Language Reference Manual (2000). http://
standards.ieee.org/findstds/standard/1076-2000.html

241. IEEE: 1076-2002 - IEEE Standard VHDL Language Reference Manual (2002). http://
standards.ieee.org/findstds/standard/1076-2002.html

242. IEEE: 1076-2008 - IEEE Standard VHDL Language Reference Manual, pp. c1–626 (2009).
http://standards.ieee.org/findstds/standard/1076-2008.html

243. IEEE: 1666-2011 - IEEE Standard for Standard SystemC Language Reference Manual
(2011). https://ieeexplore.ieee.org/document/6134619

244. IEEE: 1800-2012 - IEEE Standard for SystemVerilog–Unified Hardware Design, Specifi-
cation, and Verification Language (2012). https://standards.ieee.org/findstds/standard/1800-
2012.html

245. IEEE: P1076.1-2017 - Standard VHDL Analog and Mixed-Signal Extensions (2017). http://
standards.ieee.org/develop/project/1076.1.html

246. Intel: Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M Processor - White
paper (2004). ftp://download.intel.com/design/network/papers/30117401.pdf

http://www.opentrack.ch
https://ls12-www.cs.tu-dortmund.de/daes/en/research/publications/completed-theses.html
https://ls12-www.cs.tu-dortmund.de/daes/en/research/publications/completed-theses.html
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www.ibm.com/developerworks/rational/library/09/whatsnewinrationalrhapsody-7-5-1
http://www-01.ibm.com/software/awdtools/doors/
http://www.ibm.com/developerworks/rational/products/statemate/
http://www.ibm.com/developerworks/rational/products/statemate/
http://www.icd.de/en/embedded-systems/compiler-tool-development/icd-c
http://www.icd.de/en/embedded-systems/compiler-tool-development/icd-c
https://webstore.iec.ch/publication/3684
https://webstore.iec.ch/publication/5515
https://webstore.iec.ch/publication/5515
https://webstore.iec.ch/publication/5516
https://webstore.iec.ch/publication/5517
https://webstore.iec.ch/publication/5517
https://webstore.iec.ch/publication/5532
https://webstore.iec.ch/publication/5527
http://standards.ieee.org/findstds/standard/1076-1987.html
http://standards.ieee.org/findstds/standard/1076-1987.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=27895
http://standards.ieee.org/findstds/standard/1076-1993.html
http://standards.ieee.org/findstds/standard/1076-1993.html
http://standards.ieee.org/findstds/standard/1076-2000.html
http://standards.ieee.org/findstds/standard/1076-2000.html
http://standards.ieee.org/findstds/standard/1076-2002.html
http://standards.ieee.org/findstds/standard/1076-2002.html
http://standards.ieee.org/findstds/standard/1076-2008.html
https://ieeexplore.ieee.org/document/6134619
https://standards.ieee.org/findstds/standard/1800-2012.html
https://standards.ieee.org/findstds/standard/1800-2012.html
http://standards.ieee.org/develop/project/1076.1.html
http://standards.ieee.org/develop/project/1076.1.html
ftp://download.intel.com/design/network/papers/30117401.pdf

414 References

247. Intel: Motion estimation with Intel® streaming SIMD extensions 4 (Intel® SSE4) (2008).
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-
extensions-4-intel-sse4

248. Intel: Intel® AVX (2010). http://software.intel.com/en-us/avx
249. Intel: Intel Itanium processor family (2016). http://www.intel.com/itcenter/products/itanium
250. International Electrotechnical Commission (IEC): Functional safety (2020). https://www.iec.

ch/functionalsafety/explained/
251. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable voltage

processors. In: International Symposium on Low Power Electronics and Design (ISLPED),
pp. 197–202 (1998)

252. ISO: Road vehicles – functional safety – Part 3: Concept phase (2011). https://www.iso.org/
obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en

253. ISO: Road vehicles - FlexRay communications system – Part 1: General information and use
case definition (2013). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=59804

254. ISO: ISO 9001:2015(en)-Quality management systems – Requirements (2015). https://www.
iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en

255. ISO: ISO/IEC 27000:2018(en) Information technology—Security techniques—Information
security management systems—Overview and vocabulary (2018). https://www.iso.org/obp/
ui/#iso:std:iso-iec:27000:ed-5:v1:en

256. ISO/IEC: ISO/IEC 15437:2001 - Information technology – Enhancements to LOTOS
(E-LOTOS) (2001). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?
csnumber=27680

257. ISO/IEC: ISO/IEC 25024:2015 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — Measurement of data quality (2015).
https://www.iso.org/standard/35749.html

258. ISO/IEC: ISO/IEC 25022:2016 Systems and software engineering — Systems and software
quality requirements and evaluation (SQuaRE) — Measurement of quality in use (2016).
https://www.iso.org/standard/35746.html

259. ISO/IEC: ISO/IEC 25023:2016 Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software
product quality (2016). https://www.iso.org/standard/35747.html

260. Israr, A., Huss, S.: Specification and design considerations for reliable embedded systems. In:
Proceedings of Design, Automation and Test in Europe (DATE), pp. 1111–1116 (2008)

261. ITRS Organization: International Technology Roadmap for Semiconductors – 2013 Edition –
Executive Summary (2013). http://www.itrs2.net/2013-itrs.html

262. Iyer, A., Marculescu, D.: Power and performance evaluation of globally asynchronous locally
synchronous processors. In: International Symposium on Computer Architecture (ISCA), pp.
158–168 (2002)

263. Jackson, J.: Scheduling a production line to minimize maximum tardiness. Management
Science Research Project 43, University of California, Los Angeles (1955)

264. Jacobs, M., Hahn, S., Hack, S.: Wcet analysis for multi-core processors with shared buses
and event-driven bus arbitration. In: Proceedings of the 23rd International Conference on
Real Time and Networks Systems, RTNS ’15, pp. 193–202. ACM, New York (2015). https://
doi.org/10.1145/2834848.2834872. http://doi.acm.org/10.1145/2834848.2834872

265. Jacobs, M., Hahn, S., Hack, S.: A framework for the derivation of WCET analyses for
multi-core processors. In: 28th Euromicro Conference on Real-Time Systems, ECRTS 2016,
Toulouse, France, July 5–8, 2016, pp. 141–151. IEEE Computer Society, Washington (2016).
https://doi.org/10.1109/ECRTS.2016.19. http://dx.doi.org/10.1109/ECRTS.2016.19

266. Jain, M., Balakrishnan, M., Kumar, A.: ASIP design methodologies: Survey and issues. In:
14th International Conference on VLSI Design, pp. 76–81 (2001)

267. Janka, R.: Specification and Design Methodology for Real-Time Embedded Systems. Kluwer
Academic Publishers, Dordrecht (2002)

http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
http://software.intel.com/en-us/avx
http://www.intel.com/itcenter/products/itanium
https://www.iec.ch/functionalsafety/explained/
https://www.iec.ch/functionalsafety/explained/
https://www.iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-3:ed-1:v1:en
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=59804
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=59804
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-5:v1:en
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=27680
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=27680
https://www.iso.org/standard/35749.html
https://www.iso.org/standard/35746.html
https://www.iso.org/standard/35747.html
http://www.itrs2.net/2013-itrs.html
https://doi.org/10.1145/2834848.2834872
https://doi.org/10.1145/2834848.2834872
http://doi.acm.org/10.1145/2834848.2834872
https://doi.org/10.1109/ECRTS.2016.19
http://dx.doi.org/10.1109/ECRTS.2016.19

References 415

268. Jantsch, A.: Modeling Embedded Systems and SoC’s: Concurrency and Time in Models of
Computation. Morgan Kaufmann, Burlington (2004)

269. Jantsch, A.: Models of embedded computation. In: Zurawski, R. (ed.) Embedded Systems
Handbook. CRC Press, Boca Raton (2006)

270. Java Community Process: JSR-1 – Real-time Specification for Java (2019). http://www.jcp.
org/en/jsr/detail?id=1

271. Jayaseelan, R., Mitra, T., Li, X.: Estimating the worst-case energy consumption of embedded
software. In: 12th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’06), pp. 81–90. IEEE, New York (2006)

272. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1.
Springer, Berlin (2013)

273. Jewett, J.W., Serway, R.A.: Physics for Scientists and Engineers with Modern Physics.
Thomson Higher Education, Belmont (2007)

274. Jha, P., Dutt, N.: Rapid estimation for parameterized components in high-level synthesis.
IEEE Trans. VLSI Syst. 1, 296–303 (1993)

275. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3), 480–503
(1996). http://doi.acm.org/10.1145/243439.243447

276. Jones, M.: What really happened on Mars Rover Pathfinder. In: Neumann, P.G. (ed.)
Comp.risks, The Risks Digest, vol. 19, Issue 49 (1997). Available at http://research.microsoft.
com/en-us/um/people/mbj/mars_pathfinder/MarsPathfinder.html

277. Jouppi, N., Young, C., Patil, N., Patterson, D.: A domain-specific architecture for deep neural
networks. Commun. ACM 61, 50–59 (2018). https://doi.org/10.1145/3154484

278. Kahn, G.: The semantics of a simple language for parallel programming. In: Proceeding of
the International Federation for Information Processing (IFIP), pp. 471–475 (1974)

279. Kamal, R.: Embedded Systems: Architecture, Programming and Design. Tata McGraw-Hill,
New York (2003)

280. Kang, S., Dean, A.G.: Leveraging both data cache and scratchpad memory through synergetic
data allocation. In: Proceedings of the Real Time and Embedded Technology and Applications
Symposium (RTAS), pp. 119–128. IEEE Computer Society, Washington (2012). https://doi.
org/10.1109/RTAS.2012.22

281. Kannan, A., Shrivastava, A., Pabalkar, A., Lee, J.E.: A software solution for dynamic stack
management on scratch pad memory. In: Proceedings of the Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 612–617 (2009)

282. Karp, R.M., Miller, R.E.: Properties of a model for parallel computations: Determinacy,
termination, queueing. SIAM J. Appl. Math. 14, 1390–1411 (1966)

283. Keding, H., Willems, M., Coors, M., Meyr, H.: FRIDGE: A fixed-point design and simulation
environment. In: Design, Automation and Test in Europe (DATE), pp. 429–435 (1998)

284. Keim, M., Drechsler, R., Becker, B., Martin, M., Molitor, P.: Polynomial formal verification
of multipliers. Form. Method Syst. Des. 22, 39–58 (2003)

285. Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C., Teich, J.,
Meredith, M.: SystemCodesigner - an automatic ESL synthesis approach by design space
exploration and behavioral synthesis for streaming applications. ACM Trans. Des. Autom.
Electron. Syst. 14, 1–23 (2009)

286. Kelter, T., Marwedel, P.: Parallelism analysis: precise WCET values for complex multi-core
systems. Sci. Comput. Program. 133, 175–193 (2017). https://doi.org/10.1016/j.scico.2016.
01.007. http://dx.doi.org/10.1016/j.scico.2016.01.007

287. Kempe, M.: Ada 95 reference manual, ISO/IEC standard 8652 (1995). (HTML-version),
http://www.adahome.com/rm95/

288. Kempe Software Capital Enterprises (KSCE): Ada home: The web site for Ada (2010). http://
www.adahome.com

289. Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice Hall, Upper Saddle
River (1988)

http://www.jcp.org/en/jsr/detail?id=1
http://www.jcp.org/en/jsr/detail?id=1
http://doi.acm.org/10.1145/243439.243447
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/MarsPathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/MarsPathfinder.html
https://doi.org/10.1145/3154484
https://doi.org/10.1109/RTAS.2012.22
https://doi.org/10.1109/RTAS.2012.22
https://doi.org/10.1016/j.scico.2016.01.007
https://doi.org/10.1016/j.scico.2016.01.007
http://dx.doi.org/10.1016/j.scico.2016.01.007
http://www.adahome.com/rm95/
http://www.adahome.com
http://www.adahome.com

416 References

290. Kerrison, S., Eder, K.: Energy modeling of software for a hardware multithreaded embedded
microprocessor. ACM Trans. Embed. Comput. Syst. 14(3), 56:1–56:25 (2015). https://doi.
org/10.1145/2700104. http://doi.acm.org/10.1145/2700104

291. Khorramabadi, H.: ADC Converters - Pipelined ADCs. UC Berkeley, EECS 247, Lecture 22
(2005). http://www-inst.eecs.berkeley.edu/~ee247/fa05/lectures/L22_f05.pdf

292. Khorramabadi, H.: Oversampled ADCs. UC Berkeley, EECS 247, Lecture 23 (2009). http://
www-inst.eecs.berkeley.edu/~ee247/fa05/lectures/L22_f05.pdf

