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Abstract
typically represent image deformation using linear

Mesh-based image warping techniques

functions on triangular meshes or bilinear functions
on rectangular meshes. This enables simple and
efficient implementation, but in turn, restricts the
representation capability of the deformation, often
leading to unsatisfactory warping results. We present
a novel, flexible polygonal finite element (poly-FEM)
method for content-aware image warping. Image
deformation is represented by high-order poly-FEMs
on a content-aware polygonal mesh with a cell
distribution adapted to saliency information in the
source image. This allows highly adaptive meshes and
smoother warping with fewer degrees of freedom, thus
significantly extending the flexibility and capability
of the warping representation. Benefiting from the
continuous formulation of image deformation, our poly-
FEM warping method is able to compute the optimal
image deformation by minimizing existing or even
newly designed warping energies consisting of penalty
terms for specific transformations.
the versatility of the proposed poly-FEM warping
method in representing different deformations and its
superiority by comparing it to other existing state-of-
the-art methods.

We demonstrate
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1 Introduction

Due to advances in imaging technology, the acqui-
sition and display of digital images are almost
universal. Various display devices are used to view
images, such as phones, tablets, monitors, and
televisions. Images frequently change size, and should
fill the whole screen to achieve an optimal display;
screens vary in size. Images also need to be resized in
other applications. For example, document display
and printing require resizing embedded images to
comply with a specified layout. Research into image
resizing, also known as image retargeting, has drawn
much attention in recent years, and several techniques
have been proposed.

Image scaling is the most straightforward method
to achieve the image resizing goal. However, scaling
often does not produce satisfactory results, as it is
oblivious to image content. Another simple method
for image retargeting is cropping. Cropping inevitably
causes information loss and leads to unpleasant
results. To preserve relevant information, especially
visually important structures and objects, a more
sophisticated class of techniques attempts to resize
images in a content-aware fashion. Existing content-
aware image retargeting methods can be classified into
two general categories: cropping methods and warping
methods. In content-aware cropping methods, pixels
or regions in an image are removed according to
pre-specified criteria. They achieve results with
better visual quality than naive cropping. However,
important objects may be broken, and artifacts may
be introduced as the pixel removal operation highly
depends on object detection results, which are often
inaccurate.

Warping methods, also referred to as continuous
methods, are another popular type of image retar-
geting technique. Unlike cropping methods, which
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may discard important contents, warping methods
retain important and unimportant contents. To
obtain a resized image with important objects
preserved, warping methods perform a nonlinear
deformation that minimizes the distortion of impor-
tant regions while allowing large distortions in
unimportant regions. Mesh-based warping methods
construct a mesh on the image domain and obtain
the resized image by deforming the mesh. In most
previous methods, the warping meshes used for
driving the deformation are strictly triangular or
quadrilateral. Non-uniform deformation of the image,
which is supposed to be a continuous function, is
typically represented by piecewise linear functions
on warping meshes. However, only allowing a
single cell shape in the warping mesh with a
linear approximation of the associated functions is
too restrictive. This limits the non-uniform image
deformation to a relatively small function space,
leading to unsatisfactory results.

This paper introduces a novel continuous warping
representation and proposes a fully automatic
algorithm for content-aware image retargeting. The
warp mapping is represented as a smooth function
by high-order generalized barycentric coordinates
defined over polygonal meshes. Our representation
possesses superior properties, such as supporting
highly adaptive meshes, high-order basis functions,
and achieving continuity without enforcing additional
constraints.  Image warping is driven by the
deformation of these polygonal meshes determined by
a specific energy function. Experimental results show
that our algorithm for content-aware image warping
achieves a better trade-off between warping quality
and mesh size, and greater robustness, than other
existing state-of-the-art methods. In summary, our
main contributions are:

(1) A novel poly-FEM-based warping repre-
sentation for content-aware image retargeting. Image
warping is represented by continuously stitched
functions with higher-order approximation defined
over polygonal meshes on the image domain.
This representation includes the piecewise linear
representation as a special case, and so can achieve
more satisfactory results.

(2) An efficient and fully automatic framework
to warp images. Polygonal meshes for driving the
deformation are generated with local density and
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Different
warping energy functions can be incorporated and

shape adaptive to feature information.

tested easily and consistently to achieve various
deformation results.

The remainder of this paper is organized as follows:
Section 2 reviews related work. We propose a
poly-FEM-based warping representation in Section 3.
Section 4 presents the algorithm and implementation
for our poly-FEM-based image warping method.
Results and comparisons are presented in Section 5.
Conclusions, limitations, and suggestions for future
work are given in Section 6.

2 Related work

Image retargeting has been extensively studied in
computer graphics. In this paper, we focus on content-
aware retargeting techniques. From the vast body
of literature in the field, we only review references
closely related to this paper, and refer the interested
readers to Refs. [1, 2] for more comprehensive surveys.

2.1 Content-aware cropping

Cropping-based methods
unimportant regions and scale or shift the remaining
pixels to resize the image. One class of content-
aware cropping techniques searches for a cropping
rectangle inside which the aggregated importance

discard pixels in

is maximized [3, 4]. They perform well if the input
image contains only one central important object. To
deal with images with two or more scattered regions
of interest, Setlur et al. [5] proposed a method that
first removes the regions of interest and inpaints the
holes to generate a background, and then places the
cropped objects back. It heavily relies on accurate
segmentation of the source image.

