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Abstract
Swarm robotics studies how to use large groups of cooperating robots to perform desig-
nated tasks. Given the need for scalability, individual members of the swarm usually have 
only limited sensory capabilities, which can be unreliable in noisy situations. One way to 
address this shortcoming is via collective decision-making, and utilizing peer-to-peer local 
interactions to enhance the behavioral performances of the whole swarm of intelligent 
agents. In this paper, we address a collective preference learning scenario, where agents 
seek to rank a series of given sites according to a preference order. We have proposed and 
tested a novel ranked voting-based strategy to perform the designated task. We use two 
variants of a belief fusion-based strategy as benchmarks. We compare the considered algo-
rithms in terms of accuracy and precision of decisions as well as the convergence time. We 
have tested the considered algorithms in various noise levels, evidence rates, and swarm 
sizes. We have concluded that the proposed ranked voting approach is significantly cheaper 
and more accurate, at the cost of less precision and longer convergence time. It is especially 
advantageous compared to the benchmark when facing high noise or large swarm size.

Keywords  Swarm robotics · Collective decision-making · Collective preference learning · 
Self-organized systems

1 � Introduction and related works

Swarm robotics refers to a design paradigm that employs the intelligent collective behav-
ior of a group of robots to achieve a designated task (Brambilla et al., 2013). Inspira-
tions are taken from natural intelligent swarms, such as insect colonies and fish schools, 
who can effectively pool information from agents with poor individual capabilities and 
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display complex collective behaviors without centralized control mechanisms (Cama-
zine et al., 2020). Collective decision-making is a field within the study of swarm intel-
ligence, which focuses on the process where a swarm of intelligent agents achieve a 
global decision via only local interactions among each other and with the environment. 
This field of study has its roots in attempting to model and understand natural intel-
ligent swarms (Garnier et al., 2007) and has also been increasingly utilized to construct 
decision-making strategies for artificial intelligent swarms (Dorigo et al., 2021).

Best-of-n problems refer to collective decision-making problems that focus on dis-
crete consensus forming (Valentini et al., 2017). Site selection is a long-standing studied 
scenario among best-of-n problems. It takes inspirations from the house-hunting behav-
iors of honey bees (Garnier et  al., 2007), which is an example of decentralized deci-
sion-making in natural intelligent swarms. Similar scenarios are used to gauge the capa-
bilities of artificial intelligent swarms in collective decision-making. The experimental 
setup of site selection problems started with binary environments with two sites in the 
arena (Parker & Zhang, 2009, 2011) and have gradually evolved into multi-site envi-
ronments (Lee et al., 2018; Talamali et al., 2019). Recently, there has been a trend in 
the broader collective decision-making research to move from simple binary decision-
making scenarios and toward enabling the agents to make more complicated decisions, 
such as multicolor collective perception (Ebert et al., 2018; Bartashevich & Mostaghim, 
2021), collective estimation (Strobel et  al., 2018; Shan & Mostaghim, 2021), and the 
aforementioned multi-option site selection.

In swarm robotics, learning the ranking of a number of options according to their rela-
tive preference is an important operation, that has many real-life applications and can also 
serve as building blocks for more complex behaviors. To perform such preference learning 
in a swarm robotics setting, the robots need to converge to a consensus regarding the rank-
ing of available options using a distributed and localized strategy. In this paper, we tackle 
such a collective preference learning problem, where the group of agents is tasked with 
ranking the available options from best to worst. A similar problem has been addressed in 
a non-physics-based environment by Crosscombe and Lawry (2021). They have proposed a 
belief fusion-based algorithm to achieve consensus in the ranking.

Another potential source of inspiration for collective decision-making strategies is 
the election process, where the voters collectively decide among the available candidates 
(Tideman, 2017). However, for the distributed decision-making processes of intelligent 
swarms, a centralized tallying of all the ballots cannot be performed. Thus, in swarm 
intelligence settings, majority-voting-based decision-making strategies usually imple-
ment local-scale voting among small groups of agents, such as in Direct Modulation of 
Majority-based Decisions (Valentini et al., 2015, 2016), which gives good performances in 
various binary decision-making scenarios. However, in more complex scenarios, a simple 
majority voting tends to be insufficient. Here, we focus on a ranked voting system, Borda 
count, which was proposed by Jean-Charles de Borda in the eighteenth century (Emerson, 
2013). Consensus formation using iterative pairwise voting has been studied in the context 
of social networks (Hassanzadeh et al., 2013; Brill et al., 2016; Guha & Dasgupta, 2021), 
where its ability to converge the agents with different opinions to a consensus was proven. 
Similar ranked voting techniques have also already been utilized in another collective deci-
sion-making scenario, discrete collective estimation, by Shan et al. (2021).

In this paper, we seek to apply a ranked voting-based decision-making strategy to per-
form collective preference learning, with the aforementioned belief fusion strategy as a 
baseline. We will test the considered algorithms in physics-based simulated environments 
with different noise values, rate of evidence, and swarm size.
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The structure of the paper is as follows. In Sect. 2, we will introduce the collective pref-
erence learning problem we are investigating in this paper and the background of the algo-
rithms investigated. In Sect. 3, we will show the two considered algorithms in this paper in 
detail. Section 4 includes the experimental results. Section 5 is our analysis and discussion 
on the experimental results. And finally, Sect. 6 is the conclusion.

2 � Problem statement

We investigate a preference learning problem inspired by classical site selection scenar-
ios as well as the collective preference learning scenario investigated in Crosscombe and 
Lawry (2021). An illustration of the environment is shown in Fig.  1. There are K sites 
distributed over the arena. A swarm of Nrobot robots is shown in red. They roam the experi-
mental environment and are tasked with ranking the sites from best to worst.