293. Kienhuis, B., Rijjpkema, E., Deprettere, E.: Compaan: Deriving process networks from
Matlab for embedded signal processing architectures. In: Proceedings of the International
Symposium on Hardware-Software Codesign (CODES), pp. 29–40 (2000)

294. Kim, J., Lee, S., Shin, H.: Effective task scheduling for embedded systems using iterative
cluster slack optimization. Circ. Syst. 4, 479–488 (2013)

295. Klaiber, A.: The technology behind Crusoe™ processors (2000). http://web.archive.org/web/
20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf

296. Kleidermacher, D., Kleidermacher, M.: Embedded Systems Security: Practical Methods for
Safe and Secure Software and Systems Development. Newnes, London (2012)

297. Klumpp, M., Clausen, U., ten Hompel, M.: Logistics Research and the Logistics World of
2050, pp. 1–6. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-32838-1_1. http://
dx.doi.org/10.1007/978-3-642-32838-1_1

298. Ko, M., Koo, I.: An overview of interactive video on demand system (1996). www.ece.ubc.
ca/~irenek/techpaps/vod/vod.html

299. Kobryn, C.: UML 2001: A standardization Odyssey. Communications of the ACM (CACM),
pp. 29–36 (2001). Available at http://www.omg.org/attachments/pdf/UML_2001_CACM_
Oct99_p29-Kobryn.pdf

300. Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in embedded
system design. In: Proceedings of the 41st Annual Design Automation Conference, DAC
’04, pp. 753–760. ACM, New York (2004). Moderator-Ravi, Srivaths. https://doi.org/10.1145/
996566.996771. http://doi.acm.org/10.1145/996566.996771

301. Kohavi, Z., Jha, N.K.: Switching and Finite Automata Theory, 3rd edn. Cambridge University
Press, Cambridge (2010)

302. Koopman, P.J., Upender, B.P.: Time division multiple access without a bus master. United
Technologies Research Center, UTRC Technical Report RR-9500470 (1995). http://www.
ece.cmu.edu/~koopman/jtdma/jtdma.html

303. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications.
Springer, Berlin (2011)

304. Kopetz, H., Grunsteidl, G.: TTP — a protocol for fault-tolerant real-time systems. IEEE
Comput. 27, 14–23 (1994)

305. Korf, R.E.: A new algorithm for optimal bin packing. In: American Association for Artificial
Intelligence Proceedings, pp. 731–736 (2002). www.aaai.org

306. Korte, B., Vygen, J.: Combinatorial Optimization. Springer, Berlin (2006)
307. Kotthaus, H.: Methods for efficient resource utilization in statistical machine learning

algorithms. Ph.D. Thesis, TU Dortmund University, Dortmund (2018). http://dx.doi.org/10.
17877/DE290R-18928

308. Kranitis, N., Paschalis, A., Gizopoulos, D., Zorian, Y.: Instruction-based self-testing of
processor cores. J. Electron. Testing 19, 103–112 (2003)

309. Krhovjak, J., Matyas, V.: Secure hardware - pv018 (2006). http://www.fi.muni.cz/~xkrhovj/
lectures/2006_PV018_Secure_Hardware_slides.pdf

310. Krishna, C., Shin, K.G.: Real-Time Systems. Computer Science Series. McGraw-Hill, New
York (1997)

311. Krstić, A., Cheng, K.: Delay Fault Testing of VLSI Circuits. Kluwer Academic Publishers,
Dordrecht (1998)

312. Krstić, A., Dey, S.: Embedded software-based self-test for programmable core-based designs.
IEEE Des. Test 19, 18–27 (2002)

https://doi.org/10.1145/2700104
https://doi.org/10.1145/2700104
http://doi.acm.org/10.1145/2700104
http://www-inst.eecs.berkeley.edu/~ee247/fa05/lectures/L22_f05.pdf
http://www-inst.eecs.berkeley.edu/~ee247/fa05/lectures/L22_f05.pdf
http://www-inst.eecs.berkeley.edu/~ee247/fa05/lectures/L22_f05.pdf
http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
http://web.archive.org/web/20010602205826/www.transmeta.com/crusoe/download/pdf/crusoetechwp.pdf
https://doi.org/10.1007/978-3-642-32838-1_1
http://dx.doi.org/10.1007/978-3-642-32838-1_1
http://dx.doi.org/10.1007/978-3-642-32838-1_1
www.ece.ubc.ca/~irenek/techpaps/vod/vod.html
www.ece.ubc.ca/~irenek/techpaps/vod/vod.html
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
http://www.omg.org/attachments/pdf/UML_2001_CACM_Oct99_p29-Kobryn.pdf
https://doi.org/10.1145/996566.996771
https://doi.org/10.1145/996566.996771
http://doi.acm.org/10.1145/996566.996771
http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html
http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html
www.aaai.org
http://dx.doi.org/10.17877/DE290R-18928
http://dx.doi.org/10.17877/DE290R-18928
http://www.fi.muni.cz/~xkrhovj/lectures/2006_PV018_Secure_Hardware_slides.pdf
http://www.fi.muni.cz/~xkrhovj/lectures/2006_PV018_Secure_Hardware_slides.pdf

References 417

313. Krüger, G.: Automatic generation of self-test programs: A new feature of the MIMOLA
design system. In: Proceedings of the Design Automation Conference (DAC), pp. 378–384
(1986)

314. Kuang, S.R., Chen, C.Y., Liao, R.Z.: Partitioning and pipelined scheduling of embedded
system using integer linear programming. In: 11th International Conference on Parallel and
Distributed Systems (ICPADS’05), vol. 2, pp. 37–41 (2005). https://doi.org/10.1109/ICPADS.
2005.219

315. Kühn, R.: Analysis and evaluation of quality metrics for approximative source-to-source
transformations (in German). Bachelor’s Thesis, Department of Computer Science, TU
Dortmund (2016)

316. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA heteroge-
neous multi-core architectures: The potential for processor power reduction. In: Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
36, pp. 81–. IEEE Computer Society, Washington (2003). http://dl.acm.org/citation.cfm?id=
956417.956569

317. Labrosse, J.: Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in
C. Elsevier, Amsterdam (2000)

318. Lala, P.: Fault Tolerant and Fault Testable Hardware Design. Prentice Hall, Upper Saddle
River (1985)

319. Lam, K.Y., Kuo, T.W. (eds.): Real-Time Database Systems: Architecture and Techniques.
Kluwer Academic Publishers, Norwell (2001)

320. Lam, M.S., Rothberg, E.E., Wolf, M.E.: The cache performance and optimizations of blocked
algorithms. In: Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 63–74 (1991)

321. Lang, F.: A/D-converter for high-speed communication (in German). Ph.D. Thesis, Fakultät
Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart (2014)

322. Laplante, P.: Real-Time Systems Design and Analysis: An Engineer’s Handbook. IEEE, New
York (1997)

323. Laprie, J.C. (ed.): Dependability: Basic concepts and terminology in English, French,
German, Italian and Japanese. IFIP WG 10.4, dependable computing and fault tolerance, In:
Dependable Computing and Fault Tolerant Systems, vol. 5. Springer, Berlin (1992)

324. Latendresse, M.: The code compression bibliography (2004). http://www.iro.umontreal.ca/~
latendre/compactBib

325. Law, A.M.: Simulation Modeling & Analysis. McGraw-Hill, New York (2006)
326. Lawler, E.L.: Optimal sequencing of a single machine subject to precedence constraints.

Manag. Sci. 19, 544–546 (1973)
327. Le Boudec, J., Thiran, P.: Network Calculus. LNCS # 2050. Springer, Berlin (2001)
328. Lee, E.A., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75, 1235–1245 (1987)
329. Lee, E.A.: Embedded software – an agenda for research. Technical Report, UCB ERL

Memorandum M99/63 (1999)
330. Lee, E.A.: Absolutely positively on time. IEEE Comput. 38, 85–87 (2005)
331. Lee, E.A.: The future of embedded software. ARTEMIS Conference, Graz (2006). http://

ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
332. Lee, E.A.: Computing foundations and practice for cyber-physical systems: A preliminary

report. Technical Report UCB/EECS-2007-72, EECS Department, University of California,
Berkeley (2007). http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html

333. Lee, E.A.: Leveraging synchronized clocks in cyber-physical systems. In: Workshop on
Synchronization in Telecommunications Systems (2014). http://www.atis.org/wsts/papers/3-
3-1_UCBerkeley_Lee_LeveragingClocks.pdf

334. Lee, S., Gerstlauer, A.: Fine grain word length optimization for dynamic precision scaling
in DSP systems. In: 2013 IFIP/IEEE 21st International Conference on Very Large Scale
Integration (VLSI-SoC), pp. 266–271 (2013)

335. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems, A Cyber-Physical Systems
Approach, 2nd edn. MIT Press, Cambridge (2017). http://LeeSeshia.org

https://doi.org/10.1109/ICPADS.2005.219
https://doi.org/10.1109/ICPADS.2005.219
http://dl.acm.org/citation.cfm?id=956417.956569
http://dl.acm.org/citation.cfm?id=956417.956569
http://www.iro.umontreal.ca/~latendre/compactBib
http://www.iro.umontreal.ca/~latendre/compactBib
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://ptolemy.eecs.berkeley.edu/presentations/06/FutureOfEmbeddedSoftware_Lee_Graz.ppt
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html
http://www.atis.org/wsts/papers/3-3-1_UCBerkeley_Lee_LeveragingClocks.pdf
http://www.atis.org/wsts/papers/3-3-1_UCBerkeley_Lee_LeveragingClocks.pdf
http://LeeSeshia.org

418 References

336. Lelli, J., Scordino, C., Abeni, L., Faggioli, D.: Deadline scheduling in the Linux Kernel.
Softw. Pract. Exp. 46(6), 821–839 (2016). https://doi.org/10.1002/spe.2335. http://dx.doi.org/
10.1002/spe.2335

337. Leupers, R.: Retargetable Code Generation for Digital Signal Processors. Kluwer Academic
Publishers, Dordrecht (1997)

338. Leupers, R.: Code Optimization Techniques for Embedded Processors: Methods, Algorithms,
and Tools. Kluwer Academic Publishers, Dordrecht (2000)

339. Leveson, N.: Safeware, System Safety and Computers. Addison Wesley, Boston (1995)
340. Levine, D.: Users guide to the PGAPack parallel genetic algorithm library. Technical Report

ANL-95/18, Technical Report Argonne National Laboratory (1996)
341. Lewis, J., Rashba, E., Brophy, D.: VHDL-2006-D3.0 Tutorial. Tutorial at Design, Automa-

tion, and Test in Europe (DATE) (2007). http://www.accellera.org/apps/group_public/
download.php/934/date_vhdl_tutorial.pdf

342. Li, Z.R. (ed.): Organic Light-Emitting Materials and Devices. CRC Press, Boca Raton (2015)
343. Li, Y.T., Malik, S.: Performance analysis of embedded software using implicit path enumera-

tion. ACM SIGPLAN Notices 30, 88–98 (1995)
344. Li, L., Wu, H., Feng, H., Xue, J.: Towards data tiling for whole programs in scratchpad

memory allocation. In: Proceedings of the Asia-Pacific Conference on Advances in Computer
Systems Architecture (ACSAC), pp. 63–74. Springer, Berlin (2007). https://doi.org/10.1007/
978-3-540-74309-5_8

345. Liebisch, D.C., Jain, A.: Jessi common framework design management: the means to
configuration and execution of the design process. In: Conference on European Design
Automation (EURO-DAC), pp. 552–557. IEEE Computer Society Press, Washington (1992)

346. LIN Consortium: LIN Specification Package - Revision 2.2A (2010). http://www.cs-group.
de/fileadmin/media/Documents/LIN_Specification_Package_2.2A.pdf

347. Liu, J.W.: Real-Time Systems. Prentice Hall, Upper Saddle River (2000)
348. Liu, C.L., Layland, J.W.: Scheduling algorithms for multi-programming in a hard real-time

environment. J. Assoc. Comput. Mach. 20, 40–61 (1973)
349. Liu, Y., Zhang, W.: Scratchpad memory architectures and allocation algorithms for hard real-

time multicore processors. J. Comput. Sci. Eng. 9, 51–72 (2015)
350. Lohmann, D., Scheler, F., Schröder-Preikschat, W., Spinczyk, O.: PURE embedded operating

systems - CiAO. In: Proceedings of the International Workshop on Operating System
Platforms for Embedded Real-Time Applications, (OSPERT) (2006)

351. Lohmann, D., Streicher, J., Hofer, W., Spinczyk, O., Schröder-Preikschat, W.: Configurable
memory protection by aspects. In: Proceedings of the 4th Workshop on Programming
Languages and Operating Systems (PLOS ’07). ACM Press, New York (2007)