Seam carving-based methods form another class of
cropping methods, which decrease the image width
or height one pixel at a time by removing a seam
with least importance and shifting the remaining
pixels to compensate for the removed seam [6]. The
original seam carving method introduces visible
artifacts if the input image contains straight lines or
geometric structures. This method is thus enhanced
by including line detection to better preserve
straight lines [7]. The multi operator (Multiop)
method uses several operators for resizing media,
including cropping, seam carving, scaling, and
warping [8]. Patch-based methods achieve retargeting
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by manipulating patches [9, 10]. As they remove
regions or strips, patch-based methods can be
considered to generalize cropping-based methods.
Generally speaking, cropping-based methods remove
pixels from source images, which causes loss of
information; hence artifacts can sometimes be

observed in the results.

2.2 Content-aware warping

Warping methods scale the source image non-
uniformly to preserve important regions. In general,
regions with high importance are constrained to
distort as little as possible, while unimportant regions
are allowed to have relatively large deformation. The
image is subdivided into a mesh, whose deformation
drives the deformation of the source image. Typically,
a triangular mesh [11, 12] or a quadrilateral mesh
[13-18] is used, and image deformation is naturally
represented as piecewise linear or bilinear functions
on mesh faces, respectively. For example, a piecewise
bilinear warping may be computed by iteratively
computing optimal local scaling factors for each cell
of a quadrilateral mesh according to a significance
map [14]. A piecewise linear warping on a triangular
mesh can be constructed from an approximation to a
prescribed Beltrami representation (BR) [12]. Instead
of limiting ourselves to piecewise linear functions on
triangular or quadrilateral meshes, we propose a more
general representation of the continuous warping that
supports high-order continuity and adaptive meshes.

2.3 Deep learning-based methods

Recently, attempts have been made to solve the
image retargeting problem using deep learning
techniques [19-22], which are extensions of the
methods mentioned above. For example, a weakly-
and self-supervised deep convolutional neural network
(WSSDCNN) has been proposed for predicting
attentive shift maps in Ref. [19]. Scaling on grid
cells is used to represent image distortion in the deep
cyclic image retargeting approach (Cycle-IR) [20].
The multi-operator retargeting is formulated as a
Markov decision-making process and optimized by
reinforcement learning in the semantics and aesthetics
aware multi-operator image retargeting (SAMIR)
framework [21]. The deep network resizing (DNR)
method applies resizing operators, including seam
carving and grid-warping, in feature space instead of
pixel space [22].

2.4 FEM-based warping

In the computer graphics community, FEM has been
applied to applications such as 2D/3D morphing
[23, 24] and geometric modeling [25-27]. Traditional
FEM has also been applied to image warping,
relying on strictly triangular or rectangular meshes.
For example, Gee et al. [28] used simple linear
elements in medical image warping for registration.
Later, a discontinuous Galerkin FEM (DG FEM)
with triangular or rectangular elements using power
polynomials was applied to the content-aware image
warping task [29]. Requirements on element types,
to simplify or accelerate the involved computation,
restrict the approximation capability of FEM.

2.5 High-order poly-FEM

Poly-FEMs offer several advantages over traditional
finite elements in practical applications. Generalized
barycentric coordinates (GBCs), such as Wachspress
coordinates [30, 31] and mean value coordinates
(MVCs) [32], provide suitable bases for linear finite
elements on general polygons as generalizations of
linear barycentric FEM shape functions. Recently,
to higher-order approximations
polygonal elements have also been studied [33-35].
Higher-order poly-FEMs share attractive properties
with piecewise linear poly-FEMs, such as partition

extensions on

of unity, nodal data interpolation, and smoothness.
In addition, they provide higher-order reproduction
properties.

High-order poly-FEM has been successfully applied
to solving partial differential equations [33-35] and
function approximation [36].
by these successes to use the high-order poly-FEM
method in the image warping problem. Our high-

We are motivated

order polygonal element-based method has important
advantages over prior mesh-based methods, such as
allowing for highly adaptive meshes, smoother and
more flexible representations of image deformation
using many fewer degrees of freedom (DOFs), and
ability to incorporate general deformation energy
functions into the framework.

3 Poly-FEM warping representation

To apply high-order poly-FEM to image warping, we
first discretize the domain so that the continuous
warping map is subdivided into smaller and simpler
polygons. Then, poly-FEMs are used to approximate
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the unknown function over the discretized domain.
In this section, we briefly discuss the poly-FEMs,
which we propose as a basis for the discretized
image warping representation. We defer discussing
the polygonal mesh generation until Section 4.3.2.
Note that the discretization operation using high-
order elements is independent of the choice of
shape functions for the aforementioned high-order
GBCs. For simplicity, we describe the image warping
representation using the quadratic serendipity
elements (QSEs) proposed in Ref. [33] as an example.

3.1 Quadratic poly-FEMs

The QSEs in Ref. [33] are developed using GBCs, for
instance, MVCs. We first introduce some notation;
our notation differs slightly from that of Ref. [33], in
an inessential way. Let {2 be a convex polygon in
the plane with n vertices ordered counter-clockwise
(v, ,vy), with no more than three consecutive
vertices collinear. Each vertex v; is associated with
a GBC, denoted A;(u,v). For simplicity, hereinafter
we omit the variables in each function, e.g., \;(u,v)
is simplified to \;. Let v;4,, denote the midpoint of
v;Vi4+1. Let v; ; denote the midpoint of v;v; (i # 7).
Let I; denote the intersection of segments v;v; and
v;—1V;+1, and I; denote the intersection of segments
v;v; and v;_1vj41: see Fig. 1. Let

s lvivsl
[vivs]| — [ L: ;]|
and
. Tv:
= s (1 oMl
’ [[viv; |
Lv:
(:173 — <1 +2|| vaH) 7
[[viv; |
ii—1 _ | Tivitr ||
" [vi—1viga|’
Qi _ | Livi—1]|
! lvic1viga]]’
i1 _ g vl
" [vj—10j41]
ot _y Mowiall "
” [vj—10j41]]
for i,j=1, -, n; subscripts are to be taken modulo n.

The quadratic serendipity element basis functions
1y, associated with vertices or midpoints v;, i =
1,---,2n, are defined as linear combinations of 1;; =
)\i)\j as
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Fig. 1 Coefficients.

{ Vi =& — &iiv1 — &im1 i1
Unyi = 4&ii41 ’ T
where
&ii = My + Z CZ:;MU
Jli—jI>1
and

Giiv1 =2 i1+ Y (CZ}H/JU' + CEEZ;MHJ‘)
Jili=g1>1
We refer the readers to Ref. [33] for further details of
the computation of coefficients.
In particular, the QSE basis functions possess all
the properties needed for admissible quadratic FEM
basis functions:

2n
e Partition of unity: > ¢, = 1.
k=1

e Smoothness: 1, is smooth within the domain 2
and is discontinuous across the element boundary.

e Quadratic precision: Y for k = 1,---,2n can
reproduce polynomials of up to degree two.

e Nodal interpolation:

1, i=k
v;) = ,

V() {o, ik

The n-sided polygonal domain with the associated
basis function set {t¢}3", forms a construction of

QSE on  using GBCs. Figure 2 shows examples of
MVC-based QSE basis functions from Ref. [33].

Vik=1,---,2n (2)

3.2 Image warping representation

Consider the rectangular domain I = [0, m] x [0, n] of
a digital image with resolution m x n. The warping
map is a continuous vector function f = (f1, f2)
that maps a point (u,v) € I to a warped point
(f1(u,v), fa(u,v)). Now we discretize this continuous
model using QSEs in preparation for the optimal

warp computation. To the best of our knowledge,
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I—0,534 Io
(a) (b)

Fig. 2 Quadratic serendipity element basis functions. Values of basis

functions are color-coded as per the color bars. (a) Quadratic basis
associated with a polygon vertex. (b) Quadratic basis associated with
the midpoint of a polygon edge.

this is the first time QSEs have been applied to an
image warping representation.

Assume that the domain I has been appropriately
discretized into a polygonal mesh M with cells 2, for
k=1,---,N. We construct the QSE basis functions
on each cell. Consider two adjacent cells Q, and Qy,
sharing a common edge v1v2. The two basis functions
¥y, and 1y associated with the same vertex vy (or
the same midpoint v,,41) on Q, and 2, respectively
are discontinuous across the edge v1vs. However, this
pair of bases coincides with each other on vyvs, due
to their nodal interpolation property and quadratic
precision. To ensure automatic continuity across
element boundaries, we collect the basis functions
associated with a vertex (or an edge midpoint).
Their sum is set as a basis in the final warping
representation. Specifically, for two basis functions
w,lcl and 1/),22 associated with midpoint v; on the
polygonal mesh, we replace 7,/1;1 and 7,/1,%2 with a new
basis function B; which is the sum of these two
discontinuous basis functions: B; = 1y + v}_. Basis
functions associated with mesh vertices are treated
in the same fashion. Figure 3 shows examples of the
merged bases associated with a vertex and an edge
midpoint.

l —0.787
(a) (b

Fig. 3 Merged quadratic serendipity element basis functions. Values

of basis functions are color-coded as per the color bars. (a) Merged

quadratic basis associated with a vertex. (b) Merged quadratic basis
associated with an edge midpoint.

Consider a polygonal mesh with M vertices and
edge midpoints, {v;}}£,. We denote the merged basis
function associated with a vertex or an edge midpoint
by B;(u,v), i = 1,---, M. Then the warping map
is represented as a linear combination of these basis
functions, giving

fu,v) = Z Bi(u,v)e; (3)

where ¢; = (¢i1,¢2) are the position vectors of
vertices or edge midpoints wv; after deformation.
Section 4 describes an image warping framework
tailored to compute the coefficients based on

Note that the
(3) is naturally

our new warping representation.
warping map defined in Eq.
continuous along cell edges, benefiting from the basis
consolidation mentioned above, whereas for DG FEM
bases, additional constraints are needed to enforce
continuity of the individually defined quadratic power
polynomial functions along the cell edges, to achieve
a continuous map [29].

4 Algorithm

Content-aware image warping aims to preserve
visually important image regions as much as possible
while allowing the visually unimportant image regions
to have relatively large distortions. In this section,
we present our algorithm for content-aware image
warping based on our warping representation.

4.1 Overview

Given an input image I, we aim to find a warping
map as represented in Eq. (3) that preserves regions
with high importance. Most mesh-based image
warping techniques boil down to an optimization
framework to obtain the warping mesh, differing by
particular objective functions. They consist of two
steps in general: importance map generation and
image retargeting. Here we follow the same workflow.
First, we generate a saliency map according to object-
level semantic information. Next, a non-uniform
polygonal mesh is constructed on the input image
based on the importance map. Finally, we compute
a warping map defined on the polygonal mesh by
optimizing a distortion energy function to achieve
image retargeting. The pipeline of our algorithm is
shown in Fig. 4. Details of each step are given below.
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(a) Input (b) Saliency map (¢) Density map

{(d) CVT mesh

(e) Optimized mesh (f) Warped mesh and image

Fig. 4 Pipeline of the proposed algorithm. Given an input image (a), a saliency map is generated from object level semantic information (b).
A density function is computed (c), and used to generate a content-aware polygonal mesh (d); cells incident to an edge shorter than 5% of the
mean edge length are shown in red. This is optimized to remove short edges (e) and finally the warped mesh is computed by optimizing a

distortion energy to give the warped image (f).

4.2 Saliency map generation

The estimation of visual attention (saliency) has been
a fundamental problem in neurosciences, psychology,
and computer vision for a long time. Various
applications for saliency estimation include object
detection and recognition, photo collage, and image
compression. Saliency estimation is also the first step
of content-aware image retargeting.

In the context of image retargeting, visual
attention is the main driving factor determining
what information in the image is perceived to be
the most important to preserve. Visual attention
representations include pixel-level features, such as
contours, textural contrast or color features, and
higher-level features, such as faces, people, and
objects. The saliency map is estimated based on the
identification and analysis of several different visual
attention factors. Engelke et al. [37] investigated the
impact of different visual attention representations
on content-aware image retargeting. They suggested
using object-level regions of interest (ROI) for image
retargeting, which gave superior performance in
their practical experiments. Accordingly, our saliency
map generation is based on object-level semantic
Here, we adopt the discriminative
regional feature integration method [38], which
provides a basic fit for our application. This method
introduces a regional object-sensitive descriptor
and an image-specific backgroundness descriptor
to estimate saliency. The final saliency map is

information.

obtained by fusing saliency maps computed from the
multi-level image segmentation to remedy possible
inaccuracies due to unreliable segmentation: see
Fig. 4(b) for an example saliency map.

It should be pointed out that all content-aware
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warping methods rely on saliency estimation results.
More advanced saliency detection methods could be
adopted to achieve better warping results without
affecting our overall image warping pipeline; we leave
this as a topic for future investigation.

4.3 Polygonal mesh generation

To define the warping map, we need to construct
an appropriate polygonal mesh on the input image.
Most existing methods for polygonal mesh generation
either directly rely on Voronoi diagrams or indirectly
exploit the duality of Voronoi diagrams and Delaunay
tessellations and their properties. In this section,
we adopt a direct approach to generating suitable
polygonal mesh. We first study the conditions needed
to prevent fold-overs in the warped image. Then
we apply the centroidal Voronoi tessellation (CVT)
method according to image saliency. The mesh is further
optimized to better suit our image warping purpose.

4.3.1

In image warping, fold-overs should be avoided in the

Conditions for foldover-free warping

output images as they usually introduce undesirable
artifacts. The problem of fold-overs is an essential
manifestation of the lack of bijectivity of the warping
map defined by both the input and warped polygonal
meshes. In this section, we first analyze the conditions
to guarantee bijectivity of warping in a single cell,
following Ref. [39].
input polygonal mesh generation based on these
conditions. We defer the computation of the warping
map to Section 4.4.

For simplicity, we now consider the mapping f =
(f1, f2) in a single cell Q;«. Let

0.
I = l o

Then, we propose criteria for

00 fi ] @
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be the Jacobian of mapping f. Then, f is injective if
its Jacobian determinant det(J(f)) is strictly positive
in domain §2;~. The linear precision property of
quadratic basis functions implies that the image
warping map restricted to each cell €;« can be

represented as

M
Flu,v)|o, = I(u,0) + Y i(u,v)d; (5)
=1

where I(u,v) is the identity map and d; = ¢; — v; is
the displacement of vertices or edge midpoints upon
warping. Simple algebra reduces the Jacobian of f
to

J(f):1+ E V%dﬁ- § § aud)zaij(dz de)
i i g
(6)

To simplify the notation for later discussion, we
rewrite the basis functions using a little algebra as

i =Y Aijti g (7)
J
where coefficients have the form A;; = ri,jc;’;’,

r; ; are constants independent of the geometry of
polygons, and ci’;] is defined in Eq. (1). Let A =
max{|A; |}, C = max{c{7}, D = max{||d;||}, and
M = M + .-+ M, with

M; = sup [[V;(v)]|
vER;

Then, we have J(f) > 1— AMD — A2M?D?, which
implies that f is injective if

Vol ®
2AM

Note that as the factor s in the coefficients ci’;’
approaches oo, so do the coefficients A;;, as
the angles v;_1v;v;41 approach 7. Short edges of
polygonal cells may also cause a blowup in the
coefficients A; ; used to construct ¢; and the gradient

D <

Vi ; over the short edges. The problem of extremely
large gradients over edges is independent of the
generalized barycentric coordinates employed since all
quadratic bases are identical on the edges of polygonal
meshes. Hence, the mapping on cells with large
angles or short edges could fail to meet the sufficient
conditions for bijectivity even if the displacements
of vertices are very small. In other words, polygonal
meshes free of short edges and large angles may allow
larger displacements of vertices in defining a bijective
warping map. Therefore, large angles and short edges
should be avoided in the polygonal meshes. We here
use the CVT method to generate large-angle-free

polygonal meshes, and then use a mesh improvement
scheme in Ref. [40] to further remove the short edges.
4.8.2  Adaptive mesh generation

The CVT is a special Voronoi tessellation whose
seed points coincide with the centroids of the

corresponding Voronoi cells. In particular, assume
we have a Voronoi diagram with n seed points x;, for

i=1,---,n, in the image domain. Then the CVT
satisfies:
xp(z)dx
Jo, p(z)dz

where 2; is the Voronoi cell of z; and p(z) is a
specified density function. A CVT can be computed
by Lloyd’s relaxation method, which iteratively moves
each seed point x; to the centroid of the corresponding
cell ©; [41]. When p(x) = 1, we obtain a polygonal
mesh with uniformly distributed polygonal cells. In
the following, we obtain content-aware polygonal
meshes by carefully choosing the density function.

