
Computational Visual Media
https://doi.org/10.1007/s41095-022-0269-5 Vol. 9, No. 2, June 2023, 265–277

Research Article

Practical construction of globally injective parameterizations
with positional constraints

Qi Wang1, Wen-Xiang Zhang1, Yuan-Yuan Cheng1, Ligang Liu1, and Xiao-Ming Fu1 (�)

c© The Author(s) 2022.

Abstract We propose a novel method to compute
globally injective parameterizations with arbitrary
positional constraints on disk topology meshes. Central
to this method is the use of a scaffold mesh that
reduces the globally injective constraint to a locally flip-
free condition. Hence, given an initial parameterized
mesh containing flipped triangles and satisfying the
positional constraints, we only need to remove the
flips of a overall mesh consisting of the parameterized
mesh and the scaffold mesh while always meeting
positional constraints. To successfully apply this idea,
we develop two key techniques. Firstly, an initialization
method is used to generate a valid scaffold mesh and
mitigate difficulties in eliminating flips. Secondly, edge-
based remeshing is used to optimize the regularity of
the scaffold mesh containing flips, thereby improving
practical robustness. Compared to state-of-the-art methods,
our method is much more robust. We demonstrate
the capability and feasibility of our method on a large
number of complex meshes.

Keywords globally injective parameterization;
constrained parameterization; bijection;
flip-free; scaffold mesh

1 Introduction

Computing parameterizations of disk topology
meshes is a fundamental problem in computer
graphics [1–5]. It is a basic requirement for para-
meterizations to be globally injective, i.e., the

1 School of Mathematical Sciences, University of
Science and Technology of China, Hefei 230026,
China. E-mail: Q. Wang, wq2014@mail.ustc.edu.cn;
W.-X. Zhang, zwx111@mail.ustc.edu.cn; Y.-Y. Cheng,
chyy@mail.ustc.edu.cn; L. Liu, lgliu@ustc.eu.cn;
X.-M. Fu, fuxm@ustc.edu.cn (�).

Manuscript received: 2021-11-10; accepted: 2022-01-06

parameterized boundary should be self-intersection-
free, and the parameterized triangles should be flip-
free. Furthermore, in many applications, such as u–v
editing, a set of vertices should be constrained to
desired positions.

Generating desired parameterizations is difficult,
and existing methods provide no theoretical guarantee
that they develop an initial parameterization
satisfying the above constraints. Techniques for
constructing flip-free parameterizations with
positional constraints often do not handle the
intersection-free condition [6–9]. Thus, we need
to optimize the intersection-free boundary or
the positional constraints from the initialization.
However, the non-linear intersection-free constraint
is not straightforward to handle, as the intersecting
boundary edge pairs usually change during
optimization. We note that computing intersection-
free and flip-free parameterizations without positional
constraints is a popular research topic [10–13], while
optimizing the positional constraints as a soft energy
may lead to self-locking situations [14, 15].

Only one existing method handles all three types
of constraints [16]. They take as input an initial
mapping satisfying the positional constraints and
violating the other two constraints, and then try
to remove the intersecting boundaries and flipped
triangles by optimizing dedicated penalty energies
while keeping the positional constraints. In practice,
complicated self-intersecting boundaries often cause
the approach to fail to obtain the desired results (see
Figs. 1 and 13).

In this paper, we propose a practical and
robust method to compute globally injective
parameterizations with hard positional constraints.
The key idea is to use a scaffold mesh to convert
the globally injective constraint into the flip-free

265



266 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

Fig. 1 For the Desk model, the method of Ref. [16] fails to generate a globally injective parameterization which satisfies the positional
constraints (blue dots), whereas our method succeeds. Green lines indicate boundary edges of the input model.

constraint (Fig. 3), following Refs. [11, 17]. The
scaffold mesh encloses the parameterized mesh, and
its inner boundary conforms to the boundary of the
parameterized mesh. If the overall mesh composed
of the scaffold mesh and the parameterized mesh
has no flipped triangles and its outer boundary is
intersection-free, the boundary of the parameterized
mesh is intersection-free [18]. Then, previous elegant
methods for computing flip-free mappings with
positional constraints can be used.

Two factors should be considered to ensure
robustness in practice. Firstly, if the boundary of the
parameterized mesh has intersections, it is non-trivial
to generate a scaffold mesh whose inner boundary
conforms to the boundary of the parameterized mesh.
Secondly, after generating the scaffold mesh, the flip-
free condition is applied to the overall mesh, so the
scaffold and the parameterized mesh affect each other.

To handle the former, we propose a three-step
process to initialize the parameterizations. After
obtaining a globally injective parameterization
without positional constraints, we initialize a
valid scaffold mesh using constrained Delaunay
triangulation (CDT) and then enforce the positional
constraints on the initial parameterized mesh.

