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Abstract We present a lightweight and efficient semi-
supervised video object segmentation network based on
the space-time memory framework. To some extent,
our method solves the two difficulties encountered in
traditional video object segmentation: one is that the
single frame calculation time is too long, and the other
is that the current frame’s segmentation should use
more information from past frames. The algorithm
uses a global context (GC) module to achieve high-
performance, real-time segmentation. The GC module
can effectively integrate multi-frame image information
without increased memory and can process each frame
in real time. Moreover, the prediction mask of the
previous frame is helpful for the segmentation of the
current frame, so we input it into a spatial constraint
module (SCM), which constrains the areas of segments
in the current frame. The SCM effectively alleviates
mismatching of similar targets yet consumes few
additional resources. We added a refinement module
to the decoder to improve boundary segmentation.
Our model achieves state-of-the-art results on various
datasets, scoring 80.1% on YouTube-VOS 2018 and a
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J&F score of 78.0% on DAVIS 2017, while taking 0.05 s
per frame on the DAVIS 2016 validation dataset.
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1 Introduction

Video object segmentation, which aims to draw a
detailed object mask on video frames, is widely
applicable to various fields such as autopilots, video
editing, and video synthesis. It originates from video
object tracking [1]. Approaches can be divided into
unsupervised methods [2, 3] that input only the video,
and semi-supervised methods [4–7] that require a user
to provide initial labels. In our work, we consider
the second approach. The reason for doing so is that
defining what constitutes an “interesting object” is
often application-specific, and the same video could
have multiple valid solutions. Thus, cues regarding
which objects are of interest can be concretely indicated
by labels specifying this on a few key frames.

Existing deep learning-based algorithms for semi-
supervised video object segmentation can be classified
as propagation-based methods, matching-based
methods, hybrid methods, and space-time memory
based methods. Propagation-based methods [4, 8–
11] utilize the target’s temporal coherence, and rely
on the mask from previous frames. For example,
MaskTrack [11] combines the segmentation mask of
the previous frame with the current frame to form
the mask of the current frame. However, these
methods suffer from occlusion problems and error
drift. Matching-based methods [5, 12–14] uses the
first frame of a given video as a reference frame and
detect the segmented object independently in each
frame. These methods are more robust and reduce the
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impact of occlusion, but do not take full advantage of
spatiotemporal information. Hybrid methods [6, 15–
17] integrate the above two methods, employing the
previous frame and the first frame to segment the
current frame, to integrate the advantages of the two
types of method. Accordingly, the performance and
accuracy of some hybrid algorithms are improved on
the former two classes.

Since hybrid methods can significantly improve
video target segmentation, it is natural to ask
whether we can use more frames to learn richer
contextual information. A recent paper uses this idea
in the design of a new Space-Time Memory (STM)
network [7, 18, 19]. In order to use information from
more frames, STM stores key-value pairs extracted
from past frames into a memory pool and then
matches information extracted from the current frame
with the information in the memory pool, at the
pixel level. This algorithm has better robustness and
good segmentation performance, even in the case of
occlusion and appearance variation.

Although STM-based methods achieve state-of-
the-art precision, they suffer from excessive memory
consumption, especially on long videos. When the
STM module learns new information from a new
frame, the module adds it to the memory. Over
time, more and more memory is used, and may even
result in memory exhaustion. To solve this problem,
the author reduces the number of frames read and
updates the memory every five frames. However,
linearly increasing memory is still used over time,
and the solution does not make the best use of the
information in each frame.

In our work, inspired by Ref. [7], we employ a
global context module (see Fig. 1) that retrieves the
segmentation information in a more efficient way.
As the learned video frames advance, the module
automatically updates the information. Unlike the
linear memory growth of Ref. [18], the size of the global
context module is fixed and does not increase over time.
There is no chance of memory exhaustion, and we can
learn variations in the object through time.

