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Abstract 

Objective  Community-acquired pneumonia (CAP) is the primary cause of death for children under five years of 
age globally. Hence, it is essential to investigate new early biomarkers and potential mechanisms involved in disease 
severity.

Methods  Proteomics combined with metabolomics was performed to identify biomarkers suitable for early diagno-
sis of severe CAP. In the training cohort, proteomics and metabolomics were performed on serum samples obtained 
from 20 severe CAPs (S-CAPs), 15 non-severe CAPs (NS-CAPs) and 15 healthy controls (CONs). In the verification 
cohort, selected biomarkers and their combinations were validated using ELISA and metabolomics in an independent 
cohort of 129 subjects. Finally, a combined proteomics and metabolomics analysis was performed to understand the 
major pathological features and reasons for severity of CAP.

Results  The proteomic and metabolic signature was markedly different between S-CAPs, NS-CAPs and CONs. A new 
serum biomarker panel including 2 proteins [C-reactive protein (CRP), lipopolysaccharide (LBP)] and 3 metabolites 
[Fasciculol C, PE (14:0/16:1(19Z)), PS (20:0/22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z))] was developed to identify CAP and to dis-
tinguish severe pneumonia. Pathway analysis of changes revealed activation of the cell death pathway, a dysregulated 
complement system, coagulation cascade and platelet function, and the inflammatory responses as contributors to 
tissue damage in children with CAP. Additionally, activation of glycolysis and higher levels of nucleotides led to imbal-
anced deoxyribonucleotide pools contributing to the development of severe CAP. Finally, dysregulated lipid metabo-
lism was also identified as a potential pathological mechanism for severe progression of CAP.
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Conclusion  The integrated analysis of the proteome and metabolome might open up new ways in diagnosing and 
uncovering the complexity of severity of CAP.

Keywords  Community-acquired pneumonia, Proteomics, Metabolomics, Diagnosis, Host response

Introduction
Community-acquired pneumonia (CAP) is the leading 
cause of death among children under five years of age 
globally, with 16.4 million hospitalizations every year [1, 
2]. In China, a total of 1.42 million cases were reported 
as having one or more episodes of CAP, resulting in 1.48 
million CAP episodes [3]. Approximately 8–20% of chil-
dren hospitalized with CAP progress to severe disease, 
and many of these, especially infants, require admission 
to the pediatric intensive care unit (PICU) [1]. These 
severe cases require advanced interventions, such as 
invasive and non-invasive mechanical support to reduce 
the mortality rate of severe cases.

Diagnosis of pediatric CAP is often difficult due to the 
poor-quality evidence in clinical data, such as atypical 
imaging findings, complex clinical indicators, and poor 
prognostic signs [4, 5]. Failure to provide timely diagno-
sis and treatment may lead to acid-base balance disorders 
causing multiple organ failure and even septic shock in 
critically ill children. Thus, it is essential to develop new 
methods for early assessment of which cases are likely to 
become clinically severe. In addition, disease progression 
of CAP is a complex, multi-system process, and its under-
lying molecular mechanisms remain unclear. Changes 
in systemic responses may be caused by a complex set 
of factors including pathogens, genetic predisposition, 
and immune response. As a result, these factors may 
alter proteins and the downstream metabolites involved 
in disease progression [6]. Therefore, it is important to 
determine if host-derived proteins and metabolites in the 
circulation system are connected to the pathogenesis and 
progression of severe CAP.

Recent multi-omics studies have aimed to identify 
biomarkers and understand complex systemic changes 
which contribute to pathogenesis. Serum is the major 
container for small molecules whose relative amounts 
can provide valuable insights into disease pathogenesis 
[7, 8]. Previous studies have used serum proteins and/or 
metabolites to distinguish infectious disease from healthy 
controls. For example, one study identified a set of pro-
teins able to accurately distinguish and predict COVID-
19 outcomes [9], while in another study, metabolomics 
was combined with a random forest-based classification 
model and identified potential biomarkers for diagnosis 
of Mycoplasma pneumoniae pneumonia [10]. For CAP, 
metabolomics has been used to distinguish CAP from 
healthy individuals and identify metabolite signatures 

which correlate with disease severity [11]. Moreover, 
plasma lipidomics was also found to be useful in pre-
dicting the 90-day mortality prognosis in bacterial CAP 
[12]. Currently, in CAP, it is unclear which protein or 
metabolic pathways are involved in disease progression 
or what their combined roles are, especially in children. 
Thus, an integrated analysis of the proteome and metabo-
lome may provide new avenues for understanding severe 
CAP.

Here, we used proteomics and metabolomics to pro-
file the host response in CAP serum samples in a train-
ing cohort containing severe CAPs (S-CAPs), non-severe 
CAPs (NS-CAPs) and healthy controls (CONs). Our 
study uncovered several host proteins and metabolites 
that were altered in CAP. To identify potential biomark-
ers, we developed a machine learning-based pipeline that 
identified a combination of biomarkers that could accu-
rately distinguish S-CAPs from controls. These selected 
biomarkers and combinations were then validated using 
enzyme-linked immunosorbent assay (ELISA) and 
metabolomics in a second validation cohort. Finally, 
the proteomics and metabolomics data generated in 
this study provided a global overview of the molecular 
changes, which may provide useful insight into the devel-
opment of new therapeutics for treatment of CAP.

Material and methods
Ethical approval
The studies involving human participants were reviewed 
and approved by Ethical Committee of Capital Insti-
tute of Pediatrics (Ethical approval number: SHER-
LLM2019001). Written informed consent to participate 
in this study was provided by the participants’ legal 
guardian/next of kin.

Patient enrollment
S-CAP patients were recruited from the PICU depart-
ment in the Capital Institute of Pediatrics between 26th 
of December 2021 and 8th of March 2022. NS-CAP 
cases were enrolled from the respiratory department at 
the same time. CONs were collected from children who 
underwent a health checkup at the Capital Institute of 
Pediatrics. This study was approved by the Capital Insti-
tute of Pediatrics Ethics Committee.