To handle second factor, two techniques are used:
(i) in the initialization process, the initial overall
mesh is similarly transformed to reduce the distances
between the current positions of the constrained
vertices and their target positions, and (ii) after the
flip-free mapping computation algorithm terminates,
if there are still flips, the scaffold mesh is remeshed,
following Ref. [11]. Since the boundary of our
parameterized mesh is not intersection-free, the CDT
algorithm used by Ref. [11] cannot be used. Instead,
the edge-based remeshing algorithm [19] is applied.

We demonstrate the practical robustness of our
method on a large number of models (Figs. 2 and 11).
Our approach is much more robust than previous
methods in practice. For example, on the dataset
provided by Ref. [16], our success rate is 99.8%,
whereas the state-of-the-art method [16] only has
a success rate of 85.8%.

2 Related work

2.1 Flip-free parameterization

Many methods have been proposed to realize flip-free
parameterizations [5–7, 20–22].

On the one hand, some of them first initialize a

Fig. 2 Our method succeeds in constructing globally injective parameterizations with positional constraints for three complex models.



Practical construction of globally injective parameterizations with positional constraints 267

flip-free parameterization through Tutte’s embedding
or other variants [23–27] and then optimize flip-
prevented distortion energies, such as the MIPS
energy [28], the AMIPS energy [6], or the
symmetric Dirichlet energy [10, 29]. Many methods
have been proposed to optimize the non-linear
energies, including first-order methods [6, 22, 30],
quasi-Newton algorithms [31], and Newton-type
methods [32–34].

On the other hand, some methods take an inverted
configuration as input and try to remove the flipped
elements afterwards. These include a bounded
distortion mapping method [9], projection-based
methods [8, 35], an assembly-based method [36],
penalty-based methods [37, 38], and area-based
methods [39, 40]. However, until now, there has
been no theoretical guarantee that all flips will be
totally removed.
2.2 Globally injective parameterization
As well as the flip-free constraint, globally injective
parameterizations also require intersection-free
boundaries [18]. Tutte’s embedding or other variants
can theoretically guarantee global injectivity, but they
lead to significant distortion. To solve the problem,
some methods start from a globally injective mapping
that may have high distortion, and iteratively
optimize the mapping, while checking for overlaps
after each step, and using a barrier function [10] to
prevent overlaps. However, finding candidate pairs
of overlapping elements and deciding how to handle
them are time-intensive, as discussed in Refs. [11, 12].
Another class of methods using a scaffold mesh to
guarantee global injectivity will be described next.
2.3 Scaffolds for mapping construction
Scaffold meshes have already been used in previous
work, e.g., for surface tracking [41], surface
parameterization [11, 17], and collision handling [42].
As noted above, the main challenge in obtaining
global injectivity is to avoid collisions between any
pair of non-adjacent boundary edges. Since the
number of collisions is hard to estimate in each
iteration, collision detection and elimination can take
a lot of time, as mentioned in Refs. [11, 12, 43].
After introducing a scaffold mesh, the globally
injective constraint can be converted to a flip-free
constraint [11, 18], which sidesteps the need to
explicitly detect and avoid collisions. As long as the
overall mesh consisting of the parameterized mesh

and the scaffold mesh is flip-free, the parameterized
mesh is sure to be flip-free and intersection-free. Our
algorithm also uses a scaffold mesh to achieve global
injectivity.

2.4 Constrained parameterization

Constructing flip-free parameterizations with
positional constraints has attracted considerable
research attention in recent years [7, 14, 16, 36],
but without the intersection-free constraint being
considered. Many methods can be successfully
applied to fixed-boundary mapping problems, thus
leading to an intersection-free mapping as long as
the initial boundary has no intersections [8, 38, 40].
However, existing methods provide no theoretical
guarantee that they generate an initial
parameterization satisfying the intersection-free
condition, the flip-free condition, and arbitrary
positional constraints. In fact, given an intersection-
free and flip-free parameterization, optimizing the
positional constraints while always satisfying the
globally injective condition may result in self-locking
situations, as observed by Refs. [14, 15]. Du et
al. [16] recover a globally injective parameterization
satisfying arbitrary positional constraints from a
non-injective initial mapping while meeting the
positional constraints. However, their method
fails for many models (see Figs. 1 and 13). We
also consider these constraints, but convert the
intersection-free condition to a flip-free condition,
leading to a higher success rate.

3 Method

3.1 Problem and formulation

3.1.1 Inputs and goals
Given an input disk topology mesh M, we aim to
compute a parameterized mesh P ∈ R2 satisfying the
following requirements:
• Intersection-free boundary: the boundary of P

should have no self-intersections.
• Flip-free triangles: the signed area of each triangle

of P should be positive.
• Positional constraints: vi = vhi , ∀vi ∈ H, where
H is a set of constrained vertices, and vhi is the
target position of vertex vi.