When similar objects enter the field of view,
the model sometimes makes incorrect predictions.
Furthermore, the model performs poorly when the
shape of the object changes dramatically. For these
problems, we employ a spatial constraint module,
inspired by Ref. [20] (see Fig. 1). It uses a mask

Fig. 1 Our solution has three key steps: (i) Context extraction:
extract each frame’s information into a fixed-size updater (see Eqs. (2)
and (3)). (ii) Context distribution: match the current frame’s semantic
information with that in the updater at pixel level (see Eq. (4)). (iii)
Spatial constraint enforcement: the mask of the previous frame is
input into the spatial constraint module (see Eq. (5)).

from the previous image as a rough constraint to
guide the model in removing confusing instances of
similar appearance. In addition, we use Atrous Spatial
Pyramid Pooling (ASPP) [21] modules to handle scale
changes in the video. Finally, we use a refinement
module [22–25] after the decoder to further improve
the segmentation results near the target boundary.

2 Related work

2.1 Detection-based methods

Detection-based methods rely on fine-tuning using
the first-frame ground truth. They assume that
a powerful frame-level target detector can be
constructed, which can segment video frame by frame.
OSVOS [12] is a representative algorithm, which uses
a pre-trained convolution network for foreground–
background segmentation, and first-frame ground
truth for fine-tuning. OnAVOS [13] and OSVOS-
S [5] introduce an online adaptation mechanism
based on OSVOS. PML [26] proposes an embedding
network with triplet loss and a nearest neighbour
classifier. Most detection-based methods require
online training, so the fine-tuning time will greatly
affect the performance of the model, making it
incapable of providing real-time results. A model
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based on fine-tuning from the first frame will be more
robust to occlusion and other problems. However,
due to the loss of available temporal information, such
methods can fail if the shape of the target changes
so drastically that the detector cannot recognize the
target.

2.2 Propagation-based methods

Propagation-based methods rely on the temporal
coherence of the video, since most videos are smoothly
varying. Thus we only need an adjustment to
the mask of the previous frame to get the mask
for the current frame. MaskTrack [11] is a typical
propagation-based approach that inputs the mask
of the previous frame and the current frame into
the model, and outputs the mask of the current
frame. Lucid [27] extends this method by introducing
an elaborate data augmentation mechanism. Joint-
task [2] and learning-correspondence [28] approaches
first learn a visual representation, and then uses
KNN [29] to train the model to learn a feature
mapping representation to perform cycle consistency
tracking. The advantage of this approach is that it
can overcome rapid large changes in appearance, but it
cannot overcome occlusion, drift, and other problems.

2.3 Space-time memory based methods

STM [18] is a semi-supervised video object seg-
mentation method. Although traditional propagation-
based methods and matching-based methods achieve
good results, they still do not use as many frames
as possible in the video sequence, so much semantic
information is lost. Inspired by the non-local method
of Ref. [30], STM uses a novel attention module,
which allows multiple frames from the video to pass
through the encoder module, stores the information
in the memory module, and then matches the
information in the current frame with the information
in the memory module, at the pixel level, to determine
whether each pixel belongs to the foreground object.
It does not need to limit the number of frames.

As STM does not rely on the assumption of
video smoothness when learning spatial semantic
information between distant pixels, it is possible
to train the network first with static pictures with
masks. Previous work [7, 19] has also used this
strategy to generate three-frame composite video clips
by applying random affine transformations to static
pictures with different parameters. We use image

datasets annotated with object masks to train our
network, and by doing so, we can produce a model
that is robust to a variety of object appearance and
category transformations.

STM also has various drawbacks, such as incorrect
matching to similar-looking objects, imprecise edge
processing for target objects, and poor segmentation
quality when the object appearance changes too much.
There are thus many improvement schemes for STM.
For example, to alleviate mismatching, KMN [19]
improves STM’s memory reading module by using a
2D Gaussian kernel. AFB-URR [31] reduces memory
consumption. STCN [32] and LCM [33] target
improved segmentation accuracy. RMNet [34] uses
optical flow [35, 36] to constrain the extent of the
segmentation.

