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Foreword

Modern society completely relies on software: it could not operate without it.
Software constitutes both the brain and the nervous system that give life to society.
It evolves continuously as society evolves. Understanding and supporting software
evolution is thus vital for society. The decision of the German Research Foundation
(DFG) in 2012 to launch the Priority Programme SPP 1593/1 “Design for Future -
Managed Software Evolution” has recognised the crucial role of software evolution
as a research challenge and as a societal priority.

I'had the privilege of being involved in the initial review of the research proposals
submitted for funding and the initial bootstrapping phase of the coordinated research
efforts that were selected, by participating in lively workshops in Munich (Fall
2013) and in Herrsching am Ammersee (Spring 2014). What impressed me most
at the time was not only the top quality of researchers engaged in the various
coordinated projects and the scientific value of each individual project but also the
overall coherence of the entire research proposal and the enthusiastic adherence of
all members to a common research agenda.

The results of the Priority Programme even exceeded my high expectations. The
programme has delivered an incredible number of outstanding research outputs,
published in top conferences and journals. Contributions span different aspects of
software evolution and lay the foundations for engineering it in a systematic and
predictable manner. In a way, this has not been a real surprise: excellent scientific
publications can be expected as an outcome of a coordinated research programme,
given the highly qualified set of top researchers who participate in the various
projects. What especially struck me was the coherence, cohesion, and maturity
of the approach developed in the programme and its potential impact on further
research, on education, and on the practice of software evolution. This book makes
this impact very clear.

The book is based on three main conceptual assumptions. First, to support
software evolution, knowledge about the system and its design should be made
accessible. Second, evolution has to be guided by suitable methods and processes.
Third, software and its infrastructure must be designed to support a continuous,
dynamic evolution. After an introduction to the nature of software evolution and
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its challenges in Part I, the three main conceptual assumptions are elaborated and
substantiated by research results in Part II. Part III focuses on how the results of
research can be applied and further developed. To strengthen the cohesion of all
contributions, two case studies are used consistently throughout the book: CoCoME
and PPU/xPPU. CoCoME is an example of a modern business application, while
PPU/xPPU represent a laboratory plant for automated production systems. The two
case studies are examples of two main classes of systems evolution: information
systems, in the case of CoCoME, and machine and plant automation, in the case of
PPU/xPPU.

This book has three main target audiences: software engineering researchers,
practitioners, and students. It provides a definitive view of software evolution in
today’s world, from which all three audiences may greatly benefit. A previous—
visionary—systematic treatment of software evolution goes back to the work of
Belady and Lehmann in the late 1970s, which resulted in the book “Program evo-
lution: processes of software change” (Academic Press, 1985). However, the 1970s
can be considered as pre-history in software engineering. At the time, software did
not completely permeate the societal fabric as it does today. Software had well-
defined boundaries, and its use and evolution were under the responsibility of a
single authority. Today, software is a heterogeneous conglomerate of interconnected
subsystems, which results in systems of systems, involving multiple parties and
responsibilities. Evolution was only an offline activity, while today it occurs while
systems are up and running and providing critical functionalities. Software was
mainly supporting business or scientific activities, while today it interconnects the
entire human society with the physical world. Evolution has scaled to unprecedented
levels, which demanded for the new approaches discussed in this book.

This book has associated artefacts, mostly described in Part III, which make it
unique. The two realistic and extensive case studies developed through coordinated
effort not only served as living lab-size test beds in the development of the
various research efforts but are also offered as potential community case studies
for use by other researchers. They can also be used as support tools in teaching
software evolution to set up hands-on learning activities. This is a laudable initiative
that further amplifies the potential outreach of this research effort to further
research, practice, and education. Bringing research results to a mature stage, where
others can readily pick them up and develop further, is an increasingly relevant
social responsibility of researchers. It enables faster advances in science, a better
selection of research targets, and a timely adoption of the most promising results.
This research programme establishes best practices in the area of reusable and
reproducible software engineering research.

Politecnico di Milano Carlo Ghezzi
DEIB - Dipartimento di Elettronica Informazione e Bioingegneria
Milano, Italy
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Chapter 1 )
Introducing Managed Software Evolution <o

Ralf Reussner, Michael Goedicke, Wilhelm Hasselbring, Birgit Vogel-Heuser,
Jan Keim, and Lukas Mirtin

“Software eats the world!” Although this famous statement by the entrepreneur
Marc Andreesen targets the disruptive change of business models enabled through
software, it also describes a process ongoing over decades. Software already invaded
basically all parts of our daily lives, at work as well as in private affairs. As a con-
sequence, there is software in daily use to support critical processes in enterprises,
machines, or production systems, which was initially developed decades ago. And
still this software needs to be maintained and adopted to newly required functional-
ity or modern information technology (IT) platforms. Estimations exist that assume
that more than half of software budgets are spent in software maintenance [Gla01].
Sommerville states that the costs for running, maintaining, and evolution exceed
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the development costs by a factor of at least two up to 100 [Som10]. Empirical
studies from the industry support these numbers [Erl00, PA98, PM97]. However, it
is actually even not clear how to interpret such figures. Are they bad signs, showing
efficiency problems in maintenance, or are they good signs, showing that software
is sufficiently good and valuable, that its maintenance is justified, as opposed to
just throwing the software away and writing a new solution from scratch. Anyhow,
the effects of software deterioration through long-running maintenance are well
documented [Par94, VB02].

In the past, there were plenty of examples where software maintenance was
challenging at least. The Year 2000 problem, also known as Millenium bug, struck
many systems. Planning for long-living software did not factor in the turn of the
millennium, causing a wide range of different problems. In 2009, customers of
T-Mobile had no voice services or short message services (SMSs) available for
several hours. Although the case was not a maintenance problem, at least the
lack of knowledge about structural and architectural dependencies delayed the fix
considerably. Flawed software on security chips of EC and credit cards caused a
problem in 2010 because the card readers could not process the year properly. In
2016, the update of the operating system iOS for iPhones to version 10 caused alarm
clocks to not go off any more because the new “bedtime alarm mode” interfered with
the functionality of the existing alarm clock.

All these examples have in common the belief that problems could be related
to lack of knowledge about the already existing system. From a bird’s-eye view
of software engineering, it is clear that knowledge is created during the process of
developing software, but most of the time this type of knowledge is not documented.
This leads to loss of knowledge about these systems, which can lead to problems in
following development cycles and during maintenance. The results are much higher
mean time to repair and much longer cycles until a new version of a system can be
released. Additionally, lack of knowledge can also lead to more bugs, thus leading
to a lower mean time to failure. In some cases, updates even introduce problems
that were previously known and solved. For example, in 2017 an update for macOS
accidentally reintroduced the critical “root bug”.! Already in 1994 Parnas described
the concept of hidden and lost knowledge [Par94]. Because of size and complexity,
along with the interconnectedness of software systems, this problem gets worse.

Up to now, the focus in research and practice is mainly on developing new
systems. New methods and tools are developed and existing ones refined to
create optimal results for the initial operation of software systems. However,
the long-term operation phase, along with the necessary adjustments and further
development of software, is of paramount importance. This problem gains more
weight when factoring in higher costs for maintenance and evolution in comparison
with initial developments. Even in the research field of software evolution, the
aspect of different evolutionary cycles for software and its execution and operating
environment is yet not properly dealt with. The different life cycles of software and

Uhttps://www.wired.com/story/macos-update-undoes-apple-root-bug-patch/.
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Fig. 1.1 Integration of the development and operation of hardware/software systems [Li+12]

its platform, as well as the technical systems, are shown in Fig. 1.1. There you can
see the life cycles of software in grey, platforms in black, and technical systems
in light grey. Vertical amplitudes show in which phase the software, platform, or
technical system is. Life cycles of platforms are much longer, starting with longer
design phases, and have much longer operation phases. In contrast, software is pretty
short-lived and new versions replace older software rather fast. These differences
need to be addressed. Some techniques used to simplify the creation of new
software systems like Software-as-a-Service can lead to problems in combination
with these varying life cycles. Although the potential exchange of services is
seen as a benefit on evolution, published service interfaces are even harder to
change than internal interfaces; hence, services lead to frozen interfaces hindering
evolution. In addition, the required complex technology stack creates many—
often undocumented—dependencies, which makes evolution to new platforms even
harder, as the knowledge to decouple business functionality and platforms is lost
rather soon after the initial development.

This leads us to problem areas for long-living software systems, which are
explained in the following. Firstly, lacking understanding and knowledge about
functionality, structure, dependencies, and other properties of software systems
impedes a proper evolution of these systems, which are in agreement with the
originally stated requirements. This leads to a deficit in those systems. Secondly,
functional correctness and conformity with the architecture can often not be guar-
anteed because of misunderstood methods and techniques for software evolution.
Finally, the complexity of development from the functional point of view on one
side and the development of platforms and technologies on the other side obstruct
each other regularly and are hindering the evolution of applications and application
systems.
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This shows that there is the necessity to make systems adaptable to changing
requirements and environments and to make knowledge about systems accessible.
Additionally, instead of separating the development, adaptation, and evolution of
software and their platforms, as well as operation, monitoring, and maintenance, all
these should be integrated into the process. This new paradigm should be developed
and elaborated. For this we created three major guiding themes that are explained
below.

Following this line of motivation, the German Research Council (“Deutsche
Forschungsgemeinschaft (DFG)”) initiated in 2012 the Priority Programme
“Design for Future — Managed Software Evolution”, to develop fundamentally
new approaches in software engineering with a determined focus on long-living
software systems. Over its funding periods, 59 proposals were evaluated by a board
of scientifically outstanding international reviewers from the fields of software
engineering and automation technology (see Board of reviewers section). The
accepted 14 projects for each funding period included in total over 50 researchers
and 31 principal investigators. As an anchor for these projects, three guiding themes
were put into foreground, namely:

“Knowledge carrying software”
This is the overarching theme of the whole Priority Programme. The principle
of this guiding theme is that knowledge contained in software or its underlying
design needs to be integrated and made accessible, both for functional and
for quality properties. To realise this, sophisticated meta-models need to be
developed for defining and managing suitable models.

“Methods and processes”
They have to ensure that knowledge is preserved and integrated into the design
and evolution of software. Therefore, a new model for the life cycle of software or
software/hardware systems needs to be developed. This model needs to allow and
consider different evolution cycles on different levels of the software, platform,
and hardware stacks.

“Platforms and environments for evolution”
One goal is to develop suitable middleware and robust runtime environments
for monitoring and updating during operation to provide infrastructure for the
evolution of software and software/hardware systems. It is an important principle
for this guiding theme that design and runtime information need to be made
accessible wherever needed during the operation of systems.

In Fig. 1.2 the three guiding themes are set in relation to relevant fields of research
for today’s software engineering [Gol+15]. The guiding themes are embedded into
various areas of software engineering like requirements management, software
architecture design, artefact management, and operation and infrastructure. All these
areas play an influential role for the Priority Programme.

As a second means for project integration, the Priority Programme estab-
lished two community case studies: the Common Component Modelling Example
(CoCoME) for business-oriented software systems and the Pick-and-Place Unit
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Fig. 1.2 Guiding themes related to current research in software engineering [Gol+15]

(PPU) as an exemplary automated production system. Each of the projects con-
tributed to at least one of these studies.

Although or even because several hundred internationally high-ranked scientific
publications were created during the course of the Priority Programme, the principal
investigators see the need for a more integrated way to present the results to
the scientific community and to academically trained practitioners in the field.
Therefore, we wrote this book, with all the projects contributing in an integrated
way. Hence, the following chapter overview describes the overarching results of the
Priority Programme.

Overall the book is split into three major parts. The first part of the book
deals with introductions into the topics. In Chap. 2, an introduction to the nature
of software evolution is given, followed by the challenges that occur in Chap. 3.
Lastly in this part, an introduction to the case studies we used is given in Chap. 4.
In the second part of the book, there are the main chapters about knowledge-
carrying software, starting with Chap. 5 on tacit knowledge in software evolution.
Next, continuous design decision support will be covered in Chap. 6. Chapter 7
covers SPL round-trip engineering, followed by performance analysis strategies in
Chap. 8. Maintaining security in software evolution is tackled in Chap.9, before
the topic about learning from evolution for evolution, which is tackled in Chap. 10.
This second part in the book is completed with Chap. 11 on formal verification of
evolutionary changes. Finally, the last part of the book presents results and spin-
offs. There, Chap. 12 describes the case studies for the community, along with their
benefits and deliverables. The lessons learned are collected in Chap. 13. We close
the book in Chap. 14 with an overview of future research topics.

Chapters without author names are written by the editors of the book, while
other chapters refer to the scientists who contributed as authors. A complete author
list can be found at the end of the book. The editors would like to thank all the
authors for their considerable effort in writing a cohesive book on the results of
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the Priority Programme. Additionally, we would like to thank all the authors who
peer reviewed the chapters, which helped improve the quality of this book. We
also would like to thank the office of the DFG, in particular Dr. Gerrit Sonntag
and Dr. Andreas Raabe and their teams, for all their administrative support and for
organising the review process. We also like to thank very cordially our international
reviewers, who not only evaluated projects but also provided us with very valuable
feedback during the whole funding period of the Priority Programme. Special thanks
go to the managers of the Priority Programme, Dr. Lukas Mirtin und Jan Keim,
who served and organised the whole programme in an excellent manner and also
managed the writing process of this book extremely well. We also want to thank
Prof. Dr. Wilhelm Schifer, who supported us invaluably as a programme director
before his health condition unfortunately disallowed further contributions. We are
also deeply indebted to Prof. Dr. Ursula Goltz, the first speaker of the coordination
board. She successfully brought the programme through the review and application
process and set it up in 2012, leading the programme during its first phase. Her
unfortunate and sudden health problems made it impossible for her to carry on with
this responsibility. We wish her good luck and furthermore a good recovery.
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Chapter 2 )
The Nature of Software Evolution Creck o

Gabriele Taentzer, Michael Goedicke, Barbara Paech, Kurt Schneider,
Andy Schiirr, and Birgit Vogel-Heuser

In this chapter, we consider the nature of software evolution: What kinds of
software systems are evolved? Which quality aspects of software systems play a role
throughout evolution? What kinds of software changes exist, and which evolution
processes are considered? What is the impact of these changes? The purpose of
this chapter is to clarify the fundamental aspects of software evolution, which are
being taken up again in the following chapters. Hence, this chapter shall explain
the basic terminology used in this book. To a small extent, it shall also provide a
domain analysis of the area of software evolution. And finally, for more details,
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further scenarios, and examples of the fundamental aspects of software evolution,
the reader can find references to follow-up chapters. In this way, this chapter helps
to identify how the contributions of subsequent chapters fit into the big picture of
software evolution.

2.1 Introduction

The main purpose of this chapter is to present a conceptual basis for the core
aspects of software evolution. Evolution is a natural phenomenon in the life cycle of
software systems according to diverse reasons for change. Software evolution occurs
in incremental development where large systems are achieved in small steps and as
areaction to changes in the environment, purpose, or use of the considered software
system. We clarify the core aspects of evolution processes. Changes of a software
system may have an impact on its quality, referring to aspects such as correctness,
consistency, usability, and maintainability. Evolving software shall preserve or
even improve its quality (defined in the ISO standard 25000 on software product
quality [Stal4b]) throughout software changes. Our considerations of the nature
of software evolution are largely independent of application domains for software
systems. Throughout the book, however, two application domains are focused on,
namely business information systems [Hei+15b] and product automation [LFV13].

2.2 Software Systems

As a conceptual basis, we consider fundamental aspects of software systems.
Application domains and system scopes set the environments of software systems;
artefacts and potential software variants refer to the ingredients of software systems
or even software product lines (SPLs) [CNO2].

2.2.1 Application Domains

An application domain for software systems is a problem field being characterised
by common requirements, terminology, processes, and functionality for software
systems. Throughout this book, various application domains for software systems
are considered. They are mostly considered from a rather technical point of
view. In particular, two domains—business and product automation—occur very
prominently in the subsequent chapters due to our case studies Common Component
Modeling Example (CoCoME) and extended Pick and Place Unit (xPPU). They are
introduced in Chap. 4.



2 The Nature of Software Evolution 11
2.2.2 Scopes and Environments of Software Systems

A software system is a set of coherent components that provide services (or features)
to users. A software system needs a platform to run, consisting of hardware
and further software components such as operating systems, libraries, and special
software components provided by the environment. The hardware comprises not
only computers of any kind but also networks of computers (especially the Internet).
Depending on the domain, additional hardware may come into play, such as
mechanical and electrical components. The scope of a software system defines a
range of items that can be shaped and designed when developing software systems
[Int18]. Besides the code for the system itself, it comprises, for example, the system
requirement specification, any kinds of system documentation, models, data sets,
and test suites.

The environment of a system contains not only the platform for running the
system but also any other part relevant to the software system and its scope,
such as users on which the system has an impact and regulations that should be
obeyed. An explicit consideration of the environment is important when it comes
to evolution since various kinds of environment changes can occur, such as new
versions of the underlying operating system or programming language, related
software components, external regulations that shall be obeyed by the software, and
many more.

Two interesting examples of software systems are the following: In
Chaps.5 and 6, the authors investigate the evolution of socio-technical systems
where developers and/or users are explicitly considered within the system scope.
The interrelation of social and technical aspects and their joint optimisation are of
special relevance here. A very different form of system are mechatronic systems
such as automated Production Systems (aPS), which consider the interplay of
mechanics, electronics, and software (in Chaps. 10 and 8).

2.2.3 Software Artefacts

Software development and software changes usually involve a number of software
artefacts. Even the kinds of software artefacts are manifold: Analysts elicit require-
ments and write requirement specifications that may comprise analysis models.
Software architects take these specifications into account to develop the design of
a software system, often by constructing design models. Software engineers and
programmers develop models and write codes that are structured in various files
and directories. Moreover, they write test cases and documentations organised in
additional file structures. Once a software system is deployed, it may produce even
further artefacts for reporting about continuously running processes, for example.
The system behaviour at runtime and its ad hoc changes, for example, are considered
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in Chap. 10. To summarise, there are usually a vast number of artefacts of various
kinds within the scope of a software system.

Software artefacts are usually not isolated but inter-related. Hence, we have
to take care of consistency relationships between them and we have to maintain
them throughout software evolution. For example, the evolution of requirement
specifications, design decisions (comprising design knowledge about problems,
solution, context, and rationale), and architecture specification models is in the focus
of Chap. 6.

In software engineering, there are quite a number of languages used to create
software artefacts. Besides programming languages such as Java and C, there are
various modelling languages such as the Unified Modeling Language (UML) and
Matlab/Simulink. Documentations are usually semi-structured natural text, often
written in HTML, LaTeX, or Word. Moreover, there are domain-specific languages,
especially for specific modelling purposes, such as AutoFocus [Leg+14, RTV15,
TH15] for embedded system development presented in Chap. 11 and variability-
modelling languages like decision models [SRG11], orthogonal variability mod-
els [PBL0O5a], and feature models [Kan+90b], as considered in Chaps.7 and 8.
Furthermore, there exist specific languages to describe the syntax and semantics
of modelling languages, for example EMF [Ecl18], and to specify differences
resp. transformations between models to formally express their evolution, for
example Henshin [Are+10]. They are used in Chap. 10 to understand historical
evolutions between different versions of models, as well as to recommend future
evolutions based on these historic evolutions.

2.2.4 Software Variants

Most modern software systems A collection of software variants that share common
artefacts that are commonly processed is called a software product line. A software
variant is called product in this context. Variants of a software system can occur
independently of any time periods, while chronologically changed software is
usually called a version. Version management is specifically considered in Sect. 2.4.
In Chap. 7, statechart models are presented that are able to integrate all product-
variant behaviour into one model. A feature model serves as configuration specifi-
cation; the product line is implemented by preprocessor-based C-code. Similarly, in
Chap. 8, software variants are explicitly considered for evaluation of performance.
In particular, strategies for performance evolution are discussed for variants co-
existing at the same time and versions that are the result of software evolution.
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2.3 Software Quality

Preserving and improving software quality are often the main drivers of software
evolution, such as improving the performance of a software solution. The ISO
25000 standard [Stal4b] defines software quality based on a number of aspects
covering functional and non-functional ones. Functional software quality refers to
the extent the software conforms to a given functional requirement specification.
Aspects of functional software quality are, for example, correctness, consistency,
dependability, and usability. Non-functional software quality tells us how well a
software system meets non-functional requirements concerning, for example, per-
formance (cf. Chaps. 8 and 10), maintainability, and security aspects (cf. Chap.9).
In the following, we recall the main quality aspects of software systems and point
out examples.

2.3.1 Consistency

As there may be various artefacts within the scope of a software system, an
immediate question is: Are the various software artefacts within the scope of
a software system consistent with each other? Artefact relations may be purely
syntactical, such as models conforming to their meta-models. Software artefacts
may also be related w.r.t. behaviour. The most prominent shape of behaviour
consistency is behavioural equivalence (also known as bi-simulation). Weaker
notions of behavioural equivalence like conditional and relational equivalence
are introduced as consistency notions in Chap. 11. Besides this outer consistency
being established in between several artefacts, there is also an inner consistency
considering the content of just one artefact. Here, consistency means that an artefact
does not contradict itself [EN96]. Inner consistency comprises, for example, the
internal consistency of requirements within one requirement specification or the
declaration of a variable before its use in a program.

Even if artefacts are consistent on creation, changes to one software artefact may
not necessarily be reflected immediately in all related artefacts that are affected
by the same modification. This means that the quality aspect of consistency is
endangered by changes. If changes are made in one place, consistency may call
for changes in several other artefacts. There is the resulting challenge of keeping
systems consistent over time. As consistency cannot be always (re)established
easily; there is also the general need for inconsistency management. Intermediate
inconsistency gives developers the flexibility and the freedom to postpone the
re-establishing of consistency for increasing productivity. If explicit relationships
between artefacts, that is traces, are considered, a form of traceability link manage-
ment is needed here [Fel+16]. Traceability is explicitly considered in the context of
identifying and extracting tacit knowledge in software evolution (Chaps. 5 and 10)
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and continuous design support (Chap.6) caring about the consistency between
architecture and code.

Inconsistency may also affect system variants. A necessary condition for soft-
ware product lines (defining software variants) is often the following: If a feature
model is available for the system, it is typically assumed to be consistent, that is
there must be at least one valid combination of features (Chaps. 7 and 8). In Chap. 8,
performance is only measured for configurations that are valid according to the
feature model. The product implementation derivable from valid combinations of
features must also be consistent with further development artefacts such as quality-
assurance artefacts. If product implementations evolve, for instance, corresponding
test suites must be updated accordingly (Chap. 7).

2.3.2 Correctness

To validate the correctness of a software system, we should ask: Does the system do
what I want it to do? This question shows that correctness relates to the system’s
functional requirement specification. A software system is considered correct w.r.t.
its requirement specification if it behaves as specified by its requirements. Hence,
correctness can also be considered as a kind of consistency, here of code (and
other artefacts) with the requirement specification. As correctness is such a central
consistency aspect of software systems, it is usually considered explicitly. In most
software projects, functional requirements are validated by testing a software. In
contrast to validating system functionalities, there is also the possibility to verify
them formally. Correctness in the presence of evolution plays a central role in
Chap. 7, which is concerned with software testing of evolving SPLs, and in Chap. 11
as this chapter is concerned with the formal verification of evolving automated
production systems.

2.3.3 Dependability

Dependability comprises quality aspects such as reliability, availability, safety, and
security [Avi+04, LS00]. High dependability allows us to rely on a system func-
tioning as required, even under hampered conditions such as software and hardware
faults. The notion of dependability has been discussed very broadly in literature,
depending on the different perspectives of various stakeholders. Reference [FCA16]
gives a literature overview.

Considering reliability, we ask: Does the system show correct behaviour all the
time or for a specific time period? Reliability is closely related to availability, which
is typically described as the ability of a component or a system to function at a
specified moment or interval of time. Reliability is also considered as the probability
of success. In addition, dependability comprises safety, which shows the degree of
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hazard prevention that may result from the operation of the system and threatens
users or the environment [LG99]. Evolution and safety are discussed in Chap. 10. In
contrast, security mainly refers to the absence of unauthorised access from users or
the environment that threatens the operation of the system [HR06, LG99]. Chapter 9
is mainly concerned with maintaining security in the presence of software evolution.

2.3.4 Performance

Performance of a software system is considered by asking questions like: Does
the system perform the indicated behaviour as fast as required? Performance
engineering comprises all kinds of optimising the timing behaviour and resource
consumption of a software system, as well as guaranteeing available or specified
resource limitations. Considered aspects are, for example, the throughput, latency,
memory usage, and energy consumption of software systems. Performance for the
specific case of automated production systems is discussed in Chap. 10. Perfor-
mance issues can result in loss of productivity for the user. When software engineers
start improving the systems’s performance, corresponding evolution steps may lead
to cost overruns due to tuning or redesign. Moreover, it is likely that tuning may
disrupt the original software architecture or its behaviour.

Considering a software system with variants, there are often variants with
better or worse performance. Here, checking performance refers to the accessible
computation effort and the resulting impact on resource usage and timeliness of a
system variant (Chap. 8).

2.3.5 Usability

Users expect a software that is easy to learn, as well as pleasant and efficient to use.
Moreover, they appreciate a system that easily recovers from usage errors and whose
usage can be easily memorised after some period of not using it. To check usability,
the degree to which a software system can be used by specified consumers should
be investigated on to achieve quantified objectives with effectiveness, efficiency, and
satisfaction in a determined context of use. In Chap. 5, usability is a major aspect in
the sense that expectations or assumptions about the usability and the functionality
of a system are derived from the users’ behaviour.
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2.3.6 Maintainability

A software system is well maintainable if it can be easily changed with respect to
its environment to, for example, correct defects, realise new requirements, or adapt
the system to a changed platform. Specific aspects of maintainability are testability,
analyzability, and changeability. A software is well testable if its artefacts support
testing in given test contexts. Often, testability is a question of good software design
featuring strong cohesion and loose coupling. Testability of variant-rich software
systems is a key aspect in Chap.7 as it is concerned with model-based testing of
evolving SPLs. A software system is considered analysable if system parts causing
deficiencies or failures of the system can be easily identified. In Chap. 11, analysable
models are considered to bridge the conceptual gap between requirements and
target system implementations. And centrally for software evolution, software shall
be easily changeable to be adaptable to continuously occurring changes in the
environment with considerable effort.

2.4 Software Evolution

Software system changes show a wide variety, which has been investigated on
and classified in the literature, such as [LS80, Cha+01, Buc+05]. In [Buc+05], the
authors present a taxonomy for software evolution distinguishing four different
dimensions of system change: They consider temporal properties (i.e. when do
changes happen), objects of change (i.e. where in the system do we make changes),
system properties (i.e. what is changed), and change support (i.e. how is it changed).
They do not consider who is doing system changes and why; this has already been
done before in [Cha+01]. This split-up of dimensions is driven by the basic idea
that activities and processes form the core of software engineering methods. The
purpose of taxonomies as the ones found on software evolution is, among others, to
provide a framework for comparing and combining individual tools and techniques
and to provide an overview of the research domain of software evolution. We take it
up in this section: Considering different kinds of software change in the following,
we will focus on reasons for change, as well as participating artefacts and users, that
is the why and what. Thereafter we consider evolution processes where temporal
properties, change support, and stakeholders, that is the when, how, and who, are
focused. Finally, configuration management is considered to capture all changes of
software artefacts that emerge throughout evolution.
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2.4.1 Kinds of Software Change

Software changes have been studied for a long time; comprehensive works in this
direction are [LS80, Cha+01], where types of software evolution are classified along
with the kind of artefacts changed, as well as the reason for change. The authors
focus on code versus documentation changes; reasons for change are functionality
changes, adaptations to the environment, as well as performance and maintenance
issues. Documentation comprises all kinds of software artefacts except of the code.

Early works such as [LS80] and the ISO/IEC standard for software maintenance
[Stal4a] propose to distinguish software changes into corrective, adaptive, perfec-
tive, and preventive modifications.

* Corrective modifications subsume all kinds of bug fixing to eliminate system
failures and feature requests as long as they reflect corrected requirements.

» Adaptive modifications refer to changes of system environments, as well as
additional requirement elicitation. More recently, studies of adaptive systems
have led to further kinds of evolution activities being runtime adaptations, that
is system modifications at runtime [De +13].

* Perfective modifications subsume all kinds of system improvements such as per-
formance optimisation, structure re-engineering or optimisation (refactoring),
and all kinds of documentation activities, especially knowledge extraction from
the software system.

* Preventive modifications summarise all changes that prevent problems from
software systems before they occur.

Software changes may take place continuously, such as planned or ad hoc changes.

Throughout this book, various kinds of system changes are presented: Chap. 4
discusses a variety of concrete evolution steps as they occur in the case studies.
Chapter 5 is concerned with detecting and reducing mismatches between stake-
holder’s mental models during software evolution. The basic problem is that the
system may gradually diverge from a given specification or customer demand.
This deviation may come from incomplete implementation of requirements—or
from changing requirements that are not complemented by a corresponding change
of the system. Such deviations shall be reduced. In Chap. 6, continuous software
engineering is considered as being a special kind of software evolution. Chapter 7
discusses implementation changes and corresponding updates of quality-assurance
artefacts in software product lines such that consistency is preserved. Maintaining
performance as a prerequisite for evolving software artefacts is considered in
Chap. 8. Analysis strategies are presented that can efficiently assess and predict
the system’s performance. On this basis, performance improvements over time are
considered. Moreover, software variants with the best performance are identified.
Chapter 9 is dedicated to maintaining security throughout changing requirements
and changing environments such that changes do not affect the system’s level
of security. The maintenance of safety is addressed in Chap. 10. Capturing and
transferring knowledge to next software versions and projects are addressed in
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Chaps. 6 and 10; in particular, ad hoc changes with respect to learning are presented
in Chap. 10. To be able to distinguish wanted from unwanted system changes,
the maintenance of correctness is considered in Chap.11 by applying formal
verification techniques to show the correctness of evolving software systems. Newer
revisions of the software must not violate existing software properties and should
comply with them even more.

Change may also take place during runtime. A knowledge elicitation technique,
well known in software engineering, is the Post-Mortem Analysis (PMA) [Sta+03].
PMA of a system’s runtime behaviour simply consists of gathering knowledge about
a process and to analyse it in order to improve the next runs of this process in future.
An example application of PMA is presented in Chap. 10.

2.4.2 Evolution Processes

Several iterative and incremental software development processes have been pro-
posed, such as the Unified Process [Kru03], V-ModelXT [Vog+15c], and agile
software development [Bec99]. Agile software development processes already
acknowledge and embrace change as an essential fact of life. One of the agile
development principles is to welcome changing requirements, even in late develop-
ment. Furthermore, software development shall be sustainable and software quality
shall remain high. How do software development processes actually incorporate
evolution? According to [MDO08] (referring to [LRO3]), the software evolution
process is a multi-loop, multi-level, multi-agent feedback system that cannot be
treated in isolation. A specific form of evolution process is round-trip engineering
(also called horseshoe process [KWC98]) where developers alternate between
models and code. This process consists of three phases: The reverse engineering
phase is needed to understand the structure and behaviour of a larger part of a legacy
code by means of models. In the subsequent restructuring phase, (a part of) the
software is redesigned on the level of models, and finally, forward engineering is
needed to implement the new design and to integrate it into the existing system.
While a clear separation between development and maintenance has already
dissolved in agile software development, this is even more the case in continuous
engineering [FS17]. Continuous activities are meant to eliminate discontinuities
that occur from following development activities in a specific order. Continuous
engineering specifically includes continuous improvement and innovation. An early
proposed activity that can be considered as continuous innovation activity is that
of beta testing, which became a widespread practice, even in industrial software
development. It is used to elicit early customer feedback prior to the formal
release of software products [Col02]. Following the trend of continuous engineering,
software engineers have commonly accepted that software must continually evolve
according to changes. Otherwise, the software does not fulfil its ever-changing
requirements and therefore will become outdated earlier than expected.
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Change impact analysis techniques can identify system parts that are likely to
be affected by additional changes. These techniques support knowledge elicitation
from change histories to inform all interested stakeholders. On this basis, these
techniques can also give an estimation of how costly an intended change will
be and how risky it is to make that change. This analysis is used to decide
whether it is worthwhile to carry out that change. The risk has a strong relation to
software quality. If proper support for measuring quality is available, a measurement
report can provide crucial information to determine whether the software quality is
degrading and to take corrective actions if this turns out to be the case.

Throughout the book, the following aspects of evolution processes are tackled:
The roundtrip model is used in Chaps.6-8 and 10. In Chap.6, we show that
the small iterations of continuous engineering support lightweight design decision
capture and use. Chapter 7 considers an SPL evolution scenario covering a complete
family of software products to be evolved. The efficient performance analysis of
software variants and versions based on monitoring and model extraction is focused
on in Chap.8. The dynamic nature of running self-adaptive systems and their
environments requires continuous validation and verification to assess the system at
runtime, which was traditionally done at development time and which requires new
and efficient techniques for the runtime case [De +13]. An example for evolving
self-adaptive systems is given in Chap. 10. In Chap. 11, regression verification is
applied to evolving systems again based on a round-trip model.

2.4.3 Configuration Management

To capture all changes throughout software evolution, emerging changes of software
artefacts are usually managed with the help of development tools. Change manage-
ment refers to a systematic consideration of change requests, which may be bug
reports and feature requests. To ensure that the most urgent and cost-efficient change
requests are prioritised, each request is collected and assessed first and addressed
along its priority thereafter. Especially for software product lines where versions of
variants may occur, a systematic management of change requests is necessary.
Version management is needed to store and track emerging versions of software
artefacts. Moreover, it allows developers to work on these versions concurrently
in a coordinated way. To save memory, subsequent versions may be stored in a
list of deltas. A delta just stores the differences of one version from its successor.
Applying these deltas to a root version (usually the newest one), the other versions
can be computed. Several developers are allowed to work on the same artefacts
concurrently. The version management system tracks the edited artefacts, ensures
that changes to one and the same artefact do not get lost, and supports the resolution
of conflicting changes. To allow developers working in isolation, the artefacts
within the scope of a software system may be duplicated into several branches
(of the version tree). The ability of branching implies the later facility to merge
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changes back onto one branch. The usage of branching in the context of continuous
integration is tackled in Chap. 6.

Release management is the process by which source code is converted to a final
software product, often being built for a specific environment. Version management
is usually involved and is recommended but is not a requirement. A reliable release
process is as much automatic as possible and supports a quick and frequent deploy-
ment, a prerequisite for continuous integration. Recently, continuous integration
has emerged as a practice to eliminate discontinuities between development and
deployment. However, continuous integration is not yet used in aPS (only 33% of
companies use it to some extent and 15% by default) [Bou+17b]. In a similar vein,
the recent emphasis on DevOps recognises that the integration between software
development and its operational deployment needs to be a continuous one [FS17].
The concept of continuous deployment, that is the ability to deliver software more
frequently to customers, enables frequent customer feedback, which has become
very attractive to companies, in the area of production automation; however, it is
often not implemented due to confidentiality.

As configuration management may become very complex for software product
lines, this problem is the subject in Chaps.7 and 10. Each variant, or in more
detail each feature, can occur in various versions, which have to be integrated
in a consistent way. In Chap. 10, the evolution of variants is considered focusing
specifically on the continuous correctness of the system.
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Software evolution is a necessity for present-day software development and the
operations of enterprise software systems and embedded systems, including produc-
tion lines. Evolution is driven by changing and new requirements originating from
user needs, alterations in the underlying hardware, and environmental changes, such
as cloud computing for enterprise systems and modifications of production lines
and processes. Current methods and processes in software system engineering are
not well suited to handle these drivers of change, as knowledge about the software
is predominantly stored in informal documents and not linked with other artefacts.
Furthermore, most parts of a software system are only represented in the form of a
source code, which carries knowledge only on what to do but not on why to do it.
We address these shortcomings with new ways and forms to describe and specify
artefacts used in the development and operation of software systems. Hence, we
must use and collect knowledge concerning the software system and its context at
runtime and apply it at design time to enrich the evolution. We support the discovery,
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evolution and make it more reliable and the software maintainable, performant, and
secure. To enable these methods and processes, we provide and use new platforms
and environments.

During our research, we assessed our methods and processes with two case
studies based on the Common Component Modeling Example (CoCoME), resem-
bling a software system for a supermarket chain, and the extended Pick and Place
Unit (xPPU), illustrating an industrial plant automation system. CoCoME, which is
introduced in Sect. 4.2, includes a fast set of evolution scenarios for the enterprise
domain, like adding a webshop or including credit card payments. Similarly, the
PPU case study, introduced in Sect. 4.3, provides evolution scenarios originating
from industrial production plants. Our aim to incorporate knowledge in software and
processes tailored for software and system evolution faces a diverse set of challenges
from different perspectives. Firstly, the discovery and externalization of knowledge
about requirements, the recording and representation of design decisions, and the
learning from past experience in evolution form the human perspective, including
that of developers, operators, and users. Secondly, performance and security induce
the software quality perspective. Thirdly, round-trip engineering, testing, and
co-evolution define the technical perspective. And fourthly, formal methods for
evolutionary changes provide the foundation and define the formal perspective. This
chapter introduces the challenges we discuss and address in this book, which were
researched during the priority programme for managed software evolution:

Tacit Knowledge (Sect.3.1) The key to evolution is an understanding of chang-
ing needs and derived requirements thereof. Unfortunately, stakeholders are often
unaware of all aspects and assumptions underlying their needs and requirements.
This tacit knowledge must be externalised in order to understand requirements
and successfully evolve software systems.

Design Decisions  (Sect.3.2) To accommodate changing requirements, software
engineers change the software architecture and apply different design patterns.
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These design decisions could conflict with decisions made in previous iterations
of the evolution process, eroding the architecture and harming evolvability.
Therefore, it is necessary to support the documentation of and access to design
decisions.

Software Product Line Round-Trip Engineering (Sect.3.3) As depicted in
Fig. 3.1, software evolution is a circular process where introducing changes
occurs often. Today, software systems are not only subject to reoccurring
changes; they also exist in different variants. This is especially the case in
embedded systems. Providing a consistent view on versions and variants of
product lines introduces new challenges to software evolution.

Maintaining Performance (Sect.3.4) Being able to predict and forecast per-
formance is necessary for software systems to ensure a timely execution and
control over resources. Feature sets from software product lines can result in
large numbers of variants, which cannot be evaluated for performance in a timely
manner. Furthermore, runtime measurements address only one version of one
variant. Both aspects are central challenges in maintaining performance.

Maintaining Security (Sect.3.5) Keeping a software system secure is a great
challenge by its own. It is affected not only by changing requirements within
the software system but also by its changing environment. These changes are
covered in non-formal documents. Supporting security experts and developers in
deriving formal information from non-formal documents and supporting security
evaluation throughout evolution are the challenges we motivate in this section.

Learning from Evolution for Evolution (Sect.3.6) The previous challenges
address certain challenges within the evolution cycle. However, we also need to
learn and transfer knowledge from one evolution step to another and from one
project to another to grow our knowledge on software evolution and improve
our processes and software quality. Therefore, we face the challenges of how to
process semantically rich changes in past evolution steps and develop methods
to understand and exploit this knowledge.



24 R. Jung et al.

Maintaining Correctness (Sect. 3.7) Software evolution may erode functional-
ity and cause unwanted behaviour alterations in software. While non-formal
processes and methods help to mitigate unwanted changes, they cannot detect
and correct them. Therefore, we need formal approaches using models to verify
software systems, be able to test them for changes and to know how to distinguish
wanted from unwanted changes.

3.1 Tacit Knowledge

Long-living software systems face challenges during requirements identification
and update due to various reasons. First of all, software systems and the require-
ments that describe their functional behaviour and non-functional performance
change over time. The technical development and the availability of new software
and hardware components affect and change existing requirements or even make
them obsolete. On top of this, a substantial part of the relevant requirements for
software systems remains facit. This means that important knowledge carried by
requirement analysts, software users, or other stakeholders remains in their minds.
In general, facit knowledge can be described as knowledge that is internalised by a
person while its active verbalisation, that is the externalisation of this knowledge, is
difficult [PS09].

In contrast to the goal of a complete representation of a software system [Dav93],
this results in an incomplete set of requirements. As a consequence, the associated
software system remains incomplete as well, which is expressed in different facets.
First, software systems are exposed to any type of intrusion. They are in particular
vulnerable to attacks in case of a lack of security-related requirements. Second,
users of a software system are presented with an unsatisfying set of functionalities
that does not match their needs.

Stakeholders of a software system, such as the requirements analyst or the
software user, might not be aware of an urgent demand for action or of the
associated knowledge that would help to understand a situation in question. Thus,
they are unable to verbalise those tacit requirements. This is the reason why
an automatic identification and extraction of this tacit knowledge represents an
important source of knowledge for the development of long-living and continuously
evolving systems.

We envision that tacit knowledge is particularly exposed to being automatically
captured, processed, and externalised during the design time and runtime of a
software system: On the one hand, during the design time of a software system,
requirements are elicited and described using natural language. In doing so, the use
of certain words might indicate implications for the functionality that they describe.
For instance, the way a functional requirement is described can pose requirements
towards non-functional aspects. On the other hand, during the runtime of a software
system, users unconsciously provide insights into the way they interact with the
system. Ignoring certain functionalities of a software system or repetitively applying
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the same usage patterns might hint towards a particular functional requirement that
the developers or requirement analysts were previously not aware of.

We want to focus on tacit knowledge as an instance of knowledge that is
preserved in a software system or its underlying design. Describing tacit knowledge
and its building blocks requires defined models. This demand is manifested in one
of the SPP1593 themes by calling out for customised meta-models that enable the
ongoing development of software systems. We strive for a basic representation of
tacit knowledge in the form of ontologies and taxonomies, which can be utilised
to detect and describe tacit knowledge. Furthermore, tacit knowledge naturally
emerges in an unstructured format produced by heterogeneous instances and actors.
Its building blocks remain incomplete and potentially irrelevant, only until they
are mapped with existing requirements that relate to the same entity. Addressing
the extraction of tacit knowledge requires a platform that can be deployed in a
continuously changing environment to visualise building blocks of tacit knowledge.
This is one of the SPP1593 themes, that is establishing platforms and environments
that enable access to design- and runtime information when it is needed.

By extracting tacit knowledge from both design- and runtime observations, we
aim for the following goals. First, we want to enable the creation of software releases
that match the requirements of both customers and users and their expectations.
Second, we intend to improve and maintain the quality of development for long-
living systems through the co-evolution of adequate non-functional mitigation
activities. Third, we aim for increasing the software system’s usability and an
adaption towards the needs of users.

Understanding tacit knowledge poses challenges in their identification due to
multiple reasons. First, we expect different kinds of tacit knowledge that can
potentially arise during software evolution. Second, the availability of various
sources of tacit knowledge plays an important role. Eventually, when it comes to the
extraction of tacit knowledge, we see challenges in reducing the mismatch between
developers’ and security experts’ mental model, as well as reducing the mismatch
between developers’ and users’ mental model. Aside from the identification and
extraction of tacit knowledge, we face challenges in working with tacit knowledge
and its explicit counterpart. In particular, the detection of deviations between
specified and derived security knowledge or deviations between expected and
observed user behaviour demand attention in their analysis. We summarise this
collection of challenges under the following two main challenges and address them
in Chap. 5.

Challenge 1 How to identify and extract tacit knowledge to reduce the mismatch
between stakeholders’ mental models during software evolution?

Challenge 2 How to detect deviations between explicitly elicited requirements and
implicitly derived requirements?
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3.2 Design Decisions

Continuous Software Engineering (CSE) is a software engineering process in which
developers continuously change the software while keeping it in a releasable
state [KB17]. CSE means to develop, release, and learn from software in very
short rapid cycles [Bos14]. It incorporates agile practices and involves activities
such as continuous integration, delivery, and deployment [SAZ17, Joh+18b]. The
emergence of CSE is driven by a growing need for flexibility and rapid adaption
in the current software environment [FS17]. Thus, CSE provides many techniques
for a continuous change. This can also be exploited for continuous design decision
support.

Software developers and architects continuously make design decisions while
they develop software. When they evolve software, it is important for them to
reflect and build on former decisions. Otherwise, they might make inconsistent
decisions and are likely to contribute to the erosion of the software architecture
or introduce other quality problems. Reflecting on former decisions is particularly
important for long-living software systems where many decisions build on one
another. Documenting design decisions is important since many different developers
are involved at different times and cannot communicate directly.

Design decisions can be made in either a rational or a naturalistic way. Rational
decision-making means that developers weigh alternatives and arguments, whereas
naturalistic decision-making means that they reuse past experiences to solve a
decision problem [ZCMO7]. It is often assumed that decision-making in software
design is a deterministic and rational process [Fal+11] since software development
is an engineering activity. However, this is not so in practice as, for example, Hesse
et al. empirically show that naturalistic decision-making is dominant over ratio-
nal decision-making in the Firefox open-source project [Hes+16]. In naturalistic
decision-making, developers do not consider all alternatives and arguments. This
is risky as humans tend to overlook what is missing and are subject to cognitive
biases [Raz+16]. Thus, developers might anchor on those solutions that first come to
mind, omitting more relevant alternative solutions. If the arguments for the decision
are not documented, other developers might not understand the decision or might
not be convinced. Thus, support for rational decision-making is important. Rational
decision-making requires the management of decision knowledge.

Design decision knowledge is the knowledge about design decisions, the prob-
lems they address, solution approaches and their alternatives, their context, and
their justifications (also called rationale). Decision knowledge vaporizes quickly;
that is, if developers do not document decisions immediately, the design decisions
are never documented and thus not available later [JBO5]. Decisions are often
discussed informally and captured partly and distributed: for example, in code,
issue comments [Hes+16], commit messages, pull requests [Bru+14], chat messages
[Alk+17a, Alk+17b], wikis, and emails; this knowledge is difficult to access later.
Thus, developers need support to capture decision knowledge or evolve it from
naturalistic decisions and to access it efficiently.
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Our long-term vision is an on-demand decision documentation as part of the
on-demand developer documentation suggested by Robillard et al. [Rob+17]. We
envision that developers continuously capture and reflect decision knowledge during
CSE. Benefits of a continuous capture and reflection on decision knowledge are
an improved decision-making process through explicit criteria, the prevention of
knowledge vaporization, and consistent future changes.

Our goal is to support developers in this continuous capture and reflection, in par-
ticular by performing rational decision-making. The following three developer tasks
should be lightweight, that is they should require as little effort as possible: rational
decision-making, documentation of decision knowledge, and its exploitation.

There are two major challenges for this support: intrusiveness and inconsistency.
It is a challenge to minimize the intrusiveness of a continuous design decision
support and to document and maintain decision knowledge consistent with the other
artefacts and with former decision knowledge. We summarise and express these
challenges under the following two paragraphs and provide solutions in Chap. 6.

Challenge 3 How to integrate rational design decision-making, documentation,
and exploitation in software engineering practices? Tool support to manage decision
knowledge can be characterized by its intrusiveness in the software development
process [Dut+06]. Tools that fit into the development context are less intrusive and
will more likely be used [KCDO09]. Such tools do not require additional effort (e.g.
for installing or starting a separate tool) and are thus also lightweight. Rational
decision-making, documentation of decision knowledge, and its exploitation should
be non-intrusive in the context of the CSE process.

Challenge 4 How to ensure consistency between decision knowledge and arte-
facts? Consistency means that design decisions are documented and linked to and
realized in the artefacts they relate to. To exploit decision knowledge, it is important
that the design decisions are consistent with former design decisions and with the
artefacts, for example with the requirements, architectural software design, and
code.

3.3 Software Product Line Round-Trip Engineering

Modern software systems tend to become more and more long living and, therefore,
have undergone continuous evolution to ever new versions in order to meet
constantly changing requirements. For instance, the initial version of the PPU case
study only comprises a stack with multiple slides for sorting different work pieces
according to their types, as well as a crane and a stamp. Later on, the PPU undergoes
several evolution scenarios in order to adapt to changing requirements and platforms
(e.g. the ramp is later replaced by a standard ramp to support application scenarios
without sorting). As a consequence, all PPU (software) artefacts (potentially)
affected by those changes have to be adapted to support the new versions.
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In addition, modern software systems are highly configurable, thus comprising
many different variants being custom-tailored to specific needs. For instance, the
modular architecture of the PPU supports many different variants in order to
adapt to different environments, platforms, and customers’ requirements. Such
a collection of similar yet well-distinguished variants of the same core product
is frequently called a product family. Software product line engineering (SPLE)
is an established methodology for handling the additional complexity caused by
the increasing variability of modern (software) systems by means of variability-
aware engineering and quality-assurance techniques. To this end, SPLE aims at
systematically exploiting knowledge about commonality and variability among all
kinds of engineering artefacts (e.g. design and test models, implementation code,
and test cases) in a family of similar products.

Finally, modern software systems are, in most cases, an integral part of larger
socio-technical systems, thus requiring accurate quality assurance to reduce the risk
of fatal errors. Model-based testing is a widely used black-box testing technique for
automated quality assurance, where a test model serves as a behavioural specifica-
tion of the expected behaviour of the (potentially inaccessible) implementation code
to be tested. For instance, the PPU behaviour is specified using statechart models,
which can be used to automatically derive test cases covering a predefined set of test
goals for systematically investigating the different runs of the PPU.

Although very promising concepts and tools exist in recent research for tack-
ling all those three kinds of engineering challenges separately, a comprehensive
approach integrating the different solutions into one conceptual framework is still
an open issue. In particular, a corresponding round-trip engineering methodology
has ensured an effective and efficient quality assurance of evolving, variant-rich
software systems in a systematic and consistency-preserving way. To this end, a
structured process for artefact co-evolution is required for all possible kinds of
evolution scenarios of engineering- and quality-assurance artefacts involved.

Our vision is to define a comprehensive methodology for round-trip engineering
and model-based testing of evolving, variant-rich software systems. To realize this
vision, we first have to extract and integrate variant/version information in an
automated way from evolving model-based product-line engineering and quality-
assurance artefacts. Based on this additional information, we pursue to define
criteria for detecting and avoiding inconsistencies between those different design-,
implementation- and quality-analysis artefacts.

To achieve our goals, we have to address several challenges with respect to the
three guiding themes of the SPP, namely Knowledge Carrying Software, Methods
and Processes, and Platforms and Environments for Evolution. In particular, we
address two essential challenges.
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Challenge 5 How to automatically extract and integrate variant/version informa-
tion in model-based SPL engineering and quality assurance?

Challenge 6 How to avoid inconsistencies in different design-, implementation-
and quality-analysis artefacts?

By addressing these research questions, we contribute to the different guiding
themes of the SPP in various ways.

3.4 Maintaining Performance

Performance is a key quality characteristic of software systems, describing its
properties with respect to timeliness and resource usage. Typical performance
measures include response times and throughput of a software system. Insufficient
performance has a negative impact on the service quality of software systems,
which in turn affect key business indicators such as revenue. Performance issues
in enterprise applications and web services can limit employee productivity and
cause customers to switch to other services. In production systems, insufficient
performance can limit production output and may reduce the quality of products,
harm employees, and damage facilities and products. Therefore, performance needs
to be addressed throughout the entire software life cycle from development to
operations via suitable performance analysis methods, techniques, and tools.

Researchers have developed a wide range of performance analysis methods in
the past, which allow to assess single versions and variants of a software product.
However, today’s software is often highly configurable and evolves frequently.
Different versions replace each other over time, while multiple variants co-exist
at the same time. Especially in the context of product lines, which play an important
role in production systems and handheld devices, variants can be numerous as all
potential feature combinations must be evaluated separately. For example, different
variants of the Pick-and-Place Unit (PPU) can be configured by choosing from
the defined relationship of mandatory, optional, and alternative features, such as
alternative cranes and stamps, as well as a set of supported workpieces. Furthermore,
modern software is often developed with agile development methods and processes
that create new versions for every feature, resulting in a high frequency of changes.
For example, Common Component Modeling Example (CoCoME) includes a
definition of design and runtime evolution scenarios such as the addition of new
features or platform migrations based on changing requirements and runtime
reconfigurations. Therefore, the number of versions and variants, as well as the
different and evolving types of artefacts (models, code, measurements, etc.) pose
challenges on performance analysis strategies.
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Our vision is to address the performance of variants and versions in an efficient
way throughout the software life cycle. This supports software engineers and
administrators as they can predict software performance at design time and evaluate
it at runtime.

Performance is influenced by design, configuration, implementation and deploy-
ment. Therefore, performance analysis must be part of the design process. At
runtime, the effects of these influence factors become apparent and allow to further
understand their performance impact. We envision to use knowledge derived from
runtime observations to enrich and improve performance assessments.

Performance evaluation of potential variants is excessively time consuming, for
example the PPU feature tree allows for X variants, which limits the ability to apply
performance prediction approaches. However, performance is a key element also in
software product lines. Our vision is to reduce the necessary effort through a smart
selection of variants, modularization, reuse and knowledge gained during runtime
of previous versions of the variants.

Our goal is to provide continuous support for addressing performance concerns
for versions and variants via respective performance analysis strategies. They must
be able to provide answers to performance questions by engineers in a timely
manner.

Variants can comprise minor deviation from each other or result in very
different software systems. Each difference in the architecture can influence the
performance of a component, as the communication changes between components.
Unfortunately, to test and evaluate every potential variant is time consuming and
impede development due to long evaluation cycles. In Chap. 8, we want to address
this challenge.

Challenge 7 How to efficiently analyse the performance of all variants of a
software system?

While variants are different software assemblies that exist in parallel, versions
reflect differences over time as the software evolves. During the evolution, engineers
need to address performance either due to current performance issues that they have
to solve or in order to fulfil performance requirements in the future. This leads us to
the challenge.

Challenge 8 How to exploit evolving artefacts for the performance analyses of
software throughout its life cycle?

3.5 Maintaining Security

The security of software systems is a highly important quality aspect. This is
motivated by the fact that today an increasing amount of personal data are handled
by software. A vast amount of people not affiliated with security or inner workings
of information technology (IT) is trusting that the data are processed securely.
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In detail, in many cases this means compliance with the most common security
requirements like integrity, authenticity, availability, and privacy.

Moreover, an increasing amount of systems exist that tend to collect data of a
whole human life span and/or collect data throughout the day. For example, cloud
storage services like Dropbox can store not only a theoretically unlimited amount
of data but also an unlimited amount of revisions. Social networks like Facebook
are able to record a whole life. Smartphones or smartwatches are with us the whole
day and continuously mine data through quite a few sensors and also pre-analyse
data like determine a person’s position by combining GPS data, names of available
Wi-Fi spots, and assigned IP addresses.

On top of that, a growing number of information processing, mostly Internet-
connected systems, is pervading our daily lives, like most smart or IoT devices,
such as smart light bulbs, smart light switches, or simply smart speakers/assistants
like Google Home or Amazon Echo. There are hardly any instances where these
systems do not rely on servers or services that are Internet based. In a world of
interconnected systems, your system is also connected to an unpredictable number
of attackers.

There actually is a big number of systems that were developed or deployed a long
time ago, and there will be even more in the future. As a result, data that pervades
all of our lives is in the hands of an opaque mesh of systems connected through
the Internet. And even if one person wants to avoid her data being stored in such
services, it is a desperate situation when her friends store, for example, photos or
other personal data in their cloud services.

Today we must experience that current systems fail to keep their promise. Hacks,
vulnerabilities, and data breaches had already happened in a magnitude that has
never been seen before. Examples are Heartbleed (OpenSSL), Krack (WPA2), 68
million password hack (Dropbox), PlayStation network hack (77 million customer
data), and the CPU bugs leading to the Spectre/Meltdown attacks that affect nearly
every processor in end-user systems rolled out since 1995.

The vision is to incorporate security relevant knowledge accompanying the
ordinary system design. Ordinary system development runs through different
levels of abstractions, and so there are possibilities for wrong decisions at early
development stages. Especially caused by the fact that most systems tend to be
interconnected and new attacks come up rapidly, not only system development
should be accompanied in early stages like design decisions but also the system’s
context needs to be touched, like current security knowledge and knowledge about
attacks and mitigations.

To achieve this goal, knowledge needs to be gathered (semi-)automatically.
The knowledge must include new attacks (or new attack vectors), mitigations,
precautions, and best practices relevant for a given system and domain. Even when
a secure system design has been obtained, the runtime behaviour of the system is
also important. On the one hand, there is a number of security requirements that
cannot be checked fully at design time, at least when they rely on runtime data, for
example consider a deployment context or access-control-related user data. On the
other hand, as argued before, there might be a high risk that a system with an initially
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secure design is attacked during runtime using an unforeseen attack. In this case, one
might want to detect this via anomaly detection techniques. At least, one might want
to react at runtime by adapting a system. To reach this goal, continuous monitoring
of the system seems inevitable. The result shall be detection of unwanted behaviour
regarding the security design and also adapting the system to mitigate threats.

Challenge 9 How can security knowledge, available via diverse non-formal
sources, be incorporated and utilized for a long-living system design?

Challenge 10 How can developers and security experts be supported to react
to context evolution, which may compromise the system’s security design or
compromise the system at runtime?

3.6 Learning from Evolution for Evolution

Learning is the process of changing one’s behaviour through knowledge acquisition.
New knowledge is generated during both the design and construction phase and the
operation phase of along-living software system. Making this knowledge accessible
in Knowledge Carrying Software is one of the guiding themes of the priority
programme. Knowledge can be learned and applied through the whole evolution
cycle. But much knowledge is either implicit and never documented or missing
completely.

There are multiple reasons for this; for example, tight time and cost restrictions
can prevent software engineers from creating documentation in the first place. Bad
requirements engineering practices can also lead to this outcome. Furthermore,
creating formal documentation, for example in the form of models, is a complex task
that might be perceived as tedious and cumbersome. Creating this kind of formal
documentation also requires a high level of expertise. Documentation might also be
wrong or become out of date. Oftentimes tests are also used to ensure correctness
of software and to document it, but for practical reasons tests cannot cover the
entire behaviour of a system. Thus, knowledge is often not documented and scarcely
available.

Missing knowledge about the system and its environment greatly hampers
the evolution of long-living software systems. Reasons for this are that detailed
knowledge of a software system is an essential prerequisite for an effective software
evolution and for ensuring the correctness of a software system.

Our vision is to semi-automate the learning of knowledge and its application for
the evolution of model-based long-living software systems. We can then use this
knowledge to support software engineers who would not otherwise have access
to this knowledge. This support comes in the form of ensuring correctness and
recommendations about future evolutions, as well as assessing the effort required for
changes. For this we need to identify evolutions in the past and present, assess their
impact on the systems, and use the gained knowledge to derive future evolutions,
for the same system or different systems. Our automatically extracted knowledge
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will enable the development off Knowledge Carrying Software. This extracted
knowledge can be about past evolutions or about the current behaviour of the
system, for example in the form of automatically learned behavioural models. Our
results will be implemented in software tools that can be used as Platforms and
Environments for evolution. One example is the SiLift tool (cf. Sect. 10.1.1) for
identifying historical evolution steps, which is the foundation for other software
tools in this chapter.

Our goal is to automatically create knowledge about a system or its past
evolutions. This knowledge shall then be used to support future evolutions of that
system or similar systems. Knowledge about past evolutions is contained in artefacts
stored in software repositories. These past evolutions need to be extracted and then
processed so that the engineer can readily use this knowledge. Similarly, knowledge
about the current system might be derived from the actual running system, for
example to create models about a system’s functional or non-functional behaviour.
The derived knowledge shall then be utilized by recommending, selecting, or
deriving evolutions of the system or similar systems such that those systems
correctly realize changed functional requirements or improve their non-functional
behaviour due to the evolution.

Realizing those goals poses several challenges. We group these challenges into
those concerning the analysis of past and future evolutions.

Challenge 11 How to identify and process semantically rich changes from past
software evolutions?

Past changes in model-based systems come in the form of models under version
control (e.g. git). These models and their versions can be numerous and describe
the system under different viewpoints. However, simple graph differences on
the abstract syntax level are too fine-grained and lack the semantics of changes
on higher level representations. Consequently, the first challenge is to identify
past software evolutions by computing and grouping the corresponding model
differences and give those evolutions semantics on the modelling language level.

Those semantically rich software evolutions can then be used to drive future
software evolutions—leading us to the second challenge.

Challenge 12 How to exploit past software evolutions to improve future software
evolutions?

This second challenge has multiple variants. One variant is related to the co-
evolution of different viewpoint models of the system. Here, a system can exploit
past evolutions to recommend co-evolutions of viewpoints if a user changes a single
viewpoint.

Another variant is to use knowledge about past evolutions to establish a
knowledge-carrying network. This network could exchange experiences of past
evolutions between similar systems characterized by their behaviour and context
and use this knowledge to support the engineer in evolving systems. A final
variant addresses maintainability of long-living systems. Here, knowledge about
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past evolutions could be used to estimate the maintainability of information systems
and automated production systems.

3.7 Maintaining Correctness

Evolution is usually driven by the need to change a particular part of the system,
for example in order to repair a malfunction or to add or improve features. The
challenge is to ensure that other aspects of the system that are not targeted by
the change are not modified. Unfortunately, system evolution might invalidate
properties a system had achieved before and is a threat to the system’s safety,
security, performance, maintainability, and other system properties. In particular,
evolution may threaten the trust that an earlier version of the system has gained in
earlier testing phases or by formal verification. Also, if a system has run flawlessly
for a decade, this generates some amount of (informal) trust in the correctness of
the system.

The goal of formal verification within the context of software evolution is to
prove that system properties are not lost due to introduced changes. The properties
to be maintained can either be formulated explicitly as formal specification (or
modelling) artefacts, or they can be present implicitly in form of the code that drives
the existing system.

Knowledge about the system is present both in specification artefacts and in
the code of the program run on the system. If formal verification is able to prove
that a new revision also has these explicit or implicit properties in the code,
then verification serves as a preservation means for the trust into systems - and
management of knowledge. The task for the formal analysis of a system evolution
step can be partitioned into two disjoint sub tasks:

1. Analysis of system aspects that are intended to be retained.
This analysis is used to establish that defined parts of the system behave as before
the change in defined cases. It transfers all properties of the retained part of the
system behaviour onto the new revision without requiring to explicitly state them.
2. Analysis of system aspects that are intended to be changed.
Almost every evolution step (if it is not a pure software refactoring) contains
an intentional change for some part of the observable behaviour. The above
analysis does not help in this case; we cannot (solely) rely on the old revision
as specification for the intended behaviour after the evolution step, but we need
to specify the intended properties of the system explicitly.
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Both aspects of formal verification for evolving systems are challenging in
themselves, and it is interesting to observe how they can accompany an evolutionary
process spanning over evolutionary steps.

It is important to observe that for the analysis of automated production systems,
these cannot be reduced to their software alone—instead, it is imperative that models
of the contextual hardware are taken into consideration as well: Interdisciplinary
modelling is important to make the context and environment part of the verified
system. In Chap. 11, we focus on the preservation of safety properties throughout
the evolution of automated production systems. Similar techniques for proving the
preservation of properties are in principle also thinkable for security, performance,
or other properties—but have not been investigated within this programme. The
aspects of embedding formal evolution analyses into a user-friendly development
process is outlined in Sect. 10.2.

We envision a software evolution process that is naturally and fully accompanied
by (automatic) formal verification steps, thus guaranteeing that desired system
properties are always maintained during evolution. The engineers responsible for
designing and implementing an evolution step will be provided with expressive
and usable specification languages with which they can specify which parts of
the systems should remain untouched and which parts should expose a different
behaviour. These specification techniques allow the engineer to specify desired
behaviour both incrementally (as differences to behaviour of the earlier version)
and interdisciplinary (concerning not only the software but also the context and the
hardware). While a formal verification is the more far-reaching goal, the obtained
specification artefacts can also serve as oracles for testing as a more conventional
technique of verification.

To realise this vision, appropriate specification languages and techniques and
according verification techniques are required that enable the application of formal
verification within the evolutionary process. The first goal is therefore to provide the
right specification and verification techniques for a formal verification for evolution.
The specification techniques must allow for a multi-disciplinary approach going
beyond the software and comprising also the hardware and must take special needs
of the applications into account. They must also operate incrementally. The corre-
sponding automatic verification techniques must be powerful enough to discharge
typical verification conditions within reasonable time and fully automatically.

The two research questions for this research field arise naturally from the
partitioning of the analysis tasks described earlier in this section. They correspond
to the duality of the nature of an evolution step requiring that some chosen system
properties are retained while others may change (in a chosen fashion).
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Challenge 13 How to model, specify, and verify that a system retains desired
behaviour during evolution?

Challenge 14 How to model, specify, and verify intentionally changed behaviour
during system evolution?
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Suhyun Cha, Ralf Reussner, and Birgit Vogel-Heuser

This chapter introduces the case studies used in the DFG Priority Programme
Design For Future — Managed Software Evolution (SPP 1593). Section 4.1 gives an
overview of evolution in information systems and automated production systems.
An open community case study for software architecture modelling and evolution,
the Common Component Modeling Example, is introduced in Sect.4.2. An open
demonstrator for automated production systems, the Pick and Place Unit (PPU)
and its extension (xPPU), is introduced in Sect.4.3. Finally, both case studies are
integrated as Industry 4.0 demonstrator and introduced in Sect. 4.4.

4.1 Evolution of Long-Living Systems to an Industry 4.0
Case Study

Many industrial information systems are operated over decades. During operation,
they face various modifications, for example due to emerging requirements, bug
fixes, and environmental changes, such as legal constraints or technology stack
updates. In consequence, the systems change and evolve continually.
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Supporting software evolution is a competitive advantage in software engineer-
ing. A variety of methods aim at supporting different aspects of software evolution.
However, it is hard to assess their effectiveness and to compare them due to divergent
characteristics [Hei+15a]. Empirical research in terms of case studies and controlled
experiments is useful to validate these methods. However, empirical studies on
software evolution are rarely comprehensive.

To study evolution comprehensively, we believe it is important to collaborate
by joint research. Joint research supports sharing of knowledge and resources
[SDJO7]. In particular, this allows replicating studies, which in general is important
to confirm and to strengthen the results of empirical research [JG12] and thus
enhance evidence. Our goal is to support joint research by collaboration and
replication in empirical studies based on common evolution scenarios and artefacts.
Currently, empirical studies on software evolution are seldom comparable as
they vary in analysed subjects and execution process. Furthermore, these studies
are rarely reusable as important artefacts (e.g. requirements, design decisions,
architectural knowledge, or context knowledge) are often not provided to the
community. A common basis for study collaboration and replication is missing.
To overcome these shortcomings in the SPP1593, two case studies are used: the
Common Component Modeling Example (CoCoME) as a community case study
for software architecture modelling and evolution and the Pick and Place Unit
(PPU) and its extension (xPPU) as a community case study for automated produc-
tion systems’ evolution. CoOCoME represents a knowledge base for collaborative
empirical research on information system evolution [Hei+15a]. The knowledge
base for the evaluation process can be exploited and extended by researchers
with different backgrounds and research interests. It provides assistance on diverse
characteristics that are important for software evolution, like artefacts in different
revisions, comprehensive evolution scenarios, and coverage of different life-cycle
phases (development-level evolution and operation-level adaptation). The xPPU
represents a lab-size demonstrator for investigating research on evolution in machine
and plant automation [LFV13]. The original PPU featuring 13 evolution scenarios
is limited in size and complexity, but it has been extended with its functionality,
together with the additional structure with over 10 evolution scenarios. Different
evolution scenarios are provided [LFV13] to demonstrate its various change reasons,
for example changing requirements, fixing of failures, and unanticipated situations
on site. The xPPU evolution scenarios are provided to meet research requirements
of the community, together with their artefacts such as system architecture, models,
runtime data and code.

The community case studies aim at providing several benefits to researchers:

* By building upon existing specifications and settings, less effort in scenario
definition, study setup, and execution is required.

* A common case study increases the comparability of evaluation results with those
of other researchers and leads to increased evaluation confidence.

* A common case study also increases community acceptance by interaction with
other researchers.
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Unlike information systems, automated Production Systems (aPS) consist of
artefacts of multi-disciplines and are all closely interwoven; the software for an aPS
is strongly influenced by the hardware, which is implemented by mechanical and
electrical/electronic components. Usually the complexity of the software and the
system itself is very high; therefore, it is not obvious how a change in one discipline
is affecting the software, context or platform of the system. [Jig+11] even though
maintainability is an important aspect for a long-living system.

The three disciplines involved in aPS are regarded as three different aspects of
context, platform, and software [Leg+14]. Context includes the mechanical aspects
of the system, such as pure mechanical components, sensors, and actuators. Platform
represents electric/electronic aspects, which manage signal flows from or to the
interfaces of the Programmable Logic Controller (PLC). Software reflects software
engineering aspects, which consist of data-processing functions using the flow-in
information to generate the flow-out information. The software of the aPS has been
implemented in IEC 61131-3 [Int09], to be run on PLCs.

Modularity, which is one of the key aspects to enable evolution of software-
intensive systems [PCW84], is still rarely fully applied in aPS [Vog+17b]. Moreover,
fundamental methods such as variability modelling and tracing, which enable
software evolution, are still limited to the software domain of the cyber-physical
systems. However, aPS impose special requirements on the development and main-
tenance process. For instance, mechatronic components are designed to function for
several years. However, it is predictable that their development and maintenance will
change over their utility lifetime. To allow for later adaptions to the functionality of
these components, suitable means should be considered during the development. As
software can be adapted more easily than mechanical or electrical parts, changing
the control software of aPS may solve adaption requirements. However, these
changes may result in code smells, as they are usually conducted quickly on site
by technicians.

aPS are supposed to operate for decades. During operation, they are ageing.
For instance, as a result of physical effects like wear, tear, and corrosion, life
expectations of mechanical components are affected. These components have to
be maintained after some years, known as re-engineering and modernisation (cp.
Fig.4.1). There are other reasons for ageing such as changing requirements and
system specifications, market requirements, new technologies or legal requirements.
Many of those changes can be realised by adapting the control software, which is
done more frequent and even during runtime.
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Project-independent activities to create reusable partial solutions
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Fig. 4.1 V-Model XT integrated into the life cycle of different disciplines in aPS distinguishing
between project-independent activities (top) and project-related activities (bottom) [Vog+15c]
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Arti-

Anticipation of Change
(Buckley et al., 2005)

yes no

Time of change offline online

Fig. 4.2 Categories of evolution scenarios with references to PPU case study examples in
Section 3 [Vog+15¢]

Evolution of aPS can be initiated by different reasons for change, which can
affect the software, mechanical, and/or electrical and electronic parts. A classifica-
tion of evolution was introduced in [Vog+15c], which distinguishes causal orders
of change by which the aPS is affected (see Fig.4.2). The evolution categories can
be related to the history of change and anticipation of change [Buc+05, KVF04].
Anticipated changes include changes during the development of the system and also
during operation in case of a model-based approach (i.e. offline changes). Moreover,
changes during commissioning and operation are categorised as unanticipated
changes (i.e. online changes), as they are implemented directly in the aPS during
runtime.

In order to blur the boundaries between pure information systems and automated
production systems, recent trends in industrial digitalization, known as Industry
4.0, were established. According to Vogel-Heuser et al. [Vog+15c], the proportion
of software in automated production systems is increasing and the demand for
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highly customizable production systems will require higher involvement of multiple
engineering disciplines. Consequently, research demonstrators in Industry 4.0 are
required to study evolution cycles in these heterogeneous environments.

There exist demonstrator systems for Industry 4.0 environments targeting spe-
cific problems where the automation aspect is dominant [VH16]. The software
systems interacting with the physical parts of these prototypes do not comprehend
the complexity of information system in real-world scenarios. Additionally, a
community case study is supposed to be a standardised or at least widely used
reference for projects with the same research topics. This requires a demonstrator
that not only is easily accessible and expendable but also comprehends the most
significant aspects of evolution in Industry 4.0 scenarios. Therefore, both case
studiesCoCoME and xPPU are integrated as Industry 4.0 case study.

4.2 Introduction of the CoCoME Case Study

CoCoME represents a trading system as it can be observed in a supermarket chain
handling sales. This includes processing sales at a single store of the chain, like
scanning products or paying, as well as enterprise-wide administrative tasks, like
inventory management or reporting. Each store of the CoCoME supermarket chain
contains several cash desks, whereas the set of cash desks is called cash desk line
(visualised by the dashed line) (Fig.4.3). The cash desk is the place where the

Enterprise Server

I
N o0
X
X

1-——%

Fig. 4.3 Overview of the CoCoME structure
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Fig. 4.4 Basic use cases of CoCoME [Her+08b]

cashier scans the goods that a customer wants to buy. The central unit of each cash
desk is the cash desk PC. The cash desk line is connected to a store server. A set of
stores is organised in the CoCoME enterprise where an enterprise server exists to
which all stores are connected.

A detailed description of the basic use cases supported by CoCoME is given
in [Her+08b]. In the ProcessSale use case, the cashier detects the products that a
customer wants to buy and payment is performed at the cash desk (Fig. 4.4). If the
conditions for express checkout [Her+08b] are fulfilled, a cash desk automatically
switches to express mode in the ManageExpressCheckout use case. Product items
can be ordered by the store manager in the OrderProducts use case. In the
ReceiveOrderedProducts use case, products that arrive at the store are checked and
inventoried by the stock manager. The store manager generates stock-related reports
in the ShowStockReport use case. The ShowDeliveryReports use case provides the
mean times a delivery from each supplier to a considered enterprise takes to the
enterprise manager. The store manager can change the sales price of a product in
the ChangePrice use case. In the ProductExchange use case, products are shipped
from one store to another if a store runs out of a certain product. In this use case, no
human actor is involved. Only the system is involved.

CoCoME uses Java SE in combination with Java Database Connectivity (JDBC),
Java Persistence API (JPA), and Java Message Service (JMS) (Fig.4.5). JMS
is used to provide a way for communication between the components. The
main component is the TradingSystem component. It consists of the TradingSys-
tem::CashDeskLine component and the TradingSystem::Inventory component. The
TradingSystem::CashDeskLine in turn consists of several CashDesk components
representing the physical cash desks in a store with their corresponding components
like the CashBox, BarcodeScanner, and CardReader. There is one Coordinator
component per store, which receives sales events from the cash desks and changes
the express mode state if needed. The TradingSystem::Inventory consists of the
Console component, which provides a user interface for store-related operations
through its Store component. The Console::Reporting component provides the
user interface to retrieve enterprise or store reports. The central component of the
TradingSystem::Inventory is the Application component. It provides the cash desk
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and the store user interface and the operations to retrieve data and to book sales. The
data are transferred in the form of Transfer Objects to provide an abstraction layer
between the database and the other components. To retrieve the reporting informa-
tion for the presentation layer, the Application::Reporting component provides the
needed interface. There is also a ProductDispatcher component available to dispatch
needed stocks from one store to another if necessary. A connection to the underlying
database is realised by the Data component, which relies on JDBC and JPA to persist
and retrieve data. It is divided into three sub-components, Store, Enterprise, and
Persistence. The Store and Enterprise components are only used to query store or
enterprise data, whereas the Persistence component writes objects to the database.

A detailed description of the initial requirements, architecture, and system
behaviour in form of sequence diagrams is given in [Her+08b]. In the course of
the DFG Priority Programme 1593, CoCoME faces changes by various evolution
scenarios. Detailed description of changes to requirements, architecture, and system
behaviour is given in [HRR16].

Since CoCoME has been applied and evolved successfully in various research
projects, like SLA@SOI and Q-Impress funded by the European research council,
several variants exist that span different platforms and technologies. Furthermore,
various development artefacts are available, such as requirement specification or
design documentation, that changed over time. CoCoME is well suited to serve as
a study subject because the supermarket context is commonly comprehensible and
the complexity of the system is appropriate. As CoCoME is a distributed system,
several quality properties are affected by evolution.

In SPP 1593, a hybrid cloud-based variant of CoCoME has been developed
based on the initial CoCoME specification [Her+08b] by implementing various
evolution scenarios. The frontend of the hybrid cloud-based variant of CoCoME
uses Java Server Faces (JSF) to implement the user interface (Fig.4.6). In the
WebFrontend::UseCases component, the presentation logic is implemented, which
uses the components in the TradingSystem component to store the data retrieved
from the ServiceAdapter. The ServiceAdapter component defines and implements
an interface for database access and internally uses JDBC and JPA to access
the underlying database. To query the database, the ServiceAdapter provides a
Representational State Transfer (REST) style interface over Hypertext Transfer
Protocol (HTTP).