352. Lohmann, D., Hofer, W., Schröder-Preikschat, W., Spinczyk, O.: CiAO: An aspect-oriented
operating-system family for resource-constrained embedded systems. In: USENIX Annual
Technical Conference (2009)

353. Lokuciejewski, P., Marwedel, P.: WCET-aware Source Code and Assembly Level Optimiza-
tion Techniques for Real-Time Systems. Springer, Berlin (2010)

354. Lokuciejewski, P., Stolpe, M., Morik, K., Marwedel, P.: Automatic selection of machine
learning models for wcet-aware compiler heuristic generation. In: Proceedings of the 4th
Workshop on Statistical and Machine Learning Approaches to ARchitecture and compilaTion
(SMART) (2010). http://ctuning.org/dissemination/smart10-01.pdf

355. López, J.M., Díaz, J.L., García, D.F.: Utilization bounds for EDF scheduling on real-time
multiprocessor systems. Real-Time Syst. 28(1), 39–68 (2004). https://doi.org/10.1023/B:
TIME.0000033378.56741.14. http://dx.doi.org/10.1023/B:TIME.0000033378.56741.14

356. Lu, Y.H., Chung, E.Y., Šimunic, T., Benini, L., De Micheli, G.: Quantitative comparison of
power management algorithms. In: Proceedings of Design, Automation and Test in Europe
(DATE), pp. 20–26 (2000)

357. Luican, I.I., Zhu, H., Balasa, F.: Formal model of data reuse analysis for hierarchical memory
organizations. In: Proceedings of the International Conference on Computer-Aided Design
(ICCAD), pp. 595–600. ACM, New York (2006). https://doi.org/10.1145/1233501.1233623

https://doi.org/10.1002/spe.2335
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1002/spe.2335
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf
http://www.accellera.org/apps/group_public/download.php/934/date_vhdl_tutorial.pdf
https://doi.org/10.1007/978-3-540-74309-5_8
https://doi.org/10.1007/978-3-540-74309-5_8
http://www.cs-group.de/fileadmin/media/Documents/LIN_Specification_Package_2.2A.pdf
http://www.cs-group.de/fileadmin/media/Documents/LIN_Specification_Package_2.2A.pdf
http://ctuning.org/dissemination/smart10-01.pdf
https://doi.org/10.1023/B:TIME.0000033378.56741.14
https://doi.org/10.1023/B:TIME.0000033378.56741.14
http://dx.doi.org/10.1023/B:TIME.0000033378.56741.14
https://doi.org/10.1145/1233501.1233623

References 419

358. Machanik, P.: Approaches to addressing the memory wall. Technical Report, November,
University Brisbane (2002)

359. Macii, E. (ed.): Ultra Low-Power Electronics and Design. Springer, Berlin (2004)
360. Macii, A., Benini, L., Poncino, M.: Memory Design Techniques for Low Energy Embedded

Systems. Kluwer Academic Publishers, Dordrecht (2002)
361. Maculan, N., Porto, S.C.S., Ribeiro, C., de Souza, C.C.: A new formulation for schedul-

ing unrelated processors under precedence constraints. Revue Francaise d’Automatique,
d’informatique et de Recherche Operationelle 33, 87–92 (1999)

362. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. Comput.
35(2), 50–58 (2002). https://doi.org/10.1109/2.982916

363. Man, H.D.: From the heaven of software to the hell of nanoscale physics: an industry in
transition. Keynote, HiPEAC ACACES Summer School, L’Aquila (2007)

364. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems.
Sol. Energy 50, 399–405 (1993)

365. Marian, N., Ma, Y.: Translation of Simulink models to component-based software models. In:
8th International Workshop on Research and Education in Mechatronics REM, pp. 262–267
(2007). http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to
%20Component-based%20Software%20Models.pdf

366. Marongiu, A., Benini, L.: Efficient OpenMP support and extensions for MPSoCs with
explicitly managed memory hierarchy. In: Proceedings of Design, Automation and Test in
Europe (DATE), pp. 809–814 (2009)

367. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations, chap.
6. Wiley, Hoboken (1990). http://www.or.deis.unibo.it/kp/Chapter6.pdf

368. Martin, G., Müller, W. (eds.): UML™ for SOC Design. Springer, Berlin (2010)
369. Martin, S.M., Flautner, K., Mudge, T., Blaauw, D.: Combined dynamic voltage scaling

and adaptive body biasing for lower power microprocessors under dynamic workloads. In:
ICCAD ’02: Proceedings of the 2002 IEEE/ACM International Conference on Computer-
Aided Design, pp. 721–725 (2002). http://doi.acm.org/10.1145/774572.774678

370. Marwedel, P.: A software system for the synthesis of computer structures and the generation
of microcode (in German). habilitation Thesis, Universität Kiel, 1985, Reprint: Report Nr.356,
CS Department, TU Dortmund (1990)

371. Marwedel, P.: Embedded System Design. Kluwer Academic Publishers, Dordrecht (2003)
372. Marwedel, P.: Towards laying common grounds for embedded system design education. ACM

SIGBED Rev. 2, 25–28 (2005)
373. Marwedel, P.: MIMOLA—a fully synthesizable language. In: Mishra, P., Dutt, N. (eds.)

Processor Description Languages: Applications and Methodologies, pp. 35–63. Morgan
Kaufmann, Burlington (2008)

374. Marwedel, P., Engel, M.: Plea for a holistic analysis of the relationship between information
technology and carbon-dioxide emissions. In: Workshop on Energy-Aware Systems and
Methods (GI-ITG). Hanover, Germany (2010)

375. Marwedel, P., Engel, M.: Flipped classroom teaching for a cyber-physical system course - An
adequate presence-based learning approach in the internet age. In: Proceedings of the Tenth
European Workshop on Microelectronics Education (EWME) (2014)

376. Marwedel, P., Goossens, G. (eds.): Code Generation for Embedded Processors. Kluwer
Academic Publishers, Dordrecht (1995)

377. Marwedel, P., Schenk, W.: Cooperation of synthesis, retargetable code generation and test
generation in the MSS. In: Proceedings of the European Design Automation Conference
(Euro-DAC), pp. 63–69 (1993)

378. Marwedel, P., Falk, H., Neugebauer, O.: Memory-aware optimization of embedded software
for multiple objectives. In: Ha, S., Teich, J. (eds.) Handbook of Hardware/Software CoDesign.
Springer, Berlin (2017)

379. Marwedel, P., Andrade, H.A., Mitra, T., Grimheden, M.: Survey on education for cyber-
physical systems. IEEE Des. Test (2020)

https://doi.org/10.1109/2.982916
http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://seg.mci.sdu.dk/publications/Translation%20of%20Simulink%20Models%20to%20Component-based%20Software%20Models.pdf
http://www.or.deis.unibo.it/kp/Chapter6.pdf
http://doi.acm.org/10.1145/774572.774678

420 References

380. Marzario, L., Lipari, G., Balbastre, P., Crespo, A.: IRIS: a new reclaiming algorithm for
server-based real-time systems. In: Proceedings of the Real Time and Embedded Technology
and Applications Symposium (RTAS) (2004)

381. Massa, A.J.: Embedded Software Development with eCos. Prentice Hall, Upper Saddle River
(2002)

382. MathWorks, T.: Stateflow (2020). https://www.mathworks.com/products/stateflow.html
383. McGregor, I.: The relationship between simulation and emulation. In: Proceedings of the

Winter Simulation Conference, pp. 1683–1688 (2002)
384. McIlroy, R., Dickman, P., Sventek, J.: Efficient dynamic heap allocation of scratch-pad

memory. In: Proceedings of the International Symposium on Memory Management, pp. 31–
40 (2008)

385. Mckusick, M.K., Karels, M.J.: A new virtual memory implementation for Berkeley UNIX.
In: EUUG Conference Proceedings (Autumn), pp. 451–458 (1986)

386. McLaughlin, M., Moore, A.: Real-Time Extensions to UML (1998). http://www.ddj.com/
184410749

387. McNamee, D., Walpole, J., Pu, C., Cowan, C., Krasic, C., Goel, A., Wagle, P., Consel, C.,
Muller, G., Marlet, R.: Specialization tools and techniques for systematic optimization of
system software. ACM Trans. Comput. Syst. 19(2), 217–251 (2001). http://doi.acm.org/10.
1145/377769.377778

388. Meena, J.S., Sze, S.M., Chand, U., Tseng, T.Y.: Overview of emerging nonvolatile memory
technologies. Nanoscale Res. Lett. 9(1), 526 (2014). https://doi.org/10.1186/1556-276X-9-
526. http://dx.doi.org/10.1186/1556-276X-9-526

389. Meijer, S., Nikolov, H., Stefanov, T.: Throughput modeling to evaluate process merging
transformations in polyhedral process networks. In: Proceedings of Design, Automation and
Test in Europe (DATE) (2010)

390. Menard, D., Sentieys, O.: Automatic evaluation of the accuracy of fixed-point algorithms. In:
Proceedings of Design, Automation and Test in Europe (DATE), pp. 529–535 (2002)

391. Merkel, A., Bellosa, F.: Event-driven thermal management in SMP systems. In: Proceedings
of the Second Workshop on Temperature-Aware Computer Systems (TACS’05) (2005)

392. Mermet, J., Marwedel, P., Ramming, F.J., Newton, C., Borrione, D., Lefaou, C.: Three
decades of hardware description languages in Europe. J. Electri. Eng. Inform. Sci. 3, 106pp
(1998)

393. Merriam-Webster Inc.: Dictionary, Entry for “Task” (2020). https://www.merriam-webster.
com/dictionary/task

394. Mesa-Martinez, F.J., Ardestani, E.K., Renau, J.: Characterizing processor thermal behavior.
In: ASPLOS ’10: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems, pp. 193–204 (2010). http://doi.acm.org/
10.1145/1736020.1736043

395. Message Passing Interface Forum: MPI: A message-passing interface standard - version 3.1
(2015). http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

396. MISRA C Working Group: MISRA compliance:2016 – achieving compliance with MISRA
coding guidelines (2016). http://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA
%3d&tabid=57

397. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4),
62:1–62:33 (2016). https://doi.org/10.1145/2893356. http://doi.acm.org/10.1145/2893356

398. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving GPU energy
efficiency. ACM Comput. Surv. 47(2), 19:1–19:23 (2014). https://doi.org/10.1145/2636342.
http://doi.acm.org/10.1145/2636342

399. Modelica Association: Modelica® - A Unified Object-Oriented Language for Systems Mod-
eling - Language Specification - Version 3.3 (2012). https://www.modelica.org/documents/
ModelicaSpec33.pdf

400. Möller, S., Raake, A.: Quality of Experience: Advanced Concepts, Applications and Methods.
Springer, Berlin (2014)

https://www.mathworks.com/products/stateflow.html
http://www.ddj.com/184410749
http://www.ddj.com/184410749
http://doi.acm.org/10.1145/377769.377778
http://doi.acm.org/10.1145/377769.377778
https://doi.org/10.1186/1556-276X-9-526
https://doi.org/10.1186/1556-276X-9-526
http://dx.doi.org/10.1186/1556-276X-9-526
https://www.merriam-webster.com/dictionary/task
https://www.merriam-webster.com/dictionary/task
http://doi.acm.org/10.1145/1736020.1736043
http://doi.acm.org/10.1145/1736020.1736043
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57
http://www.misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA%3d&tabid=57
https://doi.org/10.1145/2893356
http://doi.acm.org/10.1145/2893356
https://doi.org/10.1145/2636342
http://doi.acm.org/10.1145/2636342
https://www.modelica.org/documents/ModelicaSpec33.pdf
https://www.modelica.org/documents/ModelicaSpec33.pdf

References 421

401. Montoreano, M.: Transaction level modeling using OSCI TLM 2.0 (2007). http://accellera.
org/images/downloads/standards/systemc/systemc-2.3.1.tgz

402. MOST Cooperation: MOST Worldwide (2010). http://www.mostcooperation.com/
403. Mosterman, P.J.: Hybrid dynamic systems: Modeling and execution. In: Fishwick, P.A. (ed.)