• Low distortion: the piecewise affine mapping f :
M→ P should exhibit low distortion.



268 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

The intersection-free constraint and the flip-free
condition form the bijection requirement. The
constrained vertex set H and the target positions are
further inputs. H may include interior or boundary
vertices.
3.1.2 Formulation
Computing globally injective parameterizations
with positional constraints and the low distortion
requirement can be formulated as a constrained
optimization problem. Let Edistortion(P) measure the
parameterization distortion, Bp be a set containing
all non-adjacent boundary edge pairs, F be the set
of triangles in P, and A(fi) denote the signed area
of fi. Then we wish to minimise Edistortion subject
to the constraints:

min
P

Edistortion(P)

s.t. bi ∩ bj = ∅, ∀(bi, bj) ∈ Bp,

A(fi) > 0, ∀fi ∈ F ,

vi = vhi , ∀vi ∈ H (1)
3.1.3 Key idea
As explained, no existing method can generate a
parameterized mesh P satisfying the aforementioned
three constraints while providing a theoretical
guarantee. Thus, we need to optimize the initial P to
meet the constraints. In practice, the intersection-free
constraint is very complicated to achieve, increasing
the optimization difficulty. Our key idea is to use
a scaffold mesh S to convert the intersection-free
constraint into a flip-free constraint (see Fig. 3).
3.1.4 Scaffold meshes
To achieve the constraint conversion, S should satisfy
the following conditions:

Fig. 3 Key idea. (a) It is difficult to remove both the intersections
on the boundary and the flipped triangles of the parameterized mesh
while satisfying the positional constraints (blue vertices). (b) Taking
the parameterized mesh and the scaffold mesh (white triangles) as
an overall mesh, we only need to eliminate its flipped triangles.
(c) Removing flipped triangles from the overall mesh while fixing
the boundary of the scaffold mesh achieves a globally injective
parameterization.

• Conforming condition: the inner boundary of S
should be the same as the boundary of P.

• Bounding condition: S should tightly bound P.
• Boundary condition: the outer boundary of S

should be intersection-free.
When S and P contain no flipped triangles and S
satisfies the conditions above, the parameterization
is globally injective [18]. In practice, the boundary
condition for S is realized as positional constraints:
the initial S is constructed to have an intersection-
free boundary, and its outer boundary vertices are
fixed during the optimization process.
3.1.5 Reformulation
We reformulate Eq. (1) as Eq. (2):

min
P

Edistortion(P)

s.t. A(fi) > 0, ∀fi ∈ F ,

vi = vhi , ∀vi ∈ H,

A(fsi ) > 0, ∀fsi ∈ Fs,

vsi is fixed, ∀vsi ∈ Vsb (2)
where Fs is the set of triangles of S and Vsb contains
all outer boundary vertices of S.

3.2 Algorithm workflow

3.2.1 Challenges
Using the scaffold mesh S, only the flip-free constraint
and the positional constraint remain.

Therefore, we can use existing flip-free parame-
terization methods to obtain the desired result.
However, two challenges remain for the algorithm
to be robust in practice. Firstly, when the boundary
of P is self-intersecting, constructing S to satisfy
the conforming condition is non-trivial. Thus, it
is difficult to generate an initial S to make the
optimization process efficient and robust. Secondly,
since the flip-free constraint is enforced on both S
and P in Eq. (2), the quality of S affects the success
rate of the optimization process.
3.2.2 Pipeline
To overcome these two challenges, we propose the
following algorithm workflow (see Fig. 4):
1. Generate a globally injective parameterization

(the parameterized mesh is denoted P0) without
the positional constraints, using Ref. [11].

2. Transform P0 similarly to minimize the distance
between the current positions of constrained
vertices and the target positions.



Practical construction of globally injective parameterizations with positional constraints 269

Fig. 4 Workflow of our method. Given an input triangle mesh (a), an initial globally injective parameterization P0 is computed using Ref. [11]
(b). We transform P0 similarly to reduce distances between the current positions of constrained vertices and the target positions (c) and
construct the scaffold mesh S using the CDT algorithm (d). Afterwards, we move the constrained vertices to their target positions, which may
flip triangles (e), and then remove flips using Ref. [8] until termination (f). If there are flipped triangles in (f), we first perform an edge-based
remeshing algorithm on S to improve its mesh quality (g) and then remove flips. This remeshing–removing process is iteratively conducted until
no flips exist (h). Finally, we reduce the distortion while fixing the constrained vertices using Ref. [11] (i). (P0 in (c) and (d) has the same size;
it is scaled in (d) for visualization.)

