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ABOUT THE BOOK 

Welcome! 
This textbook is prepared explicitly for students seeking a degree 

in an Architecture program and taking an introductory course in 
structural engineering. It is assumed that students referring to this 
textbook have a minimum background in math and physics. 
Therefore, principal concepts are explained using visual 
demonstrations, videos, graphics, and jargon-free descriptions. 
Wherever a minimum knowledge of trigonometry and math is 
required, additional materials are introduced for review. Unlike a 
standard textbook, this textbook aims to support student’s self-
exploration of foundational topics on structural design rather than 
providing them with a script to assimilate and repeat. Therefore, it 
contains a collection of visual materials and interactive resources 
readily available online developed by research groups and public 
agencies. In addition, examples are included to clearly explain the 
theories and math problems. 

I hope this textbook is an accessible and enjoyable resource to 
support your learning about fundamental concepts of structural 
design. I acknowledge that this textbook will never really be 
finished. It can always be better. The readers’ perspectives on both 
content and style are valued as I revise and improve this book. 
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CHAPTER  1 

Loads on Structures 

This chapter will discuss different types of loads and how you may 
consider them in structural design. Before analyzing the statics and 
mechanics of structures, it is essential to learn how much load a 
structure may carry. 

DIFFERENT TYPES OF LOADS ON STRUCTURES 

• Static loads 

“Static loads are assumed to be applied slowly to a structure until it 
reaches its peak value without fluctuating rapidly in magnitude or 
position. Under a static load, a structure responds slowly, and its 
deformation reaches a peak when the static force is maximum.” [1] 

• Dynamic loads 

“Dynamic loads are applied suddenly to a structure, often with 
rapid changes in magnitude and point of application. Under a 
dynamic load, a structure develops inertial forces in relation to 
its mass, and its maximum deformation does not necessarily 
correspond to the maximum magnitude of the applied force. The 
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two major types of dynamic loads are wind loads and earthquake 
loads”. [1] 

• Impact loads 

An impact load, which is categorized as a dynamic load in some 
references, acts rapidly on a structural system and causes 
vibration. The created vibration hinders the structural system from 
reaching the state of equilibrium. 

 
Loads on structures are classified into the following categories: 

• Dead load – D 

• Floor live load – L 

• Roof live load – Lr 

• Snow load – S 

• Wind load – W 

• Earthquake loads – E 

• Rain load – R 

• Soil and Hydrostatic Pressure and Flood Loads – H 

• Ice load 
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Figure 1-1: Some types of loads that act on a 
typical building 

The American Society of Civil Engineers (ASCE) provides a 
standard, SEI/ASCE 7-02, that addresses the definition of different 
types of loads and determines minimum design loads for buildings. 

Combinations of loads 

Buildings are not designed for ALL the possible loads that may 
affect them, but rather a reasonable combination of loads. 
Buildings will rarely be impacted by the dead load, maximum of live 
load, snow load, earthquake load, wind load, and an impact load 
at a single moment. The reasonable combinations of the loads are 
also defined in the ASCE 7 Standard. For example, the following 
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load combinations may be studied, and whichever produces the 
most unfavorable effect should be taken into account for structural 
design. 

1. D+ F 

2. D + H + F + L + T 

3. D + H + F + (Lr or S or R) 

4. D + H + F + 0.7S(L + T) + 0.7S(Lr or S or R) 

5. D + H + F + (W or 0.7 E) 

6. D + H + F + 0.7S(W or 0.7E) + 0.7SL + O.7S(Lr or S or R) 

7. 0.6D + W + H 

8. O.6D + 0.7E + H 

 

Dead load 

Dead load is simply the self-weight of all major construction 
materials, including the building structures, permanent walls, fixed 
utilities, and equipment (e.g., HVAC systems). The weight of each 
structural component can be measured by multiplying the volume 
of components by their density (Mass = Volume x Density). 

Density (pounds per cubic foot)=(Mass (lbs))/(Volume (cubic feet)) 
Dead load (lbs)=  Density (pcf) x Volume (cf) 

Dead load units: 
Pounds per linear foot (plf)      →  plf is used for describing the DL 
of beams and columns 
Pounds per square foot (psf)    →  psf is used for describing the DL 
of slabs 
For example, the weight of the wood beam shown below can be 
computed and described in pounds per linear foot (plf) by 
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multiplying its density of 35 pounds per cubic foot (PCF) and its 
volume. 

DL = volume  x  density 
(11.25/12 ft) X (3.5/12 ft)   x 1 

ft   x 35 pcf = 9.57 plf 
(3.5)/12 x (11.25)/12 ft2 x 35 

lbs = 9.57 plf 
 
 

Live load 

Live load is based on 
occupancy and includes the weight of the people, furniture, 
machinery (e.g. in a factory), vehicles, and equipment being used 
temporarily. There are two types of live loads: 

• Floor live load 

• Roof live load (e.g. the weight of roof garden or the 
maintenance personnel and their equipment) 

The live loads used in the structural analysis should not be less than 
the minimum uniformly distributed unit loads required by building 
codes. You may refer to the International Code Council (ICC) to 
learn more about the estimated live loads in different spaces for 
various occupancies (see table of minimum uniformly distributed 
live loads and minimum concentrated live loads). 

Wind load 

The wind blowing against a building may be strong and cause 
discomfort or may be extreme, such as a tornado, hurricane, or 
heavy storm, and cause destruction. While wind load, like 
earthquake load, is three-dimensional in nature, its horizontal 
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component is considered more critical in structural design. Thus, 
wind load is classified as a lateral load. 

Wind load is a pressure load whose effect on buildings of regular 
shape (e.g. cubic buildings) can be analyzed considering the basic 
pressure equation. Wind speeds vary in different zones. For 
example, the wind load in Portland, OR, is 16 psf. Wind loads on 
every building should be determined in accordance with Chapters 
26 to 30 of ACSE 7. See section 1609 and the map of basic design 
wind speed, V, for risk category II, III, and other structures. 

Figure 1-2: Wind zones in the United States of America (Source: USA 
Natural Hazards Map, 2012, https://www.flickr.com/photos/konabish/

6810939678) 
If the configuration of a building is complex or it has a high 
importance factor, you may need to conduct a wind tunnel test. 
There are not many laboratories around that do the wind tunnel 
test because it is expensive to have the facilities. You can send 
your design to those labs, and they will send back the pressure 
data to you. Then, engineers can design a suitable structure. Watch 
video 1-1 (https://www.youtube.com/watch?v=UEgk2Bgz16s&t=1s) 
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to see flow visualization around simple building shapes in a wind 
tunnel. In the following, video 1-2 (https://www.youtube.com/
watch?v=tHMPR7flpf4&t=250s) shows how tall buildings tame the 
wind. 

 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=5#oembed-1 

Video 1-1: Flow visualization around simple building shapes in the wind 
tunnel  

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=5#oembed-2 

Video 1-2: How tall buildings tame the windSome software systems 
allow you to simulate the test. WIND CFD (Computational Fluid 
Dynamics) software is one of them. You can use the results of these 
simulation programs in the conceptual phases of design. But for 
critical buildings such as towers, the outcome of the simulation 
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programs is not sufficient for specifying the structural system, and 
a wind tunnel test is still required. 

 

Snow load 

Snow loads result from the weight of snow accumulating on a flat 
or sloped roof. Snow loads vary with geographic location, wind 
condition, geometry and slope of the roof, building, and site 
exposure. For example, a minimum of 54 psf snow load should be 
considered for buildings constructed in Montréal, QC, while 10 psf 
snow load is recommended for designing structures in Portland, 
OR. See section 1608 and the map of ground snow loads for the 
United States. 

Earthquake load 

The tectonic plates are always slowly moving, but they get stuck at 
their edges due to friction. When the stress on the edge overcomes 
the friction, an earthquake releases energy in waves that travel 
through the earth’s crust and causes the shaking that we feel. An 
earthquake is caused by a sudden slip on a fault and may consist of 
a series of longitudinal and/or transverse waves known as P-wave 
or S-wave, respectively. A P-wave is the fastest wave. 

Although earthquake vibrations are three-dimensional, their 
horizontal components are more critical in designing structural 
systems. Thus, generally, we consider earthquake load as a lateral 
force acting on a building. The earthquake load depends on how 
close the building is to fault lines. To read more about earthquakes, 
see “What is an earthquake and what causes them to happen?“. You 
may explore the latest earthquakes map and list for the U.S. and 
worldwide. 
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Figure 1-3: Tectonic plates 
In addition to various types of damage to building structures, 

there are three major ground failures caused by earthquakes: 

• Landslides, particularly when the land is wet. 

• Liquefaction: Sandy soils can be liquified by even a light 
ground shaking when saturated by water. 

• Subsidence: Non-uniform ground sink 

In the following, video 1-3 (https://www.youtube.com/
watch?v=e7ho6z32yyo&t=1s) explains how earthquakes impact 
buildings and our cities. Video 1-4 (https://www.youtube.com/
watch?v=jhRuUoTnA6g&t=2s) discusses if the earthquakes are 
predictable. Video 1-5 (https://www.youtube.com/
watch?v=H4VQul_SmCg&t=2s) shows how earthquakes impact tall 
buildings. 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=5#oembed-3 

Video 1-3: How earthquakes impact buildings and our cities. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=5#oembed-4 

Video 1-4: Are earthquakes predictable? 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=5#oembed-5 
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Video 1-5: How buildings fall in earthquakes. 

TOPICS FOR CRITICAL THINKING 

• Considering the reality of climate change, we have been 
experiencing unexpected extreme weather conditions, 
such as wildfire in mild and humid regions, floods in arid 
areas, and snowstorms in semi-arid or marine west coast 
regions. How do current load requirements for structural 
design respond to unexpected weather conditions? 
Should we reconsider load requirements in building 
codes? 

• Should we treat all buildings the same? For example, 
should the structural design requirements be the same 
for hospitals, fire or police departments, and warehouses? 