Handbook of Dynamic System Modeling. CRC Press, Boca Raton (2007)
404. Moynihan, T.: CMOS is winning the camera sensor battle, and here’s why (2011). http://

www.techhive.com/article/246931/cmos_is_winning_the_camera_sensor_battle_and_heres_
why.html?page=0

405. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
Burlington (1997)

406. Mukherjee, S.: Architecture Design for Soft Errors. Morgan Kaufmann, San Francisco (2008)
407. Müller, W., Rosenstiel, W., Ruf, J.: SystemC: Methodologies and Applications. Kluwer

Academic Publishers, Dordrecht (2003)
408. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: CACTI 6.0: A Tool to Model Large

Caches. International Symposium on Microarchitecture, Chicago (2007/2009), http://www.
hpl.hp.com/techreports/2009/HPL-2009-85.pdf

409. National Academies of Sciences, Engineering, and Medicine: A 21st Century Cyber-Physical
Systems Education. The National Academies Press, Washington (2016). https://doi.org/10.
17226/23686

410. National Research Council: Embedded, Everywhere. National Academies, Washington
(2001)

411. National Research Council: Interim Report on the 21st Century Cyber-Physical Systems
Education. The National Academies, Washington (2015)

412. National Science Foundation: Cyber-physical systems (CPS) (2013). http://www.nsf.gov/
pubs/2013/nsf13502/nsf13502.htm

413. National Space-Based Positioning, Navigation, and Timing Coordination Office: Global
Positioning System (2016). http://www.gps.gov

414. Nationale Plattform Elektromobilität (NPE): Roadmap integrierte Zell- und Batteriepro-
duktion Deutschland (in German). Gemeinsame Geschäftsstelle Elektromobilität der Bun-
desregierung (GGEMO) (2016). http://nationale-plattform-elektromobilitaet.de/fileadmin/
user_upload/Redaktion/NPE_AG2_Roadmap_Zellfertigung_final_bf.pdf

415. Navet, N., Simonot-Lion, F.: Automotive Embedded Systems Handbook. CRC Press, Boca
Raton (2009)

416. Neugebauer, O., Libuschewski, P., Engel, M., Mueller, H., Marwedel, P.: Plasmon-based virus
detection on heterogeneous embedded systems. In: Proceedings of the International Workshop
on Software and Compilers for Embedded Systems (SCOPES) (2015)

417. Neugebauer, O., Engel, M., Marwedel, P.: A parallelization approach for resource-restricted
embedded heterogeneous MPSoCs inspired by OpenMP. J. Syst. Softw. 125, 439–448 (2016)

418. Neumann, P.G.: Computer Related Risks. Addison Wesley, Boston (1995)
419. Neumann, P.G. (ed.): The risks digest, forum on the risks to the public in computers and

related systems (2020). http://catless.ncl.ac.uk/risks
420. Nguyen, N., Dominguez, A., Barua, R.: Memory allocation for embedded systems with

a compile-time-unknown scratch-pad size. In: Proceedings of the International Conference
on Compilers, Architectures, and Synthesis for Embedded Systems (CASES), pp. 115–125
(2005)

421. Nicolescu, G., Mosterman, P.J.: Model-Based Design for Embedded System. CRC Press,
Boca Raton (2010)

422. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A., Polstra, S., Bose, R., Zissulescu, C.,
Deprettere, E.: Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of
the Design Automation Conference (DAC), pp. 574–579 (2008)

423. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science. Springer, Berlin (2002). https://books.google.
de/books?id=R6ul20M6nTIC

http://accellera.org/images/downloads/standards/systemc/systemc-2.3.1.tgz
http://accellera.org/images/downloads/standards/systemc/systemc-2.3.1.tgz
http://www.mostcooperation.com/
http://www.techhive.com/article/246931/cmos_is_winning_the_camera_sensor_battle_and_heres_why.html?page=0
http://www.techhive.com/article/246931/cmos_is_winning_the_camera_sensor_battle_and_heres_why.html?page=0
http://www.techhive.com/article/246931/cmos_is_winning_the_camera_sensor_battle_and_heres_why.html?page=0
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://doi.org/10.17226/23686
https://doi.org/10.17226/23686
http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm
http://www.gps.gov
http://nationale-plattform-elektromobilitaet.de/fileadmin/user_upload/Redaktion/NPE_AG2_Roadmap_Zellfertigung_final_bf.pdf
http://nationale-plattform-elektromobilitaet.de/fileadmin/user_upload/Redaktion/NPE_AG2_Roadmap_Zellfertigung_final_bf.pdf
http://catless.ncl.ac.uk/risks
https://books.google.de/books?id=R6ul20M6nTIC
https://books.google.de/books?id=R6ul20M6nTIC

422 References

424. N.N.: First workshop on CPS education. Philadelphia, PA (part of CPSWeek 2013) (2013).
http://cpsvo.org/group/edu/workshop

425. Noergard, T.: Embedded Systems Architecture: A Comprehensive Guide for Engineers and
Programmers. Newnes, London (2012)

426. Northeast Sustainable Energy Association: Buildingenergy (2020). http://www.nesea.org/
427. Novosel, D.: Timing the power grid (2009). http://www.pserc.wisc.edu/documents/general_

information/presentations/smartr_grid_executive_forum/
428. Object Management Group (OMG): Real-time CORBA specification, version 1.2 (2005).

http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
429. Object Management Group (OMG): UML™ profile for schedulability, performance, and time

specification, version 1.1 (2005). http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
430. Object Management Group (OMG): A UML™ profile for MARTE: Modeling and analysis of

real-time embedded systems - 1.0 (2009). http://www.omg.org/spec/MARTE/1.0/PDF
431. Object Management Group (OMG): OMG® Specifications (2016). http://www.omg.org/

spec/
432. Object Management Group (OMG): Unified modeling language™ resource page (2016).

http://www.uml.org
433. Object Management Group (OMG): CORBA® Basics (2020). https://www.corba.org/faq.htm
434. Object Management Group (OMG): Systems modeling language (SysML™) (2020). https://

www.omg.org/technology/readingroom/System-Modeling-Language.htm
435. Occam user group: Transputer and occam bibliography (1990). http://www.transputer.net/

obooks/oug/oug-bib.pdf
436. Oliveira, D.L., Faria, L.A., Delsoto, H.A., Garcia, K.: An architecture for globally-

synchronous locally-asynchronous systems on FPGAs. In: IEEE XXIII International
Congress on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–6
(2016)

437. O’Neill, A.: Analog to digital types. IEEE TV (for members only) (2006). https://ieeetv.ieee.
org/conference-highlights/analog-to-digital-types?

438. Open Connectivity Foundation: About UPnP (2016). https://openconnectivity.org/resources/
specifications/upnp/upnp-resources

439. OpenMP Architecture Review Board: OpenMP application program interface (2008). http://
www.openmp.org/mp-documents/spec30.pdf

440. Oppenheim, A.V., Schafer, R., Buck, J.R.: Digital Signal Processing. Pearson Higher
Education, New York (2009)

441. OSEK Group: OSEK/VDX - communication (version 3.0.3) (2004). http://portal.osek-vdx.
org/files/pdf/specs/osekcom303.pdf

442. Otter, M., Winkler, D.: Modelica Overview (2013). https://www.modelica.org/education/
educational-material/lecture-material/english/ModelicaOverview.ppt

443. Pallister, J., Kerrison, S., Morse, J., Eder, K.: Data dependent energy modelling for worst case
energy consumption analysis. Preprint arXiv:1505.03374 (2015)

444. Palumbo, M.: The ERTMS/ETCS signalling system – an overview on the Standard Interoper-
able signalling and train control system (2014). http://www.railwaysignalling.eu/wp-content/
uploads/2014/08/ERTMS_ETCS_signalling_system_MaurizioPalumbo1.pdf

445. Pan, S., Hu, Y., Li, X.: IVF: Characterizing the vulnerability of microprocessor structures to
intermittent faults. In: Proceedings of Design, Automation and Test in Europe (DATE) (2010)

446. Pappas, G.: Science of Cyber-Physical Systems Bridging CS and Control (2012). http://cps-
vo.org/node/5876

447. Parker, K.P.: The Boundary Scan Handbook. Kluwer Academic Publishers, Dordrecht (1992)
448. Patterson, D.: Domain-Specific Architectures for Deep Neural Networks (2019). https://inst.

eecs.berkeley.edu//~cs152/sp19/lectures/L20-DSA.pdf
449. Paulin, P., Knight, J.: Force-directed scheduling in automatic data path synthesis. In:

Proceedings of the Design Automation Conference (DAC) (1987)
450. Petri, C.A.: Kommunikation mit Automaten. Schriften des Rheinisch-Westfälischen Institutes

für Instrumentelle Mathematik an der Universität Bonn (1962)

http://cpsvo.org/group/edu/workshop
http://www.nesea.org/
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.pserc.wisc.edu/documents/general_information/presentations/smartr_grid_executive_forum/
http://www.omg.org/cgi-bin/doc?formal/05-01-04.ps
http://www.omg.org/cgi-bin/doc?formal/05-01-02.pdf
http://www.omg.org/spec/MARTE/1.0/PDF
http://www.omg.org/spec/
http://www.omg.org/spec/
http://www.uml.org
https://www.corba.org/faq.htm
https://www.omg.org/technology/readingroom/System-Modeling-Language.htm
https://www.omg.org/technology/readingroom/System-Modeling-Language.htm
http://www.transputer.net/obooks/oug/oug-bib.pdf
http://www.transputer.net/obooks/oug/oug-bib.pdf
https://ieeetv.ieee.org/conference-highlights/analog-to-digital-types?
https://ieeetv.ieee.org/conference-highlights/analog-to-digital-types?
https://openconnectivity.org/resources/specifications/upnp/upnp-resources
https://openconnectivity.org/resources/specifications/upnp/upnp-resources
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
https://www.modelica.org/education/educational-material/lecture-material/english/ModelicaOverview.ppt
https://www.modelica.org/education/educational-material/lecture-material/english/ModelicaOverview.ppt
http://www.railwaysignalling.eu/wp-content/uploads/2014/08/ERTMS_ETCS_signalling_system_MaurizioPalumbo1.pdf
http://www.railwaysignalling.eu/wp-content/uploads/2014/08/ERTMS_ETCS_signalling_system_MaurizioPalumbo1.pdf
http://cps-vo.org/node/5876
http://cps-vo.org/node/5876
https://inst.eecs.berkeley.edu//~cs152/sp19/lectures/L20-DSA.pdf
https://inst.eecs.berkeley.edu//~cs152/sp19/lectures/L20-DSA.pdf

References 423

451. Peukert, W.: Über die Abhängigkeit der Kapacität von der Entladestromstärcke bei Bleiakku-
mulatoren. Elektrotechnische Zeitschrift, vol. 20 (1897)

452. Piao, X., Han, S., Kim, H., Park, M., Cho, Y., Cho, S.: Predictability of earliest deadline zero
laxity algorithm for multiprocessor real-time systems. In: Ninth IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Distributed Computing (ISORC’06), pp.
6 pp. (2006). https://doi.org/10.1109/ISORC.2006.64

453. Piatkowski, N.: Exponential families on resource-constrained systems. Ph.D. Thesis, TU
Dortmund University, Dortmund (2018). URL https://eldorado.tu-dortmund.de/handle/2003/
36877

454. Piatkowski, N., Lee, S., Morik, K.: Integer undirected graphical models for resource-
constrained systems. Neurocomputing 173(1), 9–23 (2016). http://www.sciencedirect.com/
science/article/pii/S0925231215010449

455. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 5th edn. Springer, Berlin (2016)
456. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer, Berlin

(2005). ISBN-10: 3540289011
457. Popovici, K., Rousseau, F., Jerraya, A.A., Wolf, M.: Embedded Software Design and

Programming of Multiprocessor System-on-Chip. Springer, Berlin (2010)
458. Potop-Butucaru, D., de Simone, R., Talpin, J.P.: The synchronous hypothesis and synchronous

languages. In: Zurawski, R. (ed.) Embedded Systems Handbook. CRC Press, Boca Raton
(2006)

459. Press, D.: Guidelines for Failure Mode and Effects Analysis for Automotive, Aerospace and
General Manufacturing Industries. CRC Press, Boca Raton (2003)

460. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014). http://ptolemy.org/books/Systems

461. Puaut, I.: Multi-core real-time scheduling (2012–2013). http://www.irisa.fr/alf/downloads/
puaut/STR/STRmulticore.pdf

462. Puaut, I.: Real-time systems – slides of a master course (2015). https://team.inria.fr/pacap/
members/isabelle-puaut/#teaching

463. Pyka, R., Faßbach, C., Verma, M., Falk, H., Marwedel, P.: Operating system integrated energy
aware scratchpad allocation strategies for multi-process applications. In: Proceedings of the
International Workshop on Software and Compilers for Embedded Systems (SCOPES), pp.
41–50 (2007)

464. Radetzki, M. (ed.): Languages for Embedded Systems and their Applications. Springer, Berlin
(2009)

465. Rajkumar, R.: Real-time synchronization protocols for shared memory multiprocessors.
In: Proceedings of the 10th International Conference on Distributed Computing Systems
(ICDCS), pp. 116–123 (1990)

466. Rajkumar, R., Sha, L., Lehoczky, J.: Real-time synchronization protocols for multiprocessors.
In: Proceedings of the Real-Time Systems Symposium (RTSS), vol. 88, pp. 259–269 (1988)