Due to the limited memory capacity, adding
information to the memory module continually will
lead to memory exhaustion. STM addresses this by
saving image information every five frames, but this
violates the original intent of matching all frames
before the current frame, one by one. To alleviate the
increasing memory consumption during STM usage,
we employ a global context module. Every time we
read a new number of frames, the global context
module automatically updates its content without
increasing resource consumption.

To sum up, the advantage of STM-based methods
is that their network model elegantly uses as
many frames as possible, and learns more context
information than traditional methods, thus accurately
predicting the mask of the current frame.

3 Approach

In this section, we introduce a new efficient video
object segmentation (VOS) framework based on
STM methods. We first overview our framework in
Section 3.1. In Section 3.2, we describe the principle
of operation of the global context module, and then we
introduce the spatial constraint module in Section 3.3,
We finally describe the boundary-aware refinement
module in Section 3.4.
3.1 Overview

Figure 2 overviews our architecture. The main
structure is an encoder–decoder. The global context
(GC) module is based on the output of the memory
encoder and query encoder. Two different encoders
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Fig. 2 Pipeline. Past frames are input into the network for encoding and sent to a fixed-size global context module. The module’s content is
updated automatically as frames advance. The encoder generates a set of attention vectors for the current frame to retrieve relevant information
in the global context, to form global features. The encoder also generates local features. The global and local features are concatenated and
passed to the constraint module, whose result is passed to the decoder to produce the segmentation result for the frame.

are used to generate features at H ×W resolution
with C channels. The GC module has two functions:
context extraction and updating, and context
distribution. First, we use the memory encoder to
extract semantic information from previous frames
and their masks, and put it into a fixed-size updater.
Next, we use the query encoder to encode the
current frame to get a local feature embedding. We
match the local features of the current frame with
those in the updater at pixel level, and then use
an atrous spatial pyramid pooling module to get
richer semantic information. The feature map is then
spatially constrained to the target object through
the spatial constraint module (SCM) to reduce errors
due to similar objects. Finally, our prediction map is
obtained through the decoder via a boundary-aware
refinement module (BAM).
3.2 Global context module

3.2.1 STM versus GCM
Many recent VOS methods use attention mechanisms,
with encouraging results. As a formulation, we may
define query embedding of the current frame as Qr ∈
RHW ×C , key embedding of the memory frames as
Ky ∈ RT HW ×C , and value embedding of the memory
frames as Vl ∈ RT HW ×C , where H, W , C, T denote
height, width, number of channels, and temporal

extent, respectively. Space-time memory propagation
is formulated as

STM(Qr,Ky, Vl) = CorF(Qr,Ky)Vl

= softmax(QrK
tr
y /
√
C)Vl (1)

where a distribution map is computed by the
correlation function CorF. After multiplying Qr and
Ktr

y , softmax is applied to the resulting feature map,
converting its values to the range [0, 1], and then the
value embedding Vl is propagated into each location
of the current frame.

In the STM, the key-value pair vectors for each
frame are stored in the memory module. As time
advances, the number of video frames increases, and
these vectors are concatenated, so Ky and Vl become
larger and larger: computing STM requires more
effort with greater video resolution or video duration.

In order to overcome the problem of excessive
consumption of system resources, we employ the
global context module, which works differently from
the STM. The global context module automatically
updates the information, without increasing its size,
while having almost the same representation ability
as STM.
3.2.2 Context extraction and update
The global context module evolved from STM module,
so their architectures are very similar. As Fig. 3
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Fig. 3 Context distribution module.

shows, we have two different encoders. One memory
encoder encodes previous frames and their masks to
generate the keys and values, of size H ×W × CN

and H ×W × CM respectively, where CN and CM

are the numbers of channels used. The other query
encoder encodes the current frame, also generating
queries and values.

STM keeps concatenating keys and values, so its
memory pool gets ever bigger. The innovation of
the GCM over STM is to combine keys and values
generated by past frames into a fixed-size updater, and
to update data automatically as new frames arrive. We
call the step doing this the global summary step.

In this step, the STM method treats the key-value
pair vectors generated by the encoder as H × W

locations, where each location is a vector of CN (CM )
dimensions, while the GCM treats the key-value
pairs as CN (CM ) one-channel feature maps and then
considers them as several weight matrices related to
the key-value pair vectors. The GCM first computes
the context matrix of the current frame from the key-
value pair vectors generated by the context extraction
process, using

Ft = Ky(Et)TVl(Et) (2)
where Et denotes the output of the encoder at time
t, Ft is the feature matrix of this frame, and Ky, Vl

are functions that generate keys and values respectively.
We then include the resulting information in Ft in the

global context matrix. Since the matrix has fixed size,
we do so without using additional resources. The update
for the global context module is performed as Eq. (3):

Ut = 1
t
Ft + t− 1

t
Ut−1 (3)

where Ut denotes the global context module. The
weights ensure each Fp for 1 6 p 6 t to contribute
equally to Ut .
3.2.3 Context distribution
We match the query and value information extracted
from the current frame to the information stored in
the global context module at the pixel level, which we
call context distribution. In this process, we multiply
the query with size H×W×CN by GT which has size
CM ×CN to get a matrix of size H ×W ×CM , and
then concatenate the matrix with the value produced
by the current frame to get the output of GC module.
This may be written:

It = Qr(Et)Ut−1 (4)
where It represents the distributed global features
for frame t, and Qr is the function generating the
queries.

The global context module summarizes the areas
of semantic interest in the query position of the
current frame for context features in past frames.
The STM does this by first identifying such areas by
query-key matching, then summarizing their values by
weighted sum. The GCM achieves the same goal more
effectively as the global context vector is already a
global summary of all previously semantically similar
regions in the framework. Query location only needs
to determine the appropriate weight of the global
context vector to generate a vector that summarizes
all regions of interest.

3.3 Spatial constraint module

We employ a spatial constraint module (SCM, see
Fig. 4) to ensure spatial consistency between adjacent
frames, and reduce error due to similarity of of
appearance, avoiding false predictions caused by
similar instances of the same category. The prediction
mask of the previous frame is a 0–1 mask of shape
H ×W , which is cascaded with the current frame
embedding (H ×W ×C) to obtain a feature map of
shape H ×W × (C + 1). A convolution layer with
a 3 × 3 kernel and a sigmoid function are used to
generate a spatial prior, which is a gate map of shape
H ×W . The prior is multiplied by the current frame
embedding. The SCM can be expressed as



390 Y. Chen, D. Wang, Z. Chen, et al.

Fig. 4 Spatial constraint module.

ST = 1
1 + exp (fn (ET ⊕ PT−1)) ⊗ET (5)

where ET represents the encoder feature map of T
frame, PT −1 represents the predicted mask of the
previous frame, fn denotes the convolution function,
and ⊕ and ⊗ represent concatenation and element-
wise product, respectively. Example attention maps
generated by the SCM are shown in Fig. 5.
3.4 Boundary-aware refinement module

3.4.1 Architecture
The spatial constraint module greatly reduces
problems due to occlusion, but the target object
may also change as the video progresses. SCM is
not good enough alone to ensure high segmentation
accuracy, so we use several methods to improve the
segmentation accuracy our architecture. After the
context distribution operation, we employ an atrous
spatial pyramid pooling (ASPP) module, to obtain
semantic information at different scales.

To improve the segmentation boundary, we
apply a refinement module before soft aggregation.
Refinement modules are usually designed as encoder–
decoder modules, as shown in Fig. 6, with residual
connections to avoid loss of precision while learning
deeper information about the frame.