Additional abstraction layers are introduced for the communication between
the presentation layer and the business logic. These layers are located in the
WebService component. The inner structure of the TradingSystem was nearly left
unchanged. One exception is the event bus. Instead of the JMS event bus, the
Context and Dependency Injection (CDI) event bus is used. Another change is
that the components in Data now use the ServiceAdapter instead of the database
directly. This allows for more flexibility in the cloud context. The newly introduced
WebService::CashDesk component provides the frontend with a way to access the
cash desk components. It is designed as a wrapper around the business logic so the
method of accessing the business logic can be exchanged just by exchanging the
wrapper classes. This is also the purpose of the WebService::Inventory component.
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The WebService::Inventory contains the Enterprise component to enable the fron-
tend to access enterprise-related information. This is necessary to enable several
tasks needed for database administration like the listing of all stores in a specific
enterprise. Design details are given in the technical reports [HRR16] and [HKR18].

We specified and implemented distinct evolution scenarios covering the cate-
gories adaptive and perfective evolution. Corrective evolution is not considered
in the scenarios as this merely refers to fixing design or implementation issues.
An adaptive evolution of the hybrid cloud-based variant of CoCoME is reflected
in the scenarios Platform Migration, Microservice Architecture and Container
Virtualization due to evolving technology. Perfective evolution is represented in
the scenarios Adding a Pick-Up Shop, Adding a Mobile App and Adding Payment
Methods by emerging user requirements. Furthermore, in order to accommodate the
self-adaptiveness of modern software architectures, reconfiguration during system
operation is addressed in the scenario Database Migration.

4.2.1 Platform Migration

The CoCoME enterprise must reduce operating costs of the resources and, therefore,
migrates some resources to the cloud. The enterprise server and its connected
database are now running in the cloud. The introduction of the cloud enables flexible
adaptation and reconfiguration of the system. However, putting the system into the
cloud causes new challenges regarding quality properties that must be considered in
development and operation. For example, a look back in the recent past shows that
privacy is one of the most important quality properties for cloud-based systems.

The evolution scenario Platform Migration transfers the initial variant of
CoCoME to the hybrid cloud-based variant. As mentioned before, for the design of
the hybrid cloud-based variant, additional abstraction layers are introduced for the
communication between the presentation layer and the business logic. These layers
are located in the WebService::CashDesk and WebService::Inventory components.
The WebService::CashDesk component provides the frontend with a way to access
the cash desk components. The WebService::Inventory component enables the
frontend to access enterprise-related information. Wrappers are designed around
the business logic, so the method of accessing the business logic can be exchanged
just by exchanging the wrapper classes.

4.2.2 Adding a Pick-Up Shop

In this scenario, an online shop is added where the customers can order online and
pick up the goods at a chosen store. This design-time modification includes adding
new use cases and modifying existing design models.
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Fig. 4.7 Use cases of the pick-up shop [HRR16]

The CoCoME enterprise is in competition with online shop vendors (such as
Amazon and Taobao). In order to increase its market share, the CoCoME enterprise
management decides to offer a pick-up service for goods to address emerging
customer requirements. The customers can order and pay online. The goods are
delivered to a pick-up place (i.e. a store) of her/his choice. If the order has not been
paid online, the goods have to be paid at the pick-up place (either per credit card or
cash).

Existing use cases are extended, and new use cases are added to cover the pick-up
shop’s functionality (Fig.4.7). In the CreateCustomer use case, a customer creates
a new customer account for the pick-up shop. Users can be authenticated at the
pick-up shop by the use case AuthenticateUser. The use case ProcessOnlineSale
extends the existing use case ProcessSale by enabling a customer of the shop to
select the products he/she wants to buy and to perform payment via credit card.
Product information stored in the system can be changed by the stock manager in
the ManageProductInformation use case.

For implementing the pick-up shop, the hybrid cloud-based variant had to be
modified and extended to fit the needs arising from an online shop (Fig.4.8).
The first extension is to implement a service for customers to register and log in.
This functionality requires the ServiceAdapter to store the login information and
additional data like credit card data and the customer’s preferred store in the data
store.

The second modification is to include the services for the creation, modification,
and authentication of customers into the business logic tier. To this end, the Inven-
tory component is extended by a new UserManager component. This component
implements the communication with the ServiceAdapter to retrieve, modify, or
create the user and customer data.

The ShoppingCart component keeps track of all items that the customer wants
to buy and is responsible for calculating the total price of these items. When
the customer is done adding items to the ShoppingCart and proceeds, the sale is
persisted by the CheckOut component.
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By introducing the pick-up shop as web application, the CoCoME system
changes from a closed system (only employees can access but not the customers,
and access depends on the location, e.g. a store) to an open system (all customers
can accessed via the Internet). This raises certain consequences such that the number
of users is not restricted any longer. Hence, various quality properties are affected,
for example privacy, security, performance, and reliability.

4.2.3 Database Migration

After a while, the CoCoME enterprise starts a big advertisement campaign.
Advertisements lead to an increased amount of sales. Thus, the performance of the
system may suffer due to limited capacities of the cloud provider currently hosting
the enterprise database. Migrating the database from one cloud provider to another
may solve the scalability issues.

Especially in the cloud, the application usage, performance, pricing, and privacy
are closely interrelated. The application usage impacts on the application’s perfor-
mance and pricing. Continuously appraised elasticity rules trigger the migration
and replication of a cloud application’s software components among geographically
distributed data centers. Both migration and replication may lead to violation
of privacy policies that prescribe certain geo-locations. Furthermore, a cloud
application may also face performance/availability trade-offs as replication is often
done for improving the system’s overall availability, not just performance, which
again might violate privacy policies.

This scenario represents a reconfiguration at runtime. Migrating the database
may cause a privacy issue due to violations of privacy constraints. According to
a privacy constraint' of the European Union (EU), sensitive data must not leave the
EU. Since the CoCoME enterprise is located within the EU, its databases containing
customer data must be hosted on data centers within the EU. This scenario is about
the dynamic analysis of cloud applications at runtime to identify upcoming quality
flaws. It includes model-based observation and prediction techniques in flexible
environments.

4.2.4 Adding a Mobile App Client

In order to outperform its competitors and expand its market share, the CoCoME
enterprise decides to offer a mobile app client. In this perfective evolution scenario,
a mobile client is added where the customers can order through their mobile
phones and pick up the goods at a chosen store. Figure 4.9 depicts the mod-

Thttp://eur-lex.europa.eu.
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ifications regarding the use cases of CoCoME. In the CreateAppCustomer use
case, a customer creates a new customer account for the mobile app. Customers
can be authenticated on the app by the use case AuthenticateAppUser. The use
case ProcessAppSale extends the existing use case ProcessSale by enabling the
customer to buy products using a mobile app. This scenario introduces mobile
communications to the CoCoME system, which may affect quality properties like
privacy, security, performance, and reliability.

This design-time modification is based on the pick-up shop scenario but
implements a mobile frontend (Fig.4.10). The backend of CoCoME does
not face any changes. An AppShopAdapter is introduced to bridge the
technology gap between the web services of CoCoME and the technology
used by the mobile app client. The AppShopAdapter consumes the three web
services WebService::Inventory::LoginManager, WebService::Inventory::Store, and
WebService::Inventory::Enterprise and provides a Rest API, which is used by the
AppShop. The Rest API contains the service endpoints. Further design details are
described in the technical report [HKR18].

4.2.5 Microservice Architecture

The architectural style of CoCoME is changed to microservices for reducing the
coupling between the services of CoCoME and enable independent deployment,
as well as reuse. In this adaptive evolution scenario, the functionality of CoCoME
remains the same while changing the architectural paradigm of the system. This
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Fig. 4.10 Architecture overview with mobile app extension (coarse structure) [HKR18]

design-time modification introduces a collection of loosely coupled microser-
vices where each microservice is internally structured in a layered fashion. Each
microservice has its own graphical user interface (GUI) and business logic. Each
microservice, except for Reports, has its own database. The CoCoME system
(before structured by technical layers) is decomposed into four microservices for
managing the orders, reports, stores, and products (Fig.4.11).

In addition to the four microservices, a Frontend service is introduced. The
Frontend service is required to provide a unique GUI and entry point for users. When
a user requests a service, for example by clicking a button on the GUI, the request
is delegated by the Frontend service to the corresponding microservice. Thus, the
Frontend service handles the orchestration of the microservices. Furthermore, the
Frontend service is responsible for identity and access management.

The evolution of the architectural style shifts complexity from software design
into system operations. While the individual complexity of a microservice is
reduced compared to intermeshed services, additional complexity is introduced
for the orchestration of the single microservies. Moreover, quality properties like
performance and privacy are affected by this evolution scenario.

4.2.6 Container Virtualization

In this scenario, the deployment and operation of the CoCoME system is facilitated
by introducing container-based virtualization with Docker. Docker eases the inte-
gration of CoCoME into build and deployment pipelines. In this adaptive evolution
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Fig. 4.13 Use cases of CoCoME payment possibilities

scenario, the functionality of CoCoME remains the same, while the technology
stack is extended (see Fig.4.12). The given CoCoME stack is moved into the
Docker Daemon, which runs a Linux distribution. This evolution scenario provides
a platform independent CoCoME that does not require any preconditions like
installing or updating software. By using Docker, a version of CoCoME can be
instantiated on any device without installing additional software. Furthermore, the
building and deployment of CoCoME can be automated and be sped up.

4.2.7 Adding Payment Methods

Currently, customers can only pay via credit card. In this scenario, the CoCoME
sales systems is extended with new payment possibilities such as PayPal and
Bitcoins (Fig. 4.13).

Customers are then enabled to select between various payment options. Payments
are initiated by the TradingSystem::CashDeskLine component (Fig. 4.8). This com-
ponent communicates with an external bank (External::Bank::TrivialBankServer
component) via the IBank interface. The IBank interface defines the methods vali-
dateCard and debitCard. In this scenario, a generic [Payment interface is introduced
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Fig. 4.14 Excerpt of the CoCoME architecture after adding new payment possibilities

that defines the authentication and payment methods. The IPayment interface is
implemented by the PaypalPayment and the BitcoinPayment components (as part of
the External:: AlternativePayment component). In order to still provide the customer
with the possibility to pay via credit card, the [Payment interface needs to be mapped
to the IBank interface. For this purpose, the adapter design pattern is chosen.
Figure 4.14 shows the resulting architectural structure.

4.3 Introduction of the PPU and xPPU Case Studies

The PPU and xPPU represent a laboratory plant for automated production system.
The case studies handle and manipulate workpieces (WP) of different mate-
rial (Fig.4.15). An order for WPs is initially processed at a material storage.
Afterwards, the PPU and xPPU distribute and manipulate the WPs that are detected
by many different kinds of control hardware. Finally, WPs are sorted based on their
material in product storage and delivered.

The original PPU consists of four equipment modules: stack, crane, stamp, and
conveyor. WPs, which are the target of the process of the plant, are stored at the
stack. These WPs are processed differently depending on their type in which the WP
is either directly transported to the conveyor by the crane or moved to the stamping
unit followed by transported to the conveyor. Sorting ramps possibly differ also
depending on the WP type. The xPPU have additional features, such as a reordering
module for logistic flexibility, so-called picalpha; reinforced security and safety;
product recognition using radio-frequency identification (RFID); manual operating
mode; and Industry 4.0 interface (Fig. 4.16).

In the xPPU, production, material, and product managers are responsible for
controlling the plant status, material status, as well as the resulting product status
respectively (Fig.4.17). When the order is initialised, the production manager con-
trol the processes the plant conduct regarding the material and resulting product. The
processes (i.e. basic control functionality) can be manipulating WP (i.e. stamping)
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Fig. 4.15 Overview of the PPU and xPPU production chain

Remote Systems

Fig. 4.16 Overview of the PPU, xPPU, and Industry 4.0 case studies

or sorting WP in different ramps according to their material. The plant operator
is responsible for selecting the mode of operation for the plant (i.e. manual or
automatic), as well as monitoring the status of the plant regarding fault and
emergency handling. By enabling Industry 4.0 interface to the xPPU, remote
operator and system can access the plant over the web or mobile application and
execute processes. The use case for the Industry 4.0 interface is further detailed in
Sect.4.4.1.
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Fig. 4.17 Basic use cases of xPPU (highlighted use cases are from enabling Industry 4.0 interface)
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Fig. 4.18 Excerpt of the meta-model developed based on ISA88 [Com+95]

The meta-model used for modelling the system architecture of the xPPU is based
on ISA88 standard [Com+95] (Fig. 4.18), which is a reference model for providing
the essential fundamentals for batch process control (Fig.4.19). The two central
classes are the Module and the GeneralOperation. The Module corresponds to the
physical assets of an enterprise. The GeneralOperation represents the procedural
elements from the ISA88 standard. Both classes inherit the name and Objectld
from the NamedElement class. The Module can have multiple relations to the class
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Property, which refers through a type relation to an existing Module. Moreover, a
Module, which is already available and implemented in the overall model, can thus
be referenced and used several times, which allows the creation of a repository (i.e.
area repository). In addition, the Module is also related to GeneralOperation, which
allows the procedural elements to be assigned to the physical plant components.
GeneralOperation has two compositional relations to Constraint via a pre and post
relation, which respectively express pre-conditions and post-conditions of proce-
dural elements to be checked before and after the execution of a GeneralOperation.
Furthermore, the physical assets in terms of process cells, units, equipment modules,
and control modules inherit from the class Module. In the same manner, procedural
elements in terms of recipe procedure, unit procedure, operation, and phase inherit
from the class GeneralOperation.

In order to provide use cases and allow the comparison of different solutions,
24 evolution scenarios have been developed during the SPP 1593. Detailed doc-
umentation of the xPPU evolution scenarios are documented with structural and
behavioural models, PLC control code, Matlab/Simulink simulation projects, and
mechanical CAD files [Vog+14b] and are publicly available to the community
on github.? The evolution scenarios were extended regarding more sophisticated
requirement modelling, as well as fault handling functionality Chap. 12.

The xPPU is also used by the research community outside the SPP1593 to
identify inconsistency [Fel+16], control parameter optimization [Zou+18], and in-
place traceability [Ale+17]. The xPPU is connected to a PLC through EtherCAT,
allowing the process of signals from the xPPU and the control of actuators accord-
ingly (Fig.4.20). The control software runs on a PC with a particular environment
(e.g. CODESYS or TwinCAT). Furthermore, the PLC is connected to an Open
Platform Communications (OPC) server that allows accessing the plant by OPC
clients such as the Industry 4.0 interface.

4.3.1 Evolution Scenarios of the PPU

In Table 4.1, 13 sequential evolution scenarios of the PPU are depicted, which cover
different combinations of platform, context, and software changes.

e Scenario Sc0: The initial scenario is the evolution scenario ScO where the stack,
the crane, and a slide exist. The stack pushes a single black plastic WP out of the
stack into the crane’s pick-up position. At the pick-up position, the crane picks
up single WPs by moving the crane down and by using a vacuum gripper to suck
the separated WP. Upon rotation of 90°, the crane reaches the slide’s position,
where the WP has to be placed. After moving down, the vacuum gripper releases
the WP, which then glides down the slide.

Zhttps://github.com/x-PPU.
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Fig. 4.20 Environment frame of engineering and access to xPPU

* Scenario Scl: Within this scenario, the slide was replaced with a Y-shaped slide
to increase the capacity of the slide to five WPs. the evolution in this scenario
affect only the context as solely mechanical component was added.

* Scenario Sc2: Within this scenario, the PPU processes black plastic WPs, as
well as metallic WPs. In order to distinguish between the processed WPs, an
additional inductive sensor was installed at the stack.

* Scenario Sc3: For tractability reasons, a stamp module was added within this
scenario to allow the labelling of the WPs. The stamp is located at position 180°
of the crane. Once the WP is detected at the stack, the crane picks up the WP
and turns to the stamp position to place it at the magazine, which then retracts to
position the WPs under the stamp. The stamp moves down to press the WPs for
a while and retracts. The magazine extrudes, and the crane then picks the WPs
and place them at the slide. The evolution in this scenario results in modification
of all dimensions of the crane.

* Scenario Sc4a: To increase availability, inductive sensors are installed for crane
positioning replacing micro switches as they are more robust against pollution.
The inductive sensors provide the same signals as the old position sensors.
Therefore, the software is not affected; only the crane platform is modified.

* Scenario Sc4b: To increase the reliability of crane positioning, micro switches
were installed in addition to the existing inductive sensors. As a result, each
inductive sensor has a redundant micro switch.

* Scenario Sc5: Within this scenario, the crane behaviour is changed to allow the
processing of more than one WP at a time. As soon as the crane places a metallic
WP at the stamp, the stack checks if a plastic WP is available for pickup. In this
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case, the crane uses the stamping time to transport the plastic WP to the slide.
The realised evolution only affects the software of the crane.

¢ Scenario Sc6: Within this scenario, a mechanical buffer was mounted next to the
stamp, which allows another metallic WP to be placed next to the stamp even if
the stamp is processing metallic WP. The behaviour of the crane is similar to Sc5.

* Scenario Sc7: Within this scenario, the PPU processes additional white plastic
WP. Therefore, the stack was modified with additional optical digital sensor to
detect the brightness of the WP. Combining the already existing inductive sensor
with the new sensor, the stack is able to differentiate all kinds of WPs. The white
plastic WPs are stamped like metallic ones. Black WPs are transported directly
to the slide.

* Scenario Sc8: Due to the fragility of white plastic WPs compared to metallic
ones, the stamp was modified with two different pressure profiles each for
specific types of WP. Therefore, the present two-way valve was replaced by a
proportional valve that handle analogue values.

* Scenario Sc9: Within this scenario, a conveyor was installed in the place of the
slide. The crane now places the WPs directly on the conveyor, which transports
WPs to a slide mounted at the end of the conveyor.

* Scenario Sc10: Additional two output slides were added in this scenario at the
side of the conveyor. Therefore, to separate the WPs, two pneumatic pushers
are mounted at the opposite side of the conveyor, facing towards the two slides.
Right before each pusher, an optical sensor is attached to detect whether a WP
is available. The slide mounted at the end of the conveyor is filled first, then the
mid slide, and finally the slide at the beginning of the conveyor (first slide).

* Scenario Scl1: Within this scenario, only one type of WPs is separated into one
slide. Therefore, two inductive sensors are installed in front of the optical sensors
right before the two slides on the side. In the first slide, white WPs are separated;
on the mid slide, metallic WPs are separated; on the last slide (at the end if the
conveyor) black WPs are sorted.

* Scenario Scl2: In this scenario, the sorting order of WPs is changed at slides.
Now WPs have to be mixed in all slides. The change in this scenario only affects
the software.

* Scenario Sc13: Until this scenario, the positioning of the crane is done using
digital position sensors. To increase the accuracy and to avoid spending cables
and terminal blocks, the digital sensors are replaced by analogue sensors
(potentiometer).

4.3.2 Incremental Evolution Scenarios

Within scenario 11, the sorting of WPs at the conveyor is targeted. The scenario
follows a specific sorting regarding the WP types. The first ramp collects white
WPs, the second ramp collects metal WPs, and the third ramp collects black WPs.
The change is implemented by checking the type of WP with a diffuse and inductive
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sensor after the WP is placed on the conveyor belt. When a white WP is identified,
the first pneumatic cylinder pushes the WP in the first ramp, and after another
sensor check the metal WPs are pushed in the second ramp by the next cylinder.
Black WPs pass both the lateral ramps and are transferred to the ramp at the end
of the conveyor. According to the categories of changes, scenario 11 is a change of
category 5 without adaption of the requirement and specification.

Because of the various possibilities to sort WPs, this scenario is used to
implement so-called mini-scenarios. Mini-scenarios are evolution scenarios of
the PPU that only have a very limited impact on the whole system. The mini-
scenarios were introduced because some technologies such as verification are not
feasible for large change. The mini-scenarios reflect ad hoc changes that are often
instantaneously performed to quickly react to avoid standstills of the production
system. The mini-scenarios are simplifications in the material flow of scenario 11
and are implemented as simple code adaptations of the software code. Table 4.2
shows the implemented mini-scenarios. Scenario 11a and 11b simplify the material
flow of the PPU by exclusively using only one ramp. In scenario 11c, two ramps
are used by an alternating pattern that arise a very unique material flow. Scenario
11d and 11le are preliminary stages to the original scenario 11 by sorting just one
or two WPs in a specific ramp. The mini-scenarios can be used to investigate
approaches that consider undocumented or unknown changes during operation. The
platform and context are not affected by any mini-scenario, and the changes in the
behaviour arising out of the software modification are much smaller than in the
other evolution scenarios. Therefore, these scenarios can, for example, be used to
evaluate approaches that try to ensure consistency between specifications, models,
and the running system and consider transformation of models or focus on atomic
modification steps.

Table 4.2 Mini-scenarios: limited software modifications of the sorting of conveyor belt

Conveyor belt

Scenario  Cause of evolution cC P S Realization
11 Specific sorting regarding o o M  White workpieces are stored in
workpiece type Ramp 1, metal in Ramp 2, and
black in Ramp 3
11a Exclusive use of Ramp 1 o o M All workpieces are stored in
Ramp 1
11b Exclusive use of Ramp 2 o o M  All workpieces are stored in
Ramp 2
11c Use of two ramps o o M  All workpieces are alternatively
stored in Ramp 1 and Ramp 2
11d Sorting of one workpiece o o M White workpieces are stored in
type Ramp 1, and the others in Ramp 2
11e Sorting of two workpiece o o M White and black products are stored
types in Ramp 1 and the others in Ramp 2

M Modified, o no changes, C Context, P Platform, S Software
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4.3.3 Evolution Scenarios of the xPPU

In Table 4.3, extended sequential evolution scenarios of the xPPU are depicted.

e Scenario Scl4: Within this scenario, the XPPU processes additional metallic
WPs of different weights. Therefore, the stack was modified with a weighting
module to distinguish between the processed WPs based on their weight. The
introduction of new WPs will also affect the crane’s behaviour. During the
transportation of different WPs by the crane to the stamp or the conveyor, the
heavier WPs need more time to stop oscillating after the crane’s rotation. This
latter modification can be adapted by modifying the software. Furthermore, the
stamp is modified with different stamping pressures (e.g. heavy, medium, and
light pressure).

* Scenario Scl5: To allow re-feeding of WPs that are detected as being faulty,
the xPPU was extended with a conveyor system containing three additional
conveyors.

* Scenario Sc16: Within this scenario, the xPPU allows the processing of WPs in
priority at the conveyor system. A picalpha module was mounted on the first
conveyor of the conveyor system, which has a handling module for reordering
WPs by picking and placing the WP ahead in a different position.

e Scenario Scl7 and Sc18: With the evolution in these scenarios, the xPPU is
extended with a safety door for the prevention of accidents at the stamp, as
well as a light grid to prevent accidents at the picalpha module. The mounted
hardware incorporates emergency stop buttons, as well as additional control
elements.

* Scenario Sc19: The xPPU in this scenario has an additional control button to
switch between automatic operating mode and the additional manual mode.
Within the manual mode, the operator is allowed to control the xPPU in any
required function sequence.

* Scenario Sc20: Within this scenario, the xPPU was extended with energy
monitoring hardware. This hardware allow to measure the energy consumed by
the different clamps. Therefore, three Wattmeter were installed. Not only does it
allow to measure the electric energy consumed by the plant, but with flow sensor
it is also possible to measure the air pressure and the air flow through the xPPU.
This information can be used to optimise the plant focusing on energy-saving
aspects. It also allows to monitor if some parts consume more energy than usual,
which might lead to the conclusion that these parts have to be replaced due to
malfunction.

¢ Scenario Sc21: Within this scenario, the XPPU has four valve blocks that allow
to turn off the air flow on some xPPU modules. This feature allows to simulate
failures in the air flow, as well as turn off the air pressure in specific hardware
parts for safety reasons.

* Scenario Sc22: To enable more flexible production management, the xPPU was
extended with two RFID-Reader/writer. One was mounted at the crane parallel
to the gripper position, and the other on the conveyor belt. Each WP now was
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labelled with an RFID tag, which contains specific information about the WP
(e.g. weight and date of labelling).

e Scenario Sc23: Within this scenario, the xPPU is controlled in a decentralised
way by a set of (PLCs). Four different controllers where used. One for the
crane, stamp, stack, and conveyor belt and three for each conveyor of the
conveyor system.

* Scenario Sc24: Within this scenario, an Open Platform Communications Unified
Architecture (OPC UA) connection was enabled to read and write data informa-
tion from the xPPU to an online server. The OPC UA standard is a collaboration
partner of IEC 61131-3 officially® and enables flexible process planning as a
feature of Industry 4.0. The read and write data information is used to monitor
and control the xPPU. Using OPC UA allows us to monitor many variables and
values of the xPPU and still have a quick response time. Third-party programs
can access the online server and, therefore, the data and use them for monitoring
purposes, data gaining, and big data mining purposes. With specified algorithms,
statements can be made on the reliability of hardware parts. Also, the usage
of each hardware part can be optimised, reducing maintenance work, energy
consumption and, therefore cost.

4.4 Industry 4.0 Case Study

In this section, we present the Industry 4.0 community case by integrating both
community case studies XPPU and CoCoME (cp. Fig.4.16). This new case study
implements common use cases in Industry 4.0 environments, such as ordering
a customizable product, creating a production plan for a customizable product
on multiple abstraction layers, and observing the progress of batch size one
productions. We enabled event-based communications between information system
and automated production components by providing a web-service-based com-
munication model. The Industry 4.0 case study allows to define and emulate the
automated production systems in a web-based frontend. Moreover, an automated
production system (i.e. the xPPU) is interconnected to an information system (i.e.
CoCoME) by a REST-based web services.

4.4.1 Industry 4.0 Interface of the xPPU

aPS are mostly controlled by PLCs, which are programmed in order to execute
specific tasks. A program code is loaded onto the PLC through dedicated connection
with the computer (i.e. EtherCAT). The PLC then performs, in a cyclic execution,

3https://opcfoundation.org/markets-collaboration/plcopen/.
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Fig. 4.21 Overview of the concept of dynamic reconfiguration and generation of the Industry 4.0
interface [Bou+17a]

the processing of internal operations, reading of inputs, execution of the program,
and updating of outputs. In [Bou+17a], a design concept that enables flexible entry
of orders in a production system during its operation, through dynamic reconfigu-
ration of orders and process planning via a remote interface, was introduced. The
developed concept allows dynamic services to the CoCoME via web services. The
remote interface of the xPPU is considered as an evolution scenario that also affects
the environment frame of the xPPU (cp. Fig. 4.20).

A model-based approach was used for the implementation of the PLC code,
which controls the plant itself, and a middleware application that enables external
access for interacting with the plant (Fig.4.21). The model-based approach aims
at configuring a model of a planned or an existing aPS and allowing a continuous
extension and modification of the model. In case of additional functionalities or
changes of the system, the model-based approach allows the engineer to efficiently
perform modifications within the model.

The underlying meta-model is based on the ISA88 standard [Com+95]. Based on
the ISA88 standard, an editor for modelling the plants was implemented. Using this
editor the PLC control code is generated together with the industry 4.0 interface,
allowing remote access and control through executing available services of the
plant. It is designed to enable flexible entry of orders during the operation of the
aPS through dynamic reconfiguration of orders and process planning. The aPS
should independently check whether the services can be performed from a technical
perspective. For the verification of the technical limits, pre-conditions and post-
conditions are stored within the offered services.



4 Introduction to Case Studies 69

/
OPC-UA Communication

/ ____,___..,.---'-""""
= i i elr Client User
Reporting Operation Result (5. CoCoME)
Plant
(e.g. xPPU) Delivering Operations

Reporting Operation Data

Resolving Operations Taking Recipes
Checking Operation Validity

Fig. 4.22 Use cases of the Middleware

\/

Mobile App User

One of the main features of Industry 4.0 is connectability of the plant. Thus,
besides the use case of the plant (cp. Fig.4.17), it also includes the Middleware
interconnect between the plant (i.e. XPPU) and the users (Fig.4.22). Over this
interconnection, it takes the execution orders from the user side and delivers them
to the plant side. Users can be an external operator to execute the system from
the remote site or another system to be connected with the plant. From the plant,
information regarding the status of the plant or the execution of the operations is
delivered to the user side. The communication between the PLC of the xPPU and
the Middleware is established over an OPC-UA architecture, which is the official
collaboration partner of IEC 61131-3. Middleware executes an OPC-UA client to
connect to the OPC-UA server in the PLC and communicates with the PLC over
this connection.

For the user side, RESTful (Representational State Transfer) web service is
implemented to provide simpler and more lightweight access (Fig.4.23). Thus,
users can have access using an HTTP request (GET or POST) over a web-client
application and execute their desired functionality, such as getting a history list,
getting variable values, executing a single operation, or executing batch operations.
This interface is also implemented in a mobile application form and provided to the
users. The Middleware is available for the community on github.*

“https://github.com/x-PPU/I4.0_Interface.
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Fig. 4.23 Overview of the Middleware architecture (highlighted are the connection to CoCoME)

4.4.2 Integration of CoCoME and xPPU to Form an Industry
4.0 Case Study

The integration of both case studies, CoCoME and xPPU, can be considered as
a further evolution scenario for CoCoME [Bic+18]. The integration of CoCoME
and xPPU is based on the hybrid cloud-based variant of CoCoME. Figure 4.21
in the previous subsection shows that the xPPU plant provides a REST interface.
The REST interface allows retrieving data and executing the production operations.
CoCoME is extended to communicate with this interface (Fig. 4.24).

The main goal of integrating both case studies is to support the OrderCustom-
Product use case (Fig.4.25). In this use case, the customer can order individualised
products in a store, which are then forwarded to the CoCoME enterprise. In the
DefineProductRecipe use case, the enterprise manager creates a product recipe
based on the order as an ordered list of the needed plant operations, and the
CoCoME enterprise triggers the production. In the SpecifyProductionPlant use case,
the plant operation templates are defined by the plant manager and then forwarded
to the connected plants. The production units of the plants use this list to execute
the appropriate operations [Bic+18].
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Fig. 4.25 Overview of the use cases for COCoME after the integration of CoCoME and xPPU,
adapted from [Bic+18]

Figure 4.26 illustrates our extensions to a hybrid cloud-based variant of
CoCoME to enable the integration of CoCoME and xPPU. In the following, we
describe the new components and the relevant changes to the existing components.
The TradingSystem: : CashDeskLine: :Configurator component and
the corresponding WebService: :CashDesk: :Configurator-Service
component enable the customer to configure the custom products. The
TradingSystem: : Inventory: :Application: :Production compo-
nent schedules the production order. The TradingSystem: : Inventory: :
Application: : Plant component provides the functionalities of plant servers,
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such as creating production unit types. The TradingSystem: : Inventory: :
Data: :Plant involves various data structures, for example for production units.
Additionally, we had to extend the TradingSystem: : Inventory: :Data: :
Enterprise to include further data structures, such as ordering plant or
production operations. The TradingSystem: : Inventory: :Data: : Store
component was extended to manage customised products. The WebService: :
Inventory::Plant component represents the web service of the
TradingSystem: : Inventory: :Application: : Plant component. Fur-
ther, we extended the WebService: : Inventory: : Store and WebService
::Inventory: :Enterprise components by the event-based messag-
ing and the corresponding operations for the added data structures. The
WebFrontend: :Web: : PlantView component provides the plant manager
web-based views managing the production unit and plant operations. The
WebFrontend: :Web: :EnterpriseView enables enterprise manager
to manage the production order, plants, and custom products. Further, the
WebFrontend: :Web: : EnterpriseView: : Store allows configuring and
managing custom products. A detailed descriptions of the components of the
industry 4.0 variant of CoCoME are given in the technical report [Bic+18].

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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Chapter 5 )
Tacit Knowledge in Software Evolution Shethie

Jan Ole Johanssen, Fabien Patrick Viertel, Bernd Bruegge,
and Kurt Schneider

Requirement elicitation is an essential activity to identify functional and non-
functional requirements of a software system. In long-living software systems,
requirements identification and update are particularly challenging. This typically
results in an incomplete set of requirements. The reasons for this lie in continuous
changes over the lifetime of the software system, followed by a substantial part of
the requirements that remains unspoken: Users, and generally any stakeholder of a
software system, might not be consciously aware of new or evolved needs or of the
associated reasons. As a result, they are unable to express and verbalise requirements
that relate to this knowledge, which is called tacit knowledge. This chapter details
the identification and externalisation of tacit knowledge during both the design time
and run time of a long-living and continuously evolving system. The overall goal is
to detect deviations between explicitly elicited requirements and implicitly derived
requirements. We discuss two cases in which the identification and externalisation
of tacit knowledge is crucial for high-quality software systems.

In the first case, tacit knowledge about security is identified and externalised
by heuristics as an example for non-functional requirements elicited during design
time. Previously externalised knowledge is encoded in heuristics and filters for
machine learning, which classify general requirements into more and less security-
related ones. As a consequence, security experts can focus their time and effort on
the more security-related requirements. In the long term of a long-living software
system, externalising and reusing tacit security knowledge will be embedded in a
cyclic learning process.
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The second case focuses on tacit knowledge captured during the run time of a
system to improve the functional aspects of a software system. Usage monitoring
allows to understand the difference between the specified and observed behaviour
of a user. A system is inconsistent or incomplete if the requirements are incorrectly
implemented or an important feature has not yet been identified and implemented.
Traditional approaches address these problems only by using bug reports and change
requests. We claim that the identification and extraction of tacit usage knowledge
help to reveal misunderstandings and leads to feature requests without the active
verbalisation by the users of the software system.

5.1 Toward Identification and Extraction of Tacit Knowledge

Software systems are built on a set of requirements established during requirements
engineering. Requirements elicitation is a major activity of requirements engineer-
ing aiming at a complete representation of the system under development and its
external behaviour [Dav93].

Long-living systems face challenges even if state-of-the-art requirement elicita-
tion practices are applied. A component without confidential data but with Internet
access may turn into a security-related one when it is connected to yet another
component that contains customer data. Likewise, a simple view may be easy to
use in its initial version, but during the system’s lifetime, new visual components
are added, affecting the way the interface was originally designed. Each set of
requirements may look simple by itself; however, in combination, they may require
specific attention. Even a system that is initially considered secure or user-friendly
may eventually become vulnerable or confusing by the continuous changes of the
long-living system.

Developers may have some understanding of security or usability concerns
but only a very limited knowledge for recognising related aspects. When they
implement new functionality or integrate components, they may not recognise
implicit vulnerabilities or usability problems. They would need a hint or breakdown
to raise their attention. In addition, existing requirements relate to and have an
impact on more aspects than initially defined. At the same time, the attempt to obtain
a complete specification of requirements often leads to analysis paralysis [Bro+98]:
The intention to analyse an aspect in its entirety slows down the process and finally
paralyses it. In this chapter, we focus on the aspects of the following requirements:

* Non-functional requirements and their impact that neither customers nor
developers are aware of during requirements elicitation at design time.

* Functional requirements that evolve during the run time of a software system
that end users are unable to express.

Tacit knowledge is knowledge deeply ingrained in a person’s mind [PS09]; a
person will apply such knowledge repeatedly but may not be able to verbalise this
given knowledge. For example, security experts avoid code injection vulnerabilities
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as part of their expertise. Likewise, developers keep the user interface simple
and easy to use without explicit requirement. When their activity of competence
is interrupted while they apply this tacit knowledge—the breakdown—they will
remember the rationale. In many cases, domain experts are not even aware that their
expertise depends on this knowledge and that this knowledge might be useful for
others. We follow the hypothesis that the utilisation of tacit knowledge allows the
requirements of long-living systems to be kept consistent and complete throughout
the lifecycle of the system. We analyse two perspectives on tacit knowledge: design
time and run time.

A Design Time Perspective on Requirements. Systems evolve over time. During
the initial design phase, certain aspects might be considered irrelevant. For instance,
a supermarket system designed without the Internet in mind would not consider
attacks or vulnerabilities that arise when the system is extended to an online store
during its evolution. Thus, security requirements and the awareness for security-
related aspects of functional requirements may have not been considered during the
initial design phase. To cope with this situation, developers extend the functionality
but often overlook the need to adapt associated non-functional requirements, such
as security, that result from the change. Over time, this neglect will turn an initially
secure system into an insecure and vulnerable one.

A Runtime Perspective on Requirements. Information on users and on how they
practically employ a system might not be present during requirement elicitation.
Therefore, systems might not deal well with users, and previously made decisions
require refinements. In addition, new requirements are demanded since they become
relevant only when the software is used during a later point in time. Users and their
intention change over time, which results in changed requirements that evolved by
frequently using the software. Two approaches were developed to handle the lack
of usage knowledge, that is how software is being utilised by end users: To support
requirements elicitation, the concept of a stakeholder was introduced to software
engineering [Con94]. Stakeholders represent the interests of clients, customers, and
developers—but often neglect the interests of end users and are difficult to identify
if a user has not been able to participate in the requirements elicitation [SFG99,
Con94]. In the field of human-computer interaction—and in other fields such as
marketing [Jen94]—another approach was established to deal with not yet existing
users: personas, so-called “hypothetical archetypes” [C0099], refer to a fictional
and synthetic character that one would imagine a user could look like, focusing on
certain characteristics. Personas are derived from a limited population sample and
reflect specific characteristics of users.

We present evolutionary approaches for both perspectives, namely to identify
neglected non-functional requirements, such as security during design time, and
to identify functional requirements by observing real users during run time. Both
approaches share similar challenges: discover, understand, and transform users’ tacit
knowledge into explicit knowledge.

To transform tacit knowledge to explicit non-functional requirements during
design time, we describe an approach that identifies security-related requirements
semi-automatically using natural language processing. Our approach is able to
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retrieve vulnerabilities from requirements written in natural language based on
security incidents.

We describe a formative approach for understanding users from runtime infor-
mation, which begins with personas as the starting point for the classification of real
users. This is similar to a greedy algorithm, which starts with a local optimum—
an assumption of how a hypothetical stakeholder [RC03] could look like—and
continues searching for a better user understanding.

Both approaches apply iterative and evolutionary procedures. We begin with an
empty starting situation, for example knowing nothing about security requirements
or the user’s preferences. Both approaches aim to improve the current set of
requirements for a given problem and the understanding of the real users by
continuously transforming tacit knowledge into explicit knowledge. Ultimately, this
process will result in:

* Increasing the system’s usability and customisation towards the needs of users
by software releases that better fit the requirements of customers and the
expectations of users

e Improving and maintaining the quality of development for long-living systems
by co-evolving non-functional requirements, such as security or usability

The chapter is structured as follows. In Sect. 5.2, we provide an overview of the
foundations of tacit knowledge. In Sects. 5.3 and 5.4, we introduce our approaches
and highlight their application in a concrete example. The approaches address the
two main challenges as described in Sect. 3.1: identification and extraction of tacit
knowledge, as well as detection of deviations in requirements. In Sect.5.5, we
present related work. Section 5.6 provides a summary, outlook, and suggestions
for further reading.

5.2 Foundations

The aim of software engineering is to establish activities for specifying, developing,
and managing software evolution. However, these activities usually cannot capture
every aspect required for a complete specification. One reason for the incom-
pleteness of the specification lies in the inability of stakeholders to express their
requirements—even though they are aware of a need, generally referred to as tacit
knowledge.

Polanyi builds his definition of tacit knowledge on the fact that “we can know
more than we can tell” [PS09]: In his book The Tacit Dimension, he further
coins the term tacit by describing it as a skill, positioning the term closely to
physical actions such as riding a bicycle or playing an instrument—actions that are
learned over a long period and apparently impossible to describe in words. Polanyi
systematically describes the inner workings of a human when experiencing or, more
precisely, externalising tacit knowledge. He identifies the functional relationship
and structure of tacit knowledge, which allow to disassemble the individual parts of
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tacit knowledge. Further, semantic and ontological aspects lead to the phenomenal
structure of tacit knowing.

Gigerenzer [Gig08] uses the comparison of a native speaker that—while they can
find a sentence to be grammatically correct—they are usually unable to verbalise the
underlying grammar; he calls this gut feeling and uses the term interchangeably with
intuition and hunch [Gig08]. Gigerenzer continues to exemplify that humans tend
to choose logically unlikely alternatives when asked for predicting the likelihood of
two alternatives—the conjunction fallacy. They base their decision on impressions
rather than mathematical rationale [Gig08].

In his book The Reflective Practitioner: How Professionals Think in Action,
Donald A. Schon recognises similar patterns in working environment settings
[Sch83]. He coins the phrase that our knowing is in our action [Sch83]. He develops
the term tacit knowing in action by noticing that practitioners are continuously
making decisions during their day-to-day work, such as the assessment of situations
or quality criteria, without paying attention to the act of decision-making. However,
sometimes they are interrupted during this process and reflect on their action:
By extracting the underlying features of their judgements to criticising existing
approaches, they arrive at an improved embodiment [Sch83].

Nonaka and Takeuchi provide an extensive examination of the differences
between explicit knowledge, that is written down in rules, definitions, or handbooks,
and implicit knowledge, that is experiences of an individual that are based on
personal values and motivated by cultural aspects [NT12]. In their book The
Knowledge-Creating Company, the authors describe the dynamic interplay between
these two knowledge types as the key for knowledge creation in companies. They
establish a spiral model that contributes to the social process of knowledge sharing
that heavily depends on a collaborative interaction and leads to the externalisation
of knowledge, which makes it useful for companies.

Tacit knowledge is investigated in multiple fields, such as social, psychological,
or physiological science. Understanding and externalising tacit knowledge can be
valuable for other disciplines as well. For instance, Schneider acknowledges that
specific techniques are needed to capture requirements and additional information
when and where they surface: in natural language requirements specifications or by
observing activities by experts [Sch09].

5.3 Tacit Knowledge During Design Time

Tacit knowledge is not easily available for extraction, externalisation, and use by
others. A person with tacit knowledge acts in a knowledgeable way but is not able
to explain that knowledge. In the first part of this section, we describe a case in
which requirement engineers and developers deal with requirements. Since they are
usually not security experts, their experience in security is limited. Security experts
are knowledgeable about security but may be unable to apply that knowledge to a
given set of requirements. A large part of their security knowledge remains tacit.
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They need a breakdown in order to shift tacit knowledge to their conscience and
apply it. In the following heuristic approach, we use natural language processing,
ontologies, and frames to guide and focus the attention of security experts to use
cases (UCs) that are more security-related than others. This is supposed to reduce
their effort and help them focus on the most rewarding requirements for identifying
security problems.

This focus and contextualisation can help to externalise their respective tacit
knowledge. The externalised knowledge will also be stored for future use: It can
help improve the above-mentioned heuristic filtering mechanisms, thus improving
the automated part of classification.

5.3.1 Security in Requirement Documents

Security is an important quality aspect. It is not obvious whether a requirement is
security relevant or not. It will depend on other requirements and on the environment
that the software is used in: Depending on laws, different levels of security will be
required. Knowledge about security incidents or innovations in attacks has a major
influence on security. All these aspects are in constant flux and need to be monitored
to keep a long-living system secure.

Most customers and requirement engineers are not security experts. In the
requirement elicitation phase, some of them rely on their gut feeling in judging the
security relevance of requirements. This gut feeling or experience indicates certain
knowledge that is, however, difficult to grasp. Developers consider a requirement
security-related, but they cannot say why. It just looks suspicious to them. From
their perspective, the reason for that suspicion is facit knowledge.

Use cases and a specification document are artefacts resulting from requirement
activities. Use cases support the understanding of requirements and describe
what the system should do. In most cases, they are written in natural language,
which makes them more comprehensible for customers. Due to the large number
of requirements and use cases involved in a large long-living software system,
checking entire specifications and all use cases for security concerns would be very
laborious and, in most of the cases, impossible for economic reasons.

Therefore, we developed a semi-automatic approach for the classification of
natural language requirements with a special focus on use cases. As a result, only
parts of those artefacts are classified as security-related and then need an in-depth
investigation by security experts.

Even security experts cannot cover all relevant security knowledge to determine
whether a requirement is security-related or not. While developers and requirements
engineers are not aware of security concerns, security experts may not be able to
identify a concrete problem with respect to their large internalised knowledge about
potential attacks. Again, a lot of tacit knowledge needs a breakdown to come to the
foreground.
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This observation led us to the following research questions [Gir+14]:

* RQ1: How can security knowledge be organized in a way that it can be used for
assessing the requirements of a long-living software system?

* RQ2: How can requirements engineers identify security-critical issues in natural
language requirements semi-automatically?

* RQ3: How can requirements engineers be supported to extract proper security
knowledge from identified security-critical issues in requirements?

We need a security knowledge model to use and collect security-related knowl-
edge. Our approach uses heuristics to identify security vulnerabilities.

Our goal is to support the security assessment of requirement while using security
knowledge of reported security incidents. We focus on use cases. In Sect.5.3.2,
we show how related knowledge is modelled. Requirements are classified semi-
automatically. Among other techniques, we use Natural Language Processing
(NLP). The classification is performed based on the semantic of words in a
requirement. In Sect.5.3.3, the approach is described in detail. We describe the
identification of security issues by heuristics in the remainder of this section.
Furthermore, we explain the extraction of security knowledge from informal
sources, such as conversations. The knowledge base is filled from those sources.
Section 5.3.4 presents an evaluation on the case study using the iTrust medical health
care system.

5.3.2 Modelling of Security Knowledge

Security faces the challenge of unknown unknowns [MHOS]: we do not even know
what we don’t know. It is impossible to say which knowledge will be relevant in the
future. Relevant security knowledge, for example on new attacks, changes rapidly
over time.

Trustworthy data should be securely encrypted. Data Encryption Standard
(DES) met this requirement. In the mid-nineties, attacker knowledge revised that
perception. Nowadays, DES is considered insecure, so that another encryption
such as the extension Advanced Encryption Standard (AES) must be used to
meet the above-mentioned requirement of securely encrypting data. To prevent a
leak of data integrity, we use reasoning techniques to detect these data flows. A
detailed description of this procedure is provided in Sect.5.3.3 Therefore, security
knowledge must be maintained by human interaction iteratively.

Security Ontology
Security knowledge consists of knowledge about security incidents, operator obliga-

tions, and security guidelines—to name just a few. We collected various taxonomies
and ontologies for modelling incident-centric security knowledge from literature
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and derived an ontology covering the most important parts. According to Schreiber,
there are general ontologies and domain- and task-specific ontologies [Sch08]. The
creation of ontology includes the definition and hierarchical ordering of important
terms, their properties and relations, as well as their instances.

Our ontology is derived from literature and is a general security ontology. The
upper part of that ontology consists of generic terms and concepts related to security,
such as assets, vulnerabilities, and attacks. The lower part of the ontology details
those concepts with respect to the specifics of a given long-learning system. For
example, customer data are considered an asset, and the WiFi connection in a
CoCoME store may cause vulnerability.

For identifying the hierarchical structure of the upper ontology, a systematic
literature review was applied to identify security-related terms and their relations.
We addressed publications about concrete ontologies of security knowledge from
the area of threat modelling, risk analysis, computer and network security, software
vulnerabilities, and information security management. Furthermore, we consider
publications covering information systems, cyber-physical systems, distributed sys-
tems, and agent-based systems. The named security concepts of these publications
are considered for the concepts of our security ontology. To focus on security issues
in requirements engineering, publications should primarily consider the technical
security aspects of systems (e.g. protocols and encryption algorithms). Further
publications that describe applicable approaches were considered for capture and
enrich security knowledge. For the automatic search on digital libraries we used
the terms security, information system, software, ontology, and meta-model. To find
similar work that we did not find within the automatic search, the references of the
found work was checked for relevance. Publications until the beginning of February
2015 were considered. All found publications were selected based on the criteria in
the following steps.

First step

* Publication exists in full text and is written in English.

» Publication describes a realised, practical applicable approach.

* Publication addresses the modulation, application, or acquisition of security
knowledge in software engineering.

Second step

* Publication describes the terms of an ontology with respect to security and
their relations.
» The ontology presented in the publication is universally valid.

Third step

* The ontology describes a specific approach to capture knowledge related to
security.
* A concrete knowledge source is considered for the extraction of knowledge.
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Table 5.1 Publications considered for the creation of ontology [Gar+14]

Publication
Howard et al. [HL98]

Jung et al. [JHS99]

Mouratidis et al. [MGMO03]

Undercoffer et al. [UJP03]
Alvarez et al. [AP03]
Swiderski et al. [SS04]

Herzog et al. [HSDO07]
Tsoumas et al. [TGO6]

Karyda et al. [Kar+06]
Barnum et al. [BS07]

Fenz et al. [FE09]
Elahi et al. [EYZ09]

Simmons et al. [Sim+09]

Principal security concepts

Action, target, access, tool, vulnerability, result, objective,
attacker

Asset, vulnerability, threat, security control, risk probability,
asset value, impact, EC environment

Constraints, secure entity (goals, tasks, resources), secure
dependency

Attack, system component, input, consequence, means,
location

Entry point, vulnerability, service, action, input length, http
headers, http verb, target, scope, privileges

Asset, entry point, trust level, attack, attacker, vulnerability,
countermeasure

Asset, threat, vulnerability, countermeasure

Asset, risk, threat, attack, threat agent, vulnerability, impact,
countermeasure, controls, security policy, stakeholder

Asset, countermeasure, objective, person, threat

Vulnerability, weakness, method of attack, attack consequence,
attacker skill, solution and mitigation, resource, context

Asset, organisation, security attribute, threat, threat source,
threat origin, vulnerability, control, severity scale

Vulnerability, effect, attack, security impact, malicious goal,
attacker, countermeasure, malicious action, component, actor

Attack vector, operational impact, defence, informational

impact, target (network, application, etc.)
Guo et al. [GW09] Attack, countermeasure, consequence, attacker, vulnerability,
IT product
Attack, countermeasure, asset, vulnerability, threat, security

goal

Miede et al. [Mie+10]

Eichler [Eicl1] Asset, threat, damage scenario, protection requirements,

safeguard, module

The resulting publications, including their security concepts, are listed in
Table 5.1. We identified ontology assets, entry points, trust level, system
components, attack, vulnerability, threat and countermeasure. These components are
mentioned in several of the considered publications, which leads to the structure of
our ontology. In the following, the components and their relations will be described
and explained with examples.

* An asset is an item of interest worth being protected (e.g. username and
password).

* Entry points define the interfaces to interact with the system. They provide access
to assets (e.g. login website, email, input field).

* A trust level describes which role has access to an asset using a specific entry
point (e.g. user, administrator).
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* System components model the regarded system focusing on assets and entry
points. This includes hardware, as well as software components (e.g. database,
logging).

* An attack is a sequence of malicious actions that are performed by an attacker
aiming at assets (e.g. cross-site scripting, denial-of-service attack).

* Vulnerability is a system property that facilitates unintended access or modifi-
cation of assets. It violates an explicit and implicit security policy. Entry points
may have or provide access to vulnerabilities (e.g. improper neutralisation of
input, missing encryption of sensitive data).

e A threat is the possibility to perform a successful attack on a specific asset.
Successful attacks exploit at least one vulnerability to cause damage (e.g. execute
unauthorised code or commands, expose sensitive data).

* A countermeasure mitigates a certain threat by fixing the respective vulnerability
(e.g. input validation, encryption of sensitive data).

In Fig.5.1, the upper parts of the ontology are displayed. This upper security
ontology has to be refined in terms of concepts and in terms of instances. For
example, there are various assets of a system, such as username or password, that
have to be considered. The concept assets of the ontology have to be instantiated by
these concrete assets.

Representation of Knowledge

To monitor different knowledge sources, it is necessary that the knowledge they
provide is represented in a uniform manner. Each knowledge item, such as security
incidents and use cases, has to be transformed into separate analysis models.
They form the so-called security abstraction model. A security abstraction model
represents a scenario that describes the use case with respect to security. It has been
defined based on the knowledge structure of our security ontology. As an example,
the description of a use case is that “a user enters his password into the web form”.
It contains “user” as trust level, “password” as the related asset, and “web form” as

System Component —> Asset < Threat
contains threatens
) A
mcludes Walns %'rovidesAccessTo realizes
contains
Trust Level - Entry Point Attack |« Attacker
accessibleBy : : performs
. contains ~~accessTo consistsOf
refines Y Y followedBy
Countermeasure — »| Vulnerability <€ Action
mitigates exploits

Fig. 5.1 Security ontology [Gér+14]
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Table 5.2 Step of use case in

. Concepts Use case
an abstraction model

Trust level ~ User
Assets Password
Entry point Web form

the entry point to that asset. Table 5.2 shows the textual representation of a use case
step. The model can contain one to multiple of these scenario steps.

5.3.3 Identification and Extraction of Tacit Security Knowledge

In general, our approach consists of two steps: (1) the identification of security
vulnerabilities in requirements and (2) the extraction and enrichment of security-
related knowledge. For applying our approach, the security ontology has to be
manually enriched with security-related terms and their relations to each other
by a domain or security expert. To consider requirements and security incidents
for the security assessment, the transformation into the previously mentioned
analysis model is necessary. These models will be generated automatically in the
security assessment approach with the consideration of word similarity and relations
between words which are part of both a use case and the ontology.

In the security requirement assessment process, use cases will be classified
with respect to the enriched security knowledge through heuristic findings. These
heuristics will be described in this section. The automatically generated results
of the classification and the heuristic findings will be passed to the requirements
engineer, who is now able to enrich the existing security knowledge based on
the findings of the security assessment. These findings now represent knowledge
consisting of security-related terms that are extracted from the security assessment
process and that are not part of the security knowledge base. The requirements
engineer can now enhance the knowledge base with this information.

Classification of Words

In general, use cases are written in natural language. Therefore, we use natural
language processing for their security assessment. Semantic similarity is defined
as the similar meaning of two potentially syntactical different words [Sch94a]. We
focus on nouns in the requirements and incidents. To identify the nouns, a statistical
part-of-speech tagger is inevitable [PPMO04]. If a security affiliation exists for these
nouns, they will be assigned to the attribute system component, entry points, asset,
and trust level of the security abstraction model. The modelled security knowledge
supports the assignment of extracted words to the attributes.
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The semantic similarity between nouns can be measured based on the structure
and content of WordNet. In WordNet, the nouns are organised in hierarchies [Fel98].
We adapt the method of the lowest common subsume (LCS) [JC97]. The concept
of LCS is a tree-like lexical taxonomy in which the similarity of words will be
described by the shortest path between them in the tree. If the information content
of the LCS is above a predefined threshold, the similarity between two words is very
low. Otherwise, both words are semantically similar. To get the LCS of two words,
the paths by using their hypernyms listed in WordNet will be derived.

Measurement of Similarity Between Security Abstraction Models

To identify the alignment of security, we utilise the Needleman-Wunsch algorithm
[NW70]. The algorithm is originally used to determine the similarity of amino acid
sequence of two proteins: All possible pairs of sequences could be represented as a
two-dimensional array. The similarity of two sequences is represented as a pathway
through the array. A smallest match when comparing a pair of amino acids can be
used, one from each protein. The maximum match is defined as the largest number
of amino acids of one protein that can be matched with those of another protein.

This comparison was transferred to the comparison of security abstraction
models with use cases. To detect whether a use case is security relevant or not,
all steps included will be compared to the collected security knowledge in the form
of steps of a security abstraction model. For this assessment, the previous explained
LCS method of semantic similarity is used. If the calculated LCS-value is above
a given threshold, there is likely a vulnerability in a given use case. The results
of every assessment are stored in a two-dimensional matrix, which is created for
every security abstraction model comparison. The matrix cells contain LCS-values
for the indication of similarity of two specific steps. In Table 5.3, an example of a
comparison of a use case with the steps UC1 and UC2 and a security incident (SI)
with the steps SI1 and SI2 are shown.

(Semi)-Automatic Acquisition of Tacit Knowledge

We interleaved the refinement and knowledge enrichment of the knowledge base in
the security relevance assessment of use cases as an active learning mechanism.
The requirement engineer actively decides to acquire potentially new security

Table 5.3 Extract of the
comparison of two security
abstraction models

Security incident
Step SI1 ~ Step SI2
Usecase Step UC1 0.5 1.5
Step UC2 1.0 0.1
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knowledge, such as the modification, reinforcement, and refinement of existing
knowledge.

For this enrichment, there are two different results of classification, which
process different information. The first are the true positives. In our approach, these
are use cases that would be correctly classified as security-related. They enhance
the knowledge through correctly classified terms. For example, if in the sentence
“The user enters an identification number and a pin” the pin will be identified
as security-related, we conclude via the existing linguistic dependency between
pin and identification number that both are security-related. Besides classifying
this sentence, the new insight can also be added as additional knowledge to the
knowledge base.

The knowledge base can even be extended by false positives. They will be
considered for specifying the terms for a certain domain. For this purpose, falsely
classified scenario steps identified by the similarity computation concluding the
attributes (system component, asset, entry point, and trust level) will be considered.
If the value of similarity for an attribute is under a predefined threshold, there is an
uncertainty for the classification. Therefore, the requirement engineer can actively
manage whether a term should be excluded or included for the security classification
approach. Afterwards, the learned security knowledge can be enriched by a security
expert with additional security information (e.g. security standards and guidelines).
Explicit security knowledge and precision grow over time.

5.3.4 Tacit Security Knowledge Examples

We applied our approach to the CoCoME case study. However, there is only
a limited number of security-related requirements in CoCoME. Most of those
had to be introduced for demonstrating the feasibility of our approach. Although
intentionally inserted problems may be useful for concept demonstration, there are
obvious threats to validity.

Therefore, we decided to strengthen the evaluation by using a second, larger
example provided by others. The iTrust medical system case study is used by
many researchers as a benchmark for security. Since it resembles CoCoME in many
aspects, findings are relevant for the application domain represented by CoCoME.

In iTrust, a medical health care system [11], patients are able to manage their
health records, such as medical items, and personnel can organise their work.
If sensitive patient data are stored, only a limited number of people should be
allowed to receive insights into this data. Therefore, security is inevitable to prevent
access by intruders. Version 23 of iTrust consists of 55 use cases written in natural
language, and the health care system is developed as web application. Our goal is
to evaluate whether our approach can support requirements engineers through the
security assessment of requirements.

Ten of the use cases of iTrust were selected as initial security knowledge for
the requirement elicitation. These use cases distinguish themselves from each other
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Table 5.4 Derived misuse

’ Concept Individuals
cases of the iThrust system MUCI
[Gir+14]
Asset Initial password, security key

Entry point Email

Trust level ~ User

MuUC2

Asset Address

Entry point  Address field, health record, view, display
Trust level  Patient, health care personnel

in such a way that they have at least one different actor and cover a different
functionality of iTrust.

Unfortunately, there is no security incident documentation in iTrust. Neverthe-
less, a security incident can also be seen as a use case for the attacker, whereas for
the requirements engineer it would be a misuse case (MUC). Therefore, we created
misuse cases with respect to the ten initial use cases. In our example, an MUC
represents the steps of a specific security incident, which is created based on known
security incidents that occurred in the past.

A security ontology was set up on the use cases and misuse cases. The terms
of the medical health care domain were considered to embed the domain-specific
knowledge in our knowledge base. Furthermore, the individuals of the misuse cases
listed in Table 5.4, like system components, assets, trust levels, and entry points,
were added as well.

Through the analysis of use cases, we identified for use case 1 (UC1) and use
case 6 (UC6) that they are ambivalent because there exists an misuse case, which
malicious users follow to attack the use cases. UC1 describes the sending of the
initial password for a user account, which is required to login to iTrust, to a user
via email after the creation of the account by the medical personnel. This leads
us to misuse case 1 (MUCI), in which a hacker intercepts the email and uses the
password to have access to the iTrust system. This procedure is called hijacking. In
UC6, the patient can manage their visits to health care professionals (e.g. doctors)
and is able to see a list of health care professionals who have insights into their
patient data. This leads to MUC?2, in which the address fields of the patient view
contain vulnerability that enables cross site scripting (XSS). XSS is one of the most
dangerous vulnerabilities in web applications. An improper neutralisation of input
enables XSS. An attacker is able to inject malicious browser-executable content
into the patient view to steal sensitive data (e.g. medical identification number or
password). The named misuse cases are listed in Table 5.4.

For the evaluation of our approach, we split the evaluation into two iterations.
For the first iteration, we considered 35 use cases in addition to the ten initial
use cases for the security assessment. The results of the heuristic approach were
compared to the results of the manual and previously done requirements elicitation.
Based on the true and false positives, security knowledge refinement was performed.
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Table 5.5 Evaluation results ACC FPR FNR

[Gar+14] 1st iteration (n=44)

Our approach MUCI 0.90 0.10 0.00
MuUC2 0.64 055 0.15
Naive Bayes MUC1/2 0.61 0.00 0.89
SVM MUC1/2 0.57 0.00 1.00
k-NN MUC1/2 057 0.15 0.83
2nd iteration (n=55)
Our approach MUCI 098 0.00 0.14
MUC2 0.84 0.14 0.23
Naive Bayes MUC1/2 0.71 0.11 0.67
k-NN MUC1/2 0.76 0.00 0.68

In the second iteration, the refined knowledge was used for the heuristic security
assessment of use cases.

For evaluating our approach, we compared its performance to the results of Naive
Bayes, Support Vector Machine (SVM), and the k-nearest neighbors algorithm
(k-NN). As quality facets, we considered the accuracy (ACC), false positive rate
(FPR), and false negative rate (FNR). Under the ACC, we understand the degree of
correctly classified use cases with respect to all of them. The false positive rate is
defined by the number of falsely classified security-related use cases. Conversely,
the false negative rate measures the falsely classified use cases as non-security-
related.

In the training phase, the initial use cases are labelled while considering the
misuse cases. If an misuse case is related to a use case, the use case is labelled
as security-related. Otherwise, it is labelled as non-security-related. A low FNR
implies that most of the use cases were found, which is desired. In the first iteration,
SVMs has an FPR of 1.0, which means that no security-related use cases were
found. Therefore, we were not able to refine knowledge based on heuristic findings.
Thus, we did not consider SVMs for further iterations. Viewing the results of
iteration 2, our approach in fact got ACC 0.98 for MUCI and 0.84 for MUC?2,
as well as an FNR for MUC1 with 0.14 and for MUC2 with 0.23 as the best
results. Only the FPR of MUC2 with 0.14 is higher than the other approaches. The
results are listed in Table 5.5. Nevertheless, this fact is regardless for the context
of requirements elicitation. It is required to find all of the security-related use
cases, which is affected by the FNR. Afterwards a security expert can sort out false
positives to achieve only security-related use cases.

5.4 Tacit Knowledge During Run Time

The requirement elicitation phase examines a software system in its completeness,
striving for a complete and correct description. This is usually being done by
developers through discussions with stakeholders, which are typically represented
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by customers or the initiator of a software project. However, the end user of a system
might pose different requirements. This is why requirement elicitation also includes
interviews with the end users of a software system. In particular, user feedback is
valuable in case it is collected during the run time of a system. Therefore, capturing
knowledge about how a software system is utilised in the field carries valuable
knowledge and represents an important aspect in software evolution.

The idea of collecting and improving software systems based on user feedback
is further encouraged by recent activities that evolved under the umbrella of
Continuous Software Engineering (CSE). At the core of its encompassing activities,
continuous delivery allows to distribute software increments in short cycles to users,
reducing the time between a developer’s change in the form of a commit pushed to
a software repository and the execution of its corresponding software artefact by an
end user within the target environment [Bos14, FS17].

In the remainder of this section, we establish a perspective on tacit knowledge
during run time. We present an approach on how tacit usage knowledge can be
extracted from observed user behaviour. Therefore, we introduce the application
domain, which we limit to users of mobile applications, and elaborate on the
taxonomy of feedback, which we use synonymously to usage knowledge—referring
to any knowledge that resulted from observing user behaviour. We conclude this
section by describing preliminary results of a current research project.

5.4.1 Usage Knowledge in Software Evolution

Systems are designed by developers and their interpretation of how users utilise
software, as described in Sect. 5.4.2. Information on users and on how they employ a
system is rarely present during requirement elicitation. The feedback and behaviour
of users reveal insights that help to evolve a long-living software system, in
particular regarding the following shortcomings:

» Existing requirements are no longer applicable and need to be refined.

* New requirements are demanded that have not been considered during the initial
phase of requirements elicitation.

* New user groups evolved, and users’ intentions and requirements changed over
time, which results in the need to adapt existing requirements.

Current software engineering practices apply iterative development processes
that allow for the integration of users’ feedback. This feedback can be divided
into two groups [MHRO09]: feedback that has been provided explicitly by the
user—conscious feedback—and feedback that they provide indirectly and thereby
implicitly—unconscious feedback—as an integral part of the application usage.
Figure 5.2 depicts the taxonomy of conscious and unconscious feedback.

Conscious feedback is usually utilised during software evolution and is a rich
source of usage knowledge. Users try to reach out to the developers, for example in
form of an app store review, via mail, or through any other social media platform.
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Fig. 5.2 A taxonomy of feedback provided by the end users of a mobile application

They relay their experience and clearly address a problem they had encountered. The
utilisation of unconscious feedback requires a more advanced procedure of usage
knowledge understanding since interactions, such as clicks or taps, or contextual
information, such as time and location, need to be processed; well-adjusted methods
can be used to retrieve such precise information about user interaction [Joh+18a].

It is unconscious feedback that enables the detection of tacit usage knowledge
that can be utilised for software evolution. Tacit knowledge in the context of usage
knowledge goes beyond user analytics. It describes the users’ feelings, ideas, and
insights about a software system that they are unable to express in conscious
feedback such as written text. In particular, it is knowledge that they apply without
knowing it, which might not follow the way the system was designed in the first
place.

We want to inspect runtime tacit knowledge with a concrete example. Imagine
a mobile application that offers users the possibility to read news articles that are
presented in full screen. The developers implemented two possibilities to enable
the navigation between entries: (a) using a swipe gesture or (b) selecting a dot at
the bottom of the page that represents every news entry currently available. First-
time users might only use the dots to navigate since it is the most obvious way.
However, this is tedious since the dots are tiny and hard to spot. It is only until the
moment the users discover the swipe gesture that they learn a new, more intuitive and
convenient way of navigation. When developers understand the users’ interaction
with the application, they are able to react and either improve the button navigation
or add a distinct introduction to the swipe navigation. Similarly, as an additional
example, navigating through a vertical list of entries on a mobile device can be
accomplished in different ways: Users may perform (a) a long-lasting, exaggerated
gesture or (b) multiple precise, yet repetitive, short swipes to move through the list.
While the first behaviour indicates easily readable content, the latter one might be
interpreted in a way that the list’s content is hardly understandable and requires the
full attention of a user.
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5.4.2 Modelling of Knowledge

In our following analysis, we assume four main entities as illustrated in Fig.5.3:
The User is the main actor who uses the Application, which represents a software
system.

User I-:: - = - «uses»= == - = Application

(2 ~<
«provides»

Intention TA Feedback

Fig. 5.3 Analysis of the application domain of usage knowledge

After and during the application usage, they provide Feedback, which can be
further differentiated, as depicted in Fig.5.2. The feedback is based on the user’s
Intention. This intention represents the user’s idea of how they expect the application
to accomplish a given task and how to behave given a certain interaction model
posed by the application. To capture the intangible concepts of a user’s intention,
Norman introduced the Conceptual Model, which aims to formalise different
perspectives on a similar issue [ND86]. He describes a relationship between the
conceptual model and the Mental Model of every stakeholder that interacts with an
application. In Fig. 5.4, we sketch involved models, in which the actual reality is
represented by the conceptual model, which might be interpreted in different ways.

According to Norman, two models are derived from the conceptual model: a
System Model and a mental model. Both of them are related to and formed by a
variety of models. The system model is the result of the discussions of domain
experts while applying domain knowledge. They create artefacts—the software
increments—in accordance with their understanding of a design, functional, and
object model. The mental model encompasses the users’ perception on that specific
artefact. The mental model depends on educational, cultural, or other general
knowledge models that can be summarised under tacit knowledge. Eventually, it
is the User Interface that brings both models together. The overall goal is to achieve

| Conceptual Model |

7y
| |

| System Model | | Mental Model |—0| User ‘
| User Interface |—0| Application ‘

Fig. 5.4 Interpretation of the conceptual model as a system model and mental model [ND86] and
their combination with the application domain coloured in grey on the right part of the figure
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Fig. 5.5 Categories of tacit knowledge in the context of software evolution

a natural mapping [Norl3] that is characterised by a minimal amount of model
disagreement. The disagreement of the system model and the mental model might
be measured in the user’s interaction with the application’s user interface, which is
built from the developer’s system model.

The user’s intention is closely bound to the tacit knowledge that users are unable
to describe. As shown in Fig.5.5, tacit knowledge can be categorised into three
groups, though there might be more ways of distinguishing tacit knowledge in
software evolution.

5.4.3 Identification and Extraction of Tacit Usage Knowledge

For the identification and extraction of tacit usage knowledge during run time,
we propose a semi-automated approach. First, the occurrence of potential tacit
knowledge needs to be detected, which should be accomplished using machine
learning—we introduce the concept of runtime personas for this purpose in the
next section. Second, in the event of tacit knowledge detection, a request for more
qualitative feedback is posted. Third, a manual step of integrating the detected
situation of tacit knowledge with the qualitative feedback of users is performed.
Steps 2 and 3 are described as the extraction of tacit usage knowledge in the last
part of this section.

Runtime Personas
Tacit knowledge needs to evolve; it is not existent at the moment a user starts using

a software system. It develops over time, figuratively, though the temporal aspect
can be part of the consideration. Other characteristics that indicate the familiarity of
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a user with the system might be clicks or any other quantifiable value summarized
under unconscious feedback.

We apply Polanyi’s terminology and assumptions for describing the identification
of tacit knowledge. He introduces the proximal term and the distal term [PS09].
Proximal terms are considered the origin of an action, a starting point, or any event,
such as interaction with the user interface, that eventually leads to a result. Such a
result is described by the distal term, which can be any end point, intention, or goal,
such as the execution of a software feature. During the first step of our approach, we
aim to identify the connection between these two terms, which previously remained
tacit. Polanyi states that there is a fluctuating link between the two of them, which
eventually ends in a bold, established relationship—the tacit knowledge. Figure 5.6
illustrates this evolvement of tacit knowledge separated over a time span of different
observations during the run time of a software system.

. Time

/ \ Observation 1 / \

\

Observation 2

Proximal ° /\/\/// ______ o Distal

Terms Term
How is Observation 3 What is
something achieved?

achieved?

0O— ~— ~— —O

Observation 4

/ Tacit \

Knowledge
\ How do the particulars relate to the result? /

Fig. 5.6 The relation between the proximal terms (red), distal term (blue), and tacit knowledge
(green). The proximal terms, for example taps by the users, are eventually mapped to the distal
term, for example the feature execution. According to Polanyi [PS09], tacit knowledge can be
understood as the established mapping between the proximal and distal terms
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Polanyi argues that “we are aware of the proximal term of an act of tacit
knowing in the appearance of its distal term” [PS09] and continues to define this
finding as the phenomenal structure [PS09]. Consequently, if we identified the
distal term of a given tacit knowledge while users established a mature connection
between both terms, we might be able to derive the proximal terms that are of
great value to start understanding software usage. For the purpose of collecting and
allocating observations, we introduce the concept of Runtime Personas. According
to Polanyi, tacit knowledge is a person-related concept, which matches the persona
definition. Run time personas form a container to capture the evolvement and
eventually the discovery of tacit knowledge. The evolvement of a run time persona
is initiated with traditional personas as a first, optimal representation of tacit
knowledge, while it gets enriched throughout multiple stages and new findings.

This process can be understood best by giving an example aligned with Fig. 5.6.
The distal term defines the results of an action—the consequence or outcome,
depending on the observation. In the context of software engineering, this could be
the execution of a feature, in particular related interactions with the user interface.
Referring to our initial examples, the distal term could be expressed in consuming a
list of information on a mobile application. It is the proximal terms, the particulars,
that a user may not be able to tell when using the software system. In our example, it
manifests itself in the way the user interacts with the list to traverse the list’s content.
The challenge lies in the discovery of the connection between this interaction and
the usage of the list, namely its corresponding distal term. Traditional personas
[Co099] serve as the starting point. They describe a person’s characteristics that
qualify them for the usage of a feature, in particular reaching the previously defined
distal term. Further, they encapsulate the observations resulting from the asymptotic
process of information extracting. For instance, Observation I refers to a situation
in which it is not clear if a user’s interaction leads to a feature usage. Observation
2 seems promising, but indications stopped before it could be clearly mapped to the
usage of the feature. Observation 3 represents the first time that a definite correlation
between the proximal and distal terms could be established, while it still includes
some fluctuations. Finally, Observation 4 encompasses a clear link between the two
terms, allowing for the derivation of tacit knowledge.

Extraction of Tacit Usage Knowledge

Adapting Polanyi’s hypothesis of the phenomenal structure of tacit knowledge to the
context of usage knowledge in software systems, users are aware of their interactions
from which they are attending to accomplish the feature—in appearance of that
specific feature. This allows for extracting the tacit knowledge in the event of
Observation 4.

We propose utilising a modal window that asks the user for qualitative feedback,
as shown in Fig.5.7. It is triggered as soon as a distinct relation between proximal
and distal terms is detected. In particular, we imagine gaining insights with regard
to the following questions:
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Fig. 5.7 Mockup of
requesting feedback from

user eccee T 9:41 PM L_J

Feedback Done

WHAT HAVE YOU BEEN DOING?

HOW HAVE YOU BEEN DOING IT?

DID YOU EXPERIENCE ANY PROBLEMS?

* What has the user been trying to do?
* How did the user try to achieve it?
* Did the user experience any problems during this process?

The qualitative feedback enables the developer to understand and externalise
the tacit knowledge carried out by the users during run time. For integrating the
usage observation with the qualitative feedback, we propose the introduction of a
dashboard [Joh+17b]. The dashboard is a central component of the CURES project.
Within this dashboard, we envision to visually display categories of equivalence
classes—either based on the usage knowledge or by groups of distal terms, namely
the performed features. This allows the developers to augment information from
multiple feedback and find an optimal solution for integrating the new findings
[Joh+17a].

A further extension to encourage users to provide more detailed information
about the performed action could include a predefined selection of features—the
distal term—potentially involved in the process. However, this would require the
possibility to make a distinction in features used, in particular features offered by
the software system.
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Besides the integration and utilisation of the tacit runtime knowledge during
design time tasks by the developer, recurring patterns of tacit knowledge can be
caught during run time and utilised by the developer. For example, referring to
Fig. 5.5, in case a user wants to bypass several process steps that in general cannot be
removed from the application, the system could still provide a shortcut functionality
as soon as this situation is detected.

5.4.4 Tacit Usage Knowledge Examples

We focus on the automatic creation of run time personas from usage behaviour
within mobile applications. In this section, we describe examples of tacit usage
knowledge from a current research project [Fro18].

We prepared an open-source mobile application with several modifications to
record explicit usage data, such as interactions with the user interface in the form of
taps and gestures, as well as other sensor data, such as gyroscope and tap pressure.
We designed a catalogue of tasks to stimulate interaction within the application;
for example, we asked to use a specific functionality of the application or to find
out particular information that required them to navigate through several views of
the application. The tasks were carefully chosen to encompass typical routines of
user interactions, as well as aspects that allow to recognise the users’ behaviour in
unexpected situations. Based on the task execution by more than 100 individuals,
we trained multiple classifiers to derive the following characteristics for our run
time personas.

* Person-related information aims to characterise attributes that are highly individ-
ual to users, such as age groups distinguished by age ranges or their proficiency
and skills in dealing with mobile applications, distinguished in beginner and
expert groups.

» Application-related information aims to define the user’s familiarity with the
application at hand. This is reflected in attributes such as the familiarity level,
while we distinguish between a beginner and expert level, and their mental phase
with respect to the application usage, that is if they are exploring the interface or
if they are productively working and interacting with its functionality.

» Application-related usability issues aim to reflect users’ behaviour given a
situation in which they encounter an unexpected system behaviour, such as
inconsistencies in the user interface or missing user interaction elements in the
user interface.

So far, based on the current evaluation of usage data, we receive good results
on detecting situations in which users encounter an application-related usability
issue. We hypothesise that this is based on the fact that they only occur during a
short period of time, which is revealed in a distinct set of obvious changes in user
behaviour. The exact characteristics of the features remain yet unknown. Equally
promising results can be reported for detecting application-related information.
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Here, the detection of the productivity status of a user results in especially good
results. However, we assume a systematic error in measuring the productivity of
a user. Currently, we label a behaviour as productive in case the user is on their
way to using a functionality. In case they are moving away from it, for example
navigating towards a view that is not related, leaving no further space to use the
functionality, we consider their status as exploring. The results of the classifier
depend on a threshold for distinguishing between these two states. Measurements
for person-related information highly depend on the splitting of both the test and
training data for the individual classifiers.