• How does a tuned mass damper support building 
resiliency against earthquakes? 

• How does a base isolation system support building 
resiliency against earthquakes? 
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CHAPTER  2 

Forces and Vector Analysis 

REPRESENTATION OF FORCES 

In physics and mechanics, forces are represented by vectors. 
Simon Stevin, a Flemish mathematician and physicist, was the first 
one who explained the vector analysis. 
A vector is a straight arrow pointing in the direction in which it 
acts. A vector is defined by: 

• Magnitude 

• Direction 

• Point of Application (position) 
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Figure 2-1: A vector is defined by magnitude, direction and point of 
application (position) 

Forces may act on structural elements at one or multiple points. 
For example, a column that sits directly on a concrete slab applies 
a point load on a surface. Also, forces may be distributed uniformly 
(like the self-weight of a beam) or non-uniformly (like fluid pressure 
or snowdrift) along the length or surface of a structural element. 

Figure 2-2: Distribution of load on a simple beam 
The total magnitude of a distributed load can be represented 

as a single (resultant) load applied at the center of gravity. In two 
dimensions, the center of gravity is the same as the center of area 
of the distribution pattern. 
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Figure 2-3: Equivalent point loads of two distributed loads 
The image shown below represents different distribution 

patterns and the location of their center of area. 

 Figure 2-4: The center of gravity of different distribution patterns of 
loads 
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CHARACTERISTICS OF FORCES 

Forces may cause: 

• Tension: pulling apart. 

• Compression: pushing together. 

• Bending: applying equal and opposite couples in its own 
plane to an element; Or applying transverse forces to an 
element at some distance from its support. 

• Torsion: twisting action from applying equal and opposite 
couples to the ends of a similar element in planes at a 
right angle to its axis. 

• Shear: an action that tends to cause slipping of one part 
of an element on another. 
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Figure 2-5: Different characteristics of loads. 
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Note: The “Buckling” effect in long compression members will be 
discussed in Chapter 11. 

FORCE SYSTEMS 

Force vectors may pass through a single point (concurrent) or be 
parallel (non-concurrent). Furthermore, force vectors may lay in 
a single plane (coplanar) or cannot be in a single plane (non-
coplanar). Therefore, four different force systems can be identified: 

• Concurrent – Coplanar 

• Non-concurrent – Coplanar 

• Concurrent – Non-coplanar 

• Non-concurrent – Non-coplanar 

Figure 2-6: Different force systems 
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FORCE ADDITION 

1. Adding inline forces 

If force vectors are all inline, you can simply add their magnitudes 
to find the resultant. You can see an example of linear addition in a 
tug-of-war rope contest. 

Figure 2-7: When the two force vectors are applied in two different 
directions and have the same magnitude the resultant equals to zero. 

Figure 2-8: When the total of one set of force vectors are greater than 
the other set the resultant will be applied to the direction of the set with 
greater magnitude. 

2. Adding orthogonal forces 

Two orthogonal forces can be added together, simply by using the 
Pythagorean Theorem. The resultant equals to the hypotenuse. 
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You may refer to “Intro to the Pythagorean theorem” at Khan 
Academy to review the Pythagorean equation. 

Figure 2-9: The resultant of two orthogonal forces equals the 
hypotenuse of the corresponding triangle 

3. Adding two or more forces using graphic methods 

You may add two or multiple force vectors by drawing either the 
force polygon or force parallelogram to find the resultant. In 
both cases, first, you should draw the force vectors to scale. Then, 
if you draw the force polygon, add the forces head to tail, and the 
resultant is the vector that closes the polygon tail to head. 
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Figure 2-10: Adding two or more forces using the method of force 
polygon 

You can draw the force parallelogram by pairing force vectors 
and drawing the diagonal of the corresponding parallelogram. 
Then, the resultant is the diagonal of the last parallelogram. 

Figure 2-11: Adding two or more forces by drawing the force 
parallelogram 
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4. Adding two or more forces using an analytical method 

When there are multiple force vectors, you may break each force 
vector into its horizontal and vertical components, sum all 
horizontal vectors together, sum all vertical components, and find 
the resultant of the orthogonal vectors. For example, F1, F2, and F3, 
shown below, are broken into their orthogonal components. Then, 
all horizontal components are added together, and all the vertical 
components are added together. Finally, the resultant of the two 
horizontal and vertical vectors can be calculated by using the 
Pythagorean theorem. 

 
ΣFx = F1x + F2x + F3x        ,     

 ΣFx = -3 +7-2= 2 
ΣFy = F1y + F2y + F3y         ,     

 ΣFy = 5 +3 -2 = 6 
Ftotal = √(22  + 62 )= √40 = 6.32 
 
If you would like to review 

the fundamentals of vectors 
analysis, see Khan Academy’s module on Vectors. 

The basics of orthogonal triangle trigonometry are represented 
below. Moreover, you may review right triangles & trigonometry at 
Khan Academy. 
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Figure 2-12: Basic review on solving orthogonal right-angle triangles 

EQUILIBRANT 

The equilibrant is a vector that has the same size as the resultant 
but is in exactly the opposite direction. Equilibrant balances the 
forces and makes them not push. 
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Figure 2-13: Resultant vs. equilibrant 
Watch the following video in “Equilibrium of a Point” 

(https://www.youtube.com/watch?v=a2IX52UlCWE) to learn what 
condition must a point in a structure satisfy to remain in 
equilibrium. 

One or more interactive elements has been excluded from this version of the text. 
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You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=22#oembed-1 

Video 2-1: Adding force vectors and equilibrium of a point 

TOPICS FOR CRITICAL THINKING 

• We want to hold a bucket of 50 lbs by a rope pulling it 
from two sides. How much is the tension force in each 
side of the rope? 

• Do you think that you can flatten a clothesline? 
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(Image source: Clothes Line, https://www.flickr.com/photos/
bmitd67/5045044902) 

• Play around vector addition using PhET interactive 
simulator provided by the University of Colorado Boulder. 

• Practice application of principles of vector addition using 
the Vector Guessing Game Interactive. 

• What is the difference between deflection and bending? 
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CHAPTER  3 

Equilibrium 

MOMENT OF FORCE 

Sometimes the reaction to a force is not in the same line with the 
force and causes twisting. This twisting effect is called the moment 
of the force. Moment of the force depends on two parameters: 
• force 
• its distance between the force path and the point about which 
the moment is taken. 
Thus, the moment of the force is defined as: 

force × perpendicular distance between the force path and 
the point about which the moment is taken 
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Figure 3-1: Moment of the force = force × perpendicular distance force × perpendicular distance 
between the force path and the point about which the moment is between the force path and the point about which the moment is 
taken taken 
There is a sign convention for rotational forces. This sign 
convention does not relate to the direction of the force arrow but 
the direction of the rotation. 

Figure 3-2: Sign convention for moment of the force 

NEWTON’S FIRST LAW 

An object at rest will remain at rest unless acted upon by an outside 
external net force. 
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Figure 3-3: Application of Newton’s first law in finding end reactions 
of simple beams 

The following video (https://www.youtube.com/
watch?v=6zXkYjmvLuI) explains the two conditions a body must 
satisfy to remain in equilibrium. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=24#oembed-1 

Video 3-1: Equilibrium of a body 
You can see the rotational equilibrium in action in a balanced 

seesaw (lever) at your local playground. In the following image, the 
two individuals can determine the suitable length of the moment 
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arm by adjusting their distances from the fulcrum to balance the 
seesaw. 

Figure 3-4: Equilibrium in a balanced seesaw 
Rotational equilibrium requires:   M1 + M2 = 0 
M1 = F1 × d1                               M1 = 25 × 4 = – 100 
M2 = F2 × d2                             M2 = 100 × 1 = +100 

Stability against overturning 

Watch the following video (https://www.youtube.com/
watch?v=iDzp6xEAT2I) to learn how retaining walls work and how 
they resist sliding and overturning. This is similar to how the 
building as a whole needs to resist the hydrostatic and wind loads 
mentioned in Chapter 1. 

One or more interactive elements has been excluded from this version of the text. 
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You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=24#oembed-2 

Video 3-2: Stability of retaining walls 
Resisting gravity must be greater than the overturning moment:

MR>  MO 
 

Example: 
A concrete wall with a density 

of 150 pcf is expected to retain 
a mass of soil on one side. The 
distributed lateral load 
affecting the wall is equivalent 
to a point load of the soil at 24 
psf. Study the wall stability 
against overturning and see if 
the wall stands the lateral load. 

From the weight of the 
concrete wall: 

MR = F x d = 1500 × (3/12) = 
375 lbs-ft 

From the soil: 
Mo = F x d = 240 × 2.5’ = – 600 
Thus, the wall falls over! 
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ARCHIMEDES’ PRINCIPLE OF THE LEVER 

Archimedes’ principle of the level indicates that two forces will 
balance at distances reciprocally proportional to their magnitudes. 

Figure 3-5: Archimedes’ principle of the level 
“Give me a place to stand, and I shall move the Earth.” To learn 

more about Archimedes’ idea and the amazing implications and 
uses of the lever, watch the following video 
(https://www.youtube.com/watch?v=YlYEi0PgG1g): 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=24#oembed-3 

Video 3-3: How levers work 
Archimedes principle is applicable in the determination of the 

end reactions of beams at their supports. 
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Figure 3-6: Application of Archimedes’ principle of the level in finding 
end reactions in simple beams. 

DETERMINATION OF THE END REACTIONS IN SIMPLE 
BEAMS 

There can be three reaction vectors in simple beams upon the 
support conditions: horizontal, vertical, and rotational. 

Figure 3-7: Reactions in beams with different support conditions 
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Figure 3-8: Hinged (pinned) connections in the structure of Renault 
Center in Britain 

Figure 3-9: Hinged (pinned) connections in the structure of George 
Pompidou Center 
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Example 1 

Using Newton’s first law or Archimedes principle of the lever, we 
can study the following simple beam and find the shares of the two 
end supports of reacting to the point load P applied to the beam. 

