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Abstract 

Sepsis is a syndromic response to infection and is frequently a final common pathway 
to death from many infectious diseases worldwide. The complexity and high heteroge‑
neity of sepsis hinder the possibility to treat all patients with the same protocol, requir‑
ing personalized management. The versatility of extracellular vesicles (EVs) and their 
contribution to sepsis progression bring along promises for one-to-one tailoring sepsis 
treatment and diagnosis. In this article, we critically review the endogenous role of EVs 
in sepsis progression and how current advancements have improved EVs-based thera‑
pies toward their translational future clinical application, with innovative strategies to 
enhance EVs effect. More complex approaches, including hybrid and fully synthetic 
nanocarriers that mimic EVs, are also discussed. Several pre-clinical and clinical studies 
are examined through the review to offer a general outlook of the current and future 
perspectives of EV-based sepsis diagnosis and treatment.

Introduction
Sepsis is an aberrant or dysregulated immune response to infection that leads to life-
threatening organ dysfunction [1]. It is a highly prevalent condition that accounts for 
18% of admissions to the intensive care unit (ICU) [2] and it is associated with a mortal-
ity rate higher than 25–30%, and even 40–50% when shock is present [3]. Although the 
incidence of sepsis is difficult to ascertain, conservative estimates indicate that sepsis is 
a leading cause of mortality and critical illness worldwide, accounted for almost 20% of 
all global deaths [4]. In addition, there is increasing awareness that patients who sur-
vive sepsis often have a reduced quality of life characterized by enduring cognitive and 
functional limitations [5, 6] turning survivorship into a public health problem with huge 
implications for patients, families, and the health care system.

The sepsis pathophysiology can be understood as a complex crosslinking of mecha-
nisms, including inflammatory and anti-inflammatory responses, coagulopathies, sys-
temic action of microorganisms, and multiple organ failure [7]. Such pathophysiology 
may substantially differ based on the underlying type of infection and individual host 
responses. In fact, a retrospective analysis using data from 63,858 patients allowed the 
identification and validation of four clinical sepsis phenotypes (α, β, γ, and δ) that were 
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shown to correlate host-response patterns and clinical outcomes [8]. The high heteroge-
neity and the complex pathobiology of sepsis are the main reasons why pharmacological 
therapies are limited in preventing, managing, and diagnosing this syndrome, making it 
a “prototype” of a personalized treatment disease [9, 10].

Precision medicine aims to provide clinical treatments targeted to the needs of indi-
vidual patients by considering their genetics, lifestyle and environment characteristics 
[11]. Regarding sepsis, precision medicine creates an individual approach on a case-by-
case basis by identifying subgroups of patients with a high risk of adverse outcomes who 
may benefit from specific treatments or rescue therapies according to their particular 
phenotype [12]. In this regard, extracellular vesicles (EVs) bring along promises for tai-
loring sepsis treatment and diagnosis [13], since they possess several potential advan-
tages compared with the cell therapies used for sepsis treatment, mainly addressing the 
inherent risks associated with live-cell transplants [14].

EVs, including exosomes, microvesicles and apoptotic bodies, are nanoscale (40–
5000 nm size) phospholipid bilayer structures endogenously secreted from all cell types 
[15] and released in many body fluids such as urine, saliva, plasma, breast milk or cer-
ebrospinal fluid [16]. Since EVs’ discovery, research and methodological developments 
have led researchers to realize that they play crucial roles in cell-to-cell communica-
tions, the regulation of homeostatic and pathological processes, transferring proteins, 
bioactive lipid material, DNAs, RNA species as well as other cytoplasmic components 
[17]. The high biocompatibility and low immunogenicity, increased specificity to target 
cells or tissues, ability to cross biological barriers and use endogenous cellular machin-
ery of loading, are features that make EVs an optimal candidate as drug delivery vehi-
cles [18]. Moreover, EVs’ composition depends on their generation pathway and the cells 
from which they originate. This confers them the capacity to provide evidence for early 
disease diagnosis and prognosis, disease severity evaluation, and treatment monitoring 
[19], making them a potential innovative approach for precision medicine.

The purpose of this article is to critically analyze the endogenous role of EVs in sepsis 
progression and highlight their use as diagnostic biomarkers and therapeutic agents for 
sepsis. We evaluate current progress and discuss future methods for EVs bioengineering 
to either boost the therapeutic effect that EVs show by themselves or how to use their   
characteristics as drug delivery vehicles.  More complex approaches, including hybrid 
and fully synthetic nanocarriers that mimic natural EVs are also discussed. Through-
out the review, relevant pre-clinical and clinical studies are presented, which are so far 
encouraging towards a near future use of EVs for a more accurate and precise treatment 
for sepsis.