In our experimental settings, each site is associated with a fix index and quality, the lat-
ter indicated by the intensities of the gray color in Fig. 1. When an agent is over a site area, 
it has a probability of detecting the site per control loop, referred to as the evidence rate re . 
When a site is detected, the agent records the index and the quality of the site. The former 
is measured accurately, while the latter is subject to an additive Gaussian noise, with the 
mean being 0 and the standard deviation being the noise level �noise.

An agent has limited computational and memory resources and can only record the indi-
ces and measured qualities of two sites. The agent will thus obtain a pairwise comparison 
between them. Depending on the decision-making strategy, the agent records its own com-
puted ranking among all sites. In addition, an agent has a limited communication radius 
and can only broadcast and receive messages to its peers within the communication radius.

We use the belief fusion algorithm proposed by Crosscombe and Lawry (2021) as a 
baseline. They encode the full ranking in a K × K matrix that indicates pairwise compari-
son between all available pairs of sites. An element oi,j in the matrix can take one of three 
values, 0 and 1 mean that the agent believes that qualityi < qualityj and qualityi > qualityj , 
respectively, while 1/2 means that the comparison is unknown. Their experiments have 

Fig. 1   Illustration of the simu-
lated experimental environment 
used in this paper; gray circular 
areas represent the K = 8 sites, 
their color intensities represent 
their qualities; red dots indicate 
mobile robots roaming the arena 
(Color figure online)
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been conducted in a non-physics-based environment. At every control loop, every agent 
tries to obtain an unknown pairwise comparison between two sites with a success prob-
ability. Two agents from the swarm also perform belief fusion and combine their beliefs 
together. In our paper, we have applied this algorithm to our aforementioned environment.

Additionally, we seek to apply a ranked voting-based decision-making strategy to this 
problem. We have chosen Borda count (Emerson, 2013) as a promising ranked voting sys-
tem. The original voting system works as follows. Each voter ranks all candidates accord-
ing to the own preference, from best to worst. During the tallying process, every candidate 
receives a number of points according to every ballot. If there are n candidates, the most 
preferred candidate on a ballot receives n points, the next most preferred n − 1 points, and 
the least preferred 1 point. These points are added up for all candidates, and the candidate 
with the most points wins the voting. The same voting system can also be used to obtain 
a consensus in the ranking of the available candidates by looking at the ranking of the 
final tallied points. We use this approach in the collective preference learning problem. The 
details of our algorithm are shown in the Methodology section.

3 � Methodology

In this section, we describe the algorithms considered in detail. We start with how the 
robots obtain pairwise quality comparisons from the raw quality reading. Then, we cover 
the state-of-the-art approach in solving similar collective preference learning problems. 
After that, we will introduce our proposed ranked voting algorithm. Finally, we define the 
computation method we use for the performance metrics.

3.1 � Obtaining pairwise quality comparisons

In both considered algorithms, we use the same assumptions used by Crosscombe and 
Lawry (2021) on the cognitive capabilities of the robots considered. Robot n keeps track of 
the indices and qualities of two sites, expressed as follows:

All four variables are initialized to −1 . At every control loop, every robot who is in the area 
of a site has a probability (evidence rate re ) to detect the site and updates its recorded pair-
wise comparison using Algorithm 1.

Indices ∶ Dn ={dn,1, dn,2}

Qualities ∶ Qn ={qn,1, qn,2}
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Algorithm 1 Update Pairwise Comparisons

1: Dn = {−1,−1}; Qn = {−1,−1}; n = 1..Nrobot

2: procedure update pair(n, d∗, q∗)
3: if dn,1 = d∗ or dn,1 = −1 then
4: dn,1 = d∗; qn,1 = q∗
5: else if dn,2 = d∗ or dn,2 = −1 then
6: dn,2 = d∗; qn,2 = q∗
7: else
8: ind = RandomChoice{1, 2}
9: dn,ind = d∗; qn,ind = q∗

10: end if
11: if qn,1 < qn,2 then
12: Switch(dn,1, dn,2); Switch(qn,1, qn,2)
13: end if
14: end procedure

The detected site index d ∗ and measured quality q ∗ are recorded. If d ∗ is present in 
Dn , the robot updates the associated quality value with q ∗ (line 3–6). In this paper, the 
robots do not take repetitive measurements of the noisy site quality to determine the true 
value, as it is assumed that necessary procedures to minimize the noise have been imple-
mented at low level. If one value in Dn is −1 , indicating the position is empty, a new d ∗ 
also fills the position (line 3–6). If both values in Dn are filled and are not equal to d ∗ , 
then one of the two positions is selected at random and filled with d ∗ and q ∗ (line 8–9). 
Finally, the robot always preserves the ordering qn,1 ≥ qn,2 , so that if this is no longer the 
case after updating then the values in both Dn and Qn will be switched (line 12).

