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Abstract The lack of fine-grained 3D shape seg-
mentation data is the main obstacle to developing
learning-based 3D segmentation techniques. We pro-
pose an effective semi-supervised method for learning
3D segmentations from a few labeled 3D shapes and a
large amount of unlabeled 3D data. For the unlabeled
data, we present a novel multilevel consistency loss
to enforce consistency of network predictions between
perturbed copies of a 3D shape at multiple levels: point
level, part level, and hierarchical level. For the labeled
data, we develop a simple yet effective part substitution
scheme to augment the labeled 3D shapes with more
structural variations to enhance training. Our method
has been extensively validated on the task of 3D object
semantic segmentation on PartNet and ShapeNetPart,
and indoor scene semantic segmentation on ScanNet. It
exhibits superior performance to existing semi-supervised
and unsupervised pre-training 3D approaches.

Keywords shape segmentation; semi-supervised lear-
ning; multilevel consistency

1 Introduction

Recognizing semantic parts of man-made 3D shapes
is an essential task in computer vision and graphics.
Man-made shapes often consist of fine-grained and
semantic parts, many of which are small and hard
to distinguish. Moreover, for 3D shapes within a
shape category, the existence, geometry, and layout
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of semantic parts can often have large variations. As a
result, obtaining accurate and consistent fine-grained
segmentation for a shape category is challenging, even
for human workers.

Recently, supervised learning approaches have
been widely used in shape segmentation; they need
sufficient labeled data. However, as there are not
many large well-annotated 3D datasets, and the
3D data labeling process is costly and tedious, it
is difficult to apply these methods to shape categories
with limited labeled data. In this paper, we propose
a novel semi-supervised approach for fine-grained
3D shape segmentation. Our method learns a deep
neural network from a small set of segmented 3D
point clouds and a large number of unlabeled 3D
point clouds within a shape category, thus greatly
reducing the workload of 3D data labeling.

We propose two novel schemes to efficiently utilize
both unlabeled and labeled data for network training.
For unlabeled data, inspired by the pixel-level
consistency scheme used in semi-supervised image
segmentation [1, 2], we propose a set of multilevel
consistency losses for measuring the consistency of
network predictions between two perturbed copies
of a 3D point cloud at the point level, part level,
and hierarchical level. Via the multilevel consistency,
the data priors hidden in the unlabeled data can
be learned by the network to good effect. For the
available labeled shapes, we present a simple yet
effective multilevel part-substitution algorithm to
enrich the labeled dataset by replacing parts with
semantically similar parts of other labeled data. The
algorithm is specially designed for 3D structured shapes,
like chairs and tables, and it enhances the geometry
and structural variation of the labeled data in a simple
way, leading to a boost in network performance.

229



230 C.-Y. Sun, Y.-Q. Yang, H.-X. Guo, et al.

We evaluate the efficacy of our method on the
task of 3D shape segmentation including object
segmentation and indoor scene segmentation, by
training the networks with different amounts of
labeled data and unlabeled data. An ablation
study further validates the significance of each
type of consistency loss. Extensive experiments
demonstrate the superiority of our method over
state-of-the-art semi-supervised and unsupervised 3D
pretraining approaches. Our code and trained models
are publicly available at https://isunchy.github.
io/projects/semi_supervised_3d_segmentation.
html.

2 Related work

In this section, we briefly review related 3D
shape segmentation approaches and shape synthesis
techniques.
2.1 Unsupervised 3D segmentation

Early attempts at unsupervised segmentation focused
on decomposing a single shape into meaningful
geometric parts using clustering, graph cuts, or
primitive fitting (see surveys in Refs. [3, 4]). To
obtain consistent segmentation within a shape
category, a series of unsupervised co-segmentation
works (see surveys in Refs. [4, 5]) proposed
exploiting geometrically similar parts across over-
segmented shapes, via feature co-analysis or co-
clustering. Learning a set of primitives to represent
shape is another approach to shape decomposition
and segmentation, e.g., using cuboids [6, 7],
superquadrics [8], convex polyhedra [9], or implicit
functions [10]. Chen et al. [11] train a bran-
ched autoencoder network, Bae-Net for shape
segmentation, in which each branch learns an implicit
representation for a meaningful shape part. All
the above methods rely on geometric features for
segmentation and do not take semantic information
into consideration, which may lead to results
inconsistent with human-defined semantics.

2.2 Supervised 3D segmentation

Various supervised methods perform 3D segmentation
using deep neural networks trained on a large number
of labeled 3D shapes or scenes [12]. Xie et al. [13]
project a 3D shape into multiview images and use
2D CNNs to enhance the segmentation. Kalogerakis
et al. [14] combine conditional random field (CRF)

with multiview images to boost segmentation
performance. Dai and Nießner [15] back-project the
feature learned by multiview images to 3D to conduct
scene segmentation. Charles et al. [16] use a point-
based network to predict per-point semantic labels
by combining global and pointwise features. Other
works [17–19] enhance feature propagation by using
per-point local information. Wang et al. [20] and
Hanocka et al. [21] build graphs from point sets and
conduct message passing on graph edges while further
methods [22–25] directly perform CNN computation
on mesh surfaces. Song et al. [26] conduct scene
semantic segmentation with the help of the scene
completion task. For efficiency, many works [27–31]
use sparse voxels or supervoxels to reduce the
computational and memory costs while achieving
better segmentation results. Unlike these supervised
methods that require a large amount labeled data,
we leverage a few labeled data items and a large
amount of unlabeled data for effective segmentation.

2.3 Weakly-supervised 3D segmentation

3D shