
David Abramson
Bronis R. de Supinski (Eds.)

LN
CS

 1
14

16

5th Asian Conference, SCFA 2019
Singapore, March 11–14, 2019
Proceedings

Supercomputing Frontiers

Lecture Notes in Computer Science 11416

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

David Abramson • Bronis R. de Supinski (Eds.)

Supercomputing Frontiers
5th Asian Conference, SCFA 2019
Singapore, March 11–14, 2019
Proceedings

Editors
David Abramson
University of Queensland
St. Lucia, QLD, Australia

Bronis R. de Supinski
Lawrence Livermore National Laboratory
Livermore, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-18644-9 ISBN 978-3-030-18645-6 (eBook)
https://doi.org/10.1007/978-3-030-18645-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0441-4596
https://doi.org/10.1007/978-3-030-18645-6
http://creativecommons.org/licenses/by/4.0/

Preface

As the share of supercomputers in Asia continues to increase, the relevance of
supercomputing merits a supercomputing conference for Asia. Supercomputing Asia
(SCA) 2019 was an umbrella of notable supercomputing events that promote a vibrant
HPC ecosystem in Asian countries and was held March 11–14, 2019, at Suntec
Singapore Convention and Exhibition Centre.

The technical program of SCA 2019 had its roots in Supercomputing Frontiers
(SCF), which is Singapore’s annual international HPC conference that provides a
platform for leaders from both academia and industry to interact and to discuss
visionary ideas, important global trends, and substantial innovations in supercomput-
ing. In March 2017, the National Supercomputing Centre (NSCC) Singapore took over
hosting of Supercomputing Frontiers 2017 (SCF 2017). NSCC expanded the scope of
SCF by embarking on SupercomputingAsia 2018. NSCC was established in 2015 and
manages Singapore’s first national petascale facility with available HPC resources to
support science and engineering computing needs for academic, research, and industry
communities. SCA 2018 was attended by over 800 delegates from over 24 different
countries.

SCA 2019 program highlights included:

– Quantum computing
– Precision medicine
– Hyperscalers
– Green data center strategies and management
– Joint HPC Cloud Security Workshop
– HPC-AI competition
– Industry talks by leading vendors
– Technical papers and poster sessions

The co-located HPC events included:

– Asia Pacific Research Platform (APRP) Conference
– ASEAN HPC Workshop
– Conference on Next-Generation Arithmetic (CoNGA)
– Supercomputing Frontiers Asia (SCFA)
– Singapore–Japan–Australia Joint HPC Session

SCFA represents the technical program for SCA 2019, consisting of four tracks:

– Application, Algorithms, and Libraries
– Programming and System Software
– Data, Storage, and Visualization
– Architecture, Network/Communications, and Management

After rigorous peer review, we selected six papers for inclusion in the proceedings,
representing an acceptance rate of 18%. These cover a range of topics including
memory fault handling, linear algebra, image processing, heterogenous computing,
resource usage prediction and data caching. We selected an additional eight abstracts
for presentation.

We are grateful to our colleagues for submitting papers to the SCA 2019 scientific
sessions, as well as to the members of the Program Committee for selecting this year’s
attractive program.

February 2019 David Abramson
Bronis de Supinski

vi Preface

Organization

David Abramson University of Queensland, Australia
Bronis de Supinski Lawrence Livermore National Laboratory, USA

Program Chairs

David Abramson University of Queensland, Australia
Bronis de Supinski Lawrence Livermore National Laboratory, USA

Program Committee

Olivier Aumage Inria, France
Rosa M. Badia Barcelona Supercomputing Center, Spain
Costas Bekas IBM Research Zurich, Switzerland
Janine Bennett Sandia National Laboratories, USA
Ron Brightwell Sandia National Laboratories, USA
Ali Butt Virginia Tech, USA
Sunita Chandrasekaran University of Delaware, USA
Ewa Deelman University of Southern California, USA
Anshu Dubey Argonne National Laboratory, USA
Hal Finkel Argonne National Laboratory, USA
Sandra Gesing University of Notre Dame, USA
Bilel Hadri KAUST, Saudi Arabia
Michael Heroux Sandia National Laboratories, USA
Nikhil Jain Nvidia, USA
John Kim KAIST, South Korea
Quincey Koziol Lawrence Berkeley National Laboratory, USA
Piotr Luszczek University of Tenessee, USA
Arthur Maccabe Oak Ridge National Laboratory
Naoya Maruyama Lawrence Livermore National Laboratory, USA
Suzanne McIntosh New York University, USA
Antonio Peña Barcelona Supercomputing Center (BSC), Spain
Ryota Shioya The University of Tokyo, Japan
Min Si Argonne National Laboratory, USA
Nathan Tallent Pacific Northwest National Laboratory, USA
Michela Taufer University of Tennessee, USA
Weikuan Yu Florida State University, USA
Bu Sung Lee NTU, Singapore
Ronald Minnich Google, USA

Contents

Practical Resource Usage Prediction Method for Large Memory Jobs
in HPC Clusters . 1

Xiuqiao Li, Nan Qi, Yuanyuan He, and Bill McMillan

A Crystal/Clear Pipeline for Applied Image Processing 19
Christopher J. Watkins, Nicholas Rosa, Thomas Carroll, David Ratcliffe,
Marko Ristic, Christopher Russell, Rongxin Li, Vincent Fazio,
and Janet Newman

A Cache-Based Data Movement Infrastructure for On-demand
Scientific Cloud Computing . 38

David Abramson, Jake Carroll, Chao Jin, Michael Mallon,
Zane van Iperen, Hoang Nguyen, Allan McRae, and Liang Ming

PHINEAS: An Embedded Heterogeneous Parallel Platform 57
Nikhil Khatri, Nithin Bodanapu, and T. S. B. Sudarshan

MH-QEMU: Memory-State-Aware Fault Injection Platform 71
Hideyuki Jitsumoto, Yuya Kobayashi, Akihiro Nomura,
and Satoshi Matsuoka

Performance Evaluation and Analysis of Linear Algebra Kernels
in the Prototype Tianhe-3 Cluster . 86

Xin You, Hailong Yang, Zhongzhi Luan, Yi Liu, and Depei Qian

Author Index . 107

Practical Resource Usage Prediction Method
for Large Memory Jobs in HPC Clusters

Xiuqiao Li1(&), Nan Qi1, Yuanyuan He2, and Bill McMillan3

1 IBM China Systems Laboratory, Beijing, China
{lxiuqiao,qinan}@cn.ibm.com

2 IBM China Systems Laboratory, Xi’an, China
yyhe@cn.ibm.com

3 IBM United Kingdom Limited, Hursley, UK
bill.mcmillan@uk.ibm.com

Abstract. Users in high performance computing (HPC) clusters normally face
challenges to specify accurate resource estimates for running their applications
as batch jobs. Prediction is a common way to alleviate this complexity by using
historical job records of previous runs to estimate resource usage for new
coming jobs. Most of existing resource prediction methods directly build a
single model to consider all of the jobs in clusters. However, people in pro-
duction usage tend to only focus on the resource usage of jobs with certain
patterns, e.g. jobs with large memory consumption. This paper proposes a
practical resource prediction method for large memory jobs. The proposed
method first tries to predict whether a job tends to use large memory size, and
then predicts the final memory usage using a model which is trained by only
historical large memory jobs. Using several real-world job traces collected from
large production clusters of IBM Spectrum LSF customer sites, the evaluation
results show that the average prediction errors can be reduced up to 40% for
nearly 90% of large memory jobs. Meanwhile, the model training cost can be
reduced over 30% for the evaluated job traces.

Keywords: Resource usage prediction � Large memory jobs �
Resource manager

1 Introduction

Nowadays high performance computing (HPC) clusters are not only deployed in large
research centers, but also widely adopted by industries such as chip design and man-
ufacture, life sciences, etc. This trend brings more diverse workload patterns to HPC
clusters compared with the traditional scientific applications. As those clusters normally
consists of thousands of nodes, it is common to use resource managers (e.g. IBM
Spectrum LSF [1], Slurm [2], Moab [3]) to manage resources and make decisions to
allocate proper resources for applications submitted by end users. Resource managers
enable multiple users sharing massive cluster resources by scheduling applications as
batch jobs in queue systems. However, end users generally have little knowledge of
computing resources, while resource managers normally rely on accurate resource

© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 1–17, 2019.
https://doi.org/10.1007/978-3-030-18645-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_1

requirements specified by users to scheduling and allocating resources. This conflict
produces challenges for cluster administrators to achieve high resource utilization and
job execution efficiency in their clusters. For example, when users tend to over-estimate
the resource usage of their applications, resource manager will finally place fewer jobs
to run in the cluster as the reserved additional resources cannot be currently used by
other waiting jobs. Conversely, application may fail due to compete resources when
users made under-estimation of resources usage. Another consequence of inaccurate
memory requirement is wasting budget to apply excessive memory when bursting
workloads to cloud, where the resources are charged by size over time [25].

Recent rapid progress on machine learning gives the opportunities to make resource
managers smarter. Specifically, job resource usage together with the job submission
options (e.g. submission queue, job command) are normally recorded by resource
managers as accounting information after applications are completed. Applications in
large production cluster are normally run repeatably. Therefore, it is possible to explore
the relationship of resource usage and job patterns from historical job records. Previous
work have been done for predicting job memory usage [4, 5], job runtimes [6, 7], etc.
Most of those work focus on building models using all of the historical data, and
comparing various machine learning algorithms on prediction accuracy.

Based on our customer experience, we found the special needs for resource pre-
diction from with real world industry customers. Specifically, people only care about the
memory usage for those large memory jobs, such as more than several or even hundreds
of gigabytes. For small memory jobs, there is no need to know the memory usage in such
fine-grained size compared with the massive available memory on the nodes. To satisfy
this need, we propose a practical resource prediction method to improve the prediction
accuracy for the large memory jobs. Considering the workload characteristics and
customer needs, we mainly made the following contributions in this study:

• We analyzed the characteristics of workload traces collected from real customers,
and found the number of jobs consuming large memory is smaller than small
memory ones. Then we adopt the over-sampling method for large memory jobs to
reduce the information loss.

• Considering both prediction accuracy and training cost, we propose a practical
prediction method using two-stages prediction models. The method removes the
noise of small memory jobs when predict the final memory usage. As training
complexity is reduced with smaller number of jobs and class number, it is suitable
for scenarios with high model updating frequency.

• We performed evaluation tests using the collected job traces, and analyzed the
benefits of the proposed method in reducing prediction errors for large memory jobs
and accelerating model training.

The rest of the paper starts with Sect. 2 which gives the motivation of this work by
summarizing the characteristics of real-world job traces, and then lists the main design
goals of this paper. In Sects. 3 and 4, we introduce the specific work need to be done
during dataset preparation, and the proposed two-stage prediction method for large
memory jobs. Evaluation results are analyzed in Sect. 5, and Sect. 6 summarized
related work on job resource usage prediction. At last, we make the conclusions and
introduce the future directions in Sect. 7.

2 X. Li et al.

2 Motivation

The work in this paper is motivated from real-world scenarios encountered by resource
manager users. In this section, we will first introduce the analysis of job traces collected
from our customers. Then the design goals of the resource prediction method is given
based on the analysis results.

2.1 Real-World Traces Analysis

IBM Spectrum LSF is widely used in large scale computing centers from academic
research centers to industrial datacenters and even on cloud. The largest clusters in
those sites consists of several and even ten thousand of computing nodes with millions
of jobs finished per day. We collected three job traces from those sites1 and had surveys
with the cluster administrators about the job patterns in those clusters. Based on our
experiences and analysis of real job traces in their clusters, we have the following major
observations:

• Large memory jobs are only small portions of the whole job records though
contribute to most of the total memory consumptions.

Table 1 shows that the statistics of total memory usage of large and small memory jobs.
Take Trace A as an example, 99.49% of total memory usage are contributed by 37.3%
of jobs consuming memory larger than 1 GB. Trace C has more large memory jobs but
most of them use less than 16 GB memory, while the large memory jobs of the other
two traces are scattered between 1 GB and 128 GB.

• Cluster administrators care more about the accuracy of memory usage of large
memory jobs.

Figure 1(a) shows the job traces statistics of user specified errors compared with
real memory usage consumption. The relative user specified error of a job is calculated
as the following formula:

100 � User Specified Mem�Real Mem Usagej j=Real Mem Usage ð1Þ

Table 1. Job and memory usage statistics of job traces by per-job memory usage (>1 GB as
large memory jobs and others as small memory jobs).

Traces #Jobs Small memory
jobs (%)

Small memory
usage (%)

Large memory
jobs (%)

Large memory
usage (%)

Trace A 587k 62.7 0.51 37.3 99.49
Trace B 907k 77 3.3 23 96.7
Trace C 1m 43.4 12.1 56.6 87.9

1 The customer related information in the job traces are hidden in this paper due to IBM data privacy
policies.

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 3

As there are no user specified memory values recorded in Trace B, we just show the
statistics of Trace A and C. The absolute value of memory loss has large impact on
cluster resource utilizations. For example, it is a common case that a chip design
simulation application can consume hundreds of gigabytes memory in maximum.
Meanwhile, end users specify several times of real memory usage to guarantee
application running correctly. That means hundreds of gigabytes are wasted and cannot
be concurrently used by other jobs.

In contrast, Fig. 1(b) shows that the small memory jobs tend to be completed in
short time even in a minute. It could be tolerable to have certain user specified errors
for those small memory jobs. One exception is there are lots of small memory jobs run
for over 1 h and less than 6 h in Trace C. Those jobs are possibly compute-intensive
jobs, and we found the user specified errors are quite low for those jobs.

• Small memory jobs introduce noises in predicting memory usage for large
memory jobs

Figure 2 shows that the comparisons of memory usage prediction errors for large
memory jobs using datasets with different amount of small memory jobs. It can be
observed that the prediction is more accurate with a smaller number of small memory
jobs in the training datasets. It is easy to be explained as the small memory jobs become
noise data points when training model for large memory jobs.

Fig. 1. Job traces statistics: (a) User specified errors for job memory usage; (b) Number of small
memory jobs by their job runtime ranges

4 X. Li et al.

• Jobs with new job patterns keep updating during the cluster is running

According to our analysis of those traces, there are always new job patterns cannot fit
into the ones recognized using previous job records. Cluster administrators explain this
observation as there are new projects started with new applications or people improve
their work by changing their applications or scripts. That means the prediction model
needs to be updated more frequently to include the new job patterns. Considering the
large amount of historical jobs in the training datasets, the training model tasks are
quite time-consuming. Resource prediction face challenges to have low training cost
while keeping good prediction accuracy at the same time.

2.2 Design Goals

To satisfy the above real scenarios faced by resource managers, we target to design a
practical resource prediction method using machine learning models for large memory
jobs. The method can help resource manager administrators to better adjust over-
estimated user specified memory values for their large memory jobs, improve the
overall cluster utilization for memory resource and save budget of applying cloud
resources to burst workloads.

Specifically, the method aims to achieve the following design goals: (1) to improve
the memory usage prediction accuracy for large memory jobs with high coverage rate;
(2) to reduce the model training cost to support frequent model updating; (3) to keep
low prediction latency to reduce the impact on job submission performance.

0

5

10

15

20

25

30

35

1-2
GB

2-4
GB

4-8
GB

8-1
6G

B

16
-32

GB

32
-64

GB

64
-12

8G
B

12
8-2

56
GB

Av
er

ag
e

R
el

at
iv

e
Pr

ed
ic

tio
n

Er
ro

r (
%

)

Buckets of real job memory usage

Training Dataset I
Training Dataset II
Training Dataset III

Fig. 2. Comparison of the average relative prediction errors of job memory usage by using
training datasets (generated from job trace A) with various portions of small memory jobs:
Dataset I consists of all jobs, Dataset II has large memory jobs and half part of small memory
jobs, and Dataset III only contains of large memory jobs.

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 5

3 Dataset Preparation

The collected job traces need to be well pre-processed before using for building pre-
diction models. Enough number of job-related attributes should be extracted and
mapped to input training features to train a good model. Besides the normal machine
learning flow to prepare datasets, the following steps are specific to the requirements of
large memory jobs prediction studied in this paper.

3.1 Biased Job Trace Sampling

It is a common case for many industrial production clusters to have millions of finished
jobs per day. The training cost of building a daily updating model using months of data
would be impossible. Data sampling is one of the feasible ways to reduce the training
dataset size while keeps the job patterns as many as possible. Based on the job traces
analysis, there are normally more small memory jobs though the total memory usage
cannot be comparable with the one of large memory jobs. Therefore, the large memory
jobs could be overwhelmed if we adopt uniform sampling method to extract training
datasets. Instead, the large memory jobs need to be favored than other ones during
sampling.

3.2 Job Attributes Extraction

The job traces are log based formats which contains the job submission options
together with the job resource usage information. Some log fields are directly readable,
while some other fields are encoded with rich information. Generally, resource man-
agers provide public APIs to decode detail attributes from those encoded fields.

• The encoded job option fields are generally using bit flags to record multiple
boolean options (e.g. whether a job is an interactive or urgent one).

• Some job fields need to be further processed to extract useful information. For
example, the job submission time is normally recorded as Unix time which cannot
be directly used as a feature. It is more meaningful to extract day or hour in a week
or a day to recognize the time related job submission patterns, such as a user may
always run his simulation application before leaving office every day.

• There are also more customized job fields which need to be processed as multiple
features. For example, people may leverage job names or project names to ‘tag’
some job specific information with pre-defined formats.

We directly extracted 30+ features (e.g. queue, project, application, job group
names, job command, requested resource names and their values) from the collected
job traces used by the work in this paper. The features with non-integer data types are
encoded into integers and normalized before used to training models. It is possible to
further extract more useful information, but it is not the scope of the main problem
addressed in this paper (Table 2).

6 X. Li et al.

3.3 Abnormal Job Removal

Jobs could be terminated from the system before normal completion. For example, user
or administrator may explicitly kill the job submitted with wrong options. Also,
application may run into errors and terminate itself with certain exit codes. Those
incomplete jobs surely become the noise points when training model. We remove the
jobs with following abnormal cases from our job traces.

• Jobs with zero or minus memory usage
• Jobs with zero or minus runtimes
• Jobs finished with exit status or exit codes

Besides, we follow other standard feature engineering steps [18] to further refine
the features, such as feature encoding (e.g. mapping the value of string type fields as
integer values) and normalization.

4 Resource Prediction Method

In this section, we present the design of the proposed resource prediction method for
large memory jobs. The key idea of our method is to separate the mode training as two
stages: firstly, a binary classification model is built to determine whether a job will
consume large or small memory; then a regression model is trained by just using the

Table 2. Training features extracted for the studies in this paper.

Feature Data
type

Feature Data
type

Submission User ID Integer Attached SLA Name String
Submission User Group String Submission Host Name String
Queue Name String Input File Name String
Application Profile Name String Output File Name String
Project Name String Specified Job Begin Time Date
Job Command Name String Specified Termination Time Data
Job Working Directory String Job Name String
Resource Requirements String Pre-execution Command Name String
Requested Number of Slots Integer Job Group Name String
User Login Shell String User Specified Memory Reservation

Value
Integer

Job Submission Working
Directory

String Job Description String

Advanced Reservation Name String Array Job or Single Job Boolean
License Project Name String Post-execution Command Name String
Job Submission Day of Week Integer Job Submission Hour of Day Integer
Job Options Integer User Specified Runtime Limit or

Estimation
Integer

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 7

historical large memory jobs to predict the final memory usage for the jobs which are
predicted to use large memory. Figure 3 describes the overall prediction flow with the
above method.

4.1 Predicting Job Memory Usage Type

Predicting the correct job memory usage is not easy, but the complexity of predicting
whether a job tend to belong a large or small memory one can be significantly reduced.
The latter one becomes a binary classification problem, while the former one is a multi-
class classification problem or a regression problem. We treat the job with memory
usage larger than 1 GB as large memory one in this paper. However, this boundary
could be dynamically changed in production system based on the practical workload
needs.

As shown in Fig. 3, the prediction accuracy of this binary classification model
needs to be very high to reduce the number of wrongly predicted large memory jobs
got requeued at runtimes. Besides adopting biased sampling to increase the number of
large memory jobs in the training datasets, it is important to extract the user specified
memory usage as an input feature. Though people tend to specify much bigger memory
value for their jobs, this value gives some clues on whether a job will use large memory
or not. For example, user may specify always 4 GB as the reserved memory size for
their small memory jobs, while specify a few hundred GB of memory size for large
memory jobs. Combining this value with the real job memory usage, the model could
possibly infer another job from the same user with 4 GB memory requirements as a
small memory job.

While there are standard metrics (e.g. precision, recall) to evaluate the classification
performance, we define two evaluation metrics to better correlate with the context of
our work. Specifically, we define coverage rate (CR) and incorrect coverage rate
(ICR) to separately quantify the percentage of large memory jobs which got correct
prediction (Hit_LMEM_Jobs), and the percentage of small memory jobs which are
wrongly classified as large memory ones (Miss_SMEM_Jobs). The calculation for-
mulas are as follows. Therefore, the prediction target is to achieve higher coverage rate
while keeps incorrect coverage rate as lower as possible.

Binary Classification Model

First-stage Prediction

Small memory jobs Large memory jobs

Training datasets

Regression Model

Second-stage Prediction

Evaluation datasets

Model Training

Model Training

Model Inference Is a large
memory
job?

Model Inference

Y

N Predict memory usage
as min(1GB, user_specified_value)

Estimated Memory Usage

Fig. 3. Proposed prediction flow for job memory usage

8 X. Li et al.

CR ¼ #Hit LMEM Jobs=#Total LMEM Jobs ð2Þ
ICR ¼ #Miss SMEM Jobs=#Total SMEM Jobs ð3Þ

The classification version of random forester method is chosen as the binary
classification algorithm to train the first stage model. We also did basic hyper-
parameter search using the public random search method provided by scikit-learn
toolkits [19].

4.2 Predicting Large Job Memory Usage

As long as the large memory jobs have been identified with the first stage model, it
becomes straightforward to train another model by just using the historical large
memory jobs. The results given by Fig. 2 show that such model can remove the noises
of small memory jobs and get better prediction accuracy. We use the regression version
of random forest algorithm in scikit-learn toolkits to train the large memory model.

Meanwhile, as the number of jobs in the training datasets is reduced, the model
training time can also be significantly shortened. Though now we need to build two
models, the training time of the first stage model is much shorter than training a
regression or multi-class classification model using all large and small jobs. The total
time of training two models is also shorter than the one of training a single model.

Furthermore, as there is no dependency between the models in two stages, model
training can be concurrently started with additional hardware resources. Then the
training time can be further reduced by hiding the latency. We will show more com-
parison results in the following evaluation section.

4.3 Tolerate Incorrect Predictions

Prediction always have errors and the more important thing is how to minimize the
impact of incorrect predictions. Specific to our predictions, we have the following
prediction errors during the two different stages.

– Predict a large memory job as using small amount of memory: this job will not get
memory usage prediction, and resource manager will reserve memory if user
specified memory requirement. Otherwise, the job will compete memory resource
with other jobs at the run time. The former one may waste memory but can be
acceptable if the percentage of missing rate is low. The latter one may encounter
memory failures, and can be requeued to run again depending on resource manager
configurations.

– Predict a small memory job as using large amount of memory: this job will get a
memory size which is larger than its consumption. As this kind of jobs tend to have
short duration, there will be not much impact on overall memory utilization.

– Memory prediction is under-estimated by the second stage model: in practical,
administrator can round up the predicted value to the memory bucket upper value.
Then the impact introduced by this kind of under-estimation errors can be reduced.

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 9

4.4 Model Inference for New Jobs

Finally, the trained model will be used for predicting job memory usage for new
coming jobs. Compared with single model approach, our method requires up to two
inference operations to get final memory predictions. However, the time granularity of
job submission latency is quite larger than model inference latency. It has little impact
on the job submission throughput. In addition, one can also perform inference from the
two models at the same time with certain probability. Then the inference latency can be
hidden as one longest latency of the two models.

5 Evaluation Results and Analysis

In this section, we introduce the evaluation details of proposed method using the traces
we described in Sect. 3. We will first describe the testing environments and strategy,
then prove the benefits of our prediction method in terms of prediction accuracy, model
training and inference efficiency.

5.1 Experimental Setup

IBM Spectrum LSF Predictor [21] is a tool to predict job resource metrics using LSF
job traces. We used this tool to implement and evaluate proposed prediction method for
large memory jobs in this paper. The tool is running as a Docker container and includes
the steps of a complete machine learning flow. The testbed is a X86_64 machine with
44 Intel Xeon E5 CPUs, and 64 GB physical memory.

We used three real world job traces collected from IBM Spectrum LSF customers
for the evaluation tests. Besides the job memory size statistics information in Sect. 2,
more statistics information is listed in Table 3. Note we used biased sampling for large

Table 3. Statistics of job traces used for evaluation tests.

Metrics Trace A Trace B Trace C

Time periods of job traces (days) 36 4 4
Num. of total jobs 587k 907k 1m
Num. of active users 1270 3085 506
Num. of projects 5589 278 23
Num. of jobs in training/evaluation
datasets

469.6k/117.4k 700k/207k 750k/251.5k

Num. of large/small memory jobs in
training dataset

175.3k/294.3k 538k/162k 428.8k/321.2k

Num. of large/small memory jobs in
evaluation dataset

43.7k/73.7k 47k/115k 183.6/137.6k

Avg. large/small job memory usage (GB) 28.83/0.155 7.46/0.29 2.54/0.43
Avg. runtimes of large/small memory jobs
(mins)

175.56/16.6 92/12 221/103

10 X. Li et al.

memory jobs to generate Trace A from the original traces, which can retain the job
patterns over long periods.

We split roughly 80% of jobs as training datasets, while use the left jobs as
inference datasets. The evaluation experiments do comparison tests between single
model method and the two-stage model proposed in this paper. To make fair com-
parisons, we used the same hyper-parameter settings to predict the memory usage for
both two kinds of prediction methods. Table 4 shows the configurations for the Ran-
dom Forest algorithms used by the single model and our two-stages model approaches.
To accelerate the model training, we configure n_jobs as 10 to run training in parallel
across multiple CPUs. The following sections will give the detail analysis of com-
parisons in different metrics.

5.2 Prediction Accuracy and Efficiency

This section first analyzes the prediction accuracy of first stage model in distinguishing
large and small memory jobs. Then we evaluate the prediction errors of job memory
usage for large memory jobs using the second stage model.

Figure 4 shows the CR and ICR of three tested job traces produced by random
forest binary classification model. We can see over 90% of large memory jobs can get
correct prediction for their memory usage types, while only less than 8% of small

Table 4. Hyper-parameter settings for model trainings.

Hyper-parameter Single model 1st stage model 2nd stage model

n_estimators 100 50 100
n_jobs 10 10 10
max_depth Auto Auto Auto
random_state 2 2 2
max_features Auto Auto Auto

Fig. 4. Coverage rate (CR) and Incorrect coverage rate (ICR) of three job traces

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 11

memory jobs are wrongly predicted. Trace C even can correctly predict 90% of large
memory jobs. This result provides a good basis for the second stage prediction, which
finally predict the memory usage for the large memory jobs recognized by the binary
classification model in the first stage.

For those wrongly predicted large memory jobs, it is possible that those jobs may
fail to get enough memory during runtime. Jobs may suffer from the overhead of
memory swapping or even encounter execution failure. On one hand, the prediction
quality of classification model can be further tuned to get better prediction accuracy.
Note that we don’t perform too much tuning efforts on the feature engineering and
model hyper-parameter tuning in this paper. Therefore, it can be expected that the CR
value can possibly be further increased, while the ICR value can be reduced to filter
more small memory jobs from the second prediction stage. One the other hand,
resource managers can make smart allocation adjustments once a job exceeds its
predicted memory size. For example, the job can be checkpointed and migrated to other
hosts or simply requeued to be rescheduled with the user specified memory size. As we
can achieve pretty higher classification predictions, the overall memory utilizations still
can be significantly improved even small number of jobs needs to be restarted.