Diagnosis of pediatric CAP was performed in accord-
ance with the Chinese Medical Association guidelines 
as follows: younger than 18  years; symptoms started in 
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communities; clinical signs of pneumonia (fever; tachyp-
nea; increased respiratory work during examination; 
or auscultatory findings consistent with CAP); and pul-
monary infiltration on the chest radiograph [13]. Severe 
cases required the following criteria: ICU treatment and 
positive pressure ventilation [14]. Among them, 1 patient 
had septic shock with the need for vasopressors. Charac-
teristic and pathogenic types are supplied in Additional 
file 1.

Evaluation of clinical characteristics and markers
Clinical information was retrospectively collected from 
the medical records of patients. This included propor-
tion of blood cells [neutrophils (Neu), lymphocyte (Lym), 
monocytes (Mon)], white blood cells (WBC), procal-
citonin (PCT), prothrombin time (PT), international 
normalized ratio (INR), activated partial thrombin time 
(APTT); fibrinogen (FIB), Fibrinogen degradation prod-
uct (FDP) and thrombin time (TT). The non-invasive 
ventilation, invasive ventilation, days of hospitalization, 
ICU admission, and pediatric critical illness score (PCIS) 
were also assessed at hospital discharge.

Proteomic analysis
Serum samples from cohort 1 were used for proteomics 
analysis (Additional file 1) as previously described [8, 15]. 
Briefly, each sample was lysed with 100  μL lysis buffer 
(8M urea in 100  mM triethylammonium bicarbonate, 
TEAB) at 25 °C for 30 min. The lysates were reduced by 
5 mM Tris (2-carboxyethyl) phosphine (Pierce, Rockford, 
IL, USA) and incubated at 37  °C for 30  min with shak-
ing (300  rpm). Next, samples were alkylated by 15  mM 
Iodoacetamide (Sigma-Aldrich, St. Louis, MO, USA) 
and digested with trypsin overnight at 37 °C. Then, mass 
spectrometry-grade trypsin gold (Promega, Madison, 
WI, USA) was used with an enzyme-to-protein ratio of 
1:50. The dried peptides were dissolved in 20  μL load-
ing buffer (1% formic acid, FA; 1% acetonitrile, ACN). 
Ten μL of sample was applied for LC–MS/MS analysis 
on an Orbitrap Fusion Lumos in data-dependent acquisi-
tion (DDA) mode coupled with Ultimate 3000 (Thermo 
Fisher Scientific, Waltham, MA, USA). The samples 
were loaded and separated by a C18 trap column (3 mm 
0.10 × 20 mm).

For MS detection, the following parameters were used: 
full MS survey scans were performed in the ultra-high-
field Orbitrap analyzer at a resolution of 120,000 and 
trap size of 500,000 ions over a mass range from 300 to 
1400  m/z. MS/MS scan were detected in IonTrap and 
the 20 most intense peptide ions with charge states 2 to 
7 were subjected to fragmentation via higher energy col-
lision-induced dissociation (5 × 103 AGC target, 35  ms 
maximum ion time). The resultant mass spectrometry 

data were analyzed using Maxquant (Version 2.1.0.0) 
and the protein search database used was the Homo 
sapiens FASTA database downloaded from UniprotKB 
(UP000005640.fasta). The following search parameters 
were used for Maxquant: precursor ion mass tolerance 
was set at 20 ppm; full cleavage by trypsin was selected; 
a maximum of two missed cleavages was allowed; static 
modifications were set to carbamidomethylation of 
cysteine, and variable modifications were set to oxida-
tion of methionine and acetylation of peptides’ N-ter-
mini. The remaining parameters followed the default 
Maxquant setup. For protein identification, the following 
criteria was used: (1) peptide length ≥ 6 amino acids; (2) 
FDR ≤ 1% at the PSM, peptide and protein levels. Pep-
tides were quantified using the peak area derived from 
their MS1 intensity and analyzed by perseus.

Enzyme‑linked immunosorbent assay (ELISA)
ELISA was used to quantify the concentrations of 
selected serum proteins. Samples from cohort 2 were 
used for ELISA verification. Adiponectin (ADIPOQ), 
apolipoprotein C (APOC1), vitamin K-dependent pro-
tein C (PROC), angiotensinogen (AGT), fibronec-
tin (FN1), histidine-rich glycoprotein (HRG), albumin 
(ALB), C-reactive protein (CRP), and lipopolysaccharide 
(LBP) ELISA kits (Inselisa) were used to measure the pro-
teins changes in serum from participants in the training 
(cohort 1) and testing (cohort 2) datasets. ELISAs were 
performed according to each kit’s instructions.

Metabolomic analysis
All serum samples (Additional file  1) were used for 
metabolomics analysis as described previously [8, 15]. 
Quality control (QC) samples were applied by mixing 
equal amounts of all samples to ensure data quality for 
metabolic profiling. Samples (100 μL) were extracted by 
400  μL of MeOH/ACN (1:1, v/v) solvent mixture, and 
then incubated and centrifuged for 10 min at 13,500 g at 
4  °C. Next, the supernatant was divided into three frac-
tions: two for reverse-phase/ultra-performance liquid 
chromatography (RP/UPLC)-MS/MS methods with posi-
tive ion-mode electrospray ionization (ESI) and negative-
ion mode ESI, and one for hydrophilic interaction liquid 
chromatography (HILIC)/UPLC-MS/MS with positive-
ion mode ESI.