To proceed: 

1. Label components of reactions. Consider the support 
condition and see if you should include vertical, 
horizontal, and rotational reactions. 

2. Use the summation of moments about A to find RB. 

3. Use the summation of moments about B to find RA OR 
Find RA load by summing vertical forces. 

Σ Fx = 0    All horizontal forces must balance out to zero. No 
horizontal force! 

Σ FY = 0  All vertical forces must balance out to zero. 
RA+RB  -10=0 
RA+RB=10 
Σ M1 = 0  All rotational forces must balance out to zero. 
P × a – RB×L+RA×0 = 0 
10 × 4 – RB×12+0= 0 
RB = 40/12 =3.33 kip 
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RA = 10 – 3.33 = 6.67  kip 

Example 2 

Find the end reactions at the supports of the simple beam shown 
below: 

The effect of the distributed load applied to the beam can be 
studied by replacing it with its equivalent point load shown below: 

Σ Fx = 0    All horizontal forces must balance out to zero. 
No horizontal force! 
Σ FY = 0  All vertical forces must balance out to zero. 
P= w × d = 5 × 5 = 25 k 
RA+RB -25 = 0 
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RA+RB = 25 
Σ M_A = 0  All rotational forces must balance out to zero. 
25 × 6.5 – RB×12+RA×0 = 0 
RB = 162.5 / 12 = 13.54 k 
RA = 25 – 13.54 = 11.46 k 

Example 3 

Find the end reactions at the support of the cantilever beam shown 
below: 

Σ Fx = 0 
Σ FY = 0 
The length of the beam loaded uniformly = 12-5 = 7 
P= w × d = 6 × 7 = 42 kips 
The moment arm of the uniformly distributed load w = 5 + 7/2 = 

8.5 
RA-42=0 
RA=42 
Σ MA = 0  All rotational forces must balance out to zero. 
42 × 8.5 – MA = 0 
MA = 357 kips. ft 
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TOPICS FOR CRITICAL THINKING 

• Use a beam calculator interface to check your calculations 
when solving the reactions at the supports of a beam. 
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CHAPTER  4 

Catenary Cables and Arches 

CATENARY CABLES 

GEOMETRY AND BASIC PRINCIPLES 

Cables are structural elements that can hold a great amount of 
tensile force with a relatively small cross-sectional area. Thus, 
cables are considered highly efficient structural components, and 
one of the most economical ways to span a large distance is 
employing a cable system. However, cables can resist only axial 
tensile forces and not any compression or bending moment. Since 
cables have a minimal cross-sectional area, they are flexible 
elements and change their shapes under different load conditions 
to reach equilibrium. For example, a cable under a simple point 
load forms two straight lines meeting at the point of application 
of the load. Cables under a uniformly distributed load sag in a 
catenary shape or a parabola. 
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Figure 4-1: Forms of cables under different load conditions 
A catenary is a funicular shape for an unloaded cable and is 

determined solely by the self-weight of the cable, which is 
uniformly distributed along its length. A catenary cable sags under 
such a uniformly distributed load along its length, and transfers the 
load to its two supports in equal shares. 

In contrast, a parabola is a funicular shape of a suspension cable 
loaded uniformly across its span. Although, the self-weight should 
be insignificant compared with the load to give a pure parabola 
shape to a cable. 

 

Figure 4-2: A catenary cable vs. a cable with a parabola shape 
Where the sag-to-span ratio is greater than 5, the two shapes 

are nearly identical, and mathematically, it is simpler to utilize a 
parabola for analysis. 
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Figure 4-3: The difference of a catenary shape and a parabola 
The load and the sag-to-span ratio determine the tensile force 

in a cable. Thus, in catenary cable structures, the sag-to-span ratio 
is a primary structural design consideration. The sag-to-span ratio 
influences: 

• Cable forces: they are inversely proportional to sag. 

• Inward thrust 

• Cable length and the cable diameter: as the cable length 
decreases, a greater diameter is required. 

• The column or tower (mast) height and the compressive 
forces 
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Figure 4-4: The relation between the horizontal thrust and the sag-
to-span ratio in a loaded cable 

For a uniformly loaded parabolic cable, the optimum sag-to-span 
ratio is 33%. 

Most of the suspended roof structures (where cables are used 
for building the roof) have a sag-to-span-ratio of 1:8 to 1:10. 

CLASSIFICATION OF THE TOPOLOGY OF CABLE 
STRUCTURES 

Classification of cable structures allows a better understanding of 
their behavior and the determination of suitable design 
techniques. Cable structures can be classified into three main 
categories: 
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1. Single-curvature structures: A series of parallel catenary 
cables span between primary supports and hold a deck 
directly or hold a series of secondary vertical cables that 
carry the deck. A well-known example of this type of cable 
structure is the Dulles Airport Terminal. There are several 
suspension bridges where single-curvature cables shape 
the main configuration of the structural system. Akashi 
Kaikyo Bridge in Japan, Nansha Bridge in China, 
Verrazzano-Narrows Bridge in New York, Golden Gate 
Bridge in San Francisco, and Mackinac Bridge in Michigan 
are suspension bridges with single-curvature 
configurations. 

2. Double-cable structures: Some stabilizing cables are 
added below the primary suspensions cabless to resists 
the wind uplift. In Utica Memorial Auditorium, two layers 
of pre-tensioned cables span between an outer 
compression ring and a central tension ring. 

3. Double-curvature structures: Some stabilizing cables are 
added below the primary suspensions cables to resists 
the wind uplift. Similar to a saddle shape, the primary 
suspension cables sag between the supports and cover 
the span. The stabilizing cables run in a perpendicular 
direction with an opposite curvature. The roof of Dorton 
Arena in Raleigh is composed of a double-curvature cable 
structure and two compressive arches. 
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Figure 4-5: Different types of cable structures 
Watch the following video (https://www.youtube.com/

watch?time_continue=1&v=caTaBeKUh-U&feature=emb_logo) on 
suspension bridges and review what is discussed so far. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=26#oembed-3 

Video 4-1: Structural behavior of suspension bridges 

MATERIALITY 

Cables can be of mild steel, high strength steel, stainless steel, 
polypropylene, fiberglass, and carbon. High-strength steel cables 
are the most reliable and economical material for linear tensile 
members. Structural cables are made of a series of small strands 
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twisted or bound together to form a much larger cable. Usually, the 
steel used in cable structures has breaking stresses that exceeds 
200,000 psi which is 4 times the strength of structural steel sections 
common in building construction. 

THE PRINCIPAL ELEMENTS OF A CABLE-SUPPORTED 
STRUCTURE 

A cable-supported structural system includes main cables, vertical 
supports or towers, anchorages, and stabilizers. Vertical supports 
may be masts, diagonal struts, walls, vertical or sloping piers. 
Vertical supports keep the cables above the ground and provide 
essential reactions. 

Since the main cables are not placed vertically, the carried axial 
forces have a horizontal component. This horizontal thrust should 
be resisted by a suitable anchorage system. Therefore: 

1. The main cables of a suspension bridge may be attached 
to the ground and be earth-anchored.

Figure 4-6: An earth-anchored suspension bridge 
    2. In a self-anchored suspension bridge, the main cables may 

be attached to the end of the road deck. 
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Figure 4-7: A self-anchored suspension bridge 
Another type of self-anchoring bridges is where multiple primary 

cables hold the deck and their connection pattern may resemble a 
harp, a fan, or a star. 

Figure 4-8: Different patterns of connecting cables to the bridge deck 
Cables must change shape whenever the loads shift in location or 
amount. This flexibility brings practical difficulties. Thus, we must 
stiffen the cables by means of a beam, truss and stabilizers. 
Uneven loading such as wind, and vibration may be destructive. 
Considering a clothes-line you may propose different ideas for 
stabilization of the cable against wind loads. 
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Figure 4-9: Different ideas for stabilizing a cable against wind loads 
Usually, designers use the dead weight of the roof/deck 
construction, a rigid surface that includes the main cables, a set of 
pre-tension cables with reverse curvature from the main cable, or 
restraining cables to stabilize cable-stayed structures. In the Dulles 
Airport Terminal, you can see some of these thoughtful ideas are 
applied to stabilize the cable-stayed roof structure. 
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Figure 4-10: Different ideas for stabilizing a cable-stayed roof 
structure. Note: Primary cables carry gravity loads and secondary 

cables stabilize the bridge against uplift forces. 
Furthermore, stabilizers are employed to prevent structural 

destruction due to probable resonance. All materials have a natural 
molecular vibration or frequency range. If an outside force acts on 
a material within that natural frequency range, it causes the outer 
and inner forces to become tuned, and the material undergoes 
destruction. Watch video 4-2 (https://www.youtube.com/
watch?v=n9ULMIjvSIg) to learn more about the effect of resonance 
on building structures. 

One or more interactive elements has been excluded from this version of the text. 
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You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=26#oembed-4 

Video 4-2: The effect of resonance on structures 
Tacoma Narrows Bridge was a suspension bridge in the state 

of Washington that collapsed on November 7, 1940. The bridge 
collapsed because normal speed winds produced aeroelastic 
flutter that matched the bridge’s natural frequency. The collapse 
of the bridge was recorded on film by Barney Elliott, owner of 
a local camera shop. See the collapse of the Tacoma Bridge in 
the following video (https://www.youtube.com/
watch?v=XggxeuFDaDU&t=1s). 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=26#oembed-1 

Video 4-3: Tacoma Bridge destruction 
In addition to analyzing the principal elements, a cable-

supported structure should be finely studied regarding corrosion 
protection, in-service inspection, fire resistance, and effects on the 
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structure due to the removal and replacement of cables during the 
lifetime of the structure. 