Note that regions with high saliency in an image
undergo small deformation, while regions with low
saliency undergo large deformation. We need more
polygonal elements in areas with high saliency
variance to produce smooth transitions between
different deformations. Each vertex or edge midpoint
of the warped mesh corresponds to a DOF in the
warping representation. We can locally increase the
resolution of meshes in the corresponding area to
introduce more DOFs into the warping representation.
We design the density function for the mesh cell
distribution as follows:

(1) We first detect sharp edges in the saliency map
using the Sobel edge detector [42]. The density at
points on detected edges is set to 1.

(2) For any other point a distance d away from the
detected edges, the density is set to 1/d3.

Figure 4(c) visualizes this density function, which
leads to the content-aware polygonal mesh in
Fig. 4(d). Intuitively, more cells are placed in
the transitions between the visually important and
unimportant areas.

4.8.3 Mesh optimization

Note that a Voronoi vertex is the circumcenter of
a Delaunay triangle. To prevent circumcenters of
Delaunay triangles from coming close to each other,
we relocate the vertices of Delaunay triangles such
that circumcenters of triangles are as interior as
possible. In particular, we minimize the squared
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distances d; from the circumcenters to incenters
of triangles ¢ of the Delaunay triangulation T as
Eq. (10) [40]:
Ee(vi, -+, vm) =Y dj =Y Ry(R; —2ry) (10)
teT teT
where R; and r; are the circumradius and inradus

of triangle ¢, respectively. For a triangle t with edge
lengths a,b,c and area A, R; and r; are given by
R, = abc/(4A) and r, = 2A/(a + b+ ¢), respectively.
Here we use the gradient descent method to minimize
the energy in Eq. (10).

A polygonal mesh obtained by the CVT method
may contain arbitrarily short edges: see Fig. 5(a).
Our experiments indicate that such short edges may
lead to a non-bijective warping map: the resulting
deformed pixel grid may locally fold over in regions
around short edges: see Figs. 5(d) and 5(e) for the
deformed mesh and a close up view of the warping
map, where only the resulting deformed pixel grids
are shown to better visualize the map deformation.
Ill-shaped polygonal meshes also lead to undesired
warping results: see Fig. 5(d) for an example. Our
experiments indicate that warping maps based on
optimized meshes, where all edges shorter than 5% of
the mean edge length are removed, achieve bijectivity

up to pixel accuracy. Figure 5(g) shows the optimized
mesh, corresponding to a bijective warping map, with
the deformed pixel grids in Figs. 5(j) and 5(k) and
the superior warping result in Fig. 5(1).

It should be pointed out that other methods,
such as edge collapse, can also remove short edges.
However, this might no longer maintain the Voronoi
properties and introduce non-convex elements. The
advantage of using a polygonal mesh is that it allows
the mesh resolution to be highly adaptive to the
content of the source image. We will show later
that we can get similar results to previous FEM-
based methods using many fewer DOFs, owing to the
flexibility of polygonal meshes.

4.4 Deformation energy optimization

With the polygonal mesh in hand, we can now
construct the polygonal elements on each cell. Once
the basis functions on each cell are defined, the
warping representation in Eq. (3) is completely
determined by the coefficients ¢;. We propose a
deformation energy function E(f) to quantify the
performance of a specific warping map f(u,v). The
optimal warping map is then determined by minimizing
the energy function while considering boundary

(e)

(k)

Fig. 5 Optimized warping meshes and results for different input polygonal meshes and with different constraints. Above: results for input
polygons with short edges. Below: results for input mesh with short edges removed. (a) Polygonal mesh containing short edges; cells incident to
an edge shorter than 5% of the mean edge length are marked in red. (b, ¢) Deformed mesh and result under sufficient constraints. (d) Deformed
polygonal mesh under relaxed constraints. (e) Close up view of a non-bijective region in (d). (f) Warping result using warped polygonal mesh in
(d). (g) Polygonal mesh with short edges removed. (h, i) Deformed mesh and results under sufficient constraints. (j) Deformed polygonal mesh
under relaxed constraints. (k) Close up view of a region in (j). (1) Warping result based on the polygonal mesh in (e).
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constraints and other additional constraints, e.g., to
preserve lines. For simplicity, we define the deformation
energy of a warping map f(u,v) as

Ex(f) = Blevea -+ en) = [ () |l7()-T3ds

! (1)
where s(u,v) is the saliency value at point (u,v)
given in Section 4.2, J(f) is the Jacobian of the
warping f defined in Eq. (4), I is the 2 x 2 identity
matrix, and || - ||[r denotes the Frobenius matrix
norm. Note that J(f) locally equals I if f(u,v)
does not distort the image at all. Intuitively, the
energy function in Eq. (11) allows translations and
penalizes all other transformations. When computing
the optimal warping, we enforce boundary conditions
to ensure that each boundary vertex of the polygonal
mesh remains on the boundary after warping. In
particular, assume that we resize the image from
m x n to m’ x n’, the boundary conditions are

Ci1 = O, Uiy = 0
cii=m, v, =m (12)
Cio = 0, Viy = 0
Cijo = 7?,/, Viy =N

The optimal warp f*(u,v) is the minimizer of the
energy function in Eq. (11):

f*(u,v) = argmin E(c1, ¢, -+, €y) (13)
under the conditions (12).