All UPLC-MS/MS methods used the ACQUITY 
2D UPLC system (Waters, Milford, MA, USA) and 
Q-Exactive Quadrupole-Orbitrap (QE, Thermo Fisher 
Scientific™, San Jose, USA) and TripleTOF 5600 + (AB 
SCIEX, MA, USA) with ESI source and mass analyzer. 
In the UPLC-MS/MS method, the QE was operated 
under ESI coupled with a C18 column (UPLC BEH C18, 
2.1 × 100  mm, 1.7  μm; Waters). The mobile solutions 
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used in the gradient elution were water and methanol 
containing 0.1% FA. When the QE was operated under 
negative ESI mode, the UPLC method used a C18 col-
umn eluted with mobile solutions containing metha-
nol and water in 6.5 mM ammonium bicarbonate at pH 
8. The UPLC column used in the hydrophilic interac-
tion method was a HILIC column (UPLC BEH Amide, 
2.1 × 150 mm, 1.7 μm; Waters), and the mobile solutions 
consisted of water and acetonitrile with 9  mM ammo-
nium formate at pH 8.0; the TripleTOF 5600 + was oper-
ated under positive ESI mode. The mass spectrometry 
analysis was changed between MS and data-dependent 
MS2 scans. After raw data pre-processing, peak finding/
alignment, and peak annotation by MSDIAL software, 
metabolite identifications were supported by matching 
the retention time, accurate mass, and MS/MS fragmen-
tation data to MSDIAL software database and online 
MS/MS libraries (Human Metabolome Database).

Statistical analysis
Statistical analysis of clinical data
Data were analyzed using SPSS 16.0 and expressed as 
mean ± SD. Differences between 2 groups were analyzed 
using student’s t-test. The categorical data were analyzed 
by chi-square statistics. The significance level was set at 
p < 0.05.

Statistical analysis of multi‑omics data
For each group pairing, the fold-change (FC) was calcu-
lated using the mean of each group and compared (e.g., 
mean of S-CAP vs mean of CON). A two-sided unpaired 
Welch’s t test was used to identify significant differences 
between groups. Statistically significant differentially 
abundant proteins (DAPs) and differentially abundant 
metabolites (DAMs) were identified using the following 
criteria: FC > 1.5 or FC < 0.67, and p < 0.05. P-values were 
adjusted for false discovery rate (FDR) using Benjamini 
and Hochberg. Partial least squares-discriminate analysis 
(PLS-DA) was conducted using MetaboAnalyst 4.0 and 
cross-validated using the tenfold unit variance scaling 
method.

Volcano plots were created based on FC and t tests, 
and the intensity data of these regions were used for 
GraphPad analysis and hierarchical clustering analysis. 
The cluster trend map is based on the Mfuzz R pack-
age [16], which can analyze the differential characteris-
tics of proteins. The tool was able to identify potential 
patterns of change in the protein profile, and cluster-
ing proteins with similar patterns can help us under-
stand the dynamic patterns of proteins. Bar plots for 
Gene Ontology (GO) enrichment were created in R 
4.2.1. Heatmaps and signaling pathway analysis were 
performed using the Kyoto Encyclopedia of Genes 

and Genome (KEGG) database, Small Molecule Path-
way Database (SMPDB) and Metaboanalyst 5.0. Mfuzz 
v.2.46.0. Connected networks were then visualized with 
String, a plug-in for Cytoscape (v.3.2.1).

Selection of biomarker candidates
For biomarker selection and verification, a receiver 
operating characteristic (ROC) analysis was performed 
and the predictive power of each protein and metabo-
lite was ranked according to the ROC area under curve 
(AUC) value. Next, 5 machine learning classifiers, 
including logistic regression, random forest, linear sup-
port vector machine, K-nearest neighbor, and decision 
tree were used to determine the best diagnostic model 
while the tenfold cross-validation method was used 
to evaluate their accuracy and error rate. Then, ROC 
curves were then applied to evaluate the accuracy of 
biomarker candidates in the validation set. Diagnostic 
parameters, including sensitivity and specificity, were 
also calculated.

Results
Sample cohort and experimental design
Proteomics and metabolomics were performed on 
serum samples taken from 50 participants, including 20 
S-CAPs, 15 NS-CAPs and 15 CONs (Fig. 1A, cohort 1). 
Patients in the severe group had higher disease scores 
and clinical manifestations which required treatment 
in PICU. Based on the subjects from cohort 1, differen-
tially abundant proteins (DAPs) and metabolites (DAMs) 
in CAP were identified using proteomics and metabo-
lomics, with 9 DAPs verified using ELISA. A new serum 
biomarker panel was developed using machine learning 
algorithms to distinguish CAP from healthy controls 
as well as to identify severe cases of CAP. This panel 
included a combination of 2 proteins and 3 metabolites 
(Fig. 1A). Next, the serum biomarker panel was validated 
using ELISA and LC–MS/MS in an independent verifica-
tion cohort (cohort 2) (Fig. 1B).

To determine the changes in host serum proteins, 
metabolites as well as the pathways which might contrib-
ute to the pathogenesis of severe CAP, cluster and path-
way analyses were performed on the DAPs and DAMs 
identified (Fig.  1C). The relationship between DAPs 
and DAMs with clinical indices were also analyzed. The 
demographic characteristics and laboratory results of 
enrolled patients are shown in Additional file  2. These 
results were consistent with previous studies which 
showed several inflammation markers, such as Neu% and 
Lym% were associated with increased disease severity in 
CAP [11].
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Multi‑omic profiling of CAP
Proteomic changes in CAPs
Based on the LC–MS/MS data from cohort 1 samples, 
we identified a total of 7836 peptides (Additional file  3: 
Fig. S1A) and 514 proteins (Additional file  3: Fig. S1B). 

PLS-DA analysis (Fig.  2A) and volcano plots (Addi-
tional file  4: Fig. S2A–C) were used to visualize the 
DAPs. As shown in Fig.  2B, 263 proteins were differ-
entially expressed among the three groups with 103 
altered in the S-CAP group compared to the NS-CAP 

Fig. 1  Study overview. A Study overview. 50 subjects including 20 S-CAPs, 15 NS-CAPs and 15 CONs from cohort 1 were recruited for proteomic 
and metabolomic analysis. Nine DAPs were verified with ELSIA in cohort 1. The DAPs and DAMs were then used to identify potential biomarker 
combinations for severe CAP diagnosis. B Selected biomarkers were verified using an independent cohort with 129 blinded subjects (cohort 2). 
C Protein-metabolite crosstalk was examined using integrated analysis. Proteomic and metabolomic signatures were analyzed to uncover the 
molecular profile for severe CAP
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group (Additional file  5). This suggests that changes 
in serum proteins became more significant when dis-
ease was more severe. GO and KEGG pathway enrich-
ment analyses were then performed on all DAPs. The 
GO terms (Fig. 2C) and KEGG pathways (Fig. 2D) were 
highly enriched for processes involved in inflammatory 
response (acute-phase response, yellow cycle), platelet 
dysfunction (red cycle), immune response (orange cycle), 
metabolic processes (lipid and carbohydrate metabolism, 
purple cycle), and cell death (green cycle). Furthermore, 
pairwise GO and KEGG (Additional file  4: Fig. S2D–I) 
analyses were also performed for DAPs between each 
group. Notably, the proteins belonging to these mod-
ules related to each other (Fig.  2E). Collectively, these 
results indicate that the altered serum proteins reflect the 
enhanced immune and inflammatory response, the dys-
regulation of platelets and metabolic processes, and cell 
death in S-CAPs.