CATENARY ARCHES 

Arches have been used in many subtle historical constructions. 
A catenary arch redirects forces into axial compression to span 
an opening. How do arches work? Watch the following video 
(https://www.youtube.com/
watch?time_continue=3&v=JlL6ZHChhQE&feature=emb_logo) to 
learn about their behavior and discover an intriguing relationship 
between arches and hanging chains. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=26#oembed-2 

Video 4-4: Structural behavior of arches 
As you learn from the video, a funicular arch is the inverted 

compressive equivalent of a suspension cable. In the 17th century, 
Robert Hooke studied the catenary forms of a hanging chain and 
discovered this principle. A catenary arch is subject to carry only 
axial compression and not bending forces. 

52 ANAHITA KHODADADI



Figure 4-11: The relation between a funicular arch and its 
corresponding funicular cable 

Suppose the applied load is distributed uniformly along the 
length of an arch. In that case, the funicular arch should be 
equivalent to an inverted catenary cable to carry the loads only 
in axial compression. On the other hand, if the load is distributed 
uniformly along the span, the form of the funicular arch should be 
equivalent to a parabola. 
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Figure 4-12: A catenary arch vs. an arch with a parabola shape 
If the magnitude and direction of the forces on a cable change, 

the resulting form of the cable changes to adjust to the new load 
condition and to remain in tension. However, arches inherently 
cannot be adjusted to the new load condition. If the loading 
changes the shape of the arch will no longer be funicular. Thus, 
arches and related structural systems usually experience 
compression and bending at the same time (similar to thin shells). 
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Figure 4-13: The relation between the horizontal thrust at the 
supports of an arch and its rise-to-span ratio 
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RULE OF THUMB TO DETERMINE THE PROPORTIONS OF 
STRUCTURAL COMPONENTS 

The economic span for using a cable-stayed structure is between 
50 and 500 ft. The suitable sag to span ratio is better to be around 
1:10. The cable diameter can be 1:8 into 3 ft based on the loads and 
span. 

Table 4-1: The economic span of a cable-stayed structure [2] 
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CHAPTER  5 

Trusses 

GEOMETRY AND BASIC PRINCIPLES 

A truss represents a structural system whose elements are two-
force members arranged in a planar triangular pattern and each 
member is either in tension or compression. The stability of a truss 
relates to its triangular shape. By definition, trusses have pinned 
joints and concurrent straight members and have to be loaded 
through their joints. This means that a frame structure with rigid 
joints is not considered a true truss. A Vierendeel frame is a well-
known example of such a frame structure with rigid joints that 
cannot be considered as a true truss. In reality, a combination 
of bolting and welding is used to make the joints. Thus, joints 
become somewhat rigid connections that develop some moment 
resistance. Bending stresses, however, are often relatively small in 
comparison to those resulting from tension and compression. 
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Figure 5-1: Truss components’ nomenclature 
 

A center-loaded cable with pinned roller supports cannot resist 
the horizontal thrust and is unstable. By adding a compressive 
strut, the system resists the thrust internally to form a simple 
truss. 
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Figure 5-2: The process of creating a simple truss module 
This simple truss module is used to form complex forms of 

trusses where compressive elements are made of rigid struts (solid 
lines), and tensile strengths are substituted by cables (dash lines). 
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Figure 5-3: A simple truss module can be used to form complex 
forms of trusses where compressive elements are made of rigid struts 
(double lines), and tensile strengths are substituted by cables (single 

lines). 

STABILITY AND DETERMINACY IN TRUSSES 

The first step in designing a truss is the analysis of its stability, 
its internal and external determinacy or indeterminacy.  Stability 
in trusses refers to their ability to maintain their configuration 
while resisting loads applied to their joints. For a stable truss the 
equilibrium conditions (∑Fx= 0,  ∑Fy= 0, ∑M= 0) are always satisfied 
regardless of the position or direction of the applied loads. In other 
words, if we can find even a single loading case for which the 
equilibrium equations cannot be satisfied, then we must conclude 
that the truss is unstable. 

A stable truss may be either statically determinate or 
indeterminate. When a member is added to a stable truss or the 
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number of support reactions is greater than the number of 
equilibrium equations, the truss is still stable. But if the number 
of unknown forces is greater than the number of equilibrium 
equations, the truss is considered statically indeterminate. There is 
a nifty method for the identification of stability and determinacy in 
trusses. 

For: 
 • j,  joints 
 • m,  members 
 • r,   reactions (restraints) 
• k,   k= 2j-r 
Then, 
If m < k, the truss is unstable 
If m = k, the truss is stable and determinate 
If m > k, the truss is stable and indeterminate 
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Figure 5-4: Identification of stability and determinacy of trusses by 
using the k= 2j-r k= 2j-r equation 

 
This equation is helpful to identify the internal stability and 
determinacy of trusses. However, it is not sufficient to identify the 
external stability and determinacy. Visual inspection and intuitive 
sense must also be utilized to make the final assessment. For 
example, in the truss shown in figure 5-5 (b), m=k=13 and is 
expected to be stable and determinate. However, the truss is held 
by three roller supports and is horizontally unstable. 

Figure 5-5: Examples of indeterminate or externally unstable trusses 
Watch the following video (https://www.youtube.com/

watch?v=w7rAiqzlanQ) to further investigate stability and 
determinacy in trusses. 

One or more interactive elements has been excluded from this version of the text. 
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You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-3 

Video 5-1: Stability and determinacy in trusses 

ZERO-FORCE MEMBERS 

There are members in trusses that are designed for moving loads. 
Thus, depending on the position of the external load, they may 
carry no load. These members are often referred to as zero-force 
members. Moreover, sometimes zero-force members are included 
in the configuration of a truss to split long slender compression 
members into two or shorter members (brace the long members) 
and stabilize the truss against buckling. These bracing members 
often carry no load. 

Figure 5-6: Zero force members in trusses under moving loads 
For trusses to be in the state of equilibrium, the sum of the forces 
acting at each joint must be zero. By placing and rotating the 
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coordinate system at a joint, we can study if there is only one 
force acting in either x or y-direction. That single force must be 
zero, and the member associated with it is a zero-force member. 
Watch the following video (https://www.youtube.com/
watch?v=xSEScMN6bpo&t=89s) to practice this method of 
identification of zero-force members. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-1 

Video 5-2: How to identify zero force members in trusses 
Truss analysis by the method of joints 

Resolution of joints is one of the first methods for truss analysis. 
This method involves the following steps: 

1. Solve reactions (all external forces) 

2. Inspect for zero force members (T’s & L’s) 

3. Cut a Free-body-diagram (FBD) of one joint. A free-body 
diagram of a joint consists a diagrammatic representation 
of the joint and all the forces acting on it. 

4. Show forces as orthogonal components 

5. Solve with ΣFx and Σ Fy (no Σ M) 

6. Find resultant member forces (Pythagorean Formula) 

Example: 
Solve the following truss using the method of joints. 

TRUSSES 65



Step 1: Check for horizontal, vertical and rotational equilibrium 
ΣFx= 0              2- Rax = 0                         Rax=2 kips 
Σ Fy = 0            Ray + Rc – 5 = 0             Ray + Rc = 5 
ΣM= 0 
ΣM @A: 
-Rc × (36+36) + 5 × 36 + 2×27 = 0                Rc = 3.25 kips 
Ray = 5 – 3.25 = 1.75   kips 
 
Step 2: Any zero-force member? No 
 
Step 3: Solving joints by decomposing force vectors to their 

horizontal and vertical components 
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ΣFy= 0 
-ABy+ 1.75 = 0             ABy= 1.75           downward 
Σ Fx = 0            Abx+ AD – 2 = 0 
ABx/ ABy= 36/27       => Abx = Aby × 36/27  = (-1.75) × 36/27= -2.33 

kips 
-2.33 + AD – 2 = 0 
AD= 4.33 kips   it is toward the positive direction of x axis 
AB = √(ABx

2 + ABy
2 )=√(2.33)2+(1.75)2 )= 2.91 kips 
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ΣFy= 0 
DB – 5 = 0             DB= 5 kips 
Σ Fx = 0           DC – DA = 0       DC = 4.33 kips 

ΣFy= 0 
– CBy + 3.25 = 0             CBy = 3.25 kips    downward 
Σ Fx = 0 

-CD + CBx = 0           -4.33 + CBx =0         CBx = 4.33 kips 
CB = √(CBx

2+ CBy
2 )=√(4.33)2+(3.25)2 )= 5.41  kips 

At the end, the axial forces in truss members are as shown in the 
diagram below: 
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3D TRUSSES – SPACE FRAMES 

Space frames are three-dimensional trusses where members are 
in tension and compression only. By definition, true trusses should 
have pinned connections while frames have rigid joints. Space 
frames may have both pinned and rigid connections. While the 
topology of space frames may be quite free of regular forms, the 
half-octahedron and tetrahedron are the common modules for 
creating a space frame structure. 
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Figure 5-7: A half-octahedron is one of the common modules for 
creating a space frame structure (Image source: space frame, 2002, 
wikipedia) 

 

Figure 5-8: The free form of the space frame that covers the British 
museum courtyard ((Image source: British Museum, 2014, 
https://www.flickr.com/photos/22087304@N07/15629080951) 
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Figure 5-9: The pyramid of the Louvre entrance, designed by 
Chinese-American architect I. M. Pei, 1984 (Image source: Louvre 
Project (Pyramid), 1994, https://www.flickr.com/photos/
69184488@N06/11876617365) 

Space frames are relatively efficient and safe structural systems 
because even if a few members fail, the forces can reroute to 
remaining members. 

RULE OF THUMB TO DETERMINE THE PROPORTIONS OF 
STRUCTURAL COMPONENTS 

The economic depth-to-span ratio for steel trusses is 1:10 to 1:20, 
and for timber trusses is 1:6 to 1:10.  The spacing of trusses in roof 
structures should be 20 to 30 ft for steel structures and 12 to 27 
ft for timber trusses. The economic spans of different trusses are 
shown in the following table. 

The suitable depth to span ration of space frames is usually 
between 1/10 to 1.20 of the span. 