Due to our continuous representation of the warping
map, we can integrate other particular terms into our
objective function to adjust the penalty for different
transformations, such as rotation, uniform scaling,
and inversion. For example, the deformation energy
defined in Ref. [43] is written as

Ers(f) :/Q5(%v)HJ(f)*\/det(J(f))Ill%dS (14)

which penalizes all transformations other than
translation and uniform scaling. In Refs. [43] and [44],
a rotation-invariant energy, and a distortion energy
permitting translation, similarity transform, and
rotation are defined as

Ern(f) = /Q sawo)(C—Dds  (15)

and

Ersn(f) = / 5(u, 0) (tr(C) — 2det(J(£)))ds (16)

respectively, where C' = JT.J. An improvement to the
energy in Eq. (16) is also designed in Ref. [29], which
increases the penalty to infinity as the horizontal
scaling factor goes towards zero:

Brsn(f) = /Qs(u,v)J_QHCHst (17)

4.5 Constrained energy optimization

The energy functions in Egs. (11), (15), and (16)
allow for efficient minimization in a single Newton
step, while others result in more complex optimization
problems. On the other hand, the minimizer of
the energies mentioned above may also introduce
inversions, creating visible artifacts in the warping
results. To optimize all the energies consistently,
we adopt the iterative L-BFGS method, taking into
account inversion prevention at each iteration.

Imposition of the sufficient condition (8) on the
deformed mesh during energy optimization ensures a
bijective map result. However, it may also reduce the
flexibility for optimization and lead to unsatisfactory
warping results: see Figs. 5(b), 5(c), 5(h), and
5(i). Thus, we relax the condition imposed in the
optimization. Note also that if the warped polygonal
mesh has fold-overs, then the mapping is not-bijective,
which suggests an overlapping-free warped polygonal
mesh to guarantee a bijective mapping necessarily.
Our algorithm, therefore, attempts to satisfy the
necessary conditions while maintaining bijectivity.
In particular, we check whether the polygonal mesh
overlaps after each L-BFGS iteration. If a vertex or
midpoint locally introduces an overlap, its position
is rolled back to the previous iteration. In detail, we
maintain a list of overlapped cells after each L-BFGS
iteration. Then we repeatedly remove a cell from the
list, and roll back the positions of all the vertices and
midpoints associated with the cell to the previous
iteration. This rolling back may cause adjacent cells
to overlap, and if so they are added to the list. When
the list is empty, we stop.

The L-BFGS method involves integrating poly-
FEM basis function derivatives. We evaluate these
integrals by triangulating each polygonal cell and
applying the quadrature rule to the resulting triangles.
Based on short-edge free polygonal meshes, this
iterative updating and rolling back optimization
strategy for energy minimization never introduced
inversion in all examples considered in this paper.
Figures 4(e) and 4(f) show an example of the
deformed polygonal mesh and the final warped
image. Figure 6 also shows deformations resulting
from optimizing different energy functions using the
proposed warping representation.
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(a) Input

Fig. 6 Results using different deformation energy functions; there are 200 elements and 1900 DOFs in our warping representation. (a) Input.
(b—f) Warping results by optimizing the energy functions in Eqs. (11) and (14)—(17), respectively.

5 Experimental results

In this section, we demonstrate the versatility
of our poly-FEM warping framework for content-
aware image warping, providing statistics and
comparisons. We compare our method to 17 image
retargeting methods, including 5 state-of-art methods
(WSSCDNN [19], BR [12], Cycle-IR [20], SAMIR
[21], and DNR [22]), and 12 classical methods
(cropping (CR), scaling (SCL), seam carving (SC) [7],
shift-maps (SM) [10], inhomogeneous warping
(WARP) [13], scale-and-stretch optimized resizing
(SNS) [14], energy-based deformation (LG) [15],
Multiop [8], retargeting of streaming video (SV) [16],
resizing with object size adjusted (OSA) [17], resizing
by quadratic programming (QP) [18], and DG
FEM [29]). We use images from the elaborate
RetargetMe benchmark [46]. The experimental
environment used an Intel Core i5-8300 CPU with
16 GB RAM.

5.1 Comparison to the FEM-based method

High-order polygonal elements allow smoother
Figures 7(a)—
7(c) show examples of warping results using linear
polygonal elements on a mesh with 100 elements
and 462 DOFs. Figures 7(d)-7(f) show results using
quadratic elements with almost the same number of
DOFs as results in Fig. 7(c). We can observe that
the quadratic poly-FEM achieves a much smoother
deformation. Unnatural distortion in the result of
the linear poly-FEM is highlighted in a red rectangle
in Fig. 7(c). Figures 7(g)-7(i) show that we can get
similar results with even fewer DOFs or cells.
Amongst other warping methods, the most closely
related one to ours is the work of Ref. [29], where
the warping map is defined using a DG FEM using

warping while using fewer DOFs.

power polynomials on a triangular or quadrilateral

(44 %tk &\ Springer

mesh. As shown in Fig. 8(b), traditional FEM-based
warping methods using regular quadrilateral meshes
require more DOFs, and a very dense mesh, to obtain
On the other hand,
warping based on triangular or polygonal meshes
achieves a similar result to the structured mesh-
based method with far fewer degrees of freedom, as
unstructured meshes can provide local refinement
and improve the utilization of degrees of freedom: see
Figs. 8(c) and 8(d).