Srefined = Scoarse + Sresidual (6)
We employ a novel residual refinement module

(RRM) to refine both region and boundary drawbacks
in coarse maps. As Fig. 6 shows, all of our convolution

Fig. 5 Attention maps generated by the spatial constraint module.
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Fig. 6 Decoder.

cores are of size 3 × 3. A batch normalization, a
ReLu activation function, and a maxpool function
are used after each convolution during the encoding
phase. In the decoding phase, we use bilinear
interpolation up-sampling; after each up-sampling
is completed, we use 3× 3 convolution and skip the
convolution of the encoder and decoder. Similarly, a
batch normalization and a ReLu activation function
are used after the convolution operation. The loss
function of the RRM is hybrid loss, which will be
described later. The output of this RRM module is
used as input to soft aggregation [16], which merges
the multi-object prediction; the loss function for soft
aggregation is cross entropy loss.

3.4.2 Hybrid loss
Accuracy of boundaries is one of the difficulties in
image segmentation. To solve this issue, we employ
the concept of hybrid loss. We combine three losses
corresponding to three levels:

`(k) = `
(k)
bce + `

(k)
ssim + `

(k)
iou (7)

where l(k) is the loss of the k-th side output, `(k)
bce,

`
(k)
ssim, and `

(k)
iou denote BCE loss, SSIM loss, and IoU

loss, respectively.
BCE is the most basic and commonly used binary

cross-entropy. BCE loss is computed pixel-wise, for
fairness:

`bce = −
∑
(r,c)

[G(r, c) log(S(r, c))+

(1−G(r, c)) log(1− S(r, c))] (8)

where r and c represent pixel coordinates, G is the
ground-truth mask, and S is the predicted value of
the object.

SSIM is the structural similarity index. It is
designed to assess picture quality, capture structure
information, and learn structure relationships
between a target and ground truth. SSIM loss acts
on a patch-level, and the key is that it considers
boundaries. SSIM loss is defined as
`ssim = 1− (2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

)(
σ2

x + σ2
y + C2

) (9)

where x, y sets represent areas of size N×N extracted
from the predicted probability map S and ground
truth. µx, µy, σ2

x, and σ2
y are the mean and variance

of x and y, respectively. σxy is the covariance of x
and y.

The third loss is the IoU loss, which is acts at a
map level:

`iou = 1−

H∑
r=1

W∑
c=1

S(r, c)G(r, c)

H∑
r=1

W∑
c=1

[S(r, c) +G(r, c)− S(r, c)G(r, c)]

(10)
where r and c represent pixel coordinates, G is the
ground-truth mask, and S is the predicted value of
the object.

4 Experiments

This section describes implementation details of our
framework and experiments carried out the on the
DAVIS 2016 [37], DAVIS 2017 [38], and YouTube-
VOS 2018 [39] datasets. Evaluation metrics used for
object segmentation are the average region similarity
(J mean), the average contour accuracy (F mean),
and the average of the two (J&F mean). As Fig. 7
shows, our network model achieves a very good
balance between speed and accuracy relative to other
methods.
4.1 Datasets

The DAVIS 2016 & 2017 [37, 38] datasets are
intended to benchmark pixel-perfect labelling. Their
goal is to provide realistic video scenes including
camera jitter, background clutter, occlusion, and
other complications. DAVIS 2016 [37] is a single-
target dataset containing 50 video sequences, 30
of which are for training and 20 for validation.
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Fig. 7 Speed (FPS) versus accuracy (J &F mean) comparison using the DAVIS 2016 validation set at 480p resolution.

DAVIS 2017 [38] is a multi-target dataset. Each
frame contains several different annotated targets. It
includes 150 video sequences, 376 target instances,
and 10,459 frames.

The YouTube-VOS 2018 dataset [39] is by far
the largest video object segmentation dataset,
comprising 4453 YouTube video clips and 94 target
instances, which allows comprehensive evaluation and
comparison of video object segmentation methods.