Figure 5(a–c) shows the prediction accuracy comparisons between existing single
model approach and proposed two-stages prediction method. To fairly evaluate the
improvements, the figures draw the calculated average prediction errors of each pre-
defined memory usage buckets for the large memory jobs recognized by the first-stage
model. The prediction error numbers are marked on the top of each bar in the figure.
We try to split the job memory usage buckets with roughly balanced number of jobs in
each bucket. So the bucket distribution in Trace C is different with the other two traces
as most of its jobs have memory usage less than 16 GB.

8.8
11.9

16.4

10.8
13.0

10.4
7.2

10.9

16.3

21.3

29.6

19.9

25.9

16.2

10.1

15.9

0

5

10

15

20

25

30

35

1-2
GB

2-4
GB

4-8
GB

8-1
6G

B

16
-32

GB

32
-64

GB

64
-12

8G
B

12
8-2

56
GB

A
ve

ra
ge

 P
re

di
ct

io
n

Er
ro

r(
%

)

Buket of real job memory usage

Two-stage model
Single-model

13.6

24.1
18.8

26.9

36.2

19.6 17.7

34.3

20.1

30.1 27.8

40.7 39.9

22.3
26.6

43.5

0
5

10
15
20
25
30
35
40
45
50

1-2
GB

2-4
GB

4-8
GB

8-1
6G

B

16
-32

GB

32
-64

GB

64
-12

8G
B

12
8-2

56
GB

A
ve

ra
ge

 P
re

di
ct

io
n

Er
ro

r(
%

)

Buket of real job memory usage

Two-stage model
Single-model

7.9
10.3

5.7

21.5
26.1

7.2 7.2

20.2

9.2
9.5

6.2

49.1 49.3

7.6

6.1

23.1

0

10

20

30

40

50

60

1-2
GB

2-3
GB

3-4
GB

4-5
GB

5-6
GB

6-8
GB

8-1
0G

B

10
-25

6G
B

A
ve

ra
ge

 P
re

di
ct

io
n

Er
ro

r(
%

)

Buket of real job memory usage

Two-stage model
Single-model

(a))c()b(

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1-2
GB

2-4
GB

4-8
GB

8-1
6G

B

16
-32

GB

32
-64

GB

64
-12

8G
B

12
8-2

56
GB

N
um

be
r o

f p
re

di
ct

ed
 jo

bs

Buket of real job memory usage

Trace A Trace B

0
10000
20000
30000
40000
50000
60000
70000
80000

1-2
GB

2-3
GB

3-4
GB

4-5
GB

5-6
GB

6-8
GB

8-1
0G

B

10
-25

6G
B

N
um

be
r o

f p
re

di
ct

ed
 jo

bs

Buket of real job memory usage

Trace C

(e)(d)

Fig. 5. Comparisons of prediction accuracy between single model (baseline) and two-stage
model (proposed method): (a) Trace A; (b) Trace B; (c) Trace C, and distribution of predicted
jobs by job memory usage buckets: (d) Trace A&B; (e) Trace C

12 X. Li et al.

Figure 5(d) and (e) depicts the number of jobs in each bucket for the three traces.
From the results, we can see obvious improvements on prediction errors for all of the
three traces with the proposed method. The average percentages of improvements for
Trace A, B and C are 40.7, 24.3 and 14.5 respectively. The results prove the advantages
of removing the noises of small memory jobs from the training model. Although there
are a little bit increments of prediction errors for the buckets 2–3 GB and 8–10 GB of
Trace C, the prediction error numbers are less than 10% and can be tolerated in
practice. It might be related the particular unknown job patterns in those two buckets,
which can be further investigated. We don’t see this phenomenon in other two traces.

Furthermore, the predictions improvements compared with single model approach
can save corresponding percentage of bucket to use cloud resources when moving
those workloads to public cloud. Take the jobs of Trace A with 1–2 GB requirements
as an example, the average improvements of prediction errors can be reduced by nearly
50%. That means the cluster must apply a VM with 2 GB memory (e.g. t3.small from
AWS [24]) to run the job, but now only needs to provision a VM with 1 GB memory
(e.g. t3.micro) for the job. As the price shown by AWS, the cost reduces from $0.0208
per hour to $0.0104 per hour. As shown by Fig. 1, user specified errors of memory
requirements could be hundreds to thousands of times compared with real usage. The
proposed approach in this paper can significantly reduce the budget of moving
workloads to cloud in large scale clusters.

In summary, the proposed two-stages prediction method is much better than
building a single model to predict memory usage for large memory jobs. As the first
stage model can get good coverage rate for identifying large memory jobs, it is
practical and effective to use the second model with only historical large memory jobs
for final prediction.

5.3 Model Training Cost Analysis

Figure 6 shows the evaluation results of model training efficiency. As there are two
models needed to be built in our proposed method, the left figure gives the distribution
of training time of the two models, and the training time numbers (seconds) are marked
in the corresponding bars. Also, the green bars in the figure show the training time
numbers of building a single model. We can see the cost of building the first stage
binary classification model is much lower than building a regression model using the
same datasets. Meanwhile, as the second stage model only needs to train the large
memory jobs, the model building time can also be significantly reduced. That proves
that the total training cost can be reduced even we split the model training into two
stages. This observation can be further confirmed by the improvement percentage of
training time compared with the training time of single model in Fig. 6(b).

As we introduced in Sect. 4.2, the two stage models have no building dependency
and can be trained concurrently with additional computing resources. Figure 6(b)
shows the improvements of training the two stage models in serial or parallel. The
percentage numbers are marked above the corresponding bars. For both two cases, the
proposed method requires less training cost to build those models. As the problem
complexity is increased by the number of jobs in training datasets, we believe the

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 13

improvements can be further enlarged when training large models containing long
periods of historical job records.

5.4 Model Inference Performance

One potential side effect of using two-stage models is the inference latency may be
increased compared with predicting using a single model. Tables 5 and 6 show the
statistics of model inference latency and total inference time. We can see the inference
latency from the second stage model is increased. The reason should be that there are
more computing efforts of fitting a large memory value. However, as the inference
latency is only microseconds level, it is pretty little impact on the job submission
performance in practical. Generally, submitting a job to resource manager requires
setup connections to remote master daemon, process requests and create persistence

Fig. 6. Comparisons of model training cost: (a) training time distributions of two stages models
and single model; (b) percentage of training time improvements compared between single model
training (baseline) and two stages models training (including both total training time of running
two models sequentially and in parallel)

Table 5. Comparisons of model inference latencies

Trace Name Avg. model inference latency
(microseconds)
1st stage 2nd stage Single model

Trace A 2.38 7.28 4.88
Trace B 1.57 7.31 2.87
Trace C 1.76 4.49 3.04

Table 6. Comparisons of total time of model inference for jobs in the evaluation datasets

Trace Name Total time of model inference
(milliseconds)

Inference delay (percent)

1st stage 2nd stage Single model

Trace A 279.6 318.2 597.8 4.38
Trace B 325.3 343.7 595.9 12.3
Trace C 442.8 618.2 765.7 38.6

14 X. Li et al.

entry by resource managers. So, the job submission latency of a single job is around
several or dozens of milliseconds. Compared with the network and resource manager
processing delay, the inference latency of predicting job resource usage can be totally
ignored. In addition, there are lots of work on using GPUs to do model inference,
which can significantly accelerate the floating computing operations [22, 23].

6 Related Work

Using machine learning algorithms to predict job resource usage is one of the hottest
topics in recent years, and a lot of research work has been done on not only memory
usage prediction, but also CPU usage, job wall time predictions, etc.

Many works have been done on directly predicting the value of job resource usage
[4, 5]. The predicted value then can be integrated by resource managers to help users or
administrators to adjust incorrect specified usage value. Taghavi [4] et al. from
Qualcomm introduced their work on predicting job memory usage using various
machine learning algorithms and tools. Their work shows the memory usage of prior
jobs can be good guess for next jobs, and a simple linear regression model can be used
for prediction. Another IBM research team [5] performed similar work on using various
machine learning algorithms (e.g. k-NN, Random forest, SVM) to do memory usage
prediction using LSF job trace records. Those work provides good basis for our study
in this paper, and proves the feasibility of using machine learning models to predict
further job memory usage. However, instead of building a single model using all of
collected data, we target to only predict job memory usage more accurately for large
memory jobs using two-stage prediction method. Administrator don’t put too much
attention on small memory usage due to the fact of its short job duration and massive
memory on modern computing nodes. Therefore, our work is more practical for pro-
duction usage and promote the prediction accuracy for those jobs really cared by
resource manager users.

Besides memory usage prediction, a lot of other researchers focus on predicting
more other job related metrics, such as job runtimes [6, 7, 10, 11], job queue-waiting
time [12, 13], job start times [20], job completion time [14], power usage [16, 17], etc.
Instead of using job submission records, some of the work are directly using the recent
previous runs of the same applications to calculate the runtimes for next jobs, which
limited to certain suitable scenarios. While our work focuses on predicting memory
usage for large memory jobs, it could potentially be extended to more broader sce-
narios. For example, people may also care about the resource usage of long running
jobs. Then it is also applicable to do similar two-stage prediction models for better
prediction accuracy.

Differ with predicting the usage value, there are lots of work investigating how to
binary classification can do some correctness judgements in cluster or job usage. Guo
et al. [8] proposed to predict whether user specified runtime limits are under-estimated
compared with actual job runtimes. Then user can be notified to correct their job limit
and ensure job not being terminated unexpectedly. Andresen et al. [9] used classifi-
cation algorithms to do similar predictions on whether a job will fail due to resource
shortage. Their work also performed regression models to predict memory usage and

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 15

job runtimes. One innovation of their approach is that they introduced additional per-
user features like average memory usage, requested memory and runtimes to train the
models. In our paper, we also use binary classification models to identify the large
memory jobs in the first stage prediction model.

7 Conclusions and Future Work

Resource managers can perform better job scheduling decisions and overall cluster
resource utilization with more accurate job resource requirements. In hybrid cloud
environments, accurate memory predictions can also save lots of budget to burst
workloads to cloud, which is one of popular use patterns adopted by HPC sites. We
analyzed the real customer scenarios and found that administrators have more emphasis
on the memory usage of large memory jobs. Instead of building a single model using
all of historical jobs, we conducted evaluation tests using real world customer job traces
to demonstrate that a two-stage prediction approach can remove the noise of small
memory jobs and promote the prediction accuracy of large memory jobs with a high
coverage rate. The proposed prediction method is suitable for the practical usage to
predict job memory usage in production systems.

In the future, we plan to collect more large-scale job traces to further evaluate the
benefits on prediction quality and performance. Also, we believe the job memory usage
prediction of large memory jobs is only one of the practical scenarios to adopt the two-
stage prediction method. In the next steps, we will evaluate whether it is useful to have
better prediction for the job runtimes of long running jobs in HPC clusters.

References

1. IBM Spectrum LSF. www.ibm.com/Storage/LSF. Accessed 01 Jan 2019
2. Slurm Workload Manager. https://slurm.schedmd.com/. Accessed 01 Jan 2019
3. Moab Cloud HPC Suite. www.adaptivecomputing.com/moab-hpc-basic-edition/. Accessed

01 Jan 2019
4. Taghavi, T., Lupetini, M., Kretchmer, Y.: Compute job memory recommender system using

machine learning. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2016), pp. 609–616. ACM, New York
(2016)

5. Rodrigues, E.R., Cunha, R.L., Netto, M.A., Spriggs, M.: Helping HPC users specify job
memory requirements via machine learning. In: Proceedings of the Third International
Workshop on HPC User Support Tools, pp. 6–13. IEEE Press (2016)

6. Yang, L.T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel
applications using partial execution. In: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (2005)

7. Gaussier, E., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using machine
learning to predict running times. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, p. 64. ACM (2015)

8. Guo, J., Nomura, A., Barton, R., Zhang, H., Matsuoka, S.: Machine learning predictions for
underestimation of job runtime on HPC system. In: Yokota, R., Wu, W. (eds.) SCFA 2018.
LNCS, vol. 10776, pp. 179–198. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
69953-0_11

16 X. Li et al.

http://www.ibm.com/Storage/LSF
https://slurm.schedmd.com/
http://www.adaptivecomputing.com/moab-hpc-basic-edition/
http://dx.doi.org/10.1007/978-3-319-69953-0_11
http://dx.doi.org/10.1007/978-3-319-69953-0_11

9. Andresen, D., Hsu, W., Yang, H., Okanlawon, A.: Machine learning for predictive analytics
of compute cluster jobs. In: The 16th International Conference on Scientific Computing
(2018, accepted)

10. Carlos, F.G.: Improving HPC applications scheduling with predictions based on
automatically-collected historical data. Master thesis, UPC (2014)

11. Matsunaga, A., Fortes, J.A.: On the use of machine learning to predict the time and resources
consumed by applications. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 495–504. IEEE Computer Society
(2010)

12. Carvalho, A., Belo, O.: Predicting waiting time in customer queuing systems. In: 2016 IEEE
International Conference on Knowledge Engineering and Applications (ICKEA), pp. 155–
159. IEEE Computer Society (2016)

13. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait times
and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999.
LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
47954-6_11

14. Chen, X., Lu, C.-D., et al.: Predicting job completion times using system logs in
supercomputing clusters. In: DSN Workshops. IEEE Computer Society (2013)

15. Storlie, C., Sexton, J., Pakin, S., et al.: AI Modeling and predicting power consumption of
high performance computing jobs. preprint arXiv:1412.5247 (2014)

16. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Predictive modeling for
job power consumption in HPC systems. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC
High Performance 2016. LNCS, vol. 9697, pp. 181–199. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-41321-1_10

17. Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.)
CONFERENCE 2016. LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

18. Zheng, A., Casari, A.: Feature Engineering for Machine Learning - Principles and
Techniques for Data Scientists. O’Reilly Media, Sebastopol (2018)

19. scikit-learn: machine learning in Python. https://scikit-learn.org. Accessed 10 Nov 2018
20. Li, H., Groep, D.L., et al.: Predicting job start times on clusters. In: IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid), pp. 301–308. IEEE Computer
Society (2004)

21. A Crystal Ball for HPC. https://www.hpcwire.com/solution_content/ibm/cross-industry/a-
crystal-ball-for-hpc. Accessed 10 Dec 2018

22. GPU-Based Deep Learning Inference. https://www.nvidia.com/content/tegra/embedded-
systems/pdf/jetson_tx1_whitepaper.pdf. Accessed 13 Oct 2018

23. Gardner, J.R., Pleiss, G., Bindel, D., et al.: GPyTorch: Blackbox Matrix-Matrix Gaussian
Process Inference with GPU Acceleration. NeurIPS 2018. preprint arXiv:1809.11165 (2018)

24. Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Accessed 07 Feb
2019

25. IBM Spectrum LSF Hybrid Cloud. https://github.com/IBMSpectrumComputing/lsf-hybrid-
cloud. Accessed 07 Feb 2019

Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters 17

http://dx.doi.org/10.1007/3-540-47954-6_11
http://dx.doi.org/10.1007/3-540-47954-6_11
http://arxiv.org/abs/1412.5247
http://dx.doi.org/10.1007/978-3-319-41321-1_10
http://dx.doi.org/10.1007/978-3-319-41321-1_10
https://scikit-learn.org
https://www.hpcwire.com/solution_content/ibm/cross-industry/a-crystal-ball-for-hpc
https://www.hpcwire.com/solution_content/ibm/cross-industry/a-crystal-ball-for-hpc
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
http://arxiv.org/abs/1809.11165
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/IBMSpectrumComputing/lsf-hybrid-cloud
https://github.com/IBMSpectrumComputing/lsf-hybrid-cloud

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

18 X. Li et al.

http://creativecommons.org/licenses/by/4.0/

A Crystal/Clear Pipeline for Applied
Image Processing

Christopher J. Watkins1(B), Nicholas Rosa2, Thomas Carroll3,
David Ratcliffe4, Marko Ristic2, Christopher Russell5, Rongxin Li6,

Vincent Fazio7, and Janet Newman2

1 Scientific Computing,
Commonwealth Scientific and Industrial Research Organisation,

Clayton, VIC 3181, Australia
chris.watkins@csiro.au

2 Manufacturing, Commonwealth Scientific and Industrial Research Organisation,
Clayton, VIC 3181, Australia

{nick.rosa,marko.ristic,janet.newman}@csiro.au
3 The University of Melbourne, Parkville, VIC 3052, Australia

t.carroll4@student.unimelb.edu.au
4 Data61, Commonwealth Scientific and Industrial Research Organisation,

Acton, ACT 2601, Australia
david.ratcliffe@csiro.au

5 Scientific Computing, Commonwealth Scientific and Industrial Research
Organisation, Alexandria, NSW 1435, Australia

christopher.russell@csiro.au
6 Data61, Commonwealth Scientific and Industrial Research Organisation,

Marsfield, NSW 2122, Australia
ron.li@csiro.au

7 Minerals, Commonwealth Scientific and Industrial Research Organisation,
Clayton, VIC 3181, Australia
vincent.fazio@csiro.au

Abstract. Many long-standing image processing problems in applied
science domains are finding solutions through the application of deep
learning approaches to image processing. Here we present one such
application; the case of classifying images of protein crystallisation
droplets. The Collaborative Crystallisation Centre in Melbourne, Aus-
tralia is a medium throughput service facility that produces between five
and twenty thousand images per day. This submission outlines a reli-
able and robust machine learning pipeline that autonomously classifies
these images using CSIRO’s high-performance computing facilities. Our
pipeline achieves improved accuracies over existing implementations and
delivers these results in real time. We discuss the specific tools and tech-
niques used to construct the pipeline, as well as the methodologies for
testing and validating externally developed classification models.

Keywords: Machine learning · Deep learning · Crystallisation image ·
Image processing · Automation · Classification

c© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 19–37, 2019.
https://doi.org/10.1007/978-3-030-18645-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_2

20 C. J. Watkins et al.

1 Introduction

Knowing the shape of an object reveals much about its function: a single glimpse
of a Ferrari and a bus allows one to predict quite accurately which vehicle would
go faster. Similarly, given a high-resolution picture of a biological molecule (e.g.
a protein molecule) a biologist can tell much about how it works. X-ray crystal-
lography is the only technique that can generate very high-resolution pictures
of molecules - pinpointing positions of individual atoms within a large complex
molecule [10]. This technique, X-ray crystallography, is the basis for modern
drug discovery, synthetic biology and indeed any field - academic or commer-
cial - where understanding biology down to the atomic level is important. To
generate an X-ray picture, a crystal of the biological molecule is bathed in a
powerful beam of X-rays [7]. Production of the crystal samples used in X-ray
crystallography is the limiting step in ‘seeing’ biology, and thus understanding
it. Figure 1 illustrates the crystallography pipeline in structural biology.

Fig. 1. Structural biology pipeline. Obtaining a crystallised protein is just the begin-
ning. Once a crystal has been grown it is irradiated with X-rays (often at a synchrotron
light source). The diffraction images produced at the synchrotron are then used to cal-
culate the atomic structure of the protein.

Crystals of proteins suitable for X-ray analysis are notoriously difficult to
produce [17]. For each protein, hundreds or sometimes thousands of experiments
are set up, where the protein sample is mixed with different cocktails of chemi-
cals in an unsophisticated trial-and-error approach to identify conditions under
which the protein will crystallise [30]. Crystal growth is a time-dependent (and
intrinsically stochastic) process, so that the trials have to be examined repeatedly
over a time-frame of many weeks, with the knowledge that trials that could sup-
port crystal growth may not show any crystals, due to the inherent randomness
of crystal nucleation. Crystal growth of proteins, or indeed simple molecules like
table salt, require that the solution becomes supersaturated and that nucleation
occurs. Given supersaturation of a protein solution, the most likely outcome
is the formation of a disordered precipitate. Sometimes the crystallisation trial
will result in phase separation, and sometimes supersaturation is simply not
achieved, and the droplet remains clear. For each of the basic classes of out-
come: crystals, phase separation and precipitation there is a huge variation in
the type and extent of the outcome. Even in the clear class, where the drop
is unchanged, extraneous matter - dust, for example, can give a drop that has

A Crystal/Clear Pipeline for Applied Image Processing 21

features, which are not part of the intended experiment. Further, there are no
clear boundaries between the classes - for example, a clear droplet is very hard
to distinguish from one with a light precipitate. Often, many outcomes can be
seen in the same experiment, see Fig. 2.

The last two decades have seen the application of automation to protein
crystallisation experiments - enabling more experiments to be set up, and allow-
ing for the automatic imaging of the experiments. The relative ease of setting
up experiments (and the subsequent explosion in the number of experiments
created) has made human interpretation of the results unsustainable; even a
human annotation of all images containing crystals is becoming increasingly
rare, let alone annotation of all the non-crystal outcomes. The high-throughput
Collaborative Crystallisation Centre (C3) in Melbourne, Australia has been in
operation for over a decade, and has 100 or so active users at any given time.
Since its inception in 2006 the C3 has built up a collection of almost 50 million
visible light images of the > 3.9 million crystallisation experiments set up; 5–20
thousand new images are collected daily. Less than 5% of the C3 images have
been annotated by hand.

Statistics gathered by Structural Genomics initiatives and other studies [32]
have suggested that only a small percentage of initial crystallisation experiments
produce diffraction quality crystals, and most useful crystals are grown by opti-
mising near misses identified in the initial screening. Although it is widely recog-
nised that there must be useful information that can be garnered from the trials
that did not produce crystals, there are no widely available, broadly applicable
methods for extracting this information. The paucity of headway in gleaning
information from the experiments which fail to yield crystals can be attributed
to three factors - incomplete/noisy data about how the trials were set up, incom-
plete/noisy data about the output of crystallisation trials, and the lack of a clear
way of correlating these first two factors, although the value of this type of anal-
ysis has been long recognised [13]. The first issue - the problem of defining the
crystallisation experiment relies on the development and adoption of standard
vocabularies for describing crystallisation experiments, along with punctilious
record keeping by the experimentalist [33,35]. The second issue; that of assigning
an outcome to each experiment is more tractable, as there are already hundreds
of millions of images which capture the output of the crystallisation experiment,
due to the widespread adoption of imaging technology in crystallisation labs.
What is missing is the reliable and widespread translation of the qualitative
image data into quantitative data that could be used in downstream analyses.
This process of assigning a value to an image (or to a visual inspection) of a
crystallisation experiment is most often called scoring, and is the primary focus
of this work. The third matter - the lack of tools for correlating the input to
the output of an experiment is understandable given the limited amount of data
available describing both the input and the output of most crystallisation trials.
That is the failure to adequately solve issues one and two.

Analyses of images of crystallisation trials (a solution to the second issue)
must fulfil two goals: most importantly, it has to aid in the identification of

22 C. J. Watkins et al.

crystals that might be useful in diffraction experiments, or that might be used
as the starting point for optimisation. The longer goal is to have a consistent
set of annotations for data mining experiments which would improve the success
rate of the current crystallisation process. Crystal formation happens rarely;
although no hard numbers are available it is estimated that significantly less
than 10% of outcomes are crystalline, which implies low tolerance for false nega-
tives in crystal recognition. To complicate things further, there is no universally
recognised set of classes into which images could be sorted, for either machine
or human classification. Current scoring systems are generally one-dimensional:
“crystal”, “precipitate” and “clear”. Images which have both crystals and pre-
cipitate would be generally annotated as “crystal”, as that is the noteworthy
outcome. Thus the current human annotations don’t necessarily give a good
description of what the drop image contains, but are more an indication of the
most interesting component of the drop. The blurred boundaries of any crystal
image classification system is highlighted by previous work which has shown less
than 85% agreement for classification amongst human experts [48].

(a) Crystal (b) Precipitate (c) Clear

(d) Crystal + Precip-
itate

(e) Plate features (f) skin

Fig. 2. Some example droplet images. Images a-c are clearly single class images (and
labelled accordingly), however image d is an illustration of two classes (clear and pre-
cipitate) present in a single image. Images e-f are examples of difficult images. e shows
a clear droplet where moulding features of the plastic substrate appear like crystals, f
shows a droplet with a wrinkled protein skin covering the droplet.

This work presents an automated solution that applies this one-dimensional
labelling scheme at scale in a fully distributed High Performance Computing
(HPC) environment. We will give an overview of the data challenges, model
development and parallelisation strategies used to ensure continuous and robust
labelling of new droplet images in near real time.

A Crystal/Clear Pipeline for Applied Image Processing 23

2 Training and Testing Datasets

With its wealth of crystallisation data and access to world class machine learn-
ing engineers, C3 has pioneered the development of an automated classification
pipeline, C4 (C3 Classifier), in an attempt to remedy the second problem out-
lined in Sect. 1, that of incomplete/noisy data about the output of crystallisation
trials. To aid in the construction of the pipeline, C3 developed two high qual-
ity datasets to use for testing and training purposes, [36]. The images in these
datasets were collected using a Rigaku Minstrel crystal imaging system which
captured 5 megapixel images with a pixel width representing approximately
5 µm. The current imaging system is a Formulatrix RI1000 (www.formulatrix.
com) which produces 5 megapixel images with a pixel width representing between
2 and 10 µm.

The first dataset, “Well Scored”, is a collection of fourteen thousand images
scored by a single expert into four classes as listed in Table 1. The second dataset,
“One Year”, is a collection of seventeen thousand images collected during the
one year period between October 2014 and October 2015. As will be discussed
in Sect. 4 the classification model currently in production scores images into the
four classes used in the “Well Scored” dataset. Table 1 outlines the mapping
from the original “One Year” class labels to the simpler four class system, as
well as the mapping for an additional scoring system discussed in Sect. 4.

As will be discussed in Sect. 4 the classification model currently in production
scores images into the four classes used in the “Well Scored” dataset. Table 1
outlines the mapping from the original “One Year” class labels to the simpler four
class system, as well as the mapping for an additional scoring system discussed
in Sect. 4.

In the experiments described in this work the “Well Scored” dataset was
used as a completely separate held out test set. That is, we never used the “Well
Scored” data for training. We trained all models on the “One Year” dataset and
tested on the “Well Scored”. This was primarily due to the empirical perception
that the “One Year” dataset was more diverse than the “Well Scored” data,
and thus provided a richer training set for the models. As we will discuss in
the work that follows we found it particularly important to have a second, com-
pletely unseen, held out dataset. The generalisation of the model was of utmost
importance and simply testing on a held out fraction of data was not enough
to guarantee performance on similar data captured in a different crystallisation
facility.

Finally Fig. 3 illustrates the distribution of images across the four classes
described above. We can note a fairly similar distribution between the two dif-
ferent datasets, but it is also quite apparent the major over representation of the
“crystal” and “precipitate” classes. This is due, in part, to the ambiguity of the
definition for both the “clear” and “other” classes.

www.formulatrix.com
www.formulatrix.com

24 C. J. Watkins et al.

Table 1. Simplified four class mapping

Well scored One year DeepCrystal

Crystal Crystals high Alternate spectrum positive

Crystals mid Macro

Crystals low Micro

Crystal

Crystalline

Salt crystals

Precipitate Bad precipitate Precipitate amorphous

Precipitate Precipitate non-amorphous

Good precipitate

Clear Clear Clear

Other Phase separation Alternate spectrum negative

Spherulites Spherulites

Clear with stuff Dry

Indeterminate Skin

Null experiment Contaminants

Fig. 3. Distribution of data points across the training (one year) and validation
(well scored) datasets.

A Crystal/Clear Pipeline for Applied Image Processing 25

3 Early Attempts

Armed with an abundance of data and a targeted objective (generating accu-
rate annotations for said data) the development of an automated classification
pipeline began. This problem is important enough to have driven the develop-
ment of several machine learning tools already, although none of these tools have
been widely adopted, or even used outside of the laboratory in which they were
initially developed. We began our work in the area by implementing three exist-
ing, externally developed, image classification tools in our own laboratory. See
[46] for sample code. This was non-trivial, as none of the three applications we
implemented (Besra [11], ALICE [48] and TexRank [34]) had been developed for
anything but local use.

Besra was developed as a binary Support Vector Machine classifier [15], using
the bag-of-visual-words [16] method to extract a feature vector. The visual vocab-
ulary is computed from the training set by first extracting features (Speeded Up
Robust Features [3]) and clustering them into a default 150 clusters using the bag
of words k-means [3] clustering function in OpenCV [9]. This training is done on
local images. By using Besra alone we obtained a 56.93 ± 4.63% accuracy when
training a binary crystal/not crystal classifier and 63.77± 5.0% accuracy for the
binary clear/not clear classifier, these results are summarised in Table 2.