3.2 � Benchmark algorithm: belief fusion

The state-of-the-art strategy to solve a collective preference learning problem is a belief 
fusion-based algorithm proposed by Crosscombe and Lawry (2021). They have experi-
mented on two variants of it, one with an operation that preserves the transitivity in pair-
wise comparisons, and the other without, producing different results. We use a modified 
version of it with both variants considered as benchmarks in this paper. The detailed pseu-
docode is shown in Algorithm 2.
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Algorithm 2 Collective Preference Learning using Belief Fusion

1: Bn = zeros(K,K); n = 1..Nrobot

2: Initialize: re, σnoise, ft
3: procedure preference learning fusion(n)
4: if Robot n is on site k & Site detected with probability re then
5: update pair(n, k, sample(N(qualityk, σ2

noise))) # shown in Algo-
rithm 1

6: if logical and(Dn >= 0) then
7: Bn[dn,1, dn,2] = 1; Bn[dn,2, dn,1] = −1
8: end if
9: else if Other robots in communication radius of robot n then

10: m = RandomChoice{Indices of neighboring robots}
11: Bn = Bn +Bm

12: Bn[Bn �= 0] = Bn[Bn �= 0]/abs(Bn[Bn �= 0])
13: end if
14: if ft i.e. transitivity needs to be preserved then
15: for k = 1..K do
16: for k1 = 1..K do
17: for k2 = 1..K do
18: if Bn[k, k1] = 1 & Bn[k, k2] = −1 & Bn[k1, k2] = 0 then
19: Bn[k1, k2] = −1; Bn[k2, k1] = 1
20: end if
21: end for
22: end for
23: end for
24: end if
25: end procedure

The belief matrix Bn records the pairwise relationship between all possible pairs of sites. 
Element Bn[k1, k2] can take one of three values, 1 when qualityk1 > qualityk2 , −1 when 
qualityk1 < qualityk2 , and 0 when the pairwise relationship is unknown or when k1 = k2 . 
The overall behavior of the robot is similar to in Algorithm 2. One important difference 
is in Algorithm 2 line 7, where the robot updates the belief matrix Bn by modifying the 
corresponding elements. In the original version of the algorithm, a belief fusion operation 
changes the belief matrices of both robots, thus requiring bidirectional communication. We 
have modified this feature to keep the hardware requirements on the same level as our pro-
posed algorithm. The robot broadcasts its belief matrix Bn constantly to its nearby neigh-
bors. In practice, due to Bn[a, b] = −Bn[b, a] , only half of the matrix needs to be transmit-
ted. At every control loop, it picks up the belief matrix of a random neighbor and performs 
belief fusion to update its own belief matrix (Algorithm 2 line 11–12). The message trans-
fers are peer-to-peer and pairwise. There are no requirements for the robots to be uniquely 
identifiable.

Another important operation in the belief fusion algorithm is the preservation of transi-
tivity in pairwise comparisons in the belief matrix (Algorithm 2 line 14–24). Here, ft is a 
Boolean variable that marks this setting. The operation makes sure when the belief matrix 
Bn records qa > qb and qb > qc , it will automatically also record qa > qc . Since the operation 
needs to traverse the whole matrix K times, it is an expensive operation with complexity scal-
ing to K3 and presents a trade-off between performance and computational resources needed. 
We have thus experimented on the benchmark belief fusion algorithm both with and without 
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operations to preserve transitivity in the decision-making process for a full comparison with 
the proposed ranked voting algorithm.

3.3 � Collective preference learning via ranked voting with Borda count tallying 
process

We will now introduce the proposed ranked voting-based decision-making strategy. The deci-
sion-making behavior of the robot n using the proposed strategy is shown in Algorithm 3, 
while Algorithms 4 and 5 are subroutines used in the algorithm. In this algorithm, the robot n 
encodes the ranking of all known sites in a list rankingn , which is empty at initialization.

 The maximum length of rankingn is the total number of sites K. At every control loop, the 
robot attempts to detect a potential site. A site will only be detected when the robot is in 
the marked area of the site and a random variable satisfies the evidence rate re (Algorithm 3 
line 4).

Algorithm 3 Collective Preference Learning using Ranked Voting

1: rankingn = []; n = 1..Nrobot

2: Initialize: re, σnoise

3: procedure preference learning voting(n)
4: if Robot n is on site k & Site detected with probability re then
5: update pair(n, k, sample(N(qualityk, σ2

noise))) # shown in Algo-
rithm 1

6: if dn,1 >= 0 and dn,2 >= 0 then
7: update ranking(n,Dn) # shown in Algorithm 4
8: end if
9: else if Other robots in communication radius of robot n then

10: m = RandomChoice{Indices of neighboring robots}
11: rankingn = election(rankingn, rankingm) # shown in Algorithm

5
12: if dn,1 >= 0 and dn,2 >= 0 then
13: update ranking(n,Dn) # shown in Algorithm 4
14: end if
15: end if
16: end procedure

If a site is detected, the robot updates its internal record of a pairwise comparison using the 
procedure update_pair (Algorithm 3 line 5) introduced in Sect. 3.1 Algorithm 1, and with the 
index and measured quality of the detected site as input. After that, if both positions in its pair-
wise comparison are filled, the robot updates its computed ranking of all sites rankingn using 
the recorded pairwise comparison following the procedure update_ranking (Algorithm 3 line 
6–7), which is shown in Algorithm 4.

Initial ∶ rankingn = []
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Algorithm 4 Update Ranking

1: procedure update ranking(n, Dn)
2: if dn,1 �∈ rankingn then
3: if dn,2 �∈ rankingn then
4: Randomly insert dn,1; Randomly insert dn,2 after dn,1
5: else
6: Randomly insert dn,1 before dn,2
7: end if
8: else
9: if dn,2 �∈ rankingn then

10: Randomly insert dn,2 after dn,1
11: else if index(dn,1) > index(dn,2) then
12: Switch dn,1 and dn,2 in rankingn

13: end if
14: end if
15: end procedure

In procedure update_ranking , the robot seeks to insert the two sites in its recorded 
pairwise comparison Dn into its computed ranking rankingn , while preserving the pair-
wise relationship (Algorithm  4 line 4,6,10). For example, inserting an element after 
that of dn,1 is done by inserting an element in a random position marked by downward 
arrows.

 If both sites are present in rankingn , the robot checks if the rankings are complying with 
the pairwise relationship, and switches the rankings if not (Algorithm 4 line 12). An exam-
ple of the switching operation is as follows.