4.2 Implementation details

Our model is first pre-trained on the video clips
simulated using an image dataset, and then trained
on the video dataset.
4.2.1 Pre-training on image datasets
Training with a static image database compensates for
the lack of frames in the video database, and avoids
over-fitting caused by a lack of training data. This
method assumes no temporal relationship between
images, and uses static picture datasets to train the
video object segmentation models. Previous work
used static images to train their networks, and we
took a similar approach. The specific implementation
applies random affine transformations [11] to various
images. A video sequence composed of three frames is
generated and used to train our network, making our
network more robust and easier to adapt to different

segmentation targets. We pre-trained our model on
the CoCo dataset [46].
4.2.2 Main training on video datasets
We used real video data for the main training
stage, using DAVIS 2016 [37], DAVIS 2017 [38],
and YouTube-VOS 2018 [39] datasets according to
different training objectives. We randomly used three
frames in the correct temporal order from the same
video sequence as training samples. In order to learn
appearance changes in objects over a long period, we
randomly skipped frames during the sampling process.
As training progressed, the number of frames skipped
increased from 0 to 25.
4.2.3 Other training details
We randomly clipped input frames to a size of 384×384.
We used the Adam [47] optimizer with a fixed learning
rate of 10−5. We froze the batch normalization layer
during training. The mini-batch size was 4. Both pre-
and main-training used random affine transformations,
but the main training process was less random. The
sampling intervals increased by 5 after every 20
epochs, both for Davis and YouTube-VOS.
4.3 Ablation study
We performed ablation experiments using the DAVIS
2017 dataset to see how each module of our network
contributes to the final results.
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4.3.1 Pre-training and main training
An interesting result from our experiments is that
when we only do pre-training, the video segmentation
capability of the model is better than when the model
only undergoes main training, which indicates that
the size of the training set has a significant influence
on the resulting network. When omitting pre-training,
the overall accuracy on the YouTube dataset for
the main training-only model decreased by 15% (see
Table 1): our model is severely over-fitting. These
experiments show that the rich static image resources
used in pre-training can help enhance our network’s
robustness, so we use both pre- and main-training
strategies for the model to achieve the best results.
4.3.2 Global context module
The GCM uses a fixed-size updater so that as the
number of video frames increases, the model memory
usage does not: the network can learn information
from each frame. Results of a comparison to STM’s
update module using the DAVIS 2017 dataset are
shown in Table 2 with STM using the same scheme of
reading all frames as GC. It can be seen that GCM’s
speed of processing video is significantly better, while
accuracy is not greatly affected.The J mean and J
mean obtained by STM are 0.3% and 2.3% higher
than by GCM, respectively. The improvement is
minimal, but GC runs three times faster than STM.
Table 3 shows the memory consumption of the two

Table 1 Comparison of accuracy of model with full training to
models using pre-training only or main training only

Variant
YouTube-VOS DAVIS-2017

Overall (%) J (%) F(%)

Pre-training only 70.1 72.5 73.9
Main-training only 65.2 50.1 52.6
Full training 80.5 85.2 84.3

Table 2 Accuracy and speed of models using STM and GCM on
the DAVIS 2017 dataset

Variant J (%) F(%) J &F(%) Time (s)

Memory read 85.5 86.6 81.1 0.15
GCM 85.2 84.3 80.1 0.05

Table 3 Memory usage for our framework and STM, at various
numbers of video frames n

Method n Memory (MB) Method n Memory (MB)

STM
0 4

Ours any 110 40
100 394

methods. As t increases, STM’s resource consumption
increases linearly, while GCM’s resource consumption
remains at a very low level.
4.3.3 Spatial constraint module
The spatial constraint module is used to reduce
mismatching of target objects with similar
appearance. A comparison was performed with and
without the module using the DAVIS 2017 dataset.
It shows that the module can significantly prevent
mismatching yet has little effect on computational
efficiency, as shown in Table 4. In a multi-object video
set, the target is more susceptible to interference
from similar objects, and the improvement provided
by the SCM becomes very obvious: when SCM is
used, J and F are improved by 5.8% and 3.8%,
respectively, while SCM does not affect speed. As
Fig. 5 shows, the SCM uses a mask from the previous
frame to focus the current frame on the target object,
greatly reducing mismatching.