ALICE is a pretrained classifier trained using 1024 × 1024 × 8 bit grayscale
bitmap images, corresponding to a pixel width of about 3 µm. It was built using
Self-Organising Maps (SOMs) [25] and Learning Vector Quantisation (LVQ) [26]
together with Bayesian probabilities [4]. Running ALICE on our test dataset
gave an accuracy of 55.68 ± 1.37% accuracy when trained as a binary crys-
tal/not crystal classifier and 75.90 ± 2.49% accuracy for the binary clear/not
clear classifier, these results are summarised in Table 2. Although this was the
poorest performing classifier its results were impressive given the fact that there
was no training on local images.

Texrank is another pretrained algorithm, however, this tool was not devel-
oped as a classifier. Instead the algorithm was designed to rank a set of images
according to their probability of containing a crystal. The ranking is performed
by first extracting features by using a pretrained dictionary of textons [23],
essentially a numerical descriptor of the textural features in a given image. This
feature vector is then passed to a random forest classifier [43], the posterior prob-
ability obtained from the classifier is then used to rank droplets. The dataset
used to train Texrank contained images with a resolution corresponding to a
pixel width of about 4.5 µm. In our binary classification implementations we
simply calculated a threshold on the “One Year” independently for both the
crystal and clear classifiers. Running Texrank on our test dataset gave an accu-
racy of 75.03 ± 0.96% when trained as a binary crystal/not crystal classifier and
74.09 ± 2.37% accuracy for the binary clear/not clear classifier, these results are
summarised in Table 2.

Finally, we amalgamated all three of these methods into a single binary classi-
fier, Combiner, using a simple linear combination. We trained a single layer neu-
ral network on the “One Year” dataset, labelling the dataset for both crystal and

26 C. J. Watkins et al.

clear classifications. Unsurprisingly the combined approach outperformed the
individual techniques, although it never quite reached the level of human accu-
racy. Running Combiner on our test dataset gave an accuracy of 76.31 ± 2.78%
when training a binary crystal/not crystal classifier and 85.12 ± 3.42% accuracy
for the binary clear/not clear classifier, these results are summarised in Table 2.

Table 2. Classification accuracies for the binary crystal/not crystal and clear/not
clear classifications models when applied to C3 data. Errors are given by the standard
deviation over a 10-fold cross validation. The baseline value is generated by predicting
each sample to be the majority class. Bold values represent the highest accuracy model
for each classifier.

Classifier Crystal Clear

Baseline 63.87 % 84.87 %

Besra 56.93 ± 4.63% 63.77 ± 5.0%

ALICE 55.68 ± 1.37% 75.90 ± 2.49%

TexRank 75.03 ± 0.96% 74.09 ± 2.37%

Combiner 76.31 ± 2.78% 85.12 ± 3.42%

CNN 75.80 ± 2.54% 75.80 ± 2.10%

DeepCrystal 76.39 ± 1.00% 80.27 ± 1.01%

MARCO 91.00 ± 5.00% 97.90 ± 5.00%

During the development of these traditional hand crafted feature extraction
approaches it was difficult to ignore the huge advances that were being made
with deep learning, particularly in the image processing domains [20,27,39,42].
With this in mind we set out to develop a simple test network to evaluate the
efficacy of the approach. Our initial experiments were built using tflearn [18]
a Tensorflow [2] powered Python framework. The final network was a simple
variant on the original AlexNet [27] architecture: four convolution layers [29]
with ReLU activations [31] and max pooling followed by two dense layers with
dropout for regularisation [40], the details of which are outlined in Table 3. The
immense learning capacity of the network allowed it to outperform any of the
traditional computer vision approaches and be on a comparable level to the
combination of all methods. Although we were still below the level of human
ability, this deep learning approach gave an accuracy of 75.80 ± 2.54% when
trained as a binary crystal/not crystal classifier and 75.80 ± 2.10% accuracy
for the binary clear/not clear classifier using our test dataset, these results are
summarised (as CNN) in Table 2.

4 Deep Learning Solution

Motivated by the same advances in deep learning that excited us, the VC backed
world of Silicon Valley has driven the development of a wealth of applications

A Crystal/Clear Pipeline for Applied Image Processing 27

Table 3. Preliminary convolutional neural network architecture.

Layer Description

Input 128 × 128 × 3 RGB image

Convolution 3 × 3, 32 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 64 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 128 outputs, ReLU activation

Max pool 2 × 2

Convolution 3 × 3, 256 outputs, ReLU activation

Max pool 2 × 2

Dense 512 outputs, tanh activation

Dropout dropout rate = 0.5

Dense 512 outputs, tanh activation

Dropout dropout rate = 0.5

Dense 2 outputs

focused machine learning technology. Fortuitously one such application was in
the area of machine learning for interpreting crystallisation images. This applica-
tion was targeted at pharmaceutical and large biotech firms which use structural
biology in their lead development pipeline. The recently acquired DeepCrystal
(www.deepcrystal.com) had developed a 13-class droplet classification model
based on Facebook’s high performing convolutional architecture, ResNext [49].
The success of the DeepCrystal model was not so much due to the algorithm
itself, which was an implementation of an existing tool, but lay in the diversity of
their training data. Through their collaborations with both academic and private
institutions (as well as a concentrated web-scraping effort) DeepCrystal was able
to build a model with a (self reported) accuracy of 91%. An astounding result.
In the spirit of collaboration C3 provided DeepCrystal with a small sample of
competently scored images that were representative of those encountered at C3.
In exchange DeepCrystal provided access to a closed, black-box implementation
of their model, i.e. we were able to pass images in and get classifications out,
however we were unable to modify or fine tune the model at all.

The closed nature of the model posed some challenges when trying to val-
idate the claimed accuracy, and complicated comparisons to the other models
implemented in C3. The comparison of results from the DeepCrystal model to
the others implemented in C3 was stymied by the lack of accepted standards
describing outcome classes of crystallisation experiments. We used the mapping
shown in Table 1 to map the 13 classes of the DeepCrystal model to a simpler
four class output for comparison. Two classes of the DeepCrystal model (the two
Alternate Spectrum classes) are inappropriate for the visual light images that

www.deepcrystal.com

28 C. J. Watkins et al.

we used in our tests. Applying the class mapping we obtained an accuracy of
55.96 ± 1.84% for the four class scoring task. This poor performance is mostly
likely due to the unclear mappings between DeepCrystal classes and C3 classes.

(a) Clear (b) Crystal

Fig. 4. Reciever Operator Characteristic curves for the binary DeepCrystal clear and
crystal classifiers.

If we were able to modify the architecture we could simply have adjusted the
output layer to match our classification system, and run a few epochs to fine tune
the network, unfortunately that option was not possible. Instead the approach we
took was to consider the output value for a single class and threshold that value
to create a binary classifier. In the case of the crystal/not-crystal binary classifier
we thresholded the “Macro” class, such that if “Macro” probability was above a
certain value we would flag the presence of a crystal. Similarly for the clear/not-
clear classifier we thresholded the “Clear” class. Using the holdout dataset we
were able to optimise the threshold values by inspecting the behaviour of their
corresponding ROC curves, shown in Figs. 4(a) and (b). The threshold values
were found to be 0.4% and 4.3% for the “Clear” and “Macro” classes respectively.
These values result in binary classification accuracies of 80.27 ± 1.01% for clear
and 76.39 ± 1.00% for crystal. However, this system is still better than any
of the other single tools, and performed similarly to Combiner, but had the
advantage of being significantly simpler and faster than Combiner (in the sense
that it was a single model). The ROC curves show far from ideal behaviour
resulting in an appreciable false negative rate (FPR) even for low true positive
rates (TPRs). In determining the optimum value for the threshold it was decided
that an acceptable minimum TPR was 0.8. Users of the crystallisation centre
are typically very intolerant of false negatives. Protein crystals are extremely
hard to produce, and as such users do not want to miss any samples that may
possibly contain a crystal. As a result users are more tolerant of false positives,
that is, the inclusion of images with no crystals in the set containing crystals
is an acceptable compromise in order to not miss any images that may contain
crystals.

A Crystal/Clear Pipeline for Applied Image Processing 29

Around the time that DeepCrystal was being acquired and support for its
improvement was lost the MAchine Recognition of Crystal Outcomes (MARCO)
initiative was bearing fruit [12]. This collaborative effort between an interna-
tional collection of academic institutions and pharmaceutical companies amassed
a dataset of almost 500,000 images, which have been made publicly available, [14]
and have been classified using the same four class system described in Sect. 2. The
MARCO model uses the Inception-v3 architecture [41], has been trained using
the open source MARCO dataset and has been open sourced itself [45], making
it more flexible than our DeepCrystal implementation. Additionally MARCO
reports some excellent results1, producing accuracies of 97.90 ± 5.00% for clear
and 91.00 ± 5.00% for crystal. Such results are far greater than any previously
implemented approaches thus we now deploy the MARCO model as part of the
image classifying pipeline discussed in Sect. 5.

Fig. 5. Illustration of the C4 parallelisation scheme. Inspections of images are processed
in parallel which are further classified in parallel on using GPU accelerated Tensorflow
models.

5 Enabling Infrastructure

Previous sections have outlined the machine learning component of our solution:
the models tested and how they are used. Here we will describe in more detail
how the machine learning has been integrated into a fully autonomous end-to-
end image classification pipeline, C3 Classifier (C4). This code is available at
[47]. The two automated imagers in C3 (Formulatrix RI1000, www.formulatrix.
com) produce JPG images of all droplets found in a single experimental plate
– this is called an inspection; each inspection contains either 24 or 96 (or some
multiple) images. Initially the images are stored locally on the imaging machine,

1 The results reported here are those from [12], and thus have been produced using
the MARCO dataset.

www.formulatrix.com
www.formulatrix.com

30 C. J. Watkins et al.

but are transferred almost immediately to a larger in-house cloud storage device
(Bowen) for long term storage. Simultaneously the metadata for both the inspec-
tion and each image collected as part of the inspection is pushed into an Oracle
database that is hosted in the same local cloud data centre. There are front-
end applications which are available to the C3 users that allow them to inspect
and classify images. Both the scores, and other associated information (scorer,
score time) are captured in this same database. Scores generated by the machine
learning tool are also stored in the database, the “scorer” field in the database is
used to mark these as machine generated scores. Thus the database contains a
record of all past and present images, noting which images have been classified,
either manually by a human or automatically by our autonomous pipeline.

C4 is run from CSIRO’s GPU cluster, Bracewell2, which is composed of 114
Dell PowerEdge C4130 servers each with 4 NVIDIA Tesla P100s and dual Intel
Xeon 14-core E5-2690 v4s connected on a FDR10 InfiniBand interconnect (a
total of 456 GPUs, 228 Xeons; approximately 2.5 Pflops). This cluster is located
in physically located about 600 Km from C3, at the Canberra Data Centre.
Overall, the pipeline follows these steps:

– Check database for new, unscored (by C4) images
– Copy unscored images from cloud storage on Bowen to local storage on

Bracewell
– Inspect images using the algorithms discussed in Sect. 4
– Save raw output to local cold storage
– Upload scores to the database
– Remove local image copies

C4 is written using Python and is tightly integrated with the Slurm Workload
Manager. Some initial experiments were developed using the Luigi [8] workflow
package for Python, but integration of Luigi with Slurm didn’t fit the traditional
High Performance Computing (HPC) model. A possible substitute is SciLuigi
[28] which natively supports Slurm. The custom work flow employed by C4 has
been modelled on Luigi: several distinct components, with checkpoints at the
end of each component. The components of C4 are described in detail in the
sections that follow and have been illustrated in Fig. 5.

5.1 Inspection Finder

C4 is set up to be run on an hourly basis, the initial execution is managed
by a Cron job. Cron launches a single batch job which runs the Python script
for inspecting the database for new inspections (via the Oracle ORM Python
package). For each new un(auto)scored inspection a series of dependant batch
jobs will be launched. This allows us to process all new inspections in parallel
across the cluster. First the inspection classification script is queued. Then the
post processing script is queued with the classification job listed as a dependency,
so that it will not launch until the classification job has exited. Finally a data
2 https://www.csiro.au/en/Research/Technology/Scientific-computing/Bracewell.

https://www.csiro.au/en/Research/Technology/Scientific-computing/Bracewell

A Crystal/Clear Pipeline for Applied Image Processing 31

egress script is launched which has all of the previously submitted batch jobs
(classification and post-processing) listed as dependencies. Only a single instance
of this script is run and it will collate all the results and update the database
with a single post so as to minimise the number of database connections. The
post processing script also performs the clean up. All of these dependencies can
be programatically determined, with their job IDs, from within Python. There
are several Slurm Python wrappers, but we have made use of the PySlurm [37]
implementation.

5.2 Inspection Classifier

Each individual classification job copies all the images in an inspection from
Bowen cloud storage to node local Bracewell storage via scp. Specifically the
copy is made using a combination of the Paramiko [19] and scp Python packages.

Once the image copy is complete the images are classified in parallel using
the MARCO model discussed in Sect. 4. The MARCO model is an Inception-
v3 architecture written using Tensorflow. The architecture and weights for the
model can be obtained from [45]. As such the model can be called directly from
within Python scripts and easily accelerated using the GPU. Images are currently
processed in batches of 32. Probability distribution vectors returned from the
MARCO model are saved into a temporary file as a means of checkpointing.
Once the outputs had been successfully written to file we could remove the
original inspection images and safely exit the program which would enable the
corresponding post processing script to be executed when sufficient resources
were available.

5.3 Post Processing

The post processing script takes the output probability distribution and identifies
any interesting drops. Since replacing the DeepCrystal model with MARCO the
post processing stage has become much simpler. First it reads in the temp file
containing the probabilities for each image. Then it applies an argmax to the
probability distribution, returning the most probably class prediction. These
results are then saved in a new temp file, awaiting final processing.

5.4 Upload Results and Clean up

Once the all the inspections are processed the final data egress script will collate
the results in all of the temp files and upload the interesting drops to the database
in a single INSERT call, minimising the number of database connections the need
to be made. The temp files are then removed, with the results probability files
appended to a larger single file in long term storage.

32 C. J. Watkins et al.

5.5 Logging

With a fully autonomous pipeline running independently of human oversight, it
can be quite tempting to simply assume it is running correctly. Software engi-
neering best practices however, suggest that in these situations it is best to set
up a logger, that is code which outputs information about the pipelines state
at any given time. Using Python’s logging package C4 has been able to build
multiple loggers for each component of the pipeline. That is, each component
has a regular logger printing to stdout, a debug logger printing to file as well
as a custom logger that posts to a Slack channel in the project’s team space.
The Slack logger is the most important as experience has shown us how easy it
is to forget to inspect log files. This custom logger will post selected updates to
it’s own channel, so as not to clutter the regular communication streams. The
posts have also been formatted such that errors and progress updates are easily
discernible, as well as the point of failure should an error occur. Future imple-
mentations of the logger will also send failure alerts via email, should Slack’s
current raging popularity diminish.

5.6 Cinder and Ashes

In an effort to improve the model on an ongoing basis we have begun collecting
images that humans perceive MARCO has scored incorrectly. In a weekly Python
script, Ashes, we identify any newly scored images where the human classifica-
tion disagrees with the MARCO classification. These images are collected and
saved for fine tuning in the future. However as discussed in Sect. 1 there is often
disagreement among domain specialists as to what score to assign to images.
Thus it is not enough to merely take the human score as the ground truth. To
remedy this problem C3 has upgraded its image scoring app, Cinder [1] (Crys-
tallographic Tinder), to allow for consensus scoring of badly scored images. That
is to say, through the Cinder app users (generally crystallography experts) can
score images that have been collected by Ashes. Once we have collected enough
scores which are in agreement about a single image we can add that image to the
data set for training, satisfied that its ground truth label is sufficiently accurate.
This “citizen science” approach to data labelling has only begun recently and
sufficient data has not yet been collected to begin the fine tuning process.

6 Deployment and Future Challenges

C4 has been in operation for over a year and its deployment has been well
received. This has been most notably observed through a reduction in human
scoring activity. C4 seamlessly processes up to twenty thousand images per day,
casually fitting brief batch jobs into the typical HPC scheduler. A single inspec-
tion (∼200 images) can be processed in under two minutes, with the majority
of the processing time being consumed by data transport and database commu-
nication. While C4 is more than capable of keeping up with the continuously

A Crystal/Clear Pipeline for Applied Image Processing 33

produced images, the ultimate goal of the C4 pipeline is to score the large back-
log of over forty million images, enabling an understanding of the crystallisation
landscape. While C4 has been designed with this goal in mind at present there
are two limiting components: data ingress and data egress.

The server which manages the copying of data from storage to the compute is
a low powered cloud machine. As such it cannot handle multiple connections over
ssh. This has resulted in C4 limiting the number of simultaneous connections to
the data server to ten, which ultimately stems the flow of data to the compute
servers. We are currently investigating the root cause of the data flow problem,
but it will most likely be solved by smarter scheduling around data handling.
Similarly on the data egress front, the database does not accept a high number
of simultaneous connections. This issue is currently handled by collating batches
into a single upload, but this solution will not be acceptable nor stable enough to
manage processing the backlog of data. One possible solution (for both ingress
and egress) is to have some sort of data buffer that is periodically filled and
emptied as required.

Fig. 6. An example visualisation from the See3 web inspection application available
to C3 users. Typically users are shown an interface displaying thumbnails of their
processed experiments. All scores are shown as border colours, The border starts at
9 o’clock and the colours are arranged so that user scores are shown first. An image
with two scores will have two colours, with the upper colour being the human score,
and the lower colour the machine score, an image with a single colour border has only
been assigned a single score. (Color figure online)

With the droplet classifications stored in a database it is easy to integrate
the findings into the existing C3 web application, See3. Figure 6 illustrates how
the C4 classifications have been integrated into the See3 application. The yellow
and orange colours on the upper border indicate that the user has assigned these
images a crystal class (C3 uses multiple levels within the 4 broad categories in
its classification system). The two samples F1.2 and F4.2 that have a pink lower
border are images that have been flagged by C4 as containing crystals. The cases
that have a single colour are images that have been scored only by the user, that
is C4 has missed these images. You can see in this random sampling that C4 has
missed quite a few instances of crystallisation.

The multiple shades for each class are an attempt at circumventing the class
labelling issue discussed in Sect. 4. By refining the crystal (or other) class into
more nuanced subclasses we are able to better capture the continuous nature
of the crystallisation spectrum. In practice, there is not a discrete phase change

34 C. J. Watkins et al.

from say, precipitate to crystal; there is a continuum between droplets containing
only precipitate, droplets containing both precipitate and crystals and droplets
containing only crystals; as such it can be difficult to define class boundaries. This
partly explains the divergence of classification labels among domain specialists,
with each expert identifying different features that are interesting to them. One
potential approach to solving this problem may be to investigate the use of
unsupervised learning methods. Given that C3 has a wealth of unlabelled diverse
data we could use this to train an unsupervised feature extractor, something like
a convolutional autoencoder [5]. The features learned by the autoencoder could
then be used by a clustering algorithm, perhaps t-Stochastic Neighbourhood
Embedding [44], to find local groups of visually similar images. If obviously
distinct classes cannot be differentiated perhaps at least some intuition as to
how the droplet classes can be arranged together. Additionally, the labelled and
unlabelled datasets could be combined in a semi-supervised scheme similar to
[6,21,22] or [24].

One of the fundamental lessons we have learned is that the diversity of the
data set is of critical importance. We have experienced a number of times that
models trained on datasets that do not accurately represent the data to be
classified post training fail to generalise in their application. Whether it be over
sampled classes, redundant (or repeated) images or general lack of diversity in
samples and sources, the dataset quality is key to the model performance. This
is one of the most pressing issues in automating the online training process; how
to ensure quality in the automatically extracted training set. While there is some
work that suggests deep neural networks are robust to noise in the training data
[38], when we are trying to fine tune a network it will be quality, well classified
images from the boundaries of the class domains that will ensure a robust and
reliable model moving forward.

7 Conclusions

C3 has developed and deployed a reliable and robust autonomous classifica-
tion system for protein crystallisation images. The system has been deployed
in a production system delivering almost real time results through the mas-
sive parallelisation of image processing. The pipeline has received qualitatively
good feedback on its performance, although it is clear that further develop-
ment is required. With the ability to compare human and machine scores C3 is
now seeking to develop an online training technique by mining hard-to-classify
images.

References

1. Cinder “crystallographic tinder”. https://research.csiro.au/crystal/user-guide/c3-
cinder/. Accessed 02 Jan 2019

2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems March 2016. http://arxiv.org/abs/1603.04467

https://research.csiro.au/crystal/user-guide/c3-cinder/
https://research.csiro.au/crystal/user-guide/c3-cinder/
http://arxiv.org/abs/1603.04467

A Crystal/Clear Pipeline for Applied Image Processing 35

3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32

4. Bayes, F.R.S.: An Essay towards Solving a Problem in the Doctrine of Chances.
Philos. Trans. R. Soc. Lond. 53(0), 370–418 (1763). https://doi.org/10.1098/rstl.
1763.0053

5. Bengio, Y.: Learning deep architectures for AI. Found. Trends R© Mach. Learn. 2(1),
1–127 (2009). https://doi.org/10.1561/2200000006. www.nowpublishers.com/
article/Details/MAL-006

6. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in
Neural Information Processing Systems 19, pp. 153–160. MIT Press (2007). http://
papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

7. Rupp, B.: Garland Science - Book: Biomolecular Crystallography + 1. Gar-
land Science, 1st edn. (2009). http://www.garlandscience.com/product/isbn/
9780815340812

8. Bernhardsson, E., Freider, E., Rouhani, A.: Luigi (2012). https://github.com/
spotify/luigi

9. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Soft. Tools (2000)
10. Brändén, C.I., Tooze, J.: Introduction to Protein Structure. Garland Pub, Spokane

(1999)
11. Bruno, A.E.: Besra (2015). https://doi.org/10.5281/zenodo.60970, https://www.

researchgate.net/publication/309319298 Besra
12. Bruno, A.E., et al.: Classification of crystallization outcomes using deep convolu-

tional neural networks. PLoS One 13(6) (2018). https://doi.org/10.1371/journal.
pone.0198883

13. Carter, C.W., Carter, C.W.: Protein crystallization using incomplete factorial
experiments. J. Biol. Chem. 254(23), 12219–12223 (1979). www.jbc.org/cgi/
content/short/254/23/12219

14. Charbonneau, P.: Machine recognition of crystal outcomes (2018)
15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995). https://doi.org/10.1007/BF00994018
16. Csurka, G., Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual

categorization with bags of keypoints. In: Workshop on Statistical Learning in
Computer Vision, ECCV, pp. 1–22 (2004). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.72.604

17. Cudney, R., Patel, S., Weisgraber, K., Newhouse, Y., McPherson, A.: Screen-
ing and optimization strategies for macromolecular crystal growth. Acta Crys-
tallogr. Sect. D Biol. Crystallogr. 50(4), 414–423 (1994). https://doi.org/10.1107/
S0907444994002660. http://www.ncbi.nlm.nih.gov/pubmed/15299395

18. Damien, A., et al.: TFLearn (2016)
19. Forcier, J.: Paramiko (2017)
20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition

(2015). http://arxiv.org/abs/1512.03385
21. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-

ral networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.
1127647. www.science.sciencemag.org/content/313/5786/504

22. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage
architecture for object recognition? In: 2009 IEEE 12th International Conference
on Computer Vision, pp. 2146–2153, September 2009. https://doi.org/10.1109/
ICCV.2009.5459469

https://doi.org/10.1007/11744023_32
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1561/2200000006
http://www.nowpublishers.com/article/Details/MAL-006
http://www.nowpublishers.com/article/Details/MAL-006
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://www.garlandscience.com/product/isbn/9780815340812
http://www.garlandscience.com/product/isbn/9780815340812
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://doi.org/10.5281/zenodo.60970
https://www.researchgate.net/publication/309319298_Besra
https://www.researchgate.net/publication/309319298_Besra
https://doi.org/10.1371/journal.pone.0198883
https://doi.org/10.1371/journal.pone.0198883
http://www.jbc.org/cgi/content/short/254/23/12219
http://www.jbc.org/cgi/content/short/254/23/12219
https://doi.org/10.1007/BF00994018
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.604
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.604
https://doi.org/10.1107/S0907444994002660
https://doi.org/10.1107/S0907444994002660
http://www.ncbi.nlm.nih.gov/pubmed/15299395
http://arxiv.org/abs/1512.03385
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
http://www.science.sciencemag.org/content/313/5786/504
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469

36 C. J. Watkins et al.

23. Julesz, B.: Textons, the elements of texture perception and their inter-
actions. Nature 290(5802), 91–97 (1981). https://doi.org/10.1038/290091a0.
www.nature.com/doifinder/10.1038/290091a0

24. Kavukcuoglu, K., Sermanet, P., lan Boureau, Y., Gregor, K., Mathieu, M.,
Cun, Y.L.: Learning convolutional feature hierarchies for visual recognition.
In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A.
(eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 1090–
1098. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/4133-learning-
convolutional-feature-hierarchies-for-visual-recognition.pdf

25. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/BF00337288

26. Kohonen, T.: Learning Vector Quantization. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-642-56927-2 6

27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

28. Lampa, S., Alvarsson, J., Spjuth, O.: Towards agile large-scale predictive modelling
in drug discovery with flow-based programming design principles. J. Cheminfor-
matics 8(1), 67 (2016). https://doi.org/10.1186/s13321-016-0179-6

29. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

30. Luft, J.R., Newman, J., Snell, E.H.: Crystallization screening the influ-
ence of history on current practice. Acta Crystallogr. Sect. F Struct. Biol.
Commun 70(7), 835–53 (2014). https://doi.org/10.1107/S2053230X1401262X.
www.ncbi.nlm.nih.gov/pubmed/25005076

31. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing, vol. 3, pp. 807–814, Haifa, Israel (2010). https://doi.org/10.1.1.165.6419.
http://www.cs.toronto.edu/fritz/absps/reluICML.pdf

32. Newman, J., et al.: On the need for an international effort to capture,
share and use crystallization screening data. Acta Crystallogr. Sect. F Struct.
Biol. Crystallization Commun. 68(3), 253–258 (2012). https://doi.org/10.1107/
S1744309112002618. www.ncbi.nlm.nih.gov/pubmed/22442216

33. Newman, J., Peat, T.S., Savage, G.P.: What’s in a name? Moving towards a limited
vocabulary for macromolecular crystallisation. Aust. J. Chem. 67(12), 1813 (2014).
https://doi.org/10.1071/CH14199. www.publish.csiro.au/?paper=CH14199

34. Ng, J.T., Dekker, C., Kroemer, M., Osborne, M., von Delft, F.: Using textons
to rank crystallization droplets by the likely presence of crystals. Acta crystal-
logr. Sect. D, Biol. crystallogr. 70(10), 2702–2718 (2014). https://doi.org/10.1107/
S1399004714017581. www.ncbi.nlm.nih.gov/pubmed/25286854

35. Ng, J.T., Dekker, C., Reardon, P., von Delft, F.: Lessons from ten
years of crystallization experiments at the SGC. Acta Crystallogr. Sect. D
Struct. Biol. 72(2), 224–35 (2016). https://doi.org/10.1107/S2059798315024687.
www.ncbi.nlm.nih.gov/pubmed/26894670

36. Ratcliffe, D., Carroll, T., Watkins, C., Newman, J.: CSIRO data access portal
- crystallisation images from C3 (2016). https://data.csiro.au/dap/landingpage?
pid=csiro:20158&v=3&d=true

