
Computational Visual Media
https://doi.org/10.1007/s41095-022-0327-z Vol. 9, No. 2, June 2023, 401–404

Short Communication

JNeRF: An efficient heterogeneous NeRF model zoo based on Jittor

Guo-Wei Yang1 (�), Zheng-Ning Liu2, Dong-Yang Li1, and Hao-Yang Peng1

c© The Author(s) 2022.

Neural radiance fields (NeRFs) for novel-view
synthesis have attracted the attention of researchers
in computer vision and graphics. Unlike traditional
methods using explicit expressions, NeRFs represent
a scene as an implicit neural radiance field. When
rendering, NeRF queries the color density at every
position in the scene through a neural network.

NeRF brings a wide range of possibilities for
real-world 3D reconstruction and rendering, but
problems remain to be solved. Previous works
have improved NeRF’s sampling technique, position
encoding method, network structure, etc., but these
improvements are difficult to be combined as the different
modules are not well decoupled. Recent works have
significantly sped up the core GPU computation of
NeRF, leaving the deep learning framework as a major
computational cost. Thus, it has been suggested to
replace the frameworks by pure CUDA programs, but
this limits maintainability and extendability.

Therefore, we propose JNeRF, a unified, efficient,
framework-friendly NeRF model zoo based on Jittor.

1 JNeRF architecture

In this paper, we propose JNeRF, an efficient
heterogeneous NeRF model zoo based on Jittor [1].
We have analyzed existing NeRF methods, and
summarized the main architecture of NeRF in 7
modules, as shown in Fig. 1. All modules are
decoupled from each other so that they can be easily
modified or replaced. The methods used by different
modules in JNeRF can be changed by modifying

1 Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China. E-mail: G.-W. Yang,
ygw19@mails.tsinghua.edu.cn (�); D.-Y. Li, lidongyang2001@
gmail.com; H.-Y. Peng, phy22@mails.tsinghua.edu.cn.

2 Fitten Tech Co., Ltd., Beijing 100084, China. E-mail:
lzhengning@gmail.com.

Manuscript received: 2022-09-19; accepted: 2022-11-21

configuration files. These modules perform:
Camera pose estimation. For input data lacking

camera pose annotations, pose is estimated using
some existing camera pose estimation method.

Image feature extraction. This module is optional;
it is usually used in few-shot NeRF. It can provide
extra prior information to subsequent modules.

Sampling. NeRF generally integrates sample points
for rendering by ray marching. Various alternative
sampling methods are available to increase rendering
speed and improve rendering quality.

Position encoding. The positions of sampled points
are further encoded by this module. Compared to
using basic positions, position encoding can express
a more complex and elaborate geometric structure.

Network structure. Usually, NeRF employs a simple
MLP as the network structure, but more sophisticated
network structures may bring better results.

Scene representation. Going beyond representing
the model in terms of RGB and density, it is possible
to use an illumination-decoupled representation, an
explicit representation, etc.

3D generation. This module outputs various 3D
scenes by using NeRF as part of the generative
approach in a GAN.

2 Why JNeRF is efficient

2.1 An example

Instant-NGP [2], proposed in early 2022, is repre-
sentative of an approach we have implemented
using JNeRF. Its hash position encoding method
greatly shortens the training time: it can train
NeRF to output a preliminary result within 5 s.
However, its main code of the original Instant-
NGP is written in CUDA, making it difficult for
other researchers to build upon it. Instead, our
JNeRF implementation is more extensible due to
our proposed architecture. However, there is no silver

401



402 G.-W. Yang, Z.-N. Liu, D.-Y. Li, et al.

Fig. 1 JNeRF architecture.

bullet. It took us great efforts in optimization to
achieve almost the same performance as the original
Instant-NGP implementation. Overall, the high
efficiency of the JNeRF model zoo can be attributed
to: just-in-time compilation, higher computational
graph processing efficiency, automatic operator fusion,
quantization, etc.