Metabolomic alternations in CAPs
For metabolomics, we identified a total of 38,841 peaks 
and 2687 metabolites from cohort 1 including amino 
acids, lipids and other important serum metabolites. Of 
these, 1344 DAMs were significantly altered among the 3 
groups and 127 were overlapping (Fig. 3A and Additional 
file 5). SMPDB analysis indicated a significant impact of 
CAP on D-glutamine and D-glutamate metabolism and 
arginine biosynthesis (Fig.  3B). PLS-DA models were 
used to visualize the separation of NS-CAPs with CONs 
(Fig. 3C), S-CAPs with CONs (Fig. 3D), and S-CAPs with 
NS-CAPs (Fig.  3E). Clear differences were observed for 
each group, with cumulative R2 = 0.99 and Q2 = 0.83 
between the NS-CAP and CON groups (Fig.  3F), with 
cumulative R2 = 0.99 and Q2 = 0.91 between the S-CAP 
and CON groups (Fig. 3G), and with cumulative R2 = 0.99 
and Q2 = 0.75 between the S-CAP and NS-CAP groups 
(Fig. 3H). The separation of the 3 groups based on DAMs 
suggest metabolic dysregulation is involved in the patho-
genesis of CAPs which is augmented with severe disease.

Identification of a serum biomarker panel for severe CAP
Based on the serum proteomic data from cohort 1, we 
selected nine potential candidate biomarkers (ADIPOQ, 
ALB, AGT, PROC, LBP, HRG, FN1, CRP and APOC1) for 
verification with ELISA. The criteria for selection were as 

follows: (1) high FC; (2) high ROC value; and (3) associ-
ated with immunity, infection or death-related process. 
As expected, significant differences were observed with 
ratios consistent with the proteomic data (Additional 
file 6: Fig. S3).

Next, based on the ELISA and metabolomics data, 
we developed a new computational pipeline to iden-
tify potential biomarker combinations for diagnosis of 
S-CAPs cases. For the pipeline, nine verified DAPs were 
used to build a protein classification tree and two DAPs 
were eventually selected as the best combination (Addi-
tional file 7: Fig. S4A). Similarly, 4 DAMs with AUC > 0.9 
were used to build a metabolite classification tree and 3 
DAMs were selected (Additional file  7: Fig. S4B). Next, 
we combined the selected DAPs and DAMs for best panel 
selection. As presented in Fig.  4A, the optimal marker 
set, included 2 proteins (CRP, LBP) and 3 metabolites 
[Fasciculol C, PE (14:0/16:1(19Z)), PS (20:0/22:6(4Z, 7Z, 
10Z, 13Z, 16Z, 19Z))] with higher significance than other 
panels (Additional file  7: Figs. S4A and B). This model 
was able to completely distinguish S-CAPs and NS-CAPs 
from CONs, with 100% sensitivity and 100% specificity. 
Moreover, it was also able to discriminate S-CAPs from 
NS-CAPs, which suggests that this marker set has the 
potential to differentiate severe pneumonia in children.

Independent validation of serum biomarkers
To test the accuracy of the selected biomarker panel 
for S-CAP diagnosis, we used an independent cohort 
of 129 subjects, including 53 S-CAPs, 39 NS-CAPs, 
and 37 CONs. Serum samples were subjected to ELISA 
(Additional file 6: Fig. S3) and LC–MS/MS to detect lev-
els of proteins and metabolites, respectively. The AUC 
value of this panel to distinguish NS-CAPs (Fig. 4B) and 
S-CAPs (Fig.  4C) from CONs was 100%. Moreover, the 
AUC value of this panel to distinguish S-CAP from NS-
CAPs was 0.991 (Fig.  4D). When each protein/metabo-
lite was compared individually as well as in combination 
(Additional file  7: Fig. S4C–E), the AUC values showed 
that even when used alone, the DAPs and DAMs were 
still informative to distinguish between different groups 
in most cases (Fig.  4B–D). Thus, our results confirmed 
the accuracy of the proteomic and metabolomics data 
in cohort 1 and, more importantly, validated the serum 

(See figure on next page.)
Fig. 2  Identification of differentially abundant proteins in S-CAPs from cohort 1. A PLS-DA score plots for S-CAPs, NS-CAPs and CONs. B Venn 
diagram of the number of DAPs. C GO enrichment analysis for all DAPs with the top 20 GO terms shown. Yellow cycle highlights acute-phase 
response; Red cycle highlights platelet dysfunction; Orange cycle highlights immune response; Purple cycle highlights metabolic processes. D 
KEGG analysis for all DAPs with the top 13 KEGG terms shown. Red cycle highlights platelet dysfunction; Green cycle highlights cell death. E The 
interaction network for proteins involved in the cell death, inflammatory response, immune response, platelet dysfunction and metabolic pathways. 
Green squares represent pathways; purple circles represent the altered proteins; solid lines represent association between the pathways and 
proteins
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Fig. 2  (See legend on previous page.)