3. Construct S using a constrained Delaunay
triangulation (CDT) algorithm, whose cons-
trained edge set includes all boundary edges of
P0 and the edges of a large bounding box (BB)0
around P0.

4. Move the constrained vertices directly to their
target positions.

5. Remove flipped triangles using Ref. [8]. If
there are no flipped triangles, we first reduce
the distortion using Ref. [11] while fixing the
constrained vertices and then terminate the
algorithm.

6. After performing edge-based remeshing using
Ref. [19] on S to improve its quality, we return
to Step 5, unless the maximum number of
remeshing–removing iterations nmax has been
reached, when we terminate the algorithm.

In Step 3, since the boundary of P0 is intersection-
free, the CDT algorithm can be applied. In Step 6,
we set nmax = 10 in all experiments. Figure 5 shows
several intermediate results when removing flips in
Step 5. In Figs. 6–8, we show the effects of the
distance reduction step (Step 2), the remeshing step
(Step 6), and the distortion optimization step (Step 5),
respectively.

3.3 Implementation details

3.3.1 Reducing distances
In order to reduce the influence of the initial scaffold
mesh S, accelerate the convergence speed of the

optimization, and improve the success rate of the
optimization process, we propose use of a distance
reduction procedure (Step 2).

Let VO = {vo1, . . . ,vom} and VH = {vh1 , . . . ,vhm} be
the original positions of all constrained vertices on P0
and their corresponding target positions, respectively.
The problem is converted to finding the point set V∗
conformal to VO and closest to VH, i.e., to solve

{v∗1 , . . . ,v∗m} = argmin
V∗

m∑
j=1
‖v∗j − vhj ‖2

2 (3)

According to Ref. [44], the centroids of VH and
V∗ should coincide when reaching the minimum
of Eq. (3). After VH is centered, since V∗ is conformal
to VO, Eq. (3) can be presented as [45]:

argmin
v∗

1x,v
∗
1y

‖


I2×2

s2Rθ2
...

smRθm


︸ ︷︷ ︸

A

v∗1︸︷︷︸
x

−


vh1
vh2
...

vhm


︸ ︷︷ ︸

b

‖2
2 (4)

where si and Rθi represent the scaling factor and the
rotation matrix mapping the first point to the ith
point in the original centered set VO respectively. We
can get the optimal solution of Eq. (4) by solving
the linear equation x = (ATA)−1ATb. Once the
optimal position of v∗1 has been found, we can get
the positions of all vertices on P0. For the input
model in Fig. 6, if the step of reducing distance is
not performed, more remeshing–removing iterations



270 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

Fig. 5 Intermediate results when removing flips using Ref. [8]. (a) Input mesh. (b) Initialization. (c)–(f) Results after 4, 10, 25, and 41
iterations respectively. There are no flipped triangles in (f), so the remeshing step is not needed for this example.

Fig. 6 Distance reduction step. Results without (a) and with (b) the distance reduction step, for the same positional constraints.

are needed to obtain the desired result satisfying all
constraints, which greatly increases the running time.
3.3.2 Generating initial scaffolds
We enlarge the bounding box of P0 by 3 times to
generate (BB)0 and sample n points uniformly on
each edge of (BB)0. Then we use the Triangle
library [46] to compute the CDT to construct the
initial S, whose constrained edge set includes all

boundary edges of P0 and (BB)0. In CDT processing,
we set the maximum triangle area to be ρl2, where
l is the average length of all boundary edges of P0.
In our experiments, we set n = 15 and ρ = 200 (see
further discussion in Fig. 10).
3.3.3 Remeshing
Since the quality of S affects the success rate of the
optimization process, edge-based remeshing of S is



Practical construction of globally injective parameterizations with positional constraints 271

Fig. 7 Remeshing step. The results without (a) and with (b) the remeshing step, for the same positional constraints. Without remeshing, the
algorithm fails to generate a globally injective result (a).

Fig. 8 Distortion optimization step. The results without (a) and with (b) the distortion optimization step, for the same positional constraints.
SD is the symmetric Dirichlet distortion energy.

used to improve its quality. Local operations: edge
collapse, edge split, edge flip, and vertex relocation,
are applied iteratively. The initial target edge length
L is set to the average length of the edges of S. As the
process goes on, if the number of mesh edges is too
large, we increase the target edge length accordingly.
The specific remeshing operations performed on S
are as follows:
1. We first smooth all interior vertices 10 times.

The new position of each vertex vi is simply the
barycenter ci of its one-ring neighbors Ni:

ci =
∑
j∈Ni

ωjvj∑
j∈Ni

ωj
, ωj = 1

2. We iteratively perform the following operations
10 times, following Ref. [19]:
(a) Edge split: every interior edge e is split

if it is longer than 7L/3. If an interior

edge is incident to two vertices of the inner
boundary, it is also split.

(b) Edge collapse: every interior edge e shorter
than 2L/5 is collapsed.

(c) Edge flip: every interior edge e is flipped
if this operation decreases the squared
difference of the valences of the four vertices
of the two incident triangles from their
optimal value of 6.

(d) Vertex smoothing: every interior vertex v

is smoothed as in Step 1.

4 Experiments

4.1 Background

We have evaluated our algorithm on various models.
Our method was implemented in C++, and all



272 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

experiments are performed on a desktop PC with
a 4.20 GHz Intel Core i7-7700K CPU and 16 GB of
RAM. The linear systems were solved using the Intel
Math Kernel Library.
4.2 Initial parameterizations

We tested three types of initial globally injective par-
ameterizations for one model: (i) Tutte’s embedding
[27], (ii) the intermediate result of Ref. [11], (ii) the final
result of Ref. [11]. Our method succeeded in each case
(see Fig. 9). In practice, the initial parameterization
affects whether the remeshing stage is needed, so the
total running time differs. For example, our method
has to perform remeshing operations to eliminate flips
in Fig. 9(a), but this is not required in Figs. 9(b) and
9(c). The symmetric Dirichlet distortion energies
of these three cases are 4.308, 4.308, and 4.308,
respectively, indicating that the mapping quality of
the result is insensitive to the initial parameterization,
due to the final distortion reduction step.
4.3 Scaffolds

We ran our method with three different pairs of
parameters (n, ρ) for scaffold mesh generation: see

Fig. 10. The resulting total running time and the
symmetric Dirichlet distortion energies are (4.934 s,
5.069), (5.559 s, 5.069), and (5.816 s, 5.069) for the
cases in Figs. 10(a)–10(c), respectively, demonstrating
that our method is insensitive to n and ρ.
4.4 Testing on a dataset

To verify the effectiveness and robustness of our
method, we tested our algorithm on a dataset
containing 1791 models, provided by Ref. [16]. For
all models in the dataset, we used the final results
of Ref. [11] as the initializations. The parameters
(n, ρ) for generating scaffold meshes were fixed to (15,
200). We observe that our algorithm achieves global
injectivity for most of the models: our success rate
is 99.8%, just failing on three examples (see Fig. 14).
These results demonstrate the practical robustness of
our method. Six models are shown in Fig. 11.
4.5 Speed

In Fig. 12, we plot running time versus the number
of vertices Nv for each algorithm step of our method.
The running time tends to increase with Nv, except
for the remeshing step: most models do not need

Fig. 9 Three different initial globally injective parameterizations, including Tutte’s embedding [27] (a), the result after running the optimization
of Ref. [11] for 5 iterations (b), and the result after running the optimization of Ref. [11] until convergence (c). The total running time of the
algorithm is given below each result.

Fig. 10 Three different scaffold meshes.

Fig. 11 Gallery: our method succeeds in generating globally injective parameterizations with hard positional constraints.



Practical construction of globally injective parameterizations with positional constraints 273

Fig. 12 Timings. The graphs plot the running time (s) vs. the number of vertices Nv for each step of our method: (a) generating the initial
globally injective parameterization, (b) reducing distances, (c) constructing the scaffold mesh, (d) removing flips, (e) remeshing and removal
process, (f) optimizing distortion energy. Each dot represents one mesh. Most meshes do not need to be remeshed, so most dots in (e) take 0 s.

this step. In particular, the running time almost
line-arly increases with respect to Nv in the distance
reduction step, the scaffold mesh construction step,
and the flip removal step. The total running time
is mainly affected by the processes of generating the
initial parameterization and optimizing the distortion
energy.

4.6 Comparisons

We compared our method to that of Ref. [16] using the
authors’ results. While our success rate reaches 99.8%,
theirs is only 85.8%. We calculated the symmetric
Dirichlet energy of 1535 results that both the method
of Ref. [16] and ours obtained successfully. Denoting
the ratio of their energy to ours as ρSD, then the
average ρSD is 1.0011, with standard deviation 0.0102.
Figure 13 shows comparisons on four examples.

Our method is able to generate globally injective
parameterizations while they fail, indicating that our
method is more robust than theirs in practice.

5 Conclusions

5.1 Summary

In this paper, we have presented a novel algorithm for
disk topology meshes to generate globally injective
parameterizations with hard positional constraints.
The key idea of our algorithm is to use a scaffold
mesh to convert the global injectivity constraint
into a flip-free constraint. We use this key idea to
propose a new pipeline to compute globally injective
parameterizations. We have tested our algorithm on
a large dataset. The results show that our algorithm
is more robust than previous methods.