We observe that application-related information can be suitable for automatically
deriving run time persona attributes. We hypothesise that this is because of their
inherent semantic relation to the user interaction. Person-related information, on the
other hand, is more challenging in its extraction and consequently is less accurate to
detect. Multiple reasons for its low predictability might be found in the way of data
collection.

In general, the presented approach to collect run time personas’ characteristics
and the resulting classifiers need to be treated with caution. Firstly and most
importantly, the approach would highly benefit from even more individuals who
provide usage data. In our model under consideration, we have an unbalanced
distribution of person-related information. This could be the reasons why the models
for person-related information might perform worse than the application-related
information. We also acknowledge a high bias of the sample application that was
used to collect the usage data. We tried to minimise this effect by tailoring the task
scenarios around general user interface interactions that are typical for a majority of
mobile applications. Overall, we suppose that several machine learning features for
training a model remain undiscovered. Therefore, future research is required to find
more machine learning features that reveal the main behaviour characteristics of an
action.

5.5 Related Work

Tacit knowledge is present during various aspects of software evolution. For
instance, it has been shown that developers share important rationale through chat
messages to perform development tasks [Alk+17a, Alk+17b]. This observation
fosters our assumption that there is more knowledge in existing artefacts that has not
yet been externalised. In particular, LaToza et al. highlight knowledge that resides in
developers’ minds regarding the application of tools and activities to perform code
tasks during software development [LVDO06]. This chapter sets the focus on tacit
knowledge to improve requirements elicitation by capturing additional information
during the design and run time of a software system. In the following, we present
existing work.

AlHogail and Berri [AB12] propose the development of architecture to preserve
security knowledge within an organisation. They plan to perceive and distribute
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security knowledge to tackle the problem of availability of security experts in
software projects. This enables a faster reaction on security incidents. To preserve
security knowledge, a template is used. Tsoumas and Gritzalis [TG06] present a
security management approach for information systems containing security knowl-
edge of different sources. Several approaches deal with the management of security
knowledge in ontologies [Ras+01, KR07, BKKOS5]. Lee et al. [Lee+06] introduce
an approach for the extraction of relevant concepts from documents to build a
problem domain ontology. Jung et al. [JHS99] developed a reasoning approach to
use past security accidents in the risk analysis of e-commerce systems. To apply this
approach, the problem must be formatted into a specific case representation, which
makes additional effort necessary.

Most of the approaches are not considering the evolution of security knowledge
intensively. The support of requirements engineers who use past events from
gathered security knowledge in the context of requirements elicitation was not taken
into account in most approaches. Furthermore, cases in which knowledge changes
over time were also not considered.

When switching the perspective from a software architect or requirement analyst
to end users, for example the users of a software system, the runtime aspects of
a software system provide a rich source of tacit knowledge. Following Roehm et
al’’s findings, developers try to make use of this by putting themselves in the shoes
of users to understand program behaviour and get first ideas to further act on it
[Roe+12].

By applying a semi-automatic approach, Damevski et al. mine large-scale
datasets of IDE interactions [Dam+17]. Therefore, they aim to identify inefficient
applications of IDE usage patterns relying on their observations of developers’
activities during their daily development tasks. They begin with an automated
approach that—after preparing the input data—encompasses a sequential pattern
mining and filtering activity. Hereafter, clusters are created to determine common
workflows of developers, which are verified by the authors and a developer survey.
The approach of Damevski et al. shares a concrete process model to derive
knowledge from usage behaviour for the specific domain of integrated development
environments (IDEs). Our approach presented in Sect. 5.4 reflects the core idea of
the approach presented by Damevski et al. In particular, we try to identify common
usage patterns of a software increment.

Zhang et al. present a quantitative bottom-up data-driven approach to create
personas in their paper Data-Driven Personas: Constructing Archetypal Users with
Clickstreams and User Telemetry [ZBS16]. Their approach on creating personas
solely relies on click streams, while we want to incorporate other data as well, such
as the location or any meta data that describes how and when clicks occurred in
order to provide additional semantics.

Almeida et al. acknowledge the presence of poorly designed applications
that prevent users from using them and sustainable maintenance and evolution
[Alm+15]. They introduce a usability smell catalogue that allows for their identi-
fication, as well as refactoring the problems in question. Similarly, we strive to find
behavioural smells that provide information about the users [Joh18].
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Gadler et al. apply log mining to derive the use of a system; utilising Hidden
Markov Models, they automatically represent user’s intention [Gad+17]. We want
to apply a similar approach to understand the users’ intention when interacting with
a new software increment.

5.6 Conclusion

To conclude this chapter, we provide a brief summary of tacit knowledge in software
evolution, an outlook on future challenges, as well as further reading suggestions.

5.6.1 Summary

We described two approaches to identify and extract tacit knowledge during the
design time and run time of software systems. During the development of the
approaches introduced in Sects. 5.3 and 5.4, we encountered various lessons learned,
which we summarise subsequently.

We acknowledge that requirements which become new features might be relevant
for security. Identifying tacit knowledge in the form of security knowledge is a
difficult task for which a good understanding of security and the domain of the
software is necessary. Nature language processing can support the requirement
engineer during this task.

Extracting tacit usage knowledge during run time raises various challenges. As
indicated in Fig. 5.6, potentially wrong usage behaviour might eventually transition
into a pattern that is of interest and relevant for a new feature or functionality of
an application. This learning phase needs to be a core element in the detection of
usage behaviour, making it an important reference that points to the tacit knowledge.
Likewise, it is important to distinguish tacit knowledge from any kind of noise
effects. Eventually, we learned that only a limited set of new features can be
detected, while the quality of insights highly depends on the application in question.

Further discussions on security and its maintenance are described in Chap.9.
Linking the tacit usage knowledge to other knowledge types, such as decision
knowledge described in Chap.6, provides new possibilities to further support
software evolution.

5.6.2 Outlook

Tacit knowledge in the domain of software evolution promises future research
areas to improve processes and software quality. In the following, we elaborate on
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multiple aspects of design and runtime tacit knowledge that we propose to continue
to work on in the future.

We developed an approach to identify security-related requirements semi-
automatically using natural language processing. The success of our approach
depends on the quality of security knowledge. Detailed knowledge leads to a more
helpful base of security knowledge for our approach. One challenge is to retrieve
and model the security knowledge to make it accessible for further requirement
elicitation. Our approach can identify vulnerabilities in requirements written in
natural language based on security incidents. With the iThrust case study, we have
shown that our approach performs better than other approaches, such as Naive
Bayes, k-NN, and SVMs. To apply our approach in an industrial setting, we have to
evaluate the level of detail that is used to document security incidents. Furthermore,
we need to investigate if intermediate feedback on security issues in requirements
improves the elicitation of security requirements.

A general, major challenge for future research efforts regarding runtime tacit
knowledge will be the detection of deviations between explicitly elicited require-
ments and implicitly derived requirements based on users’ behaviour. In particular,
creating a traceability link between these requirement sources still poses a challenge
in the exploration of tacit usage knowledge.

Two additional challenges should be investigated to further evolve software
engineering regarding tacit knowledge during run time. We found a challenge in
detecting actual error conditions. In particular, this requires to decide whether a
behavioural pattern or sequence is relevant or if it is simply noise, which is irrelevant
for the evaluation (see Observation 1 and Observation 2 in Fig. 5.6). This challenge
results in a fundamental question: Is every behaviour relevant and is there such
a thing as noise? Furthermore, the actual interaction with users, as described in
Sect. 5.4.3, needs to be clearly defined. This includes the question on when a user
can be interrupted in order to retrieve their state, that is what they have been doing,
how they were doing it, and if they experienced any problems (see Fig.5.7). We
identified two requirements that need to be fulfilled to spot the appropriate moment
to interrupt a user and thereby prevent negative interruptions. First, a user should
only be interrupted if it can be guaranteed that it will not interfere with their current
workflow. Second, no critical process should be disturbed. Both requirements,
however, pose new challenges. A balance needs to be found to keep a minimal time
span between the interaction and the interruption. A delay, though, results in the
problem that traceability should be guaranteed; that is, the users’ feedback should
be allocated clearly to an interaction. We envision to develop a tacit knowledge
characteristic similar to the properties defined in database transactions: atomicity,
consistency, isolation, durability [HR83].
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5.6.3 Further Reading

In the project SecVolution, Biirger et al. presented a framework that analyses
the environment, security-related requirements, and observations to provide an
automated reaction to observed changes and to ensure a certain security level for
long-living information systems [Biir+18].

As part of our previous work, we developed a prototype called FOCUS for the
documentation of non-functional requirements while using execution traces, as well
as video screencasts underlined by audio comments [Sch06]. The documentation
can be created as a by-product via recording the application of a task [Sch06].One
field for using our tool is security. Therefore, we have enhanced this documentation
by a semi-automated approach to analyse security vulnerabilities based on remote
code exploits for Java applications [VKK17]. The analysis enables the localisation
of a source code vulnerability while distinguishing a penetration test recording with
arecording of the regular behaviour of the same application. Gértner et al. developed
a tool-based approach, which provides heuristic feedback on security-related aspects
of requirements to document decisions [Gér+14]. For this purpose, a decision model
is used to systematically capture and document requirements, design decisions, as
well as related rationale.

Pagano and Roehm described the difference between expected and observed user
behaviour based on different perceptions of the conceptual model [Pagl3, Roel5],
an aspect that we address in Sect. 5.4.2. Roehm et al. investigated derivations in the
descriptions of use cases with observed behaviour of users by applying machine
learning techniques [Roe+13a]. The interaction with user interface elements is
investigated by Roehm et al. using an approach to associate user interactions with
application bugs to enable failure reproduction [Roe+13b].

We provide and maintain the source code and further explanation of tools and
platforms for usage knowledge understanding in an online repository.!

Thttps://github.com/cures-hub.
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Anja Kleebaum, Marco Konersmann, Michael Langhammer, Barbara Paech,
Michael Goedicke, and Ralf Reussner

In this chapter, we elaborate on how design decisions are made, documented,
and exploited during software evolution. We emphasise the importance of design
decisions, in particular in the context of continuous software engineering. We detail
the challenge of the intrusiveness of rational decision-making, documentation, and
exploitation of design decisions and the challenge of ensuring consistency between
design decisions and software artefacts.

The main contributions of this chapter are three approaches to a continuous
design decision support: First, we present an approach that supports developers in
design decision-making using a catalogue of design patterns. Second, we present an
approach to support the awareness for documented design decisions by integrating
the decision documentation with the underlying source code. Third, we present how
short-cycled practices in continuous software engineering can be used to support the
documentation and exploitation of design decisions.
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All three approaches contribute to the guiding themes knowledge carrying
software and methods and processes for evolution of the priority program.

6.1 Introduction

Continuous Software Engineering (CSE) is a software engineering process in which
developers continuously change the software while keeping it in a releasable
state [KB17]. CSE means to develop, release, and learn from software in very
short rapid cycles [Bos14]. It incorporates agile practices and involves activities
such as continuous integration, delivery, and deployment [SAZ17, Joh+18b]. The
emergence of CSE is driven by a growing need for flexibility and rapid adaption in
the current software environment [FS17].

Software developers and architects continuously make design decisions while
they develop and evolve software. They make decisions on the requirements to be
addressed, the design artefacts (e.g. architectural components, packages, interfaces,
classes, and methods) to be created or the design patterns to be applied. For example,
it is a design decision to apply an adapter design pattern instead of changing an
existing interface when adding new features to a software. The knowledge of the
developers on the design decisions they make is called decision knowledge. In
particular, decision knowledge comprises the knowledge about the problems, the
decisions they address, solution approaches, their context, and rationale in terms of
arguments, criteria, and the assessment of solution alternatives.

Decision knowledge should be communicated within a development team so that
every developer knows and considers existing decisions [Bru+14]. When developers
evolve software, it is important for them to reflect and build on former decisions.
Otherwise, they might make inconsistent decisions and are likely to contribute to the
erosion of the software architecture or introduce other quality problems [Cle+13,
Cap+16]. Reflecting on former decisions is particularly important for long-living
software systems where many decisions build on one another.

The documentation of decision knowledge is important for several reasons:
First, many different developers might be involved at different times. Thus, they
cannot communicate directly and rely on documented decision knowledge when
they reflect on former decisions. That means that the documentation of decision
knowledge is important to prevent knowledge vaporisation [Cap+16]. Decision
knowledge vaporises quickly; that is, if developers do not capture decision knowl-
edge immediately, it will never be captured and thus will not be available later
[JBOS]. Tacit decision knowledge (cf. Chap.5) enlarges the risk of misunderstand-
ings and errors during evolution or maintenance. Second, the documentation of
decision knowledge makes the criteria for the design decisions explicit that might
otherwise be overlooked. This promotes a more rational decision-making process.
Third, documented decision knowledge is valuable to support future changes. It sup-
ports change impact analysis, requirement validation, and long-term maintenance
and keeps developers informed about underlying architectural decisions [Cle+13].
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While there is clearly a need for decision knowledge documentation, in practice
this is often not performed [APM16]. In practice, decisions are mostly made and
documented in a naturalistic way [ZCMO7, Hes+16]. This means that only a part of
the decision knowledge—often only the decision—is documented, which impairs
the rational decision-making. Humans tend to overlook what is missing and are
subject to cognitive biases [Raz+16]. Furthermore, if the arguments for the decision
are not documented, other developers might not understand the decision or might
not be convinced.

Recently, various techniques emerged that try to reconstruct decision knowledge
by mining written text from informal sources such as chat messages, which is
referred to as extractive summarisation [NHJ16]. These techniques are promising
in identifying decision knowledge; however, the knowledge may be incomplete,
outdated, or hard to access later. In other cases, the knowledge is not captured
at all but only resides in the developers’ heads as tacit knowledge. Researcher
attempt to infer tacit knowledge by abstractive summarisation of software artefacts
such as source code changes [Cor+14]. However, Robillard et al. confirm that it is
unlikely to infer complex information such as rationale by mechanical extraction
of facts from software artefacts [Rob+17]. Therefore, summarisation techniques
only partially help to reconstruct decision knowledge in case they are applied
retrospectively. Decision knowledge needs to be explicitly documented in order to
preserve it. It is important to note that easy exploitation of the decision knowledge
motivates developers to document it, as the developers themselves can profit from
the documentation [BBOS].

CSE provides many practices for a continuous change [KB17]. These can
be used for a continuous design decision documentation. Our long-term vision
is an on-demand decision documentation as part of the on-demand developer
documentation suggested by Robillard et al. [Rob+17]. We envision that developers
continuously capture and reflect decision knowledge during CSE. Our goal is
to support developers in this continuous capture and reflection, in particular by
performing rational decision-making. The following three developer tasks should be
lightweight; that is, they should require as little effort as possible: rational decision-
making, documentation of decision knowledge, and its exploitation.

6.1.1 Challenges for a Continuous Design Decision Support

Tool support to manage decision knowledge can be characterised by its intrusiveness
in the software development process [Dut+06]. Tools that fit into the development
context are less intrusive and will more likely be used [KCDO09]. Such tools do
not require additional effort (e.g. for installing or starting a separate tool) and are
thus also lightweight. For example, a developer can capture the design decision
for applying an adapter design pattern within a commit message instead of in a
separate tool. Rational decision-making, documentation of decision knowledge, and
its exploitation should be non-intrusive in the context of the CSE process. It is a
challenge to minimise the intrusiveness of a continuous design decision support.
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Challenge regarding intrusiveness: how to integrate rational design decision-
making, documentation, and exploitation in software engineering practices

To exploit decision knowledge, it is important that the design decisions are
consistent (a) with former design decisions and (b) with the artefacts, for example,
with the requirements, architectural software design, and code. Consistency means
that design decisions are documented, as well as linked to and realised, in the
artefacts they relate to. For example, the design decision to apply the adapter design
pattern should be linked to the code that implements the pattern. Then developers
can reflect on this decision when they change the code. Developers need to reflect
former decision knowledge during decision-making, so that the design decisions
are consistent with each other. There are two types of former decision knowledge:
First, general decision knowledge is documented in external knowledge bases (e.g.
about design patterns). Second, new design decisions build on former decision
knowledge specific to the software development project. Especially in long-living
software systems, much decision knowledge accumulates. Documented decision
knowledge might be invalidated during software evolution and needs to be updated.
Not only decisions need to be consistent with each other. The decision knowledge
also needs to be consistent with the artefacts. Moreover, the design artefacts, for
example architectural software design and code, also need to be consistent with
each other to ensure that the decisions are actually implemented. It is a challenge to
document and maintain decision knowledge consistent with the other artefacts and
with former decision knowledge.

Challenge regarding inconsistency: how to ensure consistency between decision
knowledge and artefacts

6.1.2 Solution Approaches for Design Decision Challenges

In this chapter, we present approaches that address both challenges. The approaches
try to find a balance between intrusiveness and consistency support. A more
powerful support typically requires separate tools, which are more intrusive.
Also, the approaches focus on different kinds of decision knowledge. The first
approach promotes rational decision-making by providing software designers with
a catalogue of questions that support them in choosing a design pattern. Thus,
this approach focuses on consistency with external decision knowledge, which is
presented in a separate tool. The second approach focuses on the consistency among
decisions within a project, architecture, and code. It ensures that design decisions
are documented and related to design and implementation artefacts. Thus, this
approach improves the consistency relation between these artefacts. It incorporates
the decision knowledge captured by the design pattern approach. The third approach
provides non-intrusive integration of the documentation and exploitation support
during CSE and lightweight traceability for consistency. During CSE, developers
usually manage code and other development knowledge in a Version Control System
(VCS) and issues in an Issue Tracking System (ITS) [Sai+17]. The third approach
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integrates the documentation and exploitation of decision knowledge into practices
relating to the VCS and ITS. Thus, it does not require a separate tool. It uses
extractive and abstractive summaries to support the transition from naturalistic
to rational decision knowledge documentation. Furthermore, it identifies relevant
decision knowledge based on traceability links to support consistent decision-
making. These approaches showcase different ways to support decision-making,
documentation, and exploitation. The choice of one of them depends on the context.

6.1.3 Structure of This Chapter

This chapter is structured as follows: Sect. 6.2 sketches the Decision Documentation
Model (DDM) as a foundation of this chapter. The DDM allows developers and
architects to document decision knowledge incrementally and collaboratively. Sec-
tion 6.3 presents the approach that supports the decision-making regarding design
patterns using a pattern catalogue and documenting such decision knowledge.
Section 6.4 presents the approach to support the documentation and consistency
by integrating design decision models with program code. In Sect. 6.5, the approach
focusing on short-cycled CSE practices is introduced. Section 6.6 presents related
work. Section 6.7 discusses and concludes this chapter and provides an outlook.
Section 6.8 provides references for further reading.

6.2 Foundations

We represent decision knowledge based on the DDM by Hesse and Paech [HP13].
According to the DDM, decision knowledge is documented as decision components,
which can be nested and refer to other knowledge. Figure 6.1 shows the key
decision components of the DDM (depicted with yellow background), as well as
additional decision components used in the pattern catalogue in Sect. 6.3 (depicted
with white background). In Fig. 6.1, decision component is an abstract class that
can only be instantiated through its subclasses. Related knowledge elements can
be decision knowledge or software artefacts such as requirements, architectural
design, code, and test cases. Decision components are the decision problem to
be solved (issues or goals), solution (alternatives or claims), context information
(assumptions, constraints, or implications), and rationale (arguments or assess-
ments). The DDM subsumes decision elements used in other approaches [PDH14]
but does not prescribe any components for decision documentation. Therefore, it
supports incremental documentation of decisions and in particular both naturalistic
and rational decision-making. Any part of the decision knowledge can be captured
as soon as it is available. In addition, any number of stakeholders such as developers,
architects, and requirement engineers can collaborate while documenting decisions.
Each stakeholder contributes that part of the decision knowledge they know best.
The requirement engineer can, for example, add constraints, which have to be
reflected for a particular solution.
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Fig. 6.1 Decision documentation model (DDM) adapted from [HP13]

The DDM has been applied in an empirical study on Firefox issue reports
[Hes+16]. This showed that the DDM can adequately reflect the decision knowledge
captured in issue trackers. The dominance of naturalistic decision-making in this
study confirms the need for an incremental and collaborative decision documen-
tation. In addition, the DDM has been applied in a case study on design session
transcripts [HP16]. This confirmed that the DDM also adequately reflects decision-
making in a team. In particular, the usage of the DDM made complex decision
knowledge structures in the design sessions explicit.

6.3 Using a Design Pattern Catalogue to Make Design
Decisions

In this section, we explain the Architectural Modelling with Design Decision
Documentation (AM3D) [Durl4] approach that supports software architects and
software developers in the process of decision-making. For this purpose, it uses a
pre-defined pattern catalogue that contains patterns and pattern-specific questions
as main artefacts. Software architects using the approach need to answer a set of
questions to get the correct pattern that solves their current problem. Compared to
the classical software architecture process, the advantage of this approach is that the
design decisions become more rational and less naturalistic. Furthermore, the design
decisions are documented and made explicit and thus are easier to understand by
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other software architects and software developers. The AM3D approach supports
rational decision-making consistent with former external decision knowledge. In
the following, we describe the approach in detail and apply it to the Common
Component Modeling Example (CoCoME) case study. The details of the pattern
catalogue and the decision-making process are presented in the dissertation of
Durdik [Dur14].

This section is structured as follows: Sect. 6.3.1 explains the motivation for using
a pattern catalogue. In Sect. 6.3.2, we explain how a pattern catalogue can be used
for decision-making. In Sect. 6.3.3, we show how the presented approach can be
applied to our current example.

6.3.1 Motivation for Using a Pattern Catalogue

In the domain of software engineering, patterns are widely used to solve common
problems. In the last decades, various pattern catalogues have been introduced, for
example by Gamma et al. [Gam+95] and Buschmann et al. [Bus+96]. If software
architects and software developers need to solve a specific problem, they can often
use one of the already existing patterns. Choosing the correct pattern for a given
problem, however, is not an easy task as there are many patterns solving similar
problems. Another problem that arises using patterns is that they are often used
wrongly. Hence, choosing the correct pattern and using it correctly is a difficult and
error-prone task.

6.3.2 Decision-Making Process Using a Pattern Catalogue

In this section, we explain the decision-making process, which is used to choose
the correct pattern. This includes the presentation of the pattern catalogue and the
activities to make the design decisions explicit.

Most sources of patterns, such as [Gam+95], contain patterns in a free-text form.
The advantage of these sources is that one can learn about patterns, their benefits,
their usage, and others. However, their disadvantage is that the information is not
structured, and it takes a lot of time to gain knowledge about patterns that can be
used to solve a specific problem. Often, it is also unclear which pattern form shall
be chosen to solve a given problem.

The design pattern catalogue of the AM3D approach aims to overcome these
disadvantages. Its main purposes and goals that are relevant for the decision-
making process are (1) to present structured information about patterns, (2) to allow
for semi-automated documentation of the pattern usage, and (3) to support goal-
oriented requirement engineering.

The three main information parts stored in the pattern catalogue are (1) general
information about the pattern, (2) questions annotated to the pattern, and (3)
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Table 6.1 Information about a pattern stored in the pattern catalogue [Durl4]

Category Detailed attribute ~ Short description
General Name A name for the pattern
information
Type A type for the pattern, for example object-oriented

pattern or security pattern

Category The category of the pattern, usually described by pattern
authors; for instance, behavioural patterns are a category
by Gamma [Gam+95]

Information The original source of the pattern

source

ID A unique identifier for the pattern

Goal A high-level description of the pattern’s goal,
respectively the problem that can be solved using the
pattern

Description A brief description of the pattern, which is intended for
users in order to understand the concept of the pattern

Advantages Advantages of the pattern, which come with the usage of
this pattern

Drawbacks Highlighting problems/drawbacks of the pattern

Keywords Keywords to characterise the pattern

Quality attributes ~ The pattern’s impact on quality dimensions of the
software system, for example performance
increased/decreased

Relationships Relations to other patterns, divided into three

dimensions: (1) recommended co-patterns, (2) similar
patterns, and (3) excluded patterns

Variants Variants of the pattern
Question Goal Questions on the goal of the user, that is whether the
annotations user likes to solve a problem in a specific way
Intent Questions on the intent of the user, that is whether the
user intents to have a specific behaviour in a software
system
Consequence Questions on consequences, that is whether some

consequences are acceptable if a specific pattern is used

the structure of the implementation as a Unified Modeling Language (UML)-like
diagram. Table 6.1 shows the details for the general information and the questions.
The questions are divided into the following four categories: (1) questions regarding
the goal of the pattern, (2) questions regarding the advantages of the pattern,
(3) questions regarding the drawbacks of the pattern, and (4) questions regarding
variants of the current pattern.
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Table 6.2 Questions for the fagade pattern [Durl4]

Type Question

Goal Would you like to provide a unified interface to a set of interfaces in a
subsystem?

Intent Would you like to minimise the communication and dependencies

between subsystems?

An additional functionality wrapped into the unified interface is not your
intent? (otherwise — proxy)

Is a stateless unified interface your intent? (otherwise — proxy)

Is it desired that subsystem classes know nothing about the facade
object(s)? (otherwise — mediator)

A new interface for an object is not your intent? (otherwise — adapter)
Consequence Is a potential performance bottleneck not an issue?

Gain general information about a desi@
Choose between simi@
Check and apply @
Elicit and prioritize requirements@
Retrieve information about pa@

User Understand existing pattern des@

Understand rationale of an architectura@

Trace impact caused by changed@

Check architectural implementation violations@

>0

Fig. 6.2 Use cases for the pattern catalogue [Durl4]

As an example, questions for the facade pattern are shown in Table 6.2. The
structured information about the patterns allows to ask structured questions to the
users and to present appropriate patterns for the problem that the users want to solve.

The pattern catalogue can be used in multiple use cases during the development
process. The use cases are shown in Fig. 6.2. In this chapter, we focus on the main
use case check and apply a pattern, which involves making the design decision
for a specific pattern and documenting this decision. The remaining use cases are
explained in [Dur14]. Figure 6.3 shows the activity diagram of the use case. The first
step is to analyse the problem based on the given requirements. The second step
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Select pattern based on
one's own knowledge
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expert knowledge

Is pattern suitable to solve the problem?
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to withdraw the pattern J\\ No L the checklist

Search for other pattern

' Yes
i " [Document design decision -
Search for other solution \ e Update architectural modelj
N to apply the pattern _
\ —
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‘ Design documentation ‘ ‘Architectural design model ‘

Fig. 6.3 Activity diagram of checking and applying a pattern [Durl4]

is to pre-choose a pattern based on one’s own knowledge or based on an expert’s
knowledge. Next, the pattern catalogue is used to find and evaluate the pattern. The
evaluation is done by using the checklist, which is attached to the pattern, that is the
questions for the pattern are evaluated again to clarify whether the chosen pattern is
a correct one for the given problem. If the pattern is suitable to solve the problem,
the design decision has been made. The next steps are to document the decision and
to update the architectural model with the newly chosen pattern. If the pattern is
not suitable, the decision that the pattern has not been chosen and the reason why
are documented. Then the iteration starts from the beginning by re-analysing the
problem and looking for a different pattern. If, however, no pattern can be found
that solves the problem, another solution needs to be found, for example clarifying
the requirements.

In summary, the AM3D process guides users through the process of decision-
making. It also stores the answers and the decision in a model, that is the decision
knowledge is made explicit and is documented. The main advantages of using
the catalogue and the structured process are as follows: (1) The rationale and
other decision knowledge of the design decisions to apply a specific pattern is
documented. (2) Through systematic pattern evaluation with the help of question
annotations, software developers and software architects are supported in applying
design patterns and design pattern variants correctly.

The AM3D approach has been evaluated in a controlled experiment with 20
students [Durl4]. During the evaluation, the technical questions concerning the
patterns have been evaluated as well. For the evaluation, the approach was compared
to a standard pattern catalogue. During the evaluation, the students had to face two
scenarios: In the first scenario, a new design decision had to be made, whereas in
the second scenario an existing decision had to be re-evaluated. The students who
used the AM3D approach had better results in both scenarios. The results for the
first scenario are statistically significant, while the results for the second scenario
are not.
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6.3.3 Application to the Case Study

In this section, we show an application of the AM3D approach to a CoCoME
evolution scenario. In this scenario, the CoCoME sales system is extended by
new payment possibilities. Up to now, customers could only pay via debit card.
Payments are initiated by the CashDesk component. Currently, this component
communicates with an external bank (TrivialBankServer component) via the
IBank interface. The IBank interface defines the methods validateCard and
debitCard. Figure 6.4 shows an excerpt of the CoCoME architecture as a Palladio
Component Model (PCM) repository diagram [BKRO9].

Requirements for modern payment possibilities such as PayPal and Bitcoins
arise. The new payment possibilities are to be implemented, while the existing
payment possibility using a bank server will still be supported. We focus on the latter
case and assume that the decision process is executed using the AM3D approach.

In this scenario, the generic IPayment interface is introduced that defines
the authenticate and pay methods. For using the existing component
TrivialBankServer together with the new IPayment interface, the adapter
pattern and the facade pattern are taken into account by software architects. Hence,
they need to evaluate the two patterns using the design pattern catalogue. First, the
facade pattern is evaluated. As we can see in Table 6.2, however, the first question
for the facade pattern is answered with no because no unified interface to a set of
interfaces needs to be provided. Thus, the architects know that the facade pattern
is not the correct pattern in this case. As a next pattern, the adapter pattern is
evaluated. Therefore, the questions in Table 6.3 are used. Even though the questions
are technical and quite detailed, the evaluation showed that they can be answered
correctly by intended users of the AM3D approach. As all the questions for the
adapter pattern can be answered with yes, the architects know that they can use
the adapter pattern for the implementation. The decision knowledge is illustrated

£ cashdeskline

<<Requires>>

£* cashDeskModel

<<Provides>>
£ TrivialBankServer

¥ SEFF <validateCard> © 1Bank
ﬁ SEFF <debitCard> = | void validateCard() = <<Requires>>
void debitCard()

PassiveResourceCompartment =

ComponentParameterCompartment @ CashDeskModel_Internal
<<Requires>>

PassiveResourceCompartment

ComponentParameterCompartment

Fig. 6.4 An excerpt of the CoOCoME architecture in PCM before the evolution scenario
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Table 6.3 Questions for the adapter pattern

Type Question

Goal Would you like to convert an interface of a class (or an object) into
another interface that clients expect?

Intent Would you like to make interfaces of incompatible classes compatible?
Would you like to change the interface of an existing object (a new
interface design for an object)? (otherwise — proxy or decorator)

Consequence Are you aware of the size of the code you have to write and maintain to
adapt the class?

Alternative Decision
Use a similar pattern: ——< Adapt between
facade, mediator, proxy IPayment and IBank interface
lssue Goal
How can we make the Convert the IBank interface

TrivialBankServer accessible of the TrivialBankServer class (or an object)
via the interface IPayment? into the IPayment interface that clients expect
How can we make interfaces

of incompatible classes compatible?

Alternative
Class adapter, includes multiple Solution
polymorphic interfaces by implementing Object adapter, contains an instance
or inheriting both the interface of the class it wraps and makes calls
that is expected and the interface into the instance of wrapped object
that is pre-existing / \

Pro
Additional interface without
direct object modification and
improved interoperability of classes

Contra
Decreased maintainability and
increased code complexity

Fig. 6.5 Decision knowledge for the adapter pattern according to the DDM

in Fig.6.5 (according to the DDM, cf. Sect.6.2). From the pattern catalogue,
they also get an example for the adapter pattern and adapt it to the CoCoME
components and interfaces. They adapt the existing IBank interface using the
TrivialBankServerAdapter component in order to make the component
TrivialBankServer compatible with the new IPayment interface. Figure 6.6
shows the resulting architectural structure.

6.4 Integrating Design Decision Models with Program Code

During the evolution of software systems, documented design decisions are often
not updated. The documented design decisions, design artefacts, and the program
code are then no longer consistent. Even worse, the documented design decisions
may be misleading, when they document a revised decision, and are neither updated
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g PaypalPayment @ cashdeskline
w SEFF <authenticates <<Requires>>
&j SEFF <pay> o IPayment PassiveResourceCompartment
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ComponentParameterCompartment = void pay()
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tf SEFF <pay> tf SEFF <pay>
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@ TrivialBankServer
¥T SEFF <validateCard> © Bank
&j’ SEFF <debitCard> i_ void validateCard()
<<Provides>> | | - | void debitCard()

PassiveResourcaCompartment

ComponentParameterCompartment

Fig. 6.6 An excerpt of the CoOCoME architecture in PCM after the evolution scenario

nor marked as outdated. In this section, we describe an approach to integrate
decision knowledge and software architecture information with program code.
The tool Codeling [Kon18, Kon16] implements an approach for integrating model
information with program code. Codeling is used to create bidirectional translations
between program code and abstract models of that code. By documenting design
decisions within the program code and relating them to architectural design
artefacts, the documentation of design decisions is visible during the development
and evolution of a system. The goal is to improve the documentation of decision
knowledge, the consistency between software models and code, the evolvability,
and the understandability of the software.

In Codeling, we create mappings between the concepts of architecture implemen-
tation languages and abstract software models. As an example, we define mappings
between components defined in the UML and components defined with the Java
programming language extended with a component framework. These are the
artefacts to which decision knowledge is attached according to the DDM (Fig. 6.1).
Therefore, Codeling can document design decisions that were made using the
approach described in Sect. 6.3. We use these mappings to automatically propagate
changes in the model or the program code to the other representation. As the
mapping between these artefacts and program code is established with Codeling,
it is possible to attach decision knowledge to these program code elements. When
all modelled information has a representation in the program code, a separate model
document is not necessary any more. It can be extracted from the program code
using the defined mappings.

In Sect. 6.4.1, we briefly describe Codeling and its application to software archi-
tectures. Here, we address the challenge to ensure consistency between architectural
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software design and code. Section 6.4.2 extends the approach with a notation for
decision knowledge. Here, we extend the consistency relation between architectural
design and code with design decision knowledge. We also address the challenge
to integrate the documentation of decision knowledge into software engineering
practices, especially into coding and modelling. Section 6.4.3 shows the application
of Codeling on the current example of Sect. 6.3.3.

6.4.1 Integrating Architecture Models with Code

Specifications of software architectures can be seen as abstract views on relevant
design decisions. The goals of architecture specifications are diverse, generally
centering on the design, communication, or analysis of the subject of specifi-
cation. A set of abstract concerns commonly agreed upon seems to exist for
defining software architectures, as manifested by the standard ISO/IEC 42010
[ISO11b]. These include the general structure of a system, usually expressed in
components, interfaces, and their interconnection. They are often accompanied by
abstract behaviour descriptions or quality aspects. During software development,
the architecture is realised in the software artefacts, including the program code,
configuration, and the use of existing platforms. The goal of the implementation
is an executable system. The implementation of software architecture is driven by
industry standards and platforms that define standard elements such as compo-
nents and interfaces. Languages for architecture specification and for architecture
implementation have common concerns (see e.g. [MBG10]), typically at least the
definition of components, interfaces, and their interconnections. However, they have
different foci and include different types of architectural designs and different details
added to the architectural description.

Codeling creates a systematic mapping between architecture specification model
elements, relations, and attributes and their implementation based on standard-
ised or project-specific architecture implementation languages. These mappings
specifically define places where arbitrary other code can be added. This kind of
mapping allows to extract architecture specification models from program code and
to propagate changes in these models back to the code.

Codeling comprises three parts. Figure 6.7 sketches an overview of these parts
and their relations. The figure describes artefacts of the approach with rounded
boxes and translations between these artefacts with arrows. The parts are used to
bidirectionally translate between program code and a specification model expressed
in an architecture specification language. The parts are underlined in Fig. 6.7.

Intermediate Architecture Language The Intermediate Architecture Language
(IAL) mediates between architecture implementation models and architecture speci-
fication models. The IAL is implemented with an Ecore-based [Ste+09] meta model.
It has a small core with the common elements of architecture languages. The core
is extended with profiles [Lan+12] to represent, for example different kinds of
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Architecture Model Transformations
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[ Program Code J
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Fig. 6.7 The parts of Codeling for integrating architecture model information with program code

Model Program Code in Java

[:ComponentType]

1 ;
@ComponentTypel(version="1.0"))
public class [BitcoinPayment| i

s

name = |"BitcoinPayment"|

version = "1.0" } ‘L. ........ i

Entry Point

Fig. 6.8 An exemplary bidirectional model-to-code mapping from the MIC

interfaces, component hierarchies, or quality attributes. Models that are expressed
with the IAL are called translation models.

Model Integration Concept The Model Integration Concept (MIC) describes bidi-
rectional formal mappings between program code structures and an implementation
model. The implementation model is a model representation of the architectural
aspects of the code. For example, a Java type declaration with a specific annotation
might represent a component type, and annotation parameters represent attributes
of this component. Figure 6.8 gives an example of two combined mappings.
A modelled component type is represented as a Java type declaration with the
annotation ComponentType. The type’s name is mapped to the component type’s
name. The modelled attribute version and the value are mapped to an annotation
parameter assignment. Bidirectional model-to-code mappings in the MIC may
include entry points. Within entry points, arbitrary other program code can be
inserted.

In Codeling, the program code also contains information that is not part of an
architecture implementation language but is only subject to a specification language.
For example, many architecture implementation languages do not describe hierar-
chical architectures. The hierarchy information is added to the program code, for
example using package structures. This information is forwarded directly to the
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translation model using the MIC. The MIC implements bidirectional transforma-
tions. Therefore, changes in the model are propagated to code changes.

For Codeling, we have developed a set of translation templates between models
and code. They generically describe how modelled objects, attributes, and refer-
ences can be represented in program code, so that bidirectional translations can be
implemented. Codeling consists of a tool to generate automated translations, by
relating these templates to specific meta-model elements [Kon18]. The tool then
generates translation classes in Java, which are executable within Codeling.

Architecture Model Transformations Bidirectional architecture model transfor-
mations translate between implementation models, translation models, and specifi-
cation models. Architecture implementation models are translated into specification
models. Changes to a specification model are propagated to the corresponding
implementation model.

6.4.2 Design Decisions, Rationale, and Patterns in the IAL

Section 6.3 presents the specification language AM3D for design decisions and
rationale applied to PCM diagrams. To integrate design decisions and rationale
with Codeling, (a) the IAL must be able to handle this information. This makes
design decision information available to Codeling. Then (b) transformations must
be created between the AM3D and the IAL to make the information available to the
existing tool environment of AM3D. Finally, (c) mappings must be created between
the IAL and the program code.

The IAL can handle decision knowledge (a) via corresponding profiles. These are
language extensions for expressing design decisions with rationale. Decisions can
either be decisions for the existence or design of specific components or the decision
for implementing a specific architectural pattern. Decisions are accompanied by
rationale. The rationale can be expressed with informal text or by answering
questions of a catalogue, as it is described in Sect.6.3. We also added meta-
model elements for describing instances of architecture patterns and the roles of
components and connectors within them, as described in Sect. 6.3. We implemented
transformations between the IAL and AM3D (b) with triple-graph grammars!
(TGG) [Sch94b]. TGGs describe a bidirectional relationship between language
elements. For example, they can be used to define that a decision element in the
IAL corresponds to a decision element in AM3D. Automated synchronisation rules
can be derived from these relationships.

Mappings between decision knowledge expressed in the IAL and Java program
code (c) have to be designed in the context of the MIC. A simplified example for
expressing the modelled decision knowledge in program code with the MIC is given

IThe IAL meta model with the design decisions and pattern profiles and transformations between
the IAL and AM3D are available under https://codeling.de.
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Model Program Code in Java
:TextBasedRationale @ecision(rationale={
— @Rationale(text=
text =[ .. ‘ "A more generic interface than the existing
+ rationale IBankLocal interface is needed. It only provides
the methods debitCard and validateCard.'])})

:Arch|tectureE|ementDeC|S|on| public interface [IPayment]<{
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:Interface

name = ["IPayment]

Fig. 6.9 A bidirectional example model-to-code mapping of a decision for an architectural
element with text-based rationale
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Fig. 6.10 A bidirectional example model-to-code mapping of a pattern decision with question-
based rationale

in Fig.6.9. The figure shows an interface. The modelled interface is represented
with an interface definition in Java. The name of the Java interface is mapped to
the value of the attribute name. A decision with a text-based rationale is attached
to the interface. The attached decision is defined as an annotation attached to the
Java interface. The rationale is an annotation parameter. The model instantiation of
the rationale is a TextBasedRationale with a text that contains the actual, informal
rationale. The code equivalent is an instantiation of the annotation Rationale
with the parameter text with the respective content.

Figure 6.10 shows an exemplary mapping between a question-based decision for
an architectural pattern and a respective code representation. The model shows a
pattern decision attached to a component type. The pattern decision relates to an
instance of the adapter pattern. The rationale is based on the answering of questions
in a catalogue. The component type is represented as a Java type declaration with
the name of the component type and the suffix Model. The pattern decision is
represented as an annotation attached to that type. It has two annotation parameters:
The pattern references the type AdapterPattern. This type is defined in a
library. It represents the corresponding pattern. This mechanism allows for type-safe
references because the referenceable types need to implement a specific interface.
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In this example, the rationale is represented by the parameters question and
answer of the annotation Rationale.

In four case studies, Codeling has shown its applicability and usefulness for
improving the consistency between architecture models and code, and the under-
standability and evolvability of software architectures [Kon18, Chapter 10]. In these
case studies, Codeling has been used to extract software architecture models from
code, propagate changes in architecture models to the code, and to migrate between
architecture languages. Besides architectural structure, the integrated information
in these case studies also include performance annotations on operations. They
indicate the expected performance of an operation for simulation purposes. This
is comparable to design decisions as they are presented in this section. In this
section, design decisions are also attached to structural elements and have no
operational semantics for the software. Therefore, the approach presented here
can document design decisions integrated with the program code and improve the
understandability and the evolvability of the software architecture, including the
design decisions.

6.4.3 Application to the Case Study

In the context of the case study used in this chapter, Codeling is used to create a
PCM view upon the CoCoME architecture with AM3D extensions. Figure 6.4 in
Sect. 6.3.3 shows an excerpt of the PCM repository as it is extracted with Codeling.
The full repository diagram is shown in Fig. 12.4 on page 350. Table 6.4 gives an
overview of the mapping between the CoCoME code, the corresponding architec-
ture implementation language, and PCM meta-model elements. The table contains

Table 6.4 Overview of the mapping between PCM meta-model elements, CoCoME meta-model
elements, and program code structures

PCM meta-model element CoCoME meta-model element ~ Program code structures

Basic component with the ~ “Model” component Type declaration with the
name “Model” name “Model”

Basic component with the ~ “Console” component Type declaration with the
name “Console” name “Console”

Basic component with the ~ “Server” component Type declaration with the
name “Server” name “Server”
Composite component Component with children Package declaration with

package or type declarations
as subcomponents

Operation provided role Provided interface Implemented interface

Operation required role Required interface Interface instance given to
type via constructor
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the mappings relevant for adding design decisions and rationale to component and
pattern decisions.

First, we developed a meta model for describing the CoCoME architecture. This
was necessary because the original CoCoME implementation does not follow any
standard for implementing components but uses a custom style for describing archi-
tectural elements and their interconnections using plain Java. For example, it defines
three different types of components: model components, console components, and
server components. Instances of these component types are implemented using
Java type declarations with names that end with that specific suffix. The different
component types indicate different roles of the corresponding components within
the program. Second, we implemented bidirectional model-to-code transformations
between the CoCoME program code and the newly created meta model for the
CoCoME architecture.

Next, we created mappings between the CoCoME architecture meta model and
the TAL using triple-graph grammars. Design decisions and their rationale are
information that can be attached to their corresponding code elements. Figures 6.9
and 6.10 show examples of this set of transformations between models and code.
In the CoCoME example, a new interface IPayment is introduced because the
existing IBank interface did not provide the necessary operations. This decision is
attached to the new Java interface in Fig.6.9. The informal text of the text-based
rationale is added as annotation member value. Another change in the CoCoME
example is the introduction of an adapter, following the adapter pattern, to make the
TrivialBankServer accessible via the interface IPayment. Figure 6.10 shows the
integration of a pattern decision with a question-based rationale. The listing shows
how the pattern decision is documented with annotations in the Java code. The
implementation of the pattern is not shown in this figure, for readability reasons.
Documented design decisions have no operational semantics, which means that
it is not necessary to evaluate them at run time. A pattern decision references a
pattern in an annotation parameter. Here, only the decision is defined. The actual
implementation of the pattern is not evaluated with this mapping. However, such
mappings can be created with the MIC. For example, such translations would ensure
that a component type, which has the role of an adapter in an adapter pattern,
implements the respective interface and has a reference to the adaptee. The actual
behaviour of the adapter can then be implemented in entry points of the code
representation.

The model-to-code translations and model-to-model translations have to be
defined by a developer. Codeling contains tools to support the definition of
bidirectional model-to-code transformations with templates and a code generator.
Once defined, the automated translations can be used with Codeling to create
an architecture model of the CoCoME code with decision knowledge in PCM
with AM3D extensions. Changes in the model are automatically propagated to the
program code.

In summary, Codeling addresses the challenge of the consistency between
architectural knowledge and the program code. Besides other information, this
architectural knowledge includes architectural structure, design decisions, and
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architectural patterns. The approach also addresses the challenge to integrate
the documentation of decision knowledge into software engineering practices,
especially into coding and modelling. The main advantage is that design decision
models are documented at the code level, so that the decisions are available to
developers and are included in the VCS.

6.5 Continuous Management of Decision Knowledge

The approach presented in this section integrates the documentation and exploitation
of design decisions into the work of the developers, in particular the usage of VCS
and ITS. We refer to it as Continuous Management of Design Decisions (ConDec).

We address both challenges in this section. In Sect. 6.5.1, we detail the relevant
knowledge elements of the DDM introduced in Sect.6.2. Section 6.5.2 presents
the main ideas on how to use short-cycled CSE practices to trigger developers so
they would document and exploit decision knowledge. Section 6.5.3 describes the
application to the case study.

6.5.1 Integrating Design Decisions into CSE

The knowledge meta model is shown in Fig.6.11. Software artefacts contain
knowledge that we classify into system and project knowledge [PDH14]. System
knowledge concerns the software itself (e.g. code, requirements, design, test cases),
whereas the knowledge about its development and evolution is summarised under
the term project knowledge. Decision knowledge can relate to both knowledge types.

In CSE, features are more prominent than components [Bos14]. Thus, we focus
on features and code as essential system knowledge elements in CSE. Features
represent both functional and non-functional requirements. Features can be split into

refers to

linked to linked to Legend:

refers to
System Knowledge

L |

attached to

Project Knowledge

Decision Knowledge

’attached to attached to ’attached to

| Decision
contains
- contains
DecisionComponent
l Problem l l Solution l l Context l l Rationale l

Fig. 6.11 Relationship between features, tasks to implement the feature (feature task), code,
commits, and decision knowledge
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sub-features or grouped into bigger features. We refer to the tasks that developers
fulfil to implement a feature as feature tasks. Short-lived branches can be used to
encapsulate the actual development work [Kru+14]. We refer to these branches as
feature task branches. A feature task branch comprises one or more commits that
refer to code. When a feature task branch is merged into another branch, a merge
commit is created. The difference between merge commits and normal commits is
that the merge commit has two parent commits [CS14]. Feature tasks, feature task
branches, and commits are types of project knowledge. We use the DDM explained
in Sect. 6.2 to represent the decision knowledge.

We assume that tracing between features, feature tasks, commits, and code,
as well as decision knowledge, is possible (cf. the relationships in Fig.6.11).
Tracing can be accomplished either using (a) textual annotations such as decision
annotations [Hes+15] or task identifiers in the commit messages, (b) distinctly
documented trace links (e.g. within a table), and (c) trace retrieval techniques
[Cle+13]. A tracing possibility is the prerequisite for developers to consider
and ensure the consistency of decision knowledge and artefacts. Tracing enables
developers to simultaneously reflect decision knowledge and artefacts. Developers
can explore code and decision knowledge that evolved during the implementation
of a feature. Likewise, developers can see decision knowledge and features relevant
to a certain piece of code.

Evidently, there are other CSE artefacts that can contain relevant knowledge, for
example user feedback, pull requests, or chat messages. We consider the artefacts in
Fig. 6.11 as the minimal set of CSE knowledge artefacts.

In the following, the implementation of this meta model is introduced: Feature
tasks are often called tickets and managed in an ITS [Sai+17]. We store both feature
tasks and features in the ITS, whereas code and commits are stored in a VCS.
In the ITS, developers can create distinct decision knowledge elements linked to
the respective features and feature tasks. In the VCS, developers textually capture
decision knowledge in commit messages and code. We encourage developers to
mark it as such knowledge using decision annotations (cf. Sect. 6.5.3, Listing 6.1),
as suggested by Hesse et al. [Hes+15]. The identifier of the feature task is added to
the commit message. This satisfies the finding by Codoban et al. [Cod+15] that a
good commit message expresses the rationale of the change and provides a link to
requirements. Therefore, we use decision annotations, feature task identifiers in the
commit messages, and distinctly documented trace links to establish tracing.

A first tool to capture these kinds of decision structures is the tool DecDoc, which
is based on the DDM and allows to document design decisions collaboratively and
incrementally [HKR16]. DecDoc supports the capturing of distinct decision knowl-
edge elements, as well as implementation decisions, as annotations in the code. The
DDM and DecDoc were evaluated by a retrospective analysis of decision-making
processes of professional software designers [HP16]. The evaluation showed that it
is feasible to document complex decision knowledge in DecDoc from collaborative
and incremental decision-making processes [HKR16]. In order to be less intrusive,
we now develop the ConDec tool support, which directly integrates into the ITS
(JIRA) and VCS (Git) [Kle+18b]. ConDec comprises the features of DecDoc and
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more features, such as the capture of decision knowledge when committing code as
part of the commit message.

6.5.2 Decision Knowledge Triggers

CSE involves implementing and delivering many small increments. Practices
advancing these increments are ideal to integrate decision knowledge triggers, that is
techniques that trigger developers to capture and use decision knowledge. They are
ideal because they are regularly performed by developers. Furthermore, they com-
prise practices that indicate that developers either start or finish work (Table 6.5).
Practices that indicates start are to open a feature task and to create a feature
task branch. Practices that indicate finish are to commit code, merge a feature task
branch, or close a feature task. Before performing a finish practice, developers might
have made important decisions. Thus, when developers perform a finish practice,
we want to trigger them to explicitly capture decision knowledge. When developers
perform a start practice, we want to trigger them to use existing decision knowledge
to make sure they consider consistency between old and new decisions.

Figure 6.12 shows a state diagram of decision knowledge in CSE. The labels
of the transitions indicate the type of CSE practice (start or finish) that developers
perform. The start transitions always involve that developers make decisions. In

Tgble 6.5 CSE practices to Tool ~CSE practice Type
gé%ﬁirl ;iva?rll(()ip:i;ltooit ITS  Start feature task start
decision knowledge Close feature task Sfinish
VCS Create feature task branch start
Commit code finish
Merge branches finish

@ decision knowledge @

start is tacit start /consider
and inconsistent censistency
with artefacts — @
finish/make
explicit
~

decision knowledge

decision knowledge )
' Lls explicit and consistent

is explicit, distributed

and inconsistent finish/package
with artefacts ®

Fig. 6.12 State diagram of decision knowledge and artefacts. The state on the lower right side is
the preferred state

with artefacts
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addition, the tasks on the right side of the labels (make explicit, package, and
consider consistency) need to be performed by developers for certain transitions.
The ConDec approach supports these tasks: The integration of tool support into
short-cycled start and finish practices triggers developers to explicitly capture
decision knowledge consistent with artefacts and exploit it afterwards.

At the beginning of the work, decision knowledge is often tacit in the head of a
few developers (Fig. 6.12-). If decisions are not tacit, they are often discussed
informally and captured partly and in a distributed manner, such as in issue
comments [Hes+16], commit messages, pull requests [Bru+14], wikis, emails, chat
messages [Alk+17a], or Internet relay chat channels [Alk+18]. We refer to this
decision knowledge as distributed knowledge. This knowledge is hard to access later
and might even be outdated. Therefore, we consider tacit and distributed knowledge
as inconsistent with artefacts (cf. Fig. 6.12, left). Decision knowledge and artefacts
become inconsistent as soon as they are created or changed. Transitions between
consistent and inconsistent states are frequently recurring during CSE, while some
artefacts are in a consistent and others in an inconsistent state at the same time. We
describe the techniques behind the decision knowledge triggers in the following.

Making Tacit Decisions Explicit

Many decisions remain tacit, that is they are not captured anywhere but are already
incorporated in the software. We present developers with abstractive summaries of
changes to software artefacts when they perform a finish practice (Fig.6.12-Q)).
By presenting abstractive summaries, we want to trigger developers to make tacit
decisions explicit, that is to reconstruct decision knowledge. This approach builds
on the summarisation of source code changes, as suggested by Cortés-Coy et al.
[Cor+14]. Tool support extracts change sets by comparing the code before and after
the change. These change sets are the basis for generating an abstractive summary.

Packaging Distributed Decision Knowledge

Developers are presented with relevant distributed decision knowledge when they
finish an implementation, as indicated through a finish practice (Fig.6.12-Q)).
They can check whether the decision knowledge really reflects the changes made.
Thereby, we want to trigger them to package the most important decisions and to
link them to the corresponding feature, feature task, or commits.

We present relevant distributed decision knowledge as extractive summaries
using two techniques: (1) Developers can explicitly mark decision knowledge using
decision annotations, as presented by Hesse et al. for code [Hes+15] and Alkadhi
et al. for chat messages [Alk+17b]. Similarly, they are enabled to apply such
decision annotations in other CSE artefacts, for example in comments to feature
tasks, pull requests, or wiki pages. (2) We mine the unstructured distributed decision
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knowledge by machine learning techniques similar to Rastkar and Murphy [RM13],
Rogers et al. [Rog+14], Bhat et al. [Bha+17], and Alkadhi et al. [Alk+17a, Alk+18].
All of these techniques require a gold standard to train a supervised classifier. It
needs to be investigated to which extent such gold standards can be generalised to
identify decision knowledge from different types of CSE artefacts.

Criteria for relevance for inclusion in extractive summaries could be a direct
reference (e.g. decisions captured in the code to be committed) or an indirect
reference (e.g. decisions mentioned in a recent chat message or feature task
comment by the developer).

Considering Consistency Between Decisions

To ensure consistency between decisions, we focus on practices that indicate that
a decision is to be taken (Fig. 6.12-@). One example is when a developer sets the
status of a feature task from open to in progress.

By presenting relevant decision and system knowledge, we want to trigger the
developers to take previous decisions into account when working on the new feature
task. This supports developers during the implementation of features. Criteria
of relevance are derived from the trace links in Fig.6.11. For example, relevant
decision knowledge and code are those from other feature tasks that are related to
the same feature.

6.5.3 Application to the Case Study

In the following, we use the CoCoME evolution scenario described in Sect. 6.3.3. In
this scenario, the CoCoME sales system is extended with new payment possibilities.
That is, one feature should enable the CoCoME customer to pay via Bitcoins and
another feature to pay via PayPal. First, the requirement engineer (product owner)
creates a feature task to implement the Bitcoin payment feature. The feature task
is assigned to developers, who set the status from open to in progress and create a
feature task branch to work on this feature task. Thus, they perform a start practice,
as indicated in Fig. 6.12-Q). The developers collaboratively discuss the design. One
developer suggests extending the IBank interface with new payment methods,
while another developer states that there are bank regulations that forbid to easily
change that interface. The developers decide that a new IPayment interface could
be added. Thus, the developers create the ITPayment interface that contains the
authenticate and pay methods.
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BitcoinPayment Feature

public interface IPayment {

Bitcoin Feature Task public authenticate();
public pay();
attached to }
Goal -
. N Decision
Find a solution that .
—<| Add a generic
allows to add new payment .
T IPayment interface
possibilities in the future
/ N
leoue Alternative Constraint
- Extend the IBankLocal Bank regulations
How can we integrate . . .
e interface with forbid the change
new payment possibilities? )
new payment methods of that interface

Fig. 6.13 Decision for adding the IPayment interface and related knowledge

Scenario for the Explicit Documentation of Decision Knowledge

The developers explicitly document decision knowledge consistent with artefacts.
One possibility to document decision knowledge is that the developers write it
in the code using decision annotations (Listing 6.1). Similarly, the developers
can document the decision knowledge in the commit message or in the ITS.
Consequently, the decision knowledge is consistent with the feature, feature task,
and code, as depicted in Fig.6.13. The knowledge can be accessed from each
of these artefacts. For this purpose, it does not make any difference whether the
developers document the decision knowledge in the VCS or ITS.

Scenario for Making Tacit Decisions Explicit

Imagine the developers did not document the decision Add a generic IPayment
interface in the decision annotations (Listing 6.1). However, the decision knowledge
resides tacitly in the head of the developers. When the developers commit the
code changes, they perform a finish practice (Fig. 6.12-Q)). Since the code change

Listing 6.1 Example for using decision annotations during implementation

I /+ @Decision Add a generic IPayment interface
> * @Issue How can we Iintegrate new payment possibilities?
* @Goal Find a solution that allows to add new payment

possibilities in the future

4+ * @Alternative Extend the IBank interface with new payment
methods

s + @Constraint Bank regulations forbid the change of that
interface =/

¢ public interface IPayment {

public authenticate () ;
8 public pay () ;
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LIE]X]

List of changes: It seems that you made the following change, please refine it:
- Add IPayment " de IPayment interface j
interface What problem did this solve?

| How can we integrate new payment possibilities? [

What is the alternative?

LExtend the IBank interface with new payment methods J

N [Add decision component | v | | Add this decision! [

Fig. 6.14 A summary of changes illustrated as a sketch. The italic text is manually added by the
developers

contains the addition of a new interface, the summary Add IPayment interface is
suggested to them (Fig.6.14). The developers approve that the summary of the
change belongs to an important decision and reconstruct additional information
on the decision problem (issue) and its alternatives. In particular, this supports
developers to reflect about naturalistic decisions.

Scenario for Packaging Distributed Decision Knowledge

Imagine the developers did not document the decision knowledge as depicted in
Listing 6.1 but discussed it in a written form, for example in the comments to the
feature task, chat messages, Internet relay chats, or pull request for the feature task
branch. Developers perform a finish practice when they close the respective feature
task (Fig. 6.12-3)). Tool support extracts relevant distributed decision knowledge
from the original source (i.e. comments to the feature task, chat messages, Internet
relay chats, or pull request). For example, the distributed decision knowledge is
expected to be relevant when it was recently mentioned by the same developers.
Further, the decision knowledge is classified by a machine learning approach and
presented to developers, as shown Fig.6.13. Since the developers discussed the
addition of an IPayment interface, the decision Add a generic IPayment interface is
suggested to them. Developers acknowledge that Add a generic IPayment interface
is a decision they made and that the related decision knowledge is correct. The
decision knowledge is stored inside of the ITS and gets linked to the feature
task (Fig.6.13).

Scenario for Considering Consistency Between Decisions

Imagine that the implementation of the Bitcoin payment feature task was finished
and the decision knowledge is documented, as shown in Fig.6.13. The feature
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Fig. 6.15 Important decision knowledge related to the implementation of the payment feature

task to implement the PayPal payment feature is assigned to other developers.
Figure 6.15 shows how decision knowledge is visualised in the context of related
artefacts. When the developers set the status of the new feature task to implement
the PayPal payment feature from open to in progress, they perform a start practice
(Fig. 6.12-@). Since this feature is linked to the Bitcoin payment feature (Fig. 6.15),
the code of the IPayment interface, as well as the decision knowledge Add a
generic IPayment interface, is presented to the developers. Thus, they will learn
about the integration of new payment possibilities and make decisions consistent
with this previous one. The decision knowledge for the usage of the adapter pattern
(cf. Sect. 6.3.3) can also be accessed.

6.6 Related Work

In this section, we discuss related work regarding the challenges of ensuring the
consistency and minimising the intrusiveness of the design decision documentation.

6.6.1 Documentation Consistent with External Decision
Knowledge

The following section summarises related work for the AM3D approach by Durdik
[Durl4]. One of the most related approaches to the AM3D approach is Software
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Engineering Using Rationale (SEURAT) by [BBO08] including its extension pre-
sented by Wang and Burge [WB10]. It supports architects and developers by finding
a pattern for a given problem. The design rationales and the design decisions during
the decision-making are stored. Furthermore, SEURAT includes questions that have
to be answered during the decision-making process in order to find the correct
pattern. The purpose of these questions, however, is different from that of the AM3D
approach. In SEURAT, the questions are used to find information, which is required
before the decision can be made. They also specify which source of information is
used to answer them.

Zimmermann et al. [Zim+08, Zim11] introduce a decision framework. The
approach is based on reusable architectural decision models. The goal of the
approach is to support developers and architects during the decision-making
process, in particular during the phases decision identification, decision-making,
and decision enforcement. The main focus of the approach by Zimmermann et al.,
however, is on the reuse of decisions and decision-related information itself, while
AM3D focuses on the reuse of solutions.

The AM3D approach is not an expert system approach (see Table 3.1 in Durdik
[Dur14]). The main difference between an expert system and the AM3D approach is
that AM3D goes beyond a typical expert system as it helps users not only by finding
a suitable solution but also by evaluating the solution, comparing it with other
solutions, and documenting the found solution together with its decision rationales.
However, Durdik [Dur14] pointed out that some expert system approaches, such as
Garbe et al. [Gar+00], are also related to the AM3D approach as they use questions
in order to choose a software pattern for a given problem.

6.6.2 Documentation of Decision Knowledge Consistent
with Architecture and Code

There is also related work regarding the relationship between models and code.
The field of model/code co-evolution describes how models and code can evolve
together. Work in this area usually focuses on one specific type of model. For
example, Langhammer [Lanl7] describes an approach for the co-evolution of
Palladio architecture models and Java program code. Langhammer describes rules
that preserve a consistent relationship between the architecture model and the
program code during changes on either side. The Codeling approach, presented in
Sect. 6.4, instead allows for co-evolution between arbitrary object-oriented program
code and model languages, as long as the latter can be represented with a specific
subset of the Ecore meta model [Kon18].

Approaches for the co-evolution of models and code often do not consider the
evolution of the underlying languages. Rocco et al. [Roc+14] explicitly describe
language evolution as an aspect of model/code co-evolution. When a system is
modelled using meta models and a corresponding code is generated, the evolution of
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the meta model is a challenge. Such changes can break the code generators. This is a
case of model/code co-evolution: The meta model can be regarded as model, and the
code generator can be regarded as code in the context of model/code co-evolution.
The authors propose a co-evolution approach where model changes are propagated
via well-defined transformations, which operate on the code and take the model
difference as input. This approach can be used to handle architecture language
evolution regarding model editors but not regarding the code that implements a
system’s architecture.

The synchronisation between models and between models and code is the
focus of the research in (in)consistency management [Fel+15]. These approaches
assume that two views upon a shared body of information overlap. When one
view is changed in the overlapping part, these changes should be propagated to
the other view. Consistency management deals with methods and tools to re-
establish synchronisation. Existing consistency management approaches focus on
coarse-grained program code structures, such as code files or classes and relate
them to model elements. Konersmann [Konl18] argues that a more fine-grained
abstraction level is necessary and implements such consistency relationships in
Codeling. Vitruv [KBL13] is a more general approach to keep different views
consistent. It bases on coupling EMOF-specified meta models. For the coupling of
the Palladio meta model for architectural specification with Java, see the PhD thesis
of Langhammer [Lan17].

In 1995, Murphy et al. [MNS95] presented an approach to bridge the gap between
program code elements and higher-level software models. In their approach, a map-
ping is created between higher-level model elements and program code elements.
The approach of Murphy et al. is limited to mappings between model elements and
program code files, neglecting the structures within the code files. Approaches need
to address structures within the code files to add decision knowledge to specific
architecture elements in the code.

6.6.3 Non-intrusive Documentation of Decision Knowledge

A documentation technique is lightweight if developers require only little effort
to document knowledge. In addition, a non-intrusive documentation technique
enables developers to document knowledge in a lightweight way as part of their
development practices. In the following, we discuss both lightweight and non-
intrusive techniques.

There are several models to represent decision knowledge, for example Question,
Options, Criteria by MacLean et al. [Mac+96] and the Decision Representation
Language by Lee [Lee91]. In this chapter, we use the DDM to represent decision
knowledge (cf. Sect. 6.2). The main difference in comparison to former models is
that developers can explicitly model context knowledge in a fine-grained way and
that all components of a decision can be nested and refined. The collaborative and
incremental nature of the DDM allows for a flexible documentation of decision
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knowledge in contrast to filling out static text templates. The DDM is suitable to
represent decision knowledge from informal and thus lightweight decision-making
processes [HP16, Hes+16].

Hesse et al. [HKR16] investigate whether other approaches (implemented in
tools) allow to document decision knowledge in a collaborative and incremental
way. They identified that Archie [Cle+13] and SEURAT [BBO0S8] are most similar
to the tool DecDoc. The main differences are that SEURAT does not support
naturalistic decision-making and Archie does not support shared documenta-
tion. Alexeeva et al. provide a literature overview of 56 decision documentation
approaches [APM16]. They identified that the approaches are concerned with
the following goals: documentation, consistency, evolution, extraction, impact
analysis, reuse, sharing, traceability, and visualisation. Twelve of the approaches
have the goal of enabling architecture consistency or compliance checks and thus
address the consistency challenge of this chapter. However, the usage of these
existing approaches requires developers to perform additional steps. Instead, the
ConDec approach (Sect. 6.5) is integrated into developers’ daily practices, such as
committing code. In this regard, the ConDec approach is less intrusive.

A lightweight approach to document decision knowledge are decision annota-
tions. Decision annotations enable developers to classify information as decision
knowledge. Hesse et al. [Hes+15] use decision annotations to capture decision
knowledge in code. Alkadhi et al. present an approach to capture decision knowl-
edge in chat messages using such annotations [Alk+17b]. The ConDec approach
also uses decision annotations in commit messages and issue comments. The
importance of rationale in commit messages is confirmed by Codoban et al.
[Cod+15]. They criticise that commit messages as often being non-informative. Our
approach combines annotations to important artefacts like code or commit messages
with explicit decision models, as the former eases the capture and the latter eases
the understanding of decisions.

Perhaps the most lightweight approach to capture decision knowledge is using
informal, non-structured natural language. Recently, various approaches emerged
that try to automatically identify and extract decision knowledge captured in non-
structured natural language. For this purpose, they use machine learning techniques.
Alkadhi et al. show how to automatically identify decision knowledge in chat
messages [Alk+17a] and Internet relay chat channels [Alk+18]. Rogers et al. mine
decision knowledge from bug reports [Rog+14], whereas Bhat et al. focus on issue
comments in general [Bha+17]. The ConDec approach allows for the informal
documentation of decision knowledge and integrates mining techniques into the
daily work of the developers instead of applying them retrospectively. As part of
their future work, Rogers et al. [Rog+14] and Bhat et al. [Bha+17] state that they
are planning to integrate mining features into existing knowledge management tools.
The ConDec approach picks up this idea, as described in previous sections.

Saito et al. [Sai+17] and Rastkar and Murphy [RM13] also exploit knowledge
documented in artefacts of the ITS and VCS . Similar to them, the ConDec approach
also uses commits to link code in the VCS to tasks in the ITS. The meta model
in Fig. 6.11 makes these relationships explicit and shows how decision knowledge
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refers to these artefacts. Saito et al. [Sai+17] developed an approach to retrospec-
tively link commits to tasks. After applying their approach, they found that still 20%
of the tasks were not documented in the ITS as issues but directly communicated
to developers. The ConDec approach does not address such undocumented tasks
but supports developers to make tacit decision knowledge explicit. In the approach
by Rastkar and Murphy [RM13], extractive summaries of issues that relate to a
certain piece of code are presented to the developers. The summaries are supposed to
provide developers with the rationale for code changes. Unlike Rastkar and Murphy,
the ConDec approach creates summaries during finish practices in order to trigger
developers to document important decision knowledge.

6.7 Conclusion

This chapter presented three approaches regarding the elicitation, documentation,
and exploitation of design decisions in the context of CSE and long-living, evolving
software systems. These approaches focused more on either the challenges of
intrusiveness or consistency.

The AM3D approach supports architects and developers in making rational
design decisions consistent with external decision knowledge, which is presented in
a separate tool. In addition, the Codeling and ConDec approaches focus on ensuring
consistency among decisions within a project, architecture, and code. While the
AM3D approach leaves open where to document the knowledge, the Codeling
and the ConDec approaches use annotations. In the ConDec approach, lightweight
traceability is established, whereas the Codeling approach uses transformations
(formal mappings) between architecture and code. These transformations are
more powerful than traceability links since transformations can be used to create
decision models that are interrelated with architecture models and the corresponding
code. Hence, changes in the models can be propagated to the code. However,
transformations are more intrusive than traceability links because they require extra
notations. In addition to using annotations, the ConDec approach also captures
decision knowledge in commit messages and in the ITS. Further, the ConDec
approach uses short-cycled CSE practices to support developers in documenting and
exploiting decision knowledge. The presentation of decision knowledge supports
developers in making consistent design decisions and design decisions consistent
with the software artefacts. In particular, ConDec also needs to find a balance
between (a) the extent to which it can support developers in documenting decision
knowledge consistent with former decisions and artefacts and (b) the intrusiveness
of the presentation of knowledge. Thus, there is a trade-off between lightweight
capturing or having powerful consistency checks that need to be considered when
setting up a software development project.

The presented approaches are a first step towards extending CSE with a
continuous management of decision knowledge. The following enhancements are
desirable. Durdik [Durl4] pointed out future work for the AM3D approach. For
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instance, the AM3D approach can be extended to support behavioural models;
that is, behavioural information contained in design patterns can be supported.
Currently, the AM3D approach only supports component-like models. In Codeling,
the information about pattern instantiations is integrated with program code. This
integration only contains the decision and the name of the instantiated pattern.
In the future, the implementation should be generated accordingly to actually
implement the pattern, where possible. The ConDec approach is implemented in
tools [Kle+18b]. We will evaluate the tool support during CSE projects that are
part of a practical course at university. We will assess to which extent decision
knowledge triggers support developers during CSE. In particular, we will investigate
which knowledge is worth capturing. Furthermore, we will clarify how to maintain
the knowledge in order to keep it useful and how to access the relevant parts of
knowledge.

6.8 Further Reading

Using a Design Pattern Catalogue to Make Design Decisions The main idea
and details about the AM3D approach are presented in the dissertation of Dur-
dik [Durl14]. Durdik and Reussner [DR13] explain the rationale for using design
patterns and pattern documentation. The ADVERT approach, which uses AM3D
for design decision-making, is explained in [Kon+13].

Integrating Design Decision Models with Program Code The integration of
architecture models with code is subject to the work by Konersmann [Kon18]. It
is based on the idea of embedded models by Balz [Ball1]. The tools for creating
and executing translations between architecture-related program code and models
are available on https://codeling.de. Konersmann et al. describe variants of this
approach, for example for integrating deployment model information [KH16] or
behaviour models [KG15] with program code, and the use of integrated model
information for locating and understanding errors [Kon14].

Continuous Management of Decision Knowledge The integration of project and
system knowledge, in particular the joint management of decisions and work items,
is thoroughly discussed by Paech et al. [PDH14]. The DDM was first introduced
in [HP13]. Hesse et al. performed several studies that demonstrated the feasibility
of the DDM to represent complex decision knowledge. In [Hes+14], they use the
DDM to document decisions that address security requirements. In [HP16], they
investigated the decision-making process during design sessions. In [Hes+16], they
empirically investigated informal decision knowledge from the ITS of the Firefox
open-source project. They found that the documented knowledge mostly concerned
the decision context and that naturalistic decision-making is dominant over rational
decision-making for both bug reports and feature requests. Hesse et al. describe their
implementation of the DDM in [HKR16, Hes+15].
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The ConDec approach is described by Kleebaum et al. [Kle+18a, Kle+18b].
Johanssen et al. in particular address the visualisation of decision knowledge in
relation to usage knowledge [Joh+17b]. Tool support for the documentation and
exploitation of decision knowledge in the ITS and VCS is available on https://github.
com/cures-hub.
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Chapter 7 )
Model-Based Round-Trip Engineering Shethie
and Testing of Evolving Software Product

Lines

Malte Lochau, Dennis Reuling, Johannes Biirdek, Timo Kehrer, Sascha Lity,
Andy Schiirr, and Udo Kelter

Modern software systems tend to be more and more long living and, there-
fore, have to undergo continuous evolution to cope with new, and often initially
unforeseen, user requirements, application contexts, and execution platforms. In
practice, the necessary changes applied to respective design-, implementation-, and
quality-assurance artefacts are often performed in an ad hoc, and mostly manually
conducted, manner, thus lacking proper documentation, consistency checks among
related artefacts, and systematic quality-assurance strategies.

These issues become even more challenging in case of variant-rich software sys-
tems such as software product lines, where even small changes may (intentionally or
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erroneously) affect a high number of similar product variants simultaneously. Again,
the idealistic assumption that a software product line is designed, implemented, and
assured in its entirety from scratch prior to the initial delivery any individual product
variant to costumers is often unrealistic in practice. In particular, three (potentially
concurrently) evolving sets of related product-line artefacts have to be taken into
account:

1. A product-line architecture typically consists of a configuration model, con-
figurable product-line implementation source code, as well as further design-
and quality-assurance artefacts from which respective variants are automatically
derivable for a given product configuration.

2. A product family consists of materialised software variants corresponding to
valid product configurations of the product line as delivered to the customers.

3. A set of product-specific quality-assurance artefacts (e.g. test cases) that permit
sufficient assurance of every software variants of the product line prior to their
delivery and initial execution by the customer.

As a consequence, during product-line evolution and co-evolution scenarios, devel-
opers are faced with multiple diverse yet highly interrelated notions of artefact-
consistency preservation, namely consistency between (1) product-line architecture
artefacts and (2) respective software variants of the product family, as well as
consistency between (3) configuration-specific quality-assurance artefacts and (2)
corresponding software variants.

In this chapter, we describe a model-based framework for systematic and (semi-
)automatic round-trip engineering of continuously evolving software product lines
incorporating all possible evolution and co-evolution scenarios of product-line
engineering and quality-assurance artefacts. To this end, we lift the corresponding
forward- and re-engineering scenarios known from classical round-trip engineering
to product-line engineering, respectively. In particular, we consider a product-line
architecture to consist of a feature diagram serving as a configuration model,
a STATECHART model superimposing all product-variant behaviours into one
behavioural product-line specification, and a preprocessor-based C-code product-
line implementation comprising all software-variant implementations. As quality-
assurance methodology, we consider model-based testing, where test suites are
automatically generated for product-line implementations with respect to a given
set of test goals on the corresponding product-line STATECHART test model, to
be covered on all derivable software variants. Our methodology combines two key
techniques from model-based software engineering, namely:

* Model differencing and model merging for automatically comparing and inte-
grating software variants and versions in a systematic way into one unified yet
evolving product-line representation, and

* Knowledge-carrying software for integrating information about variant- and
version-specific software artefacts into engineering and quality-assurance pro-
cesses at different levels of abstraction
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This combination ensures consistency of interrelated engineering- and quality-
assurance artefacts throughout the entire life cycle of evolving product lines. In
addition, the approach facilitates the application of efficient family-based analysis
strategies, initially developed for software variants already organised in product
lines, to both variant- and version-rich software systems, as well as arbitrary
combinations thereof.

To summarise, the contribution of this chapter consists of an integrated approach
that combines different recent techniques and tools from model-based software
engineering and software product-line engineering into one novel conceptual
framework for product-line round-trip engineering. The methodology is illustrated
by a running example by means of an extract from the extended Pick and Place
Unit (xPPU) study, and we further describe available tool support for the different
techniques.

This chapter is organised as follows. In Sect. 7.1, we first describe the necessary
background on product-line engineering and model-based testing and introduce a
running example by means of an extract from the xPPU case study. Based on these
foundations, we summarise the challenges in round-trip engineering and model-
based testing for quality assurance of evolving software product lines, as addressed
in the remainder of the chapter. The main part of this chapter is separated into
two consecutive sub-parts: in Sect. 7.2, we first describe evolution scenarios of the
different engineering and quality-assurance artefacts separately and, in Sect.7.3,
we then explain co-evolution scenarios to ensure consistency among concurrently
evolved yet interrelated artefacts. Section 7.4 concludes and gives a sketch of a road
map for future research. Finally, Sect. 7.5 summarises recent publications describing
in detail the different approaches summarised in this chapter.