Page 8 of 17Wang et al. Critical Care           (2023) 27:79 

Fig. 3  Identification of Differentially Abundant Metabolites in S-CAP from Cohort 1. A Venn diagram of the number of DAPs. B SMPDB analysis of 
the DAMs from cluster 1. Top 25 KEGG terms are shown. C PLS-DA score plots for NS-CAPs and CONs. (D) PLS-DA score plots for S-CAPs and CONs. 
E PLS-DA score plots for S-CAPs and NS-CAPs. F Parameters for assessing the quality of the PLS-DA model for NS-CAPs and CONs. G Parameters for 
assessing the quality of the PLS-DA model for S-CAPs and CONs. H Parameters for assessing the quality of the PLS-DA model for S-CAPs and CONs
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biomarker panel identified in this study as having prom-
ising potential to clinically identify S-CAP in children.

Activated death system, dysregulated complement system 
and platelet function in S‑CAP cases
From the DAPs identified (Fig. 2B), three expression pat-
terns including two increasing clusters (cluster 1 and 
cluster 4), a decreasing cluster (cluster 2) and an inverted 
“V” cluster (cluster 3) were observed across the different 
groups (Fig. 5A and Additional file 8).

We then performed KEGG pathway enrichment analy-
ses on the DAPs from each cluster pattern. Interestingly, 
DAPs in the increasing clusters (cluster 1 and cluster 4) 
were enriched in proteins associated with the lysosome, 
natural killer cell mediated cytotoxicity and phagosome 
pathways, suggesting that these death processes contrib-
uted to the development of severity (Fig.  5B and Addi-
tional file 8). Higher expression of death-related proteins 
suggests these processes may be involved in the develop-
ment of severe pneumonia (Additional file  9: Fig. S5A). 
Many cell death-related proteins formed a correlated 
network with DAPs in other cell death-related pathways 
(Additional file 9: Fig. S5B) and were positively correlated 
with disease severity (Additional file 9: Fig. S5C).

For the decreasing cluster (cluster 2), DAPs were 
enriched in cholesterol metabolism, malaria, and comple-
ment and coagulation cascades (Fig.  5C and Additional 
file  8). Most complement-related proteins [complement 
factor H-related protein (CFHR)3, CFHR4, CFHR5] and 
coagulation-related proteins [alpha-2-macroglobulin 
(A2M), PROC, heparin cofactor 2 (SERPIND1)] were 
decreased in CAPs, with some lower in S-CAPs com-
pared to NS-CAPs (Additional file 9: Fig. S5D). This dis-
ordered complement and coagulation cascade response 
might be associated with the occurrence of multi-organ 
dysfunction syndrome which is frequently fatal in severe 
patients.

For the inverted “V” cluster (cluster 3), these contain 
proteins primarily involved in platelet activation (Fig. 5D 
and Additional file 8). In this study, proteins involved in 
platelet activation were increased in mild CAPs but sig-
nificantly decreased in severe cases. The expressions of 
platelet-related proteins were negatively associated with 
disease severity (Additional file  9: Fig. S5E). Addition-
ally, levels of fibrinogen alpha (FGA) and fibrinogen beta 
(FGB) were positively correlated with FDP levels (clini-
cal index, Additional file 9: Fig. S5F). Collectively, these 

DAPs in S-CAPs indicate suppression of the complement 
system and platelet function in severe disease, which sug-
gests that tissue remodeling might be severely inhibited 
during this period.

Cross‑talk between glucose metabolism and nucleotide 
metabolism implicated in progression to severe disease 
in CAP
To gain an insight into the pathogenesis of S-CAP, we 
used metabolomics data (combined from cohort 1 and 2) 
to further investigate changes associated with dysregu-
lated function and severe disease (Additional file 10: Fig. 
S6).

Glucose is the primary energy source for immune cells 
and a key player for pathogen proliferation and inflam-
mation. In this study, most enzymes involved in gly-
colysis, including glucose-6-phosphate isomerase (GPI), 
fructose-bisphosphate aldolase (ALDOB), triosephos-
phate isomerase (TPI1), phosphoglycerate kinase 1 
(PGK1), alpha-enolase (ENO1) and l-lactate dehydroge-
nase A (LDHA) were significantly upregulated in CAPs 
(Fig.  6A). Compared to NS-CAP cases, some of these 
enzymes were further elevated in S-CAP. Consistent with 
the proteomics results, metabolomics also found sig-
nificant increase in glycolysis intermediary metabolites 
including glucose and 1,3-bisphosphoglycerate in S-CAP 
(Fig.  6A). Activation of the glycolysis pathway, which is 
necessary for virus replication, were also observed in 
severe COVID-19 patients [27].

Cross-talk between glucose metabolism and nucleo-
tide metabolism is essential as both the PPP and TCA 
cycle contribute to nucleotide formation by increasing 
the supply of glutamate and/or phosphoribosyl pyroph-
osphate (PRPP) [28, 29]. Here, the levels of transaldo-
lase (TALDO1) and transketolase (TKT), which acts 
as a bridge between glycolysis and the TCA cycle 
[28], were up-regulated in CAPs, especially in S-CAPs 
(Fig. 6B). Moreover, the level of PRPP, which is a source 
of PPP for purine and pyrimidine metabolism [30], was 
almost 70 times and 66.7 times higher in the S-CAPs 
and NS-CAPs group compared CONs (Fig. 6B). A sig-
nificant upregulation of glutamine and TCA interme-
diary metabolites (oxaloacetate and oxoglutarate) as 
well as downregulation of citrate, cis-Aconitate and 
oxalosuccinate were also observed in CAPs. Levels of 
isocitrate dehydrogenase 1 (IDH1) were also signifi-
cantly increased in NS-CAPs and S-CAPs (Fig.  6C). 

(See figure on next page.)
Fig. 4  Identification and verification of potential biomarkers for classification of S-CAPs. A Classification and regression tree analysis using 2 DAPs 
and 3 DAMs with 6 terminal nodes. The selected splitting variables are shown in the nodes. B AUC values for 5 biomarkers and the combined 
panel were calculated to differentiate NS-CAPs from CONs in cohort 2. C AUC values for 5 biomarkers and the combined panel were calculated to 
differentiate S-CAPs from CONs in cohort 2. D AUC values for 5 biomarkers and the combined panel were calculated to differentiate S-CAPs from 
NS-CAPs in cohort 2
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Fig. 4  (See legend on previous page.)



Page 11 of 17Wang et al. Critical Care           (2023) 27:79 	

In addition, we analyzed the amount of nucleotide 
intermediates in CAPs and found that many purine 
metabolic intermediates (dAMP, dGMP, guanosine, 
deoxyinosine and inosine, Additional file  11: Fig. S7) 
and pyrimidine metabolic intermediates (CMP, dCMP, 
dUMP, dUTP and dTDP, Additional file  12: Fig. S8) 
were also significantly increased. Collectively, this 

cross-talk between glucose and nucleotide metabolism 
may provide metabolic intermediates and energy for 
inflammation.

Dysregulated macrophage and lipid metabolism in CAP
In addition to glucose and nucleotide metabolism, pro-
teins involved in lipid metabolism were also altered in 

Fig. 5  Activated death system, dysregulated complement system and platelet function in S-CAP cases. A Hierarchical clustering illustrating four 
DAP patterns across three groups. The red line is the center line of the trend for each gene cluster. B KEGG terms enriched in cluster 1 and cluster 4. 
Top 20 KEGG terms are shown. Red lines highlight cell death-related pathways. C KEGG terms enriched in cluster 2. Top 20 KEGG terms are shown. 
Red lines highlight complement and coagulation cascade pathways. D KEGG terms enriched in cluster 3. Top 20 KEGG terms are shown. Red lines 
highlight platelet activation pathway
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CAPs. Expression of multiple apolipoproteins includ-
ing APOC1, APOC4-APOC2, APOC3, APOC4, 
APOF, APOL1, APOM and APOE were changed 
(Fig.  7A). Most of these apolipoproteins were down-
regulated and associated with macrophage function. 
Decreased expression of APOC (APOC1, APOC4-
APOC2 and APOC3) in CAP patients may contribute 

to macrophage modulation (Fig. 7B). The expression of 
APOE, APOL1 and APOM was increased in both NS-
CAPs and S-CAPs (Fig.  7B). Dysregulation of serum 
APOL1 and APOM has also been reported in COVID-
19 patients [7]. Moreover, macrophage-related pro-
teins [such as Macrophage receptor (MARCO)] were 
also differentially expressed and these proteins were 

Fig. 6  Cross-talk between glucose metabolism and nucleotide metabolism implicated in progression to severe disease in CAP. A Glycolysis and B 
Pentose phosphate pathway (PPP) were activated during the initial onset of CAP and progression toward severe disease. Most enzymes involved in 
glycolysis were significantly upregulated in CAPs. C Circulating levels of TCA metabolites in serum. Increased proteins and metabolites are labeled 
in red. Decreased proteins and metabolites were labeled in blue. Statistical significance was determined using the FDR-adjusted p-value. *p < 0.05; 
**p < 0.01; ***p < 0.00



Page 13 of 17Wang et al. Critical Care           (2023) 27:79 	

Fig. 7  Dysregulated lipid metabolism in CAP. A Heatmap showing expression levels of apolipoproteins in CONs, S-CAPs, and NS-CAPs. B 
Representative apolipoprotein expression changes across 3 groups. Square and bars represent the mean and standard deviation, respectively. 
Statistical significance was determined using the FDR-adjusted p-value. *p < 0.05; **p < 0.01; ***p < 0.001. C The interaction network for 
apolipoproteins and proteins associated with macrophage function. D Correlation analysis of inflammatory-associated proteins and 
apolipoproteins. Red and blue numbers represent positive and negative correlation, respectively. * means correlation p value < 0.05. ** means 
correlation p value < 0.01. E Heatmap of DAMs that are associated with fatty acyls, glycerolipids, glycerophospholipids, prenol lipids, sphingolipids, 
steroid and steroid derivatives



Page 14 of 17Wang et al. Critical Care           (2023) 27:79 

correlated with apolipoproteins in terms of function 
and expression (Fig. 7C, D).

Macrophages are closely associated with lipid metabo-
lism. Macrophages are known to regulate lipid synthesis 
after exposure to inflammatory stimuli, which amplify 
the inflammatory response [33]. It has been reported that 
macrophage exposed to microbial stimuli upregulate the 
synthesis of phosphatidylcholine (PC) [33]. However, in 
this study, we found many PCs were downregulated in 
CAPs, especially for S-CAPs (Fig. 7E). This suggests that 
macrophage function might be impaired in children with 
severe pneumonia.

Discussion
Severe pediatric CAP is a critical public health threat to 
children’s health. Although bacterial and viral infections 
may lead to different results, both present with symp-
toms of pneumonia. Healthcare associated pneumonia is 
no longer recognized as a distinct entity, but as a form 
of CAP, and there is increasing evidence of bacterial and 
virus as etiological agents of CAP. Due to the complex-
ity and heterogeneity of the disease, diagnosis of CAP, 
especially for severe CAP, remains a clinical challenge. 
Therefore, it is important to identify early biomarkers 
that can detect the severity of CAP. For this purpose, we 
applied proteomics and metabolomics to test the serum 
protein and metabolite changes associated with severe 
CAP. To our knowledge, this is the first study to combine 
proteomic and metabolomic data obtained from children 
with CAP and different disease severity. Our study iden-
tified 2 proteins (CRP, LBP) and 3 metabolites [Fasciculol 
C, PE (14:0/16:1(19Z)), PS (20:0/22:6(4Z, 7Z, 10Z, 13Z, 
16Z, 19Z))], which are good candidates to identify severe 
CAP cases from non-severe CAP cases and controls. 
These candidates were further validated in an independ-
ent cohort.

In this study, the proteomics and metabolomics data 
generated also enabled a systematic analysis of the 
molecular pathology in CAP. The development of chil-
dren’s lung function is not perfect, so age is likely to be 
an important factor affecting metabolism and morbid-
ity. Therefore, we age-matched the cases and controls to 
minimize the influence of age on protein and metabo-
lite abundance in each group. Significantly DAPs were 
identified to be involved in essential biological processes 
such as cell death, the complement system, coagulation 
cascades, platelet function and metabolic dysregulation. 
Our results are consistent with previous findings that 
severe CAP cases are frequently associated with acute 
respiratory distress syndrome, sepsis, and multi-organ 
injury [34], which were pathophysiologically associated 
with cell death activation pathway, intravascular coagu-
lation and microthrombosis [34]. Our data revealed the 

molecular changes in CAP sera, which could potentially 
reflect the occurrence of cell damage in CAP. Here, we 
observed that severe CAP patients are often accompa-
nied by tissue damage and inflammation. Higher expres-
sion of lysosome-related proteins, cytotoxicity-related 
proteins and phagosome-related proteins were observed 
in S-CAPs, suggesting that various cell death pathways 
contribute to the development of severe pneumonia. Lys-
osomes which are found in pre-existing endolysosomes 
or autolysosomes act as an important bridge between 
autophagy and endocytosis [35]. Thus, as an important 
regulator of cell death, lysosomes, cytotoxicity proteins 
and the phagosome may be involved in exacerbating CAP 
leading to the development of severe disease.

Our data also observed activation of the comple-
ment system and inflammation system in CAPs. Here, 
multiple acute phase proteins such as CRP and com-
plement-related proteins were upregulated in CAPs. It 
has been reported that CRP assists in activation of the 
complement system [36]. This induces the production 
of cytokines and chemokines, potentially resulting in 
a ‘‘cytokine storm’’ [36]; and also recruits macrophages 
from the peripheral blood, which may lead to acute lung 
injury. Since ~ 50% of platelets are produced in the lungs 
[37], these platelets may help to aggravate lung injury and 
further induce cytokine storm. For example, C4BPB [18] 
and F11 [19] which are regulators of complement sys-
tem were significantly decreased in S-CAP cases. PROC, 
which interacts with C4BP [20], was also downregulated 
in S-CAPs. Moreover, CFHR3 [21], CFHR4, CFHR5 [22] 
and CR2 were also decreased in S-CAP patients com-
pared to CONs. Complement and  coagulation, together 
with platelet dysfunction, act as the linchpin in events 
leading to thromboinflammation [17]. Declining platelet 
count has also been associated with poor outcomes in 
CAP patients [23]. Two of the most intriguing proteins 
downregulated in severe patients were vasodilator-stim-
ulated phosphoprotein (VASP) and integrin alpha-IIb 
(ITGA2B). VASP is an actin regulatory protein implicated 
in platelet adhesion [24] while ITGA2B encodes aIIb and 
is an important gene associated with COVID-19-related 
stroke [25]. In addition, the expression of most comple-
ment proteins, coagulation cascade proteins and platelet-
related proteins were negatively associated with disease 
severity. Interestingly, the levels of platelet-related pro-
teins, such as collagen alpha-1(I) (COL1A1), ITGA2B, 
fermitin family homolog 3 (FERMT3), talin-1 (TLN1) 
and VASP were positively correlated with TT levels, while 
negatively correlated with FIB levels, which are essential 
clinical indexes. Additionally, levels of fibrinogen alpha 
(FGA) and fibrinogen beta (FGB) were positively corre-
lated with FDP levels (clinical index). Recently, increas-
ing evidence indicates a potential cross-talk between 
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complement factors and platelet activation, contributing 
to the pathophysiology of diseases and subsequent tissue 
remodeling processes [17]. Therefore, activation of the 
cell death pathway, the inflammatory response and a dys-
regulated complement, coagulation cascade and platelet 
function are predicted to cause tissue damage in children 
with CAP.

Cross-talk between glucose metabolism and nucleotide 
metabolism were observed in CAP cases. Nucleotides are 
the building blocks for DNA and RNA synthesis. Glucose 
metabolic pathways such as the PPP and TCA cycle pro-
mote nucleotide formation by increasing the supply of 
glutamate and/or PRPP [29, 38]. In this study, the levels 
of PRPP and glutamine were significantly upregulated in 
NS-CAPs and S-CAPs. Moreover, the nucleotide (CMP) 
and most deoxynucleotide (dAMP, dGMP, dCMP, dUMP) 
were also elevated in NS-CAP and/or S-CAPs. One 
explanation for this “cross-talk” might reflect increased 
DNA and RNA synthesis in CAP patients due to prolif-
eration of immune cells as nucleotides are required for 
replication [29]. Modulating nucleotide metabolism may 
also increase the host immune response against patho-
gen attack [29, 39]. Furthermore, increased nucleotides 
and deoxynucleotides in the serum suggests higher RNA 
turnover and DNA degradation possibly due to apopto-
sis of host cells or immune cells. Consistent with previ-
ous reports, RNA turnover and DNA degradation are 
increased in inflammatory diseases [40, 41]. The role 
of increased (deoxy)nucleotides in the pathogenesis of 
pneumonia requires further research; however, it is pos-
sible that higher levels of nucleotides lead to unbalanced 
deoxyribonucleotide pools which, in turn, contribute to 
the progression to severe CAP.

In addition to our findings of altered glucose and 
nucleotide metabolism in CAPs, we also uncovered 
dysregulated metabolites for lipid metabolism which 
are important for regulation of signal transduction and 
immune activation processes. Previously, Ning et al. [11] 
suggested that sphingolipid metabolism was significantly 
affected in CAPs, and that lipid dysfunction was one of 
the potential pathological mechanisms. In another study 
on serum metabolites and lipid alterations in CAPs, 
sphingolipids were strongly correlated with respiratory 
function, the cardiovascular system and liver function 
[42]. Similarly, our data also showed that lower sphin-
golipids were detected in both NS and S-CAP patients. 
In addition, dysregulated expression of APOM was 
reported to be associated with virus infection [7]. This 
finding was consistent with our finding that the levels of 
apolipoproteins, which are involved in the transport and 
redistribution of lipids, were significantly dysregulated in 
both NS-CAP and S-CAP patients. Moreover, it is known 
that pulmonary surfactant is a protein-lipid mixture 

secreted by type-II alveolar epithelial cells. Impaired 
surfactant function in lung is thought to be an essen-
tial mechanism for pneumonia after pathogen infection. 
Thus, altered lipid metabolism in this study might have 
also been induced by surfactant metabolism dysfunc-
tion after pathogen infection. Furthermore, it has been 
reported that CAPs with pulmonary diffusing capacity 
affect oxygen transport and mitochondria changes in the 
β-oxidation pathway in children, especially young chil-
dren. The previous study also reported that lipid catabo-
lism can been improved by enhanced lipolytic and fatty 
acid β-oxidation pathways [43]. Thus, we hypothesize 
that lipid metabolism and anaerobic pathways can be 
altered by the damage of pulmonary diffusing capacity 
due to lack of adequate oxygen, as well as beta-oxidation 
pathways in mitochondria due to CAP. Together, these 
data collectively indicate that dysregulated lipid metabo-
lism is involved in the pathological mechanism of CAP 
disease progression.