The warping map of the DG FEM-based method,
with individually defined power polynomials on each
cell, is discontinuous between elements. Additional
DOFs are mnecessary in the warping function
optimization to restore the coupling between elements.
If the discontinuities between elements are too large,
function values on edges cannot be safely averaged,
leading to artifacts. To achieve a visually pleasing

satisfactory warping results.

result, one must resolve the warping optimization
problem on denser meshes. We can observe that the
DG FEM-based method has to use a large number
of cells to introduce enough DOFs to achieve visually
satisfying results: see Fig. 8(c). Instead, our method
generates naturally smooth warps between elements
without specifying any additional constraints. Hence,
we can achieve smooth warps with any number of
elements: see Fig. 8(d).

5.2 Comparison to interactive methods

Automated saliency map generation techniques
cannot yet reach the quality of manual methods. To
achieve more satisfactory results or avoid failures
of automatic algorithms, many works allow user
intervention to specify saliency maps. For example,
the BR method requires manual specification of
important regions [12]. We compare our proposed
poly-FEM warping method to the BR method in
Fig. 9. Our automatic method generates comparable
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Fig. 7 Comparison of linear and quadratic poly-FEM warping. We resize the image to 150% of its original height. Left to right: adaptive
polygonal meshes, deformed polygonal meshes, and final warped images, respectively. (a—c) Linear poly-FEM warping with 100 polygonal
elements and 462 DOFs. (d—f) Quadratic poly-FEM warping with 50 polygonal elements and 460 DOFs. (g—i) Quadratic poly-FEM warping
with 30 polygonal elements and 280 DOFs.

(a)

Fig. 8 Comparison between different FEM-based warping methods, resizing an image to 200% of the original width. (a) Input. (b, ¢) Results
from the DG FEM-based warping method using quadratic power polynomials on a quadrilateral mesh (6767 DOFs), and an adaptive triangular
mesh (1325 DOFs neglecting the number of constraints for gluing elements with 2612 elements) from Ref. [29]. (d) Result using the proposed
poly-FEM warping method (460 DOFs, 50 elements).
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e

(a) Input (b) SCL

(¢) DNR [22]

im!h“i! 1 e : ﬁ M

(d) BR. [12]

(c) Qurs

Fig. 9 Results of the proposed warping method and manual interactive methods when resizing images to 75% of their original width.
(a) Input. (b) Linear scaling result. (c) Result using DNR. (d) Result using BR [12]. (e) Our result using 50 elements (approx. 460 DOFs).

results to those of the BR method. The DNR
method [22] requires manual choice of an appropriate
threshold to switch from seam-carving to warping in

their multi-operator scheme to achieve good results.

Seam removal may introduce artifacts in the final
output, especially in less important regions: see
Fig. 9(c). By contrast, our method achieves visually
more satisfactory results.

5.3 Comparison to other methods

We first compare the results of our poly-FEM method
to classic and state-of-the-art retargeting methods
on all examples from the most popular benchmark,
RetargetMe (with 80 images in total). Due to lack

of space, we only show one set of results from all the
classic methods in Fig. 10 for subjective judgement.
We can observe that our approach better avoids
unexpected information loss and preserves salient
content in this example. To avoid time-consuming
and laborious personal quality assessment for the
retargeting results of the remaining test images in
RetargeMe, we evaluated retargeting quality using the
General Regression Neural Network-based Objective
Quality Assessment (GRNN-OQA) in Ref. [47].
Values from GRNN-OQA are in [0,1], where
a higher value indicates a better quality of the
retargeted image. The GRNN-OQA method com-
putes scores which aim to preserve the ranking of

(h) LG [15]

(g) SNS [14] (i) Multiop [8]

() sV [1¢]

(k) OSA [17] 1 QP [18] (m) Curs

Fig. 10 Results from the proposed warping method and 11 classic retargeting methods, resizing an image to 50% of its original width.
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subjective scores for the same-source results and to

provide a reference to compare different-source results.

Since each existing retargeting method exhibits its
own advantages and limitations, no single method
works better than other methods for all the test
images. For each retargeting method, we compute the
average GRNN-OQA score over RetargetMe. Note
that the GRNN-OQA method provides a trained
model for ranking resized images’ with scaling factors
of 0.75 and 0.5. Hence, we only report the average
scores when resizing images in this way. The number
of times each method ranked highest or lowest in
the ranking of retargeting results of the same source
image are also reported: see Table 1. Overall, our

method is more robust and better than other
retargeting methods, in the senses that our method
gets the highest average scores, the most highest-
scoring results, and the fewest lowest-scoring results.