Table 5-1: The economic span ratio of trusses [3] 
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TENSEGRITIES 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-4 

Video 5-3: What is a tensegrity structure (https://www.youtube.com/
watch?v=BzgxYpDyO0M&t=1s) 

 
A tensegrity structure is a stable three-dimensional space frame 
assembly of continuous cables and discontinuous struts where the 
struts do not touch one another. In tensegrity structures, tension 
elements stabilize the compression elements. One of the natural 
examples of tensegrity structures is the human body, where 
muscles (the tension elements) stabilize the compression elements 
(the bones). 
Tensegrities were invented by sculptor Kenneth Snelson in 1948 
and developed and patented by Buckminister Fuller. Snelson and 
Fuller’s tensegrity theory translated into practice when David 
Geiger reduced the degree of indeterminacy. 

72 ANAHITA KHODADADI

https://en.wikipedia.org/wiki/Kenneth_Snelson
https://en.wikipedia.org/wiki/Buckminster_Fuller


TOPICS FOR CRITICAL THINKING 

• The best way to understand how tensegrity structures 
work is to make a physical model. Let’s get started by 
watching the following instructional video 
(https://www.youtube.com/watch?v=DQxNPhR20r0) on 
making a tensegrity model! 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-2 

Video 5-4: How to make a tensegrity structure? 
 

• Do you know any implications of tensegrity structures in 
the building industry? 

• Watch the following video (https://www.youtube.com/
watch?v=Rxtf5wHXkTA&list=PLKPD9oscWijEdwZFVuGbER
olnw2auR1E6&t=778s) from its 11th minute to learn 
about how pioneers of designing tensegrity structures 
used symmetry in the design and analysis of spatial 
structures. 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-5 

Video 5-5: Using symmetry in the design and analysis of spatial 
structures 

 

• In the following video (https://www.youtube.com/
watch?v=U2lKx_FYXWo&list=PLKPD9oscWijEdwZFVuGbER
olnw2auR1E6), Professor Ken’ichi Kawaguchi, Architecture 
Professor at the University of Tokyo discusses the 
challenges of tensegrity construction. Move to the 11th 
minute to learn more about his findings. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=28#oembed-6 

Video 5-6: Challenges of tensegrity construction 
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CHAPTER  6 

Lattice Domes 

Have you heard about lattice domes? Even if not, you may have 
heard of some outstanding projects, such as Eden Project, where 
a lightweight dome structure is designed to create a translucent 
space. Watch video 6-1 (https://www.youtube.com/
watch?v=MWr67v620kY&feature=emb_logo) to learn about the 
design of compounded geodesic domes in the Eden Project. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=30#oembed-1 

Video 6-1: The geodesic dome of the Eden Project 
A lattice dome consists of discrete and normally elongated 

elements shaping a grid pattern. Lattice domes may include a 
single layer or multiple layers, may have pinned or rigid joints, 
and may work only in tension and compression or in tension, 
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compression, and bending. Lattice domes are named according 
to their grid patterns and the geometry of their curvature. Some 
examples of lattice domes are illustrated below: 

Figure 6-1: Different types of lattice domes (Image resource: [4]) 
Configuration processing of this type of spatial structure using 

the Euclidian geometric system is usually complicated and requires 
a great amount of time and effort. In the late 90s, Professor 
Hoshyar Nooshin, University of Surrey, Guilford, UK, developed a 
new geometric-algebraic system called Formex algebra. Formex 
algebra allows a designer to define the geometrical formulation 
of forms through concepts that affect movement, propagation, 
deformation, and curtailment. The creation of any type of spatial 
structure, such as space trusses, domes, vaults, hypar shells, 
polyhedric and free forms, can be carried out by using this 
mathematical system and its associated programming language, 
Formian. This new algebraic system, along with its designated 
software called Formian, allows convenient and accurate 
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configuration processing of spatial structures. In 2018, he won the 
Torroja Medal – one of the highest honors in structural engineering 
– in recognition of his outstanding contribution to the field of 
spatial structures for over half a century. 

Different types of lattice domes 

Ribbed dome Ribbed dome 

A ribbed dome consists of several ribs and rings that intersect each 
other at rigid joints. A rib is entitled to a group of elements that lie 
along a meridional line, and a ring is entitled to a group of elements 
that constitute a horizontal polygon. 

Figure 6-2: Examples of ribbed domes (Image source: [5]) 

Schwedler dome Schwedler dome 

A Schwedler dome includes intersecting ribs, rings, and diagonal 
elements. The name of this category of lattice domes is the 
namesake of the German Engineer J W Schwedler, who built several 
of this type in the 19th century. Sometimes due to the 
overcrowding of the elements near the crown of a ribbed or 
Schwedler dome, some elements are trimmed. In these cases, the 
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dome will be called a trimmed ribbed dome or a trimmed 
Schwedler. 

Figure 6-3: Some examples of Schwedler domes (Image source: [5]) 

Lamella dome Lamella dome 

A lamella dome consists of intersecting diagonal elements and may 
or may not include one or more rings. 
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Figure 6-4: Examples of lamella domes (Image source: [5]) 

Diamatic dome Diamatic dome 

Diamatic domes consist of several sectors whose side boundaries 
are along two meridians of the circumsphere of the dome, and 
the bottom boundary is along a parallel of the circumsphere. An 
important characteristic of diamatic domes is that they do not 
present any problem regarding ‘element cluttering’ near the crown. 
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Figure 6-5: Some examples of diamatic domes (Image source: [6]) 
One of the well-known examples of a diamatic dome is the 

Tacoma dome. Tacoma wooden dome is a multi-purpose arena in 
Tacoma, Washington (1983). The arena has a 530-ft diameter and 
152-ft height. 
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Figure 6-6: Tacoma dome, Washington, US (Image source: The Tacoma 
Dome, seen from the Bridge of Glass, 2006, wikipedia) 

Scallop domes Scallop domes 

A scallop dome, similar to the marine creature scallop whose shell 
has arched ribs, consists of arched sectors that are separately 
arched. The dome itself had a general curvature, and the operation 
of scalloping further improves the structural behavior of the dome. 
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Figure 6-7: Examples of sea shells that inspire the configuration of 
scallop domes (Image source: Small sea shell, 2018, 

https://commons.wikimedia.org/wiki/File:Small_sea_shell.jpg) 
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Figure 6-8: Examples of scallop domes (Image source: [8]) 

Conical domes Conical domes 

The geometry of a conical dome simply relies on the geometry of 
a cone and may be created by mapping different patterns onto its 
surface. 
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Figure 6-9: Examples of conical domes (Image source: [7]) 

Mallow domes Mallow domes 

Mallow domes, so-called because they resemble the mallow flower, 
consist of a number of sectors with a hyperbolic paraboloidal grid. 

84 ANAHITA KHODADADI



Figure 6-10: An example of a mallow dome (Image source: [7]) 

Onion domes Onion domes 

Onion domes have a bulb-shaped body with a pointed crown and 
may be created with different grid patterns. 
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Figure 6-11: An example of an onion dome (Image source: [7]) 

Geodesic domes Geodesic domes 

A geodesic dome is created by mapping a triangulated pattern 
onto a number of faces of a polyhedron and projecting the results 
onto a sphere that is concentric with the initial polyhedron. An 
icosahedron (20-faced regular polyhedron) is one of the common 
volumes used in creating geodesic domes. 
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Figure 6-12: Mapping a pattern on the faces of a polyhedron (Image 
source: [9]) 

Figure 6-13: Mapping an icosahedron onto a hemisphere to gain a 
geodesic dome (Image source: [9]) 

One famous geodesic dome is the US Pavilion in Expo 67, 
designed by Buckminster Fuller and built in Montreal. The double-
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layer geodesic dome has a 250-ft diameter and 200-ft rise. The 
initial cladding of the dome was made of a transparent acrylic layer 
which was damaged in a major file in 1977. After the renovation 
in 1994, the geodesic skeleton remained as an iconic monument in 
Montreal. 

Figure 6-14: Bio dome, by Buckminster Fuller, Montreal (Image source: 
Biosphere Montreal, 2007, Wikimedia, 

https://commons.wikimedia.org/wiki/File:Biosphere_montreal.JPG) 
Missouri Botanical Gardens Climaton is another example of 
geodesic domes designed and built in double layers. The geodesic 
dome is a quarter sphere spanning 175 ft and housing the plant 
collection of the Missouri botanical garden. The dome is made of 
aluminum tubes and steel cables. The rise of the dome is 70 ft, and 
current cladding of the dome consists of freestanding glass panels. 
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Figure 6-15: Missouri Botanical Gardens Climaton (Image source: The 
Climatron greenhouse at the Missouri Botanical Garden, 2004, 

https://en.wikipedia.org/wiki/Climatron#/media/
File:Climatron,_Missouri_Botanical_Gardens.jpg) 

TOPICS FOR CRITICAL THINKING 

• Watch the following video (https://www.youtube.com/
watch?v=6a9ffR_tfd4&list=PLKPD9oscWijEdwZFVuGbERoln
w2auR1E6&t=2s) from timestamp 8:12 to learn about the 
design of an innovative lattice dome in the Dutch Marine 
Museum, Amsterdam, the Netherlands. 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=30#oembed-2 

Video 6-2: The design of an innovative lattice dome in the Dutch 
Marine Museum 

• Are you interested in building a geodesic dome of your 
own? Watch this video (https://www.youtube.com/
watch?time_continue=1&v=ryAGFPobYUY&feature=emb_l
ogo) and find a full list of videos on designing and 
assembling a geodesic dome. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=30#oembed-3 

Video 6-3: Design and construction of a geodesic dome 
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CHAPTER  7 

Material Properties 

In the previous chapters, we have discussed the determination 
of internal forces produced in structural members by externally 
applied loads. In chapters 7 and 8, we will discuss the relationship 
between loads applied to a non-rigid body and the resulting 
internal forces and deformations induced in the body. These 
analyses will be used to determine the required size of a structural 
element to safely resist external loads. 