2.2 Just-in-time compilation

Jittor is a just-in-time deep learning framework:
unlike other frameworks that require all operators to
be precompiled, Jittor can be compiled at runtime.
This allows Jittor to make dynamic shapes, such as
the number of input rays for NeRF, static, so that
the compiler can perform efficient optimizations such
as loop unrolling. At the same time, Jittor can adjust
the optimization strategy according to the input to
achieve a better optimization effect, such as adjusting
the dimension of the loop split according to the size
of shape.

2.3 Computational graph processing efficiency

Jittor is a framework that focuses on efficiency.
Its framework overhead, including computational
graph creation, computational graph forwarding,
optimization, etc., is less than that of other
frameworks such as PyTorch [3]. This overhead
is mainly performed on the CPU, so can be run
in parallel with the GPU without affecting the
training speed (as they take less time than the
GPU processing), improving tasks that were slow in
previous training approaches. As NeRF approaches
have developed, faster training methods have been
proposed, such as Instant-NGP and Plenoxels. As
the training speed increases, the additional overhead
of the framework becomes more significant, and even
limits further improvement of training speed. As a
consequence, more and more researchers are inclined

to implement ideas directly using CUDA, which
greatly hinders scientific research.

2.4 Automatic operator fusion

Combining matrix multiplication (matmul) and
activation operations has proved efficient in deep
learning. JNeRF adds fusion strategies for NeRF
tasks to Jittor. Matmul usually uses an operator
from the blas library, such as cublasGemm from
cublas, so operator fusion fuses the matmul operator
and activation operator in the computation graph.
However, fusion in this way results in useless
memory operations, because activation can be directly
applied to the accumulator matrix without redundant
procedures. Jittor combines the matmul and acti-
vation operation into a single CUDA operator, as
in the implementation of Instant-NGP. Jittor uses
NVIDIA’s warp level matrix operations (wmma) to
introduce tensor cores into the matmul operation
and applies the activation function to the results
of matmul in each thread block to achieve fully-
fused performance. Jittor uses the int4 data type
to store the weight matrices to further accelerate the
whole process. Moreover, Jittor arranges the matrix
memory schemes to fit the wmma’s memory layout,
thereby avoiding the transposition operation in
Instant-NGP. Using the fully-fused matmul operator
can lead to an 18.7% improvement in speed while
maintaining the same result quality.

2.5 Quantization

Some NeRF models like Instant-NGP can also meet
the accuracy requirements when using float16 for
parameters during training. Jittor supports float16,
and mixed float32 and float16 computation. This
mixed precision support allows these models to be
trained faster with little loss of final quality. In
training the Instant-NGP model, we store the MLP



JNeRF: An efficient heterogeneous NeRF model zoo based on Jittor 403

network parameters as float16 and, use float16 for
rendering calculations, giving a 30.4% improvement
in training speed over using float32.

3 JNeRF hardware adaptation

While Nvidia GPUs are the most popular backends
for both deep learning frameworks and NeRF models,
other accelerator hardware can also be used to train
and deploy NeRF. The AMD ROCm platform is
one of the most successful GPU computing solutions
apart from Nvidia CUDA, and JNeRF provides a
heterogeneous framework adapted to both Nvidia
CUDA and AMD ROCm backends for application
to a range of production environments. Support for
other hardware is also planned.

ROCm is open-source, and unlike CUDA, ROCm is
designed to support heterogeneous hardware including
both Nvidia and AMD GPUs. The eco-system
provided by ROCm is similar to that for CUDA
(MIOpen vs. cuDNN, rocBLAS vs. cuBLAS, rocPRIM
vs. CUTLASS, and RCCL vs. NCCL) so that JNeRF
may readily be accelerated by AMD GPUs.