274 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

Fig. 13 Comparisons of our results with those of Ref. [16], while applying the same constraints to four meshes. Top row: input meshes.
Middle row: the results of Ref. [16]; they contain self-intersections or flips. Bottom row: our results are globally injective.

5.2 Limitations

Although our algorithm succeeds more often than
Ref. [16] on a large dataset containing 1791 models,
there are still three models whose results violate hard
constraints due to numerical problems, as shown in
Fig. 14. Our success is not theoretically guaranteed
for arbitrary models.

5.3 Future work

In future, developing a theoretically guaranteed
method is an interesting direction. It is also
worthwhile to study constrained globally injective
mappings in 3D, since constructing scaffold meshes

and removing flips in 3D are hard tasks.

Acknowledgements

We would like to thank the anonymous reviewers for
their constructive suggestions and comments. This
work was supported by the National Natural Science
Foundation of China (61802359, 62025207) and USTC
Research Funds of the Double First-Class Initiative
(YD0010002003).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

Fig. 14 Numerical issues. Our method cannot generate desired results for three examples due to numerical problems: several triangles
degenerate to one point. The method of Ref. [26] can be used to resolve this problem.



Practical construction of globally injective parameterizations with positional constraints 275

References

[1] Floater, M.; Hormann, K. Parameterization of
triangulations and unorganized points. In: Tutorials on
Multiresolution in Geometric Modelling. Mathematics
and Visualization. Iske, A.; Quak, E.; Floater, M. S.
Eds. Springer Berlin Heidelberg, 287–316, 2002.

[2] Floater, M. S.; Hormann, K. Surface parameterization:
A tutorial and survey. In: Advances in Multiresolution
for Geometric Modelling. Mathematics and Visua-
lization. Dodgson, N. A.; Floater, M. S.; Sabin, M.
A. Eds. Springer Berlin Heidelberg, 157–186, 2005.

[3] Sheffer, A.; Praun, E.; Rose, K. Mesh parameterization
methods and their applications. Foundations and
Trends R© in Computer Graphics and Vision Vol. 2,
No. 2, 105–171, 2006.

[4] Hormann, K.; Lévy, B.; Sheffer, A. Mesh parame-
terization: Theory and practice. In: Proceedings of
the ACM SIGGRAPH 2007 Courses, 1–es, 2007.

[5] Fu, X. M.; Su, J. P.; Zhao, Z. Y.; Fang, Q.; Ye,
C. Y.; Liu, L. G. Inversion-free geometric mapping
construction: A survey. Computational Visual Media
Vol. 7, No. 3, 289–318, 2021.

[6] Fu, X. M.; Liu, Y.; Guo, B. N. Computing
locally injective mappings by advanced MIPS. ACM
Transactions on Graphics Vol. 34, No. 4, Article No. 71,
2015.

[7] Schüller, C.; Kavan, L.; Panozzo, D.; Sorkine-Hornung,
O. Locally injective mappings. Computer Graphics
Forum Vol. 32, No. 5, 125–135, 2013.

[8] Su, J. P.; Fu, X. M.; Liu, L. G. Practical foldover-free
volumetric mapping construction. Computer Graphics
Forum Vol. 38, No. 7, 287–297, 2019.

[9] Lipman, Y. Bounded distortion mapping spaces for
triangular meshes. ACM Transactions on Graphics
Vol. 31, No. 4, Article No. 108, 2012.

[10] Smith, J.; Schaefer, S. Bijective parameterization with
free boundaries. ACM Transactions on Graphics Vol.
34, No. 4, Article No. 70, 2015.

[11] Jiang, Z. S.; Schaefer, S.; Panozzo, D. Simplicial
complex augmentation framework for bijective maps.
ACM Transactions on Graphics Vol. 36, No. 6, Article
No. 186, 2017.

[12] Su, J.-P.; Ye, C.; Liu, L.; Fu, X.-M. Efficient bijective
parameterizations. ACM Transactions on Graphics
Vol. 39, No. 4, Article No. 111, 2020.

[13] Overby, M.; Kaufman, D.; Narain, R. Globally
injective geometry optimization with non-injective
steps. Computer Graphics Forum Vol. 40, No. 5, 111–
123, 2021.

[14] Jin, Y.; Huang, J.; Tong, R. Remeshing-assisted
optimization for locally injective mappings. Computer
Graphics Forum Vol. 33, No. 5, 269–279, 2014.

[15] Fang, Y.; Li, M. C.; Jiang, C.; Kaufman, D.
M. Guaranteed globally injective 3D deformation
processing. ACM Transactions on Graphics Vol. 40,
No. 4, Article No. 75, 2021.

[16] Du, X. Y.; Kaufman, D. M.; Zhou, Q. N.; Kovalsky,
S. Z.; Yan, Y. J.; Aigerman, N.; Ju, T. Optimizing
global injectivity for constrained parameterization.
ACM Transactions on Graphics Vol. 40, No. 6, Article
No. 260, 2021.