467. Rao, R., Vrudhula, S., Rakhmatov, D.: Battery modeling for energy-aware system design.
IEEE Comput. 36, 77–87 (2003)

468. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies.
Springer, Berlin (2013)

469. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A UML™ 2.0 profile for SystemC:
toward high-level SoC design. In: Proceedings of the International Conference on Embedded
Software (EMSOFT), pp. 138–141 (2005). http://doi.acm.org/10.1145/1086228.1086254

470. Ritchie, D.M., Thompson, K.: The UNIX Time-sharing System. Commun. ACM 17(7),
365–375 (1974). https://doi.org/10.1145/361011.361061. http://doi.acm.org/10.1145/361011.
361061

471. Rixner, S., Dally, W.J., Khailany, B.J., Mattson, P.J., Kapasi, U.J.: Register organization for
media processing. In: 6th High-Performance Computer Architecture (HPCA-6), pp. 375–386
(2000)

472. Roitzsch, M.: Kurs Betriebsysteme und Sicherheit, Vorlesung 3 (2019). https://os.inf.tu-
dresden.de/Studium/Bs/WS2019/V03-Prozesse.pdf

https://doi.org/10.1109/ISORC.2006.64
https://eldorado.tu-dortmund.de/handle/2003/36877
https://eldorado.tu-dortmund.de/handle/2003/36877
http://www.sciencedirect.com/science/article/pii/S0925231215010449
http://www.sciencedirect.com/science/article/pii/S0925231215010449
http://ptolemy.org/books/Systems
http://www.irisa.fr/alf/downloads/puaut/STR/STRmulticore.pdf
http://www.irisa.fr/alf/downloads/puaut/STR/STRmulticore.pdf
https://team.inria.fr/pacap/members/isabelle-puaut/#teaching
https://team.inria.fr/pacap/members/isabelle-puaut/#teaching
http://doi.acm.org/10.1145/1086228.1086254
https://doi.org/10.1145/361011.361061
http://doi.acm.org/10.1145/361011.361061
http://doi.acm.org/10.1145/361011.361061
https://os.inf.tu-dresden.de/Studium/Bs/WS2019/V03-Prozesse.pdf
https://os.inf.tu-dresden.de/Studium/Bs/WS2019/V03-Prozesse.pdf

424 References

473. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-structured file
system. ACM Trans. Comput. Syst. 10(1), 26–52 (1992). https://doi.org/10.1145/146941.
146943. http://doi.acm.org/10.1145/146941.146943

474. RTCA: DO-178B, Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA, Washington (1992)

475. Ruggiero, M., Benini, L.: Mapping task graphs to the CELL BE processor (2008). http://
www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf

476. Sangiovanni-Vincentelli, A.L., Martin, G.: Platform-based design and software design
methodology for embedded systems. IEEE Des. Test Comput. 18(6), 23–33 (2001)

477. Sangiovanni-Vincentelli, A., Zeng, H., Natale, M.D., Marwedel, P. (eds.): Embedded Systems
Development - From Functional Methods to Implementations. Springer, Berlin (2013). ISBN
978-1-4616-3878-6

478. Sarajlic, E., Yamahata, C., Cordero, M., Fujita, H.: Three-phase electrostatic rotary stepper
micromotor with a flexural pivot bearing. J. Microelectromech. Syst. 19(2), 338–349 (2010).
https://doi.org/10.1109/JMEMS.2010.2040139

479. Schmitz, M., Al-Hashimi, B., Eles, P.: Energy-efficient mapping and scheduling for DVS
enabled distributed embedded systems. In: Proceedings of Design, Automation and Test in
Europe (DATE), pp. 514–521 (2002)

480. Schneider, K.: The synchronous programming language Quartz. Technical Report, Internal
Report 375, Department of Computer Science, University of Kaiserslautern, Kaiserslautern
(2009)

481. Science X: Imec reports breakthrough power efficiency and performance of coarse-grain pro-
cessor (2005). https://phys.org/news/2005-11-imec-breakthrough-power-efficiency-coarse-
grain.html

482. SDL Forum Society: Home page (2016). http://www.sdl-forum.org
483. SDL Forum Society: List of commercial tools (2016). http://www.sdl-forum.org/Tools/

Commercial.htm
484. SGI: OpenGL software development kit (2016). https://www.opengl.org/sdk/libs/
485. Sha, L., Rajkumar, R., Lehoczky, J.: Priority inheritance protocols: an approach to real-time

synchronisation. IEEE Trans. Comput. 39, 1175–1185 (1990)
486. Shi, C., Brodersen, R.: An automated floating-point to fixed-point conversion methodology.

In: International Conference on Audio Speed and Signal Processing (ICASSP), pp. 529–532
(2003)

487. Siciliano, B., Oussama, O.: Handbook of Robotics. Springer, Berlin (2016)
488. Siemens: SIMATIC STEP 7 Programming Software (2016). http://www.automation.siemens.

com/simatic/industriesoftware/html_76/products/step7.htm
489. Sifakis, J.: A notion of expressiveness for component-based design. In: Workshop on

Foundations and Applications of Component-based Design, ES-Week (2008). http://www.
artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-
ArtistDesign-Oct192008.pdf

490. Simunic, T., Benini, L., Acquaviva, A., Glynn, P., De Micheli, G.: Energy efficient design of
portable wireless devices. In: International Symposium on Low Power Electronics and Design
(ISLPED), pp. 49–54 (2000)

491. Simunic, T., Benini, L., Acquaviva, A., Glynn, P., De Micheli, G.: Dynamic voltage scaling
and power management for portable systems. In: Proceedings of the Design Automation
Conference (DAC), pp. 524–529 (2001)

492. Simunic-Rosing, T., Coskun, A.K., Whisnant, K.: Temperature aware task scheduling in
MPSoCs. In: Proceedings of Design, Automation and Test in Europe (DATE), pp. 1659–1664
(2007)

493. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems:
Survey of current and emerging trends. In: Proceedings of the Design Automation Conference
(DAC), pp. 1:1–1:10. ACM, New York (2013). https://doi.org/10.1145/2463209.2488734.
http://doi.acm.org/10.1145/2463209.2488734

https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943
http://doi.acm.org/10.1145/146941.146943
http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
http://www.artist-embedded.org/docs/Events/2008/Map2MPSoC/Map2mpsoc-08-ruggiero.pdf
https://doi.org/10.1109/JMEMS.2010.2040139
https://phys.org/news/2005-11-imec-breakthrough-power-efficiency-coarse-grain.html
https://phys.org/news/2005-11-imec-breakthrough-power-efficiency-coarse-grain.html
http://www.sdl-forum.org
http://www.sdl-forum.org/Tools/Commercial.htm
http://www.sdl-forum.org/Tools/Commercial.htm
https://www.opengl.org/sdk/libs/
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.automation.siemens.com/simatic/industriesoftware/html_76/products/step7.htm
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
http://www.artist-embedded.org/docs/Events/2008/Components/SLIDES/12-JosephSifakis-WFCD-ArtistDesign-Oct192008.pdf
https://doi.org/10.1145/2463209.2488734
http://doi.acm.org/10.1145/2463209.2488734

References 425

494. Sipser, M.: Introduction to the Theory of Computation. Thomson Course Technology, Parts
One and Two, Boston (2006)

495. Sirocic, B., Marwedel, P.: Levi Flexray® simulation software (2007). https://ls12-www.cs.tu-
dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviFRP.zip

496. Sirocic, B., Marwedel, P.: Levi KPN simulation software (2007). https://ls12-www.cs.tu-
dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviKPN.zip

497. Sirocic, B., Marwedel, P.: Levi RTS simulation software (2007). https://ls12-www.cs.tu-
dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviRTS.zip

498. Sirocic, B., Marwedel, P.: Levi TDD simulation software (2007). https://ls12-www.cs.tu-
dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviTDD.zip

499. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D.:
Temperature-aware microarchitecture: Modeling and implementation. ACM Trans. Archit.
Code Optim. 1(1), 94–125 (2004). https://doi.org/10.1145/980152.980157. http://doi.acm.
org/10.1145/980152.980157

500. Skadron, K., Stan, M.R., Ribando, R.J., Gurumurthi, S., Huang, W., Sankaranarayanan, K.,
Tarjan, D., Burr, J., Ghosh, S., Velusamy, S., Link, G.: Hotspot 5.0 (2009). http://lava.cs.
virginia.edu/HotSpot/index.htm

501. Skjellum, A., Kanevsky, A., Dandass, Y.S., Watts, J., Paavola, S., Cottel, D., Henley, G.,
Hebert, L.S., Cui, Z., Rounbehler, A.: The real-time message passing interface standard
(MPI/RT-1.1). Concurr. Comput. Practice Exp. 16(S1), Si–S322 (2004). https://doi.org/10.
1002/cpe.744. http://dx.doi.org/10.1002/cpe.744

502. Smith, J.J., Nair, R.: Virtual Machines: Versatile Platforms For Systems And Processes.
Morgan Kaufmann, Burlington (2005)

503. Society for Display Technology: Home page (2003). http://www.sid.org
504. Spivey, M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall International Series

in Computer Science. Prentice Hall, Upper Saddle River (1992)
505. Sprint Consortium: Open SoC design platform for reuse and integration of IPs (2008). http://

ecsi.org/sprint
506. Sridhar, A., Vincenzi, A., Atienza, D., Brunschwiler, T.: 3D-ICE: a compact thermal model

for early-stage design of liquid-cooled ICs. IEEE Trans. Comput. 63, 2576–2589 (2014)
507. Stallings, W.: Operating Systems: Internals and Design Principles, 8 edn. Prentice Hall, Upper

Saddle River (2015)
508. Stankovic, J., Ramamritham, K.: The Spring kernel: a new paradigm for real-time systems.

IEEE Softw. 8, 62–72 (1991)
509. Steinke, S.: Analysis of the potential for saving energy in embedded systems through energy-

aware compilation (in German). PhD Thesis, TU Dortmund (2003). http://hdl.handle.net/
2003/2769

510. Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An accurate and fine grain instruction-
level energy model supporting software optimizations. In: International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS) (2001)

511. Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M., Marwedel, P.:
Reducing energy consumption by dynamic copying of instructions onto onchip memory. In:
Proceedings of the International Symposium on System Synthesis (ISSS), pp. 213–218 (2002)

512. Steinke, S., Wehmeyer, L., Lee, B.S., Marwedel, P.: Assigning program and data objects to
scratchpad for energy reduction. In: Proceedings of Design, Automation and Test in Europe
(DATE), pp. 409–417 (2002)

513. Storey, N.: Safety-critical Computer Systems. Addison Wesley, Boston (1996)
514. Stritter, E., Gunter, T.: Microprocessor architecture for a changing world: The Motorola

68000. IEEE Comput. 12, 43–52 (1979)
515. Stuijk, S.: Predictable mapping of streaming applications on multiprocessors. Ph.D. Thesis,

TU Eindhoven (2007)
516. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising

the internet of things. In: Cluster of European Research Projects on the Internet of Things,
European Commision (2010)

https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviFRP.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviFRP.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviKPN.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviKPN.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviRTS.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviRTS.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviTDD.zip
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/teaching/downloads/levi/download/leviTDD.zip
https://doi.org/10.1145/980152.980157
http://doi.acm.org/10.1145/980152.980157
http://doi.acm.org/10.1145/980152.980157
http://lava.cs.virginia.edu/HotSpot/index.htm
http://lava.cs.virginia.edu/HotSpot/index.htm
https://doi.org/10.1002/cpe.744
https://doi.org/10.1002/cpe.744
http://dx.doi.org/10.1002/cpe.744
http://www.sid.org
http://ecsi.org/sprint
http://ecsi.org/sprint
http://hdl.handle.net/2003/2769
http://hdl.handle.net/2003/2769

426 References

517. Sutherland, S.: An overview of SystemVerilog 3.1. EEdesign, May (2003). Available at http://
www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063

518. Synopsys: System studio (2016). http://www.synopsys.com/Prototyping/VirtualPrototyping/
DigitalSignalProcessing/Pages/system-studio.aspx

519. Synopsys® Inc: HSPICE®: The gold standard for accurate circuit simulation (2010).
https://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/
Documents/hspice_ds.pdf

520. SYSGO AG: PikeOS RTOS and Virtualization Concept (2016). http://www.sysgo.com
521. SystemC: Home page (2016). http://www.SystemC.org
522. Taha, W., Cartwright, R.: Some challenges for model-based simulation. In: The 4th Analytic

Virtual Integration of Cyber-Physical Systems Workshop, Vancouver, December 3, 2013, pp.
1–4. Linköping University Electronic Press, Linköping (2013)