37. Roberts, M., Torres, G.: PySlurm (2017). https://pyslurm.github.io/
38. Rolnick, D., Veit, A., Belongie, S., Shavit, N.: Deep learning is robust to massive

label noise, May 2017. http://arxiv.org/abs/1705.10694

https://doi.org/10.1038/290091a0
http://www.nature.com/doifinder/10.1038/290091a0
http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1007/978-3-642-56927-2_6
https://doi.org/10.1186/s13321-016-0179-6
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1107/S2053230X1401262X
http://www.ncbi.nlm.nih.gov/pubmed/25005076
http://www.cs.toronto.edu/fritz/absps/reluICML.pdf
https://doi.org/10.1107/S1744309112002618
https://doi.org/10.1107/S1744309112002618
http://www.ncbi.nlm.nih.gov/pubmed/22442216
https://doi.org/10.1071/CH14199
http://www.publish.csiro.au/?paper=CH14199
https://doi.org/10.1107/S1399004714017581
https://doi.org/10.1107/S1399004714017581
http://www.ncbi.nlm.nih.gov/pubmed/25286854
https://doi.org/10.1107/S2059798315024687
http://www.ncbi.nlm.nih.gov/pubmed/26894670
https://data.csiro.au/dap/landingpage?pid=csiro:20158&v=3&d=true
https://data.csiro.au/dap/landingpage?pid=csiro:20158&v=3&d=true
https://pyslurm.github.io/
http://arxiv.org/abs/1705.10694

A Crystal/Clear Pipeline for Applied Image Processing 37

39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition, September 2014. http://arxiv.org/abs/1409.1556

40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014). https://doi.org/10.1214/12-AOS1000

41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826, June 2016. https://doi.
org/10.1109/CVPR.2016.308

42. Szegedy, C., et al.: Going deeper with convolutions, September 2014. http://arxiv.
org/abs/1409.4842

43. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998). https://doi.org/10.1109/
34.709601

44. Van Der Maaten, L., Hinton, G.: Visualizing Data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008). www.jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf

45. Vanhoucke, V.: Automating the evaluation of crystallization experiments. https://
github.com/tensorflow/models/tree/master/research/marco (2018)

46. Watkins, C.J.: C3 Computer vision algorithms (2017). https://data.csiro.au/dap/
landingpage?pid=csiro:29414

47. Watkins, C.J.: C4–C3 Classification pipeline (2018). https://data.csiro.au/dap/
landingpage?pid=csiro:29413

48. Watts, D., Cowtan, K., Wilson, J.: IUCr: automated classification of crys-
tallization experiments using wavelets and statistical texture characterization
techniques. J. Appl. Crystallogr. 41(1), 8–17 (2008). https://doi.org/10.1107/
S0021889807049308

49. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks, November 2016. http://arxiv.org/abs/1611.05431

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1409.1556
https://doi.org/10.1214/12-AOS1000
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://github.com/tensorflow/models/tree/master/research/marco
https://github.com/tensorflow/models/tree/master/research/marco
https://data.csiro.au/dap/landingpage?pid=csiro:29414
https://data.csiro.au/dap/landingpage?pid=csiro:29414
https://data.csiro.au/dap/landingpage?pid=csiro:29413
https://data.csiro.au/dap/landingpage?pid=csiro:29413
https://doi.org/10.1107/S0021889807049308
https://doi.org/10.1107/S0021889807049308
http://arxiv.org/abs/1611.05431
http://creativecommons.org/licenses/by/4.0/

A Cache-Based Data Movement Infrastructure
for On-demand Scientific Cloud Computing

David Abramson1(&), Jake Carroll1, Chao Jin1, Michael Mallon1,
Zane van Iperen1, Hoang Nguyen1, Allan McRae1, and Liang Ming2

1 The University of Queensland, St Lucia, QLD 4072, Australia
{david.abramson,jake.carroll,c.jin,m.mallon,

z.vaniperen,h.nguyen30,a.mcrae}@uq.edu.au
2 Huawei Technologies Co., Ltd., Shenzhen, China

l.ming@huawei.com

Abstract. As cloud computing has become the de facto standard for big data
processing, there is interest in using a multi-cloud environment that combines
public cloud resources with private on-premise infrastructure. However, by
decentralizing the infrastructure, a uniform storage solution is required to pro-
vide data movement between different clouds to assist on-demand computing.
This paper presents a solution based on our earlier work, the MeDiCI
(Metropolitan Data Caching Infrastructure) architecture. Specially, we extend
MeDiCI to simplify the movement of data between different clouds and a
centralized storage site. It uses a hierarchical caching system and supports most
popular infrastructure-as-a-service (IaaS) interfaces, including Amazon AWS
and OpenStack. As a result, our system allows the existing parallel data
intensive application to be offloaded into IaaS clouds directly. The solution is
illustrated using a large bioinformatics application, a Genome Wide Association
Study (GWAS), with Amazons AWS, HUAWEI Cloud, and a private central-
ized storage system. The system is evaluated on Amazon AWS and the Aus-
tralian national cloud.

Keywords: Cloud � Big data � Caching � Data migration

1 Introduction

Presently, many big data workloads operate across isolated data stores that are dis-
tributed geographically and manipulated by different clouds. For example, the typical
scientific data processing pipeline [26, 40] consists of multiple stages that are fre-
quently conducted by different research organizations with varied computing demands.
Accordingly, accelerating data analysis for each stage may require computing facilities
that are located in different clouds. Between different stages of the geographical data
pipeline, moving a large amount of data across clouds is common [5, 37]. This type of
multi-cloud environment can consist of resources from multiple public cloud vendors,
such as Amazon AWS [1] and Microsoft Azure [29], and private data centers. Multi-
cloud is used for many reasons, such as best-fit performance, increased fault tolerance,
lower cost, reduced risk of vendor lock-in, privacy, security, and legal restrictions.

© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 38–56, 2019.
https://doi.org/10.1007/978-3-030-18645-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_3

Different from hybrid-cloud, however, data silos in multi-cloud are isolated by varied
storage mechanisms of different vendors. This complicates applying on-demand
computing for scientific research across clouds. Although computation offloading into
clouds is standardized with virtual machines, a typical data processing pipeline faces
multiple challenges in moving data between clouds. First, a uniform way of managing
and moving data is required across different clouds. Second, the network connections
for inter-clouds and intra-cloud are typically different in terms of bandwidth and
security. Moving a large amount of data between centers must utilize critical resources
such as network bandwidth efficiently, and resolve the difficulties of latency and sta-
bility issues associated with long-haul networks. Third, users have to maintain the
consistency of duplicated copies between silos with different storage mechanisms.
Fourth, data migration between the stages of a pipeline needs to cooperate efficiently
with computing tasks scheduling.

In this work, we propose a hierarchical global caching architecture across geo-
graphical data centers of different clouds. Such a system supports automatic data
migration to cooperate on-demand Cloud computing. It unifies distant data silos using a
file system interface (POSIX) and provides a global namespace across different clouds,
while hiding the technical difficulties from users. Data movement between distant data
centers is made automatic using caching. Our high performance design supports
massive data migration required by scientific computing. Our previous work, called
MeDiCI [10], has been shown to work well in an environment consisting of private
data centers dispersed across the metropolitan area. In this paper, we extend MeDiCI
into the multi-cloud environment that consists of most popular infrastructure-as-a-
service (IaaS) cloud platforms, including Amazon AWS and OpenStack-based public
clouds, and Australian data centers of NeCTAR (The National eResearch Collaboration
Tools and Resources). Existing parallel data intensive applications are allowed to run in
the virtualized resources directly without significant modifications.

This paper mainly discusses the following innovations:

• A global caching architecture that moves data across clouds in accordance with on-
demand compute and storage resource acquirement;

• A demonstration of the proposed architecture using parallel file system components;
• A platform independent mechanism that manages the system across different IaaS

clouds, including Amazon AWS and OpenStack-based clouds;
• Demonstrating our solution using a Genome Wide Association Study with

resources from Amazon Sydney and a centralized storage site in Brisbane.

The rest of the paper is organized as follows. Section 2 provides an overview of
related work and our motivation. Section 3 introduces our proposed global caching
architecture. Sections 4 describe the realization of our storage architecture. Section 5
provides a detailed case study in Amazon EC2 and HUAWEI Cloud with according
performance evaluation. Our conclusions follow in Sect. 6.

A Cache-Based Data Movement Infrastructure 39

2 Background

Massive data analysis in the scientific domain [26, 30] needs to process data that is
generated from a rich variety of sources, including scientific simulations, instruments,
sensors, and Internet services. Many data intensive applications are embarrassingly
parallel and can be accelerated using the high throughput model of cloud computing.
Therefore, complementing private data centers with on-demand resources drawn from
multiple (public) clouds is frequently used to tolerate compute demand increases.
However, offloading computation into clouds not only requires acquiring compute
resources dynamically, but also moving target data into the allocated virtual machines.
Most existing storage solutions are not designed for a multi-cloud environment. In
particular, they often require users to move data between processing steps of a geo-
graphical data processing pipeline explicitly. In addition, many existing methods do not
directly support parallel IO to improve the performance of scalable data analysis. This
section reviews the existing methods and motivates our solution.

“Data diffusion” [19, 20], which can acquire compute and storage resources
dynamically, replicate data in response to demand, and schedule computations close to
data, has been proposed for Grid computing. In the cloud era, the idea has been
extended to scientific workflows that schedule compute tasks [40] and move required
data across the global deployment of cloud centers. Both data diffusion and cloud
workflows rely on a centralized site that provides data-aware compute tasks scheduling
and supports an index service to locate data sets dispersed globally. In contrast, our
model suits a loosely coupled working environment in which no central service of task
scheduling and data index is required. Actually, each department controls its own
compute resources and the collaboration between departments relies on shared data sets
that are stored in a central site for long-term use. Our previous solution, MeDiCI [10],
works well on dedicated resources. In this paper, we extend MeDiCI to a multi-cloud
environment with dynamic resources and varied storage mechanisms.

A substantial portion of our work needs to move data across different clouds
efficiently. Cloud storage systems, such as Amazon S3 [1] and Microsoft Azure [29],
provide specific methods to exchange data across centers within a single cloud, and
mechanisms are available to assist users to migrate data into cloud data centers. For
instance, the Microsoft Azure Data Factory and the AWS Data Pipeline support data-
driven workflows in the cloud to orchestrate and to automate data movement and data
transformation. These cloud specific solutions mainly handle data in the format of
cloud objects and database. Some other workflow projects combine cloud storage, such
Amazon S3, with local parallel file systems to provide a hybrid solution. For example,
a staging site [25] is introduced for Pegasus Workflow Management System to convert
between data objects and files and supports both Cloud and Grid facilities. In com-
parison, some cloud backup solutions, such as Dropbox [9], NextCloud [33], and
SPANStore [44], provide seamless data access to different clouds. However, most of
these cloud storage solutions do not directly support parallel IO that is favored by
embarrassing parallel data intensive applications.

Recent projects support directly transferring files between sites to improve overall
system efficiency [38]. For example, OverFlow [37, 39] provides a uniform storage

40 D. Abramson et al.

management system for multi-site workflows that utilize the local disks associated with
virtual machine instances. It extends replication service to handle data transfer for inter-
site and intra-site traffic using different protocols and mechanisms. This type of cus-
tomized storage solution is designed to cooperate with the target workflow scheduler
using a set of special storage APIs.

The distributed file system provides a general storage interface widely used by
almost all parallel applications. How to support a distributed file system in the global
environment has been investigated extensively [6, 12, 14, 22, 23, 27, 32, 41]. Typically,
the tradeoff between performance, consistency, and data availability must be compro-
mised appropriately to address the targeted data access patterns. Most general dis-
tributed file systems designed for the global environment focus on consistency at the
expense of performance. The Andrew File System (AFS) [24] federates a set of trusted
servers to provide a consistent and location independent global namespace to all of its
clients. The AFS caching mechanism allows accessing files over a network as if they
were on a local disk. OpenAFS [34] is an open source software project implementing the
AFS protocol. Exposing clustered file systems, such as GPFS and Lustre, to personal
computers using OpenAFS has been investigated [18]. Frequently, AFS caching suffers
from performance issues due to overrated consistency and a complex caching protocol
[28]. Overall, AFS was not designed to support large-scale data movement required by
on-demand scientific computing. The similar idea of using a global caching system to
transfer data in a wide area was also investigated by Content Delivery Networks
(CDN) [12]. CDN caches site content at the edge of the Internet, close to end users, in
order to improves website performance. In comparison, BAD-FS [21] and Panache [31]
improve data movement onto remote computing clusters distributed across the wide
area, in order to assist dynamic computing resource allocation. BAD-FS supports batch-
aware data transfer between remote clusters in a wide area by exposing the control of
storage policies such as caching, replication, and consistency and enabling explicit and
workload-specific management. Panache is a scalable, high-performance, clustered file
system cache that supports wide area file access while tolerating WAN (Wide Area
Network) latencies. It transfers remote files in parallel using the NFS protocol, instead of
other batch mode data movement solutions, such as GridFTP [42] and GlobusOnline
[7]. Panache maintains the consistency of both meta-data and files.

Our previous work, MeDiCI [10], builds on AFM [17], which is a commercial
version of Panache. MeDiCI constructs a hierarchical caching system using AFM and
parallel file systems. MeDiCI exploits temporal and spatial locality to move data on
demand in an automated manner across our private data centers that spans the
metropolitan area. With this paper, we extend MeDiCI to (1) unify the varied storage
mechanisms across clouds using the POSIX interface; and (2) provide a data movement
infrastructure to assist on-demand scientific computing in a multi-cloud environment.

3 Design

A geographical data processing pipeline may consist of multiple stages and each stage
could be executed in different data centers that have appropriate computing facilities.
Each stage needs to process both local data and remote files, which require moving data

A Cache-Based Data Movement Infrastructure 41

from a remote center to the local site. After each stage is finished, the migrated data can
be deleted according to the specific request, while the generated output may be col-
lected. Frequently, a central storage site keeps long-term use data for pipelines. The
common data access patterns of these pipelines include data dissemination, collection,
and aggregation [37]. In addition, concurrent data write operations across different
phases are very rare.

Our global caching infrastructure aims to support this type of data pipeline that are
performed using compute resources allocated dynamically in IaaS clouds. Our system
provides a POSIX interface and supports parallel IO to the data intensive applications
running in a virtual cluster. With this storage infrastructure, applications do not have to
be modified and can be offloaded into clouds directly.

In particular, this global caching architecture accommodates on-demand data
movement across different clouds to meet the following requirements: (1) a unified
storage solution for multi-cloud; (2) automatic on-demand data movement to fetch data
from a remote site; (3) facilitating parallel IO for high performance computing directly;
(4) supporting data access patterns commonly used; and (5) efficiently utilizing the
network bandwidth to transfer a large amount of data over distant centers.

Our design principle builds on the following key factors.
A global namespace with a POSIX interface: most high performance computing

applications rely on a traditional file interface, instead of the cloud objects. Exposing a
file interface can save the extra effort of converting between files and objects and it
works with many existing scientific applications seamlessly. Furthermore, the global
namespace across different clouds allow multiple research organizations share the same
set of data without concerning its exact location.

A hierarchical caching architecture: the caching architecture aims to migrate
remote data to locate sites in an automated manner without user’s direct involvement.
In addition, it takes advantage of data location to save unnecessary data transfer.

Data consistency model for the target data access patterns: appropriate data
consistency model is critical for the global performance and latency perceived by

Fig. 1. The hierarchical caching architecture across different clouds.

42 D. Abramson et al.

applications. Our consistency model supports common data access patterns, such as
data dissemination and data collections.

Network optimization for distant connections: our system should support optimized
global network path with multiple hops, and improve the usage of limited network
bandwidth.

The expense of acquiring virtual clusters is out of the scope of this paper. In
particular, we expect that users should be aware of whether the advantage of using a
remote virtual cluster offsets the network costs caused by significant inter-site data
transfer.

3.1 Hierarchical Global Caching Architecture

Many distributed storage systems use caching to improve performance by reducing
remote data access. Different from other work, our global caching architecture uses
caching to automate data migration across distant centers. The proposed caching model
assumes that each data set in the global domain has a primary site and can be cached
across multiple remote centers using a hierarchical structure, as exemplified in Fig. 1,
in which the primary site is the central storage center for keeping long-term use data.
Each data set has a primary copy maintained by its primary site and multiple cached
copies maintained by caching sites. The primary copy and cached copies form a tree
structure, in which the primary copy is the root. As illustrated in Fig. 1, the primary
copy is maintained by Cloud A on site a and it is cached in Cloud B and C respectively.
In Cloud C, the data is cached on two sites, c and d.

Each file in this system can have multiple replicas across data centers that are
identified using the same logical name. Within a single data site, a replica is controlled
by the local storage solution, typically a parallel file system, which may use data
duplication to improve performance. All the copies in a single center are taken as a
single logical copy. Across data centers, duplications of logical replicas and their
consistency are managed by the global caching architecture. Users are not aware of the
exact location for each data set. However, data is actually moved between geograph-
ically distributed caching sites according to data processing requirements, in order to
lower the latency to frequently accessed data. The migrated data set typically stays
locally for the term of use, instead of permanently. The basic data migration operations

Fig. 2. Data movement path.

A Cache-Based Data Movement Infrastructure 43

are supported: (1) fetching remote files to the local site; and (2) sending local updates to
a remote site. These two basic operations can be composed to support the common data
access patterns, such as data dissemination, data aggregation and data collection.

Data movement is triggered on-demand, although pre-fetch can be used to hide the
latency according to the exact data access patterns. Cache capacity on each site is
configurable, and an appropriate data eviction algorithm is used to maximize data
reuse. In the hierarchical caching architecture, data movement only occurs between
neighbor layers. Figure 2 illustrates the data movement path for the caching archi-
tecture of Fig. 1. The top tier caching serves any requested data from the next layer of
cache in line. When a cache miss occurs, the request will be forwarded to the next tier
of the hierarchical cache, until the primary site is reached. Typically, a read operation
moves data from the primary site to the targeted caching site layer by layer, while
writes are committed in a reverse order to the primary site.

The hierarchical structure enables moving data through intermediate sites. This
layered caching architecture can be adopted in two scenarios: (1) improving the usage
of local data copies while decreasing remote data access; and (2) data movement
adapted to the global topology of network connections. The exact path to transfer data
from the source site to the destination center should be optimized, because the direct
network path between two sites may not be the fastest one. In particular, all of the
available global network paths should be examined to take advantage path and file
splitting [15]. Sometime, adding an intermediate hop between source and destination
sites performs better than the direct link. This feature can be achieved by using the
hierarchical caching structure naturally. Transferring data via an intermediate site only
need to add the cached directory for the target data set, as described in Sect. 3.2. For
example, in Fig. 1, assume site a has poor direct network connection with site d, but
site c connects both a and d with high bandwidth network. Therefore, site a can move
data to d using site c as an intermediate hop with the layered caching structure.

3.2 Global Namespace and POSIX File Interface

With a geographical data pipeline, we envisage that different cloud facilities can take
part in the collaboration and exit dynamically. Distant collaborative sites should be
loosely coupled. Accordingly, we need a flexible method to construct the storage
system across different clouds. In order to allow data to be exchanged transparently
across different clouds, a consistent and uniform namespace needs to span a set of
distant centers. In addition, different from many other systems, our caching architecture
does not maintain a global membership service that monitors whether a data center is
online or offline. This saves the overhead of keeping the location of each piece of data
in multi-cloud.

The global namespace is provided using the POSIX file interface, and is con-
structed by linking the remote data set to a directory in the local file system. In other
words, a local directory is specified to hold the cache for the remote data set. Multiple
remote data sets, which may originate from different data centers, can be stored in
different directories on the same site. Therefore, a POSIX file interface unifies storage
access for both local and remote data. The cached remote directory has no difference
from other local directories, except its files are copied remotely whenever necessary.

44 D. Abramson et al.

3.3 Storage Organization of a Caching Site

In each site, a local parallel file system is used to maintain both cached remote data and
local files accessed by the parallel applications running in the virtual cluster. The local
parallel file system can be installed on dedicated storage resources to work as a shared
storage service, or located on storage devices associated with the same set of compute
resources allocated for the data analysis job. The first option maintains cached data for
long-term usage, while the second option suits short-term data maintenance, because
data storage is normally discarded after computing is finished. The storage media used
in each site can be multi-tiered, using varied storage devices such as SSD and hard disk
drives. How to organize the storage media to host the parallel file system is out of the
scope of this paper.

3.4 Data Consistency

To accommodate common data access patterns used in typical data analysis pipelines,
we adopt a consistency model to prioritize data access performance while providing
acceptable consistency. In particular, data consistency within a single site is guaranteed
by the local parallel file system. Across distant sites, a weak consistency semantic is
supported across shared files and a lazy synchronization protocol is adopted to save
unnecessary remote data movement. Remote files are copied only when they are
accessed. However, a prefetching policy can be specified to hide the latency of moving
data, such as copying neighbor files when one file in a directory is accessed. The
validity of cached files is actively maintained by each caching site. The validity is
verified both periodically and when directories and files are accessed. In addition, users
can select an appropriate policy for output files, such as write-through or write-back, to
optimize performance and resilience.

The updates on large files are synchronized using a lazy consistency policy, while
meta-data is synchronized using a prompt policy. Assuming each caching site verifies
its validation every f seconds, for an n level caching hierarchy, the protocol guarantees
that the whole system reaches consistency on updated meta-data within 2n•f seconds.
This consistency model supports data dissemination and collections very well across
distant sites on huge files, according to our experience.

3.5 Component Interaction

Figure 3 illustrates the major components that realize the global caching architecture
across distant sites. A POSIX file interface spans different clouds to provide a uniform
storage access interface. In each site, different native parallel file system can be used
and a file system adaptor provides a general POSIX-compliant interface. The Global
Caching module maintains the connections between each cached data set and its parent
copy. It coordinates with its peer on the remote site to move requested files according to
user requests and to synchronize updates. The Global Caching module builds on top of
the local native parallel file system by organizing the local storage space to maintain the
duplicated copies of remote files. It intercepts local file requests and moves remote data
transparently in case the requested file is not available locally. Therefore, it exposes the

A Cache-Based Data Movement Infrastructure 45

same POSIX-compliant file interface to applications. Accordingly, the global names-
pace is provided using the tree-based directory structure and seamlessly integrates into
the namespace of local file system. The Consistency module coordinates the data
synchronization according to user specified configurations.

4 System Demonstrations

We are currently building a prototype of the global caching architecture for testing and
evaluation purpose. We reuse existing file system components as much as possible to
minimize the implementation effort. The caching system builds on GPFS [13], Active
File Management (AFM) [17], and the NFS protocol [36]. We realized a platform-
independent method to allocate, instantiate and release the caching instance with the
target compute cluster across different IaaS clouds in an on-demand manner.

4.1 Existing Components

GPFS is a parallel file system designed for clusters, but behaves likes a general-purpose
POSIX file system running on a single machine. GPFS uses the shared-disk archi-
tecture to achieve extreme scalability, and supports fully parallel access both to file data
and metadata. Files are striped across all disks, while distributed locking synchronizes
accesses to shared disks. Our caching system uses the GPFS product, (also known as
IBM Spectrum Scale [16]), to hold both local and remote data sets.

As a component of IBM Spectrum Scale, AFM is a scalable, high-performance,
clustered file system cache across a WAN. It provides a POSIX-compliant interface
with disconnected operations, persistence across failures, and consistency management.
AFM transfers data from remote file systems and tolerates latency across long haul
networks using the NFS protocol. Parallel data transfer is supported with concurrent
NFS connections.

Figure 4 illustrates an instance of the global caching site. The GPFS cluster pro-
vides data service to the compute cluster. Each GPFS cluster is equipped with an AFM
component. Each server is attached multiple network shared disks. A configuration of
mirror redundancy is shown in Fig. 4. The number of servers and associated disks
depends on the total storage capacity needed. The number of gateway nodes determines
the aggregated bandwidth that can be achieved to transfer data in and out from the

Fig. 3. Major components in the global caching architecture.

46 D. Abramson et al.

cluster. Quorum managers maintain data consistency in the failure cases. The compute
cluster consists of multiple workers and a job scheduler with a login node.

4.2 Platform-Independent System Resource Management

The global caching system aims to support different IaaS cloud systems and provides a
platform-independent way of managing resource usage, including compute and storage
resource allocation, instantiation and release. Our primitive implementation handles
Amazon EC2, HUAWEI Public Cloud and OpenStack-based clouds. We realized a tool
that supports different cloud orchestration methods, such as CloudFormation in EC2
and Heat in OpenStack and HUAWEI Cloud, to automate the allocation, release, and
deployment of both compute and storage resources for building the caching site. To
configure each virtual node and storage resources in an automated manner, we use
Ansible [2] scripts. Both CloudFormation and Heat support Resource Tags to identify
and categorize cloud resources. Our automation tool utilizes this feature to generate
Ansible inventory and variables programmatically for system installation and
configuration.

Fig. 4. An instance of the global caching site.

Table 1. Cloud resources in Amazon EC2, HUAWEI Cloud, and OpenStack.

Resources Amazon EC2 HUAWEI Cloud OpenStack

Virtual machine Instance Elastic Compute Server Nova instance
OS images AMI Glance Glance
Block storage EBS Elastic Volume Service Cinder
Private network VPC VPC Neutron network
Public IP Public IP Elastic IP Floating IP
AAA SSH key pairs SSH key pairs SSH key pairs

A Cache-Based Data Movement Infrastructure 47

In order to accommodate a consistent caching system deployment over different
clouds, according network resources, Authentication, access and authorization (AAA),
virtual machines, and storage instances must be supported. Table 1 lists supported
resources in Amazon EC2, HUAWEI Cloud, and OpenStack.

Figure 5 illustrates the typical deployment in both HUAWEI and Amazon clouds.
In HUAWEI Cloud, shown in the left half of Fig. 5, both the compute and GPFS
clusters are instantiated using Elastic Compute Server (ECS). Each GPFS server is
attached with two Elastic Volume Service (EVS) disks. All of the ECS servers are
connected with a Virtual Private Cloud (VPC) that communicates with the Internet via
a NAT gateway. Each GPFS gateway node is equipped with an Elastic IP (EIP) to
access the Internet directly. In EC2, different resources are used to provide the similar
configuration, as illustrated in the right half of Fig. 5. Our automation tool allows for
and accommodates configurable parameters for the type and number of instances as
well as block devices attached, operating system image and other tunable parameters.

4.3 Data Transfer Optimization

Achieving high performance data transfer in a WAN requires tuning the components
associated with the distant path, including storage devices and hosts in both source and
destination sites and network connections [4, 8, 43]. Critical system parameters such as
the TCP buffer size and the number of parallel data transfers in AFM must be opti-
mized. In most cases, it is necessary to transfer the data with multiple Socket con-
nections in order to utilize the bandwidth of the physical link efficiently. Besides
moving multiple files concurrently, parallel data transfer must support file split to
transfer a single large file. With AFM, parallel data transfer can be achieved at different
levels: (1) multiple threads on a single gateway node; (2) multiple gateway nodes. Each
option suits for different scenario. For example, in case the Network Interface Card
(NIC) on a single gateway node provides enough bandwidth, the first option is enough.
In case there is restriction on the NIC bandwidth, multiple gateway nodes can be used.
AFM supports parallel data transfer with configurable parameters to adjust the number
of concurrent read/write threads, and the size of chunk to split a huge file.

With Amazon EC2, we use a single gateway node with multiple threads to par-
allelize data transfer. However, with HUAWEI Cloud, each EIP has a bandwidth
limitation. To maximize the performance of copying remote files, multiple gateway
nodes are used in the cache site. Accordingly, in the home site the same number of NFS
servers are deployed. The mapping between them is configured explicitly with AFM.

4.4 Data Consistency

The following data consistency modes are provided to coordinate concurrent data
access across distant centers with the assistance of AFM:

• Read Only: each caching site can only read the cached copies, but cannot update
them.

• Single Writer: only a single data site updates the cached file set, and the updates are
synchronized to other caching sites automatically.

48 D. Abramson et al.

• Concurrent Writer: multiple writers update the same file with application layer
coordination. The updates are synchronized without users interference.

AFM allows data to be cached at the block level, while data consistency is
maintained per file. When reading or writing a file, only the accessed blocks are fetched
into a local cache. When the file is closed, the dirty blocks are written to the local file
system and synchronized remotely to ensure a consistent state of the file.