4.4 Comparisons to state-of-the-art methods

4.4.1 DAVIS 2016 (single object)
The first comparison used the verification set from the
DAVIS 2016 benchmark, with single-object videos.
We directly cite results for other representative works
from the DAVIS 2016 benchmark website, including
for the recent STM [18] and RANet [15]. Results are
given in Table 5. We can see that using the online
learning method returns higher scores.

Figure 7 draws a scatter diagram for various
methods according to speed and accuracy. It can
be seen that the accuracy of methods based on
online learning is very high, but the online learning
process is time-consuming, and the calculation time
is prolonged. Offline learning methods have high
calculation speed, but lower accuracy. Recent
methods such as STM achieve a balance between
accuracy and speed, running at 6.7 FPS. Our
framework improves upon STM, and its speed reaches
25 FPS. It is noteworthy that the videos in DAVIS are
very short, mostly not exceeding 100 frames. As the
time taken by STM increases linearly with number of
frames, as video length increases, STM will become

Table 4 Accuracy of models with and without SCM

Variant J (%) F(%) J &F(%) Time (s)

SCM 85.2 83.9 80.1 0.05
W/O SCM 79.4 80.1 75.5 0.05
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Table 5 Comparison using DAVIS 2016 and DAVIS 2017 validation sets. Results for online (OL) and non-online methods are sorted by J &F
mean. +YV indicates use of YouTube-VOS for training. The three best scores are indicated in red, blue, and yellow, respectively (the same for
other tables)

DAVIS-2016 DAVIS-2017

Method OL Time (s) J &F(%) J mean (%) F mean (%) J &F(%) J mean (%) F mean (%)

OSVOS [12] X 7 80.2 79.8 80.6 60.3 56.6 63.9
Lucid [27] X — 83.0 83.9 82.0 — — —
CINM [40] X > 30 84.2 83.4 85.0 70.6 67.2 74.0
OnAVOS [13] X 13 85.5 86.1 84.9 65.4 61.6 69.1
OSVOS-S [5] X 4.5 86.6 85.6 87.5 — — —
PReMVOS [41] X > 30 86.8 84.9 88.6 77.8 73.9 81.8
DyeNet [10] X 2.32 — 86.2 — — — —
GEM [42] — 64.6 69.6 59.6 — — —
SiamMask [43] 0.03 70.0 71.7 67.8 56.4 71.7 67.8
OSMN [17] 0.13 73.5 74.0 72.9 54.8 52.5 57.1
PML [26] 0.28 77.4 75.5 79.3 — — —
VidMatch [44] 0.32 — 81.0 — — 56.5 —
FAVOS [4] 1.8 81.0 82.4 79.5 58.2 54.6 61.8
FEELVOS [6] 0.5 81.7 80.3 83.1 69.1 65.9 72.3
RGMP [16] 0.13 81.8 81.5 82.0 66.7 64.8 68.6
AGAME [45] 0.07 81.9 81.5 82.2 70.0 67.2 72.7
RANet [15] 0.13 85.5 85.5 85.4 65.7 63.2 68.2
STM [18] 0.15 86.5 84.8 88.1 71.6 69.2 74.0
GC [7] 0.04 86.6 87.6 85.7 71.4 69.3 73.5

Ours 0.05 88.7 89.5 87.9 74.2 72.5 75.8
Ours (+YV) 0.05 90.1 91.0 89.2 78.0 75.4 80.5

slower and slower, while our framework can maintain
high computing speed for any video length. In general,
our method achieves the highest speed, and its J
mean score is also among the best.

As Fig. 9, columns 1, 3 show, even when the target
object undergoes severe deformation, our method can
segment the object accurately and is unaffected by
occlusion.
4.4.2 DAVIS 2017 (multiple object)
DAVIS17 is a multi-object segmentation database,
in which many objects interfere and obscure each
other. Multi-object scenarios are more challenging
than single-target scenarios. In Table 4, we compare
our framework with several existing mainstream
frameworks and see that online learning-based methods
perform equally well in multi-target scenarios. However,
the computation time for online learning methods is
prolonged. For offline learning methods, our framework
is more accurate and faster than STM.