[17] Zhang, E.; Mischaikow, K.; Turk, G. Feature-based
surface parameterization and texture mapping. ACM
Transactions on Graphics Vol. 24, No. 1, 1–27, 2005.

[18] Lipman, Y. Bijective mappings of meshes with
boundary and the degree in mesh processing. SIAM
Journal on Imaging Sciences Vol. 7, No. 2, 1263–1283,
2014.

[19] Botsch, M.; Kobbelt, L. A remeshing approach
to multiresolution modeling. In: Proceedings of
the Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, 185–192, 2004.

[20] Claici, S.; Bessmeltsev, M.; Schaefer, S.; Solomon,
J. Isometry-aware preconditioning for mesh para-
meterization. Computer Graphics Forum Vol. 36, No. 5,
37–47, 2017.

[21] Liu, L. G.; Ye, C. Y.; Ni, R. Q.; Fu, X. M. Progressive
parameterizations. ACM Transactions on Graphics Vol.
37, No. 4, Article No. 41, 2018.

[22] Rabinovich, M.; Poranne, R.; Panozzo, D.; Sorkine-
Hornung, O. Scalable locally injective mappings. ACM
Transactions on Graphics Vol. 36, No. 4, Article No. 16,
2017.

[23] Aigerman, N.; Lipman, Y. Orbifold tutte embeddings.
ACM Transactions on Graphics Vol. 34, No. 6, Article
No. 190, 2015.

[24] Aigerman, N.; Lipman, Y. Hyperbolic orbifold tutte
embeddings. ACM Transactions on Graphics Vol. 35,
No. 6, Article No. 217, 2016.

[25] Floater, M. One-to-one piecewise linear mappings over
triangulations. Mathematics of Computation Vol. 72,
No. 242, 685–696, 2003.

[26] Shen, H. X.; Jiang, Z. S.; Zorin, D.; Panozzo, D.
Progressive embedding. ACM Transactions on Graphics
Vol. 38, No. 4, Article No. 32, 2019.

[27] Tutte, W. T. How to draw a graph. Proceedings of
the London Mathematical Society Vol. s3-13, 743–767,
1963.



276 Q. Wang, W.-X. Zhang, Y.-Y. Cheng, et al.

[28] Hormann, K.; Greiner, G. MIPS: An efficient global
parametrization method. In: Curve and Surface Design:
Saint-Malo 1999. Vanderbilt University Press, 153–162,
2000.

[29] Schreiner, J.; Asirvatham, A.; Praun, E.; Hoppe, H.
Inter-surface mapping. ACM Transactions on Graphics
Vol. 23, No. 3, 870–877, 2004.

[30] Kovalsky, S. Z.; Galun, M.; Lipman, Y. Accelerated
quadratic proxy for geometric optimization. ACM
Transactions on Graphics Vol. 35, No. 4, Article No.
134, 2016.

[31] Zhu, Y. F.; Bridson, R.; Kaufman, D. M. Blended
cured quasi-Newton for distortion optimization. ACM
Transactions on Graphics Vol. 37, No. 4, Article No. 40,
2018.

[32] Shtengel, A.; Poranne, R.; Sorkine-Hornung, O.;
Kovalsky, S. Z.; Lipman, Y. Geometric optimization
via composite majorization. ACM Transactions on
Graphics Vol. 36, No. 4, Article No. 38, 2017.

[33] Smith, B.; De Goes, F.; Kim, T. Analytic eigensystems
for isotropic distortion energies. ACM Transactions on
Graphics Vol. 38, No. 1, Article No. 3, 2019.

[34] Golla, B.; Seidel, H. P.; Chen, R. J. Piecewise linear
mapping optimization based on the complex view.
Computer Graphics Forum Vol. 37, No. 7, 233–243,
2018.

[35] Kovalsky, S. Z.; Aigerman, N.; Basri, R.; Lipman,
Y. Large-scale bounded distortion mappings. ACM
Transactions on Graphics Vol. 34, No. 6, Article No. 191,
2015.

[36] Fu, X. M.; Liu, Y. Computing inversion-free mappings
by simplex assembly. ACM Transactions on Graphics
Vol. 35, No. 6, Article No. 216, 2016.

[37] Escobar, J. M.; Rodŕıguez, E.; Montenegro, R.;
Montero, G.; González-Yuste, J. M. Simultaneous
untangling and smoothing of tetrahedral meshes.
Computer Methods in Applied Mechanics and
Engineering Vol. 192, No. 25, 2775–2787, 2003.

[38] Garanzha, V.; Kaporin, I.; Kudryavtseva, L.; Protais,
F.; Ray, N.; Sokolov, D. Foldover-free maps in 50 lines
of code. ACM Transactions on Graphics Vol. 40, No.
4, Article No. 102, 2021.