5 Case Study and Performance Evaluation

We use a Genome Wide Association Study (GWAS) as an application driver to show
how to use our global caching architecture to assist on-demand scientific computing
across different clouds. GWAS are hypothesis-free methods to identify associations
between regions of the genome and complex traits and disease. This analysis was
performed on data from the Systems Genomics of Parkinson’s Disease consortium,
which has collected DNA methylation data on about 2,000 individuals. This study
aimed to test how genetic variation alters DNA methylation, an epigenetic modification
that controls how genes are expressed, while the results are being used to understand
the biological pathways through which genetic variation affects disease risk.

The work totally conducts 3.3 � 1012 statistical tests using the PLINK software
[35]. The workload is essentially embarrassingly parallel and does not require high
performance communication across virtual machines within the cloud. The data to be
analyzed, around 40 GB in total, is stored in NeCTAR’s data collection storage site
located in the campus of the University of Queensland (UQ) at Brisbane. The input data
is moved to the virtualized clusters, acquired in Amazon EC2 and HUAWEI Cloud, as
requested. In addition, we can control the size of the cloud resource, for both the
compute and GPFS clusters, according to our testing requirements.

Fig. 5. The deployment of a caching instance in HUAWEI Cloud and Amazon EC2.

A Cache-Based Data Movement Infrastructure 49

5.1 System Deployment

As shown in Fig. 6, virtualized compute clusters acquired from EC2 and HUAWEI
clouds respectively process input data stored in Brisbane. Each instance, including both
compute and GPFS clusters, is created using the automation tool described previously.
The size of each instance was selected to make the best usage of our available credit.
The EC2 instance is created with a single VPC located in Sydney availability zone.
The HUAWEI instance consists of two layers. The first layer is a caching only site
located in Beijing and the second layer consists of both caching and compute clusters
located in Shanghai. The EC2 and HUAWEI resources connected to the central storage
site in Brisbane via the global caching architecture. The data transferred between these
data sites is achieved using NFS connections and AFM caching. Typically, AFM NSD
protocol outperforms NFS. However, due to the security concern occurred in the public
network, we could only use NFS. The global caching system provided local access to
data even though it was actually stored in NeCTAR, and the necessary files were
fetched transparently on demand. Likewise, output files were written back to NeCTAR
without the user being aware. Therefore, the application was identical to as if it was
executed on a local cluster without any modification.

In the EC2 cluster, the Nimrod [11] job scheduler was used to execute 500,000
PLINK tasks, spreading the load across the compute nodes and completing the work in
three days. Overall, approximately 60 TBs of data were generated by the experiment
and sent back to Brisbane for long-term storage and post-processing.

With the hierarchical caching structure in HUAWEI cloud, the input data was
moved from Australia to Beijing first and then copied to Shanghai center. Due to credit
limitation, no significant compute jobs were executed in HUAWEI Cloud.

5.2 AWS EC2 Instance Selection

We investigated the appropriate AWS instance for our EC2 experiment. Due to the
constraints of time and cost, we could not exhaustively explore all the available
instances. We used a holistic approach to identify which instance types provide optimal

Fig. 6. The deployment of the global caching architecture for GWAS case study.

50 D. Abramson et al.

performance for different roles. Briefly, with the option of network-attached storage,
instance types, such as m4, could not provide sufficient EBS bandwidth for GPFS
Servers. Therefore, we examined the instances associated with the ephemeral storage of
local block devices. However, the d2 series, namely the d2.8xlarge type, experienced
hardware and underlying infrastructure reliability issues. Finally, we used the i3
instance types, i3.16xlarge, for the GPFS cluster that provided 25 Gbit/sec network
with the ephemeral NVMe class storage, and had no reliability issues. For the compute
cluster, we selected the compute-optimized flavours, c5.9xlarge. It had a dedicated
10 Gbit/sec bandwidth with Intel Xeon Skylake CPUs.

To determine instance counts, we matched aggregated worker bandwidth to GPFS
Server bandwidth to satisfy a fully balanced IO path. Further, we tested a small scale of
the PLINK workload to estimate run time per job and then sized our virtual cluster to
execute the full workload within *3 days. The final configuration is listed in Table 2.
Totally, 750 Nimrod worker threads were launched on the compute cluster.

5.3 Network Transfer Optimization

The network between AWS Sydney and UQ is 10 Gbps with around 18.5 ms latency.
The connection is under a peering arrangement between the national research network
provider, AARNET, and Amazon. The network is shared with other academic and
research sector AARNET partners. Therefore, our configuration aims to maximize the
effective bandwidth. For this case, a single active gateway node was used with 32 AFM
read/write threads at the cache site. In comparison, the default option is just one
read/write thread. TCP buffers were tuned to improve performance at both source and
destination sites. The home NFS server currently serves production workloads and
requires 4,096 NFS daemons to service this workload. With these optimizations in
place, we achieved about 2 Gbps, which is 20% of the peak bandwidth on the shared
public link. The total amount of data moved from UQ to Amazon Sydney was 40 GB,
but the amount of data moved back to our datacenter (home) was 60 TB in total.

5.4 Performance Evaluation

During the 3 days of experiment, system utilization was on average about 85–92% on
each node, with the I/O peaking at about 420,000 output and 25,000 input operations
per second (IOPS). The total 500,000 tasks were launched in 5 batches sequentially.
This allowed us to optimize the system configuration while monitoring the progress of

Table 2. Configurations of Amazon EC2 testing.

Type of nodes Instances Count Details

Nimrod worker c5.9xlarge 25 750 Xeon Skylake cores in total
AFM gateway i3.16xlarge 2 Each instance is equipped with
GPFS quorum i3.16xlarge 3 25 Gbit/sec network bandwidth
GPFS server i3.16xlarge 10 and 8 � 1.9 TB NVME

A Cache-Based Data Movement Infrastructure 51

computing and expense used. Actually, the system was tuned in the first batch.
Therefore, we only present the performance statistics for the last 4 batches. We used the
EC2 CloudWatch tools to monitor the performance. In particular, we captured CPU
utilization, network traffic and IOPS for each instance.

Although each PLINK task consists of similar computational complexity with
almost same size of input data, we observed significant performance variation, as
illustrated in Fig. 7. The averaged execution time is 200 s with a long tail of outliers,
and some special cases could take up to 1,000 s. Commonly, performance variability
exists in a large scale of distributed system. Shared resources and system and network
instability can lead to huge performance variation [3]. For our case, we observed
significant variations of IO access for PLINK tasks.

Fig. 7. Performance variation of PLINK tasks.

Fig. 8. Disk read operations per second. (Color figure online)

Fig. 9. Disk write operations per second. (Color figure online)

52 D. Abramson et al.

Figures 8 and 9 show the disk read and write statistics for compute servers, in
which each line with different color represents metrics for a single instance. Because of
the PLINK workload, write IO is an order of magnitude higher than read performance.
The metrics of different instances are correlated very well and it means the workload on
each instance is pretty similar. In particular, the write performance was comparatively
stable within the range of 200K and 400K. We believe this is because the updates were
first committed to local NVMe devices before being transferred to the home site
through AFM gateway. In comparison, averaged read operations changes from around
22K to less 15K. This may be caused by unreliable long-haul network.

Figure 10 presents the network traffic from Amazon to UQ through GPFS gateway
at the caching site, in which the orange line represents the operative gateway node and
the blue one is for the fail-over backup node. We can see that most remote data traffics
were managed by the operative gateway node. There are significant drops in the last
day of experiment. We assume they were caused by shared bandwidth competition
from other public users. This resource contention also impacts the PLINK execution
time at the last day, especially the performance of read IO.

6 Conclusions

Geographically distributed data processing pipelines are becoming common. The
stages of data intensive analysis can be accelerated using cloud computing with the
high throughput model and on-demand resource allocation. It is desired that existing
parallel applications can be offloaded into a multi-cloud environment without signifi-
cant modifications. To achieve this goal, this paper presents a global caching archi-
tecture that provides a uniform storage solution to migrate data sets across different
clouds transparently. In particular, on-demand data movement is provided by taking
advantage of both temporal and spatial locality in geographical data pipelines. Coop-
erating with the dynamic resource allocation, our system can improve the efficiency of
large-scale data pipelines in multi-clouds. Our architecture provides a hierarchical
caching framework with a tree structure and the global namespace using the POSIX file
interface. The system is demonstrated by combining existing storage software,
including GPFS, AFM, and NFS. Parallel IO is supported directly to improve the

Fig. 10. Outbound network traffic of AFM gateway nodes. (Color figure online)

A Cache-Based Data Movement Infrastructure 53

performance of scalable data analysis applications. Both block-based caching and file-
based data consistency are supported in the global domain. A platform independent
method is realized to allocate, instantiate and release the caching site with both com-
pute and storage clusters across different clouds. The case study of GWAS demon-
strates that our system can organize public resources from IaaS clouds, such as both
Amazon EC2 and HUAWEI Cloud, in a uniform way to accelerate massive bioin-
formatics data analysis. In particular, the PLINK analysis was offloaded into the multi-
cloud environment without any modification and worked as if it was executed on a
local cluster. The performance evaluation demonstrates that our global caching
architecture has successfully addressed its design goals.

Acknowledgments. We thank Amazon and HUAWEI for contributing cloud resources to this
research project.

References

1. Amazon S3 Homepage. https://aws.amazon.com/s3/. Accessed 30 Nov 2018
2. Ansible Homepage. https://www.ansible.com/. Accessed 30 Nov 2018
3. Dean, J., Barroso, L.: The tail at scale. Commun. ACM 56, 74–80 (2013)
4. Kumar, A., et al.: BwE: flexible, hierarchical bandwidth allocation for WAN distributed

computing. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM 2015), London (2015)

5. Rajendran, A., et al.: Optimizing large data transfers over 100Gbps wide area network. In:
Proceedings of 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing (CCGrid 2013), Delft (2013)

6. Thomson, A., Abadi, D.J.: CalvinFS: consistent WAN replication and scalable metadata
management for distributed file systems. In: Proceeding of the 13th USENIX Conference on
File and Storage Techniques (FAST 2015), CA (2015)

7. Allen, B., et al.: Globus online: radical simplification of data movement via SaaS. Technical
report, The University of Chicago (2011)

8. Settlemyer, B., et al.: A technique for moving large data sets over high-performance long
distance networks. In: Proceedings of IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST 2011), Denver (2011)

9. Dropbox Homepage. https://www.dropbox.com. Accessed 30 Nov 2018
10. Abramson, D., Carroll, J., Jin, C., Mallon, M.: A metropolitan area infrastructure for data

intensive science. In: Proceedings of IEEE 13th International Conference on e-Science (e-
Science), Auckland (2017)

11. Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: a tool for performing parametrised
simulations using distributed workstations. In: Proceedings of the 4th IEEE International
Symposium on High Performance Distributed Computing (1995)

12. Nygren, E., Sitaraman, R., Sun, J.: The Akamai network: a platform for high-performance
internet applications. ACM SIGOPS Oper. Syst. Rev. Arch. 44(3), 2–19 (2010)

13. Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing clusters. In:
Proceedings of the 1st USENIX Conference on File and Storage Techniques (FAST) (2002)

14. Hupfeld, F., et al.: The XtreemFS architecture: a case for object-based file systems in grids.
J. Concurr. Comput. 20(17), 2049–2060 (2008)

54 D. Abramson et al.

https://aws.amazon.com/s3/
https://www.ansible.com/
https://www.dropbox.com

15. Khanna, G., et al.: Using overlays for efficient data transfer over shared wide-area networks.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC 2008), Austin
(2008)

16. IBM Spectrum Scale Homepage. https://www.ibm.com/support/knowledgecenter/en/
STXKQY_4.2.0. Accessed 30 Nov 2018

17. IBM, Active File Management (AFM) Homepage. https://www.ibm.com/support/
knowledgecenter/en/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.adv.doc/bl1adv_afm.
htm. Accessed 30 Nov 2018

18. Reuter, H.: Direct client access to vice partitions. In: AFS & Kerberos Best Practice
Workshop 2009, CA (2009)

19. Raicu, I., et al.: The quest for scalable support of data-intensive workloads in distributed
systems. In: Proceedings of the 18th ACM International Symposium on High performance
Distributed Computing (HPDC 2009), Munich (2009)

20. Raicu, I., Zhao, Y., Foster, I., Szalay, A.: Accelerating large-scale data exploration through
data diffusion. In: IEEE International Workshop on Data-Aware Distributed Computing
(DADC 2008) (2008)

21. Bent, J., et al.: Explicit control in a batch-aware distributed file system. In: Proceedings of
the 1st Conference on Symposium on Networked Systems Design and Implementation
(NSDI 2004), CA (2004)

22. Corbett, J., et al.: Spanner: Google’s globally distributed database. ACM Trans. Comput.
Syst. (TOCS) 31(3–8), 1–22 (2013)

23. Kubiatowicz, J., et al.: OceanStore: an architecture for global-scale persistent storage. In:
Proceedings of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2000)

24. Morris, J., et al.: Andrew: a distributed personal computing environment. Commun. ACM-
MIT Press Sci. Comput. Ser. 29(3), 184–201 (1986)

25. Vahi, K., et al.: Rethinking data management for big data scientific workflows. In:
Proceedings of 2013 IEEE International Conference on Big Data, Silicon Valley (2013)

26. Biven, L.: Big data at the department of energy’s office of science. In: 2nd NIST Big Data
Public Working Group Workshop (2017)

27. Pacheco, L., et al.: GlobalFS: a strongly consistent multi-site file system. In: Proceedings of
IEEE 35th Symposium on Reliable Distributed Systems (SRDS), Budapest (2016)

28. Vitale, M.: OpenAFS cache manager performance. In: AFS & Kerberos Best Practice
Workshop 2015, PA (2015)

29. Microsoft Azure Homepage. https://azure.microsoft.com/en-us/. Accessed 30 Nov 2018
30. Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery.

Microsoft Corporation, Redmond (2012)
31. Eshel, M., Haskin, R., Hildebrand, D., Naik, M., Schmuck, F., Tewari, R.: Panache: a

parallel file system cache for global file access. In: Proceedings of the 8th USENIX
Conference on File and Storage Technologies (FAST 2010), California (2010)

32. Ardekani, M., Terry, D.: A self-configurable geo-replicated cloud storage system. In:
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2014) (2014)

33. Nextcloud Homepage. https://nextcloud.com. Accessed 30 Nov 2018
34. OpenAFS Homepage. https://www.openafs.org/. Accessed 31 Jan 2019
35. PLINK Homepage. http://zzz.bwh.harvard.edu/plink/. Accessed 30 Nov 2018
36. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.: Design and implementation

of the sun network file system. In: Proceedings of the Summer USENIX (1985)
37. Tudoran, R., Costan, A., Antoniu, G.: OverFlow: multi-site aware big data management for

scientific workflows on clouds. IEEE Trans. Cloud Comput. 4(1), 76–89 (2016)

A Cache-Based Data Movement Infrastructure 55

https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0
https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0
https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.adv.doc/bl1adv_afm.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.adv.doc/bl1adv_afm.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_4.2.0/com.ibm.spectrum.scale.v4r2.adv.doc/bl1adv_afm.htm
https://azure.microsoft.com/en-us/
https://nextcloud.com
https://www.openafs.org/
http://zzz.bwh.harvard.edu/plink/

38. Tudoran, R., Costan, A., Rad, R., Brasche, G., Antoniu, G.: Adaptive file management for
scientific workflows on the Azure cloud. In: Proceedings of 2013 IEEE International
Conference on Big Data, Silicon Valley (2013)

39. Tudoran, R., Costan, A., Wang, R., Bouge, L., Antoniu, G.: Bridging data in the clouds: an
environment-aware system for geographically distributed data transfers. In: Proceedings of
14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGrid
2014), Delft (2013)

40. Dolev, S., Florissi, P., Gudes, E., Sharma, S., Singer, I.: A survey on geographically
distributed big-data processing using MapReduce. IEEE Trans. Big Data 5(1), 60–80 (2017)

41. Rhea, S., et al.: Pond: the OceanStore prototype. In: Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST 2003) (2003)

42. Allcock, W.: GridFTP: protocol extensions to FTP for the grid. Global Grid ForumGFD-R-
P.020 (2003)

43. Kim, Y., Atchley, S., Vallee, G., Shipman, G.: LADS: optimizing data transfers using
layout-aware data scheduling. In: Proceedings of the 13th USENIX Conference on File and
Storage Technologies (FAST 2015), Santa Clara (2015)

44. Wu, Z., et al.: SPANStore: cost-effective geo-replicated storage spanning multiple cloud
services. In: Proceedings of the 24th ACM Symposium on Operating Systems Principles
(SOSP 2013) (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

56 D. Abramson et al.

http://creativecommons.org/licenses/by/4.0/

PHINEAS: An Embedded Heterogeneous
Parallel Platform

Nikhil Khatri(B), Nithin Bodanapu(B), and T. S. B. Sudarshan(B)

Department of Computer Science and Engineering,
PES University, Bangalore 560085, India

nikhilkhatri97@gmail.com, nithinbodanapu97@gmail.com,
sudarshan.tsb@gmail.com

Abstract. With machine learning being applied to increasingly varied
domains, the computational needs of researchers have increased propor-
tionately. Hobbyists, researchers and universities are turning to building
their own cluster computers to meet their high performance compute
needs. These clusters are typically highly efficient, low cost ARM based
platforms consisting of between 4 and 8 nodes. In this paper, we present
PHINEAS: Parallel Heterogeneous INdigenous Embedded ARM System,
a parallel compute platform which allows for distributed computation
using MPI and OpenMP and which further leverages the on-board GPU
to perform general purpose compute tasks. We describe the hardware
components of the cluster, the software stack installed on each node and
a host of common benchmark algorithms and their results. The results
show that the cluster meets the stringent latency requirements of embed-
ded systems. We further describe how the on-board GPU’s OpenGL ES
2.0 programming model can be used to implement tasks such as image
convolution and neural network inference which are common in intelli-
gent embedded systems. Parallelisation of compute tasks across multiple
GPUs is discussed as a method to combine the advantages of distributed
and heterogeneous computing.

Keywords: Cluster computer · Embedded system ·
Heterogenous computer

1 Introduction

The class of platform that PHINEAS belongs to is frequently referred to as a
Beowulf cluster [16]. These are described as “scalable performance clusters based
on commodity hardware, on a private system network, with open source software
(Linux) infrastructure” [12]. Common configurations typically include multiple
nodes with the same hardware. This may be either the same processor, or, as in
our case, the identical computer. Modern Beowulf clusters frequently make use
of a class of computers titled SBCs (Single Board Computers). These include
a processor, GPU, RAM, storage and I/O such as USB, ethernet and wireless
communication all on one board. Most common clusters consist of anywhere
c© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 57–70, 2019.
https://doi.org/10.1007/978-3-030-18645-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_4

58 N. Khatri et al.

between 2 and 16 boards [1,15]. Extreme examples which consist of hundreds of
nodes also exist. The RaspberryPi has emerged as the most commonly used SBC
for Beowulf clusters. Its low cost, easy availability, power efficiency and excellent
support make it a popular choice. Most literature on existing embedded paral-
lel platforms provide data about performance scaling across nodes for common
compute tasks such as matrix multiplication, image convolution and algorithms
such as mergesort. However, there seems to have been little work done towards
utilizing the GPUs on such boards for general compute tasks. To this end, we
built PHINEAS: Parallel Heterogeneous INdigenous Embedded ARM
System. This was one of the primary goals of our research: to use the on-board
GPU to perform compute tasks.

2 Hardware and Construction

Any cluster like PHINEAS consists of three main components. Namely, the com-
pute board, the power supply and the networking hardware. The power supply
is usually dictated by the power draw associated with each board and the total
number of boards in the cluster. The network switch must match the bandwidth
afforded by the SBC and must provide enough ports to accommodate all boards
and extra lines for extra-net connections.

2.1 Single Board Computer

The SBC chosen for the cluster affects performance more than any other part.
When considering boards we used the following factors to guide our choice:

CPU. The CPU plays a lead role in all the computation done on the cluster.
When comparing board CPUs, clock speed and number of cores play a critical
role. Most of the boards considered had a clock speed greater than or equal to
1 GHz. Boards in this class typically have between 2 and 4 cores, with the rare
exception having 8 cores. The number of cores defines the amount of parallelism
we would be able to extract on each board using OpenMP.

GPU. The GPU is more important for our cluster than most other clusters
since GPGPU compute is an important goal for us. However, this was not a
critical point when making a choice since most boards have the same MALI 400
MP2 GPU clocked at around 500 MHz. A notable exception is the Raspberry Pi
3B+ which has a Broadcom GPU.

RAM. All boards we considered had 1 GB of RAM. This is critical for most
applications which rely on data level parallelism since large data sets must be
kept in memory and accessed frequently. Other than the Raspberry Pi, all boards
have DDR3 RAM. The Raspberry Pi has the slower LPDDR2 generation of
RAM.

PHINEAS: An Embedded Heterogeneous Parallel Platform 59

Networking. Networking is typically a significant overhead in distributed com-
puting. To minimize this overhead it is essential that a high bandwidth ethernet
port is offered by the board. Most boards offer ethernet ports with gigabit speeds.
A notable exception was the Raspberry Pi which has a maximum speed of about
300 Mbps [10].

Power. Since one of the key features of a embedded parallel platform is effi-
ciency, low power draw for each component is a must. Most boards that we
considered did not deviate significantly from the 5 Volt/2 Ampere mark.

Storage. An often neglected feature of these SBCs is the storage options offered
by them. This is because seldom do these boards offer more than a single SDcard
slot. An alternate option is eMMC memory. This may either be soldered on-
board, or be connected as an external module. eMMC memory has much higher
read throughput than an SD card and also has better write resiliency [11]. Stor-
age sizes typically range between 8 GB and 32 GB, with 8 being the minimum
required for most operating systems.

Chosen Board. Keeping these factors in mind, we selected the NanoPi M1 Plus
for our cluster [7]. This was chosen for its gigabit networking, 1 GB of DDR3
RAM and most importantly, 8 GB of eMMC storage. The board has a Allwinner
H3 SOC, which has a quad-core Cortex-A7 CPU and a Mali-400 MP2 GPU.
The availability of the board in India contributed strongly to our choice. Other
boards we considered were the Raspberry Pi 3B+ [10], the Pine A64+[9] and
the NanoPi Fire 3 [6]. It is important to note that our decision was based on the
specifications of the various boards and the data provided by others. We did not
benchmark these boards ourselves (Table 1).

2.2 Power Supply

For powering the entire cluster it is necessary that the chosen power supply is
able to provide sufficient voltage to each node while also being able to provide the
necessary total wattage of the cluster. A stable power source is hence necessary
for consistent operation. We chose to use two 5-port USB hubs, each of which
provides up to 40 W of power which is sufficient for 4 boards.

2.3 Network Switch

For communication among the nodes of the cluster it is essential to have a
switch that can make use of the gigabit ethernet ports on the compute boards so
as to avoid any network latency during computation. This trend is common in
clusters where the boards support full gigabit networking [1]. Another technology
available for ethernet is PoE - Power over Ethernet. This allows us to fuse the
power delivery and networking into a single connection backbone. The drawback

60 N. Khatri et al.

of this is, that it limits gigabit connection to 100 Mbps, since the remaining
lines are used for power delivery. Further, of the boards we considered, only the
raspberry pi 3b+ supports PoE. Even this requires a special PoE HAT (Hardware
Attached on Top) and a PoE capable switch which are typically more expensive.

2.4 PHINEAS Specification

The PHINEAS cluster consists of two stacks, each consisting of 4 NanoPi M1
Plus boards, with a 8-port gigabit switch and a USB power supply rated at 40W.
Each stack has approximate dimensions 35 cm×25 cm×25 cm, making it suitable
for embedded systems. The cluster has no moving parts and is thus structurally
stable. If the eMMC storage is used as the boot partition, the microSD card can
also be removed, resulting in a system without any loose components.

Table 1. Board specification comparison

Feature Raspberry Pi 3
B+

Pine A64+ NanoPi Fire3 NanoPi M1
Plus

Processor Broadcom
CortexA53
(1.4GHz) x 4

Cortex A53
(1.2GHz) x 4

S5P6818
(1.4GHz) x 8

Cortex A7
(1.2GHz) x 4

GPU Broadcom
Videocore 4

Mali 400 MP2 Mali 400 MP4 Mali 400 MP2

RAM 1GB LPDDR2 1GB DDR3 1GB DDR3 1GB DDR3

Ethernet Gigabit
(300Mbps)

Gigabit Gigabit Gigabit

Power draw 5V/2.5A 5V/2A 5V/2A 5V/2A

Storage microSD microSD microSD eMMC +
microSD

3 Software Stack

In our cluster, we reserved one board for research involving the GPU and the
remaining were used for the tests described in the next section. This is because
the manufacturer recommends a different OS distribution when writing code
for the GPU. Note: There are no hardware differences between the boards. For
the 7 benchmark boards, we installed Linux 4.14 based on the mainline kernel.
This was provided by FriendlyARM, the board manufacturer. For parallel pro-
gramming within the board, we installed OpenMP. For distributing work across
boards, we installed MPICH3 which is an implementation of the Message Passing
Interface. This provides an easy to use API when distributing workloads across
multiple machines connected over a network.

To use the GPU, we installed the Linux-3.4 OS image which was provided
by Allwinner, the manufacturer of the SOC.

PHINEAS: An Embedded Heterogeneous Parallel Platform 61

4 Performance Benchmarks

As described in the previous section OpenMP and MPI were used to distribute
the workload across the cluster. Various common algorithms were run on the
PHINEAS cluster using 1, 2 .. 7 nodes incrementally. The time taken for each
execution was recorded and plotted against number of nodes used. This provides
us with an understanding of the speedup achieved for various workloads. The
programs suitably exert the CPU, memory and networking of the cluster and its
computers.

4.1 Monte Carlo Pi Estimation

Monte Carlo Pi estimation is a method to estimate the value of pi based on ran-
domly generated values [5]. It calculates the ratio of number of points lying inside
a circle against the number of points lying inside a square. We run multiple iter-
ations to randomly generate points in two dimensional space and to parallelize
it we distribute a chunk of iterations to each node. This test was done solely to
show that for a large enough problem size we can achieve close to ideal speed
up. In our case it was 6.89 for a 7 node cluster. The speedup graph obtained
on PHINEAS is provided in Fig. 1. The X-axes shows the number of nodes used
to distribute the workload of 1000000, 10000000 and 100000000 iterations to
estimate Pi.

Fig. 1. Speedup observed for distributed Monte Carlo Pi estimation

4.2 Distributed Merge Sort

Merge sort is a simple sorting algorithm that has the added advantage of easily
being parallelisable. The reason for using this as a benchmark is that it is a com-
mon algorithm that places a heavy load on the network as it requires the scatter

62 N. Khatri et al.

and gather of large array chunks across all the nodes of a cluster. The speedup
graph obtained on PHINEAS is provided in Fig. 2. The x-axis shows the num-
ber of nodes used to distribute the workload of N (10000, 100000 and 1000000)
elements in the array which is to be sorted. An existing C implementation using
MPI was used [3].

Fig. 2. Speedup observed for distributed Merge Sort

4.3 Image Convolution

One of the main applications for this cluster was robotics which involves frequent
use of computer vision. One of the main tasks in computer vision is image con-
volution. Images can be convolved in an immensely parallel manner, where each
pixel can theoretically be processed in parallel. The benchmark program works
by dividing the image into vertical columns, applying the convolution filter on
each of these and merging the segments of the image to get the final output.
For the convolution the OpenCV library for Python was used [2]. The speedup
graph obtained on PHINEAS is provided in Fig. 3. The X-axis shows the number
of nodes across which the image to be convolved is distributed in a column by
column fashion.