7.1 Foundations

In this section, we first describe the necessary background and basic notions from
the research fields of model-based software engineering and testing, especially in the
context of software product lines, as used throughout this chapter. Based on these
concepts, we describe the major challenges in handling evolution and co-evolution
scenarios in product-line engineering and model-based testing, in order to facilitate
a comprehensive methodology to support model-based round-trip engineering and
quality assurance of evolving software product lines.

7.1.1 Model-Based Software Development and Testing

As our running example, we consider an excerpt from the extended Pick and Place
Unit (xPPU) case study [Vog+14b], which is used in the following to illustrate the
proposed methodology. For a detailed description of the xPPU case study, we refer
the interested reader to Sect. 4.3.
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| v1 v2 v3
1 | Initialize Initialize Initialize
2 | Add Error Add Error -
Handling ~ Handling
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5| - - Delete
Variant

Fig. 7.1 (a) xPPU evolution scenario. (b) Overview of xPPU evolution steps

Extended Pick and Place Unit (xPPU) The xPPU is a bench-scale demonstra-
tor for software systems in the automation-engineering domain. As depicted in
Fig.7.1a, the xPPU is a configurable system consisting of several different hardware
components for handling and transporting Workpieces (WP) with cylindrical shapes
(e.g. bottles). In this way, the xPPU is adaptable to different application scenarios. In
particular, the xPPU is able to handle three types of WP: light plastic, dark plastic,
and metal. To this end, an xPPU comprises a Stack working as WP input storage, a
Ramp working as a WP output storage, a Stamp for labelling WP, and a Crane for
transporting WP between working positions.

The PLC-based control software of the xPPU has been developed in a model-
based way, by employing a combination of structural and behavioural modelling
languages as defined by the EN 61131-3 standard for automation-engineering
software [Grol1]. Model-based development of automation-control software helps
to cope with inherent complexity and mission criticality, as apparent in this and sim-
ilar application domains, by facilitating automated generation of high-quality and
platform-specific implementation code, as well as model-based quality-assurance
techniques such as model-based testing.

Model-Based Testing Model-based testing is a widely used black-box testing
technique that abstracts from internal implementation details of software com-
ponents or -systems under test [ULO7]. To this end, a fest model serves as a
behavioural specification of the expected behaviour of the (potentially inaccessible)
implementation code to be tested. Behavioural conformance of an implementation
to a given test model is investigated by experimental execution scenarios (i.e. test
cases). Hence, test models are utilised in two ways during model-based testing:
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Fig. 7.2 Extract from a xPPU variant. (a) Test model. (b) Code

* The test model is used as input for testing tools for automatically generating test
cases, executing those test cases on the system under test, and evaluating test-
execution results with respect to the expected behaviour (test oracle) as stated by
the test model.

* The test model is used to measure adequacy of an (either already existing or pro-
actively generated) set of test cases (i.e. a test suite). For instance, a coverage
criterion may be applied to identify a set of test goals in the test model, each to
be satisfied by at least one test case of the test suite.

Figure 7.2 shows an extract from the test-model specification of the xPPU in
terms of a STATECHART model [ULO7]. STATECHARTS (and respective dialects)
offer a widely used visual modelling language that constitutes a particularly
well-established specification formalism for concisely capturing functional spec-
ifications of reactive control-software systems at system and component levels.
STATECHARTS are also widely applicable as a basis for automated generation of
implementation code, as well as for model-based test-case generation and test-
coverage measurement [ULO7, Ros+14, Loc+14].

The xPPU behaviour, as abstractly specified in the STATECHART model in
Fig.7.2, constitutes handling of three different types of WP: light plastic, dark
plastic, and metal. Each of those types of WP are transported from the Stack via
the Crane to the Stamp. Light WP are stamped using adjustable pressure, whereas
dark WP and metal WP are stamped using standard pressure. To this end, variable
PressureAdjStatus determines whether adjustable pressure or standard pressure is
used based on the material of the incoming WP. Finally, all WPs are transported
to the Slide and sorted according to their specific type. The behaviour specified in
the test model in Fig. 7.2a corresponds to one particular implementation variant of
the xPPU, as shown in the (simplified) code-listing excerpt in Fig. 7.2b. Whenever
anew WP arrives in the XPPU (see Line 2), the Cylinder pulls it from the Stack (see
Line 3). Lines 4-11 implement the control logic for identifying and handling the
three different types of WP, as described above.
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When using STATECHARTS as test models, test cases correspond to valid and
complete transition paths in the state-transition graph (i.e. paths corresponding to
valid executions from the initial state to a final state). A test-case execution thus
defines a sequence of input stimuli to be injected into the system under test, together
with a corresponding sequence of observable output behaviours expected from the
system under test for those inputs as given by the transition labels in the test-model
specification. Similar to code-coverage criteria, coverage criteria for STATECHART
models aim to investigate different possible control flows (e.g. state and transition
coverage), as well as data-flow aspects (e.g. def-use coverage) of the implementation
under test [ULO7].

For example, applying transition coverage to the xPPU test model in Fig.7.2
ensures that a test suite contains at least one test case for investigating the correct
handling of each type of WP. The code parts corresponding to the three test goals
t1, 12, t3 correspond to the three transitions in the test model (see Fig.7.2a) and
are marked with respective code labels (see Fig.7.2b). For instance, a test-case
execution examining the handling of light plastic WP with adjustable pressure
requires as expected output the corresponding status lamp to be switched on (test
goal 19 in Line 14). After that, all types of WP are transported to the slide, where
they are finally sorted according to their specific type (test goals #9 and 78 in Line
14 and 16, respectively).

To summarise, a fest suite achieving complete transition coverage on the xPPU
test model in Fig. 7.2a requires at least three test cases, for instance:

e Test case fc1 := (, 11, tg) for handling metal WP

e Test case tco = (ty, 2, t9) for handling light plastic WP using adjustable
pressure, and

e Test case tc3 := (t, 13, tg) for handling dark plastic WP

Product Families Besides the particular xPPU variant described so far, the mod-
ular architecture of the XxPPU supports many further variants in order to adapt to
different environments, platforms, and customer needs. Such a collection of similar
yet well-distinguished variants of the same core product is frequently called a
product family [Ape+13]. For presentation purposes, we limit our considerations
in the following to two further variants from the xPPU product family, referred to
as v2 and v3, and the previously described variant is denoted as v, respectively.
In contrast to variant v/, variant v2 has reduced functionality; namely, it cannot
handle light plastic WP differently and always uses standard pressure for stamping.
Figure 7.3 shows the corresponding extract from the test model and the respective
implementation code of variant v2. Here, the handling of meral WP is equal to that
of variant v/, whereas the handling of light plastic and dark plastic are the same in
v2, contrary to different behaviours for each plastic WP in case of variant v/. Hence,
a test suite achieving complete transition coverage on the test model of variant v2
requires at least two test cases, for instance

e test case fc; = (fo, 11, t3) may be (re-)used from the test suite of variant v/,
whereas
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Fig. 7.4 A third xPPU variant. (a) Test model. (b) Code

e test case fcs = (1, 14, 3) is a new test case, additionally required to examine
equal handling of light plastic and dark plastic WPs in variant v2.

In contrast to the reusable test case 1, the other test cases #,, #3 derived for testing
variant v1 are not applicable for testing variant v2.

Finally, variant v3 constitutes a very basic xPPU, which is only able to handle
metal WP and which has no Stamp (see Fig.7.4). As a consequence, for testing
variant v3 (again, aiming at transition coverage of the respective test model of
variant v3), only one single test case, for instance

o testcase fc5 1= (fy, 15, 13)

is required, which differs from all the previously derived test cases due to the
essential behavioural differences of variant v3, as compared with variant v/ and
v2. Next, we describe how principles from product-line engineering can help to
systematically exploit commonality among the members of a product family during
both software development and quality assurance (e.g. for reasoning about test-case
reuse among variants).
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7.1.2 Model-Based Product-Line Engineering and Testing

Software product line engineering (SPLE) is an emerging methodology that has
been successfully applied in various industrial application domains [Wei08]. SPLE
offers a practicable possibility to handle the increasing variability during engi-
neering and quality assurance of automation-control software, as described for the
xPPU example. To this end, SPLE aims at systematically exploiting knowledge
about commonality and variability among all kinds of engineering artefacts (e.g.
design- and test models, implementation code, and test cases) in a family of
similar products [PBL05a, CNO1]. An explicit specification of common and variable
parts among the different variants is based on their supported features, denoting
configuration parameters (i.e. user-visible characteristics of products) in the problem
space of a product family. For automated derivation of product variants complying
to a given configuration, features are further related to software building blocks by
means of reusable engineering artefacts in the solution space, being composable into
respective implementation variants. In the following, we first describe the idealistic
view on product-line engineering based on the assumption that the whole product
line is developed from scratch before finally being delivered to the customer.

Problem Space For the problem-space specification, SPLE usually employs fea-
ture models to describe the set of available features, together with constraints among
those features to be satisfied by a feature selection to constitute a valid product
configuration. Figure 7.5a shows the feature model for the xPPU product line
using the visual Feature Oriented Domain Analysis (FODA) notation (frequently
called feature diagrams) [Kan+90a]. A feature model organises the set of supported
features as nodes in a tree-like hierarchy, inducing dependencies of child features to
its parent features (i.e. the selection of a feature requires the selection of its parent
feature in a valid configuration). Singleton child features are either mandatory
(i.e. they must be selected whenever their parent features are selected in a valid
configuration) or optional. For instance, a valid xPPU configuration must contain
a Crane device and at least one Slide and must handle at least one type of Work
Piece, whereas the Stamp is optional. Besides singleton child features, mutually
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Fig. 7.5 Extract from the xPPU feature model and valid configurations. (a) xPPU feature model.
(b) xPPU variants
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dependent sibling child features may be assembled into feature groups, being
either or groups (i.e. at least one of its features must be selected if the parent
feature is selected), or alternative groups (i.e. exactly one feature must be selected).
For instance, a Crane either uses Standard Routing,or Extended Routing, whereas
the set of types of supported Plastic WP may include Dark, Light, as well as
both in combination. Finally, further dependencies between hierarchically unrelated
features can be expressed using cross-tree constraints (e.g. Work Pieces made
of Light Plastic require a Stamp with Adaptive Pressure). The set of all valid
configurations according to the xPPU feature model is given in Fig. 7.5b. Please note
that—due to space limitations—we omitted the second half of configurations, which
only differs from the given ones by having ERouting selected instead of SRouting.
Further note that the first three configurations correspond to the xPPU variants v1,
v2, and v3, as described above.

In the next step of SPLE, a mapping of configuration-specific solution-space
artefacts onto corresponding feature selections is defined, in order to relate con-
figurations to respective parts in configurable test models and implementation code
of the product line.

Solution Space Features not only denote configuration parameters in the problem
space but also refer to variation points within engineering artefacts in the solution
space, potentially at all levels of abstraction [Ape+13]. Here, we use an annotation-
based approach for a product-line representation of a product family, by integrating
variability information into solution-space artefacts (i.e. test models, implementa-
tion code, and test artefacts).

Presence Conditions for Variant-Knowledge At the level of design- and test
models like STATECHARTS, variant-specific model elements (here: transitions)
are equipped with annotations over propositional feature expressions, representing
presence conditions for well-defined variation points in the solution space. Those
model templates therefore virtually include (or superimpose) any possible model
variant of the product line into one model, constituting a so-called 150% model.
Hence, a configuration-specific model variant (i.e. a 100% model) can be obtained
from a 150% model by projecting only those model elements whose presence con-
ditions are satisfied by the respective feature selection of the configuration [CE00].
Figure 7.6a depicts the 150% test model for the xPPU product line, where the
respective test-model variants for the configurations v1, v2, and v3 correspond to
the model variants, as described above.

A similar principle is frequently used in practice for integrating variation points
into source-code artefacts of product-line implementations: conditional-compilation
directives such as #1f macro, as provided by the C preprocessor, allow for marking
variable code parts (variation points), again, by using propositional formulae over
(Boolean) feature variables as presence conditions [Kédas+11]. Figure 7.6b depicts
the variable implementation source code of the xPPU example corresponding to the
aforementioned 150% test-model extract.
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Fig. 7.6 150% xPPU Test model. (a) Test model. (b) Code

Family-Based Product-Line Testing The additional knowledge in a product-line
representation provided by the feature model and corresponding feature mappings
onto a 150% test model provides opportunities for improving the efficiency of
quality assurance of product families. To this end, family-based product-line
analysis strategies aim at analysing whole product families at once instead of
using a variant-by-variant approach [Thii+14a]. In particular, family-based test-
suite generation potentially reduces the overall number of test-generator runs
and therefore the number of required test cases for covering all members of a
product family, as compared to considering every variant one by one, as described
above [Biir+15a]. For this, the additional information provided by the presence
conditions in 150% test-model specifications supports automated reasoning about
(re-)usability of derived test cases among different variants. To do so, the set of
presence conditions attached to those transitions located on the path being traversed
in the test model by a test case for reaching a particular test goals is conjugated
to form a presence condition for that particular test case (i.e. a so-called Software
product line (SPL) test case). The presence condition of an SPL test case, therefore,
characterises exactly the set of configurations for which that test case is applicable.
Based on this notion, we call a set of SPL test cases an SPL test suite, and an SPL test
suite is further called complete if for each test goal in the 150% test model (being
selected by a given coverage criterion as usual) and for each test-model variant there
exists at least one SPL test case covering that test goal and whose presence condition
is satisfied by the configuration of that variant (see [Biir+15a, Loc+14] for a precise
definition).

As an example, applying family-based SPL test-suite generation to the 150% test
model of the xPPU example (see Fig.7.6) for transition coverage may result in the
following complete SPL test suite:

e SPL test case fc) := (fg, 11, tg); [SPressure || APressure]

e SPL test case tcy := (fg, 12, t9); [APressure]

e SPL test case fc3 := (fg, 13, t3); [APressure]

e SPL test case fc4 := (g, 4, tg); [SPressure], and

e SPL test case fcs := (g, ts, tg) [!|SPressure && |APressure].
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Here, the feature expressions given in brackets denote the respective presence
conditions (i.e. test case 71 is applicable to the variants vl and v2; test cases f,
13, t4 are applicable to variant vl; and test case fs is applicable to variant v3).
Hence, the resulting test cases exactly correspond to those previously derived by
using a variant-by-variant approach but now carry additional information about
the respective implementation variants of the xPPU product line to which they are
applicable. Hence, test cases being reusable among different product variants are
generated only once using a family-based approach, thus reducing the number of
(redundant) test-generator calls, as compared to a variant-by-variant approach.

7.1.3 Product-Line Round-Trip Engineering and Artefact
Co-evolution

In practice, those idealistic 150% product-line representations, on which family-
based analysis strategies heavily rely, are usually not—or only partially—available.
This is due to the fact that product lines are, in most cases, not developed pro-
actively from scratch in a forward-engineering manner but rather continuously
evolve over time and therefore comprise not only variability in space (by means
of simultaneously existing variants) but also variability over time (by means of
sequences of subsequent versions). Hence, most product lines are developed re-
actively (i.e. by starting with an initial minimum product line comprising a small
set of core variants, which is then continuously revised throughout their life cycle to
adapt to ever-changing needs) or in an extractive way (i.e. by reverse engineering a
product-line representation from an existing product family) or by combining both
styles [Ape+13].

For instance, Fig.7.1a illustrates a possible evolution scenario of the xPPU
product line: the core xPPU initially comprises a Stack with multiple Slides for
Sorting WP according to their types, as well as a Crane and a Stamp. Later on, in
evolution scenario 12, an alternative Standard Ramp without Sorting will become
available. As a consequence, all product-line artefacts (potentially) affected by those
changes have to be adapted to support the new variants, namely the feature model,
the 150% design- and test-model specification, the variable implementation code
artefacts, the respective model- and implementation variants, and the accompanying
model-based SPL testing artefacts.

Figure 7.7a provides an overview of the different model-based product-line engi-
neering and testing artefacts under consideration, together with possible evolution
step and resulting co-evolution scenarios (which will be referred to as D-® in
Sect. 7.3) corresponding to respective forward- and re-engineering steps potentially
arising during product-line round-trip engineering. To summarise, we consider three
different kinds of artefacts and use the following terminology for this different
artefacts throughout this article.
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* Software Product Line Artefacts. The problem-space artefacts of product lines
include the feature model, given as a feature diagram in FODA notation; the
solution-space artefacts consists of the 150% implementation, given as C code
with preprocessor macros over feature conditions, as well as a 150% test-model
specification, given as STATECHART models annotated with feature conditions.

* Software Variants. The set of software variants include variant implementations
given as (plain) C code, as well as corresponding test-model variants given
as (plain) STATECHART models, each of them related to a particular product

configuration of the product line.

* Product-Line Testing Artefacts. The set of model-based testing artefacts
include the set of test goals on the 150% test model, as well as a complete SPL

test suite with respect to the set of test goals.

Throughout the life cycle of a product-line, all three kinds of artefacts potentially
undergo continuous evolution in terms of changes imposing revisions of artefacts
and therefore new versions of the entire product line. Due to the complex inter-
relations between the different kinds of artefacts, an accompanying co-evolution
of other artefacts is required in order to ensure artefact consistency in handling
(potentially concurrent) evolution steps at any level throughout the entire life cycle
of the product line. Concerning model-based engineering and quality assurance of
evolving software product lines using model-based testing in particular, the major
challenge to be solved can be summarised as follows:
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Every (supported) version of all valid software variants of an evolving product line has to
be sufficiently (re-)tested (covered) prior to its (re-)delivery to the customer and/or its initial
execution or restart.

As illustrated in Fig. 7.7b, we therefore distinguish three dimensions of integrated
representations of artefact variability in evolving software product lines based on the
initial artefact (i.e. 100% representation), namely:

» All existing versions of the same artefact in a 125% presentation
» All existing variants of the same artefact in a 150% representation, as well as
» All existing variants and versions of the same artefact in a 175% representation

In the following, we describe in detail the different possible scenarios of product-
line evolution (Sect. 7.2) and co-evolution (Sect. 7.3), as depicted in Fig. 7.7a.

7.2 Evolution

In this section, we discuss different possible evolution scenarios of model-based
product lines and describe techniques to properly handle the impact of those
evolution scenarios on the different kinds of product-line artefacts.

7.2.1 Evolution of Software Variants

Under idealistic circumstances, evolution of software product lines would be
conducted in a properly preplanned, offline, and forward manner as follows:

* Step 1: updating the feature model

* Step 2: adapting the solution-space and model-based testing artefacts and the
corresponding feature mappings affected by the update

* Step 3: deriving updates of software variants for those product configurations
affected by the changes, and

e Step 4: (re-)generating and (re-)executing test cases required for ensuring the
correctness of the changes on the affected software variants

In practice, evolution usually takes place at the level of particular variants rather
than at the level of the whole product-line representation [Nev+15]. For instance,
a clone-and-own approach is frequently used to make changes to a particular
model-/program variant and then to propagate those changes by copying and
pasting/replacing the affected model/code parts in other variants for which the
change is also relevant [Ape+13]. However, if not conducted carefully, such an ad
hoc approach is inherently prone to causing continuous decay of the overall product-
line structure (e.g. causing either redundant-code or missing-code anomalies in a
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particular variant), which, in the worst case, may lead to inconsistent and erroneous
variant implementations and/or quality-assurance artefacts.

Figure 7.1b summarises the evolution steps of the xPPU product line considered
in the following examples. Consider variants v1l, v2, and v3, as described in the
previous section, to constitute the initial version 1 of the xPPU product line. In a
first evolution step, leading to version 2 of the xXPPU product line, a revision of the
xPPU functionality takes place, resulting in adding error-handling capabilities. To
this end, a new model fragment, comprising the additional state ErrorReaction and
corresponding transitions for error handling, is added to those test-model variants
affected by this change. In particular, the new behaviour is supposed to be added to
the existing variants v1 and v2 of the xPPU product line, whereas variant v3 remains
without error handling. Figure 7.8 depicts the updated version of the test model of
variant v2, now containing the newly added model fragment, where a similar change
is applied to the respective test model of variant v1 (e.g. by applying clone and own
of the new fragment from v2 to vl or vice versa). In order to master those kinds
of product-line evolution scenarios in a model-based setting, we are faced with two
major challenges, namely:

* Evolution steps are often conducted in an ad hoc manner and without a proper
documentation. Hence, in order to understand and propagate those changes to
other affected variants as well, they have to be properly represented in a well-
defined way.

* Evolution steps are potentially conducted to all possible artefacts of product-line
representations. This may impact the integrity and consistency of further artefacts
at the same level, as well as at any other level of representation. Hence, in order to
make explicit those changes for subsequent engineering steps (e.g. family-based
quality assurance), they have to be properly integrated as additional knowledge
into product-line artefacts.
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src  f[+] label | tgt src  f-1 label tgt src label tgt
: State "| :state : State "| :state : State : State

(a) (b) (c)

Fig. 7.9 Edit operations for statecharts (Abstract syntax). (a) Create transition operation. (b)
Remove transition operation. (¢) Integrate state operation

To cope with these challenges, we utilise and combine two techniques, namely
(1) model differencing and model patching from model-based software engi-
neering [Men02] and (2) annotation of presence conditions from product-line
engineering [CE00] (Fig.7.9).

Model Differencing and Model Patching Model-differencing approaches are
used for deriving and representing common and differing parts between model
versions/variants [Men02]. Here, we employ model differencing techniques for
handling variants and revisions of product-line modelling artefacts. To this end,
state-based differencing of two given versions/variants, vl and v2, of a model aims
at identifying similar parts within v1 and v2 on the basis of the current states of both
models. We refer to Sect. 10.1.1 for an in-depth description of model-differencing
and patching techniques and will only briefly describe the corresponding notions
and concepts in the following.

There are various different techniques to decide whether element a of model v1
and element b of model v2 are considered similar. For instance, equality of (unique)
identifiers or names of elements are frequently used criteria for comparing model
elements. Based on those criteria, a pair (a, b) of model elements considered similar
is called a correspondence, where a and b are said to correspond to each other.
A matching between models vl and v2 is a set of (all) correspondences between
the elements of vl and v2. Given such a matching, a directed delta (difference)
comprising a set of change actions from model v1 to model v2 can be derived as
follows:

» Each model element of v1 (or v2, respectively) not matched to any other model
element leads to a change action that deletes (or creates, respectively) this
element.

* Each non-identical property (e.g. a name) of two corresponding elements yields
a change action overwriting this property with the value apparent in model v2.

Each change action derived this way into a directed delta corresponds to a low-
level change being observable between both models, where, however, the actual
modification may have been applied in a different way in case of ambiguity
(see Sect. 10.1.1 for details). In addition, those corresponding low-level changes
consider both models simply as plain directed graphs without considering any
further well-formedness rules or necessary abstractions needed for understanding
the impact of evolution steps. Instead, model differences should be represented in
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Fig. 7.10 High-level model Edit operations
differencing
u D\
diff ]
2 D/ A(v1,v2)

a structured and preferably human-readable way (e.g. in terms of edit operations
corresponding to editing commands in a visual modelling environment). To this
end, we further consider high-level differencing based on such edit operations for
a suitable representation of model differences [KKT11] (see Fig.7.10). An edit
operation groups (several) change actions into one change set leading to a so-called
lifting of differences to a higher abstraction level. Hence, each edit operation obeys
an interface consisting of two parts:

* A difference A(v1, v2) consists of a sequence of edit steps s ...s, that when
applied to model variant/version vl in exactly this order will yield model
variant/version v2.

* An edit step invokes an edit operation and supplies appropriate actual parameters
for applying the respective changes to a given model.

Edit operations may be defined and implemented using recent techniques, for
instance, declarative graph transformation rules [KKT11]. Simplified rules for edit
operations on STATECHARTS are presented in Fig.7.9, being depicted in their
abstract syntax. The first two atomic operations in Fig.7.9a and b specify how to
create (delete) a given transition, labelled by label, between a source state src and a
target state rgz. Based on these atomic operations, a sample complex edit operation
for creating a new state and connecting this state by a new transition to an existing
one is presented in Fig. 7.9c. This complex operation therefore allows to integrate
and connect a new state into an existing model by one edit single operation.

For instance, regarding our xPPU example, the difference A(P PU2,1, PPU2,3)
describing the evolution from version 1 of the test-model variant v2 (see Fig. 7.3a)
to version 2 (see Fig. 7.8) may be given as follows:

» [IntegrateNewState(So, ErrorReaction,ts): A new state ErrorReaction is added and
integrated via the (new) transition #e.

e CreateTransition(ErrorReaction, Final,t7): A new transition ¢7 is created, from
the previously created state ErrorReaction to the existing final state.

e AddAnnotations(te,t7, Version > 2): Both new transitions #g and #7 are annotated
with version information as the new error functionality is only available in
version 2 and subsequent versions (see below for more details).

Hence, a high-level difference allows for a proper representation of evolution steps.
Furthermore, such a representation can be used for propagating (parts of) changes
between different versions/variants, denoted as model patching [KKT13]. To this
end, we utilise difference A(vl, v2) between two models v1 and v2 as a patch (or
edit script) on a third model v3 as follows:
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* Actual parameters for each edit step s € A(vl, v2) are to be adapted to model
v3 as elements and/or properties available in v1 may not be (identically) available
in model v3. To do so, a matching between models vl and v3 is computed
for finding corresponding (and thus appropriate) parameter values, as described
earlier.

» Sequential dependencies between edit steps s;, sy € A(vl, v2) are to be derived
for computing a (partial) ordering among patch operations. For instance, in
A(PPU2y1, PPU2,»), the creation of state ErrorReaction has to precede the
creations of transition #7 requiring this state as a source state.

Based on this construction, we can apply an (adapted) patch to other models for
propagating changes among variants and/or versions [KKR14]. In case of the xPPU
example, we may apply patch A(PPU2,;, PPU2,,) to xPPU variants vl and v3
for introducing error handling (see evolution steps in Fig. 7.1b), instead of manually
(re-)creating these changes for all variants [KKR14].

Presence Conditions for Version-Knowledge In the previous section, we already
explained the idea of using presence-condition annotations to represent variation
points as additional knowledge within solution-space artefacts of software product
lines. Based on this concept, a so-called 150% model (e.g. a STATECHART test
model for the whole product line) can be defined that superimposes all model
variants (i.e. all 100% test models of any derivable software variant) of the product
line. In this regard, presence conditions annotate variable model parts with variant-
information (i.e. propositional conditions over feature-selections), for which they
are relevant. In a similar way, presence conditions may be employed to denote
version-information and to propagate this information among engineering- and
quality-assurance artefacts throughout the whole life cycle of an evolving product
line. To this end, we introduce (atomic) presence conditions of the form

Version relop k,

where relop € {<, <,>,>} as usual, to denote ranges of version numbers
(revisions), in which an annotated artefact is—or has been—present in a model-
or code fragment of the product line. In order to keep the following presentation
graspable, we limit our considerations to a globally consistent and linearly increas-
ing version-history, represented by a single (Integer-valued) meta-variable Version.
Starting at initial version 1, Version is constantly increased by the value 1 after
every new revision. We further assume that each revision may include multiple, yet
non-conflicting, changes to the same and to different artefacts. Based on the notion
of atomic presence conditions, arbitrary version-history intervals can be expressed
using logical connectives A and V as usual (please note that we will use A and V in
models and && and | | in code interchangeably in the following). For instance, an
artefact annotated with the presence condition

(Version > 2 A Version < 6) V Version > 7
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was not part of the initial version 1 but has been newly added to a model/code
artefact in version 2 but was later (temporarily) removed again in version 6 and is,
from version 7 on up to the current version, again part of the model/code artefact. As
a consequence, artefacts without version annotations are implicitly annotated with
the presence condition Version > 1 (i.e. the artefact existed from version 1 until the
current version).

Similar to the integration of all 100% model/code variants of a product line
into one 150% model/code representation using presence conditions over feature-
selections, all 100% model/code versions of one single variant can be integrated
into one superimposed model using presence conditions over version-intervals. For
convenience, we will call the latter representation a 125% model/code artefact in
the following (assuming that differences among different versions are considerably
smaller than those between variants). Reconsidering the example in Fig.7.8a, this
model constitutes the 125% test model of xPPU variant v2, including both initial
version 1 without error handling and version 2 (and all later versions up to the
current version) with error-handling capabilities. The model fragment for error
handling, consisting of the transitions #¢ and 7, as well as the state ErrorReaction,
is therefore annotated with presence condition Version > 2, whereas all other
model elements are not annotated and thus are present in all versions since the
initial version. The corresponding 125% code fragment of variant v2 is depicted in
Fig.7.8b, where the #1i £ block (Lines 9-14) marks the code parts for error handling
added during revision 2 of the implementation. Similar updates have been likewise
applied to the STATECHART model and respective implementation code of variant
v1, whereas variant v3 has not been affected by this revision.

Concerning the next evolution step, assume the new error handling later to
be considered useful also for variant v3 and therefore added to the respective
STATECHART model and implementation code of variant v3 during revision 3 of
the xPPU product line. As a consequence, the 125% test model of variant v3 now
also contains the model fragment for error handling, as previously added to variants
vl and v2, whereas this fragment is now annotated with the presence condition
Version > 3 and likewise for the implementation code of v3. In contrast, variants v/
and v2 remain unchanged during revision 3.

In revision 4 of the xPPU product line, however, error handling is removed, again,
but only from variant v2 as it has been shown to be inappropriate for this particular
xPPU configuration, whereas it remains in variants v1 and v3. Figure 7.11a shows
the 125% test model of variant v2 after revision 4, in which the presence conditions
of the transitions have been updated, accordingly, to

Version > 2 A Version < 4,

and, similarly, for the 125% implementation code of variant v2.

Finally, let us consider a special case of product-line revision in which the
presence/absence of entire variants changes as part of an evolution step. For
instance, as part of revision 5, it has been decided that variant v3 is no more
supported by the xPPU product line. Hence, all solution-space artefacts related to
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Fig. 7.11 Further evolution steps of variants 2 and 3. (a) Test model of variant 2 in version 4. (b)
Test model of variant 3 in version 5

v3 are disabled from version 5 on for variant v3, as illustrated in the corresponding
125% model in Fig.7.11b (and similarly, for the implementation code of variant
v3). In contrast, variants v1 and v2 are unaffected by revision 5.

To generalise, updating a presence condition ¢ of a product-line artefact of a
125% representation to presence condition ¢’ as a result of a revision k consists of
three possible cases:

o ¢/ := ¢V Version > k if the artefact is added during revision k
o ¢/ := @ A Version < k if the artefact is removed during revision k, and
» ¢’ := ¢ if the artefact remains unchanged during revision k

which can be automatically derived from respective model/code difference-rule
applications, as described above.

7.2.2 Evolution of Software Product Lines

As described before, an idealistic view on product-line evolution should always
start with the evolution of the problem-space specification (i.e. the feature model),
followed by necessary adaptations to solution-space engineering artefacts (i.e. 150%
models and code).

Evolution of Problem-Space Artefacts Based on the synractic differences
between a feature model and its revised version due to a feature-diagram edit applied
during product-line evolution, the semantic impact may be classified in terms of
the potential changes of those edits caused on the set of valid configurations
(i.e. depending on whether valid configurations may become valid and/or vice
versa) [Biir+15b, TBK09].
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Fig. 7.12 Feature-model evolution scenarios. (a) Feature model version 2. (b) Feature model
version 3
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Fig. 7.13 Feature-model edit operations. (a) Operation 1. (b) Operation 2

As a first example of feature-model evolution, consider the feature-diagram edit
from the initial model version in Fig.7.5a to the new version in Fig. 7.12a. Here,
the additional cross-tree constraint Sorting = Dark has been added to restrict the
set of valid configurations of the xPPU product line. Semantically, this edit removes
variant v3 from the set of valid configurations, which has been referred to as revision
4 from the perspective of software-variant evolution in the previous subsection. A
corresponding model-differencing rule for this kind of (atomic) edit operation (see
Fig.7.13a) is therefore classified as specialisation step.

As a second example, consider the feature-diagram revision from the model
version in Fig.7.12a to the new model version in Fig.7.12b. This change consists
of a complex edit operation involving two atomic edits: (1) adding a new feature
node Straight to parent feature Slide and (2) converting the two sibling singleton
feature node Straight and Sorting into an alternative group. This edit now enables
customers, in addition to the previous variants, to further configure xPPU variants
having a Standard Ramp with only one Slide (i.e. without Sorting of WP). The
corresponding model-differencing rule for this kind of (complex) edit operation (see
Fig.7.13b) is therefore classified as generalisation step.

In addition to the classification of the semantic impact of feature-model edits, the
differencing information can, again, be used to annotate model parts with version-
information in a similar way, as already described above for STATECHART models
and implementation code. The resulting feature model, unifying variant, and version
information at the same level of abstraction are also referred to as Hyper-Feature-
Models [SSA14].



7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 161

SPressure || to
| Standard Run
Apressure ™. .’l—"’ B ISPressure &&
88

ty [2 g i
APressure | fopreeire Version <5
- .
Detected Detected 3| Detected
&& SensorMetal] && IsensorMetal && 1SensorMetal xa\tz:::g:ae;‘:]ted |MatSensorDetected
/WPPushedOut = true; | && SensorLight] & IsensorLight] WPPushedOut = true; |/WPPushedOut o trues
WPMaterial = 1; /WPPushedOut = true; | /WPPushedOut = true; |( o o 70 = 0 B
WPMaterial = 3 AWPMaterial = 2 b

| (Cytinderpushedout 8& — (1pccy 0 . .

5| IMatSensorDetected] . s
"""""" /WPPushedOut = false; I {er-SS:re/:diuéf; b |pressureadistatus)

ErrorReaction sbylinder.Pushecou /StatusLampBlue = true; 1
IMatSensorDetected)] slideSort() t6: WPPUShedOuT = false]
entry / ErrorSet / slidesort() Cylinder.
do / Cylinder.pullin() [ APressure 7: WStockEspty = true;
[ 7
| /WPStockEmpty = true; Sendi
((SPressure | | APressure) && Version = 2 && Version < 4) || (Version<5) || : _"f“_“"‘f’:'j"‘” )
(APressure &8 Version = 4) || ((SPressure || APressure) && Version > 5) ol 0 [
(ISPressure && !APressure && Version > 3 && Version < 5) =L
(a) (b)

Fig. 7.14 175% test model. (a) Test model. (b) Code

Evolution of Solution-Space Artefacts The evolution of solution-space artefacts
can be handled with similar techniques, as already described for software-variant
evolution (i.e. by combining model differencing and presence-condition anno-
tations). However, during the evolution of entire product lines, solution-space
representations following the idea of 150% models/code now have to integrate all
versions of all model variants by superimposing the 125% model-/code-parts of all
variants. In those models, presence conditions have to relate variant- and version-
information in a consistent way, in order to express which model-/code parts are
(or have been) present in which model-/code variant in which version of the product
line. Consequently, we call this kind of representation 175% model/code. We, again,
refer to Fig.7.7b for an overview of the terminology for the different kinds of
representations described so far.

As an example, reconsider the five revisions of the xPPU product line, as
described previously at the level of software variants, now being applied at the
level of the product-line representation. The resulting 175% STATECHART model,
including all five revisions of all three variants, is depicted in Fig.7.14. Most
remarkably, the presence conditions

((SPressure V' APressure) A Version > 2 A Version < 4) v
(APressure A Version > 4) v
(\SPressure A 'APressure A Version > 3 A Version < 5)
of the transitions ¢6 and ¢7 precisely reflect the version-history of error handling in
the xPPU product line from version 1 to version 5 as follows:

* The clause in row (1) states that error handling is available in product configura-
tions corresponding to variants v1 and v2 from version 2 to version 3.
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* The clause in row (2) states that error handling is no more available in the product
configuration corresponding to variant v2 from version 4 but remains available
in variant 1.

e The clause in row (3) states that error handling is available in the product
configuration corresponding to variant v3 from version 3 to version 5 (in which
the entire variant is finally removed from the xPPU product line).

Similarly, transition #5 is annotated with the presence condition
(ISPressure A !Apressure) A Version < 5

to denote that this transition is present in variant v3 from the initial version up to
version 4 as it is removed during revision 5. Finally, the annotation

(Version < 5) v ((SPressure \/ APressure) A Version > 5)

ensures that transition ¢8 will be removed from variant 3 in version 5 but will remain
in variants 1 and 2.

The 175% implementation code in Fig. 7.14b shows the corresponding code parts
of transitions t6, t7, t8, and t9. Here, the code parts nested in the #1if block in Lines
5-10 are present in all versions of all variants having feature APressure selected,
whereas the #1£ block in Lines 11-22 conditionally adds code for error handling,
depending on the particular variant and version under consideration.

7.2.3 Evolution of Model-Based Testing Artefacts

Concerning model-based testing artefacts of evolving software product lines, we
have to adapt the notions of SPL test case and (complete) SPL test suite [Biir+15a],
accordingly, to also take version-information into account, as provided by a 175%
test model. To this end, the presence condition of an SPL test case now incorporates
both variant- and version-information, thus denoting the set of variants together with
a sub-range of their versions required for the test case to be applicable.

As an example, instead of using an automated test-generation tool, consider a
tester to manually add a test case to a test suite for the xPPU product line. Based on
the 175% test model, the corresponding presence condition for that test case can be
derived by conjugating the corresponding presence conditions of those transitions
traversed by this test case. For instance, the test case

tc3 := (10,13, t8)

corresponding to the path ¢0, 13, 8 with presence condition true from transition 70,
APressure from transition ¢3, and

(Version < 5) v ((SPressure V' APressure) A Version > 5)
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from transition 78 results in the conjugated presence condition:

(t0) (true) A
(t3) (APressure) A

(t8) ((Version < 5) v ((SPressure V APressure) A Version > 5)).

In addition, the notion of complete SPL test suite has to be likewise enhanced, now
requiring that every test goal is covered on every variant and version, including this
test goal, by at least one SPL test case being applicable to this particular version of
that variant. Table 7.1 shows a minimal set of test cases required for complete test
coverage of the 175% test model, as shown in Fig. 7.14b. Each row corresponds to
a test case, represented by a path through the test model, together with the presence
condition and the set of test goals covered by that test case in the respective variants
and versions. For example, test case fc] covers the test goals ¢0, t1, and 8 on variants
vl and v2 in all their versions. Hence, test goal zc/, which is only present in variant
vl and v2, is completely covered by this test case on all versions in which it occurs.
In contrast, test goals 0 and 8 are also present in version v3, thus requiring a further
test case fc6, covering test goals f0 and ¢8 on variant v3 in all of its versions. In
addition, the test case also covers test goal 5. The further test cases of the given test
suite can be derived accordingly.

As illustrated by this example, the derivation and evolution of model-based test-
ing artefacts (i.e. test goals and corresponding SPL test suites) requires additional
knowledge as provided by the feature model and the 175% test model, which will
be described in the following section about co-evolution.

7.3 Co-evolution

In this section, we discuss the co-evolution scenarios (D—@® of model-based product
lines, as depicted in Fig.7.7a, and describe how to ensure consistency among the
different product-line engineering- and quality-assurance artefacts involved.

7.3.1 Co-evolution of Software Product Lines and Product
Variants

Co-evolution scenario () is concerned with the evolution of software variants due
to changes in the software product line. Following a brute-force approach, all
existing model/code variants might be simply re-generated by deriving from the
respective 175% model/code the corresponding 100% representations according to
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the corresponding product configuration and the new version number of the evolved
product line.

For instance, in the first evolution step applied to the 150% xPPU test model
shown in Fig.7.6a, error handling has been added to the variants v/ and v2 (see
Fig.7.1b). As a consequence, one may simply re-generate the corresponding 100%
model variants of all possible configurations to ensure consistency with the product
line. However, in this way, also those model variants not affected by any changes
would be re-generated, which becomes highly inefficient in case of larger product
lines with hundreds or even thousands of possible configurations. To avoid this,
the additional information gained from model differences and respective presence
conditions in 175% representations allow for a more fine-grained change-impact
analysis, as will be described in the following.

Problem-Space Co-evolution Scenario @ As described in the previous section,
a semantic classification of syntactic feature-model edits can be helpful in proving
the potential impact of problem-space evolution on the validity of existing software
variants:

* Generalisation indicates that (1) all existing variants still correspond to a
valid configuration and (2) new variants corresponding to previously invalid
configurations may be derivable after the feature-model update.

» Specialisation indicates that (1) some existing variants may become invalid and
(2) no new variants are derivable after the feature-model update.

* Refactoring indicates that the set of valid variants does not change after the
feature-model update.

* Arbitrary edit indicates that (1) some existing variants may become invalid and
(2) new variants may be derivable after the feature-model update.

Based on this information, further investigations on the change impact with respect
to the validity or invalidity of particular configurations can be conducted in a
systematic and automated way (e.g. using constraint solvers [TBK09]). For instance,
the edit applied to the initial version of the xPPU feature diagram in Fig.7.5a,
leading to the new version in Fig.7.12a, constitutes specialisation as variant v3
becomes invalid. In contrast, the second feature-diagram evolution, leading to the
version in Fig. 7.12b, is generalisation as we add the new optional kind of Straight
slide, which leads to a new set of variants having this slide, optionally in addition
to the old ones. In these cases, where new variants arise, the 175% test model can
be used to derive additional test cases for specifically assuring the corresponding
implementation variants. Otherwise, in cases of variants becoming invalid, the
presence-condition information attached to existing test cases can be used to remove
invalid test cases from SPL test suites.

Solution-Space Co-evolution Scenario @ As described in the previous section,
evolution of solution-space artefacts potentially causes changes in parts of 175%
model/code representations. Hence, assuming that an evolution scenario yields a
new version k of the product line, a closer investigation of the presence conditions
after updating 175% models/code to version k provides information about affected
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software variants. In particular, for an artefact annotated with a presence condition
having a newly added sub-clause of the form

(¢ A Version relop k),

with ¢ being a propositional formula over features as described previously, two
cases arise:

* If relop is equal to <, then the artefact has been removed during revision k
from all variants satisfying ¢

» If relop is equal to >, then the artefact has been added during revision k to all
variants satisfying ¢, respectively.

Based on this information, the overall subset of variants affected by changes on
solution-space artefacts performed in revision k can be obtained without additional
effort. In addition, the corresponding updates to 100% model/code representations
of the affected variants can be conducted automatically (e.g. by means of patches
derived from this information).

For instance, consider the transitions 6 and ¢7 added for error handling to the
150% test model in Fig.7.14. For variant v3, these transitions become present in
versions 3 and 4 due to the sub-clause

(\SPressure A !APressure A Version > 3 A Version < 5)

in the presence condition of +6 and 7 in the updated 175% model.

In contrast to co-evolution scenario (I), scenario ) is concerned with the
evolution of software product lines due to changes directly applied to individual
software variants. Again, we consider co-evolution of both problem-space and
solution-space artefacts.

Problem-Space Co-evolution Scenario @) Given an (evolving) set of software
variants corresponding to a set of all valid configurations of a product family, the
problem of deriving a corresponding configuration model (e.g. a feature diagram)
that precisely captures this set of valid configurations is frequently known as feature-
model mining or product-line extraction. We will not go into detail about this
particular evolution scenario but rather refer to recent literature about different
techniques addressing this problem [Alv+08, MBB16].

Solution-Space Co-evolution Scenario @ Given a set of N software artefacts
(e.g. models or code) corresponding to a set of valid software variants of a
product family, the problem of deriving an integrated representation superimposing
similarities among those representations is frequently referred to as N-way merg-
ing [RC13].

N-way Model Merging and Model Integration An overview of the three steps
performed during N-way merging in general is depicted in Fig.7.15 and can be
described as follows.
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Fig. 7.15 N-way merging

e Compare. In this step, elements (e.g. code lines or model parts) of the dif-
ferent models are compared and their similarity is measured with respect to
a given similarity criterion. Thus, for each possible set of presumably similar
elements originating from different models, a similarity value between O and
1 is computed. To this end, the same element properties may be used, as
already previously described for model differencing (e.g. the types and names
of elements).

e Match. Based on the compare values, those subsets of elements are being
matched (i.e. considered to be same) that constitute the (presumably) most
similar elements among the different models. As a result, a complete match
contains a complete partitioning of all model elements from all N models.
Although various different matching algorithms can be used in this step, a
frequently applied greedy-based heuristic incrementally selects further subsets of
unmatched elements having the best remaining similarity value, until all elements
are finally matched. Similar to the notions already described in the previous
section about model differencing, elements matched for merging are referred to
as corresponding (see Sect. 7.2).

e Merge. In the merge step, all previously matched elements are integrated into
the resulting merged model. To this end, the union-merge operator is frequently
used in practice, which is based on the assumption that all matched elements
are complementary (i.e. being literally the same element appearing in different
variants and/or versions) and should therefore be unified into one element within
the superimposed representation. In contrast, unmatched elements (i.e. residing
in singleton subsets after matching) are inserted as singleton elements without
any unification with other elements.

As described previously, one key aspect of our approach is to use presence
conditions for representing variant- and version- information in a uniform and
declarative way. In order to facilitate consistency-preserving artefact co-evolution,
we automatically integrate presence conditions during the merging step of N-
way merging. In particular, we integrate variability information using variation
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Fig. 7.16 Incremental N-way merging of software variants

points/revision points in terms of conditional model/code fragments over presence
conditions rather than (meta-)annotations, as described previously. This alternative
representation enables a seamless application of many recent family-based analysis
techniques and tools, which are mostly based on this so-called variability encod-
ing [Ape+13].

Based on the technique of N-way merging, the following basic co-evolution
scenarios can be handled in an automated way:

* Given a set of N 100% models/code artefacts corresponding to the different
versions of the same model/code variant, N-way merging results in a 125%
representation.

* Given a set of N 100% models/code corresponding to the different variants of
the same model/code version, N-way merging results in a 150% representation.

In the case of multiple subsequent versions of either a software variant or an entire
product line, the set of N representations is usually not available all at once but
rather emerge over time due to evolution scenarios. Hence, merging has to be
applied incrementally and/or on subsets (see Fig.7.16). To this end, the availability
of integrated variability-information in terms of variation points/revision points
within (partially merged) models allows for incrementally matching and merging
further variants and/or versions into product-line representations throughout the
entire life cycle of evolving product lines. Based on the technique of incremental
N-way merging, advanced co-evolution scenarios can be handled, such as the
following:

* Given a 125% representation comprising the different versions of one particular
variant up to revision k — 1 and a 100% representation as a result of revision k of
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that variant, their merging yields a 125% representation comprising all versions
of that variant up to revision k.

* Given a set of N 125% representations comprising the different versions of a set
of N variants, their N-way merging yields a 175% representation comprising all
variants with all their versions.

* Given a set N 150% representations comprising the different versions of a
product line, their N-way merging yields a 175% representation comprising all
these variants with all their versions.

As an example, recall the evolution scenario of version 1 of the 150% test model
in Fig.7.6, leading to version 2, which shall be now conducted at the level of
variants. During the revision leading to version 2, the test models of the variants
vl and v2 (see Fig.7.8) are evolved to now contain error handling, whereas the
test model of variant v3 (see Fig.7.4) remains unchanged. We now consider this
evolution scenario at the level of the implementation code, and we focus on the
code parts implementing the transitions below the so-called standard-run state (see
Fig.7.14). To this end, we consider the representation of source code in terms
of CFA, constituting a program abstraction frequently used by many program-
analysis and testing tools [Biir+15a]. States (or nodes) of a CFA correspond to
control-flow locations (i.e. lines of source code) in a given program, whereas
edges denote different kinds of basic imperative control flows (i.e. control-flow
sequences, control-flow branches, and control-flow loops) as usual, being either
labelled with (basic blocks of) program statements or expressions, respectively. This
representation allows us to apply principles from model differencing and model
merging, as described above, to STATECHART models, as well as to implementation
code in a similar way. Figure 7.17d shows the corresponding extract from the CFA of
the 175% code of the product line in version 1, whereas Fig. 7.17a—c shows similar

: | ~ [PressureAdjStatus
(GylinderPusedout 0 [!PressureAdjStatus && ...] [CylinderPusedout [——— [ it j

&& SensorMetal] i [PressureAdjstatus] && SensorMetal]
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Fig. 7.17 Incremental N-way CFA merging. (a) CFA of vl in Version 2. (b) CFA of v2 in version
2. (¢) CFA of v3 in version 2. (d) 175% CFA in version 1. (¢) 175% CFA in version 2
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extracts from the 100% CFA representations of variants v1, v2, and v3 after revision
2. Figure 7.17e therefore depicts the 175% CFA resulting from merging the 175%
CFA representation and the 100% CFA representation, thus yielding the 175% CFA
representation after revision 2. Hence, by (incrementally) applying N-way merging
in this way, similarities among variants and/or versions are reflected in the resulting
175% CFA. For instance, path 10-17-19 is present in all variants and all versions,
whereas path 10-14-15-19 is present in all versions of variant v1 (having feature
APressure), and path 10-11-12-19 (for error handling) is only present in version 2
of variants vl and v2.

7.3.2 Co-evolution of Software Product Lines
and Model-Based Testing Artefacts

Concerning scenario 3), the co-evolution of model-based testing artefacts according
to evolving product-line representations can be conducted in a straightforward
manner. Based on the combined variant/version-information in the updated 175%
test-model specification, family-based test generation can be applied for updating
the SPL test suite in order to become consistent with the latest revision. Concerning
the application of test cases selected for retesting variant implementations being
potentially affected by the changes, again, the additional information in the updated
175% implementation code can be used for change-impact analysis similar to
principles known from regression testing [Loc+12].

For instance, concerning the SPL test suite, as shown in Table 7.1, the additional
test case ¢35 has to be added to the test suite after adding error handling to variants
vl and v2 during revision 2. In addition, after removing variant v3 during revision
5, test cases tc6 and fc7 both become invalid as they are only executable on that
variant.

Concerning scenario @), co-evolution of manual updates of SPL test suites
and corresponding product-line representations can be conducted by deriving
variant/version-information for newly added test cases from the the 175% test
model.

For instance, a tester may decide to add the additional test case tc8 = (10, t1, 19)
into the SPL test suite, as shown in Table 7.1, to test the correct interplay between
transitions ¢/ and #9 in variant v/. The corresponding presence condition obtained
from the respective path in the 175% test model is given as

(SPressure  APressure) A APressure,
thus being valid for any version of all variants having feature A Pressure selected. In

contrast, test case rc9 = (¢0, t4, 19) is invalid as the presence condition (SPressure A
APressure) contradicts the feature model in all versions of the xPPU product line.
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Similarly, the impact of manual removals of test cases from SPL test suites on
the test coverage can be investigated on the 175% test model. For instance, if test
case tc2 is removed from the SPL test suite, as shown in Table 7.1, test goal 70 is no
longer covered in any version of all variants containing this goal.

7.3.3 Co-evolution of Product Variants and Test Artefacts

Finally, co-evolution scenarios 3) and ) can be handled by sequentially composing
the different scenarios for co-evolving product-line representations, as described
above, namely:

* Scenario (B can be handled by first conducting scenario @ and then scenario (D.
* Scenario (6 can be handled by first conducting scenario ) and then scenario 3.

7.4 Conclusion

In this chapter, we described a model-based framework for systematic round-
trip engineering and quality assurance of continuously evolving software product
lines. The presented methodology utilises two major techniques from model-based
software engineering, namely:

* Model differencing and model merging for automated comparison and integration
of software variants and versions of an evolving software product line, and

* Knowledge-carrying software for the integration of additional information about
variant- and version-specific software artefacts into engineering and quality-
assurance processes.

This combination ensures consistency among engineering and quality-assurance
artefacts throughout the entire life cycle of evolving product lines and facilitates the
application of efficient family-based product-line analysis strategies to both variant-
and version-rich software systems, as well as arbitrary combinations thereof.

To conclude this chapter, we briefly outline a road map for possible future
research directions based on the proposed framework.

Besides the model/code artefacts and the corresponding knowledge on product-
line representations, as discussed throughout this chapter, further types of artefacts
and meta-information annotations might be considered in a similar way due to the
generality and generic nature of the presented approach and tools.

In addition to model-based testing, further quality-assurance techniques (e.g.
model checking, NFP analysis, etc.) might be lifted in a similar way to become
applicable for family-based analyses of both variants and versions in a unified way.

Finally, other kinds of evolution scenarios and co-evolution scenarios might be
taken into account. For instance, in practice, a large repository of continuously
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evolved legacy test cases exists for which corresponding variant-/version-knowledge
is often not available, incomplete, and error prone. Hence, precise techniques for
reverse-engineering (or learning) variant-/version-information from those existing
artefacts is a crucial open issue for future research.

7.5 Further Reading

Further details about tool support and experiences gained from experimental
evaluation results obtained for the different techniques can be found in recent
publications summarised in the following. In addition to the references already
provided in the different subsections of this chapter, the following references
also contain further information about related work on the different approaches
considered in this chapter.

A survey about different product-line analysis techniques, including family-
based Analysis, can be found in [Thii+14a]. In particular, a tool implementation
of the family-based test-suite generation approach based on the software model
checker CPACHECKER [Bey+04, D B+13] can be found in Biirdek et al. [Biir+15a],
and evaluation results for applying the approach to the PPU case study can be
found in Lochau et al. [Loc+14]. The evaluation results show remarkable gains in
efficiency under stable effectiveness of applying family-based test generation, as
compared to a variant-by-variant approach. This tool can be extended, accordingly,
to handle combinations of variant- and version-knowledge, as described in this
chapter.

The representation of variability information by means of presence-condition
annotations has been initially proposed by Czarnecki et al. as part of their template-
based approach for product-line modelling [CE00].

An alternative approach for conceptually integrating variant- and version-
information into one representation based on the delta-modelling approach has
been proposed by Lity et al. in [Lit+18]. A detailed description of re-engineering
the xPPU case study as a product line for model-based testing can be found
in [Lit+15]. A general description of challenges in testing product lines can be
found in [McGO1].

An overview on model-versioning techniques and tools may be found
in [ASWO09]. Concerning model differencing techniques, in particular as described
in this chapter, a dedicated overview can be found in [Kol+09]. Among others, the
SILIFT framework allows for a rule-based specification of corresponding model-
transformation operators, being applicable to arbitrary input models in a generic
way [KWNOS5]. Among others, this tool has been successfully applied to efficiently
and effectively compute and classify differences between FODA feature diagrams,
as described in this chapter [Biir+15b]. This approach is, in general, adaptable
to any Eclipse Modeling Framework (EMOF)-based modelling language, such as
STATECHART test models, as considered in this chapter. This tool can be extended,
accordingly, to also compute model differences and N-way model merges of other
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product-line artefacts like STATECHART test models and CFA-based representations
of implementation code, as described above. Finally, further reading on model-
merging notions and techniques can be found, among others, in [Men02] as well as
in [RC13].
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Adaptation is heavily used for today’s software in two dimensions. First, developers
frequently release new versions of software to meet new or changed requirements
(aka. software evolution [BR00]). Second, developers simultaneously develop vari-
ants of software to meet contradictory requirements (aka. configurable software or
software product lines [CE00, Ape+13]). While versions typically replace existing
versions, variants co-exist to meet certain requirements each. Both variants and
versions give rise to software variation. Performance—capturing software quality
properties with respect to timeliness and resource usage—is of particular relevance
to software design, operations, and evolution. It has a major impact on key business
indicators. Consequently, during the software’s life cycle, developers and operators
need to be aware of performance.

Over the last decades, the community has developed methods, techniques, and
tools to analyse performance in different design and operations stages, combining
model-based and measurement-based approaches [WFP07, Bru+15]. Figure 8.1
depicts the artefacts and activities being involved in model-based performance
analysis in combination with measurements. architectural models for the software
versions and variants, for example using Unified Modeling Language (UML), can be
augmented by performance-relevant information, for example using UML profiles
such as MARTE [Obj11]. These models can be used to predict performance indices
of the respective versions and variants, for example CPU utilisation and response
times. Two common approaches are used for prediction [CMI11]: (1) simulating
the models and (2) transforming the architectural models to analytical models, for
example queuing networks or Petri nets and solving or simulating these models
using respective tools. Once implementation artefacts become available, perfor-
mance indices can be obtained by measurements, for example using profilers or
application performance management (APM) tools [Heg+17]. Once measurements
are available from implementation artefacts, performance models can also be

Model-to-Model Am;lytjcal
Transformation Analytical Solution
]

Requirements Design, Evolution, ﬁ;??;trenf;ﬁ;a;
New/Changin i
(New/! ging) Adaptation Model S Performance
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Executable Code / System
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Fig. 8.1 Performance engineering taxonomy including alternative performance evaluation meth-
ods
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extracted automatically. These extracted models can also be used during runtime,
example to react dynamically to changing environmental conditions, such as
changing workload characteristics [CMT16].

Even though variants and versions are quite different in their purpose, their
software variation challenges software analyses in a similar manner. In particular, it
is often infeasible to analyse all variants and all versions of a software, especially
for performance analyses, because of several reasons. First, even when applied
automatically, performance analyses are time-consuming due to the necessity to
execute the software under test using different workloads [WFPO7]. Second, the
sheer number of variants and versions of today’s software renders it infeasible to
analyse all of them separately due to combinatorial explosion [Thii+14a]. Even
though variation is often low between certain variants and versions, a small change
can have a huge impact on the performance of the overall software. Hence, we
cannot just measure the performance of one variant or version and, thus, need
strategies to systematically cope with software variation.

Ideally, the performance of software variation would be analysed with an auto-
mated process that incorporates the knowledge of previous performance analyses
steps. We envision a process in which a stakeholder identifies a performance-
related concern. Then a magic box automatically selects a strategy to answer the
concern, including a mixture of predictions, as well as offline and online tests. When
applying this strategy, results are not only propagated to the stakeholder but also to
a knowledge base. While the stakeholder acts on the results by evolving the system
or refining concerns, the growing knowledge base is used by the magic box in the
next iteration.

In this chapter, we report on our experiences with performance evaluation
strategies for software variation. We elaborate on strategies to efficiently analyse the
performance of software variants in Sect. 8.1 and of software versions in Sect. 8.2.
We are using both case studies introduced in Chap. 4 for illustration. Section 8.1 is
exemplified using the Pick-and-Place Unit (PPU) case study, while Sect. 8.2 uses
the Common Component Modeling Example (CoCoME) case study. We conclude
our discussions by giving a unified view over performance analysis strategies for
software variation and a discussion of future challenges in Sect. 8.3.

8.1 Analysis Strategies for Software Variants

Numerous strategies are known to analyse software variants [Thii+14a]. However,
not all of them are applicable for performance evaluation, as some strategies can be
used only for static analysis and not to actually run the software variants. We report
on our experience in applying complementary strategies to analyse the performance
of software variants. In Sect.8.1.1, we elaborate on approaches that try to focus
on the most relevant variants by sampling the large variant space. As we use test
cases to measure the performance of variants and as manually creating those is
laborious, we discuss how to generate test suites that cover all variants in Sect. 8.1.2.
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Fig. 8.2 Excerpt of the feature model of the PPU

Finally, in Sect. 8.1.3, we discuss a strategy to predict the performance of variants
analytically without the need to measure the performance of every variant. That is,
the techniques discussed in Sects. 8.1.1 and 8.1.2 may or may not be combined,
whereas the technique presented in Sect. 8.1.3 is applied in isolation.

Pick-and-Place Unit as a Motivating Example A feature model typically has
a tree-like graphical representation depicting the hierarchically arranged set of
features. Relationships in the feature model regarding parent and child features
are expressed with the common notation of mandatory, optional features and
or-, alternative groups and their underlying semantics (cf. legend in Fig.8.2 for
the graphical representation) [Kan+90a, CE00]. Abstract features do not contain
realisation artefacts and are only used for structural purposes [Thii+11]. A feature
model of the PPU case study system, as introduced in Chap. 4, is shown in Fig. 8.2.
The PPU can process up to three different kinds of workpieces (WPs): White, Black,
and Metallic workpieces. A Stack stores all workpieces before they are processed
by the Crane. Basic and Crane are two alternative implementations of the crane
behaviour differing in the processing times of workpieces. In addition, the optimised
implementation requires a stamping module, making the metallic workpiece type
necessary. Finally, all workpieces are transported to the Slide, awaiting packaging
or further processing in other automation systems. For illustration, we describe three
selected variants in more detail in the following.

Variant 1 is the minimal system configuration consisting of the concrete features
Stack, Basic, Slide, and Black. The Black workpieces are transported from the
Stack to the Slide by the Crane. This process is repeated until no more workpieces
are present.

Variant 5 can distinguish between two different types of workpieces (Metallic or
Black). While Black workpieces are treated as in Variant 1, metallic pieces take
a different route through the system. They are transported by the Crane to the
new stamp component (i.e. SPressure). After the stamp process is finished, these
pieces are also transported to the Slide.

Variant 9 is identical to the previous variant on the hardware level. The crane
implementation is optimised (cf. feature Optimised) as the crane no longer waits
at the stamp for the stamping process to be finished. Instead, the crane moves
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back to the stack to pick up the next black workpiece (if present) and transports
it to the slide. Afterwards, the crane fetches the stamped workpiece and transports
it to the slide.

8.1.1 Sample-Based Analysis of Software Variants

As said previously, configurable systems may have configuration spaces of substan-
tial size, so identifying which variant performs best in a concrete setting is difficult.
In the worst case, the size of the configuration space of a configurable system is
exponential in the number of features. While, in practice, the actual number of
desired or relevant software variants is considerably smaller, typically, configuration
spaces of real-world systems are still huge [Ber+13]. In fact, even enumerating all
valid variants—not to speak of performing any measurements—is often computa-
tionally intractable. Due to the small size of our example, enumerating all variants
is possible though, as we illustrate in Table 8.1.

To learn about the performance behaviour of individual variants, practitioners
resort typically to sampling. The idea is not to analyse all variants of a given
configurable system individually, but just a sample set, which is smaller and can
be analysed in feasible time. For the purpose of our example, let us assume that
we analyse variants 1, 4, and 9 (cf. Table 8.1). The key idea of a sampling-based
approach is not just to work with the performance data of the sample set but to
use them also to learn about the performance behaviour of other variants not in
the sample set, say variants 7 and 10, in our example. In other words, we want to
predict the performance behaviour of all (or some) variants of a system based on the
performance measurements we did on a sample set.

Sampling Strategies There are various strategies to select a proper sample set
and to generalise the measurements to the other variants of the system. Let us
illustrate some key strategies here by means of the example of Table 8.1, which
includes a performance value for every variant of the PPU case study. An interesting
observation is that there are only three different kinds of variants: variants that can
process 0.12 workpieces/s, 0.03 workpieces/s, and 0.09 workpieces/s. Interestingly,
in our sample set (variants 1, 4, 9), there is no variant with the value 0.09. While
this is not necessarily a problem, we will we discuss it shortly as it illustrates that
selecting variants for the sample set is a crucial step.

In the literature, there are several strategies for selecting sample sets [Med+16].
One notable strategy—beyond mere random sampling—is t-wise coverage sam-
pling [JHF12]. The idea is that the variants of the sample set should contain or cover
certain features and combinations of features. Feature-wise (t = 1) sampling means
essentially that every feature of the configurable system should be selected in, at
least, one variant and deselected in, at least, one variant of the sample set. In our
exemplary sample set, this is not the case as, for example, feature APressure is not
in any of its variants. In contrast, sets 1, 11, and 12 are a valid feature-wise sample
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Table 8.1 Variants of the pick-and-place unit and their performance values

Variant  Concrete features Performance (in workpieces/s)
1 Stack, Basic, Slide, Black 0.12
2 Stack, Basic, Slide, White 0.12
3 Stack, Basic, Slide, Black, White 0.12
4 Stack, Basic, Slide, Metallic, SPressure 0.03
5 Stack, Basic, Slide, Black, Metallic, SPressure 0.09
6 Stack, Basic, Slide, White, Metallic, SPressure 0.03
7 Stack, Basic, Slide, Black, White, Metallic, 0.09
SPressure
Stack, Optimised, Slide, Metallic, SPressure 0.03
9 Stack, Optimised, Slide, Black, Metallic, 0.12
SPressure
10 Stack, Optimised, Slide, White, Metallic, 0.03
SPressure
11 Stack, Optimised, Slide, Black, White, Metallic, 0.12
SPressure
12 Stack, Basic, Slide, Metallic, APressure 0.03
13 Stack, Basic, Slide, Black, Metallic, APressure 0.09
14 Stack, Basic, Slide, White, Metallic, APressure 0.03
15 Stack, Basic, Slide, Black, White, Metallic, 0.09
APressure

16 Stack, Optimised, Slide, Metallic, APressure 0.03

17 Stack, Optimised, Slide, Black, Metallic, 0.12
APressure

18 Stack, Optimised, Slide, White, Metallic, 0.03
APressure

19 Stack, Optimised, Slide, Black, White, Metallic, 0.12
APressure

but still do not contain a variant with the value 0.09. Pair-wise (t = 2) sampling
requires that for each pair of features there is at least one variant, in which both
are selected and both are deselected and each feature is selected while the other is
deselected. Our exemplary sample set does not attain pair-wise coverage either as
it does not even cover all features. The pair-wise sample sets 1, 2, 3, 6, 9, 12, 16,
and 19 would be sufficient for our example. Selecting higher values of ¢ increases
coverage but also leads to larger sample sets.

Learning from Sample Sets Given a sample set, there are several approaches
that aim at learning the influences of individual features and their combinations
on performance to allow predictions of the performance behaviour beyond the
sample set [Sie+12a, Guo+13, Sar+15, Sie+15, Nai+17]. A simple approach is to
approximate the performance of every individual feature [Sie+12a]. This can be
achieved easily by a comparative measurement: measuring a basic variant with
and without the feature in question and assigning the difference in performance
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behaviour to that very feature. As an example, let us assume that we measured
(denoted using function IT) the processing time of variants 6 and 7 of our PPU
case study (in workpieces per second):

IT(Stack, Basic, Slide, White, Metallic, SPressure) = 0.03
IT(Stack, Basic, Slide, Black, White, Metallic, SPressure) = 0.09

The difference in observed throughput is 0.06, which we consider as the influence
of the feature black (as it is the only feature in which the two configurations differ).
This way we can assign every feature a value. Based on the values for individual
features, we can already make predictions, which are rather imprecise, though. For
example, if want to predict the combined influence of the features black and white,
we would just add their individual influences, say 0.06 4+ 0.09 = 0.15 (assuming
the individual influence of white is 0.09)." The point is that this prediction may be
wrong (in fact, it is very likely wrong). The reason is that the two features may
interact interfering at the level of processing time (or other properties).

Feature Interactions Let us revisit the prediction procedure: Essentially, it takes
the influences on the processing time of individual features and adds them up
according to the variant whose processing time shall be predicted. However, due
to feature interactions, the influences of the features involved do not necessarily add
up, as we have seen for the features black and white. To identify the interaction
between the two, we need to measure a variant that has both features selected,
in addition to the measurements that we already have. This way we can pinpoint
the interaction, which amounts, say, to a decrease of 0.03 workpieces/s. Knowing
the influence of this interaction, we can make a more precise prediction, which is
0.06 +0.09 — 0.03 = 0.12.

So incorporating feature interactions improves the accuracy of the prediction
procedure. The downside is, to identify all feature interactions of a configurable
system, we need again to measure a possibly exponential number of system variants.
This is where the sampling strategies come into play. Using, for example, pair-wise
sampling presumes that the most relevant interactions are among pairs of features,
which are covered by pair-wise sampling.

Experiences and Further Reading In the course of SPP 1593, we extended the
tools FeatureIDE and SPL Conqueror. FeatureIDE is an Eclipse-based development
environment for feature-oriented software development [Thii+14b, Mei+17], in
which we integrated numerous sampling algorithms [AIH+16b, AIH+16a]. We used
FeatureIDE to compute the samples for our running example. SPL. Conqueror
bundles various sampling and learning strategies for the performance prediction of
configurable systems [Sie+12b].> In a number of studies, we applied it successfully
to real-world configurable systems from different domains, including databases,

Note that for other properties of interest, other ways of combining influence may be preferable,
for example taking the minimum of two values for reliability.

Zhttps://www.infosun. fim.uni-passau.de/se/projects/splconqueror/.
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compilers, video encoders [Sie+12a, Sie+13, Sie+15], and scientific computing
codes [Gre+14, Gre+17]. We further extended the whole approach, including
the notion of feature interaction, to settings where numeric parameters are used
to configure the system (e.g. cache size) [Sie+15], which may also interact in
various ways [SSA17]. As for the learning procedure, we support classification and
regression trees, linear regression, random forests, and others. As for sampling, we
experimented with various coverage criteria [Med+16], as well as progressive and
projective sampling [Sar+15]. Recently, we also surveyed the extensive literature on
product sampling based on feature models [Var+18]. Our literature overview can be
used by practitioners and researchers to find suitable sampling algorithms based on
the available input, such as feature model and source code, and desired coverage
criteria, such as feature interaction coverage or code coverage.

8.1.2 Family-Based Test-Suite Generation for Software
Variants

The idea of sample-based performance prediction, as described in the previous
Section, is to estimate performance values of all possible variants of a configurable
software system, by only investigating a subset (sample) of variants. This approach
enables a reduction of the overall effort required for performance analysis, as
compared to explicitly considering every possible variant one by one. However, the
accuracy of the predicted data naturally depends on the quality of the performance
measurement data available for the sample set. Hence, experimental executions
of the sampled variants are required in order to gather realistic and reliable
performance measures for embedded software systems such as the PPU. To this
end, the collected measurement data should rely on a high diversity of possible
system behaviours, covering a high fraction of default, exceptional, and even
fail-safe execution scenarios. Model-based coverage-driven testing constitutes a
well-suited approach to systematically exercise the behaviours of software systems
in an automated manner [ULO7].

Model-Based Testing The term (software) testing in its most general form refers
to any activity being concerned with investigating (and assuring) quality aspects of a
given software system [ULO7]. In particular, dynamic testing involves experimental
executions of fest cases by executing the software under controlled conditions, in
order to investigate the output behaviours for particular input stimuli. The observed
behaviours may comprise functional aspects (e.g. comparing the observed outputs to
the ones expected for the inputs), as well as non-functional aspects (e.g. the amount
of response time required by the system to produce the outputs).

Concerning model-based testing in particular, a behavioural specification (fest
model) of the software is used to automatically derive a set of test cases into a fest
suite. Test cases are usually selected into a test suite with respect to a given coverage
criterion, defining a set of test goals, each to be satisfied by at least one test case of
a test suite.
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Fig. 8.3 Test model of variant 5 of the pick-and-place unit
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Fig. 8.4 Test model of variant 13 of the pick-and-place unit

Figure 8.3 shows an excerpt of a simplified test model for Variant 5 of the
PPU, given as a UML activity diagram. However, the technique described in the
following is not limited to a particular behavioural modelling language but is
likewise applicable, for instance, to UML state machines and similar formalisms.
The model describes the scenarios for the treatment of Black workpieces (branch
with action Crane_B), as well as Metallic workpieces (branch with action Crane_M,
followed by Stamp_S) both coming from the Stack and subsequently going to the
Slide. A test case, therefore, consists of a sequence of actions from the initial action
to the final action of the activity, connected via a path of control-flow edges. For
brevity, we omit further details about the actions performed and the edge labels in
the following examples (cf. [Loc+14] for further details). As coverage criterion, we
consider edge coverage, where the set of test goals is annotated as f, t1, .. ., f9 in
Fig. 8.3. A test case derived from the test model for reaching, for instance, test goals
t9 may be given as the sequence T1 = (ty, t1, 12, 3, t9). This test case also covers
test goals 7, t1, t» and tg, whereas test goals 73, 4 and #5 of the alternative branch
remain uncovered. Hence, in order to also cover the alternative branch, a further test
case T2 = (1, 13, 14, 5, 13, t9) is required such that a test suite consisting of 7'1 and
T2 achieves complete edge coverage.

Considering Variant 13 of the PPU (cf. test model variant in Fig.8.4), the
behaviour corresponding to test case 7'1 remains the same (and may, therefore, be
reused for also testing this variant). In contrast, the behaviour of 72 is not valid any
more as metallic workpieces are now treated differently by the Stamp, thus requiring
an additional test case 73 = (1, 13, 6, 17, 13, t9). Nevertheless, re-generating a test
suite anew from scratch for every individual variant in order to finally achieve
complete coverage on all variants tends to become inefficient [Biir+15a]. This is
due to the high amount of similarity among the variants leading to a potentially
high number of redundant test cases. In addition, in case of configurable software
of realistic sizes, this approach even becomes impossible as the number of variants
potentially grows exponentially in the number of features.
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Table 8.2 Test models for variants of the pick-and-place unit

Features Edges
Variant Black Metallic SPressure APressure ty t; t t3 ta t5 tg t7 13 fo

1 X X X X X X
4 X X X X X
5 X X X X X X X X
12 X X X X X
13 X X X X X X X X

Family-Based Test-Suite Generation Family-based product-line analysis in gen-
eral [Thii+14a] and family-based test-suite generation in particular [Biir+15a] aim
to automatically achieve complete test coverage for all variants without considering
every variant individually. To this end, a so-called 150% test model is used that
superimposes all test-model variants into one integrated test model. An excerpt
from the 150% test model of the PPU example is shown in Fig. 8.5, comprising
behaviours for variants 1,4, 5, 12, and 13. Variable parts (e.g. edges in this example)
of a 150% model are augmented with presence conditions (i.e. propositional
formulae over Boolean feature variables), denoting those subsets of configurations,
in whose corresponding test-model variants the respective part is present.

Table 8.2 summarises for the set of all variants which edges (and, therefore,
which test goals) are present (or relevant) in which variant. This additional
information can be utilised during test-case generation for reasoning about the
reuse of test cases while covering test goals in different variants. For instance, test
goal # is only present in variants with feature Black being selected (i.e. variants
1, 5, and 13), whereas #( is present in all variants. The aforementioned test cases
T1 (requiring feature Black) and T2 (requiring features Metallic and SPressure),
therefore, together cover test goal fy on variants 4 and 5, but they are both not valid
for variants 12 and 13 (requiring feature APressure to be selected). Hence, a third
test case, T3 = (o, 13, 6, 17, 13, I9), 1S to be derived to finally cover test goal 7y on
all variants in which it occurs.

The possible reuse of test cases among variants sharing similar paths achievable
by family-based test-suite generation potentially reduces testing effort as compared
to variant-by-variant testing. For instance, applying variant-by-variant test-case
derivation to the PPU example in Table 8.2 at least produces an overall number
of seven test cases (i.e. 1(V1)+1(V4)+ 1(V5)+2(V12)+2(V13) = 7) according
to the number of paths within the different test-model variants. In contrast, when
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Table 8.3 Test suite for complete transition coverage of the pick-and-place unit test model

Features Variants
TC Path Black Metallic SPressure APressure V1 V4 V5 V12 VI3
T1 ty,t1,0,18, 19 X X X X
T2 to,13,14,15,18, 19 X X X X
T3 19, 13,16, 17,18, 19 X X X X

applying the family-based test-generation strategy, three test cases are sufficient to
achieve complete edge coverage on all variants, as illustrated in Table 8.3. Based on
this information, two variants are sufficient to execute the resulting three test cases
(e.g. variants 5 and 12).

Experiences and Further Reading Besides the PPU case study, the presented
technique has been applied to other application domains, including medical-device
control software, Linux-kernel drivers, and embedded-system utility software. For
those experiments, we observed similar results concerning efficiency improvements
as compared to variant-by-variant testing. Corresponding tool support utilises the
temporal model checker SPIN for model-based (black-box) generation from UML
state charts [Loc+14], as well as the software model checker CPACHECKER for
white-box text generation from product lines implemented in C using compile-
time variability (C pre-processor) [Biir+15a]. Our experience gained from the
various experimental results show that remarkable efficiency improvements of
family-based coverage-driven test generation, as compared to a variant-by-variant
approach, can be observed in almost all cases, at least up to a certain product-
line size (concerning, e.g., the number of features and amount of code). Beyond
this critical threshold, the additional effort required, for example for presence-
condition analysis, may obstruct the applicability of family-based analyses. Finding
a good trade-off between reuse of analysis information and scalability of family-
based product-line analysis strategies therefore is the most emerging issue for future
research.

8.1.3 Family-Based Analysis of Software Variants

While Sects. 8.1.1 and 8.1.2 focused on how to measure and predict the performance
of variants, an orthogonal way is to build and analyse a performance model.
Performance models are well understood for single systems, but applying them to
each variant separately involves redundant effort. Similar to the test-suite generation
of Sect. 8.1.2, we apply a family-based strategy to analyse performance models of
software variants efficiently.