The robot constantly broadcast its current computed rankingn to its neighbors in its com-
munication radius. If a site is not detected, it randomly picks up a message sent by its 
neighbor, if one is present, and it performs an election to generate a new rankingn (Algo-
rithm 3 line 9–11). We keep all interactions among the robots to a peer-to-peer and pair-
wise fashion similar to in the benchmark algorithm, such that the communication para-
digms of the considered algorithms in this paper can be roughly similar. The differences 
between the message sizes of the considered algorithms depend on how the messages are 
encoded. For the benchmark belief fusion algorithm, the messages have 3K(K−1)∕2 possible 
values, while for the proposed ranked voting algorithm, the messages have roughly (K + 1)! 
possible values. In this paper K = 8 , thus the possible message values are 328 and 362,880, 
respectively. When represented in binary, they can be represented in a minimum of 45bits 
and 19bits, respectively. However, this encoding method needs significant computational 
and storage resources to decode the messages during the operation of the algorithms. On 
the other hand, using the simplest method of encoding, where every value used is stored in 
a short int variable of 16bits. The messages’ sizes would be 8K(K − 1) bits and 16K bits , 
respectively, and in this paper 448bits and 128bits. Thus, compared to the benchmark 
algorithm, the proposed ranked voting algorithm not only has lower requirements on the 

Inserting after dn,1 ∶ rankingn = [sa sb sc dn,1 ↓ sd ↓ se ↓]

Switching dn,1, dn,2 ∶ rankingn =[sa sb sc dn,2 sd dn,1 se]

⇒ rankingn =[sa sb sc dn,1 sd dn,2 se]



13Swarm Intelligence (2023) 17:5–26	

1 3

communication bandwidth in the settings of this paper, the bandwidth also scales less rap-
idly when facing higher number of options.

Algorithm 5 Election

1: function election(rankingn, rankingm)
2: candidates = sort(rankingn ∪ rankingm)
3: for i = 1..size(candidates) do
4: if candidates[i] ∈ rankingn then
5: scoren[i] = search(rankingn, candidates[i])
6: end if
7: if candidates[i] ∈ rankingm then
8: scorem[i] = search(rankingm, candidates[i])
9: end if

10: end for
11: scoren[scoren < 0] = size(rankingn)/2
12: scorem[scorem < 0] = size(rankingm)/2
13: result ranking = candidates[argsort(scoren + scorem)]
14: Return result ranking
15: end function

An election in this context is held with only two voters, the robot n and its chosen neigh-
bor m. The detailed process is shown in Algorithm 5. In the election process, the rankings 
need to be transformed into the scores of all considered sites, which are stored in scoren 
and scorem for the two voters, respectively. The transformation is done in Algorithm  5 
line 3–10. The corresponding score of a considered site is the ranking of it in rankingn 
or rankingm (Algorithm 5 line 5,8). The two score vectors must then be padded to con-
tain the same sites, which are tracked by the vector candidates . The unranked candidates’ 
indices are selected using Boolean indexing in Algorithm 5 line 11–12. This is different 
from when ranked voting is utilized in real-life elections. This is because when a real-life 
ranked voting ballot has missing entries, it means that the unranked candidates have lower 
preferences than all ranked candidates and hence can be given the highest rankings. How-
ever, in our algorithm, an unranked site has an unknown quality relative to the ranked sites. 
Therefore, we assigned them a temporary ranking that is half of the number of ranked sites 
(Algorithm 5 line 11–12), such that the resulting ranking of unranked sites only considers 
the opinion of the other robot.

The following example illustrates the aforementioned operations.

The padded score vectors are then added together, applied with an argsort operation and 
used as indices in an indexing operation of candidates vector to obtain the new ranking 
vector result_ranking (Algorithm 5 line 13). Here, we are performing the inverse of tradi-
tional Borda count (Emerson, 2013) and use the rankings directly as the associated points 

rankingn =[3, 1, 5, 6, 2], rankingm = [5, 1, 2, 7]

candidates =[1, 2, 3, 5, 6, 7]

Ranking ⇒ Score ∶

scoren =[1, 4, 0, 2, 3,−1], scorem = [1, 2,−1, 0,−1, 3]

Pad Score Vectors ∶

scoren =[1, 4, 0, 2, 3, 2.5], scorem = [1, 2, 2, 0, 2, 3]
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and sort the candidates in ascending order of their received points. The produced ranking is 
also randomized in the event of a tie anywhere in the ranking of received points.

Keeping up with the example above, the following is an example of how 
result_ranking is produced.

Finally, the election results also need to be checked if they comply with the recorded pair-
wise comparison using update_ranking (Algorithm 3 line 12–13).

Overall, at the design level, the proposed algorithm uses less communication, stor-
age, and computational resources compared to the benchmark algorithm based on belief 
fusion, especially the variant of it with the transitivity-preserving operation.

3.4 � Evaluation metrics

In order to evaluate the performances of the two considered algorithms, we have to 
unify their outputs to the same format. The proposed ranked voting algorithm encodes 
the ranking in a vector with length of K, while the benchmark belief fusion algorithm 
records all pairwise relationships using a K × K matrix. Since the conversion from the 
latter to the former can result in information loss, we convert the rankings produced by 
the proposed ranked voting algorithm into a same-sized matrix containing all known 
pairwise relationships. The conversion is done using Algorithm 6.

Algorithm 6 Converting Ranking Vector into Belief Matrix

1: function conversion(rankingn)
2: Bn = zeros(K,K)
3: for i = 1..K do
4: for j = 1..K do
5: if rankingn[i] < rankingn[j] then
6: Bn[i, j] = 1
7: else if rankingn[i] > rankingn[j] then
8: Bn[i, j] = −1
9: end if

10: end for
11: end for
12: Return Bn

13: end function

After unifying the outputs from the two considered algorithms, the output is com-
pared to the belief matrix produced by the pairwise relationships of the true values of 
the sites B∗ . The error is defined as follows:

Adding Score Vectors ∶

scoretotal = [2, 6, 2, 2, 5, 5.5]

Ranking of Considered Sites� Indices in Candidates∶

argsort(scoretotal) = [2, 3, 0, 4, 5, 1]

Resulting Ranking of Considered Sites ∶

Candidates[Indices] = [3, 5, 1, 6, 7, 2]
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At initialization, all elements in Bn are set to 0; hence, the error at initialization is 
Error0 = K(K − 1) . In this paper K = 8 , thus the error at initialization is 56. The maximum 
error that can theoretically be reached is 2K(K − 1) , where every pairwise relationship in 
the matrix is the opposite of the correct value. In our paper, this value is 112. The lowest 
error that can be achieved is 0, where the ranking of every robot is exactly correct.

We also pay attention to the level of scatter in the produced decisions within the swarm. 
We define the quantity Scatter as the average error between the belief matrices computed 
by every robot and those of every other robot, as follows:

4 � Experiments and results

In this section, we explain the experimental settings and results in detail. A swarm of Nrobot 
robots is simulated in a 3m × 3m 2D environment as shown in Fig.  1. The individual 
robots are programmed with the same low-level control mechanism to perform a random 
walk in the arena. A robot alternates between two modes of movement, walking forward 
in a straight line and rotating in place in a random direction. The two modes of move-
ment have lengths that are randomly distributed, sampled from exp(40)s and unif(0, 4.5)s, 
respectively. In order to avoid collisions, a robot moving forward will abort its current 
movement and start turning if another robot or the edge of the arena is detected in front of 
it. The robots here are simulated with the mechanical specification of e-puck robots (Mon-
dada et al., 2009) and have a linear speed of 0.16 m/s and a rotational speed of 0.75 rad/s. 
The control loops are 1 s long where the aforementioned decision-making algorithms are 
executed.

The K = 8 sites in the experimental environment are in fixed positions of (0.5,  0.5), 
(1.5, 0.5), (2.5, 0.5), (0.5, 1.5), (2.5, 1.5), (0.5, 2.5), (1.5, 2.5), and (2.5, 2.5), all with radii 
of 0.3 m. Their qualities are chosen from the array [0, 1,… , 7] randomly in every experi-
mental instance. Noise N(0, �2

noise
) is added to the true qualities of the sites to simulate dif-

ferent levels of inaccuracies in the cognitive abilities of the robots. We observe the perfor-
mances of considered algorithms in different environments by changing the experimental 
parameters �noise , re , and Nrobot . We gauge the performances via error and scatter at conver-
gence, which is determined by the lowest error achieved during an experimental instance 
within a time limit of 2400  s. We compute the convergence time as the time step taken 
for the whole swarm to reach 90% of its peak performance, i.e., reach an error lower than 
ErrorConv + (Error0 − ErrorConv) ∗ 0.1.

4.1 � Performances of ranked voting algorithm with respect to noise and evidence 
rates

The mean error and scatter at convergence, together with the mean convergence time, 
across 20 experiments at every parameter combination for the proposed ranked voting 
algorithm at various noise level �noise and evidence rate re settings are shown in Table 1.

Error = (Σn=1..Nrobot
sum(abs(B∗ − Bn)))∕Nrobot

Scatter =
Σn1=1..Nrobot

Σn2=1..Nrobot
sum(abs(Bn1

− Bn2
))

(Nrobot − 1)Nrobot
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It can be observed from the mean error and mean scatter results that the noise level 
has a significant impact on the accuracy and precision performances of the proposed algo-
rithm. As the noise level �noise increases, there is a very clear increase in both mean error 
and mean scatter at convergence. However, for most noise level and evidence rate combi-
nations, the mean scatter is consistently higher than the mean error at convergence. This 
shows an accurate but imprecise decision distribution from the proposed algorithm. At 
low re values below 0.02 and at especially high noise levels, the relationship above can 
be reversed, and the error could be higher than the scatter at convergence. This is to be 
expected as at these re values, the robots get very few observations. Coupled with a high 
noise level, erroneous pairwise observations tend not to be challenged, leading to inaccu-
rate results.

At a particular noise level, the lowest mean errors and mean scatters are quite likely to 
be found on the middle range of evidence rates from 0.05 to 0.5, while both too low and 
too high an evidence rate can negatively affect the decision-making accuracy. Due to the 
stochasticity in the proposed algorithm’s decision-making process, especially the random 
inserting of observed pairwise relationships in Algorithm 4, the proposed algorithm needs 
a certain number of pairwise opinion combination relative to the evidence input to enforce 
a consensus, which is harder to meet when the evidence rate is too high.

On the other hand, the mean convergence time is more affected by the evidence rate re 
than by the noise level. When re increases from 0.01 to 0.1, there is a very apparent drop in 
mean convergence time at every noise level. However, beyond an evidence rate of 0.1, the 
change in mean convergence time is more irregular. This, combined with evidence rate’s 
effects on errors and scatters at convergence, shows that for the proposed algorithm, a lack 
of evidence can hamper the decision-making process, but too high an influx of evidence 
does not necessarily have a positive effect.

Table 1   Performances of the proposed ranked voting algorithm at different noise levels �
noise

 and evidence 
rates r

e
 ; N

robot
= 30
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4.1.1 � Comparison with the belief fusion benchmark at different noise levels

The performance distribution across 20 experimental runs of considered algorithms under 
different noise levels is shown in Fig. 2. The evidence rate re is set to 0.2. The swarm size 
Nrobot is set to 30. We have also performed linear regression of the mean performances 
across all experimental runs at individual parameter settings against noise level and com-
puted the gradient of the best-fitting linear function and the coefficient of determination 
( R2 ), the latter of which measures the level of linear relationship observed in the data. The 
results are shown in Table 2. In Fig. 2a, b, we see that all the three algorithms produce 
comparable errors and scatters at convergence when the noise is low at 0 or 0.5. As shown 
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Fig. 2   Box plots of a error at convergence, b scatter at convergence, c convergence time (s) for the proposed 
ranked voting algorithm (RV) and both variants of the benchmark algorithm (FT: fusion with transitivity 
preserved, FN: fusion without transitivity preserved) at different �
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 settings; r
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Table 2   Gradient and R2 values obtained from linear regression of mean performances against �
noise

Algo LR of Error LR of Scatter LR of Conv Time

BF w Tr G = 9.4 R2 = 0.918 G = 1.48 R2 = 0.916 G = 276 R2 = 0.881

BF w/o Tr G = 7.39 R2 = 0.936 G = 1.58 R2 = 0.979 G = 209 R2 = 0.839

RV G = 3.77 R2 = 0.994 G = 3.78 R2 = 0.975 G = 118 R2 = 0.75
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in Fig. 2c, both variants of belief fusion are also able to converge within a shorter time 
compared to the proposed ranked voting algorithm. Among them, belief fusion with transi-
tivity-preserving operations is the fastest.

However, when the noise increases, the advantages of both belief-fusion-based algo-
rithms begin to diminish. As shown in Fig.  2a, when noise level �noise is in the range 
between 1 and 3, the error at convergence increases significantly for both variants of belief 
fusion, as the median error increases from around 0 to 24.4 for belief fusion with transitiv-
ity-preserving operation, and 17.5 without. The reduction in accuracy in the face of noise 
is also observed in the proposed ranked voting algorithm; however, the increase in median 
error at convergence here is much milder and the median value only hit 9 at the highest 
experimented noise level of 3. This is substantiated by the statistical analysis in Table 2, 
where the proposed ranked voting algorithm obtains the lowest gradient of mean error with 
respect to �noise at 3.77.

On the other hand, as observed in Fig. 2b, the proposed ranked voting algorithm pro-
duces a progressively higher scatter than the two variants of belief fusion as the noise level 
increases, reaching a median value of 10.7. As noted in the previous subsection, the scat-
ter produced by the proposed ranked voting algorithm is consistently on roughly the same 
scale as the error. However, both variants of belief fusion, although experiencing a signifi-
cant increase in error, only have a mild increase in scatter, to a median of 2.79 when transi-
tivity is preserved and 3.39 when it is not, as noise increases. This is also shown in Table 2, 
where the proposed ranked voting algorithm obtains the highest gradient of mean scatter 
with respect to �noise at 3.78.

From the aforementioned experimental data, we can conclude that as noise increases, 
the proposed ranked voting algorithm experiences a drop in precision, producing a higher 
scatter as the noise increases. Although the error also increases, it is consistently on the 
same scale or smaller than the scatter, confirming the fact that the proposed ranked voting 
algorithm keeps a high accuracy and much of the increasing error can be ascribed to scat-
ter. In contrast, both variants of belief fusion experience a smaller increase in scatter, but 
they experience a much larger increase in error compared to the proposed ranked voting 
algorithm, demonstrating the fact that belief fusion can lead to consistent consensus among 
the swarm but is unable to reliably obtain the correct ranking at high-noise scenarios.

As shown in Fig. 2c, the convergence time for both variants of belief fusion experiences 
in general can increase as the noise level increases. Its variance also rises for both algo-
rithms. At higher levels of noise from 2 to 3, the convergence time of all the three algo-
rithms is roughly on the same level and the advantage in fast convergence of belief fusion 
does not hold anymore. As shown in Table 2, the linear relationships between convergence 
time and noise level are not as strong as for the previous two performance metrics, shown 
by lower R2 values. However, the proposed ranked voting algorithm still obtains the lowest 
gradient at 118.

Taking an integrated look at the performances of the considered algorithms with 
respect to the noise level, the differences in their performances can be explained by 
looking at their decision-making mechanisms. Both variants of belief fusion use a 
deterministic fusion function that encodes every pairwise relationship, making it easy 
for the whole swarm to converge their individual beliefs. However, it is also vulnerable 
to being misled by erroneous information at high-noise scenarios. On the other hand, the 
proposed ranked voting algorithm limits the number of decision variables faced by the 
individual robots by using a more compact way of encoding the decisions. Its method of 
opinion combination also introduces a degree of stochasticity into the decision-making 
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process, hence allowing the swarm to correct itself from wrong ordering easily, albeit at 
a cost of reducing the precision of the decisions made.

To better illustrate the differences in the decision-making mechanisms of the consid-
ered algorithms, Fig.  3 shows two toy examples of the benchmark belief fusion algo-
rithm when there are only one pairwise relationship and three robots considered, and 
also in the absence of evidence input. The three robots are assumed to be within com-
munication distance of each other. Every robot randomly receives a belief message from 
a random neighbor and performs its decision-making process. The top rows in both sub-
figures show the initial state in the locality, and the bottom rows show the possible states 
in the next time step. It can be seen in Fig. 3a for belief fusion that all three possible 
transitions eliminate the minority opinion −1 , and the first two transitions will result in 
all three robots picking the opinion +1 in the following time steps. In contrast, in Fig. 3b 
for ranked voting it can be observed that only the first and last outcome with a combined 
probability of 5/16 result in loss of information. In addition, no robots are left with the 
unknown status of 0 and the spread of a particular single opinion is significantly slowed.

4.1.2 � Comparison with the belief fusion benchmark at different evidence rates

We then compare the impact on the operations of the considered algorithms from evi-
dence rate re . The performance distribution at different re values is plotted in Fig. 4. The 
noise level �noise is set to 1.5, and the swarm size Nrobot is set to 30. The results from 
linear regression of the mean performances against the natural log of the evidence rate 
ln(re) are shown in Table 3.

Fig. 3   Toy examples of the state 
transition only considering 1 
pairwise comparison within a 
small locality of three robots of a 
the benchmark belief fusion algo-
rithm and b the proposed ranked 
voting algorithm; circles repre-
sent robots, numbers, and color 
codings represent robot opinions, 
arrows & fractions represent 
possible next states and transition 
rates (Color figure online)
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From Fig.  4a, we can see that all considered algorithms experience a general reduc-
tion in error when the evidence rate increases. The reduction is the least apparent in belief 
fusion with transitivity-preserving operations. For the proposed ranked voting algorithm, 
there is also a significant drop in the variance of the error at convergence. This is also 
substantiated by the statistical analysis shown in Table 3, where belief fusion with tran-
sitivity preserved obtains a very weak linear relationship between mean error and ln(re) 
with R2 = 0.146 , as well as between mean convergence time and ln(re) with R2 = 0.144 . 
Figure 4b shows that both variants of belief fusion see higher scatter in their results as the 
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Fig. 4   Box plots of a error at convergence b scatter at convergence c convergence time (s) for the proposed 
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Table 3   Gradient and R2 values obtained from linear regression of mean performances against ln(r
e
)

Algo LR of Error LR of Scatter LR of Conv Time

BF w Tr G = −0.42 R2 = 0.146 G = 0.386 R2 = 0.791 G = −34.2 R2 = 0.144

BF w/o Tr G = −1.91 R2 = 0.901 G = 0.409 R2 = 0.738 G = −144 R2 = 0.522

RV G = −0.333 R2 = 0.429 G = 0.0204 R2 = 0.007 G = −141 R2 = 0.665
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evidence rate increases. There is also more variance in the scatter observed. However, this 
feature is not observed in the proposed ranked voting algorithm. Instead, the median scatter 
decreases when the evidence rate increases from 0.01 to 0.1 and starts increasing beyond 
that. There is also an observable increase in the variance of the scatter when evidence rate 
reduces beyond 0.1. As shown in Table 3, both variants of belief fusion obtain moderately 
strong linear relationships between mean scatter and ln(re) with R2 being 0.791 and 0.738, 
respectively. On the other hand, for the proposed ranked voting algorithm, mean scatter is 
largely independent of evidence rates with G = 0.0204 and R2 = 0.007.

In terms of convergence time, all considered algorithms experience a significant 
increase in decision speed when the evidence rate increases from 0.01 to 0.1. Beyond 0.1, 
the median convergence time either experiences a slight increase as in the case of the two 
variants of belief fusion, or does not see much change as in the case of the proposed ranked 
voting algorithm. At the same time, both variants of belief fusion experience an increase 
in the variance of the convergence time at high evidence rate. The same holds true for the 
proposed ranked voting algorithm when comparing to the variance at re = 0.1.

Overall, the performances of the proposed ranked voting approach generally improve 
as the evidence rate increases, with a reducing error and convergence time. It is also more 
resistant to the effects of low evidence rates in terms of error compared to both variants of 
belief fusion. Its convergence time also increases at a slower rate than belief fusion with-
out transitivity preserved when the evidence rate reduces, while being more vulnerable 
in this aspect compared to belief fusion with transitivity preserved. For the belief fusion 
benchmark, both variants see reducing error when the evidence rate increases, but both 
also see increasing scatter and a much higher uncertainty in convergence time as evidence 
rate increases beyond 0.2.

4.2 � Performances of ranked voting algorithm with respect to swarm sizes

Afterward, we examine the impact of swarm sizes Nrobot on the performances of the pro-
posed ranked voting algorithm. The mean performances across 20 experimental runs at 
every parameter combination are shown in Table 4. It can be observed that for all three 
metrics, optimal behaviors are more likely to be observed at medium ranges of swarm sizes 

Table 4   Performances of proposed ranked voting algorithm at different noise levels �
noise

 and swarm sizes 
N
robot

 ; r
e
= 0.2
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of 50 and 100, while the performances at extreme swarm sizes are often worse off. This is 
similar to the effects produced by varying the evidence rate re . However, there is a more 
clear worsening of all considered metrics at higher swarm sizes compared to evidence 
rates. This is to be expected as a higher swarm size not only introduces more evidence but 
also introduces more agents that need to be brought into convergence for a consensus to 
form.

4.2.1 � Comparison with the belief fusion benchmark at different swarm sizes

We now compare the impact from swarm size Nrobot on the performances of the considered 
algorithms, as shown in Fig. 5. The noise level �noise is set to 1.5, and the evidence rate re 
is set to 0.2. The results from linear regression of the mean performance against the natural 
log of the swarm size ln(Nrobot) are shown in Table 5.

It can be observed that all considered algorithms experience an increase in error when 
the swarm size increases. This is substantiated by the statistical analysis in Table 5, where 
the proposed ranked voting algorithm obtains the lowest gradient of mean error against 
ln(Nrobot) at 1.53. Both variants of belief fusion also see a general reduction in scatter as the 
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swarm size increases, while for the proposed ranked voting algorithm, there is still a clear 
linear relationship between scatter and swarm size. It is thus shown that as the number 
of agents increases, both variants of belief fusion see a stronger push toward consensus, 
which produces lower scatter but higher error. For belief fusion with transitivity preserved, 
this also translates to a lower convergence time, with a gradient of −137 . The same effects 
are not observed in the proposed ranked voting algorithm, which sees its error scales much 
slower to swarm size. However, this comes at the cost of a higher and scaling convergence 
time with a gradient of 218. The proposed ranked voting algorithm also uses less com-
munication bandwidth, storage, and processing power compared to the benchmarks, which 
makes it viable in large swarm sizes.