It requires extra effort to develop and maintain
multiple versions of hardware-specific source code for the
same purpose. Also, it is difficult to customize JNeRF
for researchers unfamiliar with ROCm. Therefore,
we propose a Jittor JIT extension, the hardware
adaptation translator. Rather than generating both
CUDA and ROCm code simultaneously, the JIT
extension generates ROCm source code from existing
CUDA code so that the ROCm version can benefit
from existing CUDA optimization techniques. This
translator not only translates function calls and
computing kernels from CUDA to ROCm, but also
carries out further optimization according to the
AMD hardware details, including memory capacity,
memory bandwidth, parallel algorithms, etc.

4 Experiments

We have evaluated our JNeRF implementation of
Instant-NGP on the Synthetic-NeRF dataset [4],
comparing it to the original implementation. We used

200 images for training, and 200 images for testing,
measuring the PSNR for each scene after 5 min of
training on an RTX3090. Table 1 shows that the
quality from the JNeRF-implementation surpasses
the original; see also Fig. 2, giving results for the
Mic and Lego scenes. Our implementation provides
sharper detail and more accurate reflections than the
original.

JNeRF Instant-NGP can be trained quickly.
Figure 3 shows rendering results after training for
0.5 s, 1 s, and 5 s on an RTX3090, the latter being a
clear image.

5 Conclusions and future work

JNeRF provides an efficient cross-platform model
zoo. However, relatively few models are supported
by JNeRF so far; we hope to support further

Fig. 2 Renderings of Mic and Lego scenes. Left to right: ground-
truth, original implementation, and JNeRF implementation.

Table 1 PSNR (dB) achieved by JNeRF implementation and the original implementation of Instant-NGP

Model Implementation Lego Chair Drums Ficus Ship Mic Hotdog Materials avg.

Instant-NGP Original (5 min) 37.08 35.63 26.86 33.82 31.91 36.91 37.91 30.48 33.83
Instant-NGP JNeRF (5 min) 37.21 35.79 26.61 34.30 31.75 37.64 37.79 30.37 33.93



404 G.-W. Yang, Z.-N. Liu, D.-Y. Li, et al.

Fig. 3 Rendering by Instant-NGP implemented using JNeRF after training on an RTX3090 for 0.5 s, 1 s, and 5 s, respectively.

representative NeRF works in future, including ones
for 3D generation, image features through advanced
image backbones, different model representations, etc.
We also hope to allow use of JNeRF on various devices,
such as mobile platforms.

Acknowledgements

This paper was supported by National Key R&D
Program of China (Project No. 2021ZD0112902)

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Hu, S. M.; Liang, D.; Yang, G. Y.; Yang, G. W.; Zhou,
W. Y. Jittor: A novel deep learning framework with
meta-operators and unified graph execution. Science
China Information Sciences Vol. 63, No. 12, Article No.
222103, 2020.

[2] Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. arXiv preprint arXiv:2201.05989, 2022.

[3] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury,
J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein,
N.; Antiga, L.; et al. PyTorch: An imperative
style, high-performance deep learning library. In:
Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Article
No. 721, 8026–8037, 2019.

[4] Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J.
T.; Ramamoorthi, R.; Ng, R. NeRF. Communications
of the ACM Vol. 65, No. 1, 99–106, 2022.

Guo-Wei Yang is a Ph.D. student in
the Department of Computer Science and
Technology, Tsinghua University, where
he also received his B.S. degree in 2019.
His research interests include computer
graphics, neural rendering, and computer
vision.

Zheng-Ning Liu is a research scientist
at Fitten Tech Co., Ltd. He received his
bachelor and Ph.D. degrees in computer
science from Tsinghua University in 2017
and 2022, respectively. His research
interests include 3D reconstruction,
geometric modeling and processing.

Dong-Yang Li is an undergraduate
student at Tsinghua University. His
research interests include computer
graphics and computer vision.

Hao-Yang Peng is a Ph.D. student in
the Department of Computer Science
and Technology, Tsinghua University.
His research interests include computer
graphics and computer vision.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	JNeRF architecture
	Why JNeRF is efficient
	An example
	Just-in-time compilation
	Computational graph processing efficiency
	Automatic operator fusion
	Quantization

	JNeRF hardware adaptation
	Experiments
	Conclusions and future work