There are still some limitations to this study which 
needs to be considered. Although our samples were 
age-matched, there may still be other genetic, clinical 
or environmental confounding factors such as pathogen 
type that may not have been detected or controlled for. 
Furthermore, although our results were verified using 
an independent cohort, further verification using larger 
samples sizes are still needed.

In conclusion, this study provides a systematic pro-
teomic and metabolomic investigation of serum sam-
ples taken from severe and mild CAP patients as well 
as control groups. We demonstrated the potential of a 
panel of serum proteins and metabolites that can identify 
CAP cases which may progress into severe pneumonia. 
Although we successfully validated our serum biomarker 
panel in an independent testing cohort, the two cohort 
sizes are small and may require larger samples sizes to 
confirm our findings. Our data also laid out the molecu-
lar profile of serum changes in pediatric CAP, which may 
provide additional useful diagnostic markers and infor-
mation for the development of therapeutic interventions 
in children who develop severe pneumonia.
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Additional file 1. Table S1. Additional characteristics and pathogenic 
types of S-CAPs, NS-CAPs and CONs.

Additional file 2. Table S2. The clinical information and conducted 
biochemical laboratory tests.

Additional file 3. Fig. S1. Quality control and differentially abundant pro-
teins (DAPs) in different samples. Distribution of the number of A quanti-
fied peptides and B proteins in the 50 serum samples from cohort 1.
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Additional file 4. Fig. S2. DAPs in different pairwise comparison. Volcano 
plot comparing protein expression in A NS-CAP vs. CON, B S-CAP vs. CON 
and C S-CAP vs. NS-CAP. Proteins with FC >1.5 or <0.67 with P value <0.05 
were considered to be significant DAPs. Number of significantly down- 
(green) and up- (red) regulated proteins are shown on top. GO-BP analysis 
of the DAPs from D NS-CAP vs. CON, F S-CAP vs. CON and H S-CAP vs. 
NS-CAP. KEGG analysis of the DAPs from E NS-CAP vs. CON, G S-CAP vs. 
CON and I S-CAP vs. NS-CAP. Top 20 terms are shown with red lines high-
lighting platelet-related pathways, yellow lines highlighting inflammatory-
related pathways, green lines highlighting cell death-related pathways 
and purple lines highlighting metabolism-related pathways.

Additional file 5. Table S3. Differentially abundant proteins (DAPs) and 
Different abundant metabolites (DAMs) of cohort 1

Additional file 6. Fig. S3. Selected DAPs Verified using ELISA in Samples 
from Cohort 1 and Cohort 2. Protein levels for 9 selected DAPs were 
verified using ELISA. Statistical significance was determined by Student’s t 
test. *p < 0.05; **p < 0.01; ***p < 0.001.

Additional file 7. Fig. S4:  Identification and verification of potential 
biomarker panels for classification of severe CAPs. A Classification and 
regression tree analysis using 2 DAPs with 2 terminal nodes. B Classifica-
tion and regression tree analysis using 3 DAMs with 3 terminal nodes. C 
AUC values for the 2 combined panels were calculated to differentiate 
NS-CAPs from CONs in cohort 2. D AUC values for the 2 combined panels 
were calculated to differentiate S-CAPs from CONs in cohort 2. D AUC 
values for the 2 combined panels were calculated to differentiate S-CAPs 
from NS-CAPs in cohort 2.

Additional file 8. Table S4. Clusters of Differentially abundant proteins 
(DAPs) and KEGG analysis of DAP clusters

Additional file 9. Fig. S5. Details of activated death system, dysregulated 
complement system and platelet function in S-CAP cases. A Heatmap 
showing expression levels of DAPs related to lysosome, nature killer cell 
mediated cytotoxicity, and phagosome. B The interaction network for 
proteins involved in the lysosome, nature killer cell mediated cytotoxic-
ity, and phagosome pathways. C Correlation of death-related DAPs and 
pediatric critical illness score (PCIS). x axis depicts Spearman’s correlation 
coefficients. D Heatmap showing expression levels of proteins related 
to complement, coagulation cascades and platelet activation. E DAPs 
associated with the platelet activation pathway were correlated to PCIS. 
x axis shows Spearman’s correlation coefficients. F Spearman correlation 
heatmap between expression levels of DAPs associated with platelet-
related pathways and clinical indices associated with platelet function. * 
means correlation p value < 0.05. ** means correlation p value < 0.01. Red 
means positive correlation. Blue means negative correlation.

Additional file 10. Fig. S6. Study overview of differentially abundant 
metabolites (DAMs) in different groups. Metabolomics data from cohort 1 
and cohort 2 combined and analyzed.

Additional file 11. Fig. S7. Activation of Purine Metabolism in CAPs. Many 
purine metabolic intermediates (dAMP, dGMP, guanosine, deoxyinosine, 
and inosine) were significantly increased (as shown in red). Decreased 
proteins and metabolites were labeled in blue. Statistical significance was 
determined using the FDR-adjusted p-values. *p < 0.05; **p < 0.01; ***p < 
0.001.

Additional file 12. Fig. S8. Activation of pyrimidine metabolism in CAPs. 
Many pyrimidine metabolic intermediates (CMP, dCMP, dUMP, dUTP and 
dTDP were significantly increased (as shown in red). Decreased proteins 
and metabolites were labeled in blue. Statistical significance was deter-
mined using the FDR-adjusted p-values. *p < 0.05; **p < 0.01; ***p < 0.001.
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