We extend the UML activity diagrams that are already used as test models in
Sect. 8.1.2 by quantitative performance information. For instance, Fig. 8.6 depicts
Variant 5 of the PPU enriched with such performance annotations. In particular, we
assume that the following parameters are provided: (1) rate of arrivals of workpieces
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Fig. 8.6 Variant 5 of the pick-and-place unit with performance annotations

into the system, denoted by A; hence, 1/A is taken to be the average time between
two successive arrivals at the system (cf. Fig. 8.6, top-left corner of the initial node),
and (2) rate of processing a workpiece by each node, denoted by p (cf. Fig. 8.6,
top-right corner of a node). Finally, we require annotations on the edge connecting
nodes. Specifically, an edge between nodes V; and V; must be annotated with the
probability that a workpiece processed by node V; goes to V;. We call this model a
performance-annotated activity diagram (PAAD). Once the annotations are made,
the PAAD is amenable for an automatic performance evaluation. In particular,
we can interpret a PAAD as a continuous-time Markov chain with an underlying
Jackson-type queuing network [Jac63]. The evaluation is executed by solving the
following system of equations: (I — PT)y = A. P is the routing probability matrix,
I is the identity matrix, A is a vector based on the defined arrival rates, and y is a
vector containing the effective arrival rates that we are interested in. For instance,
the considered PPU variant gives us

0.00.67 0.33 0.0 0.0 0.09 0.5
0.0 0.0 0.0 0.01.0 0.0 0.12
P=10.00.0 001000 A= 0.0 u=10.03
0.0 0.0 0.0 0.01.0 0.0 0.3
0.0 0.0 0.0 0.00.0 0.0 1.0

Once we solve the system for y, the steady-state behaviour of the network is fully
characterised and we can interpret the results of the analysis in terms of user-
perceivable performance properties of the system [Ste(09]:

* Throughput: the number of workpieces that a node can process in a given amount
of time (i.e. y)

* Utilisation: the probability that a node is busy processing a workpiece (i.e. y/u
whereas u is the service rate)

* Queue length: the number of jobs waiting at a node, including those in service

(.e.y/m/(1 —y/u)).

For instance, the utilisation of each node in Fig. 8.6 is computed with 18% for
the Stack, 50% for the Crane_B, 100% for the Crane_M, 10% for the Stamp, and
9% for the Slide. However, we have to solve the system of equations for each
variant separately since it is not possible to reuse the numerical computations across
variants. Even varying the exogenous arrival rate A by 0.01 forces us to do a re-
computation.
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Fig. 8.7 Variant 1 of the pick-and-place unit with performance annotations

In SPP 1593, we developed a family-based performance analysis that solves the
system of equations once and enables us to reuse the results across all variants. The
analysis requires the construction of a 150% model of the system. Thus, we need a
variability modelling mechanism in order to incorporate the individual variants into
a 150% model. For this purpose, we introduced the concept of delta modelling in our
approach. Delta modelling is a modular yet flexible variability modelling method
on the implementation artefact level and allows capturing closed and open variant
spaces. Each delta contains a set of basic operations to be performed on a PAAD,
such as the addition and the removal of nodes and edges, or the modification of
parameters, such as the probability of an edge and service rates in nodes. In addition,
we have a core that can be an arbitrary variant of the system. Hence, applying a delta
to the core yields a new variant of the system and in our case a new PAAD, which
has performance characteristics that can again be numerically analysed using the
product-based evaluation.

The PAAD in Fig. 8.6 represents the core of the PPU. Next, we can define a delta
comprised of several transformations, that is removal of the nodes Crane_M and
Stamp_S and their connecting transitions, as well as setting the probability from
Stack to Crane_B to 1.0. An application of this delta to the core gives us the most
basic variant of the PPU, depicted in Fig. 8.7.

We are able to model all variants of the PPU using delta modelling. Merging
all deltas and the core gives us the 150% model of the system (cf. Fig. 8.5, where
performance annotations are omitted). Similar to the analysis of a single variant, we
can derive the routing probability matrix and vectors for arrival and service rates
from the 150% model. However, each value that is different in multiple variants
(i.e., depends on a delta) is now represented by a variable (i.e., symbolically rather
than by a concrete value). For instance, let us consider three variants of the PPU
comprised of our core (cf. Fig. 8.6), the most basic variant (cf. Fig.8.7), and the
variant introducing the second stamping module Stamp_A leading to the 150%
model, as depicted in Fig. 8.5. The respective matrix and vectors containing symbols
for each changed value are as follows:

(0.0 pcy pey, 0.0 0.0 0.0 ] [ Astack | 0.5 ]
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.12
p_ | 0000 0.0 ps; 0.0 ps, | 00 o — | Hen
s 0.0 0.0 0.0 0.0 ps; 0.0 : 0.0 S s
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
| 0.0 0.0 0.0 0.0 psi, 0.0 | | 0.0 | | s,
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We solve the system of equations, but we are not able to receive concrete
performance properties in terms of throughput or utilisation for individual variants at
this point since the equations are solved symbolically and still contain the unknown
variables from the routing matrix and the rate vectors (e.g. for utilisation):

N )

25 % AStack * AStack * ASrack * *
Util — [2  hSrant Stack * PCy  AStack ¥ PCy Stack * DCy PSAi|
3 MCy US4

As a final step, we have to insert the probabilities and rates of a specific variant
into the symbolic solution yielding the desired concrete performance value and thus
the same result as analysing each variant separately. The family-based analysis is
significantly more efficient considering computation times for a given large variant
space. Numerical experiments show that it can be up to two orders of magnitude
faster [KST14]. The computational benefit results from the expensive process of
solving the system of equations over and over again for each variant in isolation,
which is not necessary in our proposed family-based analysis. In addition, the
computation time giving us the symbolic solution is independent of the number of
variants that are analysed afterwards. Each symbol may stand for an infinite number
of values resulting in an infinite number of variants that can be analysed with the
symbolic solution.

Assuming, for instance, that we wish to study the impact of different arrival
rates A into the PPU, Fig. 8.8 (left part) shows the utilisation at every node for
Variant 0. The results indicate that Crane_B is the bottleneck of the system because
its utilisation is consistently the highest. Figure 8.8 (right part) shows a similar
analysis for the core (i.e. Variant 3). In this case, the bottleneck is the Crane_M node
transporting metallic workpieces to the stamping module, which takes significantly
longer compared to processing a black workpiece directly to the slide. Another
scenario would be to study the distribution of black and metallic workpieces
processed by the PPU in order to identify an optimal system solution. In the standard
configuration, the PPU processes 2/3 black and 1/3 metallic workpieces. We can
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change this by simply varying the routing probabilities leading from the stack to the
different cranes and look at the performance impact afterwards. We just have to plug
in the desired values into our symbolic solution.

Experiences and Further Reading While we illustrated family-based prediction
with the PPU, we also experimented with larger product lines with up to 430
features [KST14, Kow+15]. Especially for larger product lines, the family-based
strategy significantly outperforms the separate analysis of every variant [KST14].
The above-mentioned approach has two major limitation, which we addressed by
follow-up work [Kow+15]. First, service times are assumed to follow exponen-
tial distribution. Second, all computations are assumed to be performed without
parallelism. For coxian-distributed multi-server stations, we measured similar per-
formance gains of the family-based strategy [Kow+15].

8.2 Analysis Strategies for Software Versions

Section 8.1 covered performance analysis strategies for software variants, focusing
on the problem of how to efficiently analyse large configuration spaces. Orthog-
onally, throughout the development and operation stages of a software system’s
life cycle, numerous software versions are created and evolved over time. With
these versions, also the corresponding software artefacts (and their types) change
and evolve based on the respective life cycle stages. Example types of artefacts
are requirements and architectural models in the design stage, code artefacts that
are available from the implementation stage, and descriptive models obtained from
measurement data in the operations and maintenance stages. Connected with the
changing versions and their related artefacts is the need for continuous quality
assurance, for example with respect to performance as it is in the scope of this
chapter.

This section covers three complementary approaches for supporting performance
analyses of versions incorporating different types of software artefacts (models and
code), analysis techniques (measurement-based and model-based), and suitability
for the respective development stage and use case (e.g. online or offline evaluation).
In Sect. 8.2.1, we present a declarative approach targeted to enable non-performance
experts to select, configure, and execute performance evaluation with changing and
evolving versions throughout the software life cycle. The approach presented in
Sect. 8.2.2 helps to align the evolution and runtime adaptation of software versions
employing models and measurements. Section 8.2.3 focuses on the co-evolution of
architectural and analytical performance models.

CoCoME as a Motivating Example Figure 8.9 illustrates subparts of a perfor-
mance model for the CoCoME case study, as introduced in Chap.4. Relating to
Fig. 8.1, it depicts concepts commonly found in architectural performance models,
such as Palladio [Reu+16] or DML [Hub+17]. These formalisms follow common
concepts known from architecture description languages (ADLs), such as config-
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Fig. 8.9 Subparts of the CoCoME performance model in a UML-like notation

urations of components, interfaces, and connectors—presented in different views
(e.g. component/connector and deployment). The example shows three CoCoME
components being deployed to a networked computing infrastructure comprised of
four (virtual) machines. The computing infrastructure is annotated by performance
properties, such as information about the CPUs. The behaviour of the components’
operations is modelled using a formalism similar to activity diagrams, including two
types of actions: demands to local resources and calls to other operations. While
architectural models provide a representation very close to software design models,
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analytical models use abstract concepts such as resources and jobs. Their use is
not limited to analysing computer systems. The models can be simulated or solved
as described to predict performance indices, for example statistics about method
response times, system throughput, or resource utilisation. For illustration purposes,
Fig. 8.9 depicts only a subset of the complete Palladio performance model provided
by the CoCoME case study.

8.2.1 Declarative Analysis Strategies for Evolving Software

During the life cycle of a software system, performance analysts repetitively need to
investigate software versions to provide answers to and act on performance-relevant
concerns about response times, resource utilisation, bottlenecks, trends, anomalies,
etc. Their everyday work includes concerns such as What is the response time
of the CoCoME sale service? Does the CoCoME sale service satisfy its service
level agreements (SLAs)? What would be the required resources to ensure the
desired quality of service for the CoCoME sale service? During the software life
cycle, the evaluation of performance concerns for software versions can be based
on different evaluation methodologies requiring specific performance evaluation
artefacts. Supplementing measurement-based analysis, model-based predictions
allow to investigate deployments, architectures, and configurations without the
need to test them in a production system. Model-based performance evaluation
requires a performance model. Measurement-based performance evaluation relies
on a measurable system. To investigate software versions efficiently when needed
requires to switch between various measurement and model-based performance
evaluation approaches. Hereby, two main challenges for a continuous performance
management arise:

1. Application of performance evaluation strategies: Holistic performance engi-
neering applies manifold performance evaluation strategies. Each strategy is
connected to particular parametrisation options and challenges, which makes
them employable only with extensive knowledge and experience [Wal+16a].

2. Selection of performance evaluation techniques: The situation-aware choice of a
performance evaluation approach is challenging. It has to consider aspects like
user concerns and system characteristics to asses applicability and analysis costs.

At system design, predicting the response time of CoCoME’s sale service
involves complex decisions such as the selection of a suitable modelling formalism,
the choice of modelling granularity, solvers and solution techniques (e.g. Markovian
analytical solvers, product-form solution, or simulation-based solvers), and the
derivation of model parameters.

At the system testing and deployment stages, there is the opportunity to eval-
uate the sales service’s response time by conducting performance measurements.
However, complex decisions about the measurement configuration have to be made.
Decision include sufficient experiment run length, the configuration of ramp-up
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time, and the choice of an appropriate instrumentation granularity allowing to obtain
the required measurement data.

During system operations, it is about predicting the effects of possible system
reconfigurations or the impact of an increased or changing workload mix. This
enables proactive resource management but requires modelling techniques that
support predicting future system states. At this time, the analysis approach and
parametrisation have to be tuned for a fast response.

The concerns remain the same throughout the stages for the evolving software
versions and artefacts. However, evaluation methodologies change. Selection and
application affect the accuracy, as well as the speed and overhead of the analysis,
and require a lot of expert knowledge.

Declarative Performance Engineering Analysing the performance of versions
during the software life cycle is connected to significant efforts and complexity.
Declarative performance engineering aims to provide a simplified and unified
interface to investigate performance concerns for software versions abstracting from
the underlying artefact and performance evaluation strategy [Wal+16a]. The idea is
to use a declarative language allowing to specify performance concerns independent
of the various approaches that can be applied in the context of the considered system
to obtain the required information. The processing of a performance concern can be
automated and optimised while hiding complexity from the user. The objective is
to support system developers and administrators in performance-relevant decision-
making. The declarative approach aims to reduce the huge abstraction gap between
the level on which performance-relevant concerns are formulated and the level
on which performance engineering techniques are typically applied. It decouples
the specification of user concerns from their automated deduction. Performance
concerns can be defined independent of the development stage, respective type
of artefact, and evaluation method. Subsequently, suitable performance evaluation
methods and techniques can be automatically selected and executed to answer the
concern [Wal+18].

Expressing Performance Concerns Each version can be investigated based on
different performance concerns. Figure 8.10 shows example performance concerns
for CoCoME expressed using a declarative performance engineering language.
Figure 8.10a shows querying of a performance metric. The processing has been
constraint as fast, which can be interpreted by the framework to select a

EVALUATE AGREEMENTS
sla CONTAINS slol
GOALS
slol:proc
VARYING ' al rate workload’
AS rps <7 3000 BY 500>
USING dml@’cocome’;

MIN ’‘processing units cpu’
SATISFYING AGREEMENTS

sla CONTAINS slol

GOALS
slol:pro
USING dm

(a) (b) (c)

SELECT sale.respTime

FOR SERVICE Sale.respTime<l.3 ms

"processSale" AS sale
CONSTRAINED AS fast
USING dml@’cocome’;

ale.respTime<l.3 ms

O U W N =
O U W N =
O U W N

come’ ;

Fig. 8.10 Exemplary formulation of performance concerns using the declarative language. (a)
Metric and constraint. (b) Contract evaluation and arrival variation. (¢) System optimisation
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fast solution strategy and configure the evaluation methodology accordingly, for
example by a low required precision and a low maximum experiment run length.
Figure 8.10b is about the evaluation of conformance to an SLA for different
arrival rates. The concern in Fig. 8.10c proposes a resource efficient configuration
that ensures conformance to SLAs. The declarative language supports further
sophisticated performance analyses. It covers a wide range of performance concerns
from the analysis of performance indices, aggregation, language-based system
variation, determination of upper and lower bounds, SLA evaluation, threshold
generation, system optimisation based on SLAs, etc.

Processing of Performance Concerns The processing of a performance concern
means to automatically derive its answer. The answering process of a performance
concern for a software version depends on available evaluation artefacts and
situational requirements. The proposed language processing exploits a high degree
of automation through a corresponding interpretation and execution infrastructure,
which builds on established low-level performance evaluation methods, techniques,
and tools. The architecture presented in Fig. 8.11 enables automated processing. The
Language & Editor componentprovides the interface to users. The Concern
Execution Engine provides the main execution logic. Here, all tasks indepen-
dent of a specific performance evaluation technique take place. Implementations
of the Connector interface provide functionality that is dependent on a specific
performance evaluation technique. To integrate different performance evaluation
approaches into the framework, multiple connectors can be subscribed at the
central registry. A lean connector interface, limited to provided metrics, degrees
of freedom [GBK14], and adaptations [Hub+14], allows for an easy technical
connection of performance evaluation tooling to the declarative language processing
framework. We provide exemplary connectors to measurement-based [Blo+16] and
model-based [GBK14] analysis tooling. Besides specification of derivable indices,
adaptation operations and degrees of freedom can be defined enabling additional
kinds of analyses. Several analyses build upon basic performance indices. Such
analyses depict reusable software parts that should be located within the Concern

Concern Languag$j {: Concern Al External Performancegj
& Editor Execution Engine Evaluation Toolchain
<<submitj query>> T Cf V\
| Connector Registry Connector

Fig. 8.11 Architecture of the DPE framework
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Execution Engine. Indices can be forwarded to reusable algorithms, like the
evaluation of SLAs [WOK17], sensitivity analysis, system optimisation [Rag+17a],
etc. Also, the visualisation of analysis results can be reused independently of how
values have been derived [Wal+16b].

We do not specify how to derive performance models. However, performance
models are cumbersome to create manually. Therefore, automated model extraction
from APM data [Heg+17], as discussed in [Wal+17a, Wal+17b], is essential to
enable interchangeability of measurement and model-based performance evalua-
tion.

Selection of Solution Strategies A solution strategy automates the answering of
performance concerns by wrapping a performance evaluation method with bridging
code, result filtering, and model-to-model transformations. For example, as depicted
in Fig. 8.1, architectural performance models can be solved using simulation and
analytical models. Existing performance engineering solution strategies come with
different strengths and limitations concerning, for example, accuracy, time to result,
or system overhead. While evaluation approaches allow for interchangeability, the
choice of an appropriate approach and tooling to solve a given performance concern
commonly relies on expert knowledge. Hence, it is a challenge to select a suitable
solution strategy.

The declarative performance engineering approach allows for the automated
selection of software performance engineering (SPE) approaches tailored to user
concerns [Wal+16a]. To propose a solution strategy, the decision engine receives
a performance concern and a description of the analysed system as input (which
can be extracted from the concern definition). We provide a generic decision
engine where solution strategy capability models can be registered. Instances of the
capability meta-model represent analysis approaches like measurement, simulation,
or analytical solvers. Compared to static decision trees, the separation of the
decision engine logic and capability models allows to easily modify the description
of characteristics on the evolution of performance evaluation strategies. It also
facilitates the appending of additional solution strategies and rating criteria. To
define capability models, we model three major aspects:

Functional Capabilities Performance evaluation approaches investigate different
elements (e.g. services, processors, hard drives), metrics (e.g. response time,
utilisation), and statistics (e.g. mean, sample, maximum, quantiles). The evalu-
able element specification integrates the named aspects and thereby defines
functional capabilities of a solution approach.

Limitations The applicability of solution strategies can be limited by several
constraints. Exemplary constraints for model-based analysis are on applicable
input models (e.g. for product form solutions) [Bol+06] or limitations of model
transformations [Bro+15]. While concepts can be transferred, measurement
tools are limited to certain supported languages and technologies.

Costs Solution strategies differ in several cost types. The relevance of cost types
depends on the specific application scenario. While for model-based analysis
time to result is the dominating cost type, for measurement-based approaches
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Table 8.4 Excerpt of capabilities for model-based analysis strategies

Analysis Statistics Time-to-result Limitations

SimuCOM Sample High -

LQNS Mean Very low No loops, no fork-join, no parametric
dependencies, no blocking-behavior

SimQPN Sample Medium No loops, no fork-join, no parametric
dependencies

SimQPN MVA mean high No loops, no fork-join, no parametric
dependencies

license costs or system overhead are the more common. Costs can either be
static (e.g. fixed license costs) or dependent on the system characteristics and
analysis configuration. The latter can be specified by arithmetic expressions
capturing expert knowledge or various estimation techniques, for example using
neural networks, machine learning, or regression approaches.

To illustrate, Table 8.4 depicts an excerpt of capabilities for analysis strategies
of architectural performance models presented in [WHK17]. Supported solution
strategies for the Palladio component model include SimuCOM, LQNS, SimQPN,
and SimQPN MVA. SimuCOM transforms a Palladio instance to a process-based
discrete-event simulation. A transformation to layered queueing networks allows
triggering the analytical LQNS solver. A transformation to queueing Petri nets
enables a simulation and a mean value analysis (MVA) using the SimQPN tool.
Additional solution strategies for Palladio model instances, such as using SimuLizar
and EventSim, can be included accordingly.

Summary During the software life cycle, multiple versions (also hypothetical ones
not implemented) can be investigated for manifold performance concerns based
on different evaluation artefacts. Declarative performance engineering simplifies
respective analyses by automating the choice and execution of performance evalua-
tion approaches based on a declarative specification of concerns. Other researchers
have adopted the idea of declarative performance engineering also to load testing
[FP18], which has not been the scope of this chapter.

8.2.2 Align Development-Level Evolution and Operation-Level
Adaptation

Cloud-based software systems are subject to a wide range of changes during the
operations stage [Heil6]. The usage intensity and the user behaviour that a system
has to handle may change over time, which affects the system’s performance. The
deployment of (parts of) the software system may change, for example to address
performance issues by migration and replication of components, which, however,
may cause violations to privacy constraints. Execution contexts, for example virtual
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machines and containers, may become available (allocation) or disappear (de-
allocation), which increases or decreases the design space for system adaptation.
Consequently, operating a Cloud-based software system requires to continuously
observe the system and to plan for adaptation to react on changes during the
operation stage that mostly cannot be foreseen during development.

This section describes how to align development-level evolution and operation-
level adaptation for analysis and adaptation planning in Cloud-based software
systems. In extension to Sect. 8.2.1, this section is concerned with keeping architec-
ture and performance models for software version up-to-date while facing repeated
adaptations during operations stage. Operators and developers profit from utilizing
the same kind of performance models as they can communicate and exchange of
knowledge based on the same abstraction. This is especially useful in fast-changing
Cloud-based software systems that rely on performance analysis for their adaptation
planning.

In the following, the sale service of CoCoME and the platform migration
scenario are applied as a demonstrative example. In the platform migration scenario,
increased usage intensity of the sale service causes an upcoming performance
bottleneck due to limited capacities in the given service offering of the Cloud
provider currently hosting the database. A simplified overview of the platform
migration scenario is given in Fig. 8.12. For the sake of simplicity, we assume
that each Cloud provider owns exactly one data centre. Different data centres are
available for deploying the database service of CoCoME. We discuss how the
performance bottleneck can be identified by observing the running system and be
solved by planning for adaptation.

Development-Level Evolution vs. Operation-Level Adaptation Development-
level evolution and operation-level adaptation can be considered as two mutual,
interwoven processes that influence each other. Figure 8.13 illustrates how both
processes are interconnected for Cloud-based software systems.

In addition to the several versions of the software system created throughout the
development and operations stage, as introduced in the previous section, variants
play a central role in Cloud-based software systems when planning for adaptations.
Adaptations rely on the evaluation of alternative variants of the software’s deploy-
ment and configuration to identify a new version that allows to sustain the required
quality properties.

Cloud Provider 1 Cloud Provider 2 Cloud Provider 3
<<PaaS>> <<Data Center>> <<Data Center>> <<Data Center>>
i CoCoME:Application ! !
Client | |sale() PP 11 1| <<PaaS>> << PaaS>> i << PaaS >> i
Database : DBaaS Database : DBaaS ! Database : DBaaS; |
7 4
T

Fig. 8.12 Actual (solid line) and conceivable (dashed line) deployment in the platform migration
scenario
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Monitoring &
Observation

Fig. 8.13 Overview of development-level evolution and operation-level adaptation as mutual
interwoven processes

Adaptation

Evaluation Evaluation

Models are useful to reflect the software system and conduct analysis to identify
quality flaws. A performance model of the sales services in a UML-like notation is
depicted in parts in Fig. 8.9. During operations, software systems often drift away
from their development models. In contrast, runtime models are kept in sync with
the underlying system. Typical runtime models are close to the implementation level
of abstraction. They are constructed based on observations related to source-code
artefacts (e.g. service calls or class signatures) [Ben+14]. For example, observing
the sales service of CoCoME results in monitoring records for the service itself
and all invoked internal services. In addition, the class signature is monitored
and recorded per service. While monitoring the software system, no information
about its architecture is provided. Thus, it is hard to reproduce development
component models from monitoring data as knowledge about the initial component
structure and component boundaries is missing. This knowledge is important
for system comprehension and reverse engineering. Consequently, we argue for
runtime models that reflect extensive knowledge on the underlying architecture, its
variability, deployment, and interaction with external services.

The iObserve Approach The iObserve approach [Has+13, Hei+14, Hei+17b]
developed during the SPP 1593 addresses the aforementioned challenges by fol-
lowing the established MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge)
control loop model. MAPE-K is a feedback cycle for managing system adaptation
[KCO03]. iObserve extends the MAPE-K control loop with models shared between
development and operations. These shared models carry architectural knowledge
to ease the transition between development-level evolution and operation-level
adaptation. The evolution activities are performed by human developers, while
the adaption activities are executed automatically by predefined procedures, where
possible, without human intervention.

The executed software system is observed to update architectural knowledge
during operations. The model that reflects the architectural knowledge during
operations is named architectural runtime model. As the architectural runtime model
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is constructed by enriching and updating development models with operational
observations, it is comprehensible for developers and operators and can be fed
back into software evolution without the need of conversion and the risk of loss
of knowledge. Each update leads to a new version of the architectural runtime
model. Based on the up-to-date model, the current system configuration is analysed
to reveal anomalies (e.g. increased usage intensity) and predict quality impact
(e.g. upcoming performance bottlenecks). The architectural runtime model is then
applied as input either for adaptation or evolution activities, depending on the
outcome of a planning step. In the adaptation process, an adaptation plan is selected
and evaluated to handle the anomalies. For adaptation planning, various design
variants are created and evaluated on model level. Finally, the plan is executed to
update the software system and its configuration. In the evolution process, changes
are designed, evaluated and implemented by human developers.

The iObserve approach applies a mega-model to bridge the divergent levels of
abstraction in architectural models used during development and operations. Mega-
models describe the relationships of models, meta-models, and transformations
[Fav04]. The iObserve mega-model depicted in Fig.8.14 serves as an umbrella
to integrate development models, code generation, monitoring, runtime model
updates, as well as adaptation candidate generation and execution. Rectangles
depict models and meta-models, respectively. Solid lines represent transformations
between models, while diamonds indicate multiple input or output models of a
transformation. Dots are used to indicate multiple input or output models of a
transformation. Dashed lines reflect the conformance of a model to a meta-model
and, in case of implementation artefacts, the instance of relationship between data
and data types, for example the monitoring data and their corresponding event types
in the instrumentation aspects, as depicted in Fig. 8.14.

The iObserve mega-model exhibits four sections defined by two dimensions: one
for development vs. operations and one for model vs. implementation level. We
discuss these four sections based on the CoCoME case study and the migration
scenario.

Development Operations

Instrumentation i e e
Metamodel Metamodel [ i
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Fig. 8.14 Overview of the iObserve mega-model
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For the interaction of the transformations in iObserve, we rely on the GECO
approach [JHH16]. GECO defines patterns and methods to work with views
and aspects on model and implementation level and describes how relationships
between models and code can be shared between different transformations. These
relationships are essential to map runtime observations to their corresponding
runtime model elements, like classes and services, and design-time models to code
artefacts. In iObserve, these relationships are created at design time with code
generation or may be specified by hand in scenarios where the code is implemented
by a developer. Subsequently, they are stored in the Runtime Architecture Cor-
respondence Model (RAC). The RAC is the central element of the mega-model
and is crucial for the use of an architectural model at development and operation
time. At design time, they are used when generating and configuring the monitoring
probes to map model-level pointcuts to implementation-level join points, select the
correct probe technology, and probe introduction methods. At runtime, the same
relationships are used in reverse to map runtime monitoring events, like an operation
call, to their corresponding class and service instances.

Development Side On the development side at model level, the mega-model
depicts the combination of an architectural model with our model-driven monitoring
approach. We model the software architecture and deployment in a component-
oriented fashion and generate the artefacts that are deployed and executed during
operations. Therefore, iObserve relies on the Palladio Component Model [Reu+16]
as an architecture description language defined through meta-models. The Palladio
Component Model consists of several partial meta-models reflecting different
architectural views on a software system. The monitoring part is specified using
the instrumentation meta-model from our model-driven monitoring approach, con-
sisting of two domain-specific languages used to describe monitoring events, for
example operation calls, and the monitoring aspect [JHS13, JW16]. The aspect
language allows to specify monitoring probes and their placements within the
software system. For planning, we use probes to observe allocations/de-allocations,
deployments/un-deployments, and user behaviour to learn the present system
configuration and utilisation. The architectural and instrumentation models are then
used to generate corresponding source code artefacts with the transformations T4,
for the software application, and the Tysopiroring, for the instrumentation [JW16].

At implementation level, the mega-model depicts development artefacts, includ-
ing event types, instrumentation probes, and technology specific artefacts that
implement the software system. For the CoCoME example, the software system
is implemented by Enterprise Java Beans, and the monitoring uses Enterprise Java
Beans interceptors to collect monitoring data.

Operations Side On the operation side at model level, monitoring data that adheres
to source code artefacts is associated with the elements of the architectural runtime
model. Consequently, the iObserve mega-model enables the reuse of develop-
ment models during the operations stage by updating them based on operational
observations. Moreover, the operation side shows the generation of adaptation
candidate models and the adaptation plan construction. On implementation level,
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a continuous stream of events is gathered by the monitoring probes. iObserve filters
and aggregates the monitoring data (Tpyeprocess), relates the monitoring data to
architectural model elements, and finally uses the aggregated information to update
the architectural runtime model (TRunsime Updatre)- Following the CoCoME exam-
ple, increased usage intensity of the sale service triggers changes in the workload
specification. Tpyeprocess filters out single-entry and -exit events of the sales service
and aggregates them to sequences of events. Based on the sequences, the new
usage intensity is calculated, which is then transformed to the architectural runtime
model by TRruntime Updare- Therefore, the architectural runtime model connects
the development and operation stages. It allows for stage-spanning consideration
of software architecture. Furthermore, it enables quality analyses based on the
architecture specification and is the basis for adaptation planning.

If a performance or privacy issue has been recognised, adaptation candidates are
generated by transformation Tcandidate Generation i the form of candidate archi-
tectural runtime models. These candidate models are generated based on a degree
of freedom model that specifies variation points in the software architecture, which
have been specified at design time. Once an adaptation candidate has been selected,
the model is operationalised by deriving concrete tasks of a plan for adaptation
execution. The tasks are derived by transformation Tpauning While comparing a
candidate model to the original model. The adaptation plan is transferred to an
execution plan at implementation level by TExecurion-

For example in our CoCoME scenario, increasing utilisation of the sales service
results in increasing response time. Performance forecasts indicate that the average
response time of the service may exceed the performance SLA. Therefore, the
deployment must be altered. Thus, various candidate models of the CoCoME archi-
tecture model are generated by Tcundidate Generation €ach differing in deployment of
the database service to data centres. The candidate models are analysed for quality.
Once an appropriate candidate is found, the system is adapted based on the candidate
model using TExecurion- Subsequently, the monitoring observes events that cover the
deployment changes and updates the runtime model.

In case that no specific model among the candidates can be selected fully
automatically, for example when there are trade-offs between quality aspects, or
if an adaptation plan cannot be derived fully automatically, the human operator
chooses among the presented adaptation alternatives. Also when no candidate model
can be generated, for example due to lack of information or criticality of decision,
the operator will be involved.

Summary In conclusion, this section describes how design-time architecture
models can be used at runtime for performance forecasts and to generate candidate
architectures used to steer the adaptation. These candidate models are, in essence,
different versions of the running system with variations that are assessed for per-
formance during candidate selection. As iObserve utilises the same model type for
runtime and design time, the updated runtime models can be used during evolution
and adaptation to assist performance forecasts and predictions, receptively. Thus, it
keeps evolution and adaptation models aligned.
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8.2.3 Co-evolution of Architecture and Analysis Models

As introduced previously, model-based performance evaluation is conducted using
architectural and analytical performance models, as well as transformations among
these models. In our work, we refer to both architectural and analytical performance
models as quality models. When being constructed at design time, quality models
are constructed from a system model, and it is assumed that the quality models
reflect the system. However, architectural models can evolve in the life cycle of
software, and this new version can lead to unexpected results if the quality model
does not represent the system anymore. An example problem is the addition of a new
software component without a corresponding addition of the state in the respective
Markov chain. This inconsistency can lead to wrong performance analysis results.
Hence, any version has to be realised as a co-evolution of all related design and
quality models.

Handling this (co-)evolution is not a straightforward task [Get+18] because the
quality evaluation model cannot be completely generated out of the system models,
and most relations between the different models are not one to one.

We developed a framework called CoWolf [Get+15a] that is capable of incre-
mental transformations. Therefore, it isolates changes that were done to a model
to selectively propagate only these changes to the other models. In detail, the
contribution of the CoWolf tool comprises mainly two aspects:

1. The co-evolution of an associated model on the basis of model versions. As
described, models may have to be updated if other models changed. Often, those
updates can be described canonically. CoWolf features the definition of rules that
define the relation between model types. Using these rules, co-evolutions can be
done (semi)-automatically for all associated models.

2. Deliver utilities for model development and analysis. For consistent development
of the models, CoWolf provides a common environment with graphical and
textual editors. Furthermore, it implements interfaces to external tools to analyse
models.

Such tool is proposed to help system and performance viewpoint versions consis-
tent during the evolution. First, the outcome of the performance analysis remains to
present more accurate results. Second, different versions of the performance models
are provided from the system model versions to be used for a possible incremental
performance analysis.

In the remainder of this section, we are presenting the incremental transforma-
tions and co-evolution between sequence diagrams and Layered Queueing Networks
(LQNs), as well as state charts and Markov chains. We show the relations between
architectural models and various performance models for incremental changes.
Accordingly, we discuss how a co-evolution on the performance models helps for
performance analysis. A detailed and generic description of the CoWolf framework
is provided by Getir et al. [Get+15a].
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Sequence Diagram to Layered Queueing Network

We implemented the transformation of sequence diagrams to LQNs based on the
description of Cortellessa et al. [CMI11]. They suggest a transformation from three
source models as activity diagrams, component diagrams, and sequence diagrams
to one target LQN model. The CoWolf co-evolution framework currently supports
one-to-one transformations and aims to help the developer in the co-evolution of
LQNs and Markov chains.

Since sequence diagrams do not include hardware information, the initial
assumption is that multiple associated tasks are performed on one CPU. In the first
step of every sequence diagram to LQN transformation, CoWolf checks if a CPU is
part of the model and creates a new processor if it is missing. The user can increase
the number of processors and change their properties, for example type and name,
in the graphical editor. Each lifeline from the sequence diagram is transformed to
a new task and a new entry type in the target LQN. We demonstrate the mapping
elements, namely a new task and a new entry in Fig. 8.15. The new task is associated
with the default processor created in the initial step.

All synchronous messages directed from a lifeline /; to a lifeline /; in a sequence
diagram are mapped to exactly one synchronous call in the LQN. The source task of
the call is the task mapped from lifeline /;. The target task of the synchronous call
is the task corresponding to lifeline /5.

All asynchronous messages directed from a lifeline /; to a lifeline /; in a sequence
diagram are mapped to exactly one asynchronous call in the LQN (see Fig. 8.16).
The source task of the call is the task mapped from lifeline /;. The target task of the
asynchronous call is the task corresponding to lifeline /5.

State Charts to Continuous Time Markov Chains

The transformations between state charts and Continuous Time Markov Chains
(CTMC:s) can be achieved via two-step transformations, namely state charts to Dis-
crete Time Markov Chains (DTMCs) and DTMC to CTMC. These transformations
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Fig. 8.15 Each lifeline will be transformed to a task. (a) Sequence diagram. (b) LQN
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Fig. 8.16 All asynchronous messages between two lifelines (on direction) will be transformed to
one asynchronous call in an LQN model. (a) Sequence diagram. (b) LQN

are implemented in a bidirectional way such that any change and any version can be
reflected in both directions. The rules that are needed for the transformation between
both model types are in all cases a simple bidirectional one-to-one mapping, where
traces between elements of different diagram types could easily be created.

A CTMC is a common mathematical model to analyse software performance
metrics like utility, throughput, etc. CTMC is a very similar but simpler model than
PAAD, described in Sect. 8.1.3. However, this model is including more architectural
information since it is an annotated form of an activity diagram.

The transformation is implemented only for the topmost states and transitions of
a state chart model. States and transitions that are part of a composite state are not
considered in the transformation. This does not match for Action elements (Do,
Entry, Exit), which can call another sub-statemachine. For these actions, it is
needed to find the first parent state that got transformed to DTMC and connect it by
a transition to the initial state of the called sub-statemachine.

The transformation from DTMC to state chart has applied essentially the same
transformation mappings. Additionally, some restrictions apply here:

* Created transitions in a DTMC always create a transition in the state chart model
to avoid null name in the transformed model.

* Created states in DTMC always map to a state in the main sub-statemachine in
the state chart model if there is no existing trace to a state elsewhere. It is not
possible to transform a created state into another sub-statemachine.

After obtaining a DTMC from state charts, the user has to provide the probability
distribution in the model. This looks a time-consuming task. However, assuming
adding small information after many but small changes in the model, incremental
transformations can be useful for the structural mapping and recommendations for
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the co-evolution step. Unlike in a state chart model, transitions cannot be named in
a DTMC model.

DTMC and CTMC are very similar models—especially structurally. Every
CTMC state equates to a DTMC state, every CTMC transition equates to a DTMC
transition, and every CTMC label equates to a DTMC label. The only difference is
that CTMC states have an exit rate. The exit rate is calculated automatically from all
outgoing transitions of a state. Furthermore, each transition t, outgoing from a state
s, in a CTMC contains a rate. This rate is calculated as a fixed point by:

t.rate = t.prob x s.exitRate 8.1
Both models have the same elements. Changes can be directly applied from source
to target models in both directions (CTMC to DTMC and DTMC to CTMC). The
difference mapping is executed by a graph transformation rule.
Analysis of LQN and CTMC Models with Model Solvers
The analysis of an LQN model is performed by the LQN Solver [Car18]. In order

to solve an LQN model with the LQN Solver, it is necessary to transform the model
into a.lgn file.

Fig. 8.17 CTMC properties [ Analyze CTMC with PRISM model checker  — O IESM |

wizard r —
Analyze a ctmc model

| Create properties to analyze.

Create properties

Property Probabilistic Response W
i State:"A fails™ v

was true, State:"B fails™ v
will be true within | between ... and ... w1 and |4
with probability |>= v 04
Create Property
Edit properties
Property Name

Probabilistic Response: If State:"A fails” was true, State:"B fails™ will be true between 1 &
Property
P>= 1[G ((State:"A fails™) => P>= 04 [ F[1, 4] (State:"B fails") ]) ]
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DTMC and CTMC models are analysed using the PRISM model checker
[KNP11]. CTMC models are used for performance and reliability analyses. Reli-
ability can be validated using the reachability of critical states, for example error
states. Performance can be validated in multiple ways. CoWolf provides a wizard
(see Fig.8.17) that helps to create default properties, which are “Steady State
Probability”, “Probabilistic Response”, “Probabilistic Until”, and “Probabilistic
Existence”. “Steady State Probability” calculates the probability that condition A
will eventually become true. “Probabilistic Response” calculates the probability
that condition B will always become true in a time frame after condition A was
true. “Probabilistic Until” checks if condition A is always true before condition B
becomes true. “Probabilistic Existence” checks if a condition becomes true in a time
frame. As there are many more possibilities to evaluate CTMC models, additional
properties can be created and edited in a text editor.

8.3 Conclusion and Road Map

Variants and versions of software challenge the measurement and prediction of
performance. We illustrated selected strategies by means of two running examples,
namely the PPU automation system and the service-oriented application CoCoME.
The PPU comes with numerous variants, for which it does not scale to analyse each
variant separately. We discussed solutions that reduce the variants that have to be
measured and reduce the effort in assessing the performance for each variant by
exploiting commonalities. CoCoME is an application that frequently evolves and
requires to incorporate versions and different types of artefacts during performance
analysis throughout the software life cycle. We discussed complementary solutions
for performance analysis of software versions by making analysis techniques
accessible and continuous by combining models and measurements.

In our experience, performance analysis of software does often not incorporate
variants or versions at all. While all authors worked on improving the situation
by explicitly supporting variants or versions, there is a research gap with respect
to their combination. On the one hand, software being available in variants does
indeed evolve over time, such that each variant exists in numerous versions. On
the other hand, frequently evolving software is often also available in variants to
tailor software to certain customers. However, techniques being used to address
variants are often agnostic to versions, and techniques devoted to versions ignore the
necessity to support variants. We envision that techniques for variants and versions
are better integrated in the future but also that researchers focusing on variants can
learn from research on versions and vice versa.

Performance analysis for variants can learn from research on versions. We and
others have actively worked on sampling techniques to select a subset of variants
that is sufficient to analyse. However, there is not a single sampling technique that
incorporates the evolution of a product line. Furthermore, it is unclear to which
extent currently available sampling techniques are stable (i.e. produce a largely
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similar sample after evolution). Stability is especially important when assessing the
performance evolution of variants, as different variants are likely to have different
performance. Similarly, family-based techniques exploiting the commonality of a
product line during performance analysis are typically oblivious to evolution. The
encoding of the commonality of variants, however, may also be applied to encode
the commonality of versions. This could lead to more efficient analyses for evolving
product lines but may also be applied to versions of a software that does not come
in several variants.

Performance analysis for versions can learn from research on variants. For
versions, we have focused on the challenges associated with evolving and changing
types of artefacts throughout the software life cycle. Possible areas in which the
approaches from variants could be promising for versions is the efficient evalua-
tion of design space and runtime reconfiguration alternatives—which essentially
comprise variants of possible next versions. Another possible point of interac-
tion emerges from modern software engineering paradigms such as DevOps and
Continuous Software Engineering (CSE). In this context, new versions are created
with an increasing velocity, multiple variants of a version are developed in parallel
branches, and fast feedback about the quality is expected as part of the continuous
delivery infrastructure and processes. This requires novel approaches for selecting
and prioritizing performance analysis tasks, such as performance predictions or
load tests. The sampling-based and family-based approaches for variants will be
promising sources of knowledge.
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The engineering of security-critical software systems faces special challenges
regarding evolution. Even if a substantial effort went into ensuring security during
the system’s initial development, it is uncertain if the system remains secure
when changes to the software, the execution platform, or the system environment
occur. Relevant changes that might endanger security include new or evolving
system requirements, changing laws, or updated knowledge regarding attacks and
mitigations. Failure to keep up with such changes can lead to substantial breaches
and losses, highlighting the need to actively maintain an established level of security
[AndO8].

For preserving security in long-living systems, ongoing and systematic support
for the evolution of knowledge and software is required. Reflecting the guiding
theme Methods and processes for evolution of the priority program, there is a
need for techniques, tools, and processes to support the evolution of systems in
order to ensure lifelong compliance with security requirements. These techniques,
tools, and processes need to address two main challenges, as outlined in the chapter
“Challenges” of this book:

1. How can security knowledge, available via diverse non-formal sources, be
incorporated and utilised for long-living system design? Establishing security
depends on given security knowledge, which may only be available in a non-
or semi-formal textual form. Whenever the security knowledge changes, earlier
assumptions about the security of the system may no longer hold true; the system
needs to be re-evaluated and adapted with regard to the security requirements.

2. How can developers and security experts be supported to react to context
evolution that may compromise the system’s security design or compromise the
system at run time? New available security knowledge, as well as suspicious
behaviour in the running system, may rely on a human developer for diagnosis
and hardening. These human stakeholders can be assisted by providing them
with appropriate information, for example about a relevant security pattern or
behaviour violation.

To address these challenges, we present a suite of approaches that contribute
to a three-layered framework (Fig.9.1). On the bottom layer, developer, system,
and environment activity is monitored. Usually, this activity is monitored in a non-
invasive manner, for example by logging executed methods using a framework
such as Kieker [VWHI2] or in case of a production system by monitoring input
and output signals [Hau+14a]. At this level, results from model-based security
testing can be exploited (such as [JWO1]). Additional aspects of human behaviour
might be considered as well. On the middle layer, collected monitoring data are
analysed in various ways: It is important to identify deviations of monitored
behaviour from expected behaviour. Since there are different sources and types of
expectations, the details of each analysis may differ. Assumptions associated with
design patterns will be investigated in a different way than expectations held about
user interaction. At this level, approaches such as model-based security analysis can
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Fig. 9.1 Overview of a three-layered framework for maintaining security in software evolution at
design time and run time

be used (such as [JiirO1]). On the top layer, conclusions are derived. Warnings, hints,
or technical adaptations are generated and released in order to preserve security,
using approaches such as the SecReq approach to security requirement engineering
[Sch+12].

In this chapter, we present a suite of five approaches that employ the above-
mentioned framework. In combination, the approaches address all identified chal-
lenges for security maintenance at design time and run time. The first two
approaches focus on the design time. The first approach (presented in Sect. 9.2) uses
knowledge extracted from natural-language documents to identify potential steps for
co-evolving the system design. The second one (Sect. 9.3) is on integrating archi-
tecture model information with program code. It creates a bidirectional mapping
between model elements and code structures to automatically structure program
code so that it contains model-based security properties and therefore survives code
evolution. The third approach (Sect. 9.4) bridges design time and run time to support
architects as the software evolves. It formally documents contextual information
gathered from run time in architectural models at design time. Architects use model-
based catalogues containing several security-related elements like attack types or
security patterns, which are exploited as a lightweight metric for an architectural
security analysis. The two remaining approaches focus on run-time security main-
tenance. The fourth one (Sect. 9.5) monitors run-time information in order to detect
suspicious behaviour, which is reacted to automatically by adapting the system with
mitigation measures. The fifth one (Sect. 9.6) focuses on interdisciplinary changes
in automation software. It compares actual observed behaviour with intended
behaviour expressed in signal-based models to find behaviour anomalies during run
time.

Having presented these five approaches in detail, the chapter concludes with
a discussion of how each approach contributes to addressing the challenges
(Sect.9.7).
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9.1 Foundations

Modelling, Meta Modelling, and Model-Driven Software Development A
model can be seen as an abstraction of a subject. An example for models can
be mathematical formulas that describe the reality while ignoring factors that
are irrelevant for the use case. Models of software are often represented as
interconnected elements, for example structural models or behavioural models
of the Unified Modeling Language (UML). Modelling is the activity to create
models.

Meta models define a language for modelling. This means the elements where
models are built from and how they can be connected. Thus, meta models define
the abstract syntax of models that comply with the meta model. A model that
complies with a meta model is called an instance of the meta model. Classically,
the key concepts behind meta modelling are the relationship between a model
element (often called object or instance in this context) and its meta-model element
(classifier or class) and the ability to navigate from an object to its classifier.
Multiple levels of instance-of relationships are possible, where the classifier of an
object is itself the instance of a “higher level” classifier. Two meta levels mean that
one level of objects and one level of classifiers exist. An arbitrary number of meta
levels is possible, although typically two to four levels are used [Obj16, Section 7.3].
Instance-of relations in meta modelling build directed acyclic graphs, which build
a hierarchy. In this context, we do not explore further the generalisations made by
deep modelling [AG12].

Meta modelling is the activity to create meta models. This can follow a top-down
or a bottom-up approach. Top-down meta modelling means to define a meta model
for a subject to model and to create models afterwards. Bottom-up means to derive
a meta model out of a modelled subject to classify the already modelled elements.

Model-driven software development (MDSD) [SVC06] uses models as central
artefacts for software development activities. In MDSD, parts of the software are
described using models that comply to domain-specific meta models [Mar10]. These
domain models are refined with detailed technical models that are relevant not to
the domain but to the platform that will run the software. Such models are the
basis for automated code generation. The generated code has to be enriched with
implementation details.

9.2 Design Time: Leveraging Knowledge from Natural
Language for Design-Time System Adaptation

In this section, we present an approach to leverage knowledge from natural language
for design-time system adaptation. This approach was developed in the SecVolution
project within the priority program. To address the challenges overviewed in the
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introduction, the key idea is to maintain a knowledge base that collects knowledge
about security concepts and instantiations within the given software system. Using
this knowledge base, we can react to vulnerabilities occurring during evolution,
such as changes in requirements, knowledge, or other environmental aspects. The
knowledge base contains information on how to deal with a triggering change in
order to preserve security. A semi-automated mechanism uses the knowledge base
to update the system models.

The SecVolution approach harnesses formal design artefacts available in the
regular development process, such as UML-based system models. However, many
of the monitored sources of change and evolution are informal. In particular, we
need to deal with artefacts on the requirements side, which include natural-language
documents like the system’s requirement specification or laws. To this end, we
developed socio-technical methods for supporting elicitation of relevant changes
in the environment. Like in our previous works (confer [Sch06, Sch09, Pha+13,
AKK14]), the relevant knowledge is captured during regular development tasks
with as little extra burden for the security expert as possible. Steps for restoring
security are integrated into existing tasks as well and aimed to be as unintrusive as
possible. By avoiding additional tasks and assignments and by keeping extra-effort
low, acceptance by developers and security experts is increased and chances rise for
effectively applying the SecVolution approach.

The approach can be applied to existing (long-living) software systems for which
this information can be provided.

9.2.1 Overview

The overall design-time approach developed in SecVolution is shown in Fig.9.3.
It uses the FLOW notation [SSKO08] (summarised in Fig.9.2) to visualise the
information flow within, and to highlight important aspects of, the SecVolution
approach. FLOW is used in Figs. 9.3 and 9.19. Relevant aspects of a FLOW model

State Information Information Experience Activity
Store Flow Flow
solid / <Control, support>
<Document name> <Information type> <Experience>
(optional) (optional)
le—
+—| <Name of Activity>
4 —> y —
. e <In-/ out-going T
fluid <Information type> <Experience> information>
<Person or Role> (optional) (optional)

Fig. 9.2 FLOW notation symbols according to Schneider et al. [SSKO08]
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Fig. 9.3 Overview of the SecVolution design-time approach using the information flow syntax
described in Fig. 9.2

include the fluid/solid state of information, the route of information, and the role of
experience as a cross-cutting type of information:

* Document symbols and solid arrows represent documented project information
or knowledge. That knowledge can be retrieved at any time without the need to
involve the author.

* Faces and dashed arrows symbolise direct communication, for example in
meetings, conversations, phone calls, or emails. This type of information rep-
resentation is called fluid in FLOW [SSKO8], as opposed to the solid information
in documents and artefacts

* Rectangles represent activities with certain incoming and other outgoing infor-
mation flows. As a black box, the internals of an activity are hidden. They may
be detailed by another FLOW diagram.

* Project-specific information (in black) is attached to the left and right of an
activity, whereas control and support enter from top and bottom of the activity
rectangles.

* Grey colour indicates knowledge and experience. They are more generic than
project-specific information and, thus, can be reused in other parts of the system.

In the following, we present the main process of SecVolution based on Fig. 9.3.
The left part of Fig.9.3 shows various sources of relevant knowledge. These are
monitored for changes relevant to the approach. For deciding which information
is relevant, Natural Language Processing methods are used to retrieve information
from natural-language sources (Sect.9.2.2). The monitored data is then split into
three types:

* Ordinary requirements, which do not have any security relevance. These can be
forwarded to the ordinary development process.

* New or evolved Essential Security Requirements. These are requirements that
define basic security-relevant requirements for the system like “Use secure
encryption algorithms”.
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* Information relevant for the security knowledge base, the Security Context
Knowledge. This context knowledge is necessary to annotate the system model
with concrete security requirements, for example a concrete encryption algorithm
and appropriate key length.

The security knowledge base constituted by the Security Context Knowledge
(SCK) requires a suitable representation, which we provide by using ontologies
(Sect.9.2.3). Security Context Knowledge and Essential Security Requirements
both are managed within the Security Maintenance Model. Updating the Security
Maintenance Model can make design decisions necessary, for example introduce a
new cipher family because attacks have become known.

Security Maintenance Rules (SMR, Sect.9.2.4) are the final part of the Security
Maintenance Model. They decide if an evolution of the knowledge given by Secu-
rity Context Knowledge and Essential Security Requirements makes co-evolution
necessary. Figure 9.4 describes the overall idea and relationship between evolution
and co-evolution. The development of a system model is accompanied by Security
Context Knowledge. At its initial design, the system model was compliant with
regard to the security knowledge that was current then. Over time, the Security
Context Knowledge evolves. The system model now has to be co-evolved so that
the then evolved system model is compliant with regard to the updated security
knowledge.

Time

Security Context Knowledge

evolution
Security Context Knowledge

—

Security
Analysis

&‘ Security
Analysis
Essential
Security
Require-
ments|

Fig. 9.4 Basic idea behind the design-time adaption, shown by the relationship of evolution to
co-evolution
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When required, co-evolution is carried out by using generic security knowledge
and specific impact information derived from Security Maintenance Model by
means of heuristic techniques. To express security requirements in the system
design, the UMLsec approach [Jiir0O5] is used. UMLsec provides a profile for
UML that allows annotating UML models with security requirements, assumptions,
and potential attackers. It also provides checks that determine if certain security
requirements are satisfied by a given system model.

9.2.2 Capturing Security Requirements Using
Natural-Language Processing

Requirements (e.g. in a specification) can be relevant for security. For example,
requirements referring to buying something on the Internet may be more security-
related than buying something in cash in a local store. Usually requirements are
written in natural language so that everybody involved in a project is able to
understand and review them. This refers to requirement engineers, developers,
customers, and possibly managers. It is highly unlikely that they would learn a
special language to understand requirements and check them for security relevance.
The voluminous specifications of long-living software systems cannot be effectively
screened manually by experts. Our approach provides an automated identification
of requirements that are most likely security relevant. This identification starts from
requirements in natural language, which can be ambiguous and imprecise. It makes
use of the knowledge on security from several sources, including human experts
and documented guidelines (Fig. 9.3). Heuristic automated support can reduce the
load on human experts substantially. The final goal is to focus their attention and
valuable time to the most security-relevant requirements.

To cope with problems of natural language and to semi-automate this process,
we perform a linguistic approach to identify the semantic similarity of words.
Two words have a high semantic similarity if they have the same meaning with
simultaneous syntactical difference [Sch94a]. A numeric value identifies the level of
semantic similarity of words. For the security assessment of requirements, we use a
heuristic reasoning technique, which is based on Natural Language Processing. The
heuristics and the calculation of the similarity value are described in more detail in
Sect. 5.3. In this chapter, the security knowledge itself is seen as tacit knowledge
of developers. In some cases, they also have a feeling of the security relevance of
requirements, but sometimes they cannot explain the reason of the decision that a
requirement is security related or not.

If the value of similarity is above a predefined threshold, the term is considered
security related. In general, this method uses Security Context Knowledge of the
knowledge base to determine about the security relevance of a requirement. The
knowledge base is a hierarchical-structured ontology containing security-relevant
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words, which is introduced in Sect.9.2.3. Security knowledge changes over time,
such that it is necessary to keep it up-to-date by domain and security experts.

The security relevance of words is domain specific. In some domains, a word
can be classified as non-security related; in another domain, it is highly security
dependent. For example, on the one hand if we speak about a park in general,
a bank is a place to sit down for multiple people. In this context, it is not a
security-related word. On the other hand, in the context of Common Component
Modeling Example (CoCoME) as online shopping platform, the word bank with
the same syntax has a different semantic meaning. It refers to a company where
customers can store their money and transfer it to another owner. The bank details of
customers are highly security dependent. To handle this type of context ambiguity,
our knowledge base must be enriched by domain-specific knowledge. If a term,
which is into the knowledge base and in a requirement, has a linguistic dependency
to another term, the requirement engineer is questioned whether the two terms mean
the same. By similar meaning of the terms, the knowledge base will be enriched by
the new security-relevant term. For example, in the requirement “The user enters
an identification number and a PIN”, PIN is a security-related term. Through the
linguistic dependency between PIN and identification number, the requirement
engineer is questioned whether the two terms mean the same. We interleaved the
semi-automated acquisition of knowledge enrichment into the security assessment
of requirements. The knowledge acquisition and the heuristics are described in
detail in Sect.5.4.3. In Fig. 9.5, the enrichment of the knowledge base through a
requirement engineer or a security expert, for example in the context of linguistic
dependencies, is visualised. The requirement engineer has to make a decision about
the security relevance of words with linguistic dependencies. The approach takes
advantage of the collected knowledge described in Sect.9.2.

Knowledge Base
The user enters an identification number and a PIN.

Similaritleheck

!
.
Classified Requirements

|The|userlenterslanlidentification numberlandlalPlNI
N ‘
o

Linguistic Dependency

- Security related?

Security Expert

D
.
i

Yes

Fig. 9.5 Natural language processing approach—enrichment of security knowledge
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9.2.3 Representing Security Knowledge Using Ontologies

The security context knowledge mined from the various information sources needs
a suitable representation that is storable, updatable, and flexible enough to support
different levels of abstraction and uncertainty. Specifically, security issues cannot
be foreseen at system design time and are considered unknown unknowns [MHOS].
Thus, a suitable knowledge representation that can be adapted to entirely new fields
of knowledge is required. To this end, we use the knowledge representation concept
of ontologies [Gru93]. An ontology contains the key concepts of a domain and the
relationships between them. Our technical realisation of ontologies is based on Web
Ontology Language (OWL), a standard ontology representation format [OWLO09].

Software systems tend to get complex. Consequently, the knowledge necessary
to ensure security during its life span grows accordingly. To support the handling
of complexity and the sharing of knowledge between different projects within the
same domain, the ontologies in our approach have three layers. We work with
nested ontologies that include, for example, an upper ontology of general security
concepts; a domain ontology of system-independent, domain-specific knowledge;
and a system ontology of system-specific knowledge.

* We provide a generic upper ontology that is independent of a particular software
domain or application. It represents the most general software security concepts,
such as “encryption algorithm” and “attack”. To identify these concepts, we
performed a basic literature study [S G+14], followed by a more detailed
systematic literature review (SLR, [Gér16, Biir+18]). SLR is an empirical method
used to aggregate, summarise, and critically assess all available knowledge on a
specific topic [KCO07]. Figure 9.6 shows the resulting upper ontology, providing a
taxonomy to define a system, its usage, and the surrounding security knowledge.

* Domain ontologies allow domain knowledge, as well as concrete security issues
and measures, to be captured’ for example, the encryption algorithm “DES”
is subject to a specific attack called “Davies’ attack”. Domain ontologies
(illustrated below) have to be created for each domain anew and can be shared
by different systems in the same domain.

» System ontologies express security-relevant knowledge about a concrete system,
for example that a specific banking system uses “DES” as its encryption
algorithm. These system ontologies can be produced from existing artefacts, such
as a UML-based system model.

Figure 9.7 illustrates an evolution step of the domain and system layers of a
nested ontology. Class data are considered an asset of a system; thus, data are
a subclass of class Asset. The domain level initially provides the information
that data are to be further distinguished into anonymous data and personal data.
Furthermore, the salary of an employee has to be considered personal data. Personal
data is split into two further categories, and the individual faith is added. The
evolution step is inspired by a refinement regarding privacy, in accordance with the
German federal data protection law (Bundesdatenschutzgesetz, BDSG). Between
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the 1990 and 2001 revision of the law [J B+15, Ruh+14a, Biir+18], an additional
notion of critical personal data has been added, which leads to a change of the
involved domain layer. Immediately, the question arises how we can adapt the

system layer to be consistent with the domain layer again. This question leads us
to model co-evolution, as discussed in the next section.
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9.2.4 Rule-Based Model Co-evolution

Whenever the environment changes, the monitoring component may produce a
corresponding change of the Security Context Knowledge, written as ASCK . Each
change is analysed and, when necessary, used to produce reactions based on the
process shown in Fig. 9.8.

First, in a step called allocation, we determine which Essential Security Require-
ments (ESRs) are potentially violated. This allocation is given by a mapping and can
be supported, for example, by detailed information, where the ASCK occurs, that is
relationship to specific elements of the upper ontology like encryption. To check if
the system indeed is impacted by one or more flaws, the system model is investigated
using model queries as given by the Security Maintenance Rules (SMRs). To express
the model queries, we use model transformation technology, building on the model
transformation language and framework Henshin [Are+10]. A system model can
be interpreted as a graph. For instance, a class can be interpreted as node and the
reference to another class can be interpreted as an edge. Thus, graph transformation
techniques can be used to investigate and manipulate system models [JIS15]. A
single graph transformation typically consists of two graphs, one called the left-
hand side (LHS) and the other called the right-hand side (RHS). Whenever the LHS
is matched to a given model, the matched parts are transformed according to the
RHS. Elements can be added, removed, or preserved. LHS and RHS are connected
through a mapping. Typically, a set of graph transformation rules is called a graph
grammar. In Henshin, a number of graph transformation rules are encapsulated by a
transformation model.

We implement model queries as rules in which the LHS equals the RHS. Thus,
no changes to the model are made, but we can make use of the underlying matching
algorithm. We use Henshin since it is built on EMF [Ecl], a standard platform to
model software, and it allows us to specify change actions, as required for the next
step.
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To carry out the co-evolution, Security Maintenance Rules is used. To support
this step appropriately, a Security Maintenance Rule consists of three parts:

e Alinkto ASCK

* A precondition that the model needs to fulfil for the Security Maintenance Rule
to be applied

* A series of reactions to realise the actual co-evolution

The reactions itself can be of three different types, as shown in Fig. 9.8. The most
formal way is using model transformations to directly alter the system model. Where
model transformation approaches like Henshin fall short, for example complex
clone operations or path-based analyses, reaction steps can be supported by Java
code. Finally, showing the security expert (textual) instructions is meant as basic
support for vulnerabilities, which additionally require reactions regarding a system’s
data or implementation (e.g. user passwords).

Using the partial match feature of Henshin, the application of co-evolution steps
can be simplified [JJS15, J B+15]. For example, model queries or evaluation of
preconditions provide links to concrete model elements of the system model for
the transformation rule, that is EMF node instances. These instance links are used
to populate the transformation rules, which in turn alter the system model. Using
this technique and by additionally utilising the flexibility of Henshin transformation
rule EMF objects, our rules actually need fewer elements and can be used in
a flexible way. This helps to keep the set of transformation rules low and their
understandability high. The co-evolution steps are applied semi-automatically. The
security expert can be asked to make design decisions, that is choose an encryption
algorithm to replace the now insecure one. Additionally, instructions can be given
to the expert, for example “All users have to pick a new password”.

9.2.5 Related Work

Natural Language Processing of Security Requirements Compagna et al.
[Com+08] integrate legal patterns into a requirement engineering methodology
for the development of security and privacy patterns using neuro-linguistic
programming (NLP). The pattern design and validation process requires legal
experts to describe patterns in natural language. This description is parsed by
a natural language processor on the basis of a semantic template. Gegick and
Williams [GWO07] developed a methodology for the early identification of system
vulnerabilities for existing threats. While in our approach we use suspicious
sequences to encode hypotheses of possible attack patterns, they use Regular
Expressions to encode attack patterns extracted from different web-based security
vulnerability databases. A catalogue of such patterns is supplied to map the
threat types to elements in the system model. By using a linguistic approach,
the requirement engineer can concentrate on the domain-specific problem rather
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than modelling it formally. Thus, natural language provides a more flexible notation,
and changes can be managed more efficiently.

Haley et al. [Hal+08] present a framework not only for security requirements
elicitation but also for security analysis. Their method is based on constructing a
context for the regarded system. Describing this context with a problem-oriented
notation makes it possible to validate the system against the security requirements.
The approach is powerful but needs a lot of security expertise to build the context
and understand the results of the analysis. Evolution of the context is not supported.

9.2.6 Leveraging Security Knowledge to Infer Adequate
Reaction to Context Changes

Tsoumas and Gritzalis [TG06] provide a security-ontology-based framework for
enterprises linking high-level policy statements and deployable security controls.
Security ontology is built by extending the Distributed Management Task Force
(DMTF) Common Information Model standard. In contrast to our approach, it is
focused on organisational controls like how to secure server hardware, recommen-
dations for configuration of intrusion detection systems, and so on.

Ernst et al. [EBM11] use a formal description language to relate requirements
to their implementation. Changes identified in the requirement specification are
then used to trigger software evolution. The approach is rather formal and aims
at providing a graph-based guidance for implementation rationale. Co-evolution is
not considered so far, as well as an interface to system design level.

The Water wave phenomenon inspired Li et al. [Li+13] to develop an impact
assessment approach based on call graphs. First, they analyse the core, which
consists of the direct affected software artefacts. After that, the call graph is
analysed, taking the interference of different changes into account. Their approach is
focused on predicting how big (in terms of number of methods to change) the impact
of changing a number of methods in a given source code project will be. Contrary
to this, our approach aims at analysing impact regarding security properties.

9.2.7 Summary

In this section, we presented three contributions. First of all, we introduced system-
atic and experience-based elicitation and management of multiple, heterogeneous
knowledge sources throughout the life cycle of a long-living system. This is
considered a fundamental step in the process of overcoming the multitude of
information sources for the sake of leveraging it do manage long-living systems. As
soon as the knowledge has been elicited and structured, it needs to be investigated
to assess the effects on a system’s security. Thus, as a second contribution, we
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introduced a systematic analysis and optimisation of deciding how new knowledge
affects the security of long-living software systems. After all, knowledge and
reasoning made about the system’s security is an additional challenge so that we
showed, as a third contribution, how to maintain a consistent database of security
requirements and security-relevant environment knowledge during evolution of a
long-living information system.

The three core challenges tackled by the SecVolution design-time approach are
related to the first challenge, as introduced in the chapter’s preface (How can
security knowledge, available via diverse non-formal sources, be incorporated
and utilised for a long-living system design?). A process for elicitation of various
knowledge sources is provided, which is able to deal with ever-changing knowledge
that long-living systems are confronted with. Maintaining a database of security
knowledge during evolution contributes to the second challenge (How can devel-
opers and security experts be supported to react to context evolution, which may
compromise the system’s security design or compromise the system at run time?).
Developers are provided a consistent knowledge base that can be kept up to date
when facing context evolution. The SecVolution design-time approach is focused
on typical design-time development artefacts like UML models.

The SecVolution design-time approach has made the following contributions
in detail. We developed a security assessment technique for supporting the main-
tenance of long-living information systems independent of the process model,
domain, or technology in use [S G+14]. We created a core ontology usable for
different security areas (e.g. privacy, information flow, attacker model) [Biir+18],
as well as techniques for reusing and structuring the knowledge-modelling process
[Ruh+14a]. We used UML profiles to define extension points in the models that
are connected to the knowledge. For the case of an initially secure system, we
developed a model-based security verification strategy [S W+14] that can efficiently
determine whether a particular co-evolution restores security requirements that were
satisfied before the evolution [Biir+18]. The strategy is supported by an extensible
tool platform, CARISMA, [Ahm+17] that reads the annotations of UML 2 models
and computes a delta model containing all possible evolution paths of the given
model. We presented an approach [JIS15, J B+15, Biir+18] in which changing
security knowledge is analysed and possible reactions are derived. It also covers
newly occurring knowledge about security issues or attacks.

9.3 Integrating Model-Based Security Constraints
with Program Code

The reliability of security analyses is crucial for effective security strategies
in long-living software systems. Figure 9.2 uses Unified Modeling Language
(UML) profiles to define security information in models. One kind of model to
which security information can be attached is architecture models, which usually
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describe components and their interconnection. This information can be used
for architecture-based security evaluations. These evaluations are only reliable as
long as the architecture implementation is consistent with the architecture models.
This consistency can be invalidated via multiple influence factors during the life
cycle of a long-living software system: (1) The program code evolves, so that
it is no longer consistent with the security models. (2) Security models may be
based on architecture models. When the underlying architecture models evolve,
the architecture-based security model is inconsistent with the actual architecture.
In both cases, the analysis models must be changed accordingly and the security
analysis must be repeated or adapted, or the results of the security analysis might be
invalid.

In this section, we present an approach to create a continuous consistency
between architecture model information, architecture-based security information,
and the program code. The approach has been developed as a part of the ADVERT
project within the priority program. It addresses the challenge to document security
information so that it is strongly related to the program code, to support the analysis
and monitoring of security aspects.

9.3.1 Codeling: Integrating Architecture Model Information
with Program Code

A set of abstract concerns commonly agreed upon seems to exist for defining
software architectures, as manifested by the standard ISO/IEC 42010 [ISO11b].
These include the general structure of a system, usually expressed in components,
interfaces, and their interconnection. They are often accompanied by abstract
behaviour descriptions or quality aspects. During the development of software,
the architecture is realised in the software artefacts, including the program code,
configuration, and the use of existing platforms. The goal of the implementation
is an executable system. The implementation of software architecture is driven by
industry standards and platforms that define standard elements such as compo-
nents and interfaces. Languages for architecture specification and for architecture
implementation have common concerns (see, e.g., [MBG10]), typically at least the
definition of components, interfaces, and their interconnections. However, they have
different foci and include different types of architectural design and different details
added to the architectural description.

The tool Codeling [Konl8, Konl6] creates a systematic mapping between
architecture specification model elements, relations, and attributes and their imple-
mentation based on standardised or project-specific architecture implementation
languages. These mappings specifically define places where arbitrary other code can
be added. This kind of mapping allows to extract architecture specification models
from program code and to propagate changes in these models back to the code.
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Fig. 9.9 The parts of Codeling for integrating architecture model information with code

Codeling comprises three parts. Figure 9.9 sketches an overview of these parts
and their relations. The figure describes artefacts of the approach with rounded
boxes and translations between these artefacts with arrows. The parts are used to
bidirectionally translate between program code and a specification model expressed
in an architecture specification language. The parts are underlined in Fig.9.9.
(1) An Intermediate Architecture Language (IAL) mediates between architecture
implementation models and architecture specification models. The IAL has a small
core with the common elements of architecture languages. The core is extended
with a variety of stereotypes to represent, for example, different kinds of interfaces,
component hierarchies, or quality attributes. Models expressed in the IAL are
called translation models. (2) The Model Integration Concept (MIC) describes an
approach for bidirectional formal mappings between program code structures and an
implementation model expressed in a meta model of an architecture implementation
language. As an example, a Java-type declaration that implements a specific
marker interface might represent a component, and static final fields within this
type declaration represent attributes of this component. In Codeling, the program
code also contains information that is not part of an architecture implementation
language but is only subject to a specification language. For example, many
architecture implementation languages do not describe hierarchical architectures.
The hierarchy information can be annotated in the program code. The translation
model is enhanced with this information from the code using the Model Integration
Concept. (3) Bidirectional architecture model transformations translate between
implementation models, translation models, and specification models.

With the tool Codeling, architecture model specifications are integrated with
program code. The models can be embedded into and reliably extracted from the
code, leaving only the program code as single underlying model.
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9.3.2 Application: Security Evolution Scenario

The running example within this section is CoCoME (see Sect.4.2), a common
case study for software architecture approaches. Figure 9.10 shows a subset of the
CoCoME architecture expressed in the UML. In the running examples, three user
roles interact with the system. Cashiers scan items at a cash desk and execute the
sales process. Store Managers manage the store’s inventory. They buy inventory and
may see reports about their store’s sales and inventory. Enterprise Mangers support
the store managers. Therefore, they can see reports of sales, see the inventory of
multiple stores, and trigger the exchange of inventory items between stores.

The excerpt shows two components: ReportingServer and StoreServer, both
subcomponents of the component Application. These two components are user
interfaces to the system and should provide their services only to authenticated
users. The component StoreServer provides the interface IStorelnventoryManager,
which should be accessible to store managers and enterprise managers. The
component ReportingServer provides the interface IReporting, which should be
accessible only to enterprise managers. For security reasons, customers are not
allowed to use any of these interfaces.

The UML diagram in Fig. 9.10 is enhanced with Secure Information Flow (SIF)
[RJ12] information. SIF annotations in UML diagrams define authorisation rules for
structural elements in an architecture, which decide about the access of a partially
ordered set of roles. In the running example, the following authorisation constraints
are defined:

1. The component StoreServer provides the interface IStorelnventoryManager,
which should be accessible to store managers and enterprise managers.

2. The component ReportingServer provides the interface IReporting, which should
be accessible only to enterprise managers.

For security reasons, customers are not allowed to use any of these interfaces.

<<securityLevel>> «Component» <<DefSecurityLevels>>
level = storeManager . :I Application poset = {
customer < storeManager,

storeManager < enterpriseManager
«Component» )
«Interface» =
= <, _———}] s ] ReportingServer
- IReporting
<<securityLevel>> «Component»
level = enterpriseManager —
r| - | StoreServer

<I ]
«Interface» -

7
= IStorelnventoryManager

Fig. 9.10 Excerpt of the CoCoME architecture extended with SIF annotations in UML
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Table 9.1 Overview of the mapping between UML meta-model elements, CoOCoME meta-model
elements, and program code structures

UML meta model element CoCoME meta model element Program code structures
Component with name “Server” component Type declaration with name
“Server” “Server”

Composite component Component with children Package declaration with

package or type declarations
as subcomponents

Operation provided role Provided interface Implemented interface

Operation required role Required interface Interface instance given to
type via constructor

In the context of the running example, Codeling is used to create a UML view
upon the CoCoME architecture. A formal mapping between interconnected UML
components and CoCoME program code already exists in Codeling. Table 9.1
gives an overview of the mapping between the CoCoME code, the corresponding
architecture implementation language, and UML meta-model elements. The table
only contains the mappings that are relevant for adding SIF information to the
running example. To integrate SIF information on UML components, interfaces,
and operations with Codeling (a), the AL must be able to handle this information.
Also mappings must be created (b) between the IAL and the CoCoME code and (c)
between UML stereotypes for SIF and the TAL. In the following, these translations
are described.

9.3.3 Security Aspects in the Intermediate Architecture
Language

A translation model in Codeling is implemented using the IAL. Figure 9.11 shows
the core of the IAL. Within Codeling, the IAL core is used to describe architectures
with component types, which provide and require interfaces. Component instances
represent single instances of placeholders for component instances that are dynam-
ically created at run time. This core contains all relevant meta-model elements to
describe the elements shown in Table 9.1. The architecture is the root element of the
IAL. It comprises component types and interfaces. Component types provide and
require interfaces. The IAL also contains run-time elements for component types,
their provisions, and requirements.

The TAL core is extended with profiles [Lan+12] for describing SIF information.
A profile extends a meta model with new classes and stereotypes. A stereotype
application is an instance of a stereotype. When a stereotype is attached to a meta-
modelled class, a stereotype application can be attached to the instances of that
class. Such extended class instance can then use the attributes and references of the
stereotype.



226 J. Jiirjens et al.

; [0..*] componentinstances
E] Architecture -

[0..*] requirements

L )
[0..*] interfacesdy 0[0“.] componentTypes ‘ l

3

i:l Componentinstance i:l Provisioninstance l:l Requirementinstance

[0..*] provisions 5 z
[1.1] type [0..*] requiredinterfaces [1..1] provision [1..1] requirement

L ] . i — V.

3 Provision Q Requirement

| l] ComponentType >

| 1 name : String [0..*] pruvidedanlErfat.es i

_ [1.1] interface
f:| Interface
[1.1] interface
= name : String

Fig. 9.11 The core of the IAL

[] ComponentType ] Namespace ] Interface |5 Operation
= ?o..' L +0 td ?0__. L ? oL
« D
<<Stereotype>> [<<Stereotype>> <<Stereotype>>
Eﬁ DefSecurityLevels SIFPropertyl g’ SecurityLevel
= upper
o lower
posets securitylLevelEntities
0.* V1.
[ securityLevelPoset upper 1.1 [ securityLevelEntity |1..1
1 name : EString securityLevel

lower 1..1

Fig. 9.12 SIF profile for the IAL

Figure 9.12 shows the profile for SIF information. This implementation is based
on the definition of SIF from Ruhroth and Jiirjens [RJ12]. The classes in the upper
row of the figure are references to classes of the core or other profiles. The SIF
profile defines three stereotypes. The stereotype DefSecurityLevels is applicable to
component types or namespaces from the namespaces profile (not shown). With
this stereotype applied, components or namespaces can declare partially ordered
sets of SecurityLevelEntities, the SecurityLevelPosets. The entities correspond to
roles in the system. The stereotype SIFProperty is also applicable to component
types and namespaces. SIF properties describe the basic security predicates (BSPs).
Each property takes two sets of names of BSPs as arguments the upper and lower
BSPs [RJ12]. The stereotype SecurityLevel is applied to interfaces of the IAL core
or operations of the profile for operation-type interfaces (not shown). With this
stereotype, the minimum role necessary to use the interface or single operations
of an interface is declared.
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Fig. 9.13 Excerpt of the CoCoME architecture extended with SIF annotations in the IAL

In the running example, the CoCoME architecture, including the SIF informa-
tion, is translated into an IAL model with the SIF profile applied. Bidirectional
model transformations are used to create a formal mapping between the model
types. Figure 9.13 shows an excerpt of the CoCoME architecture with the SIF
information defined in Sect.9.3.2. The left-hand side shows an excerpt of the
CoCoME architecture expressed with the IAL. A composite component Application
contains two subcomponents: StoreServer and ReportingServer. Each provides
an interface. The right-hand side shows the SIF information attached to this
architectural core. The composite component declares three security levels: enter-
priseManager, storeManager, and customer. Their partial order is given with
enterpriseManager > storeManager and storeManager > customer. For
using the interface IReporting of the component type ReportingServer, the user has
to be an enterprise manager. For using the interface IStorelnventoryManager of the
component type StoreServer, the user has to be a store manager or an enterprise
manager. Customers are not allowed to access any of these interfaces.