Role of EVs in sepsis progression
Multiple pre-clinical and clinical studies of sepsis have reported increased numbers of 
circulating EVs in septic individuals [20, 21], and even higher levels in patients with sep-
tic shock, establishing a directly proportional relationship between the amount of EVs in 
plasma and the severity of the illness. Besides, circulating EVs have been associated with 
organ failure and mortality in critically ill sepsis patients [22]. Despite the EVs origin, 
whether from endothelial, epithelial, or immune cells, they all exhibit significant pro-
inflammatory, pro-coagulant, and pro-permeability effects, influencing the behavior of 
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EVs-targeting cells, which may contribute to the progression of the disease [23, 24]. Fur-
thermore, circulating EVs populations and its content change during the several sepsis 
stages, which could be used to determine more precisely the severity and the pathology 
of each patient and, therefore, offer the possibility of a more precise intervention and 
therapy [21].

One of the most described actions of EVs during sepsis development is their pro-coag-
ulant effect. Bacterial infections are associated with the release of EVs carrying tissue 
factor (TF, a significant initiator of the extrinsic coagulation cascade) by monocytes, 
which results in the activation of the coagulation pathway [24]. A recent study using a 
mouse model of pyroptosis showed that inflammasome activation leads to the release 
of TF-positive EVs into the blood, which in turn triggered blood coagulation, resulting 
in tissue perfusion deficit, organ dysfunction and lethality [27]. In addition, Wang et al. 
proposed TF-positive EVs as a biomarker for thrombosis risk in a mouse model of endo-
toxemia [28].

Another critical process during sepsis in which the EVs are also involved is the mas-
sive cytokine storm, which refers to multiple activated cascades that lead to an auto-
amplifying cytokine production, based on a profound increase in pro-inflammatory 
cytokines such as IL-1, IL-12, IL-18, tumor necrosis factor alpha (TNF-α), chemokines 
(IL8) and interferons into the circulation causing severe inflammation and tissue damage 
[29, 30]. Several studies have reported that some of the circulating cytokines are car-
ried by EVs together with other chemokines and growth factors [31]. EVs from plasma 
of septic mice were shown to have the capability to enhance Th1/Th2 differentiation, 
promote T cells proliferation and augment T lymphocyte migration [31]. More specifi-
cally, EVs from pre-stimulated human neutrophils could act as attractors of monocytes 
via MCP-1 in vitro [32]. In addition, the kinetics of soluble or EV-associated cytokines 
and chemokines display different dynamics in the blood of LPS-injected mice. While the 
peak of soluble cytokines release is 2–12 h post-infection, the maximum of EVs carry-
ing them is 12–24 h post-infection [31]. This, together with the fact that EVs exhibit an 
increased stability in the blood (allowing them to travel long distances within the body) 
[33], could suggest that EVs carrying pro-inflammatory cytokines is crucial for a sus-
tained systemic inflammation over time.

EVs that are released during systemic inflammatory conditions can also contain 
DAMPs [34], including histones [35], heat shock proteins (HSPs) [36], and high-motility 
group box-1 (HMGB1) [37]. These proteins can interact with TLR4 or RAGE receptors, 
participating in the induction of different inflammatory pathways [34, 35]. C-reactive 
protein (CRP) is an acute phase protein that is part of the innate immune system and 
it is crucial for the activation of the adaptative immune response. It is  predominantly 
secreted in response to tissue damage and systemic inflammatory conditions [38], and 
it is used for sepsis prognostic [39]. Indeed, Fendl et al. observed that the level of EVs 
containing CRP was significantly higher in septic patients than in healthy donors [40]. 
Similar results were observed in plasma EVs from moderate and severe acute pancreatic 
patients [41]. Both studies associated the presence of EVs carrying CRP with a major 
disease severity [40, 41].

Aside from proteins that directly trigger the transduction of signals, there are other 
EVs components like miRNAs capable of regulating gene expression [42]. Recent 
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studies have evidenced the presence of a different plasma-circulating miRNA expres-
sion profile from EVs between septic and healthy patients [43, 44], which has been 
associated with sepsis severity. Interestingly, there are some specific miRNAs with 
a > 1.5-fold increase in EVs from septic mice compared to EVs from sham-operated 
control mice, such as miR-126-3p, miR-122-5p, miR-146a-5p, miR-145-5p, miR-
26a-5p, miR-150-5p, miR-222-3p and miR-181a-5p which are closely related to 
inflammation and innate immune response, mediating the cytokine production via 
TLR7-MyD88 and NFκB signaling [20].