In Ref. [45], the retargetability score in the range
[0, 1] is computed to measure the retargeting difficulty
of an input image, where a low value indicates a
high level of difficulty. Images with retargetability
scores of (0, 0.75] are suggested for retargeting method
assessment. To further evaluate the effectiveness of
our proposed method, we conducted experiments on
four images with low or moderate retargetability
see Fig. 11(a). We illustrate results for
a scaling factor of 0.5 using two selected classic

Scores:

Table 1 GRNN-OQA scores. A.S. = average score. H.R. = number of highest-scoring results over all methods. L.R. = number of lowest-scoring
results over all methods. N.E. = number of results generated by the corresponding method. Best results are shown in bold

Method CR SCL SC [7] SM [10]  WARP [13] SNS [14] LG [15]  Multiop [8] SV [16]
AS. 0.61002  0.61906 0.61912 0.61804 0.61912 0.61989 0.61962 0.62043 0.62036
H.R./N.E. 15/69 0/69 1/68 4/66 3/69 2/62 3/66 8/68 2/69
L.R./N.E. 1/69 0/69 1/68 1/66 0/69 0/62 0/66 0/68 0/69
Method ~ OSA [17] QP [18] WSSCDNN [19] BR[12] Cycle-IR [20] SAMIR [21] DNR [22] Ours
AS. 0.62063  0.61872 0.60524 0.60831 0.61848 0.61935 0.5987 0.62102
H.R./N.E. 3/68 3/66 0/69 0/5 2/69 4/68 0/19 19/69
L.R./N.E. 0/68 1/66 46/69 0/5 2/69 0/68 17/19 0/69

{a) Input

(by CR (c) 8M

(d) WSSCDNN

(¢} Cycle-IR (f) SAMIR (g) Ours

Fig. 11 Results of the proposed method and deep learning-based image resizing to 50% of the original width. The retargetability scores of
input images from top to bottom are 0.68, 0.56, 0.54, and 0.23, respectively [45].
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methods and the three deep learning-based methods,
for subjective judgement. We observe that, due
to rich content or geometric structures, the retar-
geting results present severe artifacts for CR, SM,
WSSCDNN, and cycle-IR methods: see Figs. 11(b)—
11(e). Note that the SAMIR method generates an
optimal multi-operator sequence, which needs to scale
the image to half the original size as preprocessing.
This simple re-scaling of the image leads to blurred
results: see Fig. 11(f). Compared to these methods,
our method better preserves salient content and
introduces fewer unnatural artifacts in images with
rich content: see Fig. 11(g).

5.4 Speed

All our results in this paper used a small number
of elements (50-200) and DOFs (450-2000), and the
whole computation can be done within 0.5 s. For
example, the time to warp an image of size 640 x 480
to 50% of its original width using 200 elements is
0.417 s; the most time-consuming step is saliency
map generation, taking more than 50% of the total
time. Our method is slightly more time-consuming
than Cycle-IR (0.203 s) and faster than WSSCDNN
(0.982 s), SAMIR (25.23 s CPU time), and DNR
(60-100 s [22]) when resizing an image of this size.

6 Discussions and conclusions

We have introduced a poly-FEM-based image
warping representation and provided a framework
for content-aware image warping. The proposed
poly-FEM warping method considerably improves
the representation power of the warping map, so
achieves more satisfactory results than other existing
methods while using a small number of DOFs.

Despite the generally promising results shown in
the paper, the proposed poly-FEM warping method
suffers from two major limitations. First, it relies on
saliency detection results, like other content-aware
image retargeting techniques.
future works is to investigate more sophisticated
and efficient saliency detection methods suitable for

Hence, one of our

content-aware image warping. Second, the proposed
method may fail to preserve geometric structures,
such as lines, especially when line structures occur in
low-saliency regions and the distortion distribution is
strongly uneven: see the pen in Fig. 12(c). Note that
the line structure in low-saliency regions can be well
preserved, e.g., the road in Figs. 7(f) and 7(i) and
Fig. 9(e), perhaps because the optimal quadratic poly-
FEM-based deformation functions are close to linear
in the corresponding regions. One possible solution
to preserve such line structures is to mark them as
salient, resulting in reduced shape deformation in the
warping. As shown at the bottom of Fig. 12(b), we
manually assign higher salient values to line structures
by painting lines with more bright colors. These line
structures are well preserved in the final result: see
Fig. 12(d). We would like to improve the proposed
poly-FEM warping method to include automatic line
detection and line structure preservation into our
framework.

In this paper, optimal warping is computed on
a polygonal mesh with a pre-specified number
of cells. We may decrease the number of cells
without obviously sacrificing deformation quality:
see Figs. 4(e), 8(d), 7(d), and 7(g) for examples.
Hence, we would like to design an automatic method
for determining an appropriate number of cells to
better balance the mesh size (and so running time)
and the warp quality. Benefiting from the Lagrange

Fig. 12 Resizing results to 75% of the original width while preserving straight line structures. (a) Input image. (b) Original saliency map
(top) and saliency map with line structures highlighted (bottom). (c) Warping results based on original saliency map. (d) Warping results

based on saliency map with line structures.
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interpolation property and linear precision property
of the high-order basis functions used, the warping
map is C'™° smooth in the interiors of cells and is
O stitched along cell boundaries. It would also be
possible to include barycentric coordinates with the
Hermite interpolation property into our framework,
e.g., cubic MVC [48], to get a warping map with
In
addition, our current framework focuses on image
warping. We plan to extend the proposed method to

higher-order continuity along cell boundaries.

retargeting video by including motion features into
the importance map and ensuring consistency of the
warping grid.
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