9.3.4 Integrating Security-Architectures with Code Using
the Model Integration Concept

Next, a mapping between SIF profile elements in the IAL and program code
structures is necessary. These program code structures must work with the program
code structures used for the translation of CoCoME architecture elements, briefly
described in Table 9.1.
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Fig. 9.14 Mapping between the DefSecurityLevel and the SIFProperty stereotypes and program
code structures in CoCoME

The stereotypes DefSecurityLevels and SIFProperty are applicable to com-
ponents and namespaces. In the context of this example, a definition of secu-
rity levels and SIF properties should be applied to the composite component
application. In the CoCoME program code, this composite component is rep-
resented by a Java package with the name org.cocome.tradingsystem.
inventory.application. A feasible code structure for the given SIF infor-
mation is annotations on the package. Therefore, a file package-info.java
is created in the corresponding folder, applying a respective annotation to the
package declaration. The corresponding annotation declaration is part of an external,
reusable library that is generated for this purpose. Figure 9.14 shows this mapping.
The SIF property annotation owns two members of the type String: upper and
lower, corresponding to the respective stereotype attributes. In the example in
Fig.9.14, the value “SR” for the member upper denotes Strict Removal. This
means that all confidential events are independent of events that are visible or
“neither-nor” [Man03, RJ12]. The annotation for the definition of security levels and
their partial order DefSecurityLevels is also attached to the package declara-
tion. Its reference entities takes an array of types as parameter, which extend a
specific marker interface. This marker interface denotes that the implementing type
represents a security entity. This mechanism is used to use the type-safety features
of the Java compiler to validate the member values at compile time. In addition,
typical IDEs propose known security entities via their code completion features.
The same mechanism is used for SecurityLevelPosets, where a lower and
an upper entity are given as values.

In the example, only enterprise managers are allowed to access the interface
IReporting. In the CoCoME program code, this interface is represented by a
Java interface with the same name. A feasible code structure for the security level
is an annotation on the interface declaration. Figure 9.15 shows the mapping as an
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Fig. 9.15 Mapping between the SecurityLevel stereotype and program code structures in CoOCoME

example. The default annotation member is a reference to a type that represents a
security entity, that is it implements the corresponding marker interface.

9.3.5 Related Work

The relationship between models and code is subject to related work. The field
of model-code co-evolution describes how models and code can evolve together.
Works in this area usually focus on one specific type of model. For example,
Langhammer [Lanl7] describes an approach for the co-evolution of Palladio
architecture models and Java program code. Langhammer describes rules that
preserve a consistency relationship between the architecture model and the program
code during changes in either side. Ruhroth et al. [Ruh+14b] present an approach for
managing the consistency between certain security models and code. Their approach
synchronises atomic change operations on models and corresponding operations on
code. Our approach instead explicitly integrates arbitrary model information with
program code.

Approaches for the co-evolution of models and code often do not consider the
evolution of the underlying languages. Rocco et al. [Roc+14] explicitly describe
language evolution as aspect of model-code co-evolution. When a system is
modelled using meta models and corresponding code is generated, a challenge
arises when the meta model is subject to evolution. Such changes can break the
code generators. This is a case of model-code co-evolution: the meta model can be
regarded as model, and the code generator can be regarded as code in the context
of model-code co-evolution. The authors propose a co-evolution approach where
model changes are propagated via well-defined transformations, which operate on
the code and take the model difference as input. This approach can be used to handle
architecture language evolution regarding model editors but not regarding the code
that implements a system’s architecture.

The synchronisation between models and between models and code is subject
to the area of (in)consistency management [Fel+15]. These approaches assume
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that two views upon a shared body of information overlap. When one view
is changed in the overlapping part, these changes should be propagated to the
other view. Consistency management deals with methods and tools to re-establish
synchronisation. Existing consistency management approaches focus on coarse-
grained program code structures, such as code files or classes, and relate them to
model elements. Konersmann [Kon18] argues that a more fine-grained abstraction
level is necessary and implements such consistency relationships in Codeling.
Vitruv [KBL13] is a more general approach to keep different views consistent. It
bases on coupling EMOF-specified meta models. For coupling the Palladio meta
model for architectural specification with Java, see the PhD thesis of Langhammer
[Lan17].

Already in 1995, Murphy et al. [MNS95] presented an approach for bridging
the gap between program code elements and higher-level software models. In their
approach, a mapping is created between higher-level model elements and program
code elements. The approach of Murphy et al. is limited to mappings between
model elements and program code files, neglecting the structures within the code
files. Approaches need to address structures within the code files to add decision
knowledge to specific architecture elements in the code.

9.3.6 Summary

This section presented the application of Codeling on security information. It is
used to create a formal bidirectional mapping between security model information
attached to architecture specification models and the program code that implements
the security architecture. Therefore, the presented application addresses the first
challenge of diverse non- or semi-formal sources of security knowledge. We
have shown in this section that Codeling can be used to integrate model-based
security information with program code, using a formal bidirectional mapping.
The implementation allows to specify the security annotations in a model-based
environment and in the program code. The program code takes the role of a single
underlying model.

The program code structures that are used to represent the model information
are also accessible at run time via introspection. Therefore, it is possible—and
supported by Codeling—to create or extend a run-time environment so that the
security constraints defined in the program code can automatically be verified. The
approach can therefore be used not only for documentation and for relating security
information to architecture model elements but also for monitoring the application
security. This addresses the second challenge, because with this monitoring, devel-
opers and security experts are supported to react to context evolution, which may
compromise the system’s security design or compromise the system at run time.
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9.4 Contextual Security Patterns

For the evolution of large and long-living software systems, it is essential to
understand not just the existing parts of the software, like requirements, design/ar-
chitecture, or code, but also how these elements could change over time and
especially how the corresponding components (inter-) act or applied in run time.
In particular, for maintaining the security of software-intensive systems, one has to
consider not only changes to requirements, which result in adaptive, corrective, or
perfective evolution steps in the system directly, but also changes to the context of
this system. This context comprises the various parts of the execution platform, but
also changes in attacker capabilities; changes to user role models, including defined
use and misuse cases; new access policies; protocols; or run-time configurations.

An important factor for a successful architectural approach is the understanding
that even with well-defined interfaces between components and subsystems, their
inner behaviour (i.e. implementations) or usage profiles can change. This does not
necessarily mean that the interfaces are accordingly modified, which can result in
security problems, where especially the black-box-modelling is favoured. These
factors need to be handled thoroughly and explicitly in design time, so the architects
can foresee the possible outcomes of evolutionary changes and run-time differences
before it is too late or any eventual costly and complex interferences are necessary.
To address this issue, we provide a lightweight architectural documentation and
analysis approach using security patterns enriched with explicit decision assump-
tions and prerequisites. In this section we introduce our approach.

9.4.1 Security Challenges in Software Evolution

Software security is a cross-cutting consideration with respect to various software
life cycles (from requirements elicitation to maintenance) and with respect to
other quality attributes (e.g. performance, reliability, etc.). Regarding the evolution
software systems based on their security properties, there are several identified key
challenges [Sei+16]. For our approach, the following issues are of great importance,
which we categorise into two groups. System evolution is still an important factor as
it is permanent and phase spanning. Changes within the known system boundaries
can still be fuzzy, which need to be monitored thoroughly. However, context
evolution results in more challenging issues, as the effects are not explicitly known
or cannot be identified without further data in design time. We, again, list three main
issues within the evolution of context of software-intensive systems as follows:

Threat Evolution Attackers’ capabilities evolve very fast, and they are unpre-
dictable. Therefore, continuous execution of security analysis are needed at run
time to identify new vulnerabilities, which becomes a very costly process.

Deployment and Infrastructure There are a lot of factors regarding the resource
environment and the allocation of the components that affect the correct appli-
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cation of security solutions and patterns. Furthermore, fuzzy system boundaries
worsen the situation due to uncertainty during design phase about the deployment
and application of the system.

Application and Run-Time Configurations Configurations of a software system at
run time and for its possible applications have strong influence on the sys-
tem security. Early extraction is especially difficult, and there are no general
approaches for multiple configurations with respect to security.

Hence, the effects of evolution can have severe results on the security as well,
making irrelevant attacks relevant or making security decisions invalid. Preserving
security during software evolution can be promoted by understanding and reasoning
the architecture and made design decisions of the software system. However, secu-
rity vulnerabilities are most often code related; still architectural misconceptions
will create security vulnerabilities. Hence, an architectural security analysis can
yield such risks and vulnerabilities in prior phases of a project and support its
evolution. However, it is not comprehensive as code-related vulnerabilities need
additional analyses. But architectural design decisions, such as using specific
security design patterns, suit very well, and as the software architectures are a
specific abstraction of the whole system, security needs to be addressed on the same
abstraction level. Well-structured security patterns, to be decided and modelled at
design time, suit very well to address and mitigate such vulnerabilities and risks.
On the other hand, abstracting security properties often result in loss of rational
knowledge and makes it complex to validate design decisions regarding security,
as changes to software or its environment happen. Security, as well as other non-
functional requirements such as performance, must therefore be addressed explicitly
by the architects because these properties are determined not just by individual
architecture components but also by their interaction, coordination, and usage at
run time. We call these factors, on which the correct functioning of security patterns
rely, the context of the software system. If decision-making process does not involve
this explicit context information, security is doomed to degrade. In this section,
we describe our approach addressing this problem by handling context information
regarding the security properties explicitly on software architectures.

9.4.2 Contextual Security

Software security is a quality attribute that depends on many factors based on the
contextual nature of the software. Most of these factors are usually unknown to
software architects at design time, like the attacker behaviour or run-time configu-
ration. Architects need to assume such aspects, if they ever do it in the first place,
regarding their security decisions. Furthermore, like in any software architecture,
where an abstraction is necessary to focus on only relevant aspects of the system,
a lot of information becomes implicit, including assumptions about the possible
security threats and applied patterns. This type of unpersisted information gets
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usually neglected, especially as the software evolves and existing design decisions
change, which would result in unnoticed security issues. Furthermore, due to the
missing security-related information at design time, architects cannot foresee the
probable security vulnerabilities that may arise first at run time, even if any related
decision was made at design time. Hence, solutions addressing such security issues
on architectural level need to consider the corresponding abstraction and has to be
handled with limited amount of information, which still describes the context of the
system in order to provide proper security for the data and function. Furthermore,
in case the problems are repetitive, that is they happen to be recurring from time to
time, even with contextual and application-specific differences, design patterns can
be helpful in providing a generic solution, which needs to be made concrete later
for the specific situation. One way to systematically deal with contextual security
is the documented use of security patterns. Therefore, we extend descriptions of
security patterns in their pattern catalogue with information on contextual security.
This means we document which security-related assumptions a pattern needs to
make on the context. This information is then used as structural logical constraints
between the security patterns and threats, for whose mitigation they are designed to.

9.4.3 From Design Patterns to Security Patterns

Design patterns have their roots in civil engineering, where it is about the archi-
tecture of buildings and structures and not the software. According to Alexander
[Ale77], “each pattern describes a problem which occurs over and over again in [...]
environment, and then describes the core of the solution to that problem, in such a
way that [...] can use this solution a million times over, without ever doing it the
same way twice”. Although this stands for a very different domain, the definition
fits for software design patterns as well. In any case, patterns describe “a solution
to a problem in a context” [Gam+95]. Furthermore, according to Schumacher
et al. [Sch+05], a security pattern “[...] describes a particular recurring security
problem that arises in specific contexts, and presents a well-proven generic solution
to it. The solution consists of a set of interacting roles that can be arranged into
multiple concrete design structures, as well as a process to create one particular
such structure.” This definition again underlines the importance of the context in
which the problem and its solution resides, meaning the software and its context,
including the run-time environment, user behaviour, etc.

It is important to mention, by analogy with design patterns of Gang of Four
[Gam+95], that they are not invented on behalf but rather discovered/identified as
a possible reusable security solution. Security patterns are specified using specific
templates, like the design patterns. There is no standardised template, but in general
they consist of at least a name, context, a problem statement, a solution, known
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uses, and consequences. A few simple examples for security patterns in real-
life applications would be the role-based access control or application firewall
[Fer13].

9.4.4 Security Patterns as a Means for Contextual Software
Security

By using security patterns and patterns in general, no reinvention of the wheel
is necessary, which grants time and resources, and also a concise unambiguous
documentation is established. This documentation based on security concerns (incl.
threats and security patterns), structurally applied on the architectural level, can
encompass the necessary contextual information crucial to the validity of the
security solutions chosen by the software architects. By using security patterns as a
means of mitigation against the modelled attacks or for resolving security issues in
software architectures, architects also support different aspects of design decision-
making process. It plays a crucial role at the design time, which reduces the further
complexity and unnecessary complexity at run time. Furthermore, integrating such
solutions into software architectures as rational knowledge base allows them to
use this structured documentation as first-class software entity if they are working
with model-driven software engineering methods [V6l+13]. Hence, the security
patterns can be treated equally to the code within the entire life cycle of the
system, become a primary element in implementation, and support architects or
developers with automatic code generation, maintaining the system as it evolves
or analysing/monitoring the run-time security state of the system. However, within
our approach, as described in previous sections, security patterns are extended by
explicitly using formally structured context prerequisites. It allows us to exploit this
architectural documentation to check the correct application of security patterns
in case of evolutionary changes and trace the impact on concrete architectural
components responsible for the security solutions.

These ideas led to an architecture-based approach [TH16a] as an extension to
architectural description languages (ADL) with security patterns, context prereq-
uisites, as well as other security artefacts (e.g. modelled threats). Within this, the
necessary profiles and stereotypes are provided for the integration of the models
and catalogues into a specific ADL, the Palladio Component Model [Reu+16]. An
overview of this approach can be seen in Fig. 9.16.

The abstract workflow of using security patterns enriched with contextual
information can be summarised in a few points:

* The security expert creates the initial reusable, model-based security catalogue
and documents the security patterns in combination with the possible threat
mitigations. In it, the main security elements, that is attacks and security
patterns, are logically combined via prerequisites, as can be seen in Fig.9.17.
No direct relation otherwise exists between them. Prerequisites, the architectural
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e The software architect designs the software system and describes it using
any architecture description language (ADL). The necessary knowledge of the
systems context (spanning from usage profiles to possible configurations by
the administrators or from deployment environment to even attacker behaviour)
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can then be derived from the security catalogue. The integration of the security
catalogue with the corresponding architecture description language happens with
the well-known profiling and stereotyping. For this, the structural roles of the
security patterns are mapped by the architect to the software components, which
are again extended by the relevant prerequisites from the same catalogue based
on the made security decisions.

* As the system evolves or any changes are necessary to make security design
decisions, the architect can check the state of the explicit prerequisites to analyse
whether a security pattern is still functional and efficient against any threat or
whether an attacker is again capable of exploiting a vulnerability despite the
existence of a mitigation security pattern.

The described roles and the relation between the elements of our approach are
depicted in Fig.9.18. An initial application of our approach is already conducted
within the CoCoME case study, and its more detailed description can be found in
Sect. 12.1.3.

As for validating the systems’ security in case of any changes that reflect
themselves in the made prerequisites about the security decisions, an analysis
method, which is based on the propositional logic, is introduced [TH16a]. Further
improvements have been made since then, and the method is consisted of two parts:
(1) security pattern analysis and (2) trace impact analysis.

Q _
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Security Pattern and

Prerequisite Meta-Model Palladio Component Model

A A
Xyz.security abc.system
(Security Model) (System Model)
i_"' ~— —— - ":;
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Fig. 9.18 Depiction of the roles and architecture elements for our approach
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1. Security Pattern Analysis first checks whether all the necessary structural roles
of security patterns are correctly applied on the architectural level. If a necessary
role is missing in the first place, a security pattern cannot generally function
correctly, and the vulnerabilities it should cover will be present. If all the
necessary roles of a security pattern are present in the system’s architecture,
then contextual analysis is conducted. For this, it is checked whether any of the
prerequisites of any possible attack on the system is covered by the security
pattern. An attack can be successful and issue a risk if and only if all of its
prerequisites are valid. Logic of the analysis anticipates to at least cover one of
the required prerequisites for a possible mitigation of the corresponding attack.
So if a security pattern is able to cover a required contextual prerequisite for an
attack, it can be deemed to function correctly.

2. Trace Impact Analysis is conducted in case of any evolutionary changes, which
result in changes to the secure state of the system. If an attack happens to
be issuing a risk after the change happens and it is shown in security pattern
analysis, the architect follows the roles of the security pattern in question over it
stereotypes and changed prerequisites to trace to the architectural elements.

This analysis allows architects to react on possible evolutionary changes and
different run-time scenarios with respect to security in early design phases, which
becomes a complementary security measure to methods like code-based security
analysis or penetration testing, where the code and concrete run-time environment
have to be present.

9.4.5 Related Work

General-purpose (e.g. UML) or more specific (e.g. PCM) ADLs have often no
direct support for security modelling. Nevertheless, there are several approaches
and extensions addressing this gap, some of which also provide further support like
analysis or simulations. Schneier [Sch11] introduced attack trees based on feature
modelling to model threats, which are described based on the attackers capabilities.
A tree-based structure is used to represent all possible attacks, with the main goal
of an attacker placed in the root element and the different ways to achieve that goal
exploited in the child nodes, which can be semantically enriched with values like
probabilities or costs for validation purposes. However, this approach focuses only
on the threat side and not on the architecture itself, including security patterns, or
on its context, and due to neglected security patterns, it is not possible to easily
handle security-related software evolution or any analysis thereof. An industrial
approach to security modelling is “Security Development Lifecyle” (SDL) [Sho14],
a practical process that is developed to accompany security-related decision-making.
It is consisted of two catalogues: (1) STRIDE to model threats based on fix
categories (e.g. tampering, denial of service, etc.) and (2) DREAD to evaluate
the modelled threats based on possible impacts and a numeric scale. However,
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considering only the attack side of the security leads eventually to inconsistencies
between threat possibilities and applied security solutions.

An extension to UML is SecureUML [LBDO02], which focuses solely on
the system access. It specifies constraints for authorisation to define role-based
access control and analyse discrepancies. Another extension is UMLSec [Jiir05],
[Ahm+17]. It introduces predefined profiles containing security-related stereotypes
to cover security properties on architectural level, which are used to represent the
component roles and the threat abilities that can exploit these roles. SecVolution
[J B+15], on the other hand, builds upon it to support evolution. It provides a process
model (consisted of a system and maintenance model) for security requirement
elicitation, which combines the experiences gathered during development and
possible evolution scenarios, which can support co-evolution. These extensions
therefore focus on single principles of security (access control and information flow
respectively) in an information system, and the analysis and evolution supports are
either non-existent or can be limited in representing generic security information.
This is why we see the need for a more expressive and adaptable model based solely
on using security patterns and their analysis.

9.4.6 Summary

Software security is a very fragile quality attribute that is dependent on a lot of
factors existing from run time, which are mainly unknown, to software architects
during design time. So architects can only assume and document these assumptions
if at all. After a brief introduction regarding the security patterns is given, this
section presents in this matter the contextual security patterns approach, which
mainly incorporates two sides of security (threats/attacks and solutions/mitigations)
into an extension for ADLs and combine them via explicitly documented and
accordingly formalised context assumptions called prerequisites. This extension
handles security concerns on architectural level, in which the context-related
information of security patterns and attacks are explicitly gathered and structurally
documented. These prerequisites are used as a metric for model-based security
analysis, which checks the validity of applied security patterns based on the software
system state or run-time information. That way, software architects can further use
analysis results to foresee the impact of evolutionary changes and trace them on
system models and accordingly during software evolution, which could ease the
process of maintaining the secure state of the underlying system.
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9.5 Self-adaptive Security Maintenance at Run Time
by Identifying Suspicious Behaviour

An observation made is that evolution in the system environment may lead to
vulnerabilities or ineffective security mechanisms at run time. For example, a new
attack pattern may be invented or a regulation might call for a more rigid privacy
policy. The information system remains insecure or must be shut down until the
security violation has been fixed. Finding and implementing a solution takes time.
In cases where the system needs to be shut down, this is costly or may even
be impossible for large and long-living systems. To get a security fix right, by
considering all involved artefacts such as requirements, UML models, or code units,
and respecting the system design to avoid architecture decay, this even more calls
for careful acting. The design-time approaches, as discussed so far, focus on design-
time artefacts and thus fall short on analysing vulnerabilities coming from the source
code or the execution context. Moreover, there are security requirements that are
hard to check statically, for instance when mechanisms like Java reflection are
used [EL02, Mur+98, CM04]. Apart from that, systems that are requested to be
available via the Internet and without downtime are more likely to be affected by
an attack previously undocumented. In this cases, to avoid downtime or to narrow
the attack surface, it is desirable to also detect new attacks, for example based on
suspicious behaviour. This section presents work towards monitoring and adapting
a long-living system at run time.

9.5.1 Overview

Maintaining a critical system needs expertise in the field of security. Although
more and more violations can be prevented by technical means, the experience and
expertise of security experts to deal with new attacks remain irreplaceable because
many processes and approaches cannot be fully automated.

According to the 2017 Global Information Security Workforce Study,
commissioned by the Information System Security Certification Consortium
(ISC)?, Europe will face a gap of 350,000 cyber-security professionals by
the year 2022 [Intl7]. For example, even organisations like the European
Telecommunications Standards Institute (ETSI) only employ external security
experts for a limited time [Hou+10]. Thus, security experts are few in number,
and it is reasonable to support them to become as efficient as possible. Technical
mechanisms for preserving security must be complemented by procedures and
cognitive support for human experts who are willing to share their knowledge; they
must be empowered to do so at the least effort possible.

Challenges include eliciting and modelling adaption requirements. A static view
on the system’s security is not sufficient. Therefore, multifaceted run-time infor-
mation of the software system needs to be continuously monitored and analysed
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Fig. 9.19 Overview of the SecVolution run-time approach using the information flow syntax
described in Fig. 9.2

with respect to given security requirements. Current infrastructure, configurations,
and deployment information must be monitored, as well as relevant aspects of
user behaviour. When an incident or a suspicious behaviour occurs, the adaption
mechanism must make a decision as quickly as possible. After a system has been
designed, it is implemented and gets deployed. To react to security breaches during
run time, a specific security mechanism must be selected and put into operation and
may be adapted to a certain extent.

Figure 9.19 presents the overview on the run-time security adaption approach.
The rectangle captioned Design-Time Adaption captures the design-time process, as
presented in Fig.9.3. The outcome of this process is a model of the secure infor-
mation system model. After the implementation and testing phase, executable code
exists that is run and operated by the user. In contrast to the system design phase, an
additional attack vector occurs from attackers challenging the system at run time.
To bridge the gap between design time and run time, an extension of the security
maintenance model, called Run-Time Security Maintenance Model (RSMM), is
proposed. During the operation phase, the system is monitored. Monitoring data are
continuously recorded and analysed. Supported by heuristic indicators, incoming
monitor findings are assessed, with the assistance of the developer and operator.
When a security incident is ascertained, it is decided if there needs to be a run-
time or design-time adaption. Run-time adaptions are accomplished by adapting the
running system. Moreover, security incidents discovered during run time can also
trigger design-time changes.

In Sect. 5.4, an approach is presented to externalise tacit knowledge during run
time. The focus is to gain insight of how users interact with the system to learn
about which system requirements should be adapted, removed, or added. The focus
of the run-time approach presented in this section is to assume a mostly static set
of security requirements and check the system’s compliance to this requirements, in
conjunction with evolving security knowledge. While tacit knowledge in Sect. 5.4 is
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used for the way a user interacts with a system and which features he uses in which
way, in this section it can be seen as attack sequences an attacker can carry out.

Application: Running Example

As this motivating example, we consider an extension of CoCoME as introduced
in Sect.4.2. For our motivating example, we consider an extension of CoCoME
with mobile shopping applications for a CoCoME online store. Mobile shopping
applications for a CoCoME online store need to prevent attackers from exploiting
entry points like personal data of the other customers, as well as internal business
data. Thus, various security mechanisms are used, like cryptographic hashes, to
secure authentication procedures (login).

Assume a mobile application (App) for the CoCoME online store that uses the
SHA-1 hash-algorithm for the login protocol. This algorithm was considered secure
until the year 2005, when a method was published to break the security mechanism
[WYYO05]. Since the security of the authentication depends directly on the security
of the hash algorithm, the developers of the application can react to this change
in the security knowledge by replacing the algorithm with another from the SHA-
2 family (design-time mitigation). The SHA-2 family consists of six similar hash
algorithms, each providing a different security level. After the replacement, the
application can now choose an appropriate algorithm for a requested connection.
More secure algorithms need more computation power and reduce the speed of
feedback to the user. Thus, usability and acceptance of the mobile application are at
stake, and the client will have to make a compromise between security and usability.

When it was decided to replace the hash function by SHA-2, the developers
realised that this would take some time. Since the mobile application generates sig-
nificant revenues for the company, the mobile application should not be deactivated
while performing this update. Therefore, it was decided to take a calculated risk: The
company did not want to lose too much business and was willing to accept a certain,
limited risk of loss. Since regular user monitoring showed that most customers buy
for less than 100 € per month, this limit seemed to be a reasonable compromise:
The application was quickly modified to limit the maximal monthly turnover to
100 € per customer. As a result, a few customers might be prevented from spending
more money. Most customers, however, would not notice the limit since they spend
less money anyway. The company’s business is not obstructed, and the turnover is
only endangered to a small extent during the time of patching the authentication
algorithm. When the new algorithm was in place, the limit could be removed. This
strategy ensured that a sufficient degree of security was preserved at all times and
with an optimal trade-off to limit negative impact on business.

As computing devices get more powerful, breaking hashes comes within the
reach of attackers. Therefore, the weaker variants of the SHA-2 family will also
be considered breakable at some future point in time. The system stays the same,
but the increasing ability and knowledge of attackers compromise security. Given
that the whole family of algorithms is available for implementation now, the system
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can easily be adapted to prohibit the use of the insecure variants by an automated
run-time adaption of the application.

9.5.2 Capturing Context for Security Adaption

As we briefly introduced in Sect.9.5.1, a detailed view on the system’s context
is inevitable. Not only the code itself but also the execution context and informa-
tion that can be gathered during run time, for example using monitoring, needs
to be considered. They all belong to environmental aspects that can cause an
adaption. Regarding the running example, if an access routine is executed, the
corresponding assets may be at risk. Run-time monitoring can issue a warning
at the conceptual level, and it can trigger heuristic reasoning. The new run-time
extension of the security maintenance model, called run-time Security Maintenance
Model (RSMM), constitutes as a formalisation of security-related knowledge at
run time. When a concept is implemented, several components may be affected.
For example, the asset of a password list can be stored in a database. It uses a
granularity appropriate for design-time concepts (e.g. threats or assets). However, it
is not sufficient to protect the database; instead, related access mechanisms, user
interfaces, and supporting components need to be considered as potential entry
points, too. Run-time monitoring [AJY11] and process mining [Aalll] can help
spot executed parts of the implementation.

9.5.3 Leveraging Run-Time Information to Support
Design-Time Security Adaption

A system during run time produces various kinds of data that may be relevant
for assessing the system’s security. Regarding the running example, monitoring
CoCoME system generates various monitoring data: Not only internal server
operations may be relevant for the system’s security, but also the interaction that
every customer with the system has is recorded. Not only call traces but also
database transactions and application server messages can be put into an anomaly
analysis.

Natural language analysis can play a role here. A family of heuristics can treat
identifiers in source code as “expressions in natural language” (making use of
results from work such as [DMJ08]). Through this assumption, certain identifiers
are treated like words and can be mapped to security concepts such as entry point
or asset. In an isolated environment, normal behaviour can be recorded. During run
time, the monitored behaviour can be compared with the recorded one, also taking
heuristic indicators into account to distinguish compliant behaviour from an ongoing
security requirement violation. A procedure of selecting appropriate mechanisms to
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monitor the desired security requirements is annotated in the model. For example,
systems can be proactively monitored to predict potential violations [Zha+11]. The
source code corresponding to the model is then instrumented accordingly.

9.5.4 Heuristics-Based Run-Time Assessment to Detect
Security Requirement Violations

Run-time information consists of fine-grained representations of what happened
during the execution of code and models. For example, log files or code can be
monitored to trace the execution of software. A large amount of monitoring data
must be managed for complex information systems.

A heuristic indicator associates a defined input (e.g. sequence of monitored data)
with a conclusion. For example, a heuristic indicator may conclude from a sequence
of repeated online orders that there is a case of misuse underway, trying to bypass
the 100 € limit regarding the running example. This could be a violation of a
corresponding requirement. Heuristics use shortcuts and unproven conclusions, but
they are fast and can be used earlier than an algorithm with a supposedly higher
recall and precision [TF97].

9.5.5 Adaption During Run Time

As we argued in Sect. 9.5.1 and illustrated as part of the running example, adaption
during run time is a necessary kind of reaction when a security issue is detected that
can be reacted upon with a restricted risk. The system model can additionally be
annotated to support run-time adaptions in order to reflect implementation details
into the model level. This information is used to decide which of the security
requirements can be mitigated at design time and which one can only be treated
at run time. Furthermore, this can be used to cope with code that is initially
generated but then manually altered. The challenge here is to have tracing of
security requirements beyond the design time, for which preliminary work exists
[L M+10, AJY11].

If a violation of security requirements is detected, appropriate mitigation actions
must be taken. Violations such as loss of privacy, information leaks, or attacks on
specific assets may be mitigated through different actions. For example, the system
can be reconfigured, for example to use alternative encryption mechanisms, or an
adaption can limit the access for certain roles. For example, roles that have access
over the Internet can only access the system via a virtual private network if data are
at risk and transmission over insecure connections should be reduced. Mitigation
actions may be inferred from measured behaviour and additional information
[EAS14]. The definition of fail-safe components can support an immediate reaction
with minimal reduction of features. Detected security violations are reported to
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an expert system that retrieves priority and reaction knowledge from the modelled
security knowledge. This escalation will use techniques for design-time mitigation.

9.5.6 Related Work

Regarding the question of when a system should be adapted to preserve security,
[SDB14] presents how attacks on cyber-physical systems can be observed during
run-time.

[ES10] introduces an approach to realise security adaptation at run-time using an
ontology that takes context into account. This approach falls short of handling the
automatic monitoring of the running system. Our results show that it is feasible to
combine monitoring techniques with security adaptation techniques.

[Sal+12] gives an approach for modelling assets that can be used to model the
requirements and (security) goals of a system. However, there is currently no secu-
rity knowledge support. Our approach provides a seamless way of accompanying
the development and maintenance process with context knowledge.

[NhI+15] supports monitoring assumptions about security requirements at run
time. However, this approach focuses on security of entities and does not address
software development.

[Omo+12, Omo+13] focuses on privacy and the requirements-level within
greenfield development of systems, while our goal is to cover security properties,
to support also long-living systems (including legacy systems), to cover knowledge
evolution, and to also cover system execution.

9.5.7 Summary

The SecVolution run-time approach has identified the following challenges:

* An evolution of the system environment may affect the system’s security at run
time.

* There are security properties that cannot be checked solely by regarding the
system design. Security properties can depend on data that are stored in databases
or can generally vary during run time, like access control configurations.

* Mitigating security incidents that arise during run time need to be acted upon
also during run time. Investigating and adapting the system design to recover its
security is not timely enough if the system needs to stay in service meanwhile.

The SecVolution run-time approach tackles these challenges. The run-time
Security Maintenance Model (RSMM) bridges the gap between the design time
and run-time development phases of a system. It connects artefacts like code that is
based on the system design, as well as run-time relevant data like application server
configuration. Run-time monitors are proposed depending on the security properties
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required by the system design. Using techniques like process mining and heuristic
indicators, raw monitoring data can be used to map running code to parts of the
system design. By comparing anticipated and actual system behaviour, supported
by heuristics, suspicious behaviour can be detected. By making a system run-time
adaptable, ad hoc reactions to security incidents can be realised. By providing
alternative components or fail-safe states, for example, controlled precautions can
be already part of the system design to deactivate critical system parts or minimise
the risk when a security incident occurs during run time.

9.6 Anomaly Detection for Evolving Software Controlled
Production Systems at Run Time

9.6.1 Overview

Another area for maintaining security during software evolution is Cyber-Physical
Systems. Cyber-Physical Systems are software systems that interact with their
physical environment (e.g. embedded systems, automated production systems) and
are connected to the Internet. This section focuses on Cyber-Physical Systems in
the area of production systems that consist of physical and cyber components that
are getting into connection with each other in situation-dependent ways [Mon14].
At the same time, production systems collect information of the state of the
production process, and based on these information their process is controlled
and analysed. These functionalities are business and safety critical and should be
designed, developed, and certified with care [IEC05]. Because various components
of the system depend on each other, a secure design implies that every part of
the process automation equipment is required to operate within the boundaries of
its specifications [AAGB11]. Therefore, production system operated in a cyber-
physical environment must carefully detect violations of their specification during
the whole evolution process, which includes, as Monostri et al. stated, a “special
emphasis on security aspects” as a major challenge. One of the most relevant
behaviour of production systems is the interdisciplinary behaviour resulting from
the interaction of the software with its environment [Vog+15c, Lad+13a]. Therefore,
unknown, unwanted, and undocumented changes in the interdisciplinary behaviour
have to be detected in the system in order to continuously operate under the
specification and to ensure a secured system.

The here presented anomaly detection approach of the FYPA2C project within
the priority program tries to find behaviour changes as potential indicators for
newly arising risks to the security during run time. In this way, the interdisciplinary
behaviour is directly considered as an information source for knowledge that can
affect security. The behaviour is expressed in models of the machine state of every
subcomponent of a production system. These models are learned during a phase
in which the system is assumed to show a well-specified and secured behaviour.
To identify anomalies, actual behaviour observed in control signals of the current
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system operation is compared to previously learned behaviour specifications. These
anomalies may increase the vulnerability of a system because they express unknown
and undocumented behaviour changes that should be checked regarding the current
security requirements. The anomalies can be intended or not intended during the
evolution, which means that the change resulting in the anomaly might be reverted
when it is not intended or transferred to the operator for adaptation. The adaptation
is left in the hand of an experienced operator, but the operator is supported by given
reasonable information about anomalies.

9.6.2 Detection Model: Machine State Petri Net

The model for anomaly detection used here describes the behaviour of a machine in
terms of its state changes. The state of a discrete production system is described
by a set of binary sensor and actor signals. Therefore, the behaviour of the
system is described by the sequence of states that are observed in the production
system. One state is characterised by a set of attribute-value pairs. One attribute
describes one specific signal of the state, and the value of the signal is its elemental
state. Consequently, the global state of a production system is expressed by the
complete set of all elemental states. These set is, in case of the targeted discrete
manufacturing systems like the Pick-and-Place Unit, deterministic and locally
iteratively observable. The change between one elemental state to another is defined
by an event. Therefore, the production system acts like an event-based system,
whose events can be observed during the operation by monitoring its event bus,
that is the digital sensor and actor signals.

The analysis of production processes is generally based on an analysis of models
that reflect the behaviour of the production system [LFL16]. These models are
systematically used as primary development artefacts, which are often iteratively
developed and evolve during the production system’s life cycle [Vog+15a]. The
models serve as a formal specification of the dynamic interaction within the
production system, for example to describe the signal behaviour. They can be
learned by using learning techniques based on the observation of states (see Chap. 6
for details about learning methods). Different model types exist to express the
behaviour of a production system. One of them is Petri Nets, which are a bipartite
graph. This graph expresses the system states as places and the state changes as
transitions. Places and transitions form the graph’s nodes, which are linked with the
arcs (edges).

Since the detection models used for detecting anomalies are based on the state
changes, they are henceforth called Machine State Petri Net (MSPN). A MSPN is a
Petri Net (P, T, F, M), where P is the set of places, T is the set of transitions, and
F C (P xT)U(T x P) is the set of directed arcs between places and transitions.
Furthermore, M is the set of tokens allocated to the places and describing the state
of the MSPN. Each transition ¢ € T is annotated with one or several events ¢; (7).
Every event describes a specific binary signal change and can be observed at the
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system bus. All events annotated on a single transition occur nearly at the same time.
The maximum time difference between these events is described by a threshold
time Ty;resn. The set of all events annotated on transition ¢ is referred to as e(t).
Each transition has exactly one preplace and one postplace. Accordingly, an MSPN
has the same properties as that of a state graph Petri Net (see, e.g., [DA10]). One
property is that the number of tokens in the Petri Net remains constant. To describe
the timing of an MSPN, each transition in T is annotated with a double (dy,in, dinax)-
The included elements are:

¢  dpin: Minimum activation duration
dnax: Maximum activation duration

A transition is called activated if and only if its preplaces are marked with a token.
Furthermore, a transition ¢ can fire if and only if:

1. Itis activated.
2. The activation duration of ¢ is between its annotated d;,;, and dy,qx -
3. All annotated events e (¢) occurred within a timing threshold T;pes-

Such signal-based models can be, for example, learned during a phase in which
the system is well specified and secured (cf. learning algorithms of Chap. 6).

9.6.3 Anomaly Detection Mechanism

For anomaly detection, the behaviour of the system is compared with the behaviour
of its previously modelled MSPN. To do so, each event occurring in the real system
is passed to the MSPN. The occurrence time ?#,.. of the kth event is henceforth
referred to as 7, (ex). If the events contradict a valid behaviour of the MSPN, an
anomaly is detected. If not, the marking of the MSPN is updated according to the
incoming events. The following events are defined for MSPN:

1. There is no activated transition that has the occurred e; event annotated:
Pt - t activated A ey, C é (1) ©.1)

This anomaly detects changes in terms of new introduced signals, that is when
a new sensor is implemented in the system.

2. There is an activated transition ¢, and the occurring event is annotated on it. But
the time difference between the current event and the last occurred event that
is not part of e () (i.e. the last event that triggered a firing) is smaller than the
annotated minimum activation duration d,;;;, (¢):

ek ¢e(t), e € e (1) : (toce (€k) — toce (€k—n)) > dmin (1) (9.2)

If this anomaly occurs, it gives a hint that some behaviour of the observed
system is carried out faster as given by the model.
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3. The time difference between the actual time t,,,, and the last occurred event e
is bigger than the annotated d,,,, of all activated transitions:

thow — toce (er) > dmax (t) , V1t > activated 9.3)

In contrast to the previous one, this anomaly indicates that some behaviour is
slowed down.
4. An event occurred that is part of ¢ (¢) of an activated transition ¢, but not all other
events of ¢ (¢) occurred within the given time threshold:

Jer € € (t) : (thow — toce (€k)) > Trhresh 9.4

If this anomaly occurs, events that should occur (nearly) at the same time do
not show this behaviour any more.

9.6.4 Example: Using the PPU Case Study

The presented anomaly detection method has been applied on the PPU case study
plant and tested on the PPU during various runs. To apply the approach, I/O events
of the PLC controlling the PPU have been observed. All sensor events (PLC inputs,
e.g. triggers of light barriers detecting a workpiece), as well as all actuator setpoint
events (PLC outputs, e.g. command motor on or off), have been passed to the
corresponding MSPN. Technically, the events have been compared with a state
automata transformed from the MSPN. Figure 9.20 shows an example of an MSPN

Pl (100010010 )+

Actuator_SorterConveyorTowardsStacker 1 T1
Sensor_SorterLightbarrierCraninterface 1 1
y

( 110110010) T7
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T2

Sensor_SorterLightbarrierCraninterface | I T2
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Sensor_SorterPusheriMovedin |
Sensor_SorterPusheriMovedOut 1

y

100*?ﬁ6}=

% 3
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Fig. 9.20 MSPN of the PPU conveyor in Sc10 and corresponding state graph
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describing the behaviour of the conveyor of the PPU in Scenario Sc10 (for scenario
description, see [Vog+14b]). On the right side of Fig.9.20, the constructed state
graph is shown. For simplicity, the annotated timings are not shown here.

The evolution scenarios of the PPU have been executed consecutively from Scl
to Sc12. MSPNs describing a specific scenario have been used for anomaly detection
of the corresponding following scenario. For example, the shown MSPN from Sc10
has been used for anomaly detection in Scll. Each evolution scenario could be
detected with the anomalies defined above, as long as the evolution scenario resulted
in a change of behaviour observable on the PLC I/Os. The change from Scl to
Sc2, for example, could not be detected because it only includes an increase in
the capacity of the output ramp. There is no change in the timing or order of any
sensor or actuator events. Therefore, this change could not be detected. Most of the
evolution scenarios of the PPU include the introduction of new sensors or actuators
and could accordingly be detected by anomaly detection. In addition, further
abnormal behaviour has been generated to test the anomaly detection mechanism.
This includes arbitrary sensor triggering (e.g. manually triggering a light barrier), as
well as stopping or slowing down workpiece transportation by removing or holding
a workpiece. The anomaly detection mechanism was able to detect these anomalies
during run time.

For further information regarding the application of the anomaly detection
method for supporting evolution, see [LFL16, Lad+14b, Lad+15b].

9.6.5 Related Work: Finding Behaviour Anomalies

Methods for recognising behaviour changes are needed to support the evolution of
systems that may change unintentionally or without model adaptation and analysis.
One method includes observing the system behaviour on the software interface
and comparing it with a model representing the last known behaviour. Such a
method is called anomaly detection. The anomaly detection method described in
this section is mainly oriented on fault detection known from fault diagnosis, for
example [Ise06, HKWO03, AA13, NF15, RLL10, AT12, LL11]. But, in contrast to
fault detection, it is not assumed that a detected anomaly is faulty behaviour. A
semi-automated process supporting to decide if a detected anomaly is intended or
at least acceptable can be found in [Lad+14a]. It is assumed that the behaviour of
the interdisciplinary system is fully discrete on its control interface, that is it can
be observed in terms of input/output events of the software. This assumption holds,
for example for discrete manufacturing systems [Chr06]. However, further methods
also deal with continuous systems [Ise06] or hybrid systems [NF15]. The models to
compare with are assumed to be time-based models having the corresponding events
annotated on their transitions. The method introduced here describes a subset of the
method introduced in [Lad+15a], where also a learning algorithm for automatic
model generation is presented.
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9.6.6 Summary

The here presented approach implements parts of the three-layered framework
(Fig.9.1) for production systems at run time. On the bottom layer, the interdis-
ciplinary process of a production system is monitored in a non-invasive manner
based on input/output signals of the production system. On the middle layer, this
monitoring data are analysed regarding behaviour anomalies. Therefore, an anomaly
detection method for Cyber-Physical Systems was presented that compares actual
system behaviour at run-time with intended system behaviour expressed in signal-
based models. If the observed behaviour contradicts the behaviour of the models, an
anomaly as a potential risk is reported on a high-level model description to the top
layer of the general framework. At this level, the conclusion regarding the potential
risk and impact on the overall security and a suitable reaction to the anomaly can
be made. The approach was evaluated on different scenarios of the PPU case study.
Future work regarding anomaly detection includes to detect failures of the system
based on an interdisciplinary a priori system model and finding anomalies of one
production system by comparing its behaviour with the cyber-physical context of a
distributed knowledge carrying network.

9.7 Conclusion

Preserving security in evolving software systems is challenging due to four main
issues: First, security-relevant knowledge may only be available in a non- or semi-
formal manner. Second, the impact of available knowledge to the security of the
system at hand needs to be assessed. Third, as soon as the system is deemed
insecure, a proper reaction to re-establishing security must be derived. Fourth,
reactions may need to be performed automatically in a running software system.

In this chapter, we addressed these four challenges:

Diverse non- or semi-formal sources of security knowledge. The approach
shown in Sect.9.2 harnesses natural language processing to identify security
requirements in given requirement descriptions, thus allowing to select a small
portion of the overall requirements that deserve specific attention from experts.
Security requirements can be captured systematically using a concept of nested
ontologies that represent global and system-specific security knowledge. The
approach in Sect. 9.3 can then be used to create a formal bidirectional mapping
between security model information attached to architecture specification models
and the program code that implements the security architecture. The approach
in Sect.9.4 extends the security knowledge by formalising and documenting
contextual information from—if only—implicitly made assumptions about the
security-related design decisions and from the system run time. These explicitly
captured context prerequisites provide a formal relation between threats or
vulnerabilities and security patterns on architectural level.
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Assessing the impact of new security knowledge. The approach in Sect.9.2
includes a concept of co-evolution rules that are triggered by specific changes
to the security knowledge. The rules are designed in such a way that security
weaknesses resulting from the changed knowledge can be detected and repaired.
The approach in Sect.9.3 relates security information to architecture model
elements, which is also used for monitoring the application security. The
approach in Sect.9.4 uses the captured security prerequisites to assess the
architectural validity of the security elements. In case of evolutionary changes to
the software itself or in its context, prerequisites are used as a parameter for the
architectural security analysis to check whether an attack type can then exploit
a vulnerability or whether a security pattern still mitigates a specific threat.
The approach in Sect.9.5 proposes the use of run-time monitors for security
properties required by the system design. Using techniques like process mining
and heuristic indicators, raw monitoring data can be used to map running code to
parts of the system design. The approach also proposes to compare anticipated
and actual system behaviour to detect suspicious behaviour; however, it leaves
open how this comparison is realised. A solution for the domain of production
automation system is offered by the approach in Sect.9.6, which expresses
behaviour in learned models as a system specification, which is compared to
actual system behaviour to find relevant violation at run time. These anomalies
are provided to a human operator as high-level descriptions of suspicious
behaviour.

Guiding architects and developers to (re)establish security. The approach in
Sect. 9.2 proposes co-evolution steps to the human developer. A model-based
security verification strategy is used to efficiently determine whether a partic-
ular co-evolution restores security requirements that were satisfied before the
evolution step. The approach in Sect.9.4 persists the extended knowledge in
reusable extensible model-based catalogues. They are integrated into software
architectures using tailored profiles and support architects in decision-making
processes in case evolutionary changes impact the secure state of the system. The
approach in Sect. 9.6 provides identified anomalies to a human operator as high-
level descriptions of suspicious behaviour. By establishing an anomaly detection
mechanism at run time, the approach guides human operators to find potential
vulnerability in a complex, interdisciplinary environment in order to allow him
to (re-)establish security by adapting the CPS or its environment.

Adapting the system to ensure and restore security. The approach in Sect. 9.5
makes a system run-time adaptable to realise ad hoc reactions to security
incidents. By providing adequate precautions at design time, such as alternative
components or fail-safe states, the system can be adapted at run time by switching
between the available components or deactivating critical system parts. This way,
the risk when a security incident occurs during run time is reduced.
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In concert, these contributions allow to systematically capture, evaluate, and react
to the evolving security knowledge. Based on these contributions, architects and
developers are guided in addressing possible changes to the security knowledge
and the resulting security loopholes in advance. Rather than in the ad hoc security
engineering style of “fixing loopholes”, security is managed in a systematic and
by-design manner, thus allowing to better protect valuable assets in the face of a
constantly changing environment.

9.8 Further Reading

Capturing and Leveraging Context Knowledge to Preserve Security Require-
ments During Design and Run Time At the time of writing, there is ongoing
work on improving this part of the approach, especially focusing on the run-time
phase and coupling design time and run time. Initial publications already exist
[Biir+18, VKK17]. Moreover, research results are brought into the CARiISMA
platform [Ahm+17].! Relevant results also have been produced by taking part in the
ViSion project [AJ16].> The project is focused on privacy, which can be considered
highly related to security. The contribution focuses on model-based privacy analyses
of socio-technical systems.

Integrating Security Models with Program Code The integration of architecture
models with code is subject to the work of Konersmann [Konl8]. It is based on
the idea of embedded models by Balz [Ball1]. The tools for creating and executing
translations between architecture-related program code and models are available
on https://codeling.de. Konersmann et al. describe variants of this approach, for
example for integrating deployment model information [KH16] or behaviour
models [KG15] with program code and the use of integrated model information
for locating and understanding errors [Kon14].

Anomaly Detection in Production Systems at Run Time Modelling the state
of production system in signal-based Petri Nets has been presented by Ladiges
et al. in [Lad+15a]. Further, anomaly detection is also defined for the material
flow of a production system in [Lad+15c]. Malicious anomalies and their relation
to production system is classified by Reichert et al. [Rei+17]. How to handle
such anomalies within an ongoing evolution process is shown in [Lad+14a], and
a fitting semi-automated decision process with a human in the loop targeting

Thttps://rgse.uni-koblenz.de/carisma/.
Zhttps://cordis.europa.eu/project/rcn/194888_en.html.
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anomalies of production system is presented in [Lad+14b]. Finally, Haubeck et al.
[Hau+14a, HLF18] lay out how changes and their resulting anomalies can be
managed within a knowledge carrying software.
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Missing knowledge about the system is often one of the root causes of failed
software evolution in practice. For example, the well-known failed maiden launch
of the Ariane 5 rocket [Dow97] can be attributed partly to missing knowledge
about the behaviour of a software system reused from the Ariane 4 rocket. The old
software was integrated into the Ariane 5 rocket, which, however, had a different
flight trajectory compared to the Ariane 4 rocket. That integration problem led to a
value conversion error eventually causing the self-destruction of the rocket.

This very costly error serves as an illustrative example of the effects of missing
knowledge during the evolution of systems. One of the focus areas of the priority
program aims at providing “Knowledge Carrying Software”, that is avoiding miss-
ing knowledge in the first place. The other focus areas, “Methods and Processes” and
“Platforms and Environments for Evolution”, enable knowledge-carrying software.

For successful evolution, knowledge not only about a piece of software but also
about its environment, hardware, network, other software, libraries, and ecosystem
is needed. Furthermore, users are an important part of the environment, and thus
knowledge about the number of users, their different roles as stakeholders in
the software, and their behaviour is equally important. For the software itself,
knowledge about its structure, that is architecture and design, and its behaviour,
is required.

Based on the joint automation case study, the Pick and Place Unit (PPU) (see
Chap. 4), several projects in the priority program address the process of acquiring
such missing knowledge, that is they support the learning of missing knowledge as
a prerequisite for successful software evolution.

Those projects provide different approaches to learning. One group of
approaches takes a look at past evolutions of the software. This enables, for
example, the identification of typical evolution steps or the understanding of how
the evolution of one part of the software triggers changes in another software part.

Another group of approaches addresses the present state of the software and the
impact of software evolution. Particularly, those approaches enable understanding
and assessing how a planned software evolution affects the satisfaction of require-
ments. A complementary aspect is to learn about the behaviour of the system,
including its environment, to ensure that non-functional requirements are satisfied.

The final group of approaches addresses future evolutions. For example, future
evolutions can be semi-automatically predicted based on the learned knowledge, for
example, about past evolutions done by engineers on the same system or similar
systems.

In summary, the approaches support engineers to understand the past evolution of
a system, assess present evolution scenarios, as well as recommend future evolution
scenarios. Hence, they enable learning from evolutions for evolutions.
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Figure 10.1 shows these approaches and their relations. Section 10.1 covers the
approaches analysing past evolutions, Sects. 10.2 and 10.3 cover present evolutions,
and Sect. 10.4 covers future evolutions.

Past The foundation of the other presented approaches is the detailed analysis of
historical changes. The approach of Sect. 10.1.1 analyses two versions of models to
derive partially ordered sets of detailed changes reflecting the editing semantics of a
particular modelling domain. The approach presented in Sect. 10.1.2 draws on this
work to analyse the co-evolution of multiple models. Particularly, it supports the
computation of co-evolution metrics, which show how much changes in one model
result in changes in other models.

Present Two categories of approaches support the evolution of the current system.
In Sect. 10.2, functional properties of the current system for small changes are
verified using formal verification approaches. Section 10.3 contains two approaches
to analyse the non-functional behaviour of systems. On the one hand, timed Petri
Nets are learned from behavioural traces of the running system in order to analyse
performance and flexibility. On the other hand, Markov chains are learned based
on the running system under an evolving environment to continuously check the
satisfaction of reliability requirements.

Future Finally, three approaches for assessing and recommending changes for
future system evolutions are covered by Sect. 10.4. The first approach in Sect. 10.4.1
supports recommending model evolutions based on the approach for analysing past
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evolutions presented in Sect. 10.1. Similarly, evolution steps of one system can be
applied in future evolutions to other similar systems using the approach presented
in Sect. 10.4.2. Third, economic aspects in the recommendations of evolutions are
covered by the approach discussed in Sect. 10.4.3.

10.1 Detailed Analysis of Past Evolutions of Models

Model-based software engineering is the main focus of the SPP projects analysing
past evolutions. Model-based software engineering has become a widespread
approach for developing software in many application domains, for example for
embedded systems in the automotive domain, and is one of the cornerstones to
effectively manage the evolution of long-living software systems. In this section, we
present techniques that have been developed in the SPP as a fundamental basis for
analysing evolutions of model-based systems. In contrast to previous approaches,
our achievements particularly enable analyses exploiting fine-grained yet precise
and meaningful information about model changes. We consider two different kinds
of model evolution. First, in Sect. 10.1.1, we consider the linear evolution of
monolithic models, that is the chronological evolution of models that are treated as
self-contained development documents. As a second kind of evolution, we address
the co-evolution of coupled models in Sect. 10.1.2, that is the parallel evolution of
models, which represent different views or aspects of a system but that are logically
and/or physically interrelated. Related work is considered in Sect. 10.1.3 before we
conclude in Sect. 10.1.4, along with some pointers for further reading in Sect. 10.1.5.

10.1.1 Analysing Linear Evolution of Monolithic Models

Precise and meaningful descriptions of changes between revisions of models
of long-living software systems are of utmost importance in understanding and
analysing the evolution of a model-based system and can be considered as a
basic form of knowledge about a software (see Chap. 1). However, during model
evolution, model modifications are often conducted without proper documentation,
for example by recording somehow the model changes that are applied. Even if
so0, the recorded changes are often of minor quality, or they get lost or unusable
when models are exchanged across tool boundaries in a model-based development
tool chain [Kii0O8, Ruh+14b, Keh15]. Moreover, revisions of a model may not
be created by manual editing at all but, for example, by reverse engineering
from other implementation artefacts [Keh+13a] or by observing and learning from
the behaviour of an actual running system [Pie+18] (see also Sect. 10.3). Thus,
descriptions of model changes often can only be reconstructed by comparing the
different versions of a model with each other, that is by using model differencing
techniques. Thus, the calculation of a difference (also referred to as delta in
Chap. 2) between two models is one of the most basic operations for supporting
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Fig. 10.2 Overview of the MOCA model differencing pipeline and related meta-tool chains

various kinds of model evolution analyses. In this section, we present the model
differencing techniques that have been developed in the modular content archives
(MOCA) project and that are implemented in the model differencing framework
SiLift [Keh+12b], a set of Eclipse plug-ins realised on top of the widely used Eclipse
Modeling Framework (EMF) and publicly available from the SiLift website.! In the
remainder of this section, we first motivate our main technical research goals before
we present an overview of our approach for achieving these goals. Finally, we give
a selected set of example applications using these techniques for various kinds of
evolution analyses and other development tasks in the context of model version and
variant management.

Motivation and Goals

Traditional differencing techniques work on textual representations of documents
and present document changes in terms of additions and deletions of lines of text.
While this produces satisfactory results for source code and other kinds of textual
documents, it is commonly agreed that comparing textual representations of models
does not produce usable results [BEO8, Emal2] and that models should be compared
on the basis of graph-based representations. To that end, the internal structure of a
model is typically considered as a typed, attributed, partly ordered graph, which is
known as the abstract syntax graph (ASG) of this model. A meta-model such as, for
example, the Unified Modeling Language (UML) meta-model, defines the allowed
node and edge types, as well as additional well-formedness rules.

The usual processing pipeline employed by standard model differencing tools
consists of the first two steps, depicted in the lower part of Fig.10.2 (white
coloured), referred to as matching and difference derivation: Initially, given two
input models that are to be compared, a matching procedure [Kol+09] searches
for pairs of corresponding ASG elements, which are considered the same in

Uhttp://pi.informatik.uni-siegen.de/projects/SiLift.
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both models. Subsequently, a difference is derived as follows: ASG elements not
involved in a correspondence are considered to be deleted or created. However,
describing model changes based on such primitive graph operations leads to low-
level differences, which are hard to understand for tool users who are not familiar
with the ASG-based representation of models and the related types of nodes and
edges defined by a meta-model. Such “meta-model-based difference reports” are not
intuitive, are confusing and Are of minor quality for many kinds of model evolution
analyses [Alt+09, KKT12].

The main goal of the MOCA project is to lift model differencing techniques
to the level of edit operations that tool users are familiar with and that capture the
true nature of model changes. Elementary operations are the smallest edit operations
from a user’s point of view, that is they cannot be split into smaller operations, being
applicable to a model in a meaningful way. In principle, one can construct arbitrarily
many complex edit operations from elementary ones. An important criterion is that a
complex edit operation is easier to understand than the single contained elementary
edit operations. This includes complex edit operations such as model refactorings
and other kinds of evolutionary edit operations that increase the understandability of
model changes and that incorporate language-specific editing semantics. Concrete
examples may be found later in this chapter in Sect. 10.4. Besides increasing the
quality of model differences, the calculation of such high-level differences should
scale up to real-world models comprising several thousands of model elements.
Finally, since meaningful edit operations are highly specific for a given modelling
language, the developed techniques shall be adaptable to domain-specific modelling
languages with moderate effort.

Overview of the Approach

An overview of the model differencing approach and techniques developed in
the MOCA project is illustrated in Fig.10.2. As shown in the bottom part of
the figure, the differencing of models takes place in several steps. The first two
steps, referred to as matching and difference derivation (white-coloured boxes),
constitute the usual model differencing pipeline, as described above. In brief, the
matching step identifies the corresponding ASG elements in two models, while
the difference derivation step derives a low-level difference in terms of creations
and deletions of single ASG elements. The extended differencing pipeline, as
developed in the MOCA project, comprises two further steps, which we refer
to as semantic lifting of low-level model differences and the generation of edit
scripts, respectively. To be adaptable to a given modelling language, both steps
take the edit operations available for this language as configuration input. We use
Henshin [Are+10, Str+17], a model transformation language and system based on
graph transformation concepts [Ehr+06], in order to specify edit operations (a.k.a.
edit rules) in a precise, declarative, and rule-based manner. Several meta-tools have
been developed in the MOCA project in order to support the development of sets of
both elementary and complex edit rules (upper part of Fig. 10.2).
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Semantic Lifting of Low-Level Model Differences The goal of this step is to
group a potentially large and unstructured set of low-level changes in such a way
that model differences are explained in terms of edit operations. To that end, the low-
level difference derived from a matching needs to be further processed by a semantic
lifting component that identifies sets of low-level changes (called semantic change
sets) that represent the effect of an edit operation.

In [KKT11], we present a technique for designing tool components that can
semantically lift model differences. In our approach, difference information is
structurally represented on the level of the ASG, and each edit operation leads
to a characteristic change pattern in this difference representation. Thus, finding
groups of related low-level changes is basically a pattern matching problem. We
use the matching engine of the Henshin interpreter in order to solve this problem.
The main task to adapt a semantic lifting component to a given modelling language
is to provide a set of so-called recognition rules, which find groups of related low-
level changes and which annotate these groups accordingly. We automatically derive
these recognition rules from their corresponding edit rules.

The recognition rule application algorithm is efficient in the sense that it runs
without backtracking. All recognition rules are applied in parallel, which is possible
due to the parallel and sequential independence of recognition rules. Since this rule
application strategy can lead to too many change sets, that is there can be several
alternatives, of which one needs to be chosen eventually, the initial set of semantic
change sets must be post-processed in order to obtain a partitioning of the overall
set of semantic change sets. This is basically an optimisation problem with respect
to some notion of quality of model differences, for example a minimal number of
semantic change sets. In [KKT11], we present an efficient heuristic that aims at
producing a partitioning comprising a minimal number of change sets. If the set
of edit rules used as configuration input is complete in the sense that every possible
model difference can be expressed without producing so-called transient effects, it is
guaranteed that a partitioning can always be found. Practically, this means that there
is an editing sequence in which the effect of every edit operation applied in that
sequence is either removed completely by a later operation or is entirely preserved.

Experimental results obtained from different subjects show that the number of
editing steps contained in a difference can be drastically compressed by semantic
lifting. The compression rates vary depending on the model type and test series. For
UML, compression factors of up to 18.0 were measured [KKT11]. Furthermore,
results from stress testing our prototypical implementation of the semantic lifting
engine show that the approach also scales for models of realistic size.

Generation of Edit Scripts Semantic lifting addresses the question on how to
recognise the executions of edit operations in a given low-level difference. However,
this technique identifies edit operation executions, also referred to as edit steps, only.
This is useful for better understanding changes but not sufficient for some kinds
of analyses or for replaying model differences in change propagation scenarios.
Actually, two further details are required to generate executable differences, namely
the actual parameters used as arguments of edit steps, as well as dependencies
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between edit steps. In [KKT13], we introduce an extended kind of model difference,
which we refer to as edit script. Technically, an edit script is a complex data structure
that contains (1) representations of the detected edit operations, including mappings
of the parameters to objects in the low-level difference, and (2) representations
of dependencies between these edit steps. Each dependency is annotated with
information about its reason, for example one step produces model elements used
by a later step. From a conceptual point of view, an edit script is a partially ordered
set of edit steps.

Techniques for realising the parameter retrieval and dependency analysis steps in
our differencing pipeline have been presented in [KKT13]. A particular challenge
is to provide an efficient implementation of the dependency analysis. In general,
two edit steps depend on one another if they can be executed in one order and
not in the other order or lead to a different effect if executed in the reverse order,
that is they do not commute. Obviously, testing this condition for every pair of edit
steps is infeasible if model differences get large. To reduce the set of candidates for
dependencies that have to be checked, all pairs of edit rules are statically analysed
for potential dependencies using critical pairs [Ehr+06], which demonstrate a
potential dependency between edit rules in a minimal context. Roughly speaking,
a potential dependency between a critical pair of rules is an actual one between the
applications of these rules if the minimal rule application of a critical pair can be
embedded into the actual model changes [KKT13].

Adaptability of the Tool Environment The adaptability of the tool environment to
specific (domain-specific) modelling languages has been addressed by various meta-
tools, as indicated in the upper part of Fig. 10.2. Although being an exchangeable
component in our differencing pipeline, our own model matching engine, which is
known as the SiDiff model matcher, is adaptable by a dedicated language for spec-
ifying matching strategies and algorithms [Keh+12a] (not shown in Fig. 10.2. The
configuration of the lifting algorithms is supported by an edit rule generator, which
generates, for a given meta-model, a complete set of elementary edit operations
as Henshin rules [Keh+13b, Keh+16] (see upper part of Fig. 10.2). Following the
principle of model transformation by example [Kap+12], more complex edit rules
may be deduced from example models using the inference techniques presented
in [KAH17]. Finally, Henshin has been extended by an optimised static analysis of
potential conflicts and dependencies between transformation rules [Bor+17]. New
theoretical results on the critical pair analysis for amalgamated graph transforma-
tions [TG15] pave the ground for the analysis of complex edit operations.

Example Applications

The concepts and tools developed in the MOCA project have been applied and
evaluated in several collaborations with other research projects. In all these collabo-
rations, configurations of our generic components for specific modelling languages
and other kinds of structural documents have been developed. The results of
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applying our tools were used for a variety of purposes, notably to solve concrete
problems that occurred in other projects of the priority program. In the remainder of
this section, we give a selected set of example applications.

In a research collaboration between the projects IMOoTEP and MOCA, an
approach and supporting tool for reasoning about software product-line evolution
using differences on feature models has been developed [Biir+16]. A specific
contribution of this collaboration is complex edit operations, whose semantic
impact on the set of valid feature configurations can be classified semantically as
refactoring, generalisation or specialisation of a feature model. We applied this
differencing approach to the evolution of a feature model of the PPU and showed
that it is possible to semantically classify feature model differences by using a
structural model comparison approach instead of a solver-based solution. More
details and further results of this research collaboration can be found in Chap. 7.

In a cooperation between the projects SecVolution and MOCA, a specific
component for lifting low-level differences between ontologies has been developed.
The general goal was the same as in the cooperation with IMoTEP, namely to
get a more abstract, meaningful view on ontology changes by using complex edit
operations. This more abstract view enables more adequate planning for changes in
other dependent models, such as the security maintenance model [Ruh+14b].

The differencing techniques developed in the MOCA project are used to capture
model changes in terms of edit operations within the methodological framework
for statistically modelling the evolution of models presented in [Yaz+16]. A main
motivation for, and application of, the resulting statistical models is to control the
generation of realistic model histories that are intended to be used for evaluating
model versioning tools [Yaz+14]. Further usages of the statistical models include
various forecasting and simulation tasks. The suitability of the framework is shown
by applying it to a large set of design models reverse engineered from real-world
Java systems [Keh+13a].

We also evaluated the applicability of the techniques developed in the MOCA
project using one of the main case studies of the SPP; the “Pick and Place Unit”
(PPU) (see Chap.4). As a contribution to this case study, we analysed the evolution
of the SysML models of the 14 evolution scenarios that have been developed
in the first funding period of the SPP. In this study, the developed difference
calculation techniques were an effective tool to detect several inconsistencies in
the SysML models. Such inconsistencies could be spotted, for example, due to
low-level differences between successive evolution scenarios, which could not be
entirely lifted to the abstraction level of edit operations. Based on the analysis
results, all inconsistencies could be resolved in a collaboration between the projects
MoDEMAS and MOCA.

Finally, high-level descriptions of model differences can also assist developers
in better understanding the formal specifications of the behavioural differences
between two software revisions, for example in the context of the regression
verification approach presented in Sect. 10.2.
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10.1.2 Analysing Co-evolution of Coupled Models

The development of complex software systems is typically supported by a set of
interrelated (a.k.a. coupled) models specifying the system from different viewpoints.
In sum, all of these views must reflect a consistent description of the system. Since
it is natural that each of these models may change autonomously over time, model-
based software evolution is also concerned with model co-evolution. Developers
are faced with the problem of consistently co-evolving the different views of the
system; that is, the different views must yield a consistent overall description
of the system. A basic prerequisite to support developers in achieving such a
consistent co-evolution is to understand the co-evolution of coupled models in a
particular domain. Getting such an understanding of typical model co-evolutions
is the main motivation for analysing the historical co-evolution of coupled models.
To that end, an adaptable co-evolution analysis framework has been developed in
a joined work by the projects ENSURE and MOCA. The framework draws on the
techniques presented in Sect. 10.1.1 and enables statistical analyses of co-evolving
models on top of the calculated changes. We present an overview of the analysis
capabilities and summarise our results of applying the analysis framework to co-
evolving software architecture and quality of service models of the PPU to get a
deeper understanding of the nature of consistent co-evolution steps of these kinds of
models.

A Generic Framework for Analysing Model Co-evolution

Our co-evolution analysis framework takes a version history of interrelated models,
referred to as My, and M, in Fig. 10.3a, as input. A pair of successive model ver-
sions i — i + 1 from the given history is referred to as evolution step ev;;+1, and
we assume that the co-evolution history is comprised of consistent evolution steps.
We first calculate the model differences di f f (M;, M; 1) between successive model
versions M; and M;, of each evolution step. Thereupon, two kinds of quantitative
analyses are supported by our co-evolution analysis framework [GRK14].

For the first analysis, we compute a correlation between the kinds of changes
of the interrelated models, where the kinds of changes are formally captured by the
sets of available edit operations for the source and target model type, respectively.
Basically, we count the applied changes for each evolution step in both the source
and the target model and compute the Pearson correlation coefficient [LL89] for all
combinations of the different kinds of changes to assess the dependencies between
the respective edit operations.

The correlation analysis has the advantage of only requiring the source and target
models and the respective model changes as input. Thus, this approach can also
be applied to study the co-evolution history in cases where no explicit trace links
between the observed source and target model exist. However, a correlation between
the observable changes does not imply causality.
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Fig. 10.3 Analysing co-evolutions. (a) Correlation analysis. (b) Coupling analysis

Hence, we provide a second analysis function referred to as coupling analysis,
which allows us to identify so-called coupled changes. A coupled change is actually
a pair of changes that happened in the same evolution step and where the affected
model elements in the interrelated models are connected either directly or indirectly
via trace links. In other words, the elements were not just coincidentally changed in
the same evolution step. Connectivity of model elements may be formally specified
by a graph pattern that relates the model elements of the source and target model,
which are connected by trace links. We refer to these graph patterns as trace impact
patterns. They are provided as additional domain-specific input parameters to guide
the coupling analysis (see Fig. 10.4b).

Case Study on Architecture and Fault Tree Co-evolution

In a first exploratory step of our research on model co-evolution, we worked on
understanding the co-evolution between architectural models and quality evaluation
models (which we informally define here as models exposing a well-defined seman-
tics amenable to various kinds of reasoning techniques). For that, we manually
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developed architectural and fault tree models [Ves+81] of the PPU for every
safety-relevant evolution scenario. Based on these models, we first performed a
qualitative analysis of the co-evolution that showed that the relation between change
operations (e.g. addition/deletion of a component or an event) between fault trees
and architectural models is not straightforward and that user interactions are needed
for some cases [Get+13].

Figure 10.4a and b show the results of the quantitative analyses on the architec-
tural and fault tree models for the evolution steps of the PPU using our co-evolution
analysis framework. For example, there exists a high linear correlation (0.96) for
additions of component types and additions of error types. However, looking at the
results of the coupling analysis in Fig. 10.3b, we can trace only 17% of the addition
of component types to additions of an error type. Instead, in 39% of the cases, the
added component type is traced to an existing error type, that is one that was created
in a previous scenario.

Without going into the details of the analysis results presented in Fig. 10.4a
and b, the most important result is that both the correlation and the coupling
analysis confirm our qualitative results [Get+13] for this case study that no simple
and straightforward co-evolution of fault tree and architectural models exists that
could be automated. However, the analysis results could be exploited in a co-
evolution framework supporting model co-evolution as a recommender system (see
Sect. 10.1.5).

10.1.3 Related Work

Valuable information can be uncovered by analysing the evolution of software
systems and generalising the analysis results, as actively pursued by the Mining
Software Repositories research community (see, e.g., [DAm+08]) with the ultimate
goal of improving software engineering techniques, methods, and processes. Tra-
ditional approaches to software evolution analysis focus on classical code-centric
software development where source code files are used as the primary development
artefacts [KCMO7]. However, software and system models are another kind of
primary development artefact that are an integral part of a model-based system.
Models typically have several characteristics that are substantially different from
those of traditional source code documents, which demands for new methods and
techniques in the context of software evolution analysis [BEOS, Emal2, Alt+09].
Since the advent of model-driven engineering, model differencing has been
addressed by a large number of publications; surveys can be found in [FW07, Sel07].
One class of approaches is based on logging [HK10]; that is, editing processes
are logged at the level of user commands or lower levels. Thus, the problem
addressed by our model differencing approach disappears. However, logging-based
approaches require closed environments and do not work with independently created
models; thus, they are not a general solution of the problem. Most state-based
approaches have a similar processing structure like the basic differencing pipeline
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Fig. 10.4 Analyses results for the PPU case study. (a) Correlation between change elements of
fault trees and architectural models. (b) Coupling analysis between change elements of fault trees
and architectural models

shown in Fig. 10.2. They concentrate on the matching step of the differencing
calculation [Kol+09], while they have in common the fact that they deliver only
low-level model differences. The semantic lifting of model differences, as pursued
by the MOCA approach, has been addressed by only a few approaches, however
with different goals and assumptions compared to ours. Among them, the one
presented by Langer et al. [Lan+13] is the most similar to ours. They use a
custom format of edit operation specifications for detecting complex operations in
differences that are obtained from EMF Compare. This approach does not intend
to produce executable edit scripts that are being used as patches. Consequently, the
identification of arguments, dependencies between operation invocations, etc. are
not directly addressed.



268 S. Kogel et al.
10.1.4 Conclusion

The specification and calculation of model changes is a cross-cutting concern for
supporting the evolution of long-living model-based systems and a fundamental
basis for various kinds of evolution analyses. In Sect. 10.1.1, we presented the
differencing techniques that have been developed in the MOCA project, along with
a summary of selected applications for analysing the linear evolution of monolithic
models. Most of the applications have been developed in cooperation with other
research projects of the priority program. The presented case studies show that the
information that may be extracted from high-level differences generated by our
approach are much richer than for conventional model differencing or text-based
difference tools. Thus, significant improvements could be achieved for many kinds
of model evolution analyses.

In addition to the analysis of the linear evolution of monolithic models, we
presented quantitative techniques for the analysis of model co-evolution, that is how
changes in one model affect changes in the other model, in Sect. 10.1.2. The analysis
techniques have been integrated into a general co-evolution analysis framework,
which has been implemented on top of the differencing techniques presented in
Sect. 10.1.1. The overall goal of the framework is to assist domain engineers in
finding proper co-evolution rules, which can be finally used to support developers in
the co-evolution process. The analysis framework has been instantiated to perform
a thorough quantitative analysis of co-evolving architectural models and fault trees
of the PPU. We show that the models do not co-evolve in a systematic, automatable
way, and instead the expertise of the developer is required to achieve consistent co-
evolution, confirming the findings of previous research in this context. Nonetheless,
the results could be finally exploited to develop a set of model transformation
rules supporting model co-evolution through a recommender system for model co-
evolution (see Sect. 10.1.5).

10.1.5 Further Reading

In addition to the evolution analyses discussed in Sect. 10.1.1, exact and meaningful
specifications of model changes, as provided by the MOCA approach, are an
indispensable basis for many further software evolution activities (see Sect.2.1).
In particular, our model differencing approach has been used as a fundamental basis
for many techniques supporting model configuration management, an inevitable
discipline to manage the evolution of long-living software systems (see Sect.2.3).
Tools and tool functions that have been developed in the MOCA project include, for
example, tools for updating local workspace copies [KKR14] and for propagating
changes between variants in a product family [KKT14] and a complete environment
for developing delta-oriented model-based software product lines [Pie+15, Pie+17].
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Recently, we have started to apply our evolution analysis techniques to the
field of automated model repair, inspired by the manual inconsistency resolutions
as performed in the context of the PPU case study (see example applications
in Sect. 10.1.1) The basic assumption is that inconsistencies are introduced by
incomplete editing processes, and the idea is to automatically propose the necessary
complementing edits to resolve an inconsistency [Tae+17, Ohr+18]. However, fur-
ther research is needed to localise the origin of an inconsistency in the development
history of a model, to develop strategies of how to deal with other conflicting edits
that have been performed in the meantime, and to also offer (partial) undo operations
as another repair alternative. Another promising line of research is to mine existing
model histories for typical model repairs that have been actually performed by
developers. The idea of history-based model repair recommendations can be
generalised to develop a much broader set of recommender systems supporting
developers in a variety of model evolution tasks. We will present more general
notion of a recommender system for model-driven development later in this chapter
in Sect. 10.4.1. The ultimate goal is to speed up modelling by automating repetitive
tasks and to warn developers when they make atypical changes to a model. As we
will see in Sect. 10.4.1, the methods and techniques developed within the SPP are a
suitable basis for further research into this direction.

Concerning the co-evolution of models, understanding the nature of co-evolution
in a particular domain is only the first step to reach the overall goal of support-
ing developers in achieving consistent model co-evolution. This is particularly
challenging when co-evolution is not straightforward, as in the case of architec-
tural and quality evaluation models. To that end, we developed the CoWolf tool
suite [Get+15b], a generic yet adaptable framework that implements the idea of
using a recommender system in order to support model co-evolution, focusing on
the co-evolution of architectural and quality evaluation models. CoWolf currently
supports seven different types of models: state charts, component diagrams, and
sequence diagrams as architectural models, and discrete time Markov chains
(DTMC), continuous time Markov chains (CTMC), fault trees, and layered queuing
networks (LQN) as quality evaluation models. In fact, the results of a co-evolution
analysis may be exploited by CoWolf to propose the most suitable co-evolutions
when one of the interrelated models undergoes structural changes; that is, the
co-evolution analysis serves as a machine learning approach to improve the
effectiveness of the recommendations. Based on our analysis results presented, we
tailored a CoWolf instantiation towards architectural models and fault trees, and
research results obtained from an experiment based on the PPU case study show
that the approach indeed has the potential to significantly reduce the manual effort
for consistently evolving the respective kinds of models [Get+18].
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10.2 Formal Analysis of Planned Changes

Automated Production Systems are long-living multi-disciplinary systems that are
often operated for several decades. Therefore, automated Production Systems (aPS)
often faces change requests due to various reasons, for example to fix bugs, to
implement additional functionality, or to come up with some technology trends. For
this present evolution, as introduced in the introduction of this chapter, see Fig. 10.1;
analysis of the implementation and evaluation of the evolved system regarding
functional and non-functional aspects confirms the outcome of the change. In
principle, there are two categories of solutions for ensuring software correctness:
testing and formal verification. Testing is widely used for fault detection because of
its usability. However, the guarantees that it can provide is naturally limited to the
specified test cases, which in most cases cannot cover the entire system behaviour.
On the other hand, formal verification can provide proof that a system conforms
to its specification in all possible situations. In spite of this nice coverage property,
formal methods are not commonly used for quality assurance since they require a
high level of expertise to be able to come up with suitable models and specifications.