Severe sepsis is a stage of disease progression that eventually involves the alteration 
of vascular permeability [45, 46] triggering acute pulmonary edema, severe hypoxia, 
and consequently the development of acute respiratory distress syndrome (ARDS) 
[47]. Interestingly, EVs from septic patients’ plasma have demonstrated to exert a det-
rimental role in microvascular permeability [48]. Specifically, EVs may cause direct 
injury to the endothelium modulating adherent junctions, tight junctions, caveolar 
and cytoskeletal proteins disturbing nitric oxide homeostasis [49].

Overall, the importance of endogenous EVs in sepsis was further highlighted in a 
study by Essandoh et al. in which GW4869, a neutral sphingomyelinase inhibitor that 
partially blocks the release of EVs, was used to successfully reduce the number of EVs 
and pro-inflammatory cytokines emitted from lipopolysaccharide-stimulated mac-
rophages. This EV reduction was correlated with decreased systemic inflammation 
and mortality in a cecal ligation and puncture (CLP) mouse model[50].

EVs as diagnostic markers
In sepsis, early diagnosis is crucial, thus, one-quarter of septic patients receive inad-
equate treatment and a worse prognosis as a consequence of a delayed diagnosis [51]. 
The current diagnostic criteria for sepsis are based on non-specific clinical symp-
toms, which can also occur in a variety of other clinical conditions [52]. In addition, 
it is particularly challenging in high-risk groups, such as the elderly or infants, which 
often present with atypical symptoms and are at an increased risk for ARDS or other 
secondary complications [53]. At present, there are no valid and reliable biomarkers 
allowing an on-site diagnosis and the identification of high-risk septic patients [54]. 
Hence, the search for new diagnostic markers to accurately stratify the stages of sep-
sis and facilitate early diagnosis remains meaningful and needed [55].

Research of endogenous EVs and their specific roles in sepsis progression reveal 
numerous diagnostic capabilities in pre-clinical sepsis models, as well as in human 
patients [56]. As mentioned above, EVs plasma levels in general have been proposed 
as predictive biomarkers for organ failure and mortality rate of septic patients [22], as 
well as, specific miRNA expression profile in EVs from septic patients, that has been 
also associated with sepsis survival and disease stage [57]. More specifically, prot-
eomic analyses of human blood EVs from septic patients have revealed the presence 
of SPTLC3 protein, which was negatively correlated with disease progression [58]. In 
addition, Dakhlallah et  al. detected an increased number of plasma EVs containing 
an increased amount of DNA methyltransferases mRNAs in the septic shock cohort 
compared to critically ill, non-septic control and sepsis cohorts [21], offering an 
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opportunity to more precisely and promptly intervene. Although these studies high-
light the potential of EVs as a novel method to diagnose and monitor the progression 
of the disease, further studies are needed to implement these methods in the clinics.

EVs for sepsis treatment
Given the diversity of functions of EVs in the context of sepsis, they are currently being 
investigated as potential diagnostic biomarkers and therapeutic targets to suppress their 
detrimental role in sepsis progression [23]. Furthermore, the attributes associated with 
EVs, such as low immunogenicity and toxicity, excellent biocompatibility, and natural 
ability to cross biological barriers [19], have spurred pre-clinical and clinical investiga-
tions of EVs as a natural therapeutic strategy for many diseases [59–63]. Among all cell 
types, mesenchymal stem cells (MSCs) are major candidates for cell therapy over the last 
decades [64]. Several ongoing clinical trials use MSCs for sepsis and ARDS have pro-
vided promising results [65–67]. Hence, there has been a marked increase in published 
pre-clinical studies using MSC-EVs in animals with organ injury or immune dysfunc-
tion since 2013 until now [68]. All these studies have reinforced the crucial role of EVs 
derived from MSCs in reducing pathogen replication [69], phagocytosis [70], immunity 
regulation [71–73], and the regeneration of injured tissues, which are essential aspects 
to treat sepsis and its consequent organ dysfunction [66, 67] in vitro and in vivo.

Methods for the modification and enhancement of natural EVs effect
Despite all advantages and positive therapeutic outcomes that natural EVs have dem-
onstrated to exert, their translation to the clinical field requires extensive multidiscipli-
nary efforts. Yet, there are still many challenges to overcome, including a lack of scalable 
production methods, low reproducibility of isolation techniques, and high heterogeneity 
between batches [63]. However, research has shown that advancements in the EVs bio-
manufacturing process and bioengineering methods can potentially hurdle these obsta-
cles [64], opening up new future opportunities for EVs-based precision nanomedicine 
[65].