523. Takada, H.: Real-time operating system for embedded systems. In: Imai, M., Yoshida, N.
(eds.) Tutorial 2 – Software Development Methods for Embedded Systems, Asia South-
Pacific Design Automation Conference (ASP-DAC) (2001)

524. Tan, T.K., Raghunathan, A., Jha, N.K.: Software architectural transformations: A new
approach to low energy embedded software. In: Proceedings of Design, Automation and Test
in Europe (DATE), pp. 11046–11051 (2003)

525. Tanenbaum, A.: Modern Operating Systems. Prentice Hall, Upper Saddle River (2014)
526. Tartler, R., Lohmann, D., Sincero, J., Schröder-Preikschat, W.: Feature consistency in

compile-time-configurable system software: facing the Linux 10,000 feature problem. In:
Sixth Conference on Computer Systems (EuroSys) (2011)

527. Tehrani, S.N.: Functional safety and IEC 61508 – a basic guide (2004). http://www.ida.liu.
se/~simna73/teaching/SCRTS/IEC61508_Guide.pdf

528. Teich, J.: Digitale Hardware/Software-Systeme. Springer, Berlin (1997)
529. Tewari, A.: Modern Control Design with MATLAB and SIMULINK. Wiley, Hoboken (2001)
530. Texas Instruments Inc.: 66AK2x Multicore DSP + ARM Processors (2016). http://www.ti.

com/lsds/ti/processors/dsp/c6000_dsp-arm/66ak2x/overview.page
531. Thayer, D., Miller, K.: Four UNIX programs in four UNIX collections: Seeking consistency

in an open source icon. In: Proceedings of the 37th Midwest Instruction and Computing
Symposium (2004)

532. The Dobelle Institute: Home page (2003). http://www.dobelle.com (no longer accessible)
533. The MathWorks Inc.: Simulink - simulation and model-based design (2016). http://www.

mathworks.com/products/simulink
534. Thesing, S.: Safe and Precise WCET Determination by Abstract Interpretation of Pipeline

Models. Pirrot Verlag, Saarbrücken (2004)
535. Thiele, L.: Design space exploration of embedded systems. In: Artist Spring School

on Embedded Systems, Xi’an (2006). http://www.artist-embedded.org/docs/Events/2006/
ChinaSchool/4_DesignSpaceExploration.pdf

536. Thiele, L.: Performance analysis of distributed embedded systems. In: Zurawski, R. (ed.)
Embedded Systems Handbook. CRC Press, Boca Raton (2006)

537. Thiele, L. et al.: SHAPES TIK (2009). http://www.tik.ee.ethz.ch/~shapes/dol.html
538. Thoen, F., Catthoor, F.: Modelling, Verification and Exploration of Task-Level Concurrency

in Real-Time Embedded Systems. Kluwer Academic Publishers, Dordrecht (2000)
539. Thomas, D.E., Moorby, P.: The Verilog Hardware Description Language. Kluwer Academic

Publishers, Dordrecht (1991)
540. Tian, T., Shih, C.P.: Software techniques for shared-cache multi-core systems (2012). https://

software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems
541. Tiller, M.M.: Modelica by Example (2016). http://book.xogeny.com/
542. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: a first step towards

software power minimization. IEEE Trans. VLSI Syst. 2, 437–445 (1994)
543. Tiwari, A., Ballal, P., Lewis, F.L.: Energy-efficient wireless sensor network design and

implementation for condition-based maintenance. ACM Trans. Sen. Netw. 3(1), 1-es (2007).
https://doi.org/10.1145/1210669.1210670. http://doi.acm.org/10.1145/1210669.1210670

http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.eetimes.com/news/design/features/showArticle.jhtml?articleID=16501063
http://www.synopsys.com/Prototyping/VirtualPrototyping/DigitalSignalProcessing/Pages/system-studio.aspx
http://www.synopsys.com/Prototyping/VirtualPrototyping/DigitalSignalProcessing/Pages/system-studio.aspx
https://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Documents/hspice_ds.pdf
https://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Documents/hspice_ds.pdf
http://www.sysgo.com
http://www.SystemC.org
http://www.ida.liu.se/~simna73/teaching/SCRTS/IEC61508_Guide.pdf
http://www.ida.liu.se/~simna73/teaching/SCRTS/IEC61508_Guide.pdf
http://www.ti.com/lsds/ti/processors/dsp/c6000_dsp-arm/66ak2x/overview.page
http://www.ti.com/lsds/ti/processors/dsp/c6000_dsp-arm/66ak2x/overview.page
http://www.dobelle.com
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.artist-embedded.org/docs/Events/2006/ChinaSchool/4_DesignSpaceExploration.pdf
http://www.tik.ee.ethz.ch/~shapes/dol.html
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems
http://book.xogeny.com/
https://doi.org/10.1145/1210669.1210670
http://doi.acm.org/10.1145/1210669.1210670

References 427

544. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res.
Dev. 11(1), 25–33 (1967). https://doi.org/10.1147/rd.111.0025

545. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task schedul-
ing for heterogeneous computing. IEEE Trans. Paral. Distrib. Syst. 13(3), 260–274 (2002).
https://doi.org/10.1109/71.993206

546. TriQuint Semiconductor Inc.: FAQ 11: What is the MTBF for gallium arsenide devices?
(2016) http://www.triquint.com/about-us/quality/reliability-faq

547. Tsai, J., Yang, S.J.H.: Monitoring and Debugging of Distributed Real-Time Systems. IEEE
Computer Society Press, Los Alamitos (1995)

548. Udayakumararan, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad memory
using compile-time decisions. ACM Trans. Embed. Comput. Syst. 5, 472–511 (2006)

549. US Department of Transportation - Federal Aviation Administration: AC 25.1309-1A
– System Design and Analysis (1988). https://www.faa.gov/regulations_policies/advisory_
circulars/index.cfm/go/document.information/documentID/22680

550. V-Modell XT Authors: V-Modell® XT (2006). ftp://ftp.heise.de/pub/ix/projektmanagement/
vmodell/V-Modell-XT-Gesamt-Englisch-V1.3.pdf

551. Vahid, F.: Procedure exlining. In: Proceedings of the International Symposium on System
Synthesis (ISSS), pp. 84–89 (1995)

552. Vahid, F., Givargis, T.: Programming Embedded Systems: An Introduction to Time-Oriented
Programming. zyBooks, Los Gatos (2011) https://zybooks.zyante.com/#/catalog/zybook/
ProgrammingEmbeddedSystemsR25

553. van Berkel, C.H.K.: Multi-core for mobile phones. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’09, pp. 1260–1265. European Design and
Automation Association, 3001 Leuven, Belgium (2009). http://dl.acm.org/citation.cfm?id=
1874620.1874924

554. Verachtert, W.: Introduction to parallelism. In: Tutorial at Design, Automation, and Test in
Europe (DATE). Springer, Berlin (2008)

555. Verma, M., Marwedel, P.: Overlay techniques for scratchpad memories in low power
embedded processors. IEEE Trans. Very Large Scale Integr. Syst. 14(8), 802–815 (2006)

556. Verma, M., Petzold, K., Wehmeyer, L., Falk, H., Marwedel, P.: Scratchpad sharing strategies
for multiprocess embedded systems: A first approach. In: IEEE 3rd Workshop on Embedded
System for Real-Time Multimedia (ESTIMedia), pp. 115–120 (2005)

557. Vladimirescu, A.: SPICE user’s guide. Northwest Laboratory for Integrated Systems, Seattle
(1987)

558. Vogels, M., Gielen, G.: Architectural selection of A/D converters. In: Proceedings of the
Design Automation Conference (DAC), pp. 974–977 (2003). https://doi.org/10.1145/775832.
776076. http://doi.acm.org/10.1145/775832.776076

559. Wägemann, P., Distler, T., Hönig, T., Janker, H., Kapitza, R., Schröder-Preikschat, W.: Worst-
case energy consumption analysis for energy-constrained embedded systems. In: 2015 27th
Euromicro Conference on Real-Time Systems, pp. 105–114. IEEE, Piscataway (2015)

560. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational
inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008). http://dx.doi.org/10.1561/
2200000001

561. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006). http://www.mpa.ethz.
ch/Rtctoolbox

562. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Sign. Proc. Lett. 3, 81–84
(2002)

563. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Proc. 13, 600–612 (2004)

564. Wang, C., Li, X., Zhang, J., Zhou, X., Nie, X.: MP-Tomasulo: a dependency-aware
automatic parallel execution engine for sequential programs. ACM Trans. Archit. Code
Optim. 10(2), 9:1–9:26 (2013). https://doi.org/10.1145/2459316.2459320. http://doi.acm.org/
10.1145/2459316.2459320

https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1109/71.993206
http://www.triquint.com/about-us/quality/reliability-faq
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22680
https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22680
ftp://ftp.heise.de/pub/ix/projektmanagement/vmodell/V-Modell-XT-Gesamt-Englisch-V1.3.pdf
ftp://ftp.heise.de/pub/ix/projektmanagement/vmodell/V-Modell-XT-Gesamt-Englisch-V1.3.pdf
https://zybooks.zyante.com/#/catalog/zybook/ProgrammingEmbeddedSystemsR25
https://zybooks.zyante.com/#/catalog/zybook/ProgrammingEmbeddedSystemsR25
http://dl.acm.org/citation.cfm?id=1874620.1874924
http://dl.acm.org/citation.cfm?id=1874620.1874924
https://doi.org/10.1145/775832.776076
https://doi.org/10.1145/775832.776076
http://doi.acm.org/10.1145/775832.776076
http://dx.doi.org/10.1561/2200000001
http://dx.doi.org/10.1561/2200000001
http://www.mpa.ethz.ch/Rtctoolbox
http://www.mpa.ethz.ch/Rtctoolbox
https://doi.org/10.1145/2459316.2459320
http://doi.acm.org/10.1145/2459316.2459320
http://doi.acm.org/10.1145/2459316.2459320

428 References

565. Wang, P., Sun, G., Wang, T., Xie, Y., Cong, J.: Designing scratchpad memory architecture
with emerging STT-RAM memory technologies. In: Proceedings of the International Sym-
posium on Circuits and Systems (ISCAS), pp. 1244–1247 (2013). https://doi.org/10.1109/
ISCAS.2013.6572078

566. Wang, Z., Gu, Z., Yao, M., Shao, Z.: Endurance-aware allocation of data variables on nvm-
based scratchpad memory in real-time embedded systems. IEEE Trans. Comput. Aided Des.
Integr. Circuit Syst. 34(10), 1600–1612 (2015). https://doi.org/10.1109/TCAD.2015.2422846

567. Waxman, R., Bergé, J.M., Levia, O., Rouillard, J.: High-Level System Modeling. Springer,
Berlin (1996)

568. Weast, R. (ed.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (1977)
569. Wedde, H., Lind, J.: Integration of task scheduling and file services in the safety-critical

system MELODY. In: EUROMICRO ’98 Workshop on Real-Time Systems, pp. 18–25. IEEE
Computer Society Press, Washington (1998)

570. Weddell, A.S., Magno, M., Merrett, G.V., Brunelli, D., Al-Hashimi, B.M., Benini, L.: A
survey of multi-source energy harvesting systems. In: Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’13, pp. 905–908. EDA Consortium, San
Jose (2013). http://dl.acm.org/citation.cfm?id=2485288.2485505

571. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications.
SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia (2000)

572. Wehmeyer, L., Marwedel, P.: Fast, Efficient and Predictable Memory Accesses. Springer,
Berlin (2006)

573. Weiser, M.: The computer for the 21st century. Mob. Comput. Commun. Rev. 3.3, 3–11 (1999)
574. Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley, Hoboken (2004)
575. Wikipedia: Aircraft principal axes (2020). https://en.wikipedia.org/wiki/Aircraft_principal_

axes
576. Wikipedia: Betriebssicherheit (2020). https://de.wikipedia.org/wiki/Betriebssicherheit
577. Wikipedia: Energy harvesting (2020). https://en.wikipedia.org/wiki/Energy_harvesting
578. Wikipedia: Heat capacity (2020). https://en.wikipedia.org/wiki/Heat_capacity
579. Wikipedia: Radar chart (2020). https://en.wikipedia.org/wiki/Radar_chart
580. Wikipedia: Radio clock (2020). https://en.wikipedia.org/wiki/Radio_clock#List_of_radio_

time_signal_stations
581. Wikipedia: Safety integrity level (2020). https://en.wikipedia.org/wiki/Safety_integrity_level
582. Wikipedia: Structured systems analysis and design method (2020). http://en.wikipedia.org/

wiki/Structured_Systems_Analysis_and_Design_Methodology
583. Wikipedia: Thermal conductivity (2020). https://en.wikipedia.org/wiki/Thermal_

conductivity
584. Wikipedia: Thermal design power (2020). https://en.wikipedia.org/wiki/Thermal_design_

power
585. Wikipedia: Zeno’s paradoxes (2020). https://en.wikipedia.org/wiki/Zeno’s_paradoxes#