4.4 Hybrid Matrix Multiplication

We explored a hybrid approach of using OpenMP and MPI. This allowed us to
parallelize workload across a cluster and also across all the cores of a processor,
making full use of our Quad-Core CPUs. This is known to be an ideal method to
distribute workload and optimize resources utilization. For a problem of A × B
we send the matrix B to all the nodes and send a subset of rows of A to each
node of the cluster. Within each node we compute the multiplication of rows to
each column of B. Here there is scope for parallelization so that a row in A can

PHINEAS: An Embedded Heterogeneous Parallel Platform 63

Fig. 3. Speedup observed for distributed image convolution

be multiplied by different columns of B simultaneously using multiple threads.
This allows us to efficiently utilize all the resources available to us. In Figs. 4
and 5 we show the speedup obtained when using a single thread and multiple
threads [4]. The X-axis shows the distribution of workload across the 7 nodes of
PHINEAS with 1 and 4 threads used per node. The tabular form of the same
data is given in Table 2.

Fig. 4. Speedup observed for hybrid matrix multiplication with size of the matrices as
100 × 100

4.5 Neural Network Training

Deep Learning is one of the most researched areas in current times and is highly
compute intensive and parallelisable. Taking this into consideration we paral-
lelized an existing dense neural network built on python using the numpy library
to train on the MNIST dataset. This network was parallelized using pyMPIch,

64 N. Khatri et al.

Fig. 5. Speedup observed for hybrid matrix multiplication with size of the matrices as
1000 × 1000

Table 2. Time for matrix multiplication under varying sizes and constraints like Matrix
size, number of threads and number of nodes

Nodes Threads N Time Nodes Threads N Time

1 1 100 0.109478 1 1 1000 159.870361

2 1 100 0.085684 2 1 1000 79.573329

3 1 100 0.095737 3 1 1000 53.578156

4 1 100 0.087392 4 1 1000 40.160633

5 1 100 0.080584 5 1 1000 32.261839

6 1 100 0.075198 6 1 1000 26.876678

7 1 100 0.094543 7 1 1000 23.273858

1 4 100 0.039621 1 4 1000 39.305208

2 4 100 0.051147 2 4 1000 21.83931

3 4 100 0.054234 3 4 1000 14.459377

4 4 100 0.067129 4 4 1000 11.512601

5 4 100 0.07509 5 4 1000 8.369552

6 4 100 0.064968 6 4 1000 8.057398

7 4 100 0.069967 7 4 1000 6.747061

a wrapper for the MPI library implemented in C. Hardware used for efficient
training of neural networks involves the use of expensive GPUs especially for
large complex networks. Such hardware is typically expensive and not easily
available. Our aim is to provide a cost effective solution to this problem. The
benchmark that we ran was of a dense neural network tested with 25, 50, 75 and
100 hidden units and we have seen that the speedup increases as the number of
hidden units increases [8]. The idea behind showcasing this as a benchmark is to
show how we can make use of a simple embedded system to reduce training time
in a neural network. The speedup graph is given in Fig. 6. The X-axis consists of

PHINEAS: An Embedded Heterogeneous Parallel Platform 65

number of nodes the workload is distributed across different number of hidden
units in the neural network.

Fig. 6. Speedup observed for distributed dense neural network training with 25 hidden
units

5 Graphics Processing Unit

A key goal of our project was to use the on-board GPU to perform general
purpose computation, since this has not been achieved by any cluster of this
class previously. The GPU on the NanoPi M1 Plus is the Mali-400 MP2. This,
being a slightly older and lower performance GPU does not support modern
programming environments such as OpenCL. This greatly hampers the ability
to carry out non-graphical computation on the board. The API supported by
the GPU is OpenGL ES 2.0 which is described in greater detail in the following
subsection.

5.1 OpenGL ES 2.0

OpenGL ES is a cross-platform API for rendering 2D and 3D graphics on embed-
ded and mobile systems. The 2.0 variant was the first API to support pro-
grammable shaders for a mobile or embedded environment [13]. When writing a
program using OpenGL ES 2.0, output is controlled primarily through the two
shaders: the vertex shader and the fragment shader.

Vertex Shader. The input to the vertex shader is a set of vertex attribute
objects. One vertex is provided as input to each instance of the vertex shader.
Each vertex consists of 4 attributes, representing location in x, y and z coor-
dinates, and a fourth coordinate used for projection and transformations. The
vertex shader is responsible for transforming or re-positioning the input vertex
and providing a single transformed output vertex. On the Mali-400 MP2 there is

66 N. Khatri et al.

one physical vertex shader. For our purposes, we do not perform any computa-
tion in the vertex shader. We simply provide the vertices of two triangles, which
between them cover the entire screen.

Programming for both shaders is done using GLSL ES (OpenGL Shading
Language), a C-like language which provides data types, mathematical opera-
tions and inbuilt variables to aid in programming the shaders [13]. Example code
for the vertex shader is shown.

a t t r i b u t e vec4 vPos i t i on ;

void main () {
g l P o s i t i o n = vPos i t i on ;

}
vPosition provides the input vertex coordinates. These are simply copied

over to gl Position, which is the variable where the output vertex must be
placed for each vertex shader instance.

Fragment Shader. After the vertex shader, the primitive shapes undergo ras-
terization to generate fragments, each of which has a specific depth and color
value. It is the fragment shader’s responsibility to color each fragment using its
coordinates in the window and other optional variables such as textures and
samplers.

On the Mali-400 MP2 there are 2 physical fragment shaders. This is where
we perform the majority of our computation. A simple example of a fragment
shader is shown.

void main (){
g l FragColor = vec4 (1 . 0 , 0 , 0 , 1 . 0) ;

}
This shader simply colors all fragments red. The gl FragColor variable

expects an output in RGBA form (Red, Green, Blue and Alpha) [13].

5.2 Image Convolution

One task which easily lends itself to GPU computation is image convolution.
Convolution involves performing a matrix product of a given kernel (or convo-
lution matrix) with each mxm submatrix of the image. Kernels may be 1D, 2D
or 3D in cases where color is also used. This task is inherently parallel since the
kernel can be applied to each submatrix of the image independently. To perform
this task, the first challenge is how to provide an image to the fragment shader,
where we intend to perform our computation. To do this, we make use of a fea-
ture of OpenGL called textures. We are able to treat an image as a texture and
sample from it in the fragment shader. To bind the image as a texture, we load
the image outside of the shaders, in our C code. To do this, we first generate

PHINEAS: An Embedded Heterogeneous Parallel Platform 67

a texture object, bind the new texture and copy over the data from the image,
which we read in from a bitmap (.BMP) file. We can then access this texture from
the fragment shader through a sampler2D variable. In our example, we use the
Sobel filter for the x coordinate. This is a kernel which can detect vertical lines.
For our implementation, we chose to hardcode the kernel values, but these could
easily be encoded as another texture or by using the glGetUniformLocation
function of OpenGL. The code for the Sobel filter is shown. Applying the sobel
filter to a 1920 × 1080 pixel image, we consistently saw frame-rates in excess of
35 FPS, which is sufficient to meet real-time requirements.

5.3 Neural Network Inferencing

With the recent boom in computational power, machine learning techniques have
gained massive popularity and are applied to increasingly diverse domains. Neu-
ral networks in specific are applied to a variety of domains with great success.
Digital image processing has seen great advancement through the use of neural
networks. This has trickled through to embedded systems where machine learn-
ing powered image processing algorithms are used for obstacle avoidance and
human interaction. However, there has been limited work towards implementing
neural networks on GPUs for embedded systems. In addition, this has never
been discussed in the context of ARM based embedded clusters. In this section
we describe a simple implementation for a dense fully connected neural network.
The goal of this is to show that it is possible to implement fairly complicated
networks using the restrictive OpenGL ES 2.0 API. In our implementation, all
inner products involved in a single layer are handled in parallel by the fragment
shader. The input for each layer is prepared and passed in by the draw loop in
the C program. The output of each layer is also parsed by the same.

In a neural network, a layer is made up of multiple neurons. Each neuron
takes in a vector of the previous layer’s output and performs an inner product
of this with a weight vector. The result of this inner product is typically passed
through an activation function such as a RelU or sigmoid function.

In a single layer of a neural network, each node’s output is independent
and can be calculated concurrently. Thus, we assign one fragment shader to
each node of a layer. For this, each fragment shader needs a way to locate its
input values and its weights. For our implementation, we provide both weights
and inputs in 1 dimensional arrays to the fragment shader. This is done in the C
code by getting a uniform location using glGetUniformLocation which provides
a named location which can be accessed by the fragment shader. Then, before
calling the rendering pipeline for each layer, we populate the weights, previous
layer’s output and metadata concerning the size of the current and preceding
layer in uniform locations. In the fragment shader, we loop over all outputs
of previous layer, multiply these with the appropriate weights and accumulate
these in a local variable. This accumulated variable is then output through the
red channel of the output color vector.

68 N. Khatri et al.

p r e c i s i o n mediump f l o a t ;
uniform f l o a t weights [1 0 0] ;
uniform f l o a t inputs [1 0] ;
uniform in t t h i s l a y e r w i d t h ;
uniform in t p r ev l aye r w id th ;

void main () {
f l o a t acc = 0 . 0 ;
i n t i ;
i n t neuron number = in t (gl FragCoord [0]) ;

f o r (i =0; i<prev l aye r w id th ; i++){
acc += f l o a t (weights [neuron number

∗ prev l aye r w id th + i])
∗ f l o a t (inputs [i]) ;

}
g l FragCo lor = vec4 (acc /255 .0 , 0 . 0 , 0 . 0 , 0 . 0) ;

}
In this example 255 is used to normalise the output of each layer to a value

less than 1. This value must be changed depending on the expected maximum
output of each layer to prevent clipping. Setting this to a very large value however
would lead to loss of precision.

While this paper does not discuss the performance of the system, some con-
siderations regarding performance are fundamental to the final design. Compi-
lation of the vertex and fragment shaders is a fairly expensive task and hence
should be minimized. In our implementation, we are able to use a single vertex
shader and a single fragment shader, both of which are compiled only once at
the very beginning. Further, it is efficient to have a single size for the viewPort
since then only a single viewPort of the required dimension is created. For this
reason, we chose to create a viewPort of the dimension largestlayerwidth × 1.
This would ensure that for each layer, we would have at least as many frag-
ment shader instances as the number of neurons in the layer. Some layers have
fewer neurons than the maximum. For these, we avoid placing an if within the
fragment shader as this reduces the efficiency on a SIMD processor such as a
GPU [14]. Instead, we simply calculate these redundant values and ensure we
do not use them when we process the output in the C program. Further, it is
essential that we provide a single constant size to the weight and input arrays
in the fragment shader. For this, we ensure that the input array is as large as
the widest layer, and the weights array is as large as the maximum product of
widths of two consecutive layers.

5.4 Usability

In its current form, with the limited interface provided by openGL ES 2.0, it is
the view of the authors that any potential speedup gained by using the GPU will

PHINEAS: An Embedded Heterogeneous Parallel Platform 69

be offset by the increased effort required to write a suitable fragment shader and
to develop efficient code to communicate with the GPU. To make achieving this
speedup less taxing, some form of lightweight framework on top of the existing
OpenGL ES 2.0 would be imperative. Further, if a program were able to utilise
all 8 GPUs simultaneously, one could expect a significant speedup. This would
merit the extra effort required in writing such a program.

Acknowledgments. The authors would like to thank Dr. Kiran D C of Presidency
University-Bangalore. His original work towards an embeddable cluster provided the
basis for this work. The authors would also like to thank PES University for providing
the funding necessary for building PHINEAS.

References

1. 96-core arm supercomputer using the nanopi-fire3. https://climbers.net/sbc/
nanopi-fire3-arm-supercomputer/. Accessed 30 Sept 2018

2. Distributed image convolution. https://github.com/arundasan91/MPI---Message-
Passing-Interface/blob/master/Image-Scatter-Gather-Tutorial.md

3. Distributed merge sort. https://github.com/racorretjer/Parallel-Merge-Sort-with-
MPI/blob/master/merge-mpi.c

4. Hybrid matrix multiplication. http://assets.duet.to/dkl.cs.arizona.edu/teaching/
csc522-fall16/examples/hybrid-openmp-mm.c

5. Monte carlo estimation. https://github.com/kiwenlau/MPIPI/blob/master/
Montecarlo/mpipi.c

6. NanoPi Fire3. http://wiki.friendlyarm.com/wiki/index.php/NanoPi Fire3.
Accessed 30 Sept 2010

7. NanoPi M1 Plus. http://wiki.friendlyarm.com/wiki/index.php/NanoPi M1 Plus
8. Neural network training. https://github.com/DT42/neural-network-model-

manipulations/blob/master/mnist-nn-data-parallelism.py
9. PINE A64+/PINE A64. https://www.pine64.org/?page id=1194. Accessed 30

Sept 2010
10. Raspberry Pi 3 model B+ product page. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b-plus/. Accessed 30 Sept 2018
11. What is eMMC memory – software support - reliance nitro. https://www.datalight.

com/solutions/technologies/emmc/what-is-emmc. Accessed 30 Sept 2018
12. What’s a beowulf? http://www.beowulf.org/overview/faq.html
13. M̃unshi, A., G̃insburg, D., Shreiner, D.: OpenGL ES 2.0 Programming Guide.

Pearson, London (2009)
14. Fung, W.W., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and

scheduling for efficient GPU control flow. In: 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pp. 407–420 (2007)

15. Kiepert, J.: Creating a Raspberry Pi-based beowulf cluster, pp. 1–17. Boise State
University (2013)

16. Sterling, T.L.: Beowulf Cluster Computing with Linux. MIT Press, Cambridge
(2002)

https://climbers.net/sbc/nanopi-fire3-arm-supercomputer/
https://climbers.net/sbc/nanopi-fire3-arm-supercomputer/
https://github.com/arundasan91/MPI---Message-Passing-Interface/blob/master/Image-Scatter-Gather-Tutorial.md
https://github.com/arundasan91/MPI---Message-Passing-Interface/blob/master/Image-Scatter-Gather-Tutorial.md
https://github.com/racorretjer/Parallel-Merge-Sort-with-MPI/blob/master/merge-mpi.c
https://github.com/racorretjer/Parallel-Merge-Sort-with-MPI/blob/master/merge-mpi.c
http://assets.duet.to/dkl.cs.arizona.edu/teaching/csc522-fall16/examples/hybrid-openmp-mm.c
http://assets.duet.to/dkl.cs.arizona.edu/teaching/csc522-fall16/examples/hybrid-openmp-mm.c
https://github.com/kiwenlau/MPIPI/blob/master/Montecarlo/mpipi.c
https://github.com/kiwenlau/MPIPI/blob/master/Montecarlo/mpipi.c
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_Fire3
http://wiki.friendlyarm.com/wiki/index.php/NanoPi_M1_Plus
https://github.com/DT42/neural-network-model-manipulations/blob/master/mnist-nn-data-parallelism.py
https://github.com/DT42/neural-network-model-manipulations/blob/master/mnist-nn-data-parallelism.py
https://www.pine64.org/?page_id=1194
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.datalight.com/solutions/technologies/emmc/what-is-emmc
https://www.datalight.com/solutions/technologies/emmc/what-is-emmc
http://www.beowulf.org/overview/faq.html

70 N. Khatri et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

MH-QEMU: Memory-State-Aware Fault
Injection Platform

Hideyuki Jitsumoto1(B), Yuya Kobayashi2, Akihiro Nomura1,
and Satoshi Matsuoka1,3

1 Tokyo Institute of Technology, Tokyo, Japan
jitumoto@gsic.titech.ac.jp, nomura.a.ac@m.titech.ac.jp, matsu@acm.org

2 Digital Media Professionals Inc., Tokyo, Japan
yuya.kobayashi@dmprof.com

3 RIKEN Center for Computational Science, Kobe, Japan

Abstract. As we move towards higher-density, larger-scale, and lower-
power computing hardware, new types of failures are being experienced
with increasing frequency. Hardware designed for the post-Moore gen-
eration are also bringing about novel resiliency challenges. In order to
improve the efficiency of resiliency methods, fault injection plays an
important role in understanding how errors affect the OS and appli-
cation. Memory-state-aware fault injection, in particular, can be used
to investigate the memory-related faults caused by using current and
future hardware under extreme conditions and assess the costs/benefit
trade-off of resiliency methods. We introduce MH-QEMU, a memory-
state-aware fault injection platform implemented by extending a vir-
tual machine (VM) to intercepting memory accesses. MH-QEMU sup-
ports collecting the physical and virtual addresses of memory accesses
and defining appropriate injections condition using the collected infor-
mation. MH-QEMU incurs a 3.4× overhead, and we demonstrate how
row-hammer faults can be injected using MH-QEMU to analyzing the
resiliency modified NPB CG’s algorithm.

Keywords: Fault injection · Resilience · Virtual machine

1 Introduction

As computing systems increase in scale while simultaneously trending towards
higher-density and lower-power hardware, new types of failures are becoming
more prevalent and significant. Failures due to Silent Data Corruption (SDC)
are examples of such failures that are increasing in frequency. SDC produces
incorrect results without raising any errors during an application’s execution.

This work was partially supported by JST CREST Grant Numbers JPMJCR1303 and
JPMJCR1687, Japan and conducted as research activities of AIST - Tokyo Tech Real
World Big-Data Computation Open Innovation Laboratory (RWBC-OIL).

c© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 71–85, 2019.
https://doi.org/10.1007/978-3-030-18645-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_5

72 H. Jitsumoto et al.

Furthermore, hardware designed for the post-Moore generation, such as 3D-
stacked memories [6,13], and their usage may introduce new failures, such as
the degradation of flash memory devices caused by frequent writes to a specific
location. In order to improve the efficiency of resiliency strategies, it is neces-
sary to know how errors affect the OS and application in order to apply the
appropriate resiliency method based the target and the impact of the resiliency
method.

Fault injection is an important technique that is used for investigating the
effectiveness of resiliency strategies. However, fault injection on real hardware is
very costly since injecting hardware faults typically involves breaking the hard-
ware. Previous work [8,10] has achieved low-cost fault injection by emulating
hardware fault with VM’s software fault. As a result, some simple faults can
be injected easily, such as bit-flip on CPU and memory. Nonetheless, faults
that depend on memory state, such as the flash memory degradation mentioned
above, is difficult simulated using only the approach described in that work.

We introduce a new fault injection platform, MH-QEMU, which can inject
memory-state-aware fault. MH-QEMU is implemented by extending the memory
management system of VM and can achieve the following:

– Injection and flexible description of memory-state-aware fault: MH-
QEMU can emulate various hardware faults affected by memory state and
access patterns, such as Row-Hammer [14] on DRAM and the cell degradation
on flash memory, by the VMM which can call external modules from VM
memory manager.

– Physical-Virtual placement aware fault injection: MH-QEMU can
modify memory access pattern and its mapping to the physical location by
calling external module for each memory access. MH-QEMU also can define
the next generation memory module.

– Supporting analysis of the effects of faults on the system: For observ-
ing the effects of fault on OS and application in the target architecture, it is
important to locate the virtual memory address of faults injected by physical
memory addresses. MH-QEMU can map such memory addresses and get the
information of OS and application without using processes that are executed
on a target node.

1.1 Necessity for State-Aware Memory Fault Injection

MH-QEMU aims to simulate SDCs, especially the ones depending on memory
access patterns. We focused primarily on the physical location and frequency of
access patterns. Examples of this class of corruptions are as follows:

– Disturbance Error: As the density of DRAM increases, access to a specific
memory cell causes electric interference to surrounding cells, which destroys
data.

– Row-hammer fault in DIMM: Frequent access to a specific memory row
causes fluctuation of the signal voltage of the row-selection line, leading to an
increase discharge rate of surrounding rows and loss of data.

MH-QEMU: Memory-State-Aware Fault Injection Platform 73

– Deterioration of flash memory: Memory cells of flash devices are known to
become unreliable after a limited number of erase cycles. Either the unreliable
cells cannot serve as memory elements or they work as memory elements but
cannot provide correct value.

To emulate such hardware-specific errors, it is important to consider the phys-
ical properties of the hardware, the electrical and magnetic interactions between
multiple components. Flexibility in the descriptions of relationships among com-
ponents is also required in order to adopt not-well-known error mechanism of
emerging hardware architecture, like next-generation memory. Examples of pos-
sible new error mechanisms are as follows:

– Hierarchical usage of different memory architectures: As a result of
the trade-off between cost, speed, and capacity, we often use multiple memory
architectures in combination, such as DRAM and NVMe. In such memory
systems, memory performance and the error mechanism depend on which
physical memory address is accessed.

– 3D structured memory: Memory architectures achieving high-bandwidth
and high-capacity by stacking memory cells vertically to form a 3D structure
are currently under active development. As the physical structure is com-
pletely different from traditional DIMM, new kinds of disturbance error can
occur.

2 Related Work

2.1 Fault Injection to Physical Hardware

Some work simply inject errors by causing physical damage to hardware. Other
work inject errors to hardware by neutron beams [19], electromagnetic field [12],
heavy-ion beams [9], and so on. Additional hardware has also been employed to
inject faults in some manner [1,18]. In these approaches, a fault can be injected
easily, but with higher cost: the high cost of procuring additional hardware or
causing unrecoverable damage to the system. Furthermore, it is hard to control
the location and intensity of the faults being injected.

2.2 Fault Injection by Program Modification

It is possible to inject a code snippet that emulates certain fault behavior into
a user program [16]. LLVM-based methods [20] can automatically encode errors
to an application without source code modification. These methods can analyze
fault effects easily because a user can get detailed information of application
processes, such as how the values in memory are used. On the other hands, this
method cannot inject hardware specific fault because hardware specific access
patterns cannot be determined at program modification time.

74 H. Jitsumoto et al.

2.3 Fault Injection by Virtual Machine (VM)

Error injection to VMM’s memory and CPU manager can produce fault on the
system executed on VM. In addition, because VMM can dump the state of CPU
register and memory value, fault effects can be analyzed in this method without
any modification to source code of OS and applications. However, it takes a long
time to analyze the effects of injected faults because VMM have to emulate all
hardware behavior by software. F-SEFI [8] can inject errors to the logic circuit
of CPU, register, and memory modules by this method. D-Cloud [10] is another
fault injector by QEMU [4] for hard disk and network controller. D-Cloud can
also inject a bit-flip error in memory. Our method, MH-QEMU, also follows this
method and the difference from F-SEFI is that MH-QEMU focuses on memory
module faults caused by memory state and access pattern. MH-QEMU has APIs
that help to analyze memory access behavior, such as a function which maps
physical address to virtual address and the reverse in real-time.

3 Design

MH-QEMU is a platform for analyzing memory access patterns of applications
and OS and injecting faults depending on the characteristics of the memory
modules. The analysis is important for selecting which memory region needs
resiliency and what types and levels of resiliency are requested. We assume the
following requirements for MH-QEMU’s fault injection: (1) no damage to the
physical hardware, (2) emulating memory module faults flexibly including those
dependent on the memory state and access pattern, and (3) supporting the
analysis of the effects of a fault on the OS and application. We choose the VM
approach to meet requirement #1 as in previous work (described in Sect. 2.3).

3.1 Emulation of Fault Injection to Memory Module

In order to emulate faults that are dependent on memory state, MH-QEMU
gathers memory access pattern, analyses them to create an appropriate fault
injection plan, and applies it to target VM memory. To avoid side effects to
the target system, the analysis and injection should be done from host OS. To
achieve these functionalities, MH-QEMU consists of the following three modules,
which is illustrated in Fig. 1:

Memory Mapper of VM to Host (MM). In order to access the VM’s
memory from the host environment, the MM identifies where the VM’s physical
memory is located in host’s address space and exposes its content to the host.
The VM’s physical memory is modified when a process on the host OS modifies
the exposed place.

Memory Access Handler (MH). User-defined handler functions (MH) can be
registered as hooks to load and store accesses to the target VM’s memory space.
The MH is invoked with trapped memory addresses and arbitrary operations can

MH-QEMU: Memory-State-Aware Fault Injection Platform 75

be executed. Users can collect and analyze memory access patterns and inject
faults from MH function.

Fault Injection Scheduler (FS). The FS manages the MM and the MH by
following a scenario file that describes the time of fault injection and configu-
rations of MH. To avoid expensive performance losses in the MH execution, FS
can enable and disable MH.

Fault Injection
Scheduler

Guest OS

Application

Normal Access MH-QEMU-based Access

VMM

MH

A
D

M

MM

Memory Manager

Host OS Memory for VMM Shareable Memory Area

Memory Access

Fault Injection

Providing
Phys.-Virt. Mapping

MH-QEMU
modules

Fig. 1. Overview of MH-QEMU

3.2 Assistance API for Analysis of Fault Effects Inside VM

For detailed analysis and well-controlled injection of faults, MH-QEMU needs to
know how the physical memory is used by the guest OS. In addition, MH-QEMU
should inject fault based on the memory usage of the guest OS.

Address-Data Mapper (ADM). The ADM retrieves information about the
guest OS, such as memory page table and process information. A user can use the
ADM from the MH via an API. The ADM can also be called in the configuration
script invoked by the target VM for initializing other MH-QEMU modules. In
addition, the ADM can dump the process information to storage for off-line data
analysis.

3.3 Fault Injection Scenario on MH-QEMU

MH-QEMU invokes the user fault injection code defined by the MH by extended
the VMM. For memory-state-aware fault injection, MH-QEMU uses each com-
ponent in the following manner:

76 H. Jitsumoto et al.

1. User starts a VM extended by MH-QEMU and enables FS.
2. At the appropriate time, the FS invokes the target application in the VM and

enables MH using the extended the VMM.
3. When an application process accesses memory, VMM calls the MH with the

physical and virtual address of the memory that has been accessed.
4. The MH injects errors and collects various information in cooperation with

the ADM.
5. For better performance, the FS disables the MH that will no longer be used

since the error is injected only once.

Moreover, the MH should not be used for transient and non-memory-state-
aware fault injection since the calling the MH has a high cost. In this case,
MH-QEMU can inject fault via the FS as follows:

1. FS suspends the VM via the VMM.
2. FS injects faults via the MM following the user-specified fault injection sce-

nario.
3. FS resumes the VM via the VMM.

To illustrate how the MH can simulate a specific type of fault, we show how a
fault can be triggered in the frequently-accessed region of an application’s heap.
The pseudocode is presented in Fig. 2.

1. MH retrieves the heap memory region by using the ADM with the target
application name.

2. MH records (position, counts) of the access to heap region.
3. MH injects an error to frequently-accessed memory bit via MM.
4. MH dumps the process information of the target application and the address

where the error was injected. The MH gets the process information from ADM
using target application’s name.

5. MH reports the injection to the FS.

4 Implementation

MH-QEMU is implemented on top of QEMU 2.3.1. Due to the ADM’s imple-
mentation, Linux is the only supported guest OS on MH-QEMU. The imple-
mentation of each MH-QEMU module (MM, MH, FS, and ADM) is described
in the following subsections. API functions for calling other modules from MH
module are described in Table 2.

4.1 MM: Memory Mapper

The memory space of a QEMU VM can be mapped into a file in host OS
(-mem-path option). The MM uses this functionality to enable access to guest
OS’s memory image from host OS. For performance reason, guest OS’s memory
space will be mapped to files in tmpfs, which is a virtual file system that uses
the host system’s memory as a data store.

MH-QEMU: Memory-State-Aware Fault Injection Platform 77

memory_access_handler(physaddr, virtaddr){

range ADM_get_heep_addr(target_name)

if (virtaddr is in range){

count[virtaddr]++

}

for(addr each range){

if (count[addr] >= threshold){

records addr

MM_flipbit(addr)

ADM_write_processinfo(target_name)

FS_turnoffMe()

}

}

}

Fig. 2. Pseudo code of MH

Table 1. Structure of MHinfo target ulong is the alias of unsinged long

Name Type

val uint64 t A value which is stored or loaded

dsize size t A size of data which are accessed

gvAddr target ulong Virtual memory address on guest OS

gpAddr target ulong Physical memory address on VM

hvAddr uintptr t Physical memory address on host server

isLoad bool True: on load operation, false: on store operation

isBigEndian bool GuestVM’s endian: true: Big, false: Little

4.2 MH: Memory Access Handler

The MH is implemented as an extension to TCG (Tiny Code Generator), which
is a part of QEMU. TCG is a virtualization module for CPU operations. In the
TCG layer, all memory access operations are expressed as either ld(load) or
st(store) operations. We added call to the MH (Fig. 3) in the implementation of
these operations. The MH is called either before an actual memory store occurs
or after an actual load finishes. The MH function takes an argument that is a
pointer to the MHInfo structure. This structure contains the information on
memory access listed in Table 1.