Within the two SPP1593 projects, MoODEMMIiCAS (Model-Driven Evolution
Management for Microscopic Changes in Automation Systems) and Improve APS
(Regression Verification in a User-Centered Software Development Process for
Evolving Automated Production Systems), we want to enable the engineer to
incorporate formal techniques into their development process. We will achieve this
via two different directions: one is the model-based verification of interdisciplinary
aPS combined with the incremental verification of their evolution, and the other is
user-centred regression verification for the software.

The development of aPS is a complex task as it brings together at least three
different disciplines in one system: mechanical, electrical, and software engineering.
To date, each of the involved engineers works independently on a solution, and only
then that the results of the engineering of each are finally integrated into one system.
However, high-quality designs can be achieved by considering all the disciplines
simultaneously [BFB14], and furthermore, shorter development cycle is required
for a shortened time for marketing in order to handle ever-changing customer needs
[KVDO1]. Consequently, the challenges of integrating multi-discipline artefacts and
ensuring the correctness of the system arise.

The other characteristic of the aPS is that the software often changes and the
scale of the change is usually small. In other words, under the assumption that
the previous version of the system confirms previous specification, Regression
Verification [Bec+15] overcomes the need for function specification by letting the
old version of the software serve as a partial specification of the new revisions where
the preserved behaviour is expected. The developer profits from both versions in that
they gain additional knowledge about the system.

As a possible situation, a developer from one of the disciplines wants to change
the model. Through the development process, the application engineer is informed
about how the implemented change on a specific domain model affects the overall
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system in view of the quality of the system. Another situation we can regard is that
the application engineer revises the code of the automated system. During this code
revision, the developer can execute the verification of the preserved and changed
functionality and correct the code by using the information from the verification
tool chain. Both approaches are based on the characteristic of aPS that changes are
usually small variations, and this characteristic facilitates the inclusion of formal
verification within the development process. In Sect. 10.2.1, we consider a model-
driven evolution management, and Sect. 10.2.2 considers a user-centred software
development using regression verification (see Chap. 11 for the detailed techniques
of the formal verification used in the approaches)

10.2.1 Using Model-Based Verification of Interdisciplinary
Models

In almost every engineering discipline, models are used to cope with system
complexity. In addition, they are used as reusable and analysable artefacts to bridge
the conceptual gap between requirements and target system implementations. A
variety of sophisticated approaches exists for visually representing interdisciplinary
models [SW10, Bas+11, Thr13]. However, our focus is on a formal model-based
approach to manage the evolution of aPS, which integrates suitable means for
quality assessment and automatic verification assuring model correctness in an
interdisciplinary way.

In the MoDEMMIiCAS project, we model the aPS based on the FOCUS theory
[BS10], which is based on a (formal) foundation and provides well-elaborated
notions of the system components and their interfaces, composition, and refinement.
By that, formally verifying the functional conformance of the aPS’ behaviour based
on the composition of components, that is the system’s architecture, is possible.
Furthermore, the approach is fundamentally viewpoint based, providing three
different viewpoints onto the aPS, which refer to different engineering concerns:
requirement, process, and system. The system viewpoint consists of three scopes
(see Fig. 10.5):

* Context Scope mainly contains information about the geometry of mechanical
components.

* Platform Scope comprises everything from the sensor/actuator interface with the
context scope to the programmable controller’s variables available interfacing the
software scope.

* Software Scope contains a model of the software architecture, including its
components and their behaviour.

In order to ensure system correctness regarding the availability requirement
as a part of the quality assurance of the aPS, the system behaviour model is
extended with deviation models, which represent fault occurrences and effects of
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the system components [Mun+17]. Within the presented approach, our focus was
on the availability as a degree of correctness rather than binary distinction (i.e.
correct or incorrect). Based on the extended specifications (i.e. deviation models),
the actual behaviour of the plant is verified by means of failure definition and
aggregation models and finally compared to requirements based on models of
availability metrics. This is realised by translating the model for the probabilistic
model-checker PRISM. The deviation model consists of three components, namely
an input and output filter to model the altered behaviour of the component under
consideration and an activation function (act) that represents the (de-)activation of
those filters. In an aPS, faults may occur in the system’s software, platform, or
mechanical context. The exemplary case using extended Pick and Place Unit (xPPU)
and the detailed verification procedure of this approach is described in Chap. 11.

Towards incremental model change verification, we consider the integration
of verification technique (i.e. model checking) into a continuous integration (CI)
environment. Maintaining high quality is the most important piece of delivery in
a CI environment. Most development frameworks improve software efficiency by
implementing automated processes, as well as imposing checks on the model. CI
takes it a step further by finding any model integration issues by compiling the
model as soon as the developer checks it in and running unit tests. Build status
and unit test catch the initial errors in the model during compiling. However,
those tests are insufficient to catch the deployment- and integration-related errors.
Furthermore, continuous build and test systems today are used as part of the
development activities to control and improve the process of software creation in
software engineering domain [DMGO07] and for the software of the aPS [Vogl5].
However, adapting CI for other disciplines of aPS is challenging [Vog15].

Within the CI environment, incremental changes are applied on a regular basis
to the aPS model and are integrated continuously. To ensure a conformance level of
the overall system quality, continuous verification techniques that provide support
for incremental and compositional verification are required [Vog+15c]. In other
words, instead of checking the entire system model each time a change is applied,
incremental and compositional verification is limited to the changed parts and the
affected parts of the system model, as well as the environment model. Within
CI, verification is organised along an increasing verification scope, starting with
verifying the software in isolation (Fig.10.6). In case the additional efforts for
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Fig. 10.7 Taxonomy of faults arising from incremental changes [BV 18]

specifying logical constraints at the software level are acceptable, exhaustive model
checking of the control software can be done in parallel to testing. After the software
system is verified at the software scope, we use co-simulation to verify if it also
has the desired effects on the automation hardware and, ultimately, achieves the
desired plant behaviour. Finally, the continuous verification procedure suggests
performing a co-simulation against formalised requirements, a formal specification
of the technical process, or both. In case an automated hardware setup exists, this
step can also be replaced by hardware in loop verification.

Based on an analysis of the incremental changes throughout the entire aPS life
cycle, we develop a fault taxonomy [BV18]. This taxonomy builds on [Lau99],
where faults are classified based on their cause into either physical faults due
to changes in the underlying technical process or human faults associated with
changes before and after commissioning. The taxonomy presented here is for
analysing the effect of incremental changes associated with CI and hence focuses
only on human faults occurring before commissioning. As illustrated in Fig. 10.7,
development faults resulting from incremental changes to aPS span the different
activities of the development life cycle. Due to the differences in their influencing
effects on the overall aPS quality, development activities contributing to generating
artefacts modelling the system are distinguished from those resulting in supporting
documentation. Where faults in the former category may have an impact on the
entire set of quality criteria, faults in the latter basically affect criteria such as
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usability, maintainability, and portability. For example, a change in the user manual
in the section regarding the operational instructions may harm operability, which is
a sub-criterion of usability.

A fault in the system model may occur during requirements specifications, sys-
tem analysis and design, or system coding. A change in the system’s requirements is
associated with faults either in the functional or in the non-functional requirements.
With the help of data associated with the changed artefact, a more precise prediction
of the impacted quality criteria can be derived. For instance, a change of a non-
functional requirement that indicates that the system’s uptime shall be 99% is
deemed to influence the availability criterion of the system.

Artefacts generated during analysis and design are decomposed according to
their purpose into artefacts constituting the structural model and those forming the
behavioural model. Each of these models is further decomposed out of the adopted
point of view into external and internal. A fault in the external models basically
affects the interrelationship between the aPS and the external actors, including
the system user, as well as any interacting legacy systems. Accordingly, faults
in the external categories are related to quality sub-criteria such as operability,
interoperability, and coexistence. On the other hand, faults belonging to the internal
structural and behavioural models need further investigation based on more specific
data about the associated context to derive their expected impact on the quality
criteria.

10.2.2 Using Regression Verification for Small Evolution Steps
in PLC-Code

Formal verification proves the implementation correctness mathematically and
exhaustively with respect to the formal specification. In spite of the full coverage,
formal verification is not commonly used in aPS engineering for the functional
implementation of the system. One of the barriers is achieving formal specification
to use the formal verification. In our approach, we apply regression verification
methods that do not require full functional specifications and minimise the com-
plexity of the verification problem.

Verifying of the PLC program with respect to temporal specifications, for
example especially safety and liveness, has been the subject of research in the
automation field [Bec+15]. Formalisation of the PLC program [YF03a] and its
validation [Lam+99a] have already been discussed, and various approaches to
verify the behaviours of industrial machines using formal methods are suggested,
for example [Wit+06]. Also, various transformation methods from IEC61131-3
languages into model checking available languages are suggested, for example
from Sequential Function Chart (SFC) into Process Meta Language (PROMELA)
for SPIN model checker [BMOO] or into timed Computational Tree Logic (tCTL)
for UPPAAL [Bau+04b] and from all IEC61131-3 languages into symbolic model
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for Cadence-Symbolic Model Verifier (SMV) [De +00]. However, for applying
verification, the complete formal specification is still the bottleneck even though
the system model can be obtained using the transformation methods.

In the Improve APS project, we deal with regression verification in a user-
centred software development process for evolving aPS [Bec+15] (Fig. 10.8) by
including the user into the process loop with more human-understandable notations
and visualisations. A major prerequisite of this project is that the requested change
is implemented on an already-implemented and being-operated system after the
acceptance test or at least after the system is approved by customers. Change
requests happen due to either the necessity of the different functionality or faults
in the system. Once a change request is issued to the application engineer, the
new change is implemented based on the existing code version to fulfil the change
request. When the modification is done, the engineer verifies the regression of the
code behaviour according to the original program and its deviation (i.e. intended
delta). If it is verified that the new program satisfies the change request, the code
block can be launched to the system. However, if it is not, the verification tool
generates a counterexample and also actual differences between original and new,
that is generated delta. (Follow the loopback path in Fig. 10.8.) This counterexample
is provided to the engineer together with the delta information.

This overall process is suggested as a verification-supported evolution tool chain
for automation software application engineers [Ule+16] with three phases. First,
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Fig. 10.10 An example of a concrete test table and a generalised test table from [Wei+17]

regression verification checks whether the retained behaviours in the new program is
equivalent to the old version for all cases where no change in behaviour is intended.
Second, the critical properties which need to hold also in the new software system
against the interlocking invariant properties, for example safety properties. Third,
the new behaviours are verified against how the program is expected to behave
differently based on the properties describing the new situation (Fig. 10.9).

The precise verification technique in this project is explained in Chap. 11.
However, even after setting aside the verification techniques, there arise user
interaction issues. To verify a program, the application engineer should provide
the verifier (model checker) a piece of software or its model and the property that
needs to be verified in the target program. Also, the engineer is required to be
able to understand the verification results, which consist of a success/fail verdict
and a counterexample in the event of a failed case. Since formal notations are
one of the barriers for using formal verification [Pak+16] and the counterexample
of the verifier is usually a simple series of the values for a trace, this interacting
information, which is provided by and provided to the user, needs to be represented
in an easier way for the users than existing formal expressions.

As one possible user-friendly specification, we have extended the concept of
test tables, which the software application engineers use for reactive system testing
[UV15]. In [Wei+17] and [Bec+17a], we suggested an approach to support quality
assurance by generalising the test tables such that they can be used for formal
verification purposes in addition to testing.

An example of test table is shown in Fig. 10.10. A test table consists of three parts
of expected input, its corresponding output, and allowed duration of the appearance
of input-output pair with fixed values (Fig. 10.10a). Rows of the table describe the
execution progress of the system under test. The example represents three input
variables (A, B, and C) and three output variables (X, Y, and Z) during the duration
of 10s. The generalised test table represents all possible test table cases of the sort by
generalising the cells with constraint expressions, while the test table just represents
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one specific or concrete test sequence. In the generalised test tables (GTTs), three
generalisation concepts are used, such as below (Fig. 10.10b):

» Abstraction using constraint expressions, for example mathematical formulas (as
in cell (1, X)), interval expressions (as in cell (2, X), which means “a value in
the interval from O to p”, and (2, Z), which means “the value which satisfies
2% Z > Y”),ordon’t care (as seen as “-”)

» Relating cells using existing input/output variable names, together with relative
cycle index (as in cell (1, Y) for current value of the other cell and (1, Z) for a
value one cycle ago) or new variable symbols (as in cell (1, B) and (2, B))

e Various duration using interval expressions (as in the second row, which means
“the row must be repeated more than 5s”) or don’t care, which is equivalent to
>= 0 (as seen as “x”)

Using this GTTs, the developers can describe the specification of the function
more easily and effectively since it is an already accepted form. And this specifi-
cation is used by the verifier to prove the function behaviour. Together with these
concepts, a graphical interface, that is Structured Text Verification Studio (STVS), is
implemented for hands-down automation software proof against the GTTs, which is
developed in IEC 61131-3 Structure Text (ST) (Fig. 10.11). Once the ST code and
the GTT are typed in, the model checker called from STVS (nuXmv) verifies the
program against the specification in GTTs. If not, counterexample in the form of
concrete test table is displayed that violates the specification, that is GTT.

We also presented a monitoring block generation method based on the GTTs
[Cha+17]. Since GTTs describe allowed behaviour sequences, a violation of this
table means either a violation of the expected output for the given input or a
violation of the expected input. The code of the monitoring block can be generated
by converting the GTT systematically (see [Cha+17]). This block checks the
input-output pair sequentially according to the defined description in GTT. This
monitoring block can interact with the user by raising appropriate signals depending
on its decision results: (1) in the case of warning, which means the output violation
for the given input, the function block needs to be adjusted in order to execute as
the specification defines and (2) in the case of unknown, which means the input
violation for the specific sequence, the specification needs to be adjusted, that is
revised or added, to cover the situation that occurred. This monitoring is applied
during the machine execution. User interaction using the monitoring block decision
results can be implemented in various ways, such as logging, displaying on human
machine interface (HMI) system, and so on.

10.2.3 Conclusion and Outlook

In this section, we explored quality assurance approaches for aPS. Formal veri-
fication is applied to the incremental changes of aPS, and by introducing formal
methods into the aPS engineering process, we can achieve higher quality aPS by
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verifying them exhaustively in the model level, as well as in the code level. For
model verification, we suggest a quality assurance (QA) model to verify the system
in the CI approach capturing incremental changes. For code verification, regression
verification is applied to verify system behaviour according to specification, as well
as the new specification method suggested.

As a future work, we intend to enrich fault taxonomy model by analysing
industrial practical cases to make it more generalised. Moreover, the applicability of
the prototypical tool chains on the real machines needs to be measured, for example
CI framework, by bonding the solutions with suggested bridges between them, or
STVS plug-ins for IEC 61131-3 development environments, such as CODESYSS and
TwinCAT.

10.3 Analyse Non-functional Aspects of the System

Complementary to approaches which target a formal analysis of the functional
aspects of software quality, the methods presented in this section consider non-
functional quality aspects such as performance and robustness. Non-functional
quality aspects are very crucial to ensure the quality of complex systems [II11].
However, due to tight time and cost restrictions in practice, evolution is often
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performed without pre- or post-evaluation of its influence on non-functional quality
aspects [LFL16]. Reasons for that mainly include lack of good requirement
engineering practice, cf. [MMW98, PR11]. One method to overcome this lack of
quality based evolution evaluation is an automated analysis of the actual behaviour
which is constantly performed during the evolution [Vog+15a]. To do so, models
reflecting the current system behaviour and capturing the non-functional properties
are needed. However, building such models manually is complex, tedious, and error
prone, which contradicts aforementioned tight time and cost restrictions in practice
[CMO09]. One way to overcome this drawback is to enhance the models with runtime
information like observed signal events [Epi+09] or even to completely generate
models out of runtime data gathered from current system behaviour. To support
evolution, it is shown in the following how different types of models capturing a
variety of non-functional properties can be developed and learned from observation
to analyse the system quality during the evolution of the system. Examples of the
models and their automated generation are shown on the (x)PPU case study plant.

Firstly, Petri Nets are automatically derived for software-controlled manufac-
turing systems by the observation of input/output events [Lad+15a, Lad+15c].
The models are suitable for the performance and flexibility analysis of the inter-
disciplinary system. The Petri Nets are defined in a way that they reflect those
non-functional properties. In production systems, these are typically metrics defined
for each manufacturing plant, such as the throughput rate, the allocation ratio, or the
utilisation efficiency [Lad+13b]. Secondly, Markov chains are used to analyse the
system’s reliability. A novel approach [FGL15] is presented that learns the Markov
chains from the running system. The Markov chains can then later be used for
probabilistic model checking [KNP04].

10.3.1 Learning and Analysing the Machine States
and Material Flow of Evolving Manufacturing Systems

production automation systems have a strong focus on non-functional properties of
the underlying production process. This production process is defined in the pro-
duction plant’s specification and inherently implemented in the plant’s structure and
behaviour. But when considering evolution, a systematic re-engineering for adapting
production plants is often omitted and changes are directly implemented based on
the informal requirements [FLOO, Vog+15a, BS10]. Accordingly, this results in a gap
between the actual production process and its specification [Hau+13]. Therefore,
no (formal) up-to-date models of the plant are present, and especially evolution,
including small and unanticipated changes, usually lacks appropriate documentation
and evaluation [Vog+15a].

As a result, non-functional properties may be unsatisfied and unnecessary
weaknesses are even not recognised by the staff. One approach to overcome
these deficiencies is using automated model learning for creating formal behaviour
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models of the plant’s production process, which is suitable for both automatic
recognition of changes and their analysis regarding non-functional properties of
the process. Contrary to the reliability approach for learning Markow chains, this
learning approach concentrates on the structure of a production process and the
order in which signal events occur in the plant. Therefore, this approach deals with
generating Petri Nets from observations gathered at discrete inputs and outputs of
Programmable Logic Controllers (PLCs) controlling production systems.

Three-Phase Evolution Support Process

In the following, an approach is presented that aims at automatically generating
models from externally observable events of production systems. Figure 10.12
shows the process of the approach in three phases. In the first, phase knowledge
about the underlying production process is gathered by observing input and output
signals of the production system. In the second phase, an evolution cycle is
established by learning observed behaviour in models at runtime and using them to
detect changes that must be relearned. In a third phase, the evolution is assessed by
deriving non-functional properties out of the learned models. Each phase is further
described in more detail.

The first phase is data acquisition, in which data in terms of event traces are
recorded. In order to lift the data to knowledge in terms of non-functional property
values, the data have to be made semantically interpretable. Therefore, further
meaning is added to the events by information modelling. An information model
is intended to provide semantics of the event generating signals in order to be
able to generate meaningful behaviour models. However, manual effort for creating
an information model has to be kept to a minimum to meet the requirements
regarding tight time and cost restrictions. Therefore, in contrast to a complete
manual modelling of release and consumption of events in the plant, the semantics
provided by the information model only contain the assignment of signals to the
plant topology and the types of recorded signals [LFL16]. Types of signals are,
for example, workpiece detection (e.g. stemming from a light barrier), workpiece
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modification (e.g. actuator turning on a drilling machine), or state detection signals
(e.g. motor on/off). As a result, semantically enriched event traces are generated.

The second phase is called representation and processing. In this phase, the
behaviour of the plant is represented in models that can be used and changed at
runtime. Two different model types have been developed to apply the approach
on manufacturing systems: Machine State Petri Nets (MSPN) and Material Flow
Petri Nets. MSPNs represent the full behaviour of every single technical resource in
the plant, and MFPNs capture the routing of workpieces of the whole plant. The
models on one hand are used to detect evolutionary changes by using anomaly
detection mechanisms (see Sect.9.6) and on the other hand are used for analysing
them regarding non-functional properties, as shown in this section. An overview of
the model types, their automatic generation, as well as their analysis, is given in
the following sections. More details can be found for MSPNs in [Lad+15a] and for
MFPNs in [Lad+15c].

Both models are based on the state of the system, which is given by a vector
of input/output binary sensor and actuator signals. The models are based on the
recorded event traces with the semantics of the acquisition phase. One advantage
of using the added signal semantics is the possibility of dividing the input/output
vector of the plant into subvectors that reflect specific parts or specific aspects of
the plant. For example, the event trace can be filtered by signals assigned to just one
considered resource or reflect a specific action in the system.

Formally, both models are represented with Place/Transition (P/T) Petri Nets
(P, T, F) in which transitions are annotated with signal names. T is the set of
transitions, and F € (P x T) U (T x P) is the set of directed arcs between places
and transitions.

First, for each technical resource in the plant, one MSPN is generated from data
observations reflecting the resource’s behaviour by representing its full language in
terms of all input/output events, as well as their timing dependencies. To do so, a
preprocessing step combines events in a defined time interval to avoid an increase of
model complexity due to imprecise and scattered timestamps. The actual learning
is based on the causality specification of Lefebvre and Leclercq [LL11]. It uses an
event propagation matrix that contains all direct successors of events. This matrix
is used to calculate an incidence matrix, which replicates each successor relation
with its firing sequences. In a last step, this matrix is reduced in complexity and
its initial marking that represents the current state of the system is calculated. The
permittivity of the MSPN is further reduced by exploiting the fact that binary signals
can just toggle between their two states. Furthermore, timings are annotated as
meta-information that is used to find timing anomalies and to derive performance
properties.

In MFPN, the material flow is modelled, whereby tokens represent workpieces.
In an MFPN, transitions represent events when one sensor or a combination of
sensors detects a workpiece. Further, a place represents a region in which the
workpiece is not detected by a sensor. As an example, consider a running conveyor
belt that transports workpieces and a light barrier that detects workpieces on this
belt. When a workpiece passes the light barrier, the binary sensor of the light barrier
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indicates the position of the workpiece, which in the MFPN is represented by the
firing of a corresponding transition. When the light barrier is passed, the workpiece
is in a region between two sensors, and therefore in the MFPN the token is situated
in the place after the fired transition. To learn the MFPN first, the trace is separated
according to the events’ affiliation to the equipment in the information model, and
all non-relevant events are filtered out. The actual learning is done by analysing
the time stability between events in order to determine which events are triggered
by the same workpieces during transportation through the plant. Subsequently, in a
first step, the events are assigned to workpiece instances. If the same events are
triggered several times within a stable time difference, they are assigned to the
same workpiece instance. By using all instances for each workpiece type, a place-
transition chain is generated. These chains are combined in such a way that the
number of places and transitions is minimised and the net still fulfils the definition
given above. As a last step, similar to MSPNSs, timings, as well as identifications for
workpiece types, are annotated.

The models are suitable for analysis regarding non-functional properties to
evaluate changed behaviour of the underlying production process. Such an analysis
takes place in the third phase of the process of Fig. 10.12, which is called knowledge
assessment. The properties of interest here are mainly Key Performance Indicators
(KPIs), as defined for production systems in the ISO 22400-2 [DIS12]. These
properties have to be operationalised in order to be measured directly at the
production machine. An extensive literature research of such properties was done
in [Lad+13b]. As an illustration, the throughput rate of a manufacturing plant
describes the number of produced goods per unit time [DIS12]. Accordingly, it
can be calculated by determining the number of produced goods during a specific
production time. To determine the production duration, the time difference between
the first event and the last event in the event trace is calculated. By summing up
all mean transportation durations of each workpiece type in the MFPN, the mean
production duration for one product of each type can be calculated.

Application on xPPU Case Study

For evaluation, an implementation of the knowledge-carrying software has been
built based on a service-component architecture [Hau+14a]. It uses event source
endpoints in a 1-to-1 mapping according to the available entry points of the
production process. Each part of the physical plant hierarchy is mapped to self-
contained representation components, which are in charge of implementing a
consistent system state. The models are implemented as runtime artefacts that
are decoupled from the real-time plant by using event statements that are learned
and evaluated at runtime [Hau+17]. The software cannot decide if a performed
change and its influences on its non-functional properties are intended (or at least
acceptable); therefore, Fig. 10.12 includes a cycle with a “user in the loop” to decide
whether an intended evolution has taken place (in which case the model has to be
re-learned) or an undesired change in the production system occurred (which should
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Fig. 10.13 (Left) Part of the resulting MFPN with semantics of signals. (Right) Utilisation and
Make Span properties of some PPU scenarios

be fixed by an operator). This process is implemented by a goal-based management
component that is based on the Belief-Desire-Intention architecture [Pok+14].

The MFPN learning algorithm has been evaluated on the Pick and Place Unit (in
the state as described in [Vog+14b]). Figure 10.13 shows on the left side a part of the
learned MFPN of Scenario 3. It shows the part where the workpieces are introduced
into the PPU by the stack and picked up by the crane. The MFPN has two starting
points, because the plastic workpieces are first detected by the WorkpieceReady
sensor, which is a switch at the stack slide, and metallic workpieces are first detected
by the MagazinCapacitive Sensor, which is mounted at the slide. Plastic workpieces
do not show the MagazinCapacitive event since the sensor remains in its O state.
Nonetheless, both workpieces are transported by the crane. Also, the semantic
information is shown for the signals. For example, the crane has a combined signal
for transition 74. This signal contains the CraneSucked signal, which indicates that
a workpiece is in the crane, and two position signals of the crane (CraneDown and
CraneOnMagazin). Also, the timing, distinguished by their type, for the combined
signal is given.

Further on the right side of Fig. 10.13, an overview of the learned models is given
in a table. It is indicated how complex the models are in terms of learned places and
transitions. As a summary regarding the PPU case study, it can be stated that the
PPU is steadily extended, which results in more complex models. Further, the crane
is the most complex resource.

The resulting MFPN allows calculating relevant process-related non-functional
properties, as described in the assessment phase. As examples, we show the
makespan and utilisation on the right side of Fig. 10.13. The utilisation is measured
on individual resources of the PPU, and the makespan is defined for workpieces.
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Utilisation describes the amount of time a resource has operated on a given
workpiece within the frame of the total time that the entire plant has taken to produce
the given workpiece from beginning till the end. Hence, the value of utilisation of
a particular given production module can have the maximum value of 100% if it
has been in operation the entire time. One other property that we explored is the
makespan for an individual module. Makespan is defined as the time that elapses
from the beginning till the end of an operation performed on a given workpiece.
For example, a workpiece is being shifted from point A to point B with the aid of a
crane. In this case, the makespan of the crane would be the time taken for the crane
to move the workpiece from point A to point B.

One exemplary finding out of these non-functional properties is that the optimi-
sation of the crane behaviour of Scenario 5 indeed increases the utilisation of the
crane (69% — 87%) but that the makespans of the products are not improved by
the optimisation as intended (10s — 12s and 15s — 225). This results from the
long time the crane needs to turn between the stamp and the stack. Therefore, the
“optimisation” of Scenario 5 is not advisable as an evolutionary change.

10.3.2 Learning and Analysing DTMCs for Reliability
Evaluation

The learned Petri Nets from the previous approach are mainly used for performance
evaluation. For reliability and safety, based on the results of the joined MOCA and
ENSURE research on model-driven co-evolution (Sect. 10.1), we know how to co-
evolve architectural models and probabilistic quality evaluation models, such as
fault trees and Markov models or queuing networks @runtime. Markov models like
Discrete-Time Markov Chains (DTMCs) are mainly used for reliability evaluation.

Since the behaviour of a system may change at runtime, for example user
request rates for web systems, we also require a time-efficient, robust, and accurate
learning algorithms to keep the parameters, for example transition probabilities,
of a probabilistic model continuously updated. Most of the available approaches
[CIR11, Cal+14, Epi+09, EGT10, ZWLO08] achieve only one of different goals (time
efficiency, robustness, and accuracy) at the price of the other.

Before we can go into the details of learning transition probabilities for DTMC:s,
we first need to define what a DTMC is. A DTMC is a state-transition system
where the choices among successor states are governed by probability distribution.
Formally, a DTMC is a tuple (S, so, P, L, AP) [BKO8], where S is a (finite) set of
states, so € S is the initial state, P : S x S — [0, 1] is a stochastic matrix, AP is a
set of atomic propositions, and L : S — 247 is a labelling function that associates
to each state the set of atomic propositions that are true in that state. An element p;;
of the Matrix P represents the transition probability from state s; to state s;, that is
the probability of going from state s; to state s; in exactly one step.
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Fig. 10.14 Examples for behaviour with different a parameter values. (a) Noise filtering (a =
0.98). (b) Fast change tracking (a = 0.02)

The probability of moving from s; to s; in exactly two steps can be computed
as st cs Pix - Pxj, that is the sum of the probabilities of all the paths originating
in s;, ending in s;, and having exactly one intermediate state. The previous sum is,
by definition, the entry (i, j) of the power matrix P2. Similarly, the probability of
reaching s; from s; in exactly k steps is the entry (i, j) of matrix PX. As a natural
generalisation, the matrix P = I represents the probability of moving from state
s; to state s; in zero steps, thatis 1 if s; = s, 0 otherwise.

As time-efficient and accurate learning probabilities for DTMCs, the following
lightweight adaptive filter (LAF) has been developed in the ENSURE project:

e(k) = |p" (k) — plk — D)
a(k) = ao+ Aa - fa(e(k) — eunr) (10.1)
ptk)y =ak) - ptk — 1)+ (1 —a(k) - p"k—1)

This filter, as shown in Eq. (10.1), is an extended version of a unity-gain, first-
order discrete-time filter [Lev10]: p(k) = a - ptk — 1) + (1 — a) - p"(k — 1),
where a is a tuning parameter 0 < a < 1. A value of a close to 1 provides a
really good noise filtering, as can be seen in Fig. 10.14a, whereas a value of a close
to O allows the filter to track changes really fast. To have a good performance,
we have extended the filter (see Eq.(10.1)) to dynamically adapt the parameter
a based on the characteristics of the data p” we measure. This is done with the
two functions a (k) and e (k). For details, we refer to the paper [FGL15]. The filter
can be used to learn individual transition probabilities p;; from observed system
traces. However, the obtained estimates for each row of P would most likely not
constitute correct categorical distributions (sum of the probabilities of the outgoing
transitions of each state s; is not 1). Consequently, [FGL15] presents a procedure
to use these learned probabilities to update the provability matrix P of the discrete-
time Markov chain (DTMC) via a convenient “correction” procedure. Furthermore,
all existing procedure [CJR11, Cal+14, Epi+09, EGT10, ZWLO08], including LAF
[FGL15], estimate the probabilities based on the observed data; for further studies,
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Table 10.1 MARE results LAF (%) Kalman (%) Cove (%)

for the six patterns .
Noisy 4.41 4.54 11.70
Step 4.19 8.51 8.65
Ramp 4.28 7.04 8.27
Square  6.54 21.47 8.50
Triangle 7.79 12.84 8.16
Outlier  3.68 3.78 8.56

it would be also interesting to apply forecasting procedures [AGC12, ACG12] to
estimate the future development of the individual transition probabilities p;;.

In the original paper [FGL15], two experiments have been performed to evaluate
the quality of LAF. The first experiment evaluates the accuracy via the Mean
Average Relative Error (MARE) and data that are generated to follow six common
patterns: Noisy, Step, Ramp, Square, Triangle, Outlier. The results, as shown in
Table 10.1, indicate that the developed algorithm (LAF) outperforms in terms
of accuracy (MARE) the state-of-the-art approaches Cove [Cal+14] and Kalman
filtering [ZWLOS].

For the second experiment, [FGL15] uses a realistic and large-scale dataset of
the users’ browsing behaviour for the WorldCup98 website [WCL]. The logs of the
browsing behaviour spread over a period of 3 months, and the website is composed
of a total of over 32,000 pages. As a result, we show that LAF is able to scale to
problems of a realistic size and complexity.

As mentioned before, in Sect. 10.1, we could obtain the structure of DTMC
models. Together with LAF approach, learned models can be synthesised and
verified using model checking techniques (e.g. Prism) specified with probabilistic
computational tree logic (PCTL). Hence, we can reason about the reliability of
large-scale systems by using probabilistic model checking.

Related Work

Many approaches using automated model generation from the observation of
production systems stem from the domain of fault detection and isolation (FDI).
Generated models are continuous models [Ise06, AA13], discrete event models
[HKWO03, LL11, RLL10], or hybrid models [Vod+11]. Approaches for continuous
systems use machine learning techniques to, for example, parametrise differential
equations, train neural networks, estimate initial states for observers, or estimate
parameters for fuzzy models; cf. [Ise06, AA13]. Some approaches learn hybrid
models of systems composed of both discrete and continuous dynamics; cf.
[NF15]. Such approaches are suitable for process plants, that is plants dealing with
continuous product flows (e.g. liquids, gases, or granules). The state of such plants
is given by both continuous measurements (such as temperatures, pressures, or flow
rates) and discrete measurements (such as open/close states of valves or on/off states
of pumps).
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The states of discrete manufacturing systems (i.e. production systems producing
piecewise goods) are usually described by purely discrete state variables. These
states are consisted of binary measurements (such as “workpiece present/not
present” or “conveyor running/not running”). For discrete event systems, learning
algorithms mostly generate automata (cf. [RLL10]) or Petri Nets (cf. [LL11]).
However, manufacturing processes are usually highly concurrent, resulting in a
huge amount of possible states. The cyclic control and difficult real-time conditions
render it problematic to weave code for monitoring into the controlling software.
Therefore, only the event traces, observed by monitoring the sensor and actuator sig-
nal changes, are available as a data source for monitoring approaches. Unfortunately,
models generated from signal traces tend to be highly complex and are on a low
level of abstraction compared to non-functional properties. The algorithm presented
in [RLL10] reduces model complexity by automatically dividing the gathered data
into subsets and creating partial automata. However, without any semantics of the
data, an interpretation on non-functional property level is still rarely possible. Other
approaches, for example, [AT12, HAOS5, Hus+06] use static a priori information.
This includes modelling manually, which event consumes or releases resources for
these processes. This allows an interpretation of generated models on a higher level
of abstraction. But an automated analysis is not in the focus of those approaches, and
therefore these approaches are, like most presented models for production systems,
by design not suitable for automatically deriving non-functional properties during
evolution.

Further Reading

A more detailed overview of possible non-functional requirements that can be
derived is given in Ladiges [Lad+13b] and shown for the PPU, besides a more
detailed description of the overall approach in Lagides [LFL16]. Anomaly detection
to identify evolution changes is given in Chap.5. How the models are handled
within a knowledge-carrying software is shown in Haubeck [Hau+14a] and Haubeck
[HLF18]. Further, Sect.10.4.2 builds this knowledge-carrying software and the
learned models by identifying evolution steps that can be exchanged in order to
recommend changes by comparing slightly different but similar systems.

10.3.3 Conclusion and Outlook

This section has shown two approaches using learning algorithms for automatic
model generation or model parametrisation. The resulting models are suitable for
analysing current system behaviour regarding non-functional properties. The first
approach aims at generating models of the machine state [Lad+15a] and material
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flow [Lad+15c¢] reflecting the behaviour of manufacturing systems. The approach
contains different levels of knowledge. The lowest level is raw data. By adding the
information model, that is the signal semantics, the data are made interpretable.
Therefore, the considered events are first filtered and separated along the signal
semantics, and then the models are learned out of traces. The presented models of
the machine state and material flow, as well as the properties resulting from their
analysis, are the top levels of contained knowledge and allow conclusions regarding
evolution.

The second approach aims to efficiently learn the transition probabilities of a
Discrete Time Markov Chain based on the observed traces from the actual running
system [FGL15], and based on this model quantitative verification techniques can
be applied. These quantitative verification techniques check whether the model
satisfies quantitative properties, for example in PCTL (Probabilistic Computation
Tree Logic) [HJ94], that can be defined via a specification pattern system [Gru0S]
and a controlled natural language [Aut+15].

The models of the presented approaches can be used to derive differences, as
shown in Sect. 10.1.1. This allows identifying differences that result in changes of
non-functional quality aspects, which were derived by the two approaches presented
here. Further, runtime monitoring of non-functional quality aspects has synergies
with model-driven development that deals with requirements in an interdisciplinary
model (see Sect. 10.2.1), because monitoring allows the detection and evaluation
of changes in the running system that can be transferred back to the model-driven
models to use the advantages of both approaches (see [Hau+14b] for details).

10.4 Recommend and Assess Future Changes Based on Past
Changes

The previous sections have proposed approaches for a wide range of evolution prob-
lems considering changing systems. One thing that is common in these approaches
is that they provide valuable knowledge about past changes, which can be utilised to
support future evolution processes. Therefore, this section presents three approaches
on how the current state and past changes can be used to recommend and evaluate
future changes. (1) The first approach concentrates on finding recurring changes on
different model versions and meta-models. By using heuristics, atomic changes on
the user level are combined to complex, recurring changes cutting across different
models. (2) The second approach focuses on managing knowledge by establishing a
knowledge-carrying network. This network exchanges experiences of past changes
between similar systems characterised by their behaviour and context. (3) The third
approach derives maintenance tasks from a certain change request and for a given
architecture. These maintenance tasks can be used to identify the effort for changing
the system architecture, realising an “Economic Recommender”.
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10.4.1 Supporting Model Editing with Automatic
Recommendations

Models are key artefacts in model-driven software engineering, and software
engineers typically spend much time creating and evolving models. Software
engineers may even define new domain-specific models. Hence, good tool support
is needed to efficiently work with models.

IDEs for source code offer many tools that make recommendations for working
with text-based programming languages, for example auto completions, quick fixes,
refactorings, and code templates. All major text-based programming languages
can be defined via context-free grammars (e.g. EBNF), which simplifies the
implementation of these source code recommenders. Also, there are few widespread
text-based programming languages, which makes it feasible to develop or extend
these recommenders manually.

Our goal is to improve the modelling speed and quality of model changes
by recommending model changes to the engineer based on current changes and
historical changes. Figure 10.15a shows an example recommendation for an Ecore
meta-model. The original version of the model contains two classes with duplicated
attributes. When a user adds a common superclass (green), the recommender
systems notice that this change fits the pattern of the common Pull-up-Attribute
(see Fig. 10.15b) refactoring and recommends the remaining steps, that is moving
one attribute up (yellow) and deleting the other one (red). Accepting the recommen-
dation automates several manual modelling steps.

e )

duplicated attribute

CREATE_SUPERCLASS

— 1 | I
sub1 super sub2-
in o— frolm

H DELTE_ATTRIBUTE ‘}am»| Atiibute [€ati—  MOVE_ATTRIBUTE

(b)

Fig. 10.15 Example of Pull-up-Attribute recommendation and blueprint. (a) Example Pull-up-
Attribute recommendation (red and yellow) after a user creates a superclass (green). (b) Example
blueprint for recommendation in a
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The main challenge with this approach is that for most types of models, there is
no list of common refactorings or frequent changes that could be used as a basis for a
recommendation. This is especially true for proprietary domain-specific models. For
example, Eclipse Projects hosts over 300 projects related to the Eclipse Modeling
Framework. These Projects contain over 30,000 models; most of these are Ecore
meta-models and UML models for which common refactorings are known. But
there are also 260 types of models with only 10 to 100 instances. It is not realistic
to expect that there is any documentation about common refactorings on these less
common types of models.

Foundation

Our approach is based on the SiLift-Tool [Keh+12b, KKT13] from the MOCA
project, which is also described in Sect. 10.1.1. This tool computes the differences
between versions of meta- and instance models. We represent differences as sets
of partially ordered model transformation invocations, where an invocation consists
of model transformations and their parameter bindings. Model transformations are
represented by Henshin rules [Are+10] that can take multiple parameters.

Figure 10.16a shows a simple Henshin rule with two parameters: Selected
and New. The Henshin rule matches the EModelElement (grey) to the Selected
parameter. If this match is successful, the rule creates a new EAnnotation (green)
and matches it to the New parameter. A parameter binding can be, for example,
the id of an element in a concrete model. The Henshin rules can be generated for
every type of model for which an Ecore meta-model is available, using the SiLift
tool Sect. 10.1.1.

Figure 10.16b is a screenshot of a difference computed by SiLift. It contains
five Henshin rule invocations. One invocation with two parameter bindings (select-
edEObject and New) is expanded. The corresponding Henshin rule is shown in
Fig. 10.16a. This rule matches an EModelElement called getAllChildContainers and
creates a new EAnnotation for it.

> Rule L IN New, S I3 Operationinvocation: "DeleteEString ToStringMapEntryinEAnnotation”
I3 Operationinvocation: "DeleteEAnnotationinEModelElement™
create 3 Op I ation: "C EReferencelnEClass”
eModelElement ~ I3 Operationlnvocation: "CreateEAnnotationinEModelElement”
cpreserves = ‘ Bl ObjectParameterBinding: selectedEObject -> getAlChildContainers
ffelestediEModelElement] source=Source 5 ObjectParameterBinding: New -> null

e“’f’:f’fff‘“”‘ ValueParameterBinding: Source -> http://www.eclipse.org/emf/2002/GenModel
A% CreateEAnnotationinEModelElement

| Operationinvocation: “CreateEAnnotationinEModelElement™

(a) (b)

Fig. 10.16 Example model difference. (a) Henshin rule for creating an EAnnotation. (b) Example
model difference computed by SiLift
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Analysis of Change Histories

The ENSURE 2 approach is to automatically infer the information that is required
for making useful recommendations from the change histories of models. This
information can be thought of as blueprints for recommendations that represent
common refactorings or frequent changes to a type of model.

Figure 10.15b shows an example blueprint for the Pull-up-Attribute refactoring.
Blueprints consist of model transformations (depicted as boxes with two borders)
and parameters that may be shared between these transformations (depicted as boxes
with single borders). The transformation boxes with two borders contain the name
of the Henshin rule, and their outgoing edges are labelled with the names of their
parameters. The parameter boxes with single borders contain the type of parameter.
If a parameter is shared between transformations, it is only shown once.

The blueprint in Fig. 10.15b describes the creation of a new superclass with
two subclasses, where the subclasses contain an attribute with the same name. The
blueprint further describes that for one of the subclasses, the attributes have to be
moved to the superclass, while it has to be deleted in the other subclass.

This approach has several advantages: No expert knowledge is required, recom-
mendations can be specific to a model type and developer or development team,
and this technique can be applied to private code bases without publishing the
results. Note that it is still possible to integrate expert knowledge into the approach
by manually creating additional blueprints and adding them to the automatically
generated blueprints. Also note that we cannot automatically infer descriptive names
for the blueprints.

Inferring recommendations from a model history allows the recommendations to
be tailored to the model. This has the added benefit that users can influence future
recommendations automatically with their current actions. A further benefit is that
users don’t have to do additional work to get recommendations, as long as a history
of previous versions is available.

Inferring Blueprints

The history of model changes is very noisy. A commit can contain many changes
that may not be related at all. Before we can automatically infer blueprints, we have
to define metrics to identify good blueprints.

In a first step, we identified the following metrics for determining the quality of
a blueprint:

Occurrences This metric counts how often a blueprint appears in the change
history. Occurrences is a simple metric that prefers small blueprints, that is
blueprints consisting of few Henshin rules, because these occur more often in
the history. A higher number of occurrences is better because it means that the
blueprint was applied more often in the history of the model.
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Shared Parameters Henshin rules inside of a blueprint can have shared parame-
ters. Thus, a blueprint can have fewer parameters than the sum of the parameters
of its Henshin rules. The number of shared parameters is a measure of the
blueprint’s cohesion; thus, a high number of shared parameters is better. As the
number of shared parameters goes up, the number of occurrences may decrease
(but not increase).

Diversity We represent diversity as a partial order between blueprints. If a
blueprint A contains a subset of the rules in a blueprint B, then A is less diverse
than B. This metric prefers bigger blueprints, as opposed to the Occurrences
metric. More diverse blueprints are better because they encode more complex
refactorings.

We generate blueprints by evolving a population of blueprints using a genetic
algorithm. Since we have three different metrics, we must solve a multi-objective
optimisation problem. Thus, we use a Pareto front of our three metrics to choose the
member of our population that is taken into the next generation.

We defined two mutation operators that evolve our blueprints: extension and
specialisation.

Extension tries to add a new Henshin rule to a blueprint in such a way that
the new rule shares one parameter with one of the existing rules. Specialisation
tries to share two previously unshared parameters within the blueprint. Note that
both mutation can never increase the occurrences of a blueprint, while extension
will increase shared parameters and diversity. Note also that the graph of Henshin
rules connected via shared parameters will stay connected after the application of a
mutation.

For our initial population, we create all feasible blueprints that contain a single
Henshin rule.

Evaluation

Figure 10.17 depicts a blueprint learned by our genetic algorithm from the PPU
Fault Tree data set [Get+13]. The blueprint has an occurrence of 8 and 5 shared
parameters (we do not count the shared Root element). Our algorithm did not find
any more diverse blueprints in this data set.

In [KGT16] we performed an evaluation of a prototype recommender as a
proof of concept that did not yet use blueprints. This early prototype created
recommendations based on a single user change in version V, and all changes from
earlier versions Vy_1..Vy. If all recommended changes based on the history up to
Vy_1 were present in version Vy, then we counted this as a true positive, else it was
a false positive. Changes in version V, that were never recommended were counted
as false negatives.

For the evaluation, we used the GMF data set from Herrmannsdoer-
fer et al. [HRWO9] because it contained models with many versions, and it was
also used by other researchers. The data set consists of three models with 10-110



10 Learning from Evolution for Evolution 293

’—Existing :ErrorType| Existing—‘

CREATE_Errorinstance_IN_Root_(error_instance) CREATE_Errorinstance_IN_Root_(error_instance)
Nl,w \—selectedEObject selectedEObje'::tJ Nl.w
selected‘ EObject selectedEObject NewTarget
SET_REFERENCE_Errorinstance_(error)_TGT_BasicEvent ADD_BasicEvent_(instance)_TGT_Errorinstance

NewTarget selected‘EObject selectedEObject

New— CREATE_BasicEvent_IN_Root_ CREATE_BasicEvent_IN_Root_ —Ne

Fig. 10.17 Blueprint learned by our genetic algorithm from the PPU fault tree data set

Table 10.2
Recommendation results for
different models

Name TP  FP  Precision
gmfgen 554 217 0.72
gmfgraph 25 33 043
Mappings 36 8 0.82
Total 615 258 -
Average 205 86 -

Table 10.3 . Name True positives  False positives Precision

Recommendation results for

PPU fault trees faulttreel 95 115 0.45
faulttree2 71 36 0.66

versions, and our prototype achieved a precision between 43% and 82%. This shows
that it is possible to generate recommendations from model histories. The results
are depicted in Table 10.2.

We also performed an evaluation on two fault trees created from the PPU
evolution scenarios. These results are depicted in Table 10.3. We will also perform
a further evaluation on the Petri Nets learned in Sect. 10.4.2.

Related Work

There already exist recommender systems for model-driven software develop-
ment that are capable of performing the refactoring from Fig. 10.15a. Kuschke et
al. [KMR13] translate common refactorings on models into constraint systems and
use these to identify partially applied refactorings. They use a constraint solver to
generate a recommendation based on a partial refactoring. Another approach from
Taentzer et al. [Tae+17] focuses on model repair. They search for partially applied
refactorings in models and recommend the remaining parts of the refactoring. This
approach also works for inter-model refactorings.
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Both of these approaches require expert knowledge about how common refac-
torings for certain types of models look like. But this knowledge is not generally
available for all types of domain-specific modelling languages.

Note that our work is also related to model transformation by example
(e.g. [Var06]). But this approach also requires an expert to generate clear examples
of transformations for every type of model (i.e. pairs of models before and after the
transformation).

Another approach by Sen et al. [SBV10] uses meta-models as graph grammars,
these grammars are then used to compute possible additions to instances of these
meta-models, so that the computed instances are valid w.r.t. the meta-models.

This approach can be applied to an instance model when its meta-model is
available and its results are similar auto completions for text-based programming
languages. Our approach, in contrast, aims to recommend refactorings that are more
complex than auto completions.

Other related works are source code recommender systems [MKM13, BMMO09,
Mus+12]; these make use of different techniques for generating and prioritising
recommendations based on previous changes to source code. All major text-based
programming languages can be defined via context-free grammars (e.g. EBNF),
which simplifies the implementation of these source code recommenders. Also,
there are only few very widespread text-based programming languages, which
makes it feasible to develop or extend these recommenders manually. Thus, this
work is related, but the techniques cannot be directly applied to the more diverse
and complex realm of domain-specific models.

Conclusion

Existing recommenders for model-driven software development are mostly model-
type specific and require expert knowledge. Our vision was to automatically
generate recommendations based on model change histories. For this we inferred
blueprints of recommendations from model change histories. This work has also
been presented in [Kog17].

Our blueprints and our methods to generate these blueprints will be useful for
developing model agnostic recommender systems.

10.4.2 Recommending Evolution Steps Within a Knowledge
Carrying Network

Contrary to the previous approach of recommending changes of one model, the fol-
lowing method targets horizontally integrated systems. Cyber Physical Production
Systems (CPPS) are characterised by the interconnection of software and hardware
components that are horizontally and vertically integrated. These CPPS cause the
need to document their evolution systematically to support their maintainability
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over time [Vog+15a]. To handle this task, a collective memory for identifying
and perceiving historical artefacts is needed to allow collaborative work in which
not only the machine’s behaviour arising from the dynamics of its hardware and
software components is considered but also the evolution of the whole CPPS
is considered holistically [GGO8]. Here, the horizontal integration of machines
provides new potentials to support evolution [Hau+17] because it allows for a
comparison of one individual machine status among other machines by pushing
information about their status in the networked cyber level of a CPPS [LBK14].
These statuses can be seen as steps of the evolution performed during their semi-
automated operation. The recommendation of evolution has a strong focus on these
steps, which goes along with the core idea of evolution that focuses the process of
changes rather than how a machine looks like after the change. Therefore, in the
following section, model-based evolution steps are showcased as first-class entities
that form an evolution process in a peer-to-peer network. Recommendations are
given to engineers on the basis of this evolution process by providing evolution steps
of other similar systems that were already extracted during the evolution process. In
this way, the vision of a marketplace for evolution steps is followed that allows
exchange of already performed evolution steps [Hau+18c].

Express Evolution Steps of a System

To describe evolution within a horizontally integrated network, evolution should be
fully expressed by the sequential execution of evolution steps. For the description, a
step-based approach similar to the delta-modelling of software product lines is used.
The idea of steps is to adapt to evolution by representing an evolution in a core step,
which is the initial development, and apply evolution steps over time. Evolution
steps represent changes that are following Buckley et al. [Buc+05] characterised in
the form of questions. Evolution steps are described as answers to the six questions
what, why, who, when, where, and how.

To understand the learned behaviour as evolution steps, it must be specified
what is changed. In order to capture historical behaviour, runtime models are
learned according to the signal behaviour of a machine, as presented in Sect. 10.3.1.
The following approach is therefore explained and demonstrated on material flow
models of production systems. These models are Petri Nets, which have signals as
transitions. What is changed is expressed in accordance with these signals in lifted
(edit) operations. To utilise the differencing pipeline of lifted (edit) operations, as
explained in Sect. 10.1.1, a matching strategy of transitions and therefore signals is
needed. The used matching strategy measures the similarity of signals by exploiting
their additional context information. This is done in order to identify similar or
even the same production sections, which are reflected in similar patterns of the
signals and their context information (timing, type, and topology). As a similarity
metric, the algorithm uses a Null Hypothesis for the timing according to a specified
confidence and a relation matrix for the type and topology context. To find the
matching, strongly related signals are identified by aligning different sequences of
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signals to each other. The best alignment is identified by an extended Needleman-
Wunsch Algorithm, and the signals are matched following this alignment. Further
details about the matching can be found in [Cha+18].

To identify the lifted edit operations, a template for the material flow production
system is used. It determines how the structure of the signals evolves in the material
flow. For structure changes, two (edit) operations apply when an additional signal
occurs before or after a specific signal sequence and a third if two separated signal
sequences in the model merge or split. Besides structural changes, changes in the
meaning of signals are captured by operations for timing changes, as well as signal
type and topology changes. For example, these changes in timing occur when the
latency of the signal is changed, for example due to wear and tear. Based on these
operations, edit scripts are derived (see Sect. 10.1.1) that represent what is changed
in an evolution step. More details are given in [Pie+18].

Further, it is questioned in an evolution step where the evolution takes places.
This describes the condition under which the evolution happened and therefore
where the operations of signals are applied. Since in the practical implementation
these conditions are sensitive parameters, three privacy policies are introduced:
First, just the edit script with no additional information besides the changed signals
is provided in the step. Second, neighbour information of signals directly related to
the changed signals of the edit script are included in the evolution step, and, last,
the entire structure of the material flow model from which the edit script stems is
included.

Why a system evolves is evaluated in terms of non-functional properties such
as performance or flexibility since it enables the operator to recognise weaknesses
and to ensure the quality of complex systems [LFL16]. This part relies on the
non-functional properties derived directly out of the material flow models as the
reason for evolution. Properties express the change in properties that was observed
when the step was introduced. The extraction of these properties was introduced in
Sect. 10.3.1.

The temporal properties (when) build up an evolution process by linking to each
other, which creates a partial order in the form of a directed tree. Vertexes of this tree
represent steps, and edges represent the directions in which the evolution proceeded
with respect to versions and variants. Versions describe an evolution step in the same
system and variants a step derived by applying a step on another system. The leaves
of the tree are the currently operated versions, which can be reconstructed using
involved steps retrospectively starting from the tree’s root. In this way, an evolution
process of the whole network of systems is built.

One interesting question, when seeing evolution in exchangeable evolution steps
of a network of systems, is who has evolved. This ownership is reflected in an
evolution step by using a digital signature of the evolved system. For evolution
steps, a valid digital signature gives assurance that a step really was provided by
the signing system. In addition, this allows tracing back steps for evolution support.

How evolution is supported is considered in the environment of the network.
From a technical point of view, the overall evolution process is a distributed ledger
of evolution steps that is stored within a distributed network. Therefore, to support
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Fig. 10.18 Process of the extraction of an evolution step and its comparison to a model of another
system

evolution, the steps must be propagated through the network. Figure 10.18 shows
the evolution support process that provides recommendations to the engineer. The
process assumes two different systems that observe and analyse models, as well as
detect anomalies of the production system to extract different versions of models.
This is performed by the knowledge-carrying software of the underlying learning
approach that uses a model-based CPS architecture (see [Hau+18b] for details of
the architecture). Whenever a change is detected, the previous model (model A)
is matched with the model after the change (model B) to derive the evolution
step (A — B). To share the step, the network adds the step to the ledger and
then propagates the step to all other nodes. Propagated evolution steps are used to
recommend changes to the engineer. The shared step is matched and then patched
to their own model (model C) with the help of model patching (see Sect. 10.1.1).
The patched model is provided as a recommendation to the engineer to propose
a behaviour change that was already positively experienced on other production
systems.

To sum up, this section suggested evolution steps that use a model-based edit
script (what) under a specific context condition (where) to achieve the desired
effect (why). Then the evolution steps are structured by linking predecessor and
inheritance as a process (when) that considers its originators (who) in a propagating
network that gives recommendation to the engineer (how supported).

Application on xPPU Case Study

To evaluate the concept, a marketplace for evolution steps is envisioned (see
[Hau+17]). This distributed marketplace should allow a platform to provide and
request evolution steps in order to share experiences about evolution in the form
of performed changes. The evolution steps were learned for Scenarios 1, 1b,2 2,
3, 5, and 10 of the xPPU case study. The distributed ledger of evolution steps is

21b is a modified version of the Pick-and-Place Unit (PPU) Scenario 1, which only uses metallic
workpieces.
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Fig. 10.20 Summary recommendation of the resulting material flows (refer: [Hau+18a])

implemented in a knowledge-carrying software managing material flow models at
runtime, which includes a peer-to-peer network with blockchain functionalities to
implement a distributed marketplace. The platform provides a common and secure
ledger while eliminating the central authority with its peer-to-peer nature. This is
done by a global consensus protocol that ensures a full copy of the blockchain
available for each participant that contains every step of the build-up evolution
process. The tested peer-to-peer network had one KCS for each evolution scenario
of the case study and consisted of 6 (simulated) production systems.

Exemplary, Fig. 10.19 shows the resulting evolution process of two systems. It
shows system I, which already underwent all scenarios from 1 to 10 with all possible
evolution steps, and system II, which started as Scenario 1b with only metallic
workpieces. As the figure illustrates, system II evolved through recommendation in
three cases by applying the stamp (Sc2 — Sc3) and two conveyors (Sc¢5 — Sc10)
without additional workpieces of Scenario 2 or the crane optimisation of Scenario 5.
Furthermore, Fig. 10.20 shows a summary of the resulting recommendations given
to the engineer before the last addition of a conveyor. The left-hand side of the model
represents the root model with the initial step implemented on it (¢ — Sclb). It
transports plastic workpieces to a ramp. The further steps are explained in details
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in [Hau+18a]. It can be seen that recommendations on the model layer can have
errors. The recommendation contains a transition that will never be observed in the
implemented system because it indicates that a workpiece is directly transferred
from the stack to the ramp. This will not be observed in the implemented system
because no plastic workpieces exist in the evolved system II and therefore no
direct transport is done in system II. But the patched model still provides a good
recommendation, and the mentioned transition is not included in the model after
the operator implemented the signal behaviour. The last patching is not reflected in
Fig. 10.20. Instead, it shows alternatives identified by the matching algorithm. An
additional conveyor could be added instead of one of the output ramps served by the
pushers (two alternatives at the right) or instead of the ramp at the end of the existing
conveyor (alternative at the top), as well as in parallel to the existing conveyor
(alternative at the bottom). Each option is valid (which is not necessarily the case).
This example shows the variety of recommendations that might be provided by this
approach.

Related Work

In cloud and agile manufacturing, similar approaches exist but aim at virtualisation
of manufacturing capabilities and resource sharing [VHI13]. As an example, the
approach by Lee et al. [LBK14] suggested to send information to a centralised
hub for special analytics. The presented evolution support approach can be seen
as an instantiation of CPPS with cloud connection for the specific functionality of
a cooperative evolution support but aims for decentralised capturing and sharing
of model differences. Cooperative knowledge exchange about specific topics has
already proven its benefits in other application domains like distributed data
race detection [KZC12]. Therefore, the approach is also related to experience
management in which approaches exist for capturing the users’ or developers’ field
experiences of software systems [Hel3] or systems driven by user experiences
[SVS14]. Here the approach follows the view of knowledge-sharing networks that
combine the idea of (a) an advanced preparation of an individual itself and (b) an
evolution steps by considering the knowledge of other individuals who already made
these experiences.

Direct sharing of runtime evolution steps of machines is not the focus of the
research so far, but, for example, Wiirsch et al. [WGG13] present a query network
for software evolution data in a software development tool, which shows that
sharing and exchanging can answer evolution questions. In software development,
past changes are often captured in software variant and versioning tools. Such a
repository provides data to find changes and is in this approach transferred to CPPS
in the operational phase with evolution based on generated models. Furthermore,
Kolovos et al. [KPP06] have laid out different ways of implementing model
transformation tools of Eclipse Modelling Framework and Graphical Modelling
Framework to optimise results in order to make them beneficial in terms of produc-
tivity and maintainability. Abdallah et al. [ATWO08] already have demonstrated the
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applicability of model transformation aspects through different case studies. Brun
and Pierantonio [BP0OS] have demonstrated how maintaining a database and tracking
of design-level changes have made it possible to understand structural evolution
processes. They have illustrated how to find differences and how to track them.
They give reasons on how important it is to record differences between instances
consisting of calculation and identification of such differential steps. In this section,
we targeted a similar automated history of (quality) indicators on a model level in
the operational phase for recommending behaviour changes.

Further Reading

More information about the model learning approach can be found in Sect. 10.3.1.
Additional information about the matching used here has been published in
[Cha+18] and the overall idea of a cooperative support in [Hau+17]. In [Pie+18],
the use of the differencing approach for learned behaviour models of production
systems is shown in more detail, and in [Hau+18c], the idea of a marketplace for
evolution experience is described.

10.4.3 Learning Maintainability Estimation for Enabling
an “Economical Effort Recommender”

In contrast to previously presented model learning approaches to automated iden-
tification of changes, this section deals with the automated analysis of change
propagation in system models. For this purpose, we extend a change impact analysis
approach in Information Systems (IS) to aPS, as IS and aPS face very similar
challenges with respect to evolution. One target of the analysis of an IS or aPS with
respect to its maintainability is giving an impression of the change effort initiated
by a change request. Rather than identifying which changes were performed from
a system alternative to another one, maintenance tasks are derived from a certain
change request and for a given architecture. These maintenance tasks can be used
to identify the effort for changing the system architecture, realising an “Economical
Effort Recommender”. In order to realise a change impact estimation approach for
both IS and aPS, an architecture description in terms of meta-modelling and an
architecture-based change impact identification for automating this procedure are
necessary.

Challenges for Maintainability Estimation: Information Systems vs.
Automated Production Systems

Both IS and aPS operate over time, often over decades, after deployment. During the
runtime, they often face change requests that lead to the modifications on the system
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for most of the cases, and these modifications may include corrections, improve-
ments, or adaptations of the system environment changes [Hei+18a, Vog+17a].
Therefore, maintainability, which is defined as the ease with which a system or a
component can be retained in a state where it can perform its required functions
[IEE9Q], is an important quality aspect of the system, especially for long-living
systems.

However, maintainability estimation is already a difficult task for IS [Leh80]
and even harder for aPS since they are comprised of multi-discipline artefacts
from mechanical, electric/electronic, and software engineering. Moreover, aPS is
implemented in modularised architectures that are in their own way different from
pure software systems [Vog+17b]. In the following, we discuss the state of the art
for the change impact analysis in IS and aPS.

State of the Art for Change Impact Identification in Information Systems
In the domain of IS, there are several approaches to change impact identifica-
tion [Ros+15]. Task-based project planning focuses on building a hierarchical
decomposition of tasks into sub-tasks (e.g. [KAO3] or [Car+83]). However, these
approaches do not use the software’s architecture. Further, the scale of the estimation
is coarse grained. Architecture-based project planning approaches (e.g. [PBO1]
or [Carl2]) are based on Conway’s law [Con68] stating that the communication
structure of organisations plays an important role in software design. However, the
approaches in this category do not estimate the change effort or do not support an
automated change impact analysis. A further category is architecture-based software
evolution, for example as done in [Gar+09] and [Naal2]. They consider software
architecture as the main artefact during the change process. However, the works
are not extended to the change effort estimation. In scenario-based architecture
analysis, supplementary information is taken into account, such as maintenance
scenarios [BB99] or informal software architecture description [Cle+02]. Still
management tasks are missing in the aforementioned approaches.

State of the Art for Change Impact Identification in Automated Production
Systems Effort estimation in automation has been purely realised by counting
the results of input and output signals multiplied by the hourly effort per signal
for decades [Vogl4]. However, this method provides just simple results, not all
the necessary tasks in detail and corresponding costs. Recently, Prihofer et al.
proposed a multi-purpose feature-modelling approach by mapping feature into
modules [Pra+17], and this enables the impact measurement of a change, but this is
not embracing the various type of features, that is all the features from different
disciplines. This approach is based on the aPS meta-models. Meta-modelling is
an important topic for this project since an aPS meta-model and its properties,
which lie over the disciplines, are required ultimately. For the multi-disciplinary
property of aPS, domain-specific models from each domain may be maintained
separately [Bro+10]. The problem is synchronising all models [Fel+15], especially
when a change happens in one domain. Especially, some works (e.g. [KV13] and
[FKV14]) suggest discipline-encompassing modelling methods based on SysML
to check compatibilities on changes in the interface level and functionality level.
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Further, representing all the necessary information within one meta-model has also
been researched by [BFS05]. This approach suggests a method to combine software
structure, together with physical aspects in one common model. The approach of
Berardinelli et al. [Ber+16] maps AutomationML into SysML. Recently, an inte-
grated plant modelling using AutomationML is introduced in [Win+17]. However,
models or meta-models focus on specific problems respectively, and there is no
existing meta-model that encompasses all different disciplines, especially with the
purpose of estimating change effort by examining change propagation.

Karlsruhe Architectural Maintainability Prediction for Automated
Production Systems: An Architecture-Based Change Impact Analysis
Method for aPS

In the DoMain project, we proposed a systematic and automated approach for effort
estimation considering all disciplines within aPS instead of manual estimation,
depending on the engineers’ knowledge. As IS and aPS are very similar regarding
evolution, we used an existing change propagation approach from IS—Karlsruhe
Architectural Maintainability Prediction (Karlsruhe Architectural Maintainability
Prediction (KAMP)) [Ros+15]. KAMP aims to analyse the change propagation
in the model of the software architecture for a set of change requests. For this
purpose KAMP uses change propagation rules based on domain knowledge. Based
on the KAMP [Ros+15] and KAMP framework [HBK18a], we developed Karls-
ruhe Architectural Maintainability Prediction for automated Production Systems
(KAMP4aPS) [Hei+18a, Vog+17a, Koc17]. KAMP4aPS allows automated change
propagation analysis starting from an initial change in the system. To solve the
issues discussed in the beginning of this subsection and to allow a more realistic
change effort estimation, our approach considers technical and organisational tasks
during the change process as well. To support change propagation in the system’s
structure, as well as in the technical and organisational tasks, we provide two
meta-models, which serve as input for KAMP4aPS. Using the first meta-model,
the system’s structure can be described. The second meta-model describes the
non-structural elements in the system for the structural elements. Examples of
non-structural elements are documentation and test cases, as well as technical
and organisational information. Thus, non-structural meta classes reference the
corresponding structural meta classes. In other words, the input of KAMP4aPS is
the descriptive model of the system structure and the description of non-structural
elements for the structural elements. Based on the input and the initial change in
the descriptive model, KAMP4aPS automatically generates a task list containing
all tasks that should be potentially carried out to implement the change. These
tasks refer to changing elements in the descriptive model of the system structure
and of the non-structural elements. As effort estimation may differ according to
different elements (e.g. the cost of changing a specific component, module, or
program), there is a need for domain knowledge to accurately estimate the effort.
Thus, effort estimation has to be done manually based on the generated task list.
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Further, due to the diversity of artefacts in aPS domain due to electrical and
mechanical parts, as well as software systems, some artefacts may be neglected
when estimating the effort of a change implementation manually. As KAMP4aPS
considers these artefacts during evolution (i.e. using the system structure model
and the model of the non-structural elements), the cost of a change can be
estimated more realistically. Another benefit is the way in which a change scenario
can be implemented, as there are usually different ways to implement a change
scenario. Using KAMP4aPS, different ways of implementation at model level can
be simulated and compared with each other without implementing them in the
real system [Hei+18a, Vog+17a, Kocl17, Ros+15]. Thus, KAMP4aPS serves as an
economical effort recommender as it allows selecting the most efficient and cost-
effective implementation variant for a change scenario and estimating the change
effort before implementing the change.

Overview of KAMP4aPS Approach Figure 10.21 gives an overview of
KAMP4aPS. It is composed of two phases. In the first phase, the input has to
be prepared. As illustrated in Fig. 10.21 and described previously, the first phase
comprises (i) constructing structural models of the domain; (ii) annotating these
models with further information regarding the non-structural elements, as well as the
technical and organisational elements; and (iii) identifying the initial changes in the
model based on a change scenario. In the second phase, KAMP4aPS automatically
calculates the change propagation using a set of predefined change propagation
rules. Change propagation rules are defined by the domain expert and describe
from which meta class to which meta class of the system structure meta-model
the change can propagate (e.g. change propagation from the sensor to its fixation).
Based on the initial change, KAMP4aPS iteratively applies the change propagation
rules on the system structure meta-model and identifies the affected model elements
by the change. In other words, KAMP4aPS applies the change propagation rules to
the model elements identified as affected in the previous iteration. In each iteration,
KAMP4aPS adds the newly affected model elements of the system structure meta-
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model to a set containing all affected artefacts. The set of all affected artefacts
does not contain any duplicates. Thus, KAMP4aPS terminates if no new model
elements are added to the set of all affected artefacts in the last iteration. For each
affected model elements of the system structure meta-model, KAMP4aPS identifies
all affected model elements of the non-structural meta-model. For example, if
there are test cases (i.e. model elements of the non-structural meta-model) for a
component (i.e. model element of the structural meta-model) and the component is
affected by a change, the test cases have also to be marked as changed. KAMP4aPS
adds the affected model elements of the system structure meta-model and non-
structural meta-model to a task list. The task list is the output of our approach.
Each task in the task list refers to the affected elements of the system structure
meta-model (e.g. changing a component), as well as technical (e.g. changing the
corresponding test cases) and organisational activities (e.g. updating the list of spare
parts) [Hei+18a, Ros+15, Vog+17a, Koc17].

Motivation Example: xPPU As an example, a certain component of the aPS
might need to be replaced (e.g. the replacement of the microswitches within the
crane module of XxPPU, as in Scenario 13 [Vog+14b]). The crane module has used
three microswitches to indicate the direction of the arm at stack, at stamp, and at
conveyor, respectively (see the structure in Fig. 10.22a). With some reasons, for
example contamination or defect of the microswitch, the accuracy is degraded and
needs to be improved. For example, the crane is at the ramp position, as depicted in

Microswitch
¢ fixture

Microswitch

Turning
table

(b) (c) (d)

Fig. 10.22 Crane structure description and defective crane positioning. (a) Graphical representa-
tion and actual image of crane structure. (b) Crane at the ramp. (c) At the stamp (intent). (d) At the
stamp (actuality) [Hei+18a]
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Fig. 10.22b, and is supposed to turn to the stamp position, as depicted in Fig. 10.22c.
However, the crane passes by the exact stamp position and stops at a wrong position,
as illustrated in Fig. 10.22d. This performance issue leads the replacement of the
microswitches with rotary potentiometer. In other words, to achieve a more accurate
motion of the crane arm rotation, the engineer decides to replace all these three
microswitches with one potentiometer, which provides more precise information
about the rotation angle. Even with this simple example, through counting 1/O,
which is the conventional and common approach, this change effort can just be
counted as removing three digital inputs and adding one analogue input. However,
more detailed tasks (i.e. not just about the number of input/output port changes
but rather about specific tasks on the relevant components) need to be done for
this implementation from purchasing needed elements (i.e. potentiometer itself
and additional fixture parts) to updating corresponding documents (e.g. operation
instructions and stock lists) in addition to replacing the elements [Vog+14b].

As discussed previously, a change in a system propagates not only to the
elements in the system structure but also to the non-structural elements (Fig. 10.23).
Figure 10.24 shows an exemplary task list following the change for Scenario
13 [Vog+14b]. Tasks include not only the change activities for implementing the
change but also the related activities, for example maintaining the artefacts, as
seen in Fig. 10.24. Additionally, each type of the task is mapped into the specific
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Fig. 10.23 aPS meta-models. (a) Structural aPS meta-model. (b) Non-structural aPS annotation
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Fig. 10.24 Depiction of the task list on Scenario 13
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personnel or department (as described using eng for engineering staff, m&p for
material and procurement, and sf for shop-floor). Thus, the cost of the tasks can be
calculated, for example, based on person-hour cost. Further, we can observe that the
change causes tasks in other disciplines: removal of microswitch (i.e. an electrical
component) causes mechanical modification. These mutual dependencies between
disciplines are handled by a discipline-integrated meta-model. This meta-model
specifies structural element descriptions of the system. The non-structural elements
can be presented using a further meta-model. Each meta-class of this meta-model
refers to the corresponding meta-classes of the structural elements. Figure 10.23
shows an excerpt from the structural (a) and the non-structural (b) meta-model
[Hei+18a].

Application of KAMP4aPS to xPPU In order to use KAMP4aPS, the structural
model of the plant has to be provided by the domain expert. A further model contains
the non-structural elements of the plant, such as test cases, documentation, or
ECAD. In this scenario, the seed modification is changing the three microswitches.
Starting from seed modification, KAMP4aPS iteratively calculates other changing
elements based on the change propagation rules. The change propagation rules
highly depend on the underlying meta-model of structural elements. The domain
expert can define the change propagation rules at a high abstraction level for a
general plant (e.g. a change can propagate from an affected component to other
components) or at a low abstraction level for a concrete plant (e.g. a change can
propagate from an affected sensor to its fixture). For KAMP4aPS, we defined
a set of generic change propagation rules, as well as a set of specific change
propagation rules. The general change propagation rules can be extended to more
concrete rules for a specific plant. If a change propagation rule specifies the change
propagation from microswitch to its fixture, KAMP4aPS marks the corresponding
fixture as modified. Further, it derives required task lists considering non-structural
information based on predefined change propagation rules. In this way, the change
propagates through the elements of the plant. Figure 10.25 describes the results of
the KAMP4aPS tool regarding the change scenario introduced previously. Simpli-
fied version of the xPPU model is inserted, and the seed modification is defined as
modification of microswitches. Ultimately, these tasks can be manually converted
into cost. Based on this cost estimation information, better implementation, which
means less costly solution, can be recommended [Hei+18a].

10.4.4 Conclusion and Outlook

This section has explored possibilities of how past changes can be used to
recommend and assess future changes. Therefore, three possibilities are presented
that allow a more guided evolution of software-intense systems. First, it was
shown how information that is required for making useful recommendations can
be inferred from the change histories of models. This information was used to
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Fig. 10.25 Prototypical KAMP4aPS running results on microswitch replacement in xPPU

provide blueprints for recommendations that represent common refactoring or
frequent changes to a type of model. A second approach considers how change
information that is generated out of past changes can be used to establish a
knowledge-carrying network for evolution experiences by providing changes as
evolution steps in a service-component architecture. These evolution steps are used
in similar production systems to identify potential improvements of the system
and provide recommendation in the form of high-level model description of the
change and its impact. The last approach focuses on presenting tasks to the operator
of a production system. Therefore, a systematic and automatic change impact
analysis approach and an interdisciplinary meta-model for production systems were
shown. The approach allows achieving the task list based on the architectural model
considering the multiple disciplines. The task list can be used for manual effort
estimation by mapping the tasks to the costs instead of coarse-grained manual
estimation depending on the engineers’ knowledge.

As future work, it is intended to integrate the three presented approaches.
High-level changes of the monitored signal models in the knowledge-carrying
network should be learned with the automatic recommendation approach for model
editing. Further, the integration of both case studies establishes the economical
effort recommender in a supply chain of Common Component Modeling Example
(CoCoME) and xPPU so that possible tasks based on KAMP4aPS using the
interdisciplinary model and exchanged evolution steps containing the learned high-
level changes can be provided.
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10.5 Conclusion

Software is ever changing. Hence, software evolution is a continuous process that
requires knowledge about the software. The existence and quality of this knowledge
have a high impact on the success of software evolutions. We presented in this
chapter several approaches to learn from past software evolutions and, thus, guide
future evolutions. Several approaches have been developed around the joint Pick-
and-Place case study.

Analysing and understanding past evolutions is a foundation for the evolution
of a software. The approaches in Sect. 10.1 support systematically analysing how
single models have evolved in the past and multiple ones have co-evolved.

The approaches in Sects. 10.2 and 10.3 address functional and non-functional
requirements during software evolution. Whereas the former approaches focus
on functional correctness of the evolved software, the latter approaches provide
learning of models from running systems in order to analyse non-functional
requirements.

Finally, the approaches in Sect. 10.4 support software engineering during a
software evolution by recommending future evolutions from previous software
evolutions either of the same system or from other similar systems.

While all those approaches solve their respective challenges and particularly the
analysis of past evolutions is used in multiple approaches, future work includes a
tighter integration to holistically address software evolution.
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Chapter 11 )
Formal Verification of Evolutionary Shethie
Changes

Bernhard Beckert, Jakob Mund, Mattias Ulbrich, and Alexander Weigl

In this chapter, we elaborate how formal verification techniques can be used to
ensure safety properties of automated production systems during their evolution.
First we discuss the opportunities that formal methods offer, particularly when
dealing with the evolution of automated production systems, but also which special
needs this particular domain requires from the formal methods to be applied. We
argue that evolution allows the seamless combination of experiential knowledge
with formally founded reasoning.

We exemplarily present three approaches that successfully incorporate a formal
verification technique for analysis, modelling, or reasoning, into the system evo-
lution process, namely, regression verification, generalised test tables, and model
checking of holistic (multidomain) models.

All three approaches contribute to the guiding theme Methods and Processes for
Evolution of the priority programme.