EVs, as natural intracellular communicators, have been also proposed as vehicles 
for the delivery of both native and non-native molecules [74]. Compared with stand-
ard delivery methods, EVs have been shown to deliver functional cargo with decreased 
immune clearance [75], higher stability in circulation, enhanced drug efficacy while min-
imizing drug toxicity and off-target side effects [76]. In addition, their unique structure, 
made of a hydrophobic lipid bilayer and a hydrophilic core, allows for the loading of a 
multitude of different cargoes [15]. Two main approaches exist for EVs loading, which 
are described below at some length.

Non‑cell‑based methods

On the one hand, non-cell-based methods, also known as exogenous loading [77] 
(Fig. 1), involves direct filling of already isolated EVs with therapeutic agents. This pro-
cess can be accomplished by means of a passive encapsulation without using any external 
stimuli [78]. By this technique, the cargo can diffuse into the EVs following the con-
centration gradient [79], causing a lipid rearrangement of the membrane [80] or using 
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energy-dependent channels [81]. Besides, exogenous loading can also be performed by 
an active encapsulation in which the EVs are forced to capture the desired cargo. Dif-
ferent routes for the loading process can be used, including electroporation, sonication, 
extrusion, freeze–thaw cycles and transfection [82]. While the passive method allows the 
preservation of EVs morphology [83], the active encapsulation shows a better loading 
efficiency and fewer difficulties in assessing the purity of the final preparation [84]. Fig-
ure 1 schematically describes two such approaches. Several studies have already proven 
drug loading feasibility into EVs and a higher efficiency of sepsis drugs when encapsu-
lated within EVs. For instance, Sun et al. provided evidence that curcumin delivered by 
exosomes was more stable and highly concentrated in the blood. They demonstrated 
that curcumin carried by exosomes showed an enhanced anti-inflammatory effect in a 
lipopolysaccharide (LPS)-induced septic shock mouse model [80]. Two other relevant 
studies in this field showed a less disruptive EVs loading method involving a transmem-
brane pH gradient. Jeyaram et al. were able to load thousands of copies of miR-146a per 
EV and maintain their immunomodulatory properties, suggesting their potential ther-
apeutic use in inflammatory diseases such as sepsis [85]. Similarly, in order to silence 
chemokine receptor 2 (CCR2), Ding et  al. loaded EVs from mouse-derived immortal-
ized bone marrow-derived macrophages (iBMDM) with siCCR2 by electroporation [86]. 
After intravenous administration, siCCR2 was delivered to the spleen and inhibited the 
infiltration of some inflammatory monocytes or macrophages in the spleen, alleviating 
the subsequent sepsis symptoms in a CLP mouse model [86]. In 2018, Gao et al. studied 
the usefulness of neutrophil-derived EVs as a delivery platform for piceatannol [87], an 
anti-inflammatory drug, described for its protective effect against sepsis-induced acute 
lung injury [88] and myocardial dysfunction [89]. They observed that piceatannol-loaded 
EVs dramatically alleviated acute lung inflammation/injury and sepsis in mice adminis-
tered with LPS [87], revealing their potential application for precise nanomedicine.

Fig. 1  Non-cell-based methods for the modification of EVs cargo. EVs extracellular vesicles
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Cell‑based methods

On the other hand, there are cell-based strategies for filling EVs, also known as endog-
enous loading (see Fig. 2, panel A). In this approach, parenteral cells can be incubated 
with drugs or drug-loaded nanoparticles (NPs) [90], allowing the secretion of natu-
ral EVs carrying a certain fraction of the therapeutic content of interest. For example, 
Perteghella et al. developed a new system to obtain curcumin-loaded EVs by previously 
treating MSCs with NPs carrying curcumin. In the end, MSCs were able to release EVs 
entrapping curcumin nanoparticles [91], enhancing the loading efficiency in compari-
son with non-cell-based methods. Furthermore, parental cells can also be genetically 
or metabolically modified in order to alter and thus enhance their targeting ability and 

Fig. 2  Cell-based methods for the modification of EVs cargo or surface markers and for the enhancement 
of their natural effect. A Endogenous loading; B Genetic modification of parental cells; C Priming of parental 
cells. EVs extracellular vesicles
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biocompatibility [83]. A very recent study focused on COVID-19 treatment, allowed 
the obtaining of genetically modified CAR-T cells to secrete programmed nanovesicles 
(NVs) that expressed on their surface two antibody single-chain fragment variables, 
which are demonstrated to block spike protein of SARS-CoV-2 binding to ACE2 recep-
tor in  vivo. Moreover, obtained NVs were loaded with an anti-viral drug, remdesivir, 
by electroporation. These innovative NVs prevented SARS-CoV-2 from entering cells 
expressing ACE2 and also inhibited intracellular virus replication redirecting specifically 
the NVs to the major sites of viral infection [92].