In KVM [15], which utilizes hardware virtualization extensions of CPU to
accelerate VM emulation, the TCG is replaced by hardware extensions and
MH implementation does not work. However, MH-QEMU can benefit from the
accelerated performance in KVM by incorporating other code insertion method.
Specifically, memory accesses must be trapped with binary level translator such
as Intel Pin [11,17] or dyninst [2].

78 H. Jitsumoto et al.

(a) MH disabled
(b) MH enabled, load oper-
ation

(c) MH enabled, store oper-
ation

Fig. 3. Code generation by TCG

4.3 FS: Fault Injection Scheduler

The FS is a process using extended QMP (QEMU Machine Protocol) and HMP
(Human Monitor Protocol). QMP and HMP are protocols for controlling the
state of QEMU such as shutdown, making a snapshot, and adding new virtual
hardware. We add new entry points to manage MH-QEMU components and the
FS calls them to interact with MH-QEMU.

4.4 ADM: Address-Data Mapper

The ADM gets page table and process states from the guest OS. Although this
information can be obtained easily in the guest OS, the ADM read them from
the outside of VM in order to not modify the memory state of guest OS. The
ADM analyzes the VM’s memory, via the MM, and gets process information and
their page table as follows:

Page Table. The ADM gets the physical address of the kernel page table from
the symbol table of the kernel binary by using QEMU and the GDB function. The
ADM is able to convert physical memory addresses to virtual memory addresses
using this page table if the memory has not been reallocated.

Process Information. Process information in the Linux kernel is managed by
a circular list. The ADM can get all process information in the guest OS if

MH-QEMU: Memory-State-Aware Fault Injection Platform 79

ADM accesses the process information structure of any process. The ADM uses
information of the idle process of Linux, since the location of idle process infor-
mation is stored in a global variable. The ADM can also get process information
from the kernel binary with symbols by using QEMU and the GDB function
(Fig. 4) in a similar manner as with the page table information described above.
The same limitation that memory cannot be reallocated also applies to process
information retrieval.

(a) Page table of process

(b) Memory state of process

Fig. 4. Process information of Linux internals: (a) Page table of process, (b) Memory
state of process

5 Evaluation and Use Case

We present the overhead of the MH-QEMU platform using the NAS Parallel
Benchmark, and we use the CG kernel to illustrate how to use MH-QEMU.

5.1 Evaluation Environment

All evaluations described in this section use a single host server. Eight MH-
QEMU VM instances are executed on the server. The specification of the host
server and the VM are shown in Table 3.

80 H. Jitsumoto et al.

Table 2. API to MH module from other modules

MM

MM set(st, fin, val) Write value to memory

FS

FS turnoff me() FS disable MH

ADM

ADM write pagetable(app) Write a page table to storage

ADM write filemapping(app) Write a file mapping info. to storage

ADM get addrange(app, file) Get addr. range used by app

ADM conv virtaddr(physaddr) Convert virt. addr. to phys. addr

ADM conv physaddr(app, virtaddr) Convert phys. addr. to virt. addr

Table 3. Execution environment

Host Server

CPU 2 * Intel X5650 (2.67 GHz, 6core/12thread) with VT-x

Memory ECC DDR4 SDRAM 46 GB

OS CentOS 7.1 (Linux Kernel 3.10.0)

VM Server (8VM/host)

CPU x86 64 Architecture

Memory 512MB

OS Scientific Linux 7.4 (Linux Kernel 3.10.0)

5.2 Overhead of MH-QEMU Platform

To evaluate the overhead of MH-QEMU platform, we compared the execution
time of NAS Parallel Benchmark on native QEMU and on MH-QEMU with
empty an MH function. We decomposed the overhead of MH-QEMU to overhead
caused by the MM and the overhead caused by MH; the overhead of MM was
found to be negligible. Therefore, the overhead of MH-QEMU is almost the same
as the overhead of MH. The EP, CG, MG, FT and IS kernels of NAS Parallel
Benchmark 3.3.1 were used with the class B problem size. The average execution
time of five runs for each kernel is shown in Fig. 5 and Table 4. The overhead
of MH-QEMU is normalized to the overhead of naive QEMU. MH-QEMU was
up to 3.4 times slower than native QEMU.

5.3 Use Case: Resiliency Analysis of Modified NPB CG

We use NPB CG [3] to demonstrate the usage of MH-QEMU for resiliency anal-
ysis. We expect CG already has some algorithm-level resilience to SDC because
it uses the inverse power method, an iterative method. In this scenario, we want

MH-QEMU: Memory-State-Aware Fault Injection Platform 81

0
0.5

1
1.5

2
2.5

3
3.5

4

EP CG MG FT IS

R
el

at
ic

e
ex

ec
ut

io
n

tim
e

(n
at

iv
e

Q
E

M
U

=1
)

Benchmark

QEMU
MH-QEMU

Fig. 5. MH-QEMU overhead toward native QEMU

Table 4. Execution time of QEMU and MH-QEMU (sec.)

QEMU MH-QEMU

EP 345.65 596.626

CG 38.676 130.652

MG 98.844 266.458

FT 201.47 428.078

IS 24.38 79.378

to reveal which memory region is weak due to SDC. In the original NPB CG
implementation, the number of iteration is fixed as it is intended to be used as
a performance benchmark. To evaluate resiliency of the iterative method, we
modified NPB CG to continue the iteration until it converges, that is, until the
residual becomes less than the 10−20. We inject Row-Hammer faults, which cor-
rupts data in the memory line next to a frequently accessed memory line. We
executed 2443 CG runs for this analysis.

Implementation of Row-Hammer MH. The Row-Hammer MH injects the
fault as follows:

1. The physical address of each memory access is decomposed into the locations
of the physical memory channel, the bank, and the line, following the mapping
rule of Intel 82955X-MCH memory structure [5] described in Fig. 6. The MH
counts the access for each memory line.

2. If the access counter exceeds the threshold α, the MH determines whether an
error is injected with probability λ.

82 H. Jitsumoto et al.

Fig. 6. Mapping rule of Intel 82955X-MCH

3. If the error is to be injected, the MH retrieves the process memory information
using the ADM and randomly changes a single bit in the adjacent line of the
accessed region to 0. We choose parameters as α = 1000 and λ = 5 × 10−10

Distribution of Computation Error. A histogram of the computation errors
in the results is shown in Fig. 7. The last category labeled as “Abort” represent
the number of detectable failed executions. These include when the VM hangs,
abnormal termination of the application, and the result containing NaN. Other
than such failed execution, all the results fall into one of two categories. We
judged that the results with more than 5% error is caused by SDC. In most
SDC results, the error is around 166%. It is unknown why they converge to

0

0.1

0.2

0.3

0.4

0.5

0.6

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

11
0%

12
0%

13
0%

14
0%

15
0%

16
0%

17
0%

A
bo

rt

R
at

io

Error in result(X); width = 5%

Fig. 7. Histogram of errors

MH-QEMU: Memory-State-Aware Fault Injection Platform 83

that value as the inverse power method does not have a local solution. On the
other hand, 60% of execution return the correct result even after the injection
of memory hammer error. This means the CG algorithm has a certain resiliency
to SDC.

Relationship Between Fault and Process Memory Region. To investigate
the cause of SDC, we select 825 runs at random and mapped the modified data
region and execution results, as shown in Fig. 8. The results show that SDC
occurs only when the BSS section of CG’s binary is modified. The BSS region
stores global and static variables with an initial value. Most of the data in BSS
region of the CG application kernel are input matrices and intermediate data,
modification to which does not lead the application to abnormal termination.
In the execution of CG, most of the data are stored in the BSS region, not
in the stack. If we analyze the access pattern of each variable to determine its
importance, we can specify which variables should be protected to avoid SDCs,
without knowledge of CG’s algorithm.

0

50

100

150

200

250

300

of

 F
ai

lu
re

s

SDC
Benign
Abort

Fig. 8. Effect of error for each memory region in process

6 Conclusion

Brand-new hardware architectures, which has different usage and characteristics
from current architectures, are emerging in the post-Moore era. We need fault
injectors that can emulate errors in such new architectures in order to develop
resiliency methods with the appropriate scope.

We developed MH-QEMU, a fault injector that can generate errors by emu-
lating memory access patterns and the physical structures of memory modules,

84 H. Jitsumoto et al.

to accommodate new memory architectures. With MH-QEMU, we can verify
resiliency against SDCs brought by architecture-specific properties as well as
incidental SDCs.

Currently, the overhead of MH-QEMU is significantly large. It can be reduced
by narrowing the memory region that is monitored by the memory handlers. MH-
QEMU can also be accelerated by employing hardware-level VM acceleration in
KVM when supported by other code insertion methods like Intel Pin [11,17] and
dyinst [2].

We are focusing on the the flexibility of fault injection and obtaining the
memory location of injected errors at the process level; MH-QEMU does not
trace application behavior after fault injection. In future work, we are planning
to evaluate application level resiliency for new memory architectures, such as
flash memories, 3D stacked memories [6,13], and hierarchical combination with
them and DIMMs [7], after enhancement of MH-QEMU for such tracing func-
tionality. If CPU state can be controlled with tools like F-SEFI [8], MH-QEMU
approach can be generalized to other types of devices, including network devices
and emerging hardware architectures.

References

1. Arlat, J., Crouzet, Y., Laprie, J.C.: Fault injection for dependability validation
of fault-tolerant computing systems. In: Nineteenth International Symposium on
Fault-Tolerant Computing, FTCS-19. Digest of Papers, pp. 348–355. IEEE (1989)

2. Buck, B., Hollingsworth, J.K.: An API for runtime code patching. Int. J. High
Perform. Comput. Appl. 14(4), 317–329 (2000)

3. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl.
5(3), 63–73 (1991)

4. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, pp. 41–46 (2005)

5. Intel Corporation: Intel 82955x memory controller. https://ark.intel.com/
products/27727/Intel-82955X-Memory-Controller

6. Intel Corporation: Intel optane technology. https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-optane-technology.html

7. Endo, T.: Realizing out-of-core stencil computations using multi-tier memory hier-
archy on GPGPU clusters. In: 2016 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 21–29, September 2016. https://doi.org/10.1109/
CLUSTER.2016.61

8. Guan, Q., Debardeleben, N., Blanchard, S., Fu, S.: F-sefi: a fine-grained soft error
fault injection tool for profiling application vulnerability. In: 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, pp. 1245–1254. IEEE
(2014)

9. Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of error detection schemes using
fault injection by heavy-ion radiation. In: Nineteenth International Symposium on
Fault-Tolerant Computing, FTCS-19. Digest of Papers, pp. 340–347. IEEE (1989)

10. Hanawa, T., et al.: Customizing virtual machine with fault injector by integrating
with SpecC device model for a software testing environment D-cloud. In: Proceed-
ings - 16th IEEE Pacific Rim International Symposium on Dependable Computing,
PRDC 2010, pp. 47–54 (2010). https://doi.org/10.1109/PRDC.2010.37

https://ark.intel.com/products/27727/Intel-82955X-Memory-Controller
https://ark.intel.com/products/27727/Intel-82955X-Memory-Controller
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://doi.org/10.1109/CLUSTER.2016.61
https://doi.org/10.1109/CLUSTER.2016.61
https://doi.org/10.1109/PRDC.2010.37

MH-QEMU: Memory-State-Aware Fault Injection Platform 85

11. Intel Corporation: Pin - a dynamic binary instrumentation tool. https://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

12. Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., Leber, G., Reisinger, J.: Appli-
cation of three physical fault injection techniques to the experimental assessment
of the mars architecture. Dependable Comput. Fault Tolerant Syst. 10, 267–288
(1998)

13. Kim, J., Kim, Y.: HBM: memory solution for bandwidth-hungry processors (2014)
14. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental

study of dram disturbance errors. In: ACM SIGARCH Computer Architecture
News, vol. 42, pp. 361–372. IEEE Press (2014)

15. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual
machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230
(2007)

16. Li, D., Vetter, J.S., Yu, W.: Classifying soft error vulnerabilities in extreme-scale
scientific applications using a binary instrumentation tool. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, p. 57. IEEE Computer Society Press (2012)

17. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2005, pp. 190–200. ACM,
New York (2005). https://doi.org/10.1145/1065010.1065034

18. Madeira, H., Rela, M., Moreira, F., Silva, J.G.: RIFLE: a general purpose pin-level
fault injector. In: Echtle, K., Hammer, D., Powell, D. (eds.) EDCC 1994. LNCS,
vol. 852, pp. 197–216. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58426-9 132

19. Michalak, S.E., et al.: Assessment of the impact of cosmic-ray-induced neutrons
on hardware in the roadrunner supercomputer. IEEE Trans. Device Mater. Reliab.
12(2), 445–454 (2012)

20. Thomas, A., Pattabiraman, K.: LLFI: an intermediate code level fault injector
for soft computing applications. In: Workshop on Silicon Errors in Logic System
Effects (SELSE) (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1007/3-540-58426-9_132
https://doi.org/10.1007/3-540-58426-9_132
http://creativecommons.org/licenses/by/4.0/

Performance Evaluation and Analysis
of Linear Algebra Kernels in the

Prototype Tianhe-3 Cluster

Xin You, Hailong Yang(B), Zhongzhi Luan, Yi Liu, and Depei Qian

Sino-German Joint Software Institute, School of Computer Science and Engineering,
Beihang University, Beijing 100191, China

{youxin2015,hailong.yang,zhongzhi.luan,yi.liu,depeiq}@buaa.edu.cn

Abstract. As the supercomputing system entering the exascale era,
power consumption becomes a major concern in the system design.
Among all the novel techniques for reducing power consumption, ARM
architecture is gaining popularity in the HPC community due to its low
power footprint and high energy efficiency. As one of the initiatives for
addressing the exascale challenges in China, Tianhe-3 supercomputer has
adopted the technology roadmap of using the many-core ARM archi-
tecture with home-built phytium-2000+ and matrix-2000+ processors.
In this paper, we evaluate several linear algebra kernels such as matrix-
matrix multiplication, matrix-vector multiplication and triangular solver
with both sparse and dense datasets. These linear algebra kernels are
good performance indicators of the prototype Tianhe-3 cluster. Com-
prehensive analysis is performed using roofline model to identify the
directions for performance optimization from both hardware and soft-
ware perspectives. In addition, we compare the performance of phytium-
2000+ and matrix-2000+ with widely used KNL processor. We believe
this paper provides valuable experiences and insights as work-in-progress
towards exascale for the HPC community.

Keywords: Exascale · Performance evaluation and analysis ·
Roofline model · Tianhe-3 cluster

1 Introduction

Evolving the supercomputing towards the exascale still remains an open chal-
lenge for the entire HPC community. Although the technical roadmap varies
within the community, there is a consensus that the power consumption must be
constrained for the next generation supercomputer to be practically sustainable.
For instance, the US Department of Energy Exascale Initiative Steering Com-
mittee establishes a 20 MW power budget for the exascale supercomputer [27].
Among the innovative approaches that have been exploited to achieve such power
efficiency at large scale, the ARM architecture has drawn the attention of the

c© The Author(s) 2019
D. Abramson and B. R. de Supinski (Eds.): SCFA 2019, LNCS 11416, pp. 86–105, 2019.
https://doi.org/10.1007/978-3-030-18645-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18645-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-18645-6_6

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 87

HPC community for its merit of lower power consumption yet competitive perfor-
mance. Benchmarks have been evaluated to show the effectiveness of using ARM
based processors for scientific applications under power constraint [20,25,26].
In addition, experimental clusters have been built with scientific benchmarks
evaluated to demonstrate the feasibility of using ARM based processors for con-
structing supercomputers [23,24]. Therefore, ARM based solutions have already
shown their potential to achieve the power efficiency towards exascale.

Among the exascale initiatives in China, Tianhe-3 has adopted the ARM
based many-core architecture roadmap using home built phytium and matrix
processors. Especially, matrix-2000 processor has already demonstrated its capa-
bility for performance acceleration on the previous generation supercomputer
Tianhe-2A [9]. Recently, the supercomputing team for Tianhe-3 has opened a
prototype Tianhe-3 cluster built upon phytium-2000+ (FTP) and matrix-2000+
(MTP) processors to the public for performance evaluation. This paper takes this
rare opportunity to perform comprehensive evaluation of the prototype Tianhe-3
cluster and report the evaluation results as work-in-progress for the HPC com-
munity towards exascale.

During the performance evaluation, we use several important linear alge-
bra kernels such as matrix-matrix multiplication, matrix-vector multiplication
and triangular solver with both dense and sparse datasets. These linear algebra
kernels serve as the fundamental building blocks not only for scientific applica-
tions such as computational fluid dynamics (CFD) [12] and molecular dynamics
(MD) [22], but also for emerging applications such as graph computing [14]
and deep neural networks [13]. We also compare the performance of FTP and
MTP processors with widely adopted Intel KNL processor [28] quantitatively.
We hope the evaluation results and roofline model analysis from this paper serve
in two folds. On one hand, it reveals the architecture designs that are important
to achieve the exascale performance with limited power budget for hardware
architects. On the other hand, it highlights the factors that software developer
should take into consideration for writing efficient code on the near future exas-
cale supercomputers.

Specifically, this paper makes the following contributions:

– We provide a comprehensive performance evaluation of the prototype Tianhe-
3 cluster that uses ARMv8-based many-core FTP and MTP processors with
important linear algebra kernels.

– We compare the performance of the FTP and MTP processors with their
industry counterpart Intel KNL many-core processor, which reveals the
strengths and weaknesses among these architecture designs.

– We build roofline models for FTP, MTP and KNL processors to understand
the limiting factors that impact the performance of these linear algebra ker-
nels and highlight the directions for performance optimization.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
background of our evaluation, including the mathematics of the linear algebra
kernels as well as the specifications of the prototype Tianhe-3 cluster. Section 3
presents the evaluation results on both single node FTP and MTP processor

88 X. You et al.

as well as at cluster scale. In addition, we compare the performance results on
both FTP and MTP processors with Intel KNL processor. In Sect. 4, we build
the roofline models to better understand the evaluation results and identify the
directions for performance optimization. The related work is illustrated in Sect. 5.
We conclude this paper in Sect. 6.

2 Background

2.1 Linear Algebra Kernels

Matrix-Matrix Multiplication. GEMM (General Matrix-Matrix Multiplica-
tion) is the most commonly used linear algebra kernel in scientific applications.
As shown in Fig. 1(a), the GEMM routine can be described as Eq. 1, where A, B
and C are Matrices with dimensions (n× k), (k ×m) and (n×m), α and β are
scalars. As GEMM can reach high arithmetic intensity to stress the processor
when matrix size is large enough, it is an ideal benchmark kernel to evaluate
the performance of a particular processor. On the other hand, GEMM is also
a key kernel for widely used deep neural networks such as AlexNet [13] and
ResNet [30]. The performance of GEMM reflects how well these deep neural
networks run on the prototype Tianhe-3 cluster.

C = αAB + βC (1)

Matrix-Vector Multiplication. Matrix-vector multiplication can be defined
as Eq. 2, where A is a (n×m) matrix, x and y are vectors of n rows and α, β are
scalars. For applications that use sparse matrix, sparse matrix-vector multiplica-
tion (SpMV) is proposed to avoid storing and computing redundant zero values
to reduce both storage and computation complexity. The computation of SpMV
is shown in Fig. 1(b), where matrix A is sparse matrix, x and y vectors are dense.
Different storage forms are proposed with different SpMV algorithms, such as
CSR [32], CSR5 [15] and ELLPACK [16]. There are several attributes that can
describe the property of a sparse matrix, including matrix size n, the number of
non-zero values nnz and sparsity nnz/n. The computation challenge of SpMV
is the high memory bandwidth demand due to its poor data locality. Therefore,
we choose SpMV as a memory-bound kernel to evaluate the prototype Tianhe-3
cluster.

y = αAx + βy (2)

Triangular Solver. The math form of TRSV (Triangular Solver) is defined as
Eq. 3, where L is the triangular matrix and x is the unknown vector to be solved,
which has the same shape as the given vector b. Figure 1(c) shows the compu-
tation of TRSV where matrix L is non-unit lower triangular matrix. In general,
TRSV is less computation intensive as GEMM. However, the computation of
TRSV involves strong data dependency, which becomes more difficult to solve

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 89

when scaling up to multiple computing nodes. Specifically, TRSV stresses the
computation of a single node as well as the interconnect across multiple nodes.

Lx = b (3)

= α * + β = *

(a) GEMM (c) TRSV

= α * + β

(b) SpMV

Fig. 1. The computation illustration of linear algebra kernels: (a) GEMM (b) SpMV
(c) TRSV. The gray rectangle is the output of the kernel, the white rectangle is dense
matrix/vector and the rest is sparse matrix.

2.2 Prototype Tianhe-3 Cluster

The prototype Tianhe-3 cluster is located in Tianjin, China. However, due to
the confidentiality agreement, very few technical details about Phytium FT-
2000+ (FTP) and MT-2000+ (MTP) processors are released to us. Based on
the public reports [9,10,35] as well as the information told by the managing
staffs, FTP contains 64 ARMv8 cores, which are organized into eight panels as
shown in Fig. 2(a). Each core can run up to 2.4 GHz with the entire processor
offering around 614.4Gflops double-precision peak performance and consuming
100 Watts at maximum. Whereas for MTP, it contains 128 ARMv8 cores, which
are organized into 4 supernodes as shown in Fig. 2(b). Each core can run up to
2.0 GHz with the entire processor offering around 4.096Tflops double-precision
peak performance and consuming 240 W.

During our evaluation, however, the core resources in the prototype cluster
are deliberately split at the granularity of 32 cores (one computing node) for both
FTP and MTP processors. The reason is that the supercomputing center can
offer more computing nodes to serve the demanding evaluation requests in the
prototype cluster. The computing nodes are managed and assigned by the batch
scheduling system. The user can request the computing node to be allocated as
either a FTP node with 32 cores and 64 GB memory or MTP node with 32 core
and 16 GB memory. Both FTP and MTP nodes are running Kylin 4.0-1a OS
with kernel v4.4.0.

The interconnect in the prototype cluster is built by the National Univer-
sity of Defense Technology (NUDT) that provides 200 Gbps bi-directional band-
width. The distributed storage nodes are managed by Lustre that provides the
shared file system for the prototype cluster. For the compile environment, both
GCC v4.9.3 and v4.9.1 as well as a customized MPICH v3.2.1 are supported.
The prototype cluster also supports widely used libraries such as BLAS and

90 X. You et al.

Fig. 2. The architecture of (a) FT-2000+ processor and (b) MT-2000+ processor.

Boost. Therefore, it is very smooth for most of the scientific applications to be
ported to run on the prototype cluster. The available hardware and software
specifications of the prototype cluster are listed in Table 1.

Table 1. The available hardware and software specifications of the prototype cluster.

Specifications FT-2000+ MT-2000+

Hardware Nodes 128 512

Cores in a node 32 32

Frequency 2.4 GHz 2.0 GHz

Memory 64 GB 16 GB

Interconnect bandwidth 200 Gbps

Software OS Kylin 4.0-1a OS with kernel v4.4.0

File system Lustre

MPI MPICH v3.2.1

Compiler GCC v4.9.1/v4.9.3

Supported libraries Boost, BLAS, OpenBLAS, Scalapack, etc.

3 Evaluation

3.1 Experimental Setup

To evaluate the linear algebra kernels in the prototype cluster, we choose the
widely used library implementations whenever possible. In addition, we also

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 91

choose open source implementations that are highly rated in the literature. We
explicitly choose the dense and sparse implementations since they use different
optimization strategies and stress different aspects of the processor. The selection
of linear algebra kernels is detailed in Table 2.

Table 2. Linear algebra kernels under evaluation.

Platforms FTP MTP KNL

Kernels GEMM TRSV SpMV GEMM TRSV SpMV GEMM TRSV SpMV

Openblas [34] � � � �
Intel MKL [31] � � �
Scalapack [2] � � � � � �
CSR [32] � �
distributedSpMV [11] � �

For the datasets, we generate the dense square matrices (N×N) with random
double-precision values. We scale the dense matrices from N = 32 to N = 6400
to see how they affect the processor performance at scale. For the sparse matrices,
we use the 20 square matrices from the popular Florida Sparse Matrix Collec-
tion [6]. These sparse matrices are representative of a wide variety of application
domains such as graphic computing and scientific application. The unique char-
acteristics of each sparse matrix are listed in Table 3.

We evaluate the linear algebra kernels on a single node as well as across
multiple nodes with both FTP and MTP processors. For both FTP and MTP
processors, we use up to 64 nodes (2048 cores) at the largest scale that we
can apply. For comparison, we also evaluate the Intel KNL many-core processor
Xeon Phi 7210 that contains 64 cores with each running at 1.3 GHz. We use the
MKL libraries on KNL that are highly optimized for the linear algebra kernels
on Intel architecture. We use the flat mode of the hybrid memories on KNL
and allocate the data on the High Bandwidth Memory (HBM), which provides
higher bandwidth for memory accesses and thus better performance. OpenMP
and MPI are used as the parallel execution models during the evaluation.

3.2 Performance Comparison on Singe Node

The evaluation of each processor using specific kernel implementation is shown
in Table 2. To measure the performance of a single node, we utilize all the cores
to run the kernels on each particular processor. Specifically, we run 32 threads on
FTP and MTP node respectively, whereas 64 threads on KNL. Figure 3 shows the
box plot of the single node performance when running GEMM, TRSV and SpMV
on FTP, MTP and KNL respectively. We can see that KNL achieves the best
average performance across all three kernels. For dense kernels such as GEMM,
KNL achieves 6.8× and 14.0× performance speedup compared to FTP and MTP
respectively. The large performance gap of GEMM on KNL compared to FTP

92 X. You et al.

Table 3. The sparse matrix datasets under evaluation.

Matrix shape Matrix row×col nnz nnz/row

G24 2K × 2K 39.9K 19.9
windtunnel evap2d 8K × 8K 109K 13

vsp c-30 data data 11K × 11K 124K 11
TEM152078 15K × 15K 6.5M 42

EAT RS 23K × 23K 325K 14

epb2 25K × 25K 175K 7

cit−HepTh 27K × 27K 352K 13

invextr1 new 30K × 30K 1.8M 59

ship 001 35K × 35K 3.9M 112

onetone1 36K × 36K 335K 9

bcsstk32 44K × 44K 2.0M 45

venkat01 62K × 62K 1.7M 28

nd24k 72K × 72K 28.7M 398
ifiss mat 96K × 96K 3.6M 37

barrier2−10 115K × 115K 2.1M 18

torso1 116K × 116K 8.5M 73

scircuit 171K × 171K 959K 6

offshore 259K × 259K 4.2M 16

ASIC 680ks 682K × 682K 1.7M 2.5

thermal2 1.2M × 1.2M 8.6M 7

and MTP is due to the limited core count assigned for each computing node in
the prototype Tianhe-3 cluster. For instance, on both FTP and MTP computing
nodes, there are only 32 cores. Whereas on KNL, there are 64 cores available.
Large core count clearly gives an advantage from the performance perspective.
It is also noticed from Fig. 3(a) and (b), FTP achieves better performance than
MTP for the dense kernels (GEMM and TRSV). This is because, although FTP
and MTP node contain the same core count (e.g., 32), the cores in FTP run at
higher frequency (e.g., 2.4 GHz) than the cores (e.g., 2.0 GHz) on MTP.

For the sparse kernel such as SpMV, the performance gap of FTP and MTP
processor compared to KNL becomes even larger as shown in Fig. 3(c). The
average performance of SpMV on KNL is 15.4× and 16.6× better than on FTP
and MTP respectively. It is well understood that the performance of SpMV is

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 93

Fig. 3. The performance comparison among FTP, MTP and KNL running linear alge-
bra kernels of (a) GEMM, (b) TRSV and (c) SpMV.

bounded by the memory bandwidth due to its nature of poor data locality. There-
fore, the core count as well as the core frequency should not be the dominating
factors for the performance disparity among the processors. We believe the per-
formance advantage of KNL can be partially attributed to the high bandwidth
memory (HBM) integrated into the processor, which provides much higher mem-
ory bandwidth than FTP and MTP that use the traditional DRAM. In addition,
the MKL provides highly optimized SpMV implementation that leverages the
powerful vectorization capability of KNL through AVX512 instructions, which
achieves tremendous speedup of SpMV. In contrast, the capability of vectoriza-
tion on FTP and MTP is quite limited compared to KNL. Recent work [5] even
claims vectorization of SpMV on FTP provides no performance benefit if not
slow down. In general, the low memory bandwidth as well as the limited vector-
ization of FTP and MTP hurt their ability to deliver comparable performance
of SpMV to their counterpart KNL.