STRESS AND STRAIN 

Stress is a term that is used to describe the intensity of a force. By 
definition, stress is force per unit area of a material and may be 
described in psi (pounds per square inch), psf (pounds per square 
foot), MN/m2 (Meganewton per square meter), kgf/cm2 (kilogram-
force per square centimeter), MPa (megapascal = N/mm2). 
Therefore, the axial stress can be represented mathematically via 
the following equation: 

Where: 
Stress = σ = load/area = P/A 
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P = tensile/compression load or force 
A = the area 

Figure 7-1: Stress is force per unit area of a material 
Any structural member under load has some amount of 

deformation. The member may be compressed or stretched due to 
a compression or tension force. Some materials such as steel do 
deform as well, even though their deformation is not significant. 
We measure this deformation per unit length and call it strain. 

Where: 
Strain = ε= deformation/original length = D/L 
D = deformation 
L = original length 
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Figure 7-2: Any structural member under load has some amount of 
deformation or change of shape. Strain is the deformation per unit 

length 

MODULUS OF ELASTICITY 

When a structural element is stretched on a molecular scale, the 
molecules are pulled apart. The electromagnetic bond among the 
molecules resists against the externally applied force and creates 
the elastic behavior of the element. In the late 17th century, Robert 
Hooke was the first fellow who discovered that there is a relation 
between the stress in an element and the developed strain. 
However, this relationship was formulated by Thomas Young in 
the 19th century. The relationship between stress and strain is 
a measure of the elasticity of the material and is called Young’s 
Modulus or the Modulus of Elasticity (E). 

Where: 
E= Modulus of Elasticity 
ε= Strain= deformation/original length = D/L 
σ = Stress = load/area = P/A 
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Structural elements cannot deform infinitely and should snap 
back when the load is removed. All structural materials are elastic 
to some extent; however, their behaviors during and after applying 
the load are different. To study the elasticity of a material, we 
can test its sample in tension and compression and measure their 
elongation. When a load is progressively added to stretch the 
material, we measure the load magnitude at the same time as the 
amount the sample stretches. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=32#oembed-1 

Video 7-1: Material properties and fundamental terms used to define 
them (https://www.youtube.com/watch?v=BHZALtqAjeM) 

During this test, you can see that there is a stress limit before 
which the material returns to its original shape if the load is 
removed. But beyond that stress limit, the material does not snap 
back, and the deformation will remain permanent. This stress limit 
is called the yield stress, and the corresponding elongation is called 
inelastic or plastic deformation. Then, there is a stress limit, called 
ultimate stress, where the maximum load can be placed before the 
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breaking of the element. Finally, beyond the ultimate stress, the 
element deforms rapidly and breaks at the point of fracture. 

Figure 7-3: A stress-strain plot of a material 
The stress-strain diagram is unique for any given material. 

Young’s modulus represents a measure of the stiffness of the 
material. Thus, the slope of the straight line varies greatly for 
different materials.  When a material is referred to as “flexible,” 
this just means a material has a low Young’s modulus. Moreover, 
when some materials exceed their yield point, they may crack or 
suddenly break into pieces. They may not have any plastic 
deformation, and or their plastic range is remarkably limited. These 
materials are brittle. In contrast, some materials such as low-
carbon steel, aluminum, or copper have a significant plastic range 
that can warn of impending failure. This type of material behavior 
is termed ductile. 
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Figure 7-4: Using stress-strain graph to compare properties of 
different materials 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=32#oembed-2 

Video 7-2: Understanding Young’s modulus (https://www.youtube.com/
watch?v=DLE-ieOVFjI&feature=emb_logo) 

Example 

What is the minimum required cross-sectional area for the two 
columns supporting the beam shown below? 

Allowable stress: 
Wood = 800 psi 
Steel = 21 ksi 
Concrete = 3000 psi 
Clay Soil = 2000 psf 
* Allowable stress is the maximum stress (tensile, compressive, 

or bending) that is allowed to be applied on a structural material. 
Building codes generally define the allowable stresses, which for 
steel and aluminum are fractions of their yield stress. 
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Σ Fx = 0 
Σ Fy = 0  All vertical forces must balance out to zero. 
R1+R2-5-5-5-5=0 
R1+R2=20 
We have a symmetric loading condition. So R1=R2 
R1=R2  = 20/2 = 10 k 
 

Allowable stress:  σ =\frac{P}{A} 
For wood column : 
800 = 10,000 / A     =>   A = 10,000 / 800 = 12.5  in2 of wood 
Each side should be greater than √12.5=3.54 
For steel column 
21,000 = 10,000 / A     =>   A = 10,000 / 21,000 = 0.48  in2 of steel 
 
Concrete Allowable stress σ = P / A 
3000 = 10,000 / A     =>   A = 10,000 / 3000 = 3.33 in2 steel base 

plate 
 
Soil Allowable stress σ = P / A 
2000 = 10,000 / A     =>   A = 10,000 / 2,000 = 5  ft2 of footing 

surface 
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TOPICS FOR CRITICAL THINKING 

• How can we use Allowable stress:  σ =\frac{P}{A}  for 
calculating the shear stress in structural elements? 

• Test a rubber band and find its Young’s Modulus. You may 
watch this video (https://www.youtube.com/
watch?v=aGS_tYML3HQ) to learn about similar 
experiments. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=32#oembed-3 

Video 7-3: Determining Young’s modulus of a material 
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CHAPTER  8 

Cross-sectional Properties 

Designing Structural elements requires the knowledge of applied 
external loads and internal reactions, material strengths, and cross-
sectional properties. The geometrical properties of a structural 
element are critical in keeping axial, shear, and bending stresses 
within allowable limits and moderating the amount of deflection. 
The following demonstrations show how the shape of the cross-
sections affects their stiffness. 
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Figure 8-1: Relation between the cross-sectional depth (rise) of a 
beam and its stiffness 

Chapter 7 discussed that “area” is one of the cross-sectional 
properties, which is important to reduce the amount of stress in 
beams and columns. This chapter focuses on the shape of the 
cross-sectional area and its distribution about the neutral axis of 
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beams. In the following, some cross-sectional properties that will 
be necessary to calculate beams and columns are introduced. 

CENTER OF GRAVITY 

The center of gravity of a body is the point about which the mass of 
the body is balanced or the point through which the weight of the 
body acts. When the density of a body is uniform throughout, the 
center of gravity and the centroid (geometric center) of the body 
are at the same point. 

• The centroid of a rectangle is defined as the center point 
where all the diagonals intersect each other. 

• A centroid of a triangle is the point where the three 
medians of the triangle meet. 

Figure 8-2: The center of gravity of some basic geometrical shapes 
Finding the center of gravity of the cross-section of a beam or 
column can define the location of neutral axis of that body. In a 
typical beam loaded by self-weight, every point above the neutral 
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axis is in compression and every point below the neutral axis is in 
tension. At neutral axis the values of tension and compression is 
equal to zero. 
 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=34#oembed-1 

Video 8-1: Neutral axis in a beam (https://www.youtube.com/
watch?v=BthnS6LJt8s&t=1s) 

You can use the following equation to find the center of Gravity 
of a compounded shape: 

Example 
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1ST MOMENT OF AREA 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=34#oembed-2 

Video 8-2: A demonstration of the moment of areas of two rods 
(https://www.youtube.com/watch?v=m9weJfoW5J0) 

By definition, the tendency of an area alone to rotate about an 
axis in the plane of that area. 

Q = A
At the Neutral/Centroid axis: 
A1 x1 = A2x2 
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Figure 8-3: The difference of 1st moment of area in two  beams with 
different cross sections 

2ND MOMENT OF AREA/INERTIA 

By definition, the 2nd moment of area is the distance of force 
distribution from the neutral axis. The 2nd moment of area 
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involved the first moment of area multiply by a second moment 
arm. The second moment arm is the distance between the centroid 
of the force distribution and the neutral axis. 

Figure 8-4: The pattern of force distribution in relation to the 
distance from the neutral axis 

The second moment of area of a beam with a rectangular section 
can be calculated using the following equation: 

106 ANAHITA KHODADADI



Ix = 

Where: 
Ix = Second moment of area 
h = depth of the beam 
b = with of the beam 
 

SECTION MODULUS 

By definition, the section 
modulus (Sx) of a beam with a 
symmetric section equals its 
second moment of area divided by half its depth at the extreme 
fiber. 

Sx = 

Where: 
Sx = Section modulus 
Ix = Second moment of area 
c= h/2 at extreme fibers of a symmetric section 
h = depth of the beam 
The section modulus will help determine the cross-section shape 

of a beam as discussed in the Chapter 9. 

GEOMETRICAL PROPERTIES OF STEEL BEAM 
CROSS-SECTIONS 

Tables of design dimensions, detailing dimensions, axial flexure, 
strong-axis flexure, and weak-axis flexure of steel beams are 
provided in the Steel Construction Manual published by the 
American Institute of Steel Construction (AISC). You may find the 
cross-sectional area (A), depth of the beam (d), Ix, and Sx. 
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Figure 8-5: Example of steel profiles listed in Steel Construction 
Manual [15] 
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CHAPTER  9 

Shear and Bending Stress in 
Simple Beams 

Before discussing shear and bending stress in simple beams, let’s 
watch video 9-1 (https://www.youtube.com/
watch?v=SZM0kGBote4&t=1s) and review what the role of beams 
and columns are in a structural system and how they generally 
behave under dead and live loads. At the end of this video an online 
beam simulator is introduced that you can explore it further here. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=36#oembed-1 

Video 9-1: General behavior of beams and columns in a structural 
system  

109

https://engsx.thayer.dartmouth.edu/simulations/#/beam


SHEAR AND BENDING FORCES IN SIMPLE BEAMS 

As we discussed in the previous chapters, the level of stress in a 
structural element depends on the applied external loads as well 
as its surface area or cross-sectional properties. Before addressing 
the shear and bending stress in beams, let’s overview the 
maximum shear and bending loads in a simple beam. The two 
diagrams below show the end reactions, maximum values of the 
shear load, and the bending moment in a simple beam supported 
by a pinned joint and a roller. The first diagram shows the 
maximum values for a beam under a point load, and the second 
shows the respective amounts for a beam under a uniformly 
distributed load. 