Enhancement of EVs’ natural therapeutic effect

In addition to combating the obstacles that EVs as a therapy can present, there have 
also been described several strategies and progresses to improve the therapeutic natu-
ral effect exhibited by the EVs themselves [93]. EVs activity can be boosted by stress-
induced adaptive responses of parental cells to the environment they are exposed to [94] 
(see Fig. 2, panel B). One of the most prominent strategy shown to significantly modify 
EVs intraluminal cargo, increase EVs secretion and enhance EVs potency is the alteration 
of parental cells cell-culture parameters [95, 96]. These modifications can be either bio-
chemical (growth factors, cytokines, bacteria-derived molecules, pharmacological drugs 
or chemical agents) or biophysical (cell seeding density, cell-passages, 2D and 3D scaf-
folds, mechanical stimuli, etc.) [97, 98]. EVs secreted by primed MSCs have been exten-
sively studied as a therapy for sepsis [99]. Increasing evidence indicate that EVs derived 
from IL-1β-primed MSCs induce more effectively M2-like polarization of macrophages, 
ameliorate the septic symptoms and increase the survival rate when administered in a 
CLP septic model. These findings are attributed to the appearance of exosomal miR-
146a [100] and miR-21 [101], which are significantly upregulated in EVs from primed 
MSCs. Ti et al. reported similar results, although in their study, the MSCs-derived EVs 
with improved wound healing abilities and resolution of inflammation in a mouse model 
of diabetic cutaneous wound were obtained by pre-treating the MSCs with LPS, which, 
in this case, augmented the expression of exosomal let-7b [102]. Furthermore, inflam-
matory priming of MSCs with TNF-α or IFN-γ was also shown to trigger the secretion 
of EVs that were able to initiate the production of immunomodulatory factors, reducing 
Th1-cell proliferation [103] and inducing T-reg cell differentiation in vitro [104]. In this 
line, hypoxic preconditioning of MSCs seems to show akin effects since their secreted 
EVs also regulate inflammatory responses [105], inhibit apoptosis [106] and stimulate 
cellular proliferation [107] in different pre-clinical models by mainly modifying the 
miRNA expression profile from EVs, even though there are some studies that demon-
strate the opposite [108].

The biophysical environment of MSCs can also modulate their secretory profile [109], 
and specifically, the EVs production [110]. MSCs that were cultured in a platform incor-
porating both physiomimetic lung extracellular matrix conditions and mechanical 
stimulation by cyclic stretch fostered their anti-inflammatory and immunosuppressive 
paracrine action in vitro [111] (see Fig. 2, panel C). Regarding the specific influence of 
physical atmosphere on EVs secretion and their immunomodulatory effect on sepsis, 
remains unclear. Even so, there are some studies that found a greater amount of protein, 
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better outcomes in immunomodulation and vascularization in EVs isolated from MSCs 
seeded in 3D cultures [112], submitted to a cyclic mechanical stretch [113] or maintain-
ing a low cell density and using only low passages for EVs collection [110] when adminis-
tered in experimental models.

Bioinspired synthetic EVs
Bioinspired synthetic EVs are artificially produced EVs that mimic their natural 
counterparts. They are being extensively studied, since they can overcome the cum-
bersome production of natural EVs, their tedious isolation, and other already-men-
tioned barriers that hinder their fast clinical translation [114]. Bioinspired synthetic 
EVs can be bioengineered via different strategies. They can be produced by cell 

Fig. 3  Different approaches to obtain bioinspired synthetic EVs. Strategies based on cell fragmentation, 
supramolecular chemistry and biohybrid EVs
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fragmentation, using supramolecular chemistry, or fusing exosomes with synthetic 
nanomaterials to produce biohybrid structures [115]. These different approaches 
and examples are described below with more detail and are summarized in Fig.  3 
and Table 1.