3.3 Scalability Comparison

In order to compare the performance scalability of the kernels on different pro-
cessors, we scale the kernel execution on both a single node and across multiple
nodes. For single node scalability, we run each kernel from 1 to 32 threads on
FTP and MTP, whereas from 1 to 64 threads on KNL. The speedup of each
kernel is compared to the single thread execution. Figure 4(a) shows the single
node scalability of GEMM on these three processors. We can see that GEMM
reaches good scalability on a single node with maximum speedup of 23.8× on
FTP, 20.3× on MTP and 42.7× on KNL. The huge speedup achieved by GEMM
when scaling on KNL can be attributed to the large core count compared to FTP
and MTP. For TRSV, the scalability on KNL starts to drop beyond 32 threads.
The maximum speedup achieved on FTP, MTP and KNL is 6.9×, 3.3× and
3.8× respectively as shown in Fig. 4(b). However, the absolute performance on

94 X. You et al.

KNL is always better than FTP and MTP at all scales. For SpMV, the scala-
bility of FTP and MTP is extremely poor. The maximum speedup of SpMV is
2.4× and 2.7× on FTP and MTP respectively when utilizing half of the cores as
shown in Fig. 4(c). In contrast, KNL scales well and reaches maximum speedup
of 30.1× when all cores are fully utilized. Since SpMV is memory bounded, the
good scalability is primarily due to the high bandwidth memory (HBM) on KNL
that offers 400+ GB/s bandwidth compared to FTP and MTP that use DRAM
for quite limited bandwidth.

For the scalability across multiple nodes, we run each kernel from 1 to 64
computing nodes with each node fully utilized (e.g., running 32 threads). We do
not include the results of multiple KNL nodes since we only have one KNL node
available. The speedup of each kernel is compared to the single node execution.
Figure 5(a) shows that the performance speedup of GEMM starts to drop on
FTP when the number of nodes scales beyond 32. Therefore, MTP has better
scalability when running GEMM compared to FTP. However, the absolute per-
formance of GEMM is, on the contrary, better on FTP even scaling beyond 32
nodes. For TRSV shown in Fig. 5(b), the performance speedup starts to drop
on both FTP and MTP processor when the number of nodes scales beyond 32.
The maximum speedup is 3.5× and 5.7× when running on 32 nodes of FTP and
MTP respectively. For SpMV, the maximum performance speedup is 1.8× on
FTP with 8 nodes and 5.8× on MTP with 32 nodes as shown in Fig. 5(c). The
scalability of FTP is much worse than MTP, where the performance speedup
starts to drop beyond eight nodes.

4 Discussion

4.1 Building the Roofline Model

To better understand the evaluation results on FTP, MTP as well as KNL,
we build the Roofline Model [33] to investigate the strengths and weaknesses
of each processor architecture. The advantage of the roofline model is that it
establishes a quantitative relationship among floating-point performance, oper-
ational intensity and memory performance using a 2D graph, which captures
the intrinsic characteristics of hardware and software designs. Using the roofline
model, it is easy to reveal the performance upper bound on each processor.
The roof in the roofline model indicates the peak performance of the processor,
whereas the slope indicates the peak memory bandwidth. The x axis measures
the operational intensity of the program under evaluation, and the y axis indi-
cates the attainable performance (GFlops). Depending on whether the column
of the operational intensity hits the flat part of the roof, we can easily identify
whether the program under evaluation is compute-bound or memory-bound.

To obtain the peak floating-point performance of FTP and MTP processors,
we scale down the original processor specifications [9,10,35] proportional to the
core count of a compute node in the prototype cluster. For KNL, we provide
the theoretical peak floating-point performance from processor specifications. To

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 95

(a)

(b)

(c)

0

5

10

15

20

25

30

35

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of cores

FTP Performance MTP Performance KNL Performance

FTP speedup MTP speedup KNL speedup

0
5
10
15
20
25
30
35
40
45

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of cores

FTP Performance MTP Performance KNL Performance

FTP speedup MTP speedup KNL speedup

0

1

2

3

4

5

6

7

8

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of cores

FTP Performance MTP Performance KNL Performance

FTP speedup MTP speedup KNL speedup

Fig. 4. Scalability of (a) GEMM, (b) TRSV and (c) SpMV on a single node.

obtain the peak memory bandwidth, we use STREAM benchmark [17] to mea-
sure the three processors directly. We also add multiple ceilings to the roofline
model by using different optimizations. For instance, we add one memory ceil-
ing by using the memory affinity optimization and several compute ceilings by
using thread-level parallelism (TLP), instruction-level parallelism (ILP) as well

96 X. You et al.

(a)

(b)

(c)

0

1

2

3

4

5

6

0
5

10
15
20
25
30
35
40
45

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of Nodes

FTP Performance MTP Performance

FTP speedup MTP speedup

0

2

4

6

8

10

12

14

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of Nodes

FTP Performance MTP Performance

FTP speedups MTP speedup

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

1 2 4 8 16 32 64

Sp
ee

du
p

Pe
rf

or
m

an
ce

 (G
Fl

op
s)

Number of Nodes

FTP Performance MTP Performance

FTP speedup MTP speedup

Fig. 5. Scalability of (a) GEMM, (b) TRSV and (c) SpMV across multiple nodes.

as SIMD instructions. These ceilings in the roofline model are intuitive to guide
the directions for performance optimization.

OperationalIntensity = Flops/Bytes (4)

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 97

Table 4. The formulas [21] for calculating operational intensity of evaluated kernels,
where n is the size of matrix, nnz is the number of non-zero values in sparse matrix.

Kernel Flops Data movement (bytes) Operational intensity

GEMM 2n3 4n2 ∗ 8 n/16

TRSV n2 n(n + 1)/2 + n 2n/(n + 3)

SpMV 2nnz 4 ∗ (n + 1 + nnz) + 8 ∗ (2n + nnz) nnz/(6n + 2 + 10nnz)

To measure the operational intensity, we calculate the flops and data move-
ments of each kernel based on the given input. Generally, the operational inten-
sity is calculated as shown in Eq. 4, where Flops is the number of floating point
operations and Bytes are the total bytes of data movements from DRAM. The
formulas for calculating Flops, Bytes and OperationalIntensity for the eval-
uated kernels are shown in Table 4. Specifically, Data Movement differs when
using different implementations, therefore we use the theoretical minimal of Data
Movement, assuming all data can be fully reused. The results shown in Figs. 6,
7 and 8 are evaluated against different kernels with different inputs running on
each of the three processors.

4.2 Insights for Software Optimization

As shown in Fig. 6, the kernel GEMM achieves the highest operational intensity
across all three kernel, which is consistent with its nature of high intensity of
arithmetic operations. It is also clear that GEMM is compute-bound on FTP.
Since GEMM is usually one of the highly optimized kernels in modern linear
algebra libraries, it is quite close to the theoretical ceiling of FTP especially
when the matrix size scales. Therefore, there is not too much opportunity from

Fig. 6. The roofline model of FTP.

98 X. You et al.

Fig. 7. The roofline model of MTP.

the software perspective for future performance optimization unless more cores
are added or the frequency of each core is increased. However, developers still
need to consider the memory affinity when the matrix size is small. Otherwise,
the performance of GEMM could be bounded by the memory indicated by the
lower memory ceiling in Fig. 6.

TRSV and SpMV show much lower operational intensity on FTP compared
to GEMM. In addition, the performance of both TRSV and SpMV is memory
bounded as shown in Fig. 6. Especially for SpMV, the operational intensity is
the lowest among all three kernels due to its poor data locality. Different from
GEMM where the operational intensity covers a wide range as the matrix size

Fig. 8. The roofline model of KNL.

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 99

Fig. 9. The performance comparison of different processors using roofline model.

scales, the operational intensity of both TRSV and SpMV converges when the
matrix size is large enough. As shown in Fig. 6, the performance of both TRSV
and SpMV is still bounded by the lower memory ceiling (e.g., memory affinity).
Therefore, using the memory node close to the computation could benefit the
performance of both TRSV and SpMV on FTP.

Note that memory affinity is an important factor to achieve better perfor-
mance on FTP. As shown in Fig. 2(a), the cores in FTP are organized into
several panels and each panel has a local memory node attached. Therefore,
the developers should pay special attention to the memory affinity when writing
applications on FTP in case of bounding by the lower memory ceiling. Another
interesting thing we can notice from Fig. 6 is that the computing ceilings (e.g.,
TLP, ILP and SIMD) are quite near to each other, which means applying a single
optimization on FTP could not increase the performance significantly. However,
there is still a large performance space between the ceiling of TLP and theoret-
ical peak. Therefore, it still worths the effort to optimize the applications from
computation aspect on FTP.

Although the performance trends of TRSV and SpMV on MTP are similar
(e.g., memory-bound) to FTP, the behavior of GEMM is somehow different as
shown in Fig. 7. Half of the cases, the performance of GEMM is memory-bound.
When the operational intensity is high enough, it becomes compute-bound. How-
ever, we notice when GEMM becomes compute-bound, its performance starts
to drop. The reason for this interesting trend of GEMM can be explained that
when the operational intensity is low (e.g., small matrix size), the performance
is bounded by the limited memory bandwidth (e.g., 16 GB on MTP compared
to 64GB on FTP). As the operational intensity increases, the insufficient com-
puting capacity (e.g., 2.0 GHz on MTP compared to 2.4 GHz on FTP) prevents
GEMM from achieving higher performance.

100 X. You et al.

We also notice that the performance space between the ceiling of TPL and
the theoretical peak is quite large in Fig. 7. The SIMD instructions are wider
on MTP than FTP. The wider SIMD instructions on MTP indicate a large
performance opportunity if the application can vectorize its computation on
MTP. The computation of GEMM itself fits well for vectorization. Therefore,
how to leverage the SIMD instructions on MTP should be the direction for
further performance optimization of GEMM from the software perspective.

The computing ceilings are quite far from each other as shown in Fig. 8.
The similar trend is also observed with memory ceilings. This indicates per-
formance optimizations are indispensable for applications to run efficiently on
KNL, especially for TRSV, which achieves even worse performance than SpMV
in many cases. Two potential directions for improving the performance of TRSV
on KNL are (1) breaking the memory ceiling by leveraging the memory affinity,
and (2) breaking the TLP ceiling by exposing sufficient parallelism. To break
the memory ceiling, exploiting the unique high bandwidth memory (HBM) on
KNL should benefit the performance by providing higher memory bandwidth.
Whereas to break the ILP ceiling, loop unrolling and reordering should be applied
to increase the instruction parallelism.

4.3 Insights for Hardware Optimization

Obviously shown in Fig. 9, KNL delivers the highest performance compared to
FTP and MTP due to its large number of cores and wider SIMD units. Therefore,
to approach exascale, sufficient core count and powerful vectorization is essential
for the future architecture improvement on both FTP and MTP. Another inter-
esting observation is that the ridge point of KNL is more left than FTP and MTP
in the roofline model. The ridge point indicates the minimum operational inten-
sity required to achieve the peak performance. Therefore, the more left the ridge
point is, the fewer restrictions there are for application to reach the peak perfor-
mance on the processor. For instance, the ridge points for KNL, FTP and MTP
are 3.1, 5.2 and 43.9 Flops/Byte respectively, which means MTP is the most dif-
ficult processor for developers and compiler writers to produce high-performance
programs. To improve the productivity on the future exascale supercomputer,
reducing the operational intensity of both FTP and MTP benefits from all types
of software optimizations. In addition, the diagonal line of KNL is also much
higher than FTP and MTP, which means KNL provides much higher memory
bandwidth than the other two processors. This can be attributed to the adop-
tion of high bandwidth memory (HBM) in KNL that application can leverage
by expressing the memory affinity. Integrating the traditional DRAM with novel
memory technologies such as HBM could be another hardware optimization for
FTP and MTP in order to eliminate the potential memory bound.

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 101

5 Related Work

5.1 Performance Optimization of Linear Algebra Kernels

Linear Algebra Kernels such as GEMM, TRSV and SpMV are widely used in
scientific computing and machine learning. Many optimization works are focused
on these Linear Algebra Kernels to gain full advantage of specific architectures.
For dense matrix multiplication and solvers, BLAS gives an overall interface for
all kinds of linear algebra kernels. OpenBLAS [34] is an open source implementa-
tion of BLAS interface with optimization of thread parallelization and blocking
techniques. Scalapack [2] is also available in Tianhe-3 prototype cluster for scal-
ing the BLAS interface to the distributed cluster. Intel Math Kernel Library
(MKL) [31] is specially designed for x86 processors and by using parallelization,
vectorization, blocking and other specified optimizing techniques, it reaches a
notable performance gain than many other open source libraries.

In the case of sparse matrix-vector multiplication, Liu and Vinter proposed
new sparse matrix storing format CSR5 [15], a SIMD-friendly format for effi-
cient computations of SpMV. Their approach can make SpMV kernel more SIMD
friendly and ease to parallel and thus can gain performance speedup compared to
MKL. They also developed CSR5-based SpMV algorithm on AMD and NVIDIA
GPU which has better average performance than other existing formats. On the
other hand, a thread-level parallel algorithm called merge-based SpMV [19] also
claims to have great speedup for multi-core processors. BML [4] is an open source
distributed library which supports for both dense and sparse matrix multiplica-
tion. They support for both ELLPACK and CSR format for sparse storage and
implemented Gustavson algorithm as well as merge-based algorithm.

5.2 Performance Optimization Techniques on ARM

One optimization techniques on ARM architecture is tuning compilation flags
as well as compiler itself to generate more efficient codes. Blackmore et al. [3]
developed an auto-tuning method based on a collection of compilation flags used
for GNU C compiler on ARM Cortex-M3 processor (CM3). They used a machine
learning iterative method to obtain the optimal selections of optimization flags
and finally gained two extra collections of compilation flags that outperforms
standard -O3 optimization for CM3 as well as AVR and CA8. On the other
hand, Melnik et al. [18] made a case study on libevas to evaluate the impact
of compiler optimization. They indicate the inefficiency of generated assembly
code introduced by GCC’s global common subexpression elimination (GCSE).
They claim that original GCSE dose not aware whether the constant value will
fit into ARM’s 8 bit limited immediates. They also find that loop prefetching
flags that show performance gains on ARMv6 architectures are not working
well on ARMv8 based Cortex-A8 processor. They indicate that tuning with
specific architecture’s parameters for prefetching flags will gain as much as 20%
performance gain in their evaluation.

102 X. You et al.

Some other ARM-based optimization works are focused in the current ARM’s
many-core system as well as its SIMD unit called NEON. Bez et al. [1] performed
HPC applications on ARMv8 Yggdrasil cluster and analyzed different optimiza-
tion from time and energy aspects. They mainly reach performance gain from
specific ARM compilation flags and NEON optimizations. Besides, Ruiz et al. [26]
work on performance analysis and optimization of HPCG benchmark on ARM-
based platform. In addition to applying optimal compilation flags and ARM-
optimized math libraries, they also report multi-color reordering method and
multi-block color reordering method to have less OpenMP thread synchroniza-
tions which will improve performance on current many-core ARM architecture.
For ARMv8 based FTP processors, Chen et al. [5] benchmarked different for-
mats of sparse matrix storage and developed a prediction model to choose an
optimal format of sparse matrix storage of an unknown matrix. They claimed
that NUMA-aware optimization on FTP can make notable speedup. They also
claimed that vectorizing with NEON on ARMv8-based FTP led to performance
loss since there were no efficient gather vector operations realized in ARMv8
architecture. Our work focuses on different architecture issues and gives some
insights on future designs by benchmarking popular linear algebra kernels while
they are interested in how different sparse matrix formats affect the performance
on this specific architecture.

As ARM’s low power and potentially high performance interest people to
use in embedded systems as well as high-performance clusters, ARM developer
releases collections of ARM performance libraries including BLAS, LAPACK,
FFT and other commonly used math routines [8]. They officially claimed that
their library’s performance is better than widely-used OpenBLAS library. For
machine learnings, they also developed a library called Compute Library [7]
which targets Arm Cortex-A family of CPU processors and the Arm Mali fam-
ily of GPUs. A case study [29] implements deep learning’s embedded inference
engine with Compute Library and they showed an overall speedup of 25% to
Tensorflow.

6 Conclusion

In this paper, we evaluate the prototype Tianhe-3 cluster using representative
linear algebra kernels with both dense and sparse datasets. The evaluation results
are good performance indicators for assessing both the software and hardware
designs as we are moving towards exascale. To better understand the evaluation
results, we build roofline models for FTP and MTP processors that reveal the
directions for future performance optimizations from the perspectives of both
software developers and hardware architects. In addition, we compare the per-
formance of FTP and MTP processors with Intel many-core KNL processor,
which highlights the strengths and weaknesses among the architecture designs.
We hope this paper can shed the lights on the path pursuing exascale super-
computers by taking the chance to report the work-in-progress of one of China
exascale initiatives with Tianhe-3 for the HPC community. For the future work,

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 103

we would like to compare with more architectures such as GPU and evaluate
ARM high-performance libraries when they become available on FTP and MTP.

Acknowledgments. We would like to thank the National SuperComputer Center in
Tianjin for offering us this opportunity to evaluate the prototype Tianhe-3 Cluster. This
work is supported National Key R&D Program of China (Grant No. 2017YFB0202202)
and National Natural Science Foundation of China (Grant No. 61502019).

References

1. Bez, J.L., Bernart, E.E., dos Santos, F.F., Schnorr, L.M., Navaux, P.O.A.: Perfor-
mance and energy efficiency analysis of HPC physics simulation applications in a
cluster of arm processors. Concurrency Comput.: Pract. Experience 29(22), e4014
(2017)

2. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
3. Blackmore, C., Ray, O., Eder, K.: Automatically tuning the GCC compiler to

optimize the performance of applications running on the ARM cortex-M3. CoRR
(2017)

4. Bock, N., et al.: The basic matrix library (BML) for quantum chemistry. J. Super-
comput. 74(11), 6201–6219 (2018)

5. Chen, D., Fang, J., Chen, S., Xu, C., Wang, Z.: Optimizing sparse matrix-vector
multiplications on an ARMv8-based many-core architecture. Int. J. Parallel Pro-
gram. 1–15 (2018)

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. (TOMS) 38(1), 1 (2011)

7. Arm Developer: Compute Library (2018). https://developer.arm.com/
technologies/compute-library

8. ARM Developer: Arm performance libraries reference guide. ARM Developer
(2018)

9. Dongarra, J.: Report on the TianHe-2a system. Technical report, ICL-UT-17-04,
September 2017

10. FT-2000: Phytium Technology Co., Ltd. (2017). http://www.phytium.com.cn/
Product/detail

11. hir0shim: Open source implentention of distributed SpMV on GitHuB (2015).
https://github.com/hir0shim/distributedSpMV

12. Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the
open-source CFD library: openfoam R©. Int. J. Numer. Methods Fluids 70(9), 1073–
1088 (2012)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

14. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, Princeton (2011)

15. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 339–350. ACM (2015)

16. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, pp.
273–282. ACM (2013)

https://developer.arm.com/technologies/compute-library
https://developer.arm.com/technologies/compute-library
http://www.phytium.com.cn/Product/detail
http://www.phytium.com.cn/Product/detail
https://github.com/hir0shim/distributedSpMV

104 X. You et al.

17. McCalpin, J.D.: Stream benchmark, vol. 22 (1995). www.cs.virginia.edu/stream/
ref.html#what

18. Melnik, D., Belevantsev, A., Plotnikov, D., Lee, S.: A case study: optimizing GCC
on ARM for performance of libevas rasterization library. In: Proceedings of GROW
(2010)

19. Merrill, D., Garland, M.: Merge-based parallel sparse matrix-vector multiplication.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 58. IEEE Press (2016)

20. Padoin, E.L., de Oliveira, D.A., Velho, P., Navaux, P.O.: Time-to-solution and
energy-to-solution: a comparison between ARM and Xeon. In: 2012 Third Work-
shop on Applications for Multi-core Architectures (WAMCA), pp. 48–53. IEEE
(2012)

21. Peise, E.: Performance modeling and prediction for dense linear algebra (2017).
arXiv preprint arXiv:1706.01341

22. Plimpton, S., Crozier, P., Thompson, A.: Lammps-large-scale atomic/molecular
massively parallel simulator. Sandia Nat. Laboratories 18, 43 (2007)

23. Rajovic, N., et al.: The mont-blanc prototype: an alternative approach for HPC
systems. In: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2016, pp. 444–455. IEEE (2016)

24. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo1:
making the case for an ARM-based HPC system. Future Gener. Comput. Syst.
36, 322–334 (2014)

25. Rajovic, N., Vilanova, L., Villavieja, C., Puzovic, N., Ramirez, A.: The low power
architecture approach towards exascale computing. J. Comput. Sci. 4(6), 439–443
(2013)

26. Ruiz, D., Mantovani, F., Casas, M., Labarta, J., Spiga, F.: The HPCG benchmark:
analysis, shared memory preliminary improvements and evaluation on an arm-
based platform (2018)

27. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19328-6 1

28. Sodani, A.: Knights landing (KNL): 2nd generation Intel R© Xeon Phi processor.
In: 2015 IEEE, Hot Chips 27 Symposium (HCS), pp. 1–24. IEEE (2015)

29. Sun, D., Liu, S., Gaudiot, J.L.: Enabling embedded inference engine with arm
compute library: a case study (2017). arXiv preprint arXiv:1704.03751

30. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)

31. Wang, E., et al.: Intel math kernel library. In: Wang, E., et al. (eds.) High-
Performance Computing on the Intel R© Xeon PhiTM, pp. 167–188. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06486-4 7

32. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp.
1–12. IEEE (2007)

33. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

34. Xianyi, Z., Qian, W., Saar, W.: OpenBLAS: an optimized BLAS library (2016).
http://www.openblas.net/. Accessed 12 May 2016

35. Zhang, C.: Mars: a 64-core ARMv8 processor. In: 2015 IEEE Hot Chips 27 Sym-
posium (HCS), pp. 1–23. IEEE (2015)

www.cs.virginia.edu/stream/ref.html#what
www.cs.virginia.edu/stream/ref.html#what
http://arxiv.org/abs/1706.01341
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
http://arxiv.org/abs/1704.03751
https://doi.org/10.1007/978-3-319-06486-4_7
http://www.openblas.net/

Performance Evaluation and Analysis of Prototype Tianhe-3 Cluster 105

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abramson, David 38

Bodanapu, Nithin 57

Carroll, Jake 38
Carroll, Thomas 19

Fazio, Vincent 19

He, Yuanyuan 1

Jin, Chao 38
Jitsumoto, Hideyuki 71

Khatri, Nikhil 57
Kobayashi, Yuya 71

Li, Rongxin 19
Li, Xiuqiao 1
Liu, Yi 86
Luan, Zhongzhi 86

Mallon, Michael 38
Matsuoka, Satoshi 71

McMillan, Bill 1
McRae, Allan 38
Ming, Liang 38

Newman, Janet 19
Nguyen, Hoang 38
Nomura, Akihiro 71

Qi, Nan 1
Qian, Depei 86

Ratcliffe, David 19
Ristic, Marko 19
Rosa, Nicholas 19
Russell, Christopher 19

Sudarshan, T. S. B. 57

van Iperen, Zane 38

Watkins, Christopher J. 19

Yang, Hailong 86
You, Xin 86

	Preface
	Organization
	Contents
	Practical Resource Usage Prediction Method for Large Memory Jobs in HPC Clusters
	Abstract
	1 Introduction
	2 Motivation
	2.1 Real-World Traces Analysis
	2.2 Design Goals

	3 Dataset Preparation
	3.1 Biased Job Trace Sampling
	3.2 Job Attributes Extraction
	3.3 Abnormal Job Removal

	4 Resource Prediction Method
	4.1 Predicting Job Memory Usage Type
	4.2 Predicting Large Job Memory Usage
	4.3 Tolerate Incorrect Predictions
	4.4 Model Inference for New Jobs

	5 Evaluation Results and Analysis
	5.1 Experimental Setup
	5.2 Prediction Accuracy and Efficiency
	5.3 Model Training Cost Analysis
	5.4 Model Inference Performance

	6 Related Work
	7 Conclusions and Future Work
	References

	A Crystal/Clear Pipeline for Applied Image Processing
	1 Introduction
	2 Training and Testing Datasets
	3 Early Attempts
	4 Deep Learning Solution
	5 Enabling Infrastructure
	5.1 Inspection Finder
	5.2 Inspection Classifier
	5.3 Post Processing
	5.4 Upload Results and Clean up
	5.5 Logging
	5.6 Cinder and Ashes

	6 Deployment and Future Challenges
	7 Conclusions
	References

	A Cache-Based Data Movement Infrastructure for On-demand Scientific Cloud Computing
	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Hierarchical Global Caching Architecture
	3.2 Global Namespace and POSIX File Interface
	3.3 Storage Organization of a Caching Site
	3.4 Data Consistency
	3.5 Component Interaction

	4 System Demonstrations
	4.1 Existing Components
	4.2 Platform-Independent System Resource Management
	4.3 Data Transfer Optimization
	4.4 Data Consistency

	5 Case Study and Performance Evaluation
	5.1 System Deployment
	5.2 AWS EC2 Instance Selection
	5.3 Network Transfer Optimization
	5.4 Performance Evaluation

	6 Conclusions
	Acknowledgments
	References

	PHINEAS: An Embedded Heterogeneous Parallel Platform
	1 Introduction
	2 Hardware and Construction
	2.1 Single Board Computer
	2.2 Power Supply
	2.3 Network Switch
	2.4 PHINEAS Specification

	3 Software Stack
	4 Performance Benchmarks
	4.1 Monte Carlo Pi Estimation
	4.2 Distributed Merge Sort
	4.3 Image Convolution
	4.4 Hybrid Matrix Multiplication
	4.5 Neural Network Training

	5 Graphics Processing Unit
	5.1 OpenGL ES 2.0
	5.2 Image Convolution
	5.3 Neural Network Inferencing
	5.4 Usability

	References

	MH-QEMU: Memory-State-Aware Fault Injection Platform
	1 Introduction
	1.1 Necessity for State-Aware Memory Fault Injection

	2 Related Work
	2.1 Fault Injection to Physical Hardware
	2.2 Fault Injection by Program Modification
	2.3 Fault Injection by Virtual Machine (VM)

	3 Design
	3.1 Emulation of Fault Injection to Memory Module
	3.2 Assistance API for Analysis of Fault Effects Inside VM
	3.3 Fault Injection Scenario on MH-QEMU

	4 Implementation
	4.1 MM: Memory Mapper
	4.2 MH: Memory Access Handler
	4.3 FS: Fault Injection Scheduler
	4.4 ADM: Address-Data Mapper

	5 Evaluation and Use Case
	5.1 Evaluation Environment
	5.2 Overhead of MH-QEMU Platform
	5.3 Use Case: Resiliency Analysis of Modified NPB CG

	6 Conclusion
	References

	Performance Evaluation and Analysis of Linear Algebra Kernels in the Prototype Tianhe-3 Cluster
	1 Introduction
	2 Background
	2.1 Linear Algebra Kernels
	2.2 Prototype Tianhe-3 Cluster

	3 Evaluation
	3.1 Experimental Setup
	3.2 Performance Comparison on Singe Node
	3.3 Scalability Comparison

	4 Discussion
	4.1 Building the Roofline Model
	4.2 Insights for Software Optimization
	4.3 Insights for Hardware Optimization

	5 Related Work
	5.1 Performance Optimization of Linear Algebra Kernels
	5.2 Performance Optimization Techniques on ARM

	6 Conclusion
	References

	Author Index