While formal verification methods have the potential of being used in several
application fields, we concentrate on the aspect of ensuring correctness (in the form
of maintaining safety properties or consistency with earlier versions). We focus on
techniques that operate on the actual implementation (the code executed on a plant)
rather than on more abstract behavioural descriptions. Here, we describe the logical
foundations and technical aspects of the applied formal verification techniques
and their applications; their benefits for the user, as far as system and model
comprehensibility are concerned; and the embedding into development processes
are discussed in Sect. 10.
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11.1 Verifying Production Systems: Assessment
of Opportunities

System analyses based on formal methods are powerful techniques to ensure that
a system has desired properties. Formal methods provide a versatile toolbox that
can be used for many reliability- or safety-enhancing tasks like formal verification,
advanced testing, modelling, formal specification and design, etc. Formal methods
are known for being very thorough analysis techniques since they import mathemat-
ical rigour into the analysis process.

As in the case for many very general notions, the question of when a technique
is to be called formal has no definite answer. Moreover, different people from
different communities are likely to give very different answers. Within this chapter,
by “formal verification method”, we denote a formal technique that mathematically
proves that a system or component satisfies its specified requirements [[EE90]. Such
a formal technique usually comprises a formal description of the system (i.e. a
model of the system expressed using a formal notation), a formal specification of the
requirements, and rigorous (formal) rules that allow one to reason that the system
satisfies the requirements. In addition, we focus on techniques that allow automated
verification, where the actual verification step is conducted by a computer program
requiring as little guidance to user input as possible.

11.1.1 Peculiarities of Automated Production Systems

For the remainder of this chapter, instead of discussing the application of formal
verification in general, we will focus on the application of a particular kind of
systems, namely, automated production systems. Distinctive characteristics of such
a system are as follows:

1. They are long running. Oftentimes, the plants that a software drives are designed
to run for several decades, which makes a thorough design-time analysis
worthwhile that takes potential evolutionary developments into consideration.

2. They are often mission or safety critical. Due to immense forces and speeds
that can build up in a plant, a malfunctioning automated production system may
cause considerable damage to products or production systems and may even
bring people to harm. Damaged systems may cause immense costs if plants stand
still.

3. They are multidisciplinary in the sense that their design spans several engineering
disciplines that must work together to achieve the desired system behaviour
and heterogeneous in the sense that they comprise analogue as well as digital
components. For instance, a software engineer may be responsible for developing
the software that controls a conveyor belt installed by a mechanical engineer. The
controller actions are based on sensor information obtained from a bus system
designed by an electrical/electronical engineer.
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4. While automated production systems remain in service for a long time, their
requirements often are not cast in stone, but change over time: New types of
products are to be manufactured, systems are upgraded to increase throughput
or to keep up with technological development, etc. Moreover, flaws in the
controlling software or the hardware design may have to be fixed. Production
systems therefore frequently evolve during their lifetime. Thus, methods and
means that accompany the transition induced by evolution must be put into
action. One has to ensure that a revision does not break existing intended
behaviour while achieving the intended change effect.

Based on these peculiarities, we subsequently identify and describe both the general
intricacies and the opportunities for formal verification in the domain of automated
production systems on an abstract level and come back to these points in the sections
on the individual approaches.

11.1.2 Intricacies of the Application of Formal Verification

Formal methods have been the subject of scientific investigation for decades.
However, the industry is very reluctant to incorporate them into their development
processes. Only in recent years have formal methods gained reputation, for instance,
by being added as acceptable verification techniques for avionics [GP12] or
for the automotive industry [ISO11a]. Based on our experience in the priority
programme, we see the following intricacies (or challenges) for formal verification
of evolutionary changes in automated production systems:

Specification efforts One of the main reasons for reluctance to adopt formal
methods in industrial contexts is that many of their use cases have in common that
they require a formal description of the properties to be established (a “formal
specification”). Obtaining for formal specifications or models is hard [Pak+16],
as this requires training in the formal system and due to the additional workload
it puts on industrial-sized projects. During evolution, specifications have to
be consistently co-evolved alongside the code, which increases the required
overhead even more.

Cyber-physical systems Automated production systems have an interdis-
ciplinary nature which combines discrete software-driven controllers with
continuous physical dimensions. Hence, hybrid systems that combine models
for both types of behaviours are a natural fit to represent automated production
systems. For instance, the geo-spatial translation of workpieces may be modelled
in terms of a function from continuous time to a continuous variable, i.e. the
position, by means of differential equations. Continuous behaviour inherently
induces that the system state space becomes infinite. Checking correctness thus
becomes a more difficult problem and inaccessible for explorative techniques like
many model-checking approaches. Hence, finding suitable (finite) abstractions
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that model physical phenomena both correctly and sufficiently precisely becomes
a key challenge for verification.

Large state space As areactive system running for long periods of time, automa-
tion software must always be validated by analysing traces of system responses;
it does not suffice to analyse individual cycles of the software individually. The
state space that needs to be considered during verification grows exponentially
in the number of steps that are analysed. Moreover, the output of the software
also depends on the behaviour of the hardware on which it operates. The (often
nondeterministic) hardware models which are often used in the validation make
the state space grow even larger.

Specific languages/tools Control software for automated production system
is typically written in languages fairly different from commonplace pro-
gramming languages used for other embedded systems, e.g. C/C++. The
IEC61131 [Com02] standard defines five different textual and graphical
languages to program automated production systems. As a consequence, the
use of existing approaches and tools requires adaptation.

11.1.3 Opportunities for the Application of Formal Verification

Based on our experiences from our research on formal methods within the priority
programme, we also see potential for the application of formal methods in the
practice of automated production system development and evolution.

Existing older system versions Due to the evolutionary aspect, we can assume
the existence of older revisions of the system (the plant and the software).
Such existing system versions can be leveraged for formal verification in
several ways. For instance, the analysis can be restricted to investigating the
difference (structural or behavioural difference) of the new revision w.r.t. the old
revision. Furthermore, old revisions allow obtaining precise models of the system
efficiently using observations and model learning techniques.

Limited structural complexity Typically, due to the cyclic behaviour of the
programmable logic controller and the imposed timing restrictions, the structural
complexity of the software of an individual controller is rather limited compared
to other software programs such as database management systems. For instance,
program loops with complex exit conditions and algorithmic traversal of complex
data structures are rarely found in control software of automated production
systems.

Economically justifiable efforts Due to the longevity of automated production
systems, initial efforts put into formalisation have a longer period to break even.
Hence, higher efforts typically associated with formal verification are more likely
to be economically justified for automated production systems.

Infeasibility of alternatives Common alternatives to verification, first and fore-
most testing, are often economically or technically infeasible since neither the
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actual testing environment nor the system under test can be used, since that would
require to either hold production at the customer site or install a prototypical
machine for testing purposes. Hence, the value of testing, i.e. the ability to find
bugs in an efficient way, is diminished. In turn, formal verification operates solely
on the controller software code and, thus, does not suffer from these drawbacks
and may therefore be a suitable addition or alternative (especially in early stages
of the development process) to verification by testing of automated production
systems.

In conclusion, while the applicability of formal verification depends on the spe-
cific system and engineering context, the above opportunities suggest that it is
particularly well suited for engineering automated production system, compared to
engineering software systems in general.

11.1.4 Addressed Software Evolution Challenges

To illustrate the applicability and benefits of formal verification, this chapter reports
on three formal approaches that each verifies a distinct aspect of the correctness of
automated production systems. They address two complementary questions from
the collection of general challenges regarding software evolution in Chap. 3.

How to model, specify, and verify that a system retains desired behaviour
during system evolution? In Sect.11.2, we present an approach to verify that
defined aspects of the behaviour of the system software are preserved during system
evolution.

The approach takes the code of two versions of the system software as input and
a formal condition under which the two should behave equivalently and a formal
definition of when two behaviours are considered equal. Using a state-of-the-art
model checker, the verification approach then asserts that for all admissible input
sequences, the two revisions satisfy the required equivalence condition.

This kind of equivalence checking is called regression verification and particu-
larly helpful since it reduces the need for specification: The old software versions
serve as (partial) specification for the new version. The verification transfers the
trust in the correctness of the old software revision onto the new one. Regression
verification does not require formally specified system properties: The old revision
defines the functional property to be verified for the new revision.

How to model, specify, and verify intentionally changed behaviour during sys-
tem evolution? In Sect. 11.3, a novel temporal specification language is introduced
which allows a comprehensible specification of reactive systems like the software
of automated production systems. For those parts of the software behaviour which
are intended to change, this temporal specification language can be used to describe
the new behaviour.
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Sometimes, a specification of the software changes alone does not suffice. To
answer the question for cases in which not only the software but entire systems
evolve, we present in Sect. 11.4 an approach to verify that the integrated plant
behaviour, i.e. the composition of software, automation platform, and mechanical
components, satisfies the system requirements. Specifically, the approach is based
on creating multidomain models of automated production systems in a coherent
model that represents the results of several involved engineering disciplines by using
a common (formal) modelling language. By translating those models into formal
representations, model-checking tools give us qualitative or quantitative results that
can be used to decide whether the system meets the specified requirements.

11.2 Regression Verification

One of the main bottlenecks for using formal methods in practice is coming up with
suitable system and requirement specifications. This problem is particularly severe
in the domain of automated production systems as formal specifications are even
less common in this domain than in other software disciplines. In the following,
we give a brief introduction to the concept of regression verification which exploits
existing software revisions as specifications of new releases of the system—thus
severely reducing the need to formulate specifications. In this section, we explain
our application of regression verification to PLC software (more details are given
in [Bec+15]). The embedding into the software development process is outlined in
Sect. 10.2.2. The idea of regression verification is to formally prove that a version
of code driving a plant after an evolution step shows the same reactive input/output
behaviour as the code version before evolution. Only desired deviations that are
explicitly stated are allowed. Thus, the original code serves as a formal specification
for the new implementation, and formal verification techniques like model checking
or deductive theorem proving can be applied to prove that the behavioural effect
of the code remains the same. Regression verification covers all parts of system
behaviour that are intended to remain untouched during an evolution step.

In this and the following sections, we consider PLCs to be reactive systems with
a periodic cyclic data processing behaviour, repeating the same control procedure
indefinitely. A PLC cycle consists of the following steps: (1) read input values (input
space 1), (2) execute task(s), (3) write output values (output space O), and (4) wait
till next cycle starts. This leads to the following formal definition using infinite
sequences over inputs and outputs (/* and O®):

Definition 11.2.1 The semantics of a PLC program P is a causal-deterministic
function b(P) : I¥ — O®.Thatis, i1, = iz, implies b(P)(i1){n = b(P)(i2)n
forall n € N, where x|, denotes the finite initial subsequence of x of length n.

PLCs are modelled as causal-deterministic systems as we assume they are
stateful, deterministic programs whose output is a function of the inputs received
since system start—but that cannot depend on the input which is still to come.
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The aim of regression verification is to formally prove that the existing (good)
behaviour of PLC code is retained during system evolution—which is (as a verifi-
cation goal) different to proving that PLC code satisfies a functional specification
and different to showing that the whole production system works correctly. We
assume that the old software revision has proved its value during its lifespan and
has thus gained “trust by experience”. Regression verification formally transfers
this trust to the new revision. The main advantage of regression verification is that
no functional/behavioural specification is required for the part of the behaviour
to be retained (besides the old code version). The application area of software
in automated production systems is particularly well suited for a treatment with
regression verification for the following reason: During the lifespan of a plant,
its software usually needs to adapt to changing requirements. As a rule, the
requirements for the machine behaviour do not change entirely but only in certain
well-defined aspects while most parts are to be retained in an evolution step.

In an ideal verification scenario, regression verification and regression testing
should go side by side as both approaches have their particular advantages.
Regression verification provides a formal equivalence proof for all considered input
sequences and not only for the (usually restricted) set of selected test cases. Also,
while regression testing of PLC software requires either a hardware test bed or an
executable hardware model, this is not needed for regression verification. It suffices
to provide a formal relational description of how the hardware has changed during
the evolution step (if it has changed at all). Testing, on the other hand, is not limited
to an analysis of the software alone but allows comprising the physical entities of
the machine.

We define a notion of reactive conditional and reactive relational equivalence
together with a proof methodology, also in the presence of environment models.
Our method concentrates on the PLC software that runs on the controller and for
now disregards all effects outside the software (in particular the context and the
platform). Some additional measures for incorporating models of effects outside the
software into the verification are discussed below.

A core element of our verification method is a translation of PLC code into
the input language for model checkers. Using this translation on both the old and
the new software revision, we can specify the retained behaviour. Our technol-
ogy targets PLC code written in Structured Text (ST) and Sequential Function
Chart (SFC), two languages of the IEC 61131 standard [Com02]; an adaptation
to other languages is easily possible. A further core element is the use of a
model checker supporting invariant generation. It is an important insight that this
allows the automatic generation of coupling invariants, which in many cases make
regression verification more efficient than symbolic or explicit state model checking.
Accordingly, we have adapted the concept of coupling invariants to the world of
reactive systems. We have implemented our approach in a tool chain using the
model checker nuXmv [Cav+14]. It supports techniques for predicate abstraction
and invariant generation by interpolant inspection [Bral 1, McMO03].
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The first notion of equivalence we define is that of perfect, bit-wise equivalence
of two PLC programs in which both systems always answer with the same response
to sensor stimuli:

Definition 11.2.2 (Trace Equivalent PLC Programs) Two PLC programs P, Q
whose variable declarations contain the same input/output variables are called
perfectly equivalent if they produce the same output sequence when presented with
the same input sequence, i.e. b(P)(i) = b(Q)(i) foralli € I®.

When considering the semantics of programs to be sets of traces, this definition is
equivalent to requiring that b(P) = b(Q).

This first definition of trace equivalence is too strong a condition in most cases
since software re-factorisation is the answer to changed requirements and the
software is indeed intended to behave differently. Hence, we introduce a second
notion of equivalence: conditional equivalence:

Definition 11.2.3 (Conditionally Equivalent PLC Programs) Two PLC pro-
grams P and Q are called conditionally equivalent modulo the condition ¢ : [ —
bool if they produce the same result for all input sequences that satisfy condition ¢,
i.e.if (i) then b(P)(i) = b(Q)(i) forall i € I®.

During evolution, the behaviour of the system’s sensors and actors may be
changed in addition to software changes. Then, the notion of conditional equiv-
alence may still be too strong and needs to be further relaxed. This leads to the
notion of relational equivalence:

Definition 11.2.4 (Relationally Equivalent PLC Programs) Two PLC programs
P, Q are called relationally equivalent modulo relations ~;,C I x [ 5 and ~ ;-
0% x 05 if they produce related output sequences when presented with related
input sequences, i.e.

if i~y i then b(P)(i) ~pu b(Q)(') foralli € If,i" € Iy,

With these notions we have established the different proof obligations for
regression verification. Figure 11.1 shows how the approach is realised. After
processing the program code of the two revisions to be compared into formal models
(“SMV”), these two models are combined into one product automaton, which
is then—together with the properties to be checked—encoded into a combined
model that is sent to a model checker tool. The program code is translated into
an automaton by first normalising the code to a restricted programming language
STp with limited feature set and then symbolically executing it. The model checker
either proves the equivalence property (v), finds a counterexample that exposes that
the two versions are not equivalent (X), or times out (®).
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Fig. 11.1 Overview of the regression verification method

11.2.1 Environment Models

There are realistic software evolution steps which would, in general, change the
behaviour of an automated Production Systems (aPS), but which do not change
the behaviour of a particular plant since not every sequence of input signals is
possible. For instance, two software versions may behave differently, if two signals
movingLeft and movingRight are simultaneously set. Since this will never be
the case in reality (at least in normal operation), the software revisions can still be
called equivalent if they behave equivalently in all other cases.

To make the approach more precise by allowing such verification cases, we
include a mechanism to incorporate models of the plant environment into the
verification chain. By definition, equivalence needs to hold for all conceivable
sequences of input values, which is a very strong requirement. However, it suffices
that the systems behave equivalently for all input sequences that can occur in
practice. It is therefore sensible to add knowledge on the possible sensor inputs as
assumptions to the process and perform a conditional regression verification, where
the condition not only excludes inputs for which the systems are intended to behave
differently but also inputs that cannot occur in practice. Our methodology allows
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incorporating environment models either as LTL formulas or as automata. In both
cases, the models are added as assumptions.

For example, the crane of the Pick-and-Place Unit (PPU) (Sect. 4.3) can never be
in more than one of the positions Magazine (M), Stamp (5), and Conveyor Belt (C)
at the same time. Assuming correctly working sensors, at most one of the Boolean
input variables M, S, C can be true at the same time. Thus, it is irrelevant whether
the two program revisions react differently in case, e.g. M and S are signalled
simultaneously, but still are equivalent for all other inputs. This assumption adds the
implicit precondition that sensors never fail. If they fail, no guarantees are made.
The regression verification approach is flexible in the sense that it allows one either
to add such assumptions or to show equivalence also for failure cases.

11.2.2 Case Study: PPU

For evaluation, we have applied our regression verification tool chain to the PPU
case study introduced in Sect.4.3 in this book. The case study covers different
aspects of evolution, containing pure software changes as well as changes that
incorporate adaptations to the mechanics and automation hardware in their 16
different variants. In the largest of the original scenarios, the PPU has 22 digital
input, 13 digital output, and 3 analogue output signals and defines a number of
simple discrete event automation tasks.

We discovered some unintentional regressions in the PPU using our approach. In
four cases, a regression by delaying the system answer one cycle for each workpiece
has been caused by newly added code blocks. Due to the short cycle time of the
PPU (4 ms), the discrepancy between the programs was not revealed during testing.
Moreover, regression verification discovered that a fix for a safety violation had not
been ported to an earlier version in the PPU evolution sequence. It is possible that
the crane tries to grab a workpiece while it is still in motion which might under very
unfortunate circumstances cause damages.

In the following, we discuss two evolution scenarios from the PPU and show how
they can be subject to regression verification. More details can be found in [Weil5];
see Table 11.1! for the time required for verification. Not all evolution scenarios
include a software modification or have an intentional behaviour difference. The
scenarios for which the equivalence verification is trivial have been omitted from
the table.

In the evolution scenario Ev3, the new stamping hardware for metallic products
brings with it a new emergency stop button E, (triggering the same emergency
logic as the existing button E;) and a new start switch S3 (complementing S; and $>
already present). Only after all three start switches have been pressed does the plant

!Verification with nuXmv in version 1.0.1 on an Intel Dual-Core with 2.7 GHz and 4 GB RAM
running OpenSUSE 12.2; see [Weil5, Bec+15] for detail information.
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Table 11.1 Results of the experiments

Scenario In State Min Max Scenario In  State  Min Max
Evl 10 140 4s 8s Ev6+EM 11 299  2min 21 min
Ev1+EM 12 146 7s 12s Ev8 20 289 13.7min 20.9 min
Ev2 11 141  4s 8s Ev9 20 305 50.5min 1.3h
Ev3 19 246 9s 17s Ev10 23 365 13s 24s
Ev6+A 19 284 15.1min 1554h Evll 28 576 3.5h 6.3h
Evo+An 19 284 89min 9.1h Evi2 34 860 22.2h 56.4h
Evo+Aym 19 284 18.1min 13h Ev13 34 1225 21.9h 21.9h
Ev6+AEM 11 299  257min 104.1h Evli4 47 1663 22.1h 22.1h

“Scenario” is the name of the evolution scenario in [Vog+14b], “In” is the size of the sensor input
space in bits, “State” is the size of the state space in bits, and “Min/Max” show the minimum and
maximum time needed for verification using nuXmv in seconds (s), minutes (min), or hours (h).
+EM indicates that an environment model has been used

start processing workpieces. Trace equivalence between the two revisions of this
evolution step can only be shown for traces where these new components do not
influence the flow of signals already present in the old software. This is the case
if (1) no metallic workpiece is ever detected in the plant, (2) button E; is only
pressed if simultaneously E; is also pressed, and (3) S3 is not activated after the
other switches S7 and S> have been pressed. Under these assumptions, conditional
equivalence can indeed be proved by our tool chain.

In evolution scenario Ev14, the three position sensors at Crane A, Magazine B,
and Stamp C are replaced by a single angle transmitter that reports the angular
position of the crane (in degrees). Now, the PLC programs take their input from two
different value domains such that we need to express the relationship between these
input spaces by a predicate ~;, which relates each Boolean position switch (A, B,
and C) to a 5° interval in the angular input space represented by the continuous
value a:

(A,B,C) ~pa=(A<0<a<5A(B<90<a<9))
A(C < 180 <a < 18)5) .

11.3 Generalised Test Tables

In the last section, an approach is presented which permits one to prove that a
software revision behaves (partially) equivalently to an earlier revision. But when
a system evolves, regression verification presented in the last section can cover
validation for inputs where system behaviour does not change. But how to deal
with the part of the behaviour which is intended to change? For those inputs
where different behaviour is expected, we cannot simply specify by reference
to the old version. A formal specification is needed to fill this unspecified gap.
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We fall back to assurance of functional correctness, with the same application issues
as mentioned in Sect. 11.1.2, especially the specification efforts. A specification
language and methodology are needed which are accessible and applicable to
engineers. To address the challenge of lacking languages and tools for formal
specification of automated production systems, we introduced generalised test
tables, a practical specification methodology with which PLC systems can be
conveniently formally specified and verified. We present syntax and semantics of
the specification technique and show how they can be used to model check reactive
system behaviour.

Test cases are commonly written in the form of fest tables, in which each
row contains the input stimuli for one cycle and the expected response of the
reactive system. Thus, the whole table captures the intended behaviour of the system
(the sequence of actuator signals) for one particular sequence of input signals.
Generalised test tables extend the concept of test tables, which are already frequently
used in quality management of aPS. The main idea is to allow more general table
entries, thus enabling a table to capture not just a single test case but a family of
similar behavioural cases.

In Sect. 10.2.2, the shape of generalised test tables and their generalisation
concepts have already been introduced. Here, we describe the formal foundations
of generalised test tables and reports about their principal suitability for formal
specification and automatic verification.

11.3.1 Formal Syntax

Formally, a generalised test table is a finite sequence of rows. Each row consists
of three constraining formulas: symlIn for the inputs, symOut for the outputs, and
symDur for the duration (the number of repetitions) of that row. The constraints are
formulated in a generalisation of the expression language of Structured Text (see
Sect. 10.2.2 for details).

Definition 11.3.1 (Generalised Test Table) Let T be a generalised test table with
m rows; let #r and O7 be the set of input variables resp. the set of output variables
of T; and let 9r be the set of global variables occurring in 7. Then T is identified
with the sequence

(symln,, symOut,, symDury) - - - (symln,,, symOut,,, symDur,,) ,

where symlin; is the conjunction of all constraints contained in cells in row i that
correspond to input variables, symOut; is the conjunction of all constraints contained
in cells in row i that correspond to output variables, and symDur; is the interval
contained in the duration column at row i.
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The constraint symln; on the input values is the precondition of the ith row,
and analogously symOut; is its post-condition. The duration constraint symDur;
describes how often the ith row is allowed to be repeated successively.

11.3.2 Semantics

The semantics of generalised test tables is discussed in detail in [Bec+17a]; here,
we give a summary. The definition of the semantics is based on a two-party game—
between a challenger and the system—for which a generalised test table describes
the allowed moves. The challenger tries to force the system to violate the generalised
test table, whereas the system tries to conform to the generalised test table.

Like any two-party game, this game is played alternately. At each turn, the
challenger provides a set of input values, and the system replies with output values.
If the challenger has played an invalid input value not allowed by the generalised test
table, then the system wins. Analogously, the challenger wins if the system provides
an output that is in conflict with the generalised test table. In addition, the system
wins if the generalised test table has been played to the end, such that there are no
more valid input values available.

We define the conformance of a system to a generalised test table based on the
outcome of the plays against any possible challenger.

Definition 11.3.2 (Conformance) The reactive system P strictly conforms to the
generalised test table T if it wins against every possible challenger for all instanti-
ations of the global variables in T. The reactive system P weakly conformsto T if
its strategy never loses.

11.3.3 Model-Checking Generalised Test Tables

The first step towards formally verifying the conformance of a reactive system to a
generalised test table T is the normalisation of T such that the normalised version T’
represents the same family of concrete test tables, but the duration column in 7’
only contains the constraints [0, 1] (at most one cycle), [1, 1] (exactly one cycle),
and [0, —] (arbitrary number of cycles).

The second step then is to generate input for a model checker that represents
the game to be played w.r.t. T’. The system is, in particular, modelled using the
set R of rows of T’ to which a given system state can correspond To keep track
of R, in every move of the game, the constraint pairs (symlIn;, symQOut;) for i €
R need to be considered in the current state of the game. After each move of the
challenger or the system, the row set R is adapted. Rows that violate the pre- or
post-condition are removed. Rows that can be reached by the system in this move are
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added. If R becomes empty, the last party to have moved has violated the generalised
test table and loses the game.

Technically, we use the state-of-the-art model checker nuXmv [Cav+14] to verify
that R becomes empty only through the violation of the input constraint. For this we
encode both, the software and the generalised test table automaton, into the SMV
format. On the concept level, a product automaton is built. For strictly conformance
we assert via an LTL that the software reaches the end of the table, represented by the
sentinel, under assumption of a fair challenger. The checking of weak conformance
is more efficient, as it can be asserted with an invariant.

11.3.4 Application Example

As an example, we consider a function block MinMaxWarning that is commonly
used in safety-critical applications (more details may be found in [Bec+17a]). The
purpose of this function block is to watch over the input values and to raise a warning
if they repeatedly, for a certain number of cycles, exceed a range of allowed values
that is fixed during an initial learning phase.

More precisely, the system under test is a function block MinMaxWarning,
written in ST, with input variables mode, learn, and I and output variables
Q and W. It operates in two modes, Active and Learn, as selected by the caller
via input mode. During the learning phase, it learns the minimum and the maximum
of the input I that occur while the 1earn flag is activated. When switched into the
active phase, the function block checks that the input I stays within the previously
learned interval. The output Q is equal to I if I is within the learned interval;
otherwise, the nearest value from the interval is returned. If the input value keeps
being out of range for a specified number of cycles, then the function block raises an
alarm via the variable W. The alarm is reset after a certain cooldown time if the input
value falls back into the learned interval. An unlearned function block always signals
a warning. The expected behaviour of MinMaxWarning is partially described in
Fig. 11.2.

Input Output (C] Input Output €]

# | mode learn I Q W # | mode learn I 0 w

1 ‘ Active ‘ 0 TRUE ‘ 1| Learn TRUE q ‘ 0 TRUE ‘ 1
2| Learn TRUE q 0 raLse | 1 2| Learn TRUE p 0 TRUE 1
3| Learn TRUE P 0 rFaLse | 1 3 | Active - >q qg rFaLsE | 10
4 | Active - p,q] | [p.g) FaLSE | * 4 | Active - >q q TRUE | >1
5 | Active - >q q FALSE | b 5 | Active - p.ql | [p.d TRUE | 5§
6 | Active - <p p FALSE | b 6 | Active - p.ql | [p.q) FaLse | >1

Fig. 11.2 Two generalised test tables for the specification of the function block MinMax-
Warning
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Fig. 11.3 MoDEMMICAS approach for model-checking interdisciplinary systems (simplified)

Using the implementation of our approach, we were able to prove that a given
implementation of MinMaxWarning conforms to the tables shown in Fig. 11.2.
The MinMaxWarning function block consists of 61 lines of source, translated into
a space of 131 bits (state and input variables) in the model checker. The verification
needs 0.53 CPU seconds for proving weak conformance of the first generalised test
table and 0.63 CPU seconds for the second one (median, n = 6). With the same
setup, the verification of strict conformance takes 1.35 resp. 1.39 CPU seconds.
Proving strict conformance requires an additional fairness condition to avoid infinite
stuttering on the nondeterministic input variables.?

11.4 Model-Checking Changes in Multidisciplinary Systems

aPS are cyber-physical systems which can be best formally analysed by not only
considering there software. In this section, we present an overview of techniques
to verify such interdisciplinary systems by means of model checking. The general
idea behind those approaches is illustrated in Fig. 11.3. First, we model the aPS by
means of a formal modelling language and leveraging model abstractions (step 1).
Second, for a property of interest, we select an alternative model and specification
language and apply a model-to-model transformation (step 2). Finally, we run the
model checker on the resulting model and for the property under consideration and
obtain a quantitative or qualitative verification result (step 3).

In the remainder of this section, we present the modelling approach in more detail
and exemplarily illustrate its use for verifying the system’s availability based on the
probabilistic model checker PRISM [KNP11] for the PPU case study [LFV13].

2The experiments were run on a 3.20 GHz system with Intel Core i5-6500 and 16 GB RAM with
version 1.1.1 of the model-checker nuXmv. The files are available the companion website: https://
formal.iti.kit.edu/ifm2017.
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11.4.1 Modelling Interdisciplinary Systems
Formal System Model

The fundamental system model used in our approach is based on the FocuUs
theory [BSO1] to provide a strict formal semantics. Central to the FOCUS system
model is the notion of components and their interfaces. Firstly, a component’s
static interface, i.e. its typed input and output ports, defines what signals the
component may receive and send. The interfaces can be used to ensure structural
compatibility between composed components. Secondly, the behaviour observable
at a component’s interface regarding those ports is called semantic interface. It is
defined in terms of behavioural functions that map input streams to output streams.
Intuitively, a stream is a sequence of messages sent or received over time on an input
and output port, respectively.

Originally, the FOCUS theory was primarily conceived for modelling distributed
embedded systems based on a discrete time execution. Modelling automation sys-
tems holistically by considering software and mechanical aspects originate the need
of a common language for the description of physical processes and phenomena. For
this reason, the FOCUS theory was extended to support continuous time elaboration
and data types [Cam13, Bro12]. The behaviour of hybrid components is defined by a
modified version of the hybrid automaton, called I/O hybrid state machine [Cam13].
Components that have discrete as well as continuous interfaces are referred to as
hybrid components.

Formally, given a set of (typed) input ports / and output ports O with /N O = ¢

and types Tjeruoc 0, @ continuous stream 7 e _I> is a function € : Ry — T;u{d}
that maps logical time instants to messages of type 7;. The symbol [J ¢ T; denotes
that no message occurred. In contrast, discrete streams are represented as partial
functions Ry -— T; U {{J}. The interface behaviour is then defined as a function
F: 71 - 8, and we denote the set of all behaviour functions with input ports /
and output ports O as [/> O]. Input/output state machines (e.g. Mealy machines) are
one particular means to specify behavioural functions which is commonly regarded
as suitable for describing the system’s behaviour [De +09].

Furthermore, as presented in more detail in [Mun+17], we use the probabilistic
extensions developed in [Neul2] to model faulty behaviour of individual compo-

nents. To this end, we generalise behaviour functions to F : _I> — p(Pl‘(g)),

where Pr(g) denotes probabilistic spaces of output streams. Intuitively, it refers
to a set of possible outputs and their associated probability. As input streams are
mapped to sets of probabilistic spaces, generalised behaviour functions enable both
nondeterministic (due to the superset) and probabilistic (due to the probabilistic
spaces) behaviour specifications. To specify those behaviour functions, we extend
the state machine transitions with probability values.

Finally, individual components are connected by input and output ports via
channels. The respective interface types must be compatible, i.e. T; = T, for input
interfaces i € I and outputinterfaces o € O. The well-defined composition operator
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Fig. 11.4 Focus in a nutshell: two components connected via channel ¢ forming a composite
with semantic interface F : {i} — {01, 02}

® ensures that a set of interfaces and channels form a composite component, where
the composite component’s interface is derived from the member components and
their channels, thus enabling hierarchical specifications (see Fig. 11.4).

To avoid the anomalies described in [Kel77], for any set of mutually recur-
sive components, we demand at least one component to be strongly history-
deterministic,’ i.e. require its output at time ¢ + 1 to be solely determined by inputs
up to time ¢ for any # > 0.

This formal modelling extends from the one in Definition 11.2.1. In the former
definition input, sequences are infinite sequences of signal values 1, with one value
for each PLC cycle. In this section, to model physical effects more adequately, the

inputs are not given as discrete traces but as continuous streams / in which every
point in time may provide a value.

Model Abstractions

We apply the above formalism to model interdisciplinary systems such as automated
production systems as outlined in Sect. 5.3.3. However, to cope with the inherent
complexity of (continuous) physical processes, we require model abstractions which
are suitable to find design errors, on the one hand, but are also amenable to
automated verification on the other hand.

To this end, we model the (mechanical) context and the automation platform (e.g.
bus systems, programmable logic controllers (PLCs)) using discrete abstractions
obtained by combining two techniques. First, discrete time and variables behaviour
can be obtained by prior simulation (see [Vog+15b]) and the use of non-uniform
sampling techniques (see [Cam13]). Second, given a specific component that can
be precisely specified by a function S, we may rely on a (more abstract) function
S1, if Sy is a behaviour refinement of S;. This is denoted as S; ~» S and formally
defined as:

e — —
Si~~8SH Vi el SH(i)csSi(i).

3See Definition 11.2.1, also called causal.
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In addition, our model may also incorporate more abstract input and/or output ports
(data types) by means of interface abstractions, defined as:

512 55 6 8w (DR S;QU)

with 1,8 € [I>0]and S3 € [I't>0'],D € [I > 1'],U € [0’ 1> O]. For more
details on those refinement relations, see [BSO1].

While those techniques can be used to obtain a model of various size (and
accuracy), the level of detail of the resulting model we relied on can be seen in,
e.g. [Leg+14].

11.4.2 Verifying Availability Requirements Using Probabilistic
Model Checking

Based on the modelling approach described in the previous section, we now outline
how model-to-model transformations can be applied to automated verification in
terms of an example. In this example, we translate the interdisciplinary model to
Markov Decision Processes (MDP), as supported by the probabilistic model checker
PrisM [KNP11], to verify the specified system satisfies its availability constraints.

Translation to PRISM

A specification of an MDP consists of a set of global variables and modules. Each
module defines a set of variables and a set of commands consisting of guards
and probabilistic actions, i.e. updates on variables associated with a probability
distribution. The standard composition of modules in PRISM is composition by
interleaving; from the set of commands, at most one action is executed in each step.
However, synchronous composition can be achieved by attaching a common label to
commands that should always synchronise. In addition, PRISM supports to associate
a number, called reward, with transitions and states (specified by logical formulas
over the model’s variables). Rewards can be used to quantitatively query the model.

We automatically translate our system model (extended with availability models;
see also [Mun+17]) into an MDP as follows: We translate each software, platform,
and context component into a PRISM module. For the syntactic interface, we
introduce variables for input and output ports. For the behaviour, we encode state
machines in PRISM using internal variables and commands to represent their current
state and state transitions, respectively. The same translation is applied to the
components of the availability models of our approach, with the sole exception of
availability metrics, for which the output is mapped to rewards instead of variables.
For instance, the uptime metric associates a failure-free state with a reward of 1 and a
failure with 0. Finally, to achieve synchronisation among all modules, we introduce
a common action label.
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Verification of Availability Constraints

Based on this translation, we can use the Rmin=? [C<=t] query in PRISM to
compute the cumulative reward up until ¢ steps of the system have been executed.
This corresponds to the system’s uptime, i.e. the expected time the system is
operating without failure in the time interval [O; ¢[.

11.4.3 Application to PPU Case Study

We now illustrate the approach on a concrete example of the PPU case study. For
a more comprehensive presentation of this case study, the reader is referred to its
publication [Mun+17].

Model As an example for the microswitch sensors used for crane positioning, we
describe the particular sensor that observes whether a workpiece is pushed out of
the stack and is ready for pickup by the crane. Therefore, the sensor has an input
port that specifies whether a workpiece is indeed located there (as a consequence of
the mechanical processes of the context model) and a single output port that outputs
an electrical voltage. If a workpiece is present, the sensor outputs 24 V. Otherwise, it
outputs 0 V. Consequently, in this mode, the sensor is perfectly reliable and available
all the time.

To account for availability issues, we extend this with a deviation model that
models two failures, namely, temporal unavailability (e.g. due to pollution) and
permanent unavailability (e.g. permanent damage due to wear out). This deviation
model is illustrated in Fig. 11.5. Therein, we introduce an activation function
(Micro-switch Failure Activation),aninputfilter (IF: Identity),
and an output filter (OF : Missing WP). The activation function signals whether
the microswitch failed to the input and output filter by means of a probabilistic
state machine illustrated at the bottom of the figure. Initially, it is in the “Available”
state. The output filter outputs OV in case of a failure or behaves as specified
above otherwise. Therefore, the failure activation causes the sensor to potentially
miss workpieces located at the stack. In contrast, the physical phenomenon of
the workpiece position is not altered by the deviation model. The input filter is
modelled as an identity function for the sake of illustration which merely forwards
the workpiece position.

Verification To analyse the availability of the crane’s transportation function, the
model can be translated to the PRISM model checker. Essentially, we provide a
component that represents an uptime metric which associates rewards of 1 and
0 with a timeliness or (potentially infinitely) delayed transportation, respectively.
Then, we can verify that the required availability is achieved by querying

Rmin=? [C<=36000],
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Fig. 11.5 The extended system model of the microswitch sensing whether a workpiece is available
for pickup by the crane at the stack position using a probabilistic state machine for activation

Available

alfail

where Rmin refers to the cumulative rewards associated with the uptime metric
within 1h (i.e. 36,000 ticks with a 100 ms cycle time), and comparing the resulting
value to the availability requirement, e.g. 0.9965 if an 99.65% availability of the
transportation function is required.

11.5 Related Work

The verification of PLC programs w.r.t. temporal logic specifications (for safety,
liveness, and time properties) has been subject of a number of publications already.
The paper [YFO03a] gives an overview of the field, and the survey [Lam+99b] dis-
cusses transformation processes for program languages to verifiable models. Various
translations from IEC 6113-3 languages into the input languages of model checkers
have been presented: Brinksma et al. [BMFO02] present a translation of SFCs into
Promela input for the SPIN model checker [Hol97]; De Smet et al. [Sme+00]
translate all languages within IEC 61131-3 into input for the symbolic model
checker Cadence-SMV [Bur+92]; and Bauer et al. [Bau+04b] translate SFCs into
timed automata to be used with UPPAAL [Beh+01]. This model checker is also
used to verify properties of continuous function charts (CFC) in [WFV09]. In
[Bau+04a, BHLOO] a unifying semantics for SFC is given where the ambiguities
of the standard are addressed in a formal fashion.

Siiflow and Drechsler [SDO8] present a framework to verify that the same
program behaves equivalently on different PLC platforms, a scenario closely related
to ours. The authors employ a SAT solver to verify the arising proof conditions.

Strichman and Godlin [GS13] coined the term regression verification and pre-
sented a verification methodology based on replacing function calls by uninterpreted
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function symbols within a bounded software model-checking framework for C
programs. In [GS08] they define “reactive equivalence”, which is closely related
to our notion of perfect trace equivalence. In earlier work [Fel+14], we presented an
automated approach to regression verification based on invariant generation using
Horn clauses. Many other approaches [Ver+10, VIB12, Haw+13, BCK11, WP12]
exist on regression verification for imperative programming languages.

Equivalence checking is an established issue for the verification of hardware
circuits. In sequential equivalence checking, the perfect trace equivalence between
clocked circuits is analysed; see [HC98] or [KEO02] for an overview. Lu and
Cheng [LCO09] present an approach based on inferred invariants, in which condi-
tional or relational equivalence is not considered.

Table-based languages for visualisation of mathematical are common. For
example, Parnas tables are a tabular representation of relations. Lorge et al. [PMI94]
use them in addition to first-order logic for the specification of procedure contracts.

Also, Software Cost Reduction approach (SCR) [Hei+05] claims to be under-
standable and comprehensible by exploiting table-based syntax. SCR is a method
for managing formal requirements, which was successful applied in practice,
e. g. mission-critical systems from the NASA [HJO7]. It bases synchronous state
machines to describe the behaviour of a system. The state machine is specified
by tables, similar to the Parnas tables, to define the transition relation and the
output relation. SCR benefits from a various tools that are built upon the formal
semantics: the simulation and validation of specifications, the generation of system
invariants and source code, and the formal verification of application properties. A
commonality between an SCR specification and generalised test table is that both
describe an automaton. For generalised test tables, this automaton is given by the
transformation rules and is therefore restricted. Otherwise, generalised test tables
are optimised for specification of sequential stimulus and responses. They allow the
direct access to past values via back references or global variables; SCR requires an
encoding of these values into the state.

CocoSpec [Cha+16] is a specification language for reactive programs that are
written in the Lustre programming language. CocoSpec follows assume-guarantee
paradigm using Boolean expression for specifying assumptions and assertion on the
current in every time step. Like SCR, CocoSpec exploits a state machine to make
these assertions and assumptions time-dependent. The state machine is written in
Lustre. In contrast, the assumptions (input) and assertions (output) of a generalised
test table are always time-dependent, i.e. they depend on the table rows.

Moszkowski [Mos85] follows with his Interval Temporal Logic (ITL), a different
approach to the classical temporal specification languages CTL and LTL. ITL bases
regular expression and therefore it is w-regular. For concatenation, ITL introduces
the chop operator (71; r2) which — similar to our concept of rows — divides a given
trace into a suffix and prefix, where rq has to be valid on the suffix, resp. r, on the
suffix. An unbounded repeated application concatenation is denoted by star operator
r*, identical to our “~” in the duration column. A generalised test table can be
expressed as an ITL formula, under the costs of an exponential blow-up [Bec+17a].

The idea of using regular expression can be combined with Linear Temporal
Logic (LTL) as ForSpec Temporal Logic (FTL) proves. FTL was developed by
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Intel [Arm+02]. In addition to LTL operators (until, always, eventually), it supports
the corresponding past operators, regular events and time windows. A regular event
is a finite regular language in a similar fashion as ITL or generalised test tables.
Time windows are helpful to specify that certain events need to occur with a defined
time window (bounded LTL operators). Additionally, FTL allows the composition
with temporal connectives (a composition of generalised test tables is possible on
the automata level). In [Lju+10], Ljungkrantz et al. propose ST-LTL, which enriches
LTL with the arithmetical operators of Structured Text, syntactical abbreviations for
specifying the rising or falling edges of variables, and access to previous variable
value.

Becker et al. [Bec+12] present the MechatronicUML language for modelling
and analysing component-based software for mechatronic systems, which supports
links between engineering disciplines. SysML4Mechatronics [KV13] is a language
for interdisciplinary modelling, which addresses mechanical, electrical/electronic,
and software aspects explicitly. A formal semantics for automatic verification
of structural compatibility has been proposed [FKV14], but verifying functional
conformance is not considered yet. Shah et al. [Sha+10] present a multi-discipline
modelling framework based on SysML.

Various lines of research are meant to analyse the reliability and availability of
technical systems. Several established modelling techniques, such as Reliability
Block Diagrams (RBD) [Bir10, DP09] and Fault Trees [DBB92], are based on
combinatorial models. In both cases, the diagrams model which elementary faults
lead to a failure of the whole system or a system function. A problem with these
kinds of models is that only rather simple scenarios can be captured [Birl0].
Besides those combinatorial approaches, several approaches for an architecture-
based availability prediction have been proposed (see, e.g.[Kub89, Lap84, Lit79]).
More recently, availability analysis also gained widespread attention for the domain
of aPS. In [Lai+02], a general model is built based on the Markov model to predict
the availability of distributed software and hardware systems. The authors use the
Kolmogorov differential equations to calculate the probability that a system process
is in a certain state and then derive the availability function for the respective system.

11.6 Conclusion

In this chapter, we have presented the opportunities and challenges for the appli-
cation of formal verification during system evolution of automated production
systems that we identified from our experiences in the projects MoODEMMIiCAS
and IMPROVE APS within the priority programme.

In addition, we have presented three approaches for formal verification of
evolutionary steps that exploit the opportunities that automated production systems
provide and address the challenges that arise:

Regression verification  uses an older revision of the PLC software as specification
for a newer release and allows one to prove that desired aspects of the system
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behaviour are retained by the evolution step. It thus leverages evolution by using
the old code revision as specification. Model checking is feasible due to the
limited structural complexity.

Generalised test tables  allow specifying desired system behaviour as tables. They
thus address the challenge of reducing the specification efforts by providing a
user-friendly specification technology.

Model-checking interdisciplinary models  translates multidomain models of auto-
mated production system, composed of software, automation hardware, and
mechanical components into representations amenable to model checking. To
verify that the software achieves the intended behaviour at the system level,
we rely on a common formal modelling approach for all system components,
which may also include continuous behaviour and make extensive use of model
abstractions. We claim that the initial modelling effort may be justified by
the longevity of such systems and the lack of effective alternatives, while the
software’s limited structural complexity benefits model checking despite the
potentially large space state.

All techniques perform a full verification of the properties they claim to be true by
using modern model-checking tools. Automated production systems have a limited
state space by design and are thus suitable targets for such formal verification
systems.

One cross-cutting challenge for all three presented techniques is that they need to
make assumptions about the behaviour of the physical plant on which the software
is deployed. The interdisciplinary approach relies on an explicit model for the
environment as part of the verification input. Generalised test tables have columns
for input signals such that signal sequences can be restricted to those occurring in
practice. Thus, a plant model is specified implicitly. Regression verification often
works without environment models, but not always. There are cases where parts of
the plant behaviour need to be added as an explicit.

The presented approaches exemplarily demonstrate the ability of formal verifi-
cation to provide valuable support and feedback in engineering long-living systems,
especially automated production systems, thus suggesting a promising field of
application for future research and motivating transfer into engineering practice.

11.7 Further Reading

The interested reader is invited to find more and more detailed information about
the presented verification approaches in the following scientific publications:

The idea of regression verification for PLC programs developed in the project
IMPROVE APS within the priority programme has originally been presented by
Beckert et al. [Bec+15]. Ulewicz et al. [Ule+15] have shown how the presented
regression verification approach can be extended to comparing different variants
of PLC software in order to reduce unneeded variant diversity. Moreover, we show
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in [Ule+16] how the regression verification approach for PLC code can be embedded
into the development process for aPS software.

Regression verification can not only be applied to PLC software, but a similar
approach has been presented by Kiefer et al. [Fel+14, KKU16] for the automatic
regression verification of C programs. The tool LLREVE compares two C routines
for various types of equivalence. It can be applied to programs with certain heap
data structures [KRU17] and combines static and dynamic analyses to extend the
reach of the regression verification approach [KKU17]. LLREVE can be accessed
as a publicly available web application: https://formal.iti.kit.edu/projects/improve/
reve/. The tool semantic slicer [Bec+17b] employs LLREVE to produce very precise
slices that a syntactical analysis cannot find. In [BKU15] Beckert et al. reduce Java
regression verification problems to equivalent secure information flow problems on
the JML* specification language and the KeY prover [Ahr+16].

Generalised test tables were first introduced by Weigl et al. [Wei+17], and
their formal semantics was defined by Beckert et al. [Bec+17a]. The automatic
verification tool GETETA that proves that a PLC program behaves as specified in
a generalised test table is an open source project hosted at github. Current releases
and more information can be found on the companion webpage https://formal.iti.
kit.edu/geteta/.

The ST Verification Studio (STVS) is a tool that provides a user-friendly frontend
for the specification and verification of PLC software using generalised test
tables. It is presented in Fig. 10.11, and details can be found on the companion
webpage https://formal.iti.kit.edu/stvs/.

The multidisciplinary modelling approach of our verification is based on a
model-based development for cyber-physical systems [Bro97, Hub+98, Sch+02,
Bro+10], which is extended to automated production systems by [Leg+14]. Essen-
tially, it extends the FOCUS theory described in [Bro86, BSO1] with notions of
discrete and dense time [Brol2], spatio-temporal systems [Hum09, Bot+09], and
using dynamic sampling [Cam13]. Finally, those concepts were implemented in the
AutoFOCUS 3 tool, which is described in more detail in [Hub+96, SHT12, Ara+15]
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12.1 Benefits and Deliverables of CoCoME for the Outside
Community

CoCoME has been designed as a demonstrator for software systems to satisfy
research requirements on architecture modelling and evolution of the SPP1593
community. CoCoME is open to the research community. As a community case
study, CoCoME aims at providing several benefits to researchers of SPP1593 and
the outside community:

* By building upon existing specifications and implemented source code and
settings, less effort in scenario definition, study setup, and execution is required
by researchers.

* A common case study increases comparability of evaluation results to those of
other researchers and leads to increased evaluation confidence.

* A common case study also increases community acceptance by interaction with
other researchers.

CoCoME is limited in size and complexity; however, it shows all characteristics
of an information system used in industrial practice. Therefore, CoCoME provides a
trade-off between modelling complexity and evaluation effort. CoCoME represents
a comprehensive knowledge base for the evaluation process that can be exploited
and extended by researchers with different backgrounds and research interests. It
provides assistance on diverse characteristics important for software evolution, like
artefacts in different revisions, comprehensive evolution scenarios, and coverage of
different life-cycle phases. The distinct evolution scenarios specified for CoCoME
in the course of SPP1593 cover a wide range of adaptive and perfective changes to
the system and result in various deliverables to the outside research community.

The several evolution scenarios of CoCoME address a variety of changes to
the software architecture and infrastructure. For each scenario detailed description,
requirements specification, and design documentation in the form of technical
reports [HRR16, HKR18] are publicly available. The implemented source code in
Java is available on github! for each evolution scenario of CoCoME in SPP1593.
Furthermore, models to represent the structure (i.e. architecture) and behaviour of
the different variants of CoCoME in the form of PCM are deliverables of the priority
programme. These models can be applied for analysing and simulating CoCoME
with respect to different quality properties like performance, maintainability, and
security. In the following, we give a detailed description of models delivered to the
community by SPP1593 to represent the architecture, deployment, and behaviour of
CoCoME. Furthermore, we describe how the community applied CoCoME and the
models delivered by SPP1593 beyond the scope of the priority programme.

Thttps://github.com/cocome-community-case-study.
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12.1.1 Structural, Deployment, and Behavioural Models
of CoCoME

The architecture of a software system represents the design decisions during its
development and evolution [TMD+09]. Therefore, the architecture of a software
system can be considered as one of the main influence factors on its quality
properties such as performance, maintainability, or security [TMD+09]. The imple-
mentation of design decisions without knowing their effects can be a costly and risky
task. Thus, modelling the architecture of a software system and simulating the model
of the software architecture enable software architects to understand the effects of
different design decisions on software quality properties before implementation.
The software architect has to consider the following aspects while modelling the
architecture of a software system: its structure, its deployment, and its control
and data flow. The model of the software architecture can serve as the input of a
simulator [Reu+16, Ros+15].

Palladio is an approach for modelling and simulating the architecture of the
component-based software systems [Reu+16]. Palladio can predict the quality prop-
erties of the software architecture such as performance, maintainability, or security
at design time. Palladio is based on Palladio Component Model (PCM). PCM is
the architectural modelling language for component-based software systems. It was
initially developed to model and predict the performance properties of a software
system. In order to model the architecture of a software system, PCM provides
the following view types: (1) repository, (2) system, (3) resource environment, (4)
allocation, and (5) usage model [Reu+16].

To support model-driven approaches to predicting quality properties, we provide
PCM of the CoCoME architecture. These models were created for the hybrid cloud-
based variant of CoCoME describing its structure, deployment, and behaviour.

Modelling the Structure of CoCoME

CoCoME represents a component-based software system. A component-based
software system can be modelled by its interfaces and components and their
composition (also referred to as composite components) [Reu+16]. The hybrid
cloud-based variant of CoCoME consists of the following composite components:

* org.cocome.cloud.web

e org.cocome.tradingsystem.inventory

* org.cocome.cloud.webservice.inventory

e org.cocome.tradingsystem.cashdeskline

e org.cocome.cloud.logic.webservice.cashdeskline.
cashdeskservice

These components are composed of further composite components or individual
components. The current architecture model of the hybrid cloud-based variant
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of CoCoME contains more than 40 components. The architecture of CoCoME
was modelled using the system-independent structural elements of the PCM,
namely, components, interfaces, events, and data types. Additionally, the PCM
allows assembling the components and composite components to further composite
components. Thus, the current model of CoCoME can easily be extended to future
implementation (e.g. adding or removing components, interfaces, or data types).
Further, the PCM allows modelling the control flows in components at a high
abstraction level. Thus, the effect of different control flows (i.e. implementations
on a high abstraction level) on the quality properties of CoCoME can be analysed.
The repository view type of the PCM allows modelling the previously described
model elements.

After the software architect modelled the individual model elements, such as
components and interfaces, the architecture of CoCoME can be modelled by
assembling these model elements. Further, modelling individual elements allows
assembling other variants of CoCoME by different composition of existing model
elements, exchanging the model elements by other model elements, or adding new
model elements. Thus, the resulting architecture variant of CoCoME and its effect
on the quality properties can be determined at design time. The system view type
of the PCM allows assembling the software system using the individual model
elements defined in the repository view type [Reu+16]. Figure 12.1 shows different
components with their provided and required interfaces. The required and provided
interfaces are connected to each other using connectors.

The system model of CoCoME is composed of the previously described com-
posite components at the highest level of abstraction. CoCoME provides various
services as method invocation of its interfaces. The interfaces of the CoCoME
system are defined as follows:

e ICashDeskView: This interface mainly provides support for the selling
products and managing the express checkout.

e IShowReportView: This interface provides services for creating stock
reports.

e IReceiveOrderView: This interface allows handling ordered products,
which have been arrived, such as viewing received orders.

e IStockOrderView: This interface can be used to manage purchase orders in
the stock.

* IShowStockView: This interface provides services for managing stock orders,
such as the creation of a new stock order.

Modelling the Deployment of CoCoME

Using the PCM, the resource environment, such as resource containers or linking
resources, can be modelled. Further, the resource containers can be annotated with
values of different quality metrics, such as mean time to failure (MTTF) for the hard
disk or resource demands for central processing units (CPUs) [Reu+16, BKR09].
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The resource environment view type of the PCM allows modelling the resource
environment. Examples of resource containers for CoCoME are enterprise server,
store server, and web node.

After modelling the resource containers, the software architect has to determine
which components of CoCoME should be deployed on which resource contain-
ers. The system-specific deployment is specified by the allocation view type.
For example, the composite component org.cocome.cloud.webservice.
inventory can be deployed on the resource container enterprise server. It
is conceivable that different allocations between components of CoCoME and
resource containers are possible. Thus, simulation allows analysing the effects of
different allocations on the system’s quality properties.

Modelling the Behaviour of CoCoME

The usage model of CoCoME can be specified by the PCM behaviour view
type [Reu+16]. Modelling the behaviour allows specifying the interaction of users
with CoCoME. For example, different user interactions with CoCoME can affect
the performance of the software system. To enable the business process designers
to model the usage models, we provided a business process meta-model within
SPP1593. This meta-model extends the PCM usage model by actor steps and
the resource usage. The business process models allow analysing the effects of
changes in CoCoME on the interaction of its users [Ros+17]. This is especially
important when we analyse the maintainability of CoCoME regarding different
usage scenarios. The business processes can also to be used to analyse the
performance of the software system and its business processes [Hei+17a].

To model the business process, the PCM usage model is extended by the specific
elements of business process (hereafter referred to as business process usage model).
Business process can be considered as a set of connected activities. At the lowest
abstraction level, activities can be actor steps, system steps, or steps regarding the
resource device usage. The main difference between the actor steps and the system
steps is that the actor steps are completely performed by human actors, whereas
system steps are executed automatically by the software system. Further, human
actors can use the resource devices to perform their activities. Therefore, they
can acquire the resource devices before using or release the device resources after
using [Hei+17a].

The processes of CoCoME can be modelled using the business process usage
model. The previously described services of CoOCoME are part of processes (e.g. sale
process), which CoCoME provides (cf. [Her+08a]). In the following we describe
different processes of CoCoME:

* ProcessSale deals with selling products. It can be considered as the main process
of CoCoME (cf. process 1 in [Her+08a]).

* ManageExpressCheckoutProcess describes the fast sale process for purchasing
only few products (cf. process 2 in [Her+08a]).
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e OrderProducts describes how new products can be ordered (cf. process 3
in [Her+08a)).

* RecieveOrderedProducts defines how to manage the arrived ordered products (cf.
process 4 in [Her+08a]).

» ShowStockReports describes the process of the creating the stock reports (cf.
process 5 in [Her+08a]).

* ShowDeliveryReports deals with creating the delivery reports (cf. process 6
in [Her+08a]).

* ChangePrice defines how the prices of products can be changed (cf. process 7
in [Her+08a)).

In the following section, we describe how the models of CoCoME can be applied
to analyse different quality properties.

12.1.2 Analysing Maintainability for CoCoME

The maintainability of a system can be considered as the ease of implementing
changes in that system [ISO10]. In other words, the maintainability of a system
in the case of a change request correlates with the set of system elements that
have to be changed [HBK18a]. As a community case study, several development
artefacts of CoCoME are available. Examples of such artefacts are code, require-
ment descriptions, and aforementioned models. Thus, CoCoME is well suited for
comparing different maintainability estimation approaches. The application of an
approach to CoCoME allows comparing it with other approaches that have been
applied to CoCoME. For example, if we have different maintainability estimation
approaches, which estimate a set of changed elements for a change request, we can
compare these sets with each other for given change requests. Thus, the application
of maintainability estimation approaches to CoCoME allows improving them
with regard to the change propagation analysis. Additionally, having a common
community case with its development artefacts allows analysing how the change
requests affect different artefacts [Ros+17].

The CoCoME models described in the previous section can serve as the input
of model-driven approaches to maintainability analysis in software systems. In this
context, the models describing the structure of CoCoME are especially important,
as the structure of a software system affects the change propagation in that
system [HBK18a]. Modelling CoCoME by components and interfaces in a fine-
grained manner improves the change impact analysis in the software architecture.

Software systems can be used to support business processes of organisations.
Therefore, there are mutual dependencies between the software systems and
the corresponding business processes [Ros+17]. Thus, we have to consider both
software systems and the corresponding business processes while analysing the
change impact. In addition to the structural models of CoCoME, the maintainability
estimation approaches regarding software systems and business processes can also
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use its usage models describing the behaviour of CoCoME. As described in the
previous section, the processes of CoOCoME are modelled as a set of connected actor
steps and system steps. This allows analysing the effects of changes based on the
mutual dependencies between the software system and the corresponding business
processes [Ros+17].

In the model of software systems, the structural model elements such as inter-
faces and components can be used to analyse the propagation of change [Ros+15].
In the model of business processes, the activities such as system steps and actor
steps can be used to calculate the change propagation [Ros+17]. Further, the data
flow plays an important role in change propagation [HBK18a]. The change can
propagate based on the data flow between a software system and its corresponding
business processes [HBK18a, Ros+17]. To model the data flow in CoCoME, we
modelled different data types in its software model and different data objects in its
business process model. As a data object can correspond to a data type and vice
versa, the models of CoCoME allow analysing the change propagation based on the
data flow [Ros+17].

To model the change request and to analyse the change propagation in terms of
affected model elements, we also provided a further meta-model—the modification
marks meta-model [Stal5, HBK18a]. Modification marks meta-model allows soft-
ware architects and business process designers of CoCoME to mark the initially
affected model elements (hereafter referred to as seed modification). Based on the
seed modifications, the task list can be generated automatically. The generated task
list contains a set of maintainability tasks, where each task refers to a model element
that is potentially affected by the change. The maintainability tasks are grouped
in different change propagation steps based on the cause of the change propaga-
tion [HBK18a]. Figure 12.2 illustrates a generated task list for the change request
modifying the interface IBarcodeScanner. Thus, the interface IBarcodeScanner is
the seed modification. Each task in the task list corresponds to a model element of
CoCoME. Further, Fig. 12.2 shows several change propagation steps. For example,

% cocome-cloud.modificationmarks £3
| Resource Set

¥ & platform:/resource/cocome-cloud-pem-model/modified/cocome-cloud.modificationmarks
¥ 4 Req Modification Repository
¥ 4 Req Seed Modifications
<4 IS Modify Interface "IBarcodeScanner”
» <4 BP Inter Business Process Propagation
» 4 IS Change Propagation Due To Interface Dependencies
» 4 IS Intracomponent Propagation
» < IS Intercomponent Propagation
» <4 IS Intracomponent Propagation
» <+ IS Intercomponent Propagation
* <4 IS Intracomponent Propagation
> & platform:/resourcefcocome-cloud-pecm-model/modified/cocome-cloud.repository
> & platform:/resource/cocome-cloud-pem-model/modified/cocome-cloud-sale-process.bpusagemode!
» & platform:/resourcefcocome-cloud-pecm-model/modified/cocome-cloud-manage-express-checkout.bpusagemodel

Fig. 12.2 Analysing the change propagation in CoCoME using the modification marks meta-
model
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business process (BP) inter-business process propagation indicates that the change
propagates only in the business process. This change propagation step contains only
business process model elements. As described previously the data flow may cause
the change propagation [HBK18a]. Information system (IS) change propagation due
to data dependencies in Fig. 12.2 refers to structural model elements of CoCoME
software system that is affected by the change due to the data flow. The change can
also propagate between the provided roles of a component and the required role of
other components (i.e. IS intracomponent propagation in Fig. 12.2) and between
the required role of a component and its provided role (i.e. IS intercomponent
propagation in Fig. 12.2).

12.1.3 Modelling Security Patterns and Attacks for CoCoME

Security plays a crucial role in systems with important assets like critical tasks
or such that includes personal information. Long-living systems going through
software evolution face security problems similar to any other quality requirements
which are open to degradation. It is very important to preserve the secure state of
a system, as itself or its environment, usage, configuration, etc. change, which can
affect directly or indirectly the correct functioning of security mechanisms. In such
cases, made design decisions for mitigating threats and addressing possible security
vulnerabilities can lose their validity. Furthermore, it would be worse if there are
no signs for such invalidations, so that the problem based on any change can be
first discovered after an attack occurs or a vulnerability is exploited. Hence, the
software engineers confront the degrading security, and addressing it becomes a
more challenging job, if any corresponding documentation of the security decisions
made and their assumptions do not persist over time.

As previously described, Palladio architecture models are historically developed
for performance simulations and analyses. However, being a model-based docu-
mentation of complex software systems and providing several abstract views (i.e.
repository, system, allocation, etc.), it also qualifies for investigating security. To this
end, we first use the security definition as a combination of confidentiality, integrity,
and availability [CH13], which can be interpreted on architecture models.

The approach PreReqSec [TH16a] supports software engineers and architects
to consider security as early as possible in the design time, which considers
runtime, configuration, or usage information. Further support is provided during the
software evolution, as the possible changes can be reflected upon the architecture,
where less complex but still powerful security analyses are possible. To this end,
security-related information is modelled as first-class entities on architectural level
in so-called security catalogues, which at the time are being developed for the
case study CoCoME. The hybrid cloud-based variant of CoCoME provides several
evolution scenarios, in which different aspects and entities of the system change (see
Sect. 4.2). The corresponding architecture models are well suited for demonstrating
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the application of PreReqSec. In the following, we discuss two evolution scenarios
from a security perspective.

e Platform Migration: This evolution scenario migrates several local
resources (i.e. enterprise server and database) of the system to cloud for reducing
operating costs and providing flexibility in adaptation and reconfiguration.
However, it also introduces new challenges such as the privacy concerns or third-
party trust that might affect the confidentiality and availability. Furthermore,
providing such flexibility can make design time decisions obsolete. For example,
before cloud integration, the system had to handle all private data in local
servers, where no remote calls to data stored in cloud were necessary, which was
no subject for, e.g. man-in-the-middle threats.

e Adding a Pick-Up Shop: As the customer landscape and competition
between other providers grow, this evolution scenario provides new business
models such as online shopping and new use cases like online payment.
A completely new system interface is introduced. Hence, the attack surface
expands and new attack vectors become possible. These changes affect both
confidentiality and integrity as well as availability. As the very fundamental
requirements and therefore the system itself change, it becomes necessary to
validate the already-made security decisions as well as consider new ones.

Security catalogues within the PreReqSec approach can be used globally due to
their reusable nature, or they can also be project- or application-specific. A small
snippet from the security catalogue for CoOCoME can be seen in Fig. 12.3. The
catalogue is open for further development and also can be used in other web- and
cloud-based software applications.

Mainly, the catalogues consist of three parts corresponding to two different pillars
of security. These are the attacks and security patterns, which are combined by
so-called prerequisites. Prerequisites in the PreReqSec approach are structural and
logical information corresponding to assumptions or requirements that define in
which cases a threat can succeed or a security measure can mitigate a given attack.

Threat models provide information about vulnerabilities and possible attacks,
which are analogous to the usage profiles of the Palladio Component Model. They
are in the PreReqSec approach, a simplified version of usage models, which are
modelled as basic interface calls for maliciously getting into the software system.
Based on black-box modelling, we do not provide any further information once
the interfaces are passed, which is to be interpreted as the risk of any malicious
penetration through system boundaries. However, if necessary an attack vector can
be modelled with the help of profiling/stereotyping for representing more complex
attacks like advanced persistent threats (APT attacks). Based on the evolution
scenarios, a security expert provides the information regarding possible threats.

The security catalogue includes the following attacks: HTTP-Flooding,
SYN-Flooding, Persistent-Cross-Site-Scripting, or Cross-
Site-Request-Forgery.

On the other hand, security patterns (analogous to the well-known design
patterns) provide the necessary information for a structural solution to recurring
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security problems from the threat catalogue. Every security pattern consists of
structural roles. A role corresponds always to one or more software (or in some cases
hardware) components. It basically states that (in case) the related component fulfils
a specific task within the entire security pattern. To provide reusability and to be
able to use the security catalogues with any given architecture description language,
security patterns are separated from the system models and used profiling/stereo-
typing to connect the elements of security pattern (i.e. roles) with the corresponding
architectural elements (e.g. composite components, system interfaces). Due to these
separation of security patterns as well as attacks, the PreReqSec approach provides
a new security view.

After defining possible threats, security expert and software architect can first
check which of the already-made security decisions may become obsolete, since
they cannot mitigate the new threats. This is mainly a task within the security
analysis, which is at the time an ongoing development within the PreReqSec
approach. However, extending the documentation (i.e. security catalogues) is now
possible with the security expert and software architect. Based on their expertise,
state of the art, and security best practices, they make new decisions about possible
security patterns, which are able to mitigate the newly introduced or changed
attacks. Following security patterns are for the time being defined and modelled
in the catalogues for CoCoME, for which several extensions are planned directly in
CoCoME system models, such as:

* Role-based Access Control is a security pattern to provide secure
access control for different users to different assets. The pattern is structured
within several different elements from CoCoME like org.cocome.cloud.
webservice.LoginManager, org.cocome.tradingsystem.
inventory.data.UserManager or
org.cocome. tradingsystem.inventory.application.
UserManager.

* Proxy-based Firewall is a well-known firewall pattern for web applica-
tions.
org.cocome.cloud.proxybasedfirewall is the main component for
firewall security pattern. It is deployed on web node and traffics the communica-
tion of
org.cocome.cloud.web composite component.

After instantiating the attacks and security patterns, it comes to how to combine
them structurally. The combining elements between the attacks and security patterns
are the logical prerequisites, as previously described, which are used as parameters
for the analysis to validate the made security design decisions with respect
to possible changes or to design time unknown information. However, besides
the development of automated architecture-based security analysis, extending the
security patterns and threats with modelled prerequisites is an ongoing part within
this research. Due to highly considerable manual effort which involves many views
and roles, it makes a very steady foundation for considering security within software
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architectures and allows analysing this very important quality attribute without
having to code, deploy, or penetration test the software system under consideration.

12.1.4 Modelling and Analysing Data Flow for CoCoME

Software architects can analyse many quality properties of software architectures by
means of activities executed in the way a control flow defines. However, there are
quality properties such as compliance with data privacy constraints that are naturally
defined in terms of data and data flows. Ongoing research in the field of architectural
data flow analyses [Seil6] tries to leverage definitions data and its processing as well
as concise privacy constraint descriptions to determine compliance of architectures
with privacy constraints. CoOCoME serves as a case study for evaluating architectural
data flow analyses.

The pick-up shop evolution scenario implies many privacy constraints because it
introduces user-related data. In a first step, a subset of CoCoME about the creation
of reports has been chosen. Depending on the realisation of the use case, the store
manager might get access to data that (s)he does not actually need but are worth
protecting. This includes personal information about users. An access control policy
defines which roles have access to which data, which serves as an input for an
analysis. The second step is making exchanged data explicit and specifying the data
processing. As a third step, we create several realisations of the use case that imply
privacy violations and analyse them for violations.

Even if extending CoCoME by data and data processing requires considerable
effort, it is a good foundation for case studies in the field of data privacy. It
processes sensitive and non-sensitive data in various ways defined by the use cases.
Therefore, it defines a reasonable network of data processing operations and data
exchanges. However, the case study is not artificial but realistic, which allows to
draw conclusions about applicability.

12.1.5 Diagnosis of Privacy and Performance Problems
Jor the CoCoME Mobile App Client

Users of mobile apps expect fast response times and high throughput. However,
there are a lot of different mobile devices with different specifications, which makes
it hard to show adequate performance on each of them. Another important quality
property of mobile apps is privacy as lot of sensitive data is stored at mobile devices
and transferred over a bunch of different networks. Thus, observing and analysing
mobile apps for performance and privacy issues are crucial. The monitoring and
analysis approach proposed in [MHH18] is capable of identifying both privacy and
performance problems of mobile apps.
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The approach has been evaluated based on the mobile app client evolution
scenario of the CoCoME case study. In the mobile app client, the use cases
AuthenicateAppUser and ProcessAppSale have been executed. Monitoring data
for the use cases have been recorded and analysed for performance and privacy
problems in order to evaluate the accuracy of the analysis and overhead of the mobile
monitoring approach [MHH18].

12.1.6 Functional Decomposition for Identifying
Microservices in CoCoME

A big challenge in designing microservice architectures is to find an appropriate
partition of the system into microservices. Microservices are usually designed
intuitively, based on the experience of the designers. A systematic approach to
identify microservices in early design phase is described in [Tys+18]. The approach
is based on the specification of the system’s functional requirements and uses
functional decomposition to identify microservices.

CoCoME has been used as a case study for evaluating this approach. Starting
with the use case specification of CoCoME, system operations and state variables
have been extracted and clustered for identifying microservices. The clusters
identified by the proposed approach have been compared to microservices identified
by human developers based on the CoCoME source code and design documentation
(the component diagrams and sequence diagrams given in [HRR16]). For this
purpose, CoCoME has been applied as a case study at the Centre for Research and
Innovation in Software Engineering at Southwest University in Chongqing, China,
and the Karlsruhe Institute of Technology, Germany. The outcome of the functional
decomposition of CoCoME is analogous to the evolution scenario microservice
architecture.

12.1.7 Distributed Quality Property Optimisation for CoCoME

Software products must satisfy a considerable number of non-functional quality
properties, e.g. regarding performance and modifiability. It is known that quality
properties may conflict with each other. The reason is that software changes aimed
to improve one quality properties can and usually do have a negative impact on
another property. Hence, trade-offs between quality properties need to be managed
to achieve an overall accepted level of quality for the software product. Architecture-
based optimisation aims for evaluating such trade-offs in early design stages
[Ale+13].

CoCoME is being used as a case study for a novel distributed approach for
optimising quality properties of software architectures, in an approach called
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SQuAT [Rag+17a]. While the approach is property-agnostic, the evaluation focused
on the quality properties performance and modifiability. SQuAT builds on the idea
of scenario-based architecture evaluation [BCK12], which proposes to evaluate
architectures based on their ability to support quality scenarios. In the SQuAT
framework, so-called bots evaluate and try to optimise “their” respective quality
scenario. In multiple iterations, a moderator aims to support the mediation and
negotiation between the bots, by sharing solutions that can be further improved by
the bots to find a joint solution. SQuUAT employs model-based quality prediction,
currently focusing on the Palladio Component Model (PCM). It currently, support
two types of bots—one for performance and one for modifiability [Rag+17a].

CoCoME is used for a large-scale evaluation of the SQuAT approach, whose
basic effectiveness has been evaluated in a smaller study before [Rag+17a]. The
existing PCM are used with slight modifications. In total, eight scenarios are
defined—four for modifiability and four for performance. Accordingly, eight bots
execute to find an architectural CoCoME candidate by incrementally improving
architectural candidates, using modifiability and performance tactics.

While the case study is still in progress, it has already greatly helped to reveal and
resolve challenging situations related to the model size and topology in the SQuAT
framework.

12.1.8 Extracting Architecture Models of CoCoME

Software architecture models in different modelling languages were automatically
generated from the source code of the plain-Java variant of CoCoME in [Kon18].
These models and their generation serve as a showcase of architecture model
extraction using Codeling.” In this context, two types of architecture models have
been extracted—PCM and UML composite structure diagrams. The generated PCM
and UML models are available for the community.> Codeling is a tool that can
extract architecture models from the source code and maintain traces between the
model and the code. That is, when the model is changed, the source code is changed
accordingly. The source code that is not represented by the model is not lost during
this operation. For example, when a component is renamed, the corresponding
source code will still contain its operations and their implementation.

Code that follows the specification of a component framework—such as the Java
Enterprise Edition (JEE) [Oral7]—is forced to be structured in specific ways for
representing architectural elements such as components and their interconnection.
For example, any type of “bean” in JEE can be considered a component. Beans in
the JEE are Java class declarations with specific Java annotations. That means that
a class declaration in the program code, which has that specific Java annotation, can

2https://www.codeling.de.
3https://github.com/cocome-community-case-study/models/tree/master/Codeling/.
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be identified as a component. Codeling uses such predescribed code structures to
generate a translation model that complies to an intermediate architecture language
developed for Codeling. This translation model can be translated into multiple archi-
tecture description languages. Two architecture models of the CoCoME program
code were extracted. The plain-Java variant of the CoCoME program code was used
for this purpose. That variant actually does not follow any standardised component
framework but established a custom notion of components and other architecture-
related concepts. This project-specific component framework needed to be analysed
first, to find out which structures were used to implement architectural elements. In
the following sections, we present the models and briefly describe how they were
extracted from the program code with Codeling.

PCM Extracted from the CoCoME Source Code

In the first case study, PCM were generated, which allow for performance sim-
ulations of the architecture. The PCM defines multiple view types for modelling
an architecture. In this case study, we extracted the repository model, the system
model, and the instance models of CoCoME’s composite components from the code.
Neither the resource environment and allocation nor usage models for performance
simulations are encoded in the program code. These have to be added manually
for the purpose performance simulations. The originally planned architecture model
of the plain-Java CoCoME system is shown in Fig.4.5 on page 43. Figures 12.4
and 12.5 show the PCM repository and system, which were extracted from the
plain-Java CoCoME program code using Codeling. The repository contains all
identified components and composite components, alongside with their required
and provided interfaces and operations. For each composite component, the model
declares an instance of each subcomponent, correctly interconnected as defined in
the program code. These diagrams are not shown in the figures at hand. The system
diagram declares one instance of each of the top-most components in the repository
and interconnects them as declared by the program code. Provided interfaces are
propagated to the system’s context.

Step 1 Step 2 Step 3
4 ™\ B
Program Code Moezmslbifom i
Program o Preparations Model | Architecture
Code Translation Towards Target & 1 /1 Model

Model Language Architecture |
Model
Step 6 Step 5 Step 4

Fig. 12.4 The CoCoME architecture in an PCM repository diagram, as extracted with Codeling
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Fig. 12.5 The CoCoME architecture in an PCM system diagram, as extracted with Codeling

The translation between the CoCoME source code and the intermediate language
is not complete in the sense that the event mechanism has not been translated.
Therefore, the component JMSEventBus is missing in this model as well as event-
based interfaces. Also, the data access components have not been translated in this
case study. The missing pieces could also be extracted, if the corresponding code
structures would be added to the Codeling. It should also be noted that Codeling
only extracts the model information. The layout has been applied manually in the
figures at hand.

For extracting the architecture model, Codeling uses the process shown in
Fig. 12.6. Konersmann [Konl18, Chapter 8] describes the process and all steps in
detail. Here we give an overview for understanding how the architecture models of
CoCoME were extracted. The process can be started from either the architecture
model or the program code. In the case of the CoCoME case study, an architecture
model was extracted from code. Therefore, here the process was started from the

program code.
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The process defines three main steps for each direction. For extracting an
architecture model, the following steps are executed:

Step 1 extraction of a translation model from the program code via an implemen-
tation model

Step 2 preparation of the translation model to the necessities of the target
language

Step 3 translation of the translation model into the targeted architecture mod-
elling language

In the step Program Code to Translation Model, a translation model is created
based on the source code. The step comprises substeps: First, an implementation
model of the source code is extracted. This model describes the implementation with
the terms of the component framework in use. As described above, the CoCoME
implementation uses a project-specific component framework. This framew