Bioinspired synthetic EVs prepared by cell fragmentation

In the case of cell fragmentation, cells are forced to disintegrate to form nanosized vesi-
cles. Their membranes contain natural lipids, proteins and nucleic acids from their par-
ent cells, so they are very similar to natural EVs. Several fragmentation approaches have 
been reported to produce synthetic EVs starting from parental cells. Extrusion through 
nanosized polycarbonate membrane filters is widely used to turn cells into vesicles 
with reduced size, which preserve the topology of membrane proteins [116]. In addi-
tion, microfluidic systems have been developed to isolate, detect, analyze and engineer 
nanosized particles, such as exosomes [117, 118]. In these systems, living cells are forced 
to go through an array of parallel hydrophilic microchannels, in which they are broken 
into smaller fragments which then self-assemble forming artificial EVs [119]. Cells can 
also be disrupted by nitrogen cavitation to form exosome-like nanovesicles. This proce-
dure relies on the dissolution of nitrogen in cells’ cytoplasm under high pressure and a 
subsequent depressurization and release of this gas, causing the appearance of bubbles 
and the rupture of the cell membrane [120]. The exposure of cells to an alkaline solution 
forces the cells to break into membrane fragments, which can be re-assembled by soni-
cation forming EVs.

One of the main advantages of cell fragmentation is the obtaining of homogeneous 
EVs populations. In addition, this approach is done in few steps, does not use organic 
solvents and can increase the production yield by more than 200-fold with respect to 
natural EVs [121], demonstrating the scalability of the method. Their physical and 
chemical compositions are not compromised, but the purification methods are still 
time-consuming.

Gao et  al. successfully produced neutrophil-derived nanovesicles by two cycles of 
nitrogen cavitation under a pressure of 350–400 psi for 20  min, which triggered the 
physical disruption of neutrophils [122]. These neutrophil-derived EVs possessed inte-
grin β2, a protein that binds to intercellular adhesion molecule 1 (ICAM-1), which is 
highly expressed in endothelial cells during inflammation [123]. These EVs were loaded 
with TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) 
by incubation and were administered intravenously in an LPS model, reducing the lung 
inflammation and edema [122].

Furthermore, Go et  al. developed EV-mimetic nanovesicles using human monocyte 
U397 cells, which were broken into membrane fragments by an alkaline solution and 
luminal cytosolic components were discarded by ultracentrifugation [121]. Sonication 
allowed the formation of EVs and their loading with dexamethasone, an anti-inflam-
matory agent. Using dexamethasone-loaded EVs, IL-8 levels in human umbilical vein 
endothelial cells (HUVECs) were reduced and systemic inflammatory response syn-
drome (SIRS) was mitigated in mice after intravenous administration of the nanovesicles 
loaded with the anti-inflammatory drug [121].
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Park et  al. produced EVs from MSCs by fragmenting cells through serial extrusions 
using different pore-sized polycarbonate membrane filters (10, 5 and 1 µm) [124]. The 
administration of MSC-derived EVs significantly decreased cytokine release into sys-
temic circulation and monocyte and neutrophil infiltration in the peritoneum, demon-
strating the immunomodulatory effect of MSC-derived EVs in a murine model of sepsis 
[124].

Bioinspired fully synthetic EVs prepared by supramolecular chemistry

Bioinspired artificial EVs can be produced by bottom-up approaches using individual 
components of the cellular membrane (lipids and proteins), which interact by supra-
molecular chemistry to form spherical structures that mimic EVs [115]. These nanocar-
riers show great potential as exosome-mimics when they are modified with chemical 
groups or conjugated with specific biomolecules, such as membrane proteins, peptides, 
or antibodies, to simulate the composition of natural EVs. These bottom-up approaches 
need a complete understanding of each component in the naturally derived exosomes 
to develop nanocarriers with superior characterization control and clean composi-
tion [116]. These entirely synthetic EVs may better satisfy the specifications of medi-
cal regulative agencies and have higher pharmaceutical acceptability than their natural 
counterparts because of their homogeneous and reproducible production, and besides, 
their cargoes can be loaded more efficiently. Nevertheless, further research is required 
to reproduce a complex lipid and protein natural structure starting from the building 
blocks. Liposomes, with their lipid double layer, and polymerosomes have emerged as 
strategic elements in cell mimicking [125]. Furthermore, biodegradable polymers, such 
as poly(lactic-co-glycolic acid) (PLGA), have also been used to develop nanocarriers 
that resemble EVs in size and morphology. PLGA nanocarriers have been proposed as a 
potential pulmonary drug delivery system, since they did not exhibit signs of cytotoxic-
ity and showed and excellent lung biodistribution after intratracheal instillation, offering 
a suitable tool for the treatment of sepsis-induced acute lung injury [126]. Below, several 
studies are shown that demonstrate the efficacy of this type of nanocarriers for the treat-
ment of sepsis-induced ARDS.