[39] Xu, Y.; Chen, R. J.; Gotsman, C.; Liu, L. G.
Embedding a triangular graph within a given boundary.
Computer Aided Geometric Design Vol. 28, No. 6, 349–
356, 2011.

[40] Du, X. Y.; Aigerman, N.; Zhou, Q. N.; Kovalsky, S. Z.;
Yan, Y. J.; Kaufman, D. M.; Ju, T. Lifting simplices to
find injectivity. ACM Transactions on Graphics Vol. 39,
No. 4, Article No. 120, 2020.

[41] Misztal, M. K.; Bærentzen, J. A. Topology-adaptive
interface tracking using the deformable simplicial
complex. ACM Transactions on Graphics Vol. 31, No. 3,
Article No. 24, 2012.

[42] Müller, M.; Chentanez, N.; Kim, T. Y.; Macklin, M. Air
meshes for robust collision handling. ACM Transactions
on Graphics Vol. 34, No. 4, Article No. 133, 2015.

[43] Ainsley, S.; Vouga, E.; Grinspun, E.; Tamstorf, R.
Speculative parallel asynchronous contact mechanics.
ACM Transactions on Graphics Vol. 31, No. 6, Article
No. 151, 2012.

[44] Horn, B. K. P. Closed-form solution of absolute
orientation using unit quaternions. Journal of the
Optical Society of America A Vol. 4, No. 4, 629, 1987.

[45] Bouaziz, S.; Deuss, M.; Schwartzburg, Y.; Weise, T.;
Pauly, M. Shape-up: Shaping discrete geometry with
projections. Computer Graphics Forum Vol. 31, No. 5,
1657–1667, 2012.

[46] Shewchuk, J. R. Triangle: Engineering a 2D
quality mesh generator and Delaunay triangulator. In:
Applied Computational Geometry towards Geometric
Engineering. Lecture Notes in Computer Science,
Vol. 1148. Lin, M. C.; Manocha, D. Eds. Springer Berlin
Heidelberg, 203–222, 1996.

Qi Wang received her B.Sc. degree
in 2018 from the University of Science
and Technology of China. She is
currently a Ph.D. candidate in the School
of Mathematical Sciences, University
of Science and Technology of China.
Her research interests include geometric
processing and computer graphics.

Wen-Xiang Zhang received his B.Sc.
degree in 2018 from Shandong University.
He is currently a Ph.D. candidate in
the School of Mathematical Sciences,
University of Science and Technology of
China. His research interests include
geometric processing and computer
graphics.

Yuan-Yuan Cheng received her B.Sc.
degree in 2019 from Nanjing University
of Science and Technology. She is
currently a Ph.D. candidate in the School
of Mathematical Sciences, University
of Science and Technology of China.
Her research interests include geometric
processing and computer graphics.



Practical construction of globally injective parameterizations with positional constraints 277

Ligang Liu is a professor in the School
of Mathematical Sciences, University of
Science and Technology of China. He
received his B.Sc. (1996) and his Ph.D.
(2001) degrees from Zhejiang University,
China. Between 2001 and 2004, he
worked at Microsoft Research Asia. He
worked at Zhejiang University during

2004–2012. He paid an academic visit to Harvard University
during 2009 and 2011. His research interests include
digital geometric processing, computer graphics, and image
processing. He serves as associate editors for IEEE
Transactions on Visualization and Computer Graphics, IEEE
Computer Graphics and Applications, Computer Graphics
Forum, Computer Aided Geometric Design, and The Visual
Computer. His research work can be found at his research
website: http://staff.ustc.edu.cn/˜lgliu.

Xiao-Ming Fu received his B.Sc.
degree in 2011 and his Ph.D. degree in
2016 from the University of Science and
Technology of China. He is currently
an associate professor in the School of
Mathematical Sciences, University of
Science and Technology of China. His

research interests include geometric processing and computer-
aided geometric design. His research work can be found at
his research website: http://staff.ustc.edu.cn/˜fuxm.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://staff.ustc.edu.cn/~lgliu
http://staff.ustc.edu.cn/~fuxm
http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Flip-free parameterization
	Globally injective parameterization
	Scaffolds for mapping construction
	Constrained parameterization

	Method
	Problem and formulation
	Inputs and goals
	Formulation
	Key idea
	Scaffold meshes
	Reformulation

	Algorithm workflow
	Challenges
	Pipeline

	Implementation details
	Reducing distances
	Generating initial scaffolds
	Remeshing


	Experiments
	Background
	Initial parameterizations
	Scaffolds
	Testing on a dataset
	Speed
	Comparisons

	Conclusions
	Summary
	Limitations
	Future work