The spatial constraint module gives our network
model a distinct advantage in multi-target
classification tasks. In Fig. 9, rows 2, 4, 5, our method
correctly identifies different entities.

4.4.3 YouTube-VOS
One of the features of the YouTube-VOS dataset is
that there are some unseen targets in the validation set.
Table 6 compares different methods using this dataset.
STM again achieved high scores in this test. Our
framework significantly improves upon STM, achieving
high scores on seen and unseen object segmentation.
4.5 Qualitative results
Figure 8 shows visual examples of the segmented
results of our framework and other frameworks.

Table 6 Comparison using the YouTube-VOS validation set

Method Overall J seen J unseen F seen F unseen
(%) (%) (%) (%) (%)

RVOS [48] 56.8 63.6 45.5 67.2 51.0
OSVOS [12] 58.8 59.8 54.2 60.5 60.7
S2S(OL) [49] 64.4 71.0 55.5 70.0 61.2
VSBMM [50] 64.5 70.0 62.5 66.2 59.3
PReMVOS [41] 66.9 71.4 56.5 75.9 63.7
AGAME [45] 66.1 67.8 60.8 — —
BoLTVOS [51] 71.1 71.6 64.3 — —
AGSS [52] 71.3 71.3 65.5 76.2 73.1
STM [18] 79.4 79.7 72.8 84.2 80.9
GC [7] 73.2 72.6 68.9 75.6 75.7
GVOS-SCM (ours) 80.1 80.1 76.6 83.2 81.4
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Fig. 8 Results with those from RGMP [16], FEELVOS [6], and RaNet [15].

Fig. 9 Further results from our method using the DAVIS 2017 validation set.

Our spatial constraint module can effectively handle
many challenging situations, such as object confusion,
size changes, and appearance transformations. Our
refinement module can help to segment the edges
of the target object. In the first row, RGMP [16],
FEELVOS [6], and RaNet [15] all identify two dogs
as the same entity, while our method accurately

identifies two entities. In the second row, the RaNet
method again has a problem of misidentification. In
the third row, the RGMP and FEELVOS methods
do not recognize the target object. In the last row,
all three methods have mismatching problems.

However, there is still room for improvement in
our framework. As Fig. 10 shows, when an object is
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Fig. 10 Imperfect segmentation results.

severely deformed, it may lead to in inaccurate results
(see row 1, columns 4, 5). When the target object
does not appear in a long sequence of frames, this
may cause segmentation to fail (see row 2, columns
3, 4). Thanks to the robustness of our network,
the number of frames in which segmentation fails
usually does not exceed two (see row 2, column 5).
Mismatches can also occur when several split objects
are very close together and there are interactions
between them (see row 3, columns 2, 4). Since the
spatial constraint module uses the mask from the
previous frame’s segmentation result, our network
may also treat an occlusion as a object target if there
is occlusion in the current frame (see row 4, columns
3, 4, 5).

To sum up, though some imperfect segmentation
results under extreme conditions still exist, generally
our framework provides very good segmentation
results even with target occlusion, target confusion,
complex object appearance; our network also
achieves a very good balance between accuracy and
speed.

5 Conclusions

We have designed a new video object segmentation
framework. Fast video frame information acquisition
and updating are achieved through the GCM based on
the STM approach; it captures object segmentation
information in processed frames through a fixed-size
updater. We also use a spatial constraint module,
which helps our network to achieve outstanding

results in multi-target problems. Finally, we use a
refinement module to help our network provide a more
refined segmentation boundary for the target object.
As the experiments on benchmark datasets show, our
method outperforms STM, in terms of both accuracy
and speed. Furthermore, because of the GCM, our
network cannot run out of memory over time. Overall,
our solution is efficient and compatible, and we hope
it will set a strong baseline for other real-time video
object segmentation solutions in the future.
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