Li et  al. synthesized hyaluronic acid-polyethylenimine (HA-PEI) NPs to mimic 
exosomes secreted by tumor cells that were shown to exert protective effects against 
sepsis [127]. This process included the chemical coupling of HA and PEI and the self-
assembly of the conjugated polymer into nanosized particles, which were loaded with 
the seven miRNAs that were identified as the responsible for the therapeutic effect of 
tumoral exosomes. They observed that the obtained NPs did not alter either cell viability 
or permeability, and they were protective against inflammation [127]. Moreover, serum 
levels of cytokines TNF-α and IL-6 were decreased, and LPS-induced sepsis in mice and 
cynomolgus monkeys was relieved after the administration of these NPs, being promis-
ing candidates for the treatment of sepsis and cytokine-storm-related conditions [127].

Molinaro et al. engineered liposome-like nanocarriers, namely leukosomes, by blend-
ing synthetic lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diole-
oyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol at 4:3:3 molar ratio) with 
membrane proteins from leukocytes [128]. In  vitro studies with macrophages treated 
with leukosomes demonstrated a decreased expression of pro-inflammatory genes 
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(IL-6, IL-1b, and TNF-α) and a raised expression of anti-inflammatory ones (IL-10 and 
TGF-β), indirectly causing an anti-inflammatory response [128]. In  vivo experiments 
in an LPS-induced model of sepsis elucidated that leukosomes allowed the targeting of 
inflamed tissues and significantly prolonged survival [128].

Papafilippou et  al. used commercially available and clinically used amphotericin 
B-loaded liposomes (AmBisome®) to rapidly and accurately diagnose and differentiate 
between sepsis, triggered by an infection, and non-infectious acute systemic inflamma-
tion in humans [129]. After incubating these liposomes with plasma from two groups of 
patients, one suffering from sepsis and the other from a non-infectious acute systemic 
inflammation, a protein corona was formed through the spontaneous interaction of 
plasma proteins with liposomes in both cases [129]. The protein corona was deeply char-
acterized and compared by mass spectrometry to demonstrate that the proposed syn-
thetic nanosystem allowed the identification of 67 potential biomarker proteins for the 
reproducible distinction between non-infectious acute systemic inflammation and sepsis 
[129]. Therefore, the liposome-corona platform could fasten the clinical evaluation and 
precisely diagnose sepsis, avoiding unneeded antibiotic treatments.

Zhang et  al. designed and synthesized polymeric micelles by self-assembly using an 
amphiphilic block copolymer (Biotin-PEG-b-PAE(-g-PEG-b-DSPE)-b-PEG-Biotin). The 
micelles were loaded with an antibiotic (ciprofloxacin) and an anti-inflammatory agent 
(TPCA-1) to prevent bacterial dissemination and mitigate inflammation [130]. In addi-
tion, the polymeric micelles were coated with ICAM-1 antibodies to target infected tis-
sues, which enhanced drug delivery efficacy [130]. These nanosystems were responsive 
to the acidic pH and bacterial enzymes present in infectious microenvironments, trig-
gering the release of the drugs [130]. The administration of the drug-loaded micelles in 
an acute peritonitis model significantly reduced the leukocytes, bacteria, and inflamma-
tory cytokines, indicating a suppression of the peritoneal infection, leading to a miti-
gated systemic inflammation [130].

Biohybrid EVs

Natural EVs and synthetic nanostructures, such as liposomes or polymersomes, can be 
fused to form biohybrid vesicles that combine the advantages of both systems without 
altering their intrinsic properties [115]. Synthetic nanosystems contribute with stability, 
high and controlled production and the possibility of drug loading. There are different 
methods by which biohybrid EVs can be produced, such as the freeze–thaw technique, 
in which natural EVs and liposomes are mixed, frozen and thawed for several cycles 
[131]. Another option is by simply incubating natural EVs and liposomes, which may 
lead to the formation of biohybrid structures without external stimuli, since both have 
a lipid bilayer [132]. Finally, membranes of exosomes and liposomes break and merge 
to form hybrid EVs by the co-extrusion method, in which they undergo physical stress 
when going through membrane pores [133].