 
Maximums in a simple beam 

under a point load: 
End reaction = P/2 
 
Shear load = P/2 
 
Bending moment = PL/4 
 

110 ANAHITA KHODADADI



Maximums in a simple beam 
under a uniformly distributed 
load: 

Equivalent point-Load = wL 
End reaction     R1=R2=wL/2 
 
Shear load    Vmax=wL/2 
 
 
Bending moment   Mmax=

 
 
Figure 9-1: The end reactions, maximum values of the shear load, 

and the bending moment in a simple beam supported by a pinned joint 
and a roller 

Sign conventions Sign conventions 

As you can see, in the two diagrams, there are sign conventions for 
demonstrating the moment and shear in beams. 

Sign Convention for Moment: 
+ the top fibers in compression have positive curvature (holds 

water) 
–  the top fibers in tension have negative curvature (spills water) 

Sign Convention for Shear: 
+ the sum of the vertical forces to the left of the cut is upwards 
– the sum of the vertical forces to the left of the cut is downwards 
Maximum shear and Bending forces in different types of beams 

can be obtained by drawing a free-body diagram or referring to 
the AISC Steel Construction Manual and using the provided tables 
showing the shear and bending diagrams. Furthermore, online free 
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beam calculators can be used to get maximum shear and bending 
values. BeamGuru and SkySiv are two free online platforms that 
can assist you in calculating beams. 

BENDING AND SHEAR STRESS IN BEAMS 

Elastic bending stress 

In a simple beam under a downward load, the top fibers of the 
material are compressed, and the bottom fibers are stretched. The 
change in fiber lengths at the top and the bottom of the beam 
creates strain in the material. This strain is proportional to the 
distance from the Neutral Axis. According to Hooke’s law, in a beam 
where the Modulus of Elasticity is constant across the section, the 
strain in the beam fibers is proportional to created flexure stress. 
Flexure stress in beams can be computed using the following 
equation: 

Where: 
M= Bending moment 
I= 2nd Moment of Area 
c = h/2 at extreme fibers of a symmetric section. 
The above equation can be re-stated by replacing c/I with 1/S. 

Where S is the section modulus of the beam. Thus: 

Shear stress 

Shear stress is created by a shear force distributed across the 
section of the beam. Shear stress can be longitudinal or transverse. 
Just like flexure stress, this distribution is not uniform across the 
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section. Shear stress can be calculated by either simply dividing the 
applied load by the area of the cross-section of the beam or using 
the following equation: 

Where: 
 fv = shear stress capacity 
 V= maximum shear stress 
 Q = 1st moment of area 
 I = 2nd moment of area 
 b = width of the beam 
Shear stress will be maximum at locations 
where: 

• V is high, for example, at the supports of the beam 

• Q is high, for example, at the neutral axis 

• b is low, for example, where the web width is thin 

• I is low, for example, in less stiff sections 

 
To stabilize beams against the shear stress, stirrups are included in 
reinforced concrete beams, or steel plates are bolted or welded to 
steel beams where shear stress is critical. 

Review Review 

The following image represents axial, bending, and shear stresses, 
as well as the corresponding equations for calculating the 
respective values. 
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Figure 9-2: Corresponding equations for calculating axial, bending, 
and shear stresses 

ALLOWABLE STRESS DESIGN METHOD 

There are different methods of designing beams. Allowable Stress 
Design is a unique design practice that requires designers ensure 
that the stresses imposed on the structures don’t exceed the elastic 
limit of the structural element. The allowable stress is determined 
by a factor of safety and the yield strength of the material. The 
allowable stress for different building materials is defined in 
building codes. For example, the allowable bending stress of 
structural steel is calculated by multiplying 0.66 and the steel yield 
stress. Likewise, the allowable bending stress of various species of 
structural wood is between 1000 to 600 psi. 

You can design a beam by the following steps: 

1. Choosing a steel grade and allowable stress. 

2. Determining the bending moment either by solving a 
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free-body diagram or referring to design manuals or 
online beam calculators. 

3. Calculate the section modulus (Sx) using the following 
equation: 

      Sx = M/Fb 
      Where: 
      Sx  = section modulus = Ix/c   (c = h/2 at extreme fibers of a 
symmetric section) 
      M = maximum bending (bending at the extreme fiber) 
      Fb = allowable bending stress (determined based on the 
material properties) 
4. Choose a safe section with a suitable Sx from the tables provided 
in design manuals 

BEAM DESIGN – EXAMPLE 1 

A cantilever beam is loaded by a 0.4 k/ft uniformly distributed load 
along 8′ of its length as shown in the image below. 
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The beam end reaction, shear and bending diagrams are 
obtained using the the online beam calculator, BeamGuru. Find the 
suitable wide-flange steel or glulam timber section regarding the 
allowable bending stress limit. 

Solving for a wide-flange steel beam: 
First, we select a steel grade whose yield stress equals 50 ksi. 
Fy = 50 ksi                     Fb = 0.6 Fy 

 Sx=  Mmax/Fb 
 Sx=  (32000 ×12)/(0.6×50000) = 12.8 in3 

Referring to the steel construction manual, any wide-flange section 
whose Sx ≥ 12.8 in3 will be suitable. 
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(Image source [15]) 
Solving for a glulam timber: 

First, we select a glulam timber section with an 8 ¾” width and 
allowable stress of 1250 psi ( DF grade L3). Note that the width of 
the beam is usually determined based on the dimensions of the 
columns that hold the beam. 
 Sx=  Mmax/Fb 
 Sx=  (32000 ×12)/1250 = 307.2  in3 

(Image source [16]) 
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CHAPTER  10 

Deflection in Simple Beams 

Building structures are expected to be designed for strength, 
stability, and serviceability. Therefore, when designing a structural 
system with suitable strength, designers should consider tension 
rupture, compression crushing, and flexure in structural 
components. The stability of structural systems should be 
addressed by controlling buckling in columns and lateral-torsional 
buckling in beams. Finally, a structural system is expected to be not 
only a safe construction but also provide the building occupants 
a sense of comfort. Moreover, the structural system should not 
impact the durability of other building assemblies, such as interior 
finishing. Thus, beam deflection, building story drift, and cracking 
should be prevented in structures. In this chapter, the deflection of 
beams is discussed. 

DEFINITION AND PRINCIPLES 

In a simple beam, the compressive and tensile forces above and 
below the neutral axis result in a shortening and lengthening of 
the longitudinal fibers respectively above and below the neutral 
axis. This effect causes bending in the beam and displaces the 
beam fibers from their original positions. By definition, deflection is 
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the displacement of the beam from its original horizontal position 
when subjected to loads. Various guidelines have been derived to 
determine maximum allowable deflection limits. 

Typically, a floor system with a live load deflection in excess of 
L/360 will feel bouncy or crack plaster. The maximum deflection 
in a simple beam under a point load can be calculated using the 
following equation: 

Δ = 

Where: 
P = the magnitude of the point load in lbs or kips 
L = length of the beam (usually in ft) 
E = Young’s Modulus of the material 
I = 2nd moment of area of the beam 
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Figure 10-1: Maximum deflection, shear and bending stresses, and end 
reactions in a simple beam under a point load 
The maximum deflection in a simple beam under a uniformly 
distributed load can be calculated using the following equation: 

Δ = 

Where: 
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w = the magnitude of the distributed load in linear foot 
L = length of the beam (usually in ft) 
E = Young’s Modulus of the material 
I = 2nd moment of area of the beam 

Figure 10-2: Maximum deflection, shear and bending stresses, and 
end reactions in a simple beam under a uniformly distributed load 
The maximum deflection in different types of beams can be 
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obtained by drawing a free-body diagram or referring to the AISC 
Steel Construction Manual and using the provided tables showing 
the shear, bending, and deflection diagrams. Furthermore, online 
free beam calculators can be used to get maximum shear and 
bending values. ClearCalcs, and SkySiv are two free online 
platforms that can assist you in calculating beams. The following 
image shows a solved beam using the ClearCalcs online tool. 

Figure 10-3: Diagrams of shear stress, bending stress and deflection 
of a beam solved by the ClearCalcs online tool 

By “superposition,” equations can be added for combination load 
cases. Care should be taken that added equations all give 
deflection at the same point, e.g. the centerline. 

Note that if beam lengths and load (w) are entered in feet, a 
conversion factor of 1728 in3/ft3 must be applied in order to 
compute deflection in inches. 
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UNDERSTANDING THE RELATIONSHIP BETWEEN THE 
MAXIMUMS 

A series of relationships between forces and deformations along a 
beam can be helpful in analysis. Using either the deflection or load 
as a starting point, the following characteristics can be discovered 
in a simple beam under a point load applied to the mid-span: 

• Maximum slope occurs at the ends of the beam 

• The point of zero slope occurs at the centerline. This is the 
point of maximum deflection. 

• The moment is positive for gravity loads. 

• Shear and slope have balanced + and – areas. 

• Deflection is negative for gravity loads. 

The following characteristics can be discovered in a cantilever 
beam under a point load applied to its free end: 

• The fixed end has the maximum moment but has a zero 
slope and deflection. 

• The free end has the maximum slope and deflection but a 
zero moment. 

THE IDEA OF PRE AND POST-STRESSING 

One of the methods of making the reinforced concrete beams 
more efficient is using pre-stressing or post-tensioning, where a 
beam is permanently loaded in a way that stresses are built up in 
the member opposite to those developed by the external loads. 