5 � Discussion

Based on our experiments, we can characterize the performances of the proposed ranked 
voting algorithm as being, in general, slower and less precise, but more accurate and 
cheaper than the benchmark belief fusion algorithms. There is especially a clear advantage 
of the ranked voting at high noise and high swarm size scenarios.

The differences in their performances are due to the different decision-making mecha-
nisms used. The proposed ranked voting algorithm uses a more compact encoding method 
to represent the ranking among the sites. It is able to give a compromising result when 
agents of different opinions are combining their opinions, while in contrast, the benchmark 
belief fusion algorithms revert all entries in conflict back to the initial unknown status of 
value 0, resulting in information loss. This feature, combined with the mechanism in belief 
fusion operation to always assign any available +1 or −1 entry values to entries with the 
unknown status, results in a positive feedback loop within the swarm. Thus, swarms using 
the belief fusion algorithm can come to a consensus rapidly, but when most of the belief 
matrices are filled, it is very hard for dissenting agents to spread their opinions, even if they 
hold correct pairwise information.

Most of the classical opinion-based collective decision-making strategies have been 
built on similar positive feedback mechanisms, such as in Valentini et al. (2015), Valentini 
et al. (2016), and Ebert et al. (2020). In these decision-making strategies, the adoption of a 
particular opinion by an agent increases the probability of the same opinion being adopted 
by other agents. Such positive feedback has also been replicated using a probability fusion 
algorithm in Shan and Mostaghim (2021). However, in these problems, the number of pos-
sible options is small. Thus, it is possible to accurately track every single potential option 
and use positive feedback to create fast consensus.

In contrast, in the collective preference learning problem among eight sites investigated 
in this paper, there are 8! = 40320 possible results. Therefore, the two algorithms 
considered in this paper also do not seek to accurately track all possible options, rather they 

Table 5   Gradient and R2 values obtained from linear regression of mean performances against ln(N
robot

)

Algo LR of Error LR of Scatter LR of Conv Time

BF w Tr G = 2.74 R2 = 0.53 G = −0.138 R2 = 0.247 G = −137 R2 = 0.689

BF w/o Tr G = 2.37 R2 = 0.782 G = −0.777 R2 = 0.892 G = 5.38 R2 = 0.001

RV G = 1.53 R2 = 0.777 G = 1.29 R2 = 0.961 G = 218 R2 = 0.598
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both try to approach the collective preference learning problem as an optimization problem 
and the individual agents seek to make incremental changes in the form of single pairwise 
relationships to approach the true preference order. In such an approach, the existence of a 
positive feedback loop in the decision-making process can cause the swarm to be stuck on 
a local optimum, where a few agents have more accurate ranking information, but could 
not overpower the established consensus, leading to premature convergence. The impact of 
such premature convergence on the accuracy of the consensus depends on two factors, the 
level of dynamism in the environment, and the level of sensory capabilities of individual 
agents. In a dynamic environment, the established consensus can potentially prevent the 
swarm from responding to changes in the environment. On the other hand, this could 
also negatively impact the accuracy in a static environment when the individual agents 
have poor sensory capabilities, in terms of the environment being noisy or observations 
being hard to collect, due to establishing a consensus before the agents can make enough 
observations. This is substantiated by the performances of considered algorithms at high 
noise levels and low evidence rates, respectively.

On the other hand, the proposed ranked voting algorithm employs a degree of stochas-
ticity in its election process. The ordering among options with tied points in the election 
result is random. Since there are only two voters, ties are fairly common. This leads to 
a higher scatter in the final result, as conflicting information needs many pairwise robot 
interactions to be eliminated. However, it also means that dissenting opinions have an 
opportunity to spread within the swarm. The whole swarm can thus readily shift in opin-
ions and has a much better chance in approaching the true result. It is also less likely for 
a pairwise robot interaction to result in loss of information, and the swarm can thus avoid 
being dominated by a single opinion.

6 � Conclusion

In this paper, we investigate a collective preference learning scenario that can potentially 
be faced by an autonomous robot swarm. The swarm is tasked with ranking a series of 
potential sites in the order of preference. We have proposed a ranked voting algorithm with 
Borda count tallying to enable the simulated swarm to perform the designated task. We 
have then tested the viability of the proposed approach in collective preference learning 
scenarios with different noise levels, evidence rates, and swarm sizes. We have compared 
the performances of our proposed approach against those of two variants of a belief fusion-
based benchmark algorithm, in terms of accuracy, precision, and speed.

On the design level, our proposed ranked voting algorithm is cheaper in memory usage, 
processing power required, and communication bandwidth needed. However, it can outper-
form the benchmarks in terms of decision accuracy and, in some cases, convergence speed, 
especially in high-noise and high swarm size situations. Its downsides include a higher scatter 
of the swarm’s results at convergence and longer convergence time in low-noise situations.

In future works, we aim to implement the proposed ranked voting decision-making 
strategy in dynamic environments as well as on real robotic systems and investigate its per-
formances. We also plan to further improve the ranked voting strategy so that it can achieve 
stronger convergence and also deal with cases where the robots are only interested in the 
rankings of the higher-quality subset of the available sites. In addition, we aim to inte-
grate path planning and active searching by individual agents into the algorithm to further 
improve the performance.
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