Regarding the utilization of biohybrid EVs for sepsis treatment, Jiang et al. used soni-
cation to develop a macrophage-mimetic hybrid liposome by fusing macrophage mem-
branes with artificial lipids (phosphatidylcholine and DSPE-PEG2000), which stabilized 
the natural membrane and prolonged the blood circulation time [134]. The resulting 
macrophage-mimetic hybrid liposome combined the advantages of both natural and 
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artificial membranes. It reduced the toxicity of LPS in activated macrophages, protecting 
mice against septic shock, and reducing the levels of IL-1β, IL-6 and TNF-α [134].

Inorganic nanoparticles for sepsis
In addition to synthetic bioinspired EVs, several inorganic nanoparticles (NPs) have also 
been investigated for the diagnosis and treatment of sepsis to mimic the natural effect 
of EVs. The use of NPs for these purposes presents great potential due to the possibil-
ity of engineering NPs with different compositions, sizes, shapes, and surface charges 
and their capacity for surface functionalization, allowing targeting and selective binding 
[135]. Still, toxicity, rapid clearance, and difficulties crossing some biological barriers are 
these systems’ main drawbacks [115]. However, magnetic NPs, metallic NPs or quantum 
dots, combined with lab-on-a-chip devices, point-of-care (POC) technologies or biosen-
sors, have been examined for fast and sensitive sepsis detection and therapy [135].

As an example, Wang et  al. developed a nanosystem for early sepsis diagnosis and 
extracorporeal blood disinfection as a treatment to eliminate the bacteria causing sep-
sis [136]. The platform was based on iron oxide (Fe3O4) NPs functionalized with chlo-
rin e6 (Ce6) and bacterial species-identifiable aptamers (Apt) [136]. The aptamer helped 
to capture bacteria, while the Fe3O4 NPs allowed magnetic separation for the detection 
and enrichment of bacteria, and Ce6 acted as a photosensitizer that exhibited high pho-
tosensitizing efficacy. Based on this, the Fe3O4–Ce6–Apt nanosystem allowed a suc-
cessful and rapid diagnosis of sepsis caused by single or multiple species of bacteria (S. 
aureus and E. coli) [136]. Due to the strong photodynamic effect and magnetic properties 
of the Fe3O4–Ce6–Apt nanosystem, it was also studied for the disinfection of extracted 
contaminated blood by first irradiating it with a NIR laser, causing the death of bacteria, 
and then magnetically removing the pathogens [136]. Disinfected blood could be reused 
for mice transfusion without adverse reactions, suggesting the successful potential of the 
Fe3O4–Ce6–Apt nanosystem for sepsis treatment [136]. In addition, Yu et al. designed 
and synthesized a reactive oxygen species (ROS)-responsive nanosystem which com-
bined mitochondria-targeting ceria (CeO2) NPs with atorvastatin for acute kidney injury 
caused by sepsis [137]. CeO2 NPs were conjugated with triphenylphosphine, coated 
with mPEG-TK-PLGA, a ROS-responsive organic polymer that improved the biocom-
patibility of the nanosystem, and subsequently loaded with atorvastatin [137]. The NPs 
were accumulated in the kidneys and targeted specifically the mitochondria to suppress 
excessive ROS levels. They also efficiently reduced inflammation in vivo and exhibited 
antioxidant and antiapoptotic effects in vitro [137].

Conclusions
Sepsis is a complex syndrome characterized by its high heterogeneity between patients, 
which hinders its diagnosis and therefore, the administration of an efficient and defini-
tive treatment. The need for a more personalized management of sepsis and the malle-
able characteristics of EVs, whether synthetic or natural, may be the focal point for the 
development of a therapy targeting all different pathways that confer its pathophysiology 
in the near future.

Here we have presented not only the role that EVs play in the progression of sepsis 
and how it could be used to develop more precise diagnosis and prognosis methods, but 
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also highlighted the potential of natural EVs as a treatment for sepsis. In addition, the 
research discussed presently shows the wide range of emerging bioengineering strate-
gies to enhance the beneficial effect of EVs or their use as cell-based delivery systems, 
which, in turn, leads to overcoming the inherent challenges that cellular therapy exerts. 
Furthermore, the recent research advancements in nanotechnology have opened up sev-
eral exciting avenues to develop innovative approaches with a marked translational char-
acter, offering a potential precise therapy for sepsis.

Despite the promising prospects described in this review, future research is needed 
to further study the contribution of EVs in sepsis progression to provide a useful and 
prompt diagnostic method to determine more precisely the severity and the specific sep-
sis phenotype of each patient. Besides, additional investigation in regard to the septic 
pathological environment is required, as well as, the refinement of engineering processes 
and clinical development in order to obtain a definitive EVs-based sepsis treatment.
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