Post tensioning Post tensioning 

For constructing a post-tensioned concrete beam, a framework 
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is positioned, hollow sheaths containing unstressed cables are 
draped into place, and concrete is cast around the sheaths. After 
the concrete is cured, cables are tensioned by jacks at each end 
of the beam. When the framework is removed, the cable force is 
maintained by permanent anchors at each end. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=38#oembed-1 

Video 10-1: Post-tensioning system (https://www.youtube.com/
watch?time_continue=1&v=eQ2fJEbvJBs&feature=emb_logo) 

Pre-tensioning Pre-tensioning 

In a pre-stressed concrete beam, steel cables are pre-tensioned 
between abutments using hydraulic jacks. Then, concrete is cast 
around pre-tensioned cables and allowed to cure. After the 
concrete is cured, cables are cut. Cables apply a compressive force 
to the ends of the beam at the bottom level. This causes the beam 
to bow up, and the created curve offsets the deflection once the 
beam is loaded. 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=38#oembed-2 

Video 10-2: Pre-stressing a reinforced concrete slab 
(https://www.youtube.com/

watch?time_continue=1&v=0z6gjjrSn0M&feature=emb_logo) 

TOPICS FOR CRITICAL THINKING 

• Consider the location of the maximum deflection in 
beams, and explain which of the following beams is 
designed better? 
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Figure 10-4: Deflection in beams with different longitudinal shapes 
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CHAPTER  11 

Buckling in Columns 

Columns’ behavior in structural systems can be studied regarding 
their geometrical properties, loading type, and construction 
material. Following our discussion from the previous chapters, we 
will discuss the effect of columns’ geometrical properties on 
potential failure modes of columns in buildings. Columns can be 
categorized into two contrasting groups of long and short columns. 
When the ratio of the effective length of a column to its least lateral 
dimension is equal to or less than 12, the column is considered 
short. In general, short columns fail by crushing. 

fc=  Fc 

Where: 
fc = Actual compressive stress 
A = Cross-sectional area of column (in2) 
P = Load on the column 
Fc = Allowable compressive stress per codes 
Long or slender columns are those whose ratio of effective length 

to its least lateral dimension is more than 12. A long column fails 
due to buckling where the structural component under 
compression bows quickly. the buckling phenomenon in ling 
columns is due to the inevitable eccentricities in loading and the 

127



likelihood of irregularities in materials’ resistance to compression. 
Long columns generally fail by buckling before reaching their limit 
of compressive stress. Accordingly, the load-carrying capacity of 
long columns is less than short columns. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=40#oembed-2 

Video 11-1: Demonstration of buckling in long elements in 
compression (https://www.youtube.com/watch?v=KjgOGw6SqIA&t=2s) 

In 1757, a mathematician called Leonhard Euler derived a 
formula that gives the maximum axial load that a long slender 
column can carry without buckling. The Euler equation is given 
below: 

F=

Where: 
F = Maximum allowable or critical compressive stress 
A = Cross-sectional area (in2) 
E = Modulus of elasticity of the column material (psi) 
K = Stiffness (curvature mode) factor; The K factor can be derived 

from the following table. 
L = Column length between ends (inches) 
Table 11-1: K factor in columns (source: column effect length, 2006, 

https://commons.wikimedia.org/wiki/File:ColumnEffectiveLength.png) 
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According to Leonhard Euler, the load under which a 
compressive element (such as a column) may buckle depends on its 
slenderness. The slenderness of a compressive element depends 
on: 

• The length of the element 

• The cross-sectional area 

• 2nd moment of area 

• Young’s modulus of the element’s material 

• The support condition (K factor). 
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One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=40#oembed-1 

Video 11-2: How a column behaves under a compression force 
(https://www.youtube.com/watch?v=-ONVGO-iU4g&t=1s) 

You may prevent buckling of the columns by: 

• Decreasing the column length by bracing. 

• Increasing the 2nd moment of area of the column by 
doubling the cross-sections or using box shapes. 

TOPICS FOR CRITICAL THINKING 

• Which of the following cross-sectional shapes will give a 
more stable column? Why? 
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Figure 11-2: The effect of a column’s cross-sectional shape on its 
stiffness 
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CHAPTER  12 

Load Tracing 

Previous chapters have discussed loads as they pertain to the 
major structural elements of beams and columns and this chapter 
will discuss the structural systems as a whole. 

Analysis of the paths along which the loads travel throughout a 
structural system to reach the ground is called load tracing. This 
chapter discusses the systematic process of determining loads and 
support reactions of structural members as they affect the loading 
condition of other structural elements. 

LOAD PATH 

Structural systems are designed to transfer loads top down to the 
foundation and the ground. Loads travel throughout the structural 
components from the uppermost roof elements and move 
downward to the foundation system. This hierarchy can be 
described in the following order: 

1. Flooring spans between joists 

2. Joists span between beams 

3. Beams span between girders 

4. Girders span between columns 
132



5. Columns carry load to the foundation system and then to 
the ground 

Every time the load travels from one element to another, a support 
condition should be determined, and the loads and reactions at 
each transfer should be analyzed. 

TRIBUTARY AREA 

Each member is associated with an area that can be used to find 
the total load on that member. The tributary area is an area that 
corresponds to the load on a member. The following image shows 
a deck under a uniformly distributed live load. The deck is 
supported in three different ways: by bearing walls, joists and load-
bearing walls, and a combination of joists, beams, girders, and 
columns. In each case, you can see the tributary area of the 
supporting walls and joists. 
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Figure 12-1: Tributary area of beams and joists in a simple deck 
system 

The tributary area of one-way concrete slabs is calculated by 
splitting the slab area across the direction of steel reinforcements. 
In two-way concrete slabs, the tributary area divides at 45° from the 
corners. 
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Figure 12-2: The tributary area of a one-way concrete slab vs. a two-
way concrete slab 

Example 1 

The image below shows a one-way roof system with an area of 
24×20 ft2 . The roof system is composed of two girders, seven 
beams, and a 4-in thick concrete deck. 

First, find the tributary area of Beam-1 and Beam-2. 
Second, if: 
Floor Live load = 40 psf 
The weight of each beam is 31 plf 
Weight of 1 cubic foot of the concrete = 150 lbs, 
what type of and how much load do Beam-1, Beam-2, Girder-1 

carry? 
Third, four timber columns hold the roof system, and the 

allowable stress of the timber is 5000 psf, find the required cross-
sectional area of a column using the following equation: 

Allowable stress = P/A 
Fourth, if the soil load-bearing capacity is 2000 psf, find the 

required surface area of the footing. 
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*Note: Assume the columns and foundation are weightless. 
Solution: 
Tributary area Beam-1 = 

2×20 = 40 ft2 

Tributary area Beam-2 = 4 × 
20 = 80 ft2 

Dead load of deck = 150 
×(4”)/12 = 50 psf 

 
Beam-1 
Live load = 40 psf × 40 ft2 = 

1600 lbs 
DL of beam weight = 31 plf × 

20 = 620 lbs 
DL of deck = 50 psf × 40 ft2= 

2000 lbs 
Beam-2 
Live load = 40 psf × 80 ft2 = 3200 lbs 
DL of beam weight = 31 plf × 20 = 620 lbs 
DL of deck = 50 psf × 80 ft2 = 4000 lbs 
Girder -1 
DL of beam weight = 31 plf × 

24 = 744 lbs 
Live load and DL  of the deck 

are applied to Girder-1 via 
point loads P1 and P2. 

P1 = end reaction in Beam-1 
= (Total load on Beam-1)/2 

= (1600 + 620 +2000)/2 = 4220 lbs/2 = 2110 lbs 
P2 = end reaction in Beam-2 = (Total load on Beam-2)/2 
= (3200 + 620 +4000)/2 = 7820 lbs/2 = 3910 lbs 
Columns 
Axial load on a column = (P1×2 + P2×5 + 744)/2 = (2110×2 + 3910 

×5 + 744)/2  =  24514/2 = 12257 lbs 
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Required cross sectional area  A = P/ Allowable stress 
A= 12257/5000 = 2.45 ft2 

Footing 
Soil load bearing capacity = 2000 psf 
Footing required cross sectional area  A = P/ Allowable stress 
A = 12257 / 2000 = 6.12 ft2 

Example 2 

A concrete slab floor system spans in the directions shown. Find 
load diagrams for B1, B2, B3, B4, G2, G1. 

The dead load of the floor 
slab is 70 psf. 

The floor live load is 90 psf. 
First, find the tributary area 

for each beam. 
Second, calculate the 

distribution of the load on the 
floor. 

Third, draw the load diagram 
for each beam. 

 
Solution: 
B1 
Tributary area = 20×10/2 = 

100 ft2 

Dead load = 70 psf × 100 = 
7000 lbs 

Floor Live load = 90 × 100 = 
9000 lbs 

B2 
Tributary area = 20×10/2 = 100 ft2 

Dead load = 70 psf × 100 = 7000 lbs 
Floor Live load = 90 × 100 = 9000 lbs 
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B3 
Tributary area = 20×10/2 = 

100 ft2 

Dead load = 70 psf × 100 = 
7000 lbs 

Floor Live load = 90 × 100 = 
9000 lbs 

R1+R2-7000-9000= 0      
R1+R2=16000 

R1=R2 (symmetrical loading) 
R1=R2 = 8000 
B4 
Tributary area = 20×10/2 = 

100 ft2 

Dead load = 70 psf × 100 = 
7000 lbs 

Floor Live load = 90 × 100 = 
9000 lbs 

G1 
Tributary area = 40×10/2 + 

20×10/2 + 20×10/2 
= 200 + 100 + 100 = 400 ft2 

Dead load = 70 psf × 400 = 
28000 lbs 

Floor Live load = 90 × 400 = 
36000 lbs 

 

TOPICS FOR CRITICAL 
THINKING 

What are the lateral force-resisting systems? Which of the three 
main kinds of a braced frame, a shear wall, and a moment-resisting 
frame is stiffer? Watch the following video 
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(https://www.youtube.com/watch?v=kaKUHU3YYzY&t=1s) to learn 
about these systems. 

One or more interactive elements has been excluded from this version of the text. 

You can view them online here: https://pdx.pressbooks.pub/

archistructures/?p=42#oembed-1 

Video 12-1: Lateral force-resisting systems 
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