Achilles_and_the_tortoise
586. Wilde, D.K.: A library for doing polyhedral operations. Technical Report 785, Technical

Report, IRISA, Rennes (1993)
587. Wilhelm, R.: Determining bounds on execution times. In: Zurawski, R. (ed.) Embedded

Systems Handbook. CRC Press, Boca Raton (2006)
588. Willems, M., Bürsgens, V., Keding, H., Grötker, T., Meyr, H.: System level fixed-point design

based on an interpolative approach. In: Proceedings of the Design Automation Conference
(DAC), pp. 293–298 (1997)

589. Wilton, S., Jouppi, N.: CACTI: An enhanced access and cycle time model. Int. J. Solid State
Circ. 31(5), 677–688 (1996)

590. Wind River: VxWorks (2020). http://www.windriver.com/products/vxworks
591. Wind River: Web pages (2020). http://www.windriver.com
592. Winkler, J.: The CHILL homepage (2002). http://psc.informatik.uni-jena.de/languages/chill/

chill.htm

https://doi.org/10.1109/ISCAS.2013.6572078
https://doi.org/10.1109/ISCAS.2013.6572078
https://doi.org/10.1109/TCAD.2015.2422846
http://dl.acm.org/citation.cfm?id=2485288.2485505
https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://de.wikipedia.org/wiki/Betriebssicherheit
https://en.wikipedia.org/wiki/Energy_harvesting
https://en.wikipedia.org/wiki/Heat_capacity
https://en.wikipedia.org/wiki/Radar_chart
https://en.wikipedia.org/wiki/Radio_clock#List_of_radio_time_signal_stations
https://en.wikipedia.org/wiki/Radio_clock#List_of_radio_time_signal_stations
https://en.wikipedia.org/wiki/Safety_integrity_level
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Methodology
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Thermal_design_power
https://en.wikipedia.org/wiki/Thermal_design_power
https://en.wikipedia.org/wiki/Zeno's_paradoxes#Achilles_and_the_tortoise
https://en.wikipedia.org/wiki/Zeno's_paradoxes#Achilles_and_the_tortoise
http://www.windriver.com/products/vxworks
http://www.windriver.com
http://psc.informatik.uni-jena.de/languages/chill/chill.htm
http://psc.informatik.uni-jena.de/languages/chill/chill.htm

References 429

593. Wolf, W.: Computers as Components. Morgan Kaufmann, Burlington (2001)
594. Wolsey, L.: Integer Programming. Wiley, Hoboken (1998)
595. Wong, C., Marchal, P., Yang, P., Prayati, A., Catthoor, F., Lauwereins, R., Verkest, D., Man,

H.D.: Task concurrency management methodology to schedule the MPEG4 IM1 player on
a highly parallel processor platform. In: Proceedings of the International Symposium on
Hardware-Software Codesign (CODES), pp. 170–177 (2001)

596. Woodhouse, D.: JFFS: The Journalling Flash File System. Red Hat, Inc. White Paper (2001)
597. ws4d: Web services for devices (2016). http://www.ws4d.org
598. Xilinx: MicroBlaze processor reference guide (2008). http://www.xilinx.com/support/

documentation/sw_manuals/mb_ref_guide.pdf
599. Xilinx Inc.: UltraScale Architecture Configurable Logic Block (2015). http://www.xilinx.

com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
600. Xilinx: Device reliability report - second half 2015 (2016). http://www.xilinx.com/support/

documentation/user_guides/ug116.pdf
601. Xilinx Inc.: UltraScale+ FPGAs - Product Tables and Product Selection Guide (2016). http://

www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-
selection-guide.pdf

602. Xilinx Inc.: UltraScale Architecture and Product Overview (2016). http://www.xilinx.com/
support/documentation/data_sheets/ds890-ultrascale-overview.pdf

603. XMOS Ltd.: Home page (2016). http://www.xmos.com/
604. Xu, J., Parnas, D.L.: On satisfying timing constraints in hard real-time systems. IEEE Trans.

Softw. Eng. 19, 70–84 (1993)
605. Xu, Q., Huang, L., Yuan, F.: Lifetime reliability-aware task allocation and scheduling for

MPSoC platforms. In: Proceedings of Design, Automation and Test in Europe (DATE), pp.
51–56 (2009)

606. Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers, Dordrecht (2000)
607. Yodaiken, V.: Adding real-time support to general purpose operating systems. US Patent

5,995,745 (1997)
608. Yodaiken, V.: Real-time applications in real-time linux. In: USENIX’99 Tutorial 3: Linux on

the Edge (1999)
609. Young, S.: Real Time Languages: Design and Development. Ellis Horwood, Chichester

(1982)
610. Zanini, F., Atienza, D., Jones, C.N., Benini, L., De Micheli, G.: Online thermal control

methods for multiprocessor systems. ACM Trans. Des. Autom. Electron. Syst. 18(1), 6:1–
6:26 (2013). https://doi.org/10.1145/2390191.2390197. http://doi.acm.org/10.1145/2390191.
2390197

611. Zhang, W., Ding, Y.: Hybrid SPM-cache architectures to achieve high time predictability
and performance. In: Proceedings of the Conference on Application-Specific Systems,
Architectures and Processors (ASAP), pp. 297–304 (2013). https://doi.org/10.1109/ASAP.
2013.6567593

612. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate
online power estimation and automatic battery behavior based power model generation for
smartphones. In: Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pp. 105–114. ACM, New York (2010)

613. Zhuo, C., Sylvester, D., Blaauw, D.: Process variation and temperature-aware reliability
management. In: Proceedings of Design, Automation and Test in Europe (DATE) (2010)

614. Zurawski, R. (ed.): Embedded Systems Handbook. CRC Press, Boca Raton (2006)

http://www.ws4d.org
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
http://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xmos.com/
https://doi.org/10.1145/2390191.2390197
http://doi.acm.org/10.1145/2390191.2390197
http://doi.acm.org/10.1145/2390191.2390197
https://doi.org/10.1109/ASAP.2013.6567593
https://doi.org/10.1109/ASAP.2013.6567593

Index

A
Actuators, 3, 17, 21, 30, 128, 178, 188–189,

198
Analog-to-digital conversion, 136, 138
Applications of CPS in engineering, 2–5, 8,

17–19
Array folding, 355–357

C
Caches, 11, 15, 32, 147, 153, 157, 158, 161,

169–173, 228, 245–246, 248, 261, 292,
293, 351–353, 362, 371, 402

Challenges for CPS design, 16
Communicating finite state machines, 40–68
Communication hardware, 209
Compilers for embedded systems, 361–373
Constraints and objectives for CPS design, 189
Critical instant theorem, 314–316, 329
Critical section, 39, 212–216
Curriculum for CPS education, 18, 19
Cyber-physical system, 1–3, 7, 10, 17, 25, 29,

30, 46, 128, 129, 174, 242, 243, 275,
276, 288, 296, 345, 382

Cyphy interface, 25, 127, 129, 131, 179

D
Data flow, 12, 18, 40, 41, 62, 68–76, 118, 119,

121
Dependability, 2, 4, 9, 10, 22, 111, 239, 240,

243, 275–287
Dependent jobs, 304–309, 311, 319–346

Design flows, 21–24, 27, 29, 70, 96, 117, 203,
296, 349, 382

Design for testability (DfT), 387–391
Design objectives, 239
Design space exploration (DSE), 242, 264,

265, 297, 341, 345, 362
Device under test (DUT), 259, 260, 382, 389
Dhall effect, 326, 329
Differential equations, 40, 41, 46–48, 74, 99,

117, 121, 122, 191, 275
Digital signal processors (DSP), 127, 150, 152,

153, 166, 193, 199, 341
Digital-to-analog conversion, 128, 169–182
Discrete event modelin, 87
Dynamic power management (DPM), 146,

373, 376
Dynamic scheduling, 68, 306, 345, 346
Dynamic voltage scaling (DVS), 369, 372

E
Earliest deadline first scheduling (EDF), 222,

223, 226, 227, 295, 306–308, 311,
316–318, 322, 325–329, 341, 347

Early design phases, 42–49, 71, 94, 120, 243,
244, 358

Embedded Linux, 223–231
Embedded operating systems, 25, 203–211,

223, 225, 236
Embedded systems, 1–5, 7, 8, 13–20, 22,

25, 26, 30, 32, 34, 35, 58, 115–123,
127–200, 211, 228, 276

Energy-aware compilation, 362

© The Author(s) 2021
P. Marwedel, Embedded System Design, Embedded Systems,
https://doi.org/10.1007/978-3-030-60910-8

431

https://doi.org/10.1007/978-3-030-60910-8

432 Index

Energy efficient computing, 146, 161
Energy model, 239, 259–269, 362
ERIKA operating system, 219–223, 229
Evaluation, 10, 22, 243–293, 296, 302, 344,

346, 350, 384–386

F
Fault coverage, 384–385
Fault injection, 381, 386
Fault model, 381, 383, 385, 386
Fault simulation, 385–386
Fault tree analysis, 286–287
Field programmable gate arrays (FPGAs),

165–167, 193, 194, 286, 289, 336, 341
Fixed-point arithmetic, 153–154, 173
Flipped classroom, 19, 27, 123
Fourier series, 187

G
Gate level model, 116, 117, 382–384
Global scheduling, 323, 325
Graphics processing units (GPUs), 160–162,

231, 264

H
Hardware abstraction layer (HAL), 203, 232
Heterogeneous processor, 297, 299, 302, 303
High-level optimizations, 349–357

I
Independent jobs, 304, 306, 311, 319–330
Internet of things, 3, 5, 7, 21, 26, 129, 131,

173, 179, 189, 195, 211, 223, 231, 232,
250, 288, 349, 402

K
Kahn process networks, 69–71, 111, 118, 122,

345
Kiviat diagram, 242

L
Levels of hardware modeling, 115–117
Linear feedback shift register (LFSR), 389,

390
Loop transformations, 22, 245, 246, 350–352

M
Memory-aware compilation, 363–371
Memory hierarchy, 127, 169, 352, 354–372
Middleware, 20, 21, 203, 206, 232–234, 237
Mobility, 4, 5, 333
Modeling requirements, 29–36
Model of communication, 96
Models of computation, 18, 29, 36–42,

117–121, 123, 126, 345
Multi-level logic, 88–93
Multiprocessor scheduling, 301, 308
Mutual exclusion, 35, 76, 234

O
Opportunities for CPS, 26

P
Pareto optimality, 239, 241, 291, 302, 344
Partitioned scheduling, 319–323, 327
Performance evaluation, 21, 243–254, 296, 302
Petri nets, 41, 76–86, 119–122
Pinedo’s classification of scheduling problems,

298
Power model, 259–269
Power saving states, 146, 377
Preemption, 31, 32, 36, 218, 219, 221, 299,

300, 304, 308–309, 311, 314, 323, 325,
330

Priority ceiling protocol, 216–217
Priority inheritance protocol, 233
Priority inversion, 38, 203, 212–214, 233, 2346
Process, 1, 9, 11, 23, 24, 36, 65, 69, 71, 92, 98,

104, 118, 124, 204, 224, 230, 239, 242,
279, 282, 315, 345, 357, 369, 385

Processor utilization, 268, 321, 325, 347
Proportional fair (Pfair) scheduling, 323–325
Provision of electrical energy, 189–195
Pseudo random test pattern generation,

390–391

Q
Quality metrics, 243, 254–259

R
Rate monotonic scheduling, 312–316, 328, 341
Real-time calculus (RTC), 243, 250–254
Real-time databases, 235–236

Index 433

Real-time operating systems (RTOS), 19, 20,
22, 26, 38, 115, 207–211, 223, 226,
236, 240, 304

Reconciliation of compilers and timing
analysis, 372–373

Reliability analysis, 279–286
Resource access protocols, 203, 212–219

S
Safety, 4–7, 9, 10, 18, 34, 127, 131, 174, 178,

207, 277–279, 381
Sampling, 12, 127, 133–135, 150, 182–184,

186, 198
Sampling theorem, 127, 134, 182–186
Scan path, 388
Schedulability, 118, 122, 221, 226, 304, 313,

315, 321
Scheduling, 22, 26, 38, 60, 71, 72, 118, 208,

210, 218, 221, 226, 244, 297–348, 358,
362

Scratchpads, 173, 363–371
Secure hardware, 195–198
Self-test program, 384
Semaphore, 35, 39, 115, 212, 216, 217
Sensors, 3, 5, 13, 14, 21, 31, 128–131, 177,

189, 195, 198, 257, 264, 272, 349,
377

Signature analysis, 381, 389, 390
Simulation, 19, 23, 41, 45, 51, 58, 60, 74, 88,

93, 95, 98, 104–107, 116, 178, 194,
214, 287–290, 385, 386

Smart systems, 129
Stack resource protocol, 218, 219
StateCharts, 40, 41, 51–56, 59–61, 67, 119,

124
Static data flow (SDF), 71–74, 107, 118–120,

123
Static scheduling, 301, 337–340
Structure of the book, 52, 60
Stuck-at fault, 383

T
Task level concurrency management, 357–361
Test of finite state machines (FSMs), 40, 49,

51–53, 56, 58, 61, 62, 67, 122, 291,
387, 388, 391

Test pattern generation (TPG), 381–388,
390–391

Thermal management, 349, 373–377
Thermal model, 117, 243, 269–275
Thread, 34–36, 60, 114, 160, 161, 204, 207,

209, 233, 370
Tiling/blocking, 352–354
Time/distance diagrams, 43–46
Timeliness, 233
Time-triggered systems, 220, 301, 304
Transaction level modeling (TLM), 93–95, 98,

116

U
Unified modeling language (UML), 42–44, 46,

67, 86, 119–122, 125
Uniprocessor scheduling, 315

V
Validation, 22, 23, 25, 110, 239–293
Verification, 13, 25, 26, 51, 110, 198, 206, 240,

288–291
Very long instruction word (VLIW) processors,

155–157
VHDL, 40, 41, 58, 60, 75, 87, 89, 97–109, 115,

120, 125, 167, 204
Virtualization, 207, 211
von-Neumann languages, 29, 69, 76, 110–113

W
Worst-case execution time (WCET)

aware compilation, 372
estimation, 244–250

	Preface
	Why Should You Read This Book?
	Who Should Read the Book?
	How Is This Book Different from Earlier Editions?

	Acknowledgments
	Contents
	About the Author
	Frequently Used Mathematical Symbols
	1 Introduction
	1.1 History of Terms
	1.2 Opportunities
	1.3 Challenges
	1.4 Common Characteristics
	1.5 Curriculum Integration of Embedded Systems, CPS, and IoT
	1.5.1 Prerequisites
	1.5.2 Recommended Additional Courses

	1.6 Design Flows
	1.7 Structure of This Book
	1.8 Problems

	2 Specifications and Modeling
	2.1 Requirements
	2.2 Models of Computation
	2.3 Early Design Phases
	2.3.1 Use Cases
	2.3.2 (Message) Sequence Charts and Time/Distance Diagrams
	2.3.3 Differential Equations

	2.4 Communicating Finite State Machines (CFSMs)
	2.4.1 Timed Automata
	2.4.2 StateCharts
	Modeling of Hierarchy
	Timers
	Edge Labels and StateMate Semantics
	Evaluation and Extensions

	2.4.3 Synchronous Languages
	Motivation
	Examples of Synchronous Languages: Esterel, Lustre, and SCADE

	2.4.4 Message Passing: SDL as an Example
	Features of the Language
	Evaluation of SDL

	2.5 Data Flow
	2.5.1 Scope
	2.5.2 Kahn Process Networks
	2.5.3 SDF
	2.5.4 Simulink

	2.6 Petri Nets
	2.6.1 Introduction
	2.6.2 Condition/Event Nets
	2.6.3 Place/Transition Nets
	2.6.4 Predicate/Transition Nets
	2.6.5 Evaluation

	2.7 Discrete Event-Based Languages
	2.7.1 Basic Discrete Event Simulation Cycle
	2.7.2 Multi-Valued Logic
	One Signal Strength (Two Logic Values)
	Two Signal Strengths (Three and Four Logic Values)
	Three Signal Strengths (Seven Signal Values)
	Four Signal Strengths (Ten Signal Values)
	Five Signal Strengths

	2.7.3 Transaction-Level Modeling (TLM)
	2.7.4 SpecC
	2.7.5 SystemC
	2.7.6 VHDL
	Introduction
	Entities and Architectures
	Assignments
	VHDL Processes
	The VHDL Simulation Cycle
	IEEE 1164

	2.7.7 Verilog and SystemVerilog

	2.8 von Neumann Languages
	2.8.1 CSP
	2.8.2 Ada
	2.8.3 Communication Libraries
	MPI
	OpenMP

	2.8.4 Additional Languages

	2.9 Levels of Hardware Modeling
	2.10 Comparison of Models of Computation
	2.10.1 Criteria
	2.10.2 Unified Modeling Language (UML)
	2.10.3 Ptolemy II

	2.11 Problems

	3 Embedded System Hardware
	3.1 Introduction
	3.2 Input: Interface Between Physical and Cyber-World
	3.2.1 Sensors
	3.2.2 Discretization of Time: Sample-and-Hold Circuits
	3.2.3 Fourier Approximation of Signals
	3.2.4 Discretization of Values: Analog-to-Digital Converters
	Flash ADC
	Successive Approximation
	Pipelined Converters
	Other Converters
	Comparison of ADCs
	Quantization Noise

	3.3 Processing Units
	3.3.1 Application-Specific Integrated Circuits (ASICs)
	3.3.2 Processors
	Energy Efficiency
	Code Size Efficiency
	Execution Time Efficiency Using Digital Signal Processing as an Example
	Multimedia and Short Vector Instruction Sets
	Very Long Instruction Word (VLIW) Processors
	VLIW Pipelines

	Multi-core Processors
	Graphics Processing Units (GPUs)
	Multiprocessor Systems on a Chip (MPSoCs)

	3.3.3 Reconfigurable Logic

	3.4 Memories
	3.4.1 Conflicting Goals
	3.4.2 Memory Hierarchies
	3.4.3 Register Files
	3.4.4 Caches
	3.4.5 Scratchpad Memories

	3.5 Communication
	3.5.1 Requirements
	3.5.2 Electrical Robustness
	3.5.3 Guaranteeing Real-Time Behavior
	3.5.4 Examples

	3.6 Output: Interface Between Cyber and Physical World
	3.6.1 Digital-to-Analog Converters
	3.6.2 Sampling Theorem
	3.6.3 Pulse-Width Modulation
	3.6.4 Actuators

	3.7 Electrical Energy
	3.7.1 Energy Sources
	3.7.2 Energy Storage
	3.7.3 Energy Efficiency of Hardware Components
	The Case of Mobile Phones
	Sensor Networks

	3.8 Secure Hardware
	3.9 Problems

	4 System Software
	4.1 Embedded Operating Systems
	4.1.1 General Requirements
	4.1.2 Real-Time Operating Systems
	4.1.3 Virtual Machines

	4.2 Resource Access Protocols
	4.2.1 Priority Inversion
	4.2.2 Priority Inheritance
	4.2.3 Priority Ceiling Protocol
	4.2.4 Stack Resource Policy

	4.3 ERIKA
	4.4 Embedded Linux
	4.4.1 Embedded Linux Structure and Size
	4.4.2 Real-Time Properties
	4.4.3 Flash Memory File Systems
	4.4.4 Reducing RAM Usage
	4.4.5 uClinux: Linux for MMU-Less Systems
	4.4.6 Evaluating the Use of Linux in Embedded Systems

	4.5 Hardware Abstraction Layer
	4.6 Middleware
	4.6.1 OSEK/VDX COM
	4.6.2 CORBA
	4.6.3 POSIX Threads (Pthreads)
	4.6.4 UPnP and DPWS

	4.7 Real-Time Databases
	4.8 Problems

	5 Evaluation and Validation
	5.1 Introduction
	5.1.1 Scope
	5.1.2 Multi-Objective Optimization
	5.1.3 Relevant Objectives

	5.2 Performance Evaluation
	5.2.1 Early Phases
	5.2.2 WCET Estimation
	5.2.3 Real-Time Calculus

	5.3 Quality Metrics
	5.3.1 Approximate Computing
	5.3.2 Simple Criteria of Quality
	5.3.3 Criteria for Data Analysis

	5.4 Energy and Power Models
	5.4.1 General Properties
	5.4.2 Energy Model for Memories
	5.4.3 Energy Model for Instructions
	5.4.4 Energy Model for Functional Processor Units
	5.4.5 Energy Model for Processor and Memory
	5.4.6 Energy Model for an Application
	5.4.7 Energy Model for Multiple Applications with Hardware Multithreading
	5.4.8 Energy Model for an Android Mobile Phone
	5.4.9 Worst Case Energy Consumption

	5.5 Thermal Models
	5.5.1 Steady-State Behavior
	5.5.2 Transient State Behavior

	5.6 Dependability and Risk Analysis
	5.6.1 Aspects of Dependability
	5.6.2 Security Analysis
	5.6.3 Safety Analysis
	5.6.4 Reliability Analysis
	5.6.5 Fault Tree Analysis, Failure Mode, and Effect Analysis

	5.7 Simulation
	5.8 Rapid Prototyping and Emulation
	5.9 Formal Verification
	5.10 Problems

	6 Application Mapping
	6.1 Definition of Scheduling Problems
	6.1.1 Elaboration on the Design Problem
	6.1.2 Types of Scheduling Problems
	The α Field
	The β Field
	The γ Field

	6.2 Scheduling for Uniprocessors
	6.2.1 Scheduling for Independent Jobs
	Earliest Due Date (EDD) Algorithm
	Earliest Deadline First (EDF) Algorithm
	Least Laxity (LL) Algorithm
	Scheduling Without Preemption

	6.2.2 Scheduling with Precedence Constraints
	Task Graphs
	Latest Deadline First (LDF) Algorithm

	6.2.3 Periodic Scheduling Without Precedence Constraints
	Notation
	Rate Monotonic Scheduling
	Earliest Deadline First Scheduling
	Explicit-Deadline Tasks
	Deadline Monotonic Scheduling

	6.2.4 Periodic Scheduling with Precedence Constraints
	6.2.5 Sporadic Events

	6.3 Scheduling for Independent Jobs on Identical Multiprocessors
	6.3.1 Partitioned Scheduling
	6.3.2 Global Dynamic-Priority Scheduling
	Proportional Fair (Pfair) Scheduling

	6.3.3 Global Fixed-Job-Priority Scheduling
	G-EDF Scheduling
	EDZL Scheduling

	6.3.4 Global Fixed-Task-Priority Scheduling
	Global Rate Monotonic Scheduling
	RMZL Scheduling
	Partitioned Scheduling for Explicit Deadlines

	6.4 Dependent Jobs on Homogeneous Multiprocessors
	6.4.1 As-Soon-as-Possible Scheduling
	6.4.2 As-Late-as-Possible Scheduling
	6.4.3 List Scheduling
	6.4.4 Optimal Scheduling with Integer Linear Programming

	6.5 Dependent Jobs on Heterogeneous Multiprocessors
	6.5.1 Problem Description
	6.5.2 Static Scheduling with Local Heuristics
	6.5.3 Static Scheduling with Integer Linear Programming
	6.5.4 Static Scheduling with Evolutionary Algorithms
	6.5.5 Dynamic and Hybrid Scheduling

	6.6 Problems

	7 Optimization
	7.1 High-Level Optimizations
	7.1.1 Simple Loop Transformations
	7.1.2 Loop Tiling/Blocking
	7.1.3 Loop Splitting
	7.1.4 Array Folding
	7.1.5 Floating-Point to Fixed-Point Conversion

	7.2 Task-Level Concurrency Management
	7.3 Compilers for Embedded Systems
	7.3.1 Introduction
	7.3.2 Energy-Aware Compilation
	7.3.3 Memory-Architecture Aware Compilation
	Compilation Techniques for Scratchpads
	Non-overlaying Allocation
	Overlaying Allocation
	Multiple Threads/Processes
	Supporting Different Architectures and Objectives

	7.3.4 Reconciling Compilers and Timing Analysis

	7.4 Power and Thermal Management
	7.4.1 Dynamic Voltage and Frequency Scaling (DVFS)
	7.4.2 Dynamic Power Management (DPM)
	7.4.3 Thermal Management

	7.5 Problems

	8 Test
	8.1 Scope
	8.2 Test Procedures
	8.2.1 Test Pattern Generation for Gate-Level Models
	8.2.2 Self-Test Programs

	8.3 Evaluation of Test Pattern Sets and System Robustness
	8.3.1 Fault Coverage
	8.3.2 Fault Simulation
	8.3.3 Fault Injection

	8.4 Design for Testability
	8.4.1 Motivation
	8.4.2 Scan Design
	8.4.3 Signature Analysis
	8.4.4 Pseudo-random Test Pattern Generation

	8.5 Problems

	A Integer Linear Programming
	B Kirchhoff's Laws and Operational Amplifiers
	B.1 Kirchhoff's Laws
	B.2 Operational Amplifiers

	C Paging and Memory Management Units
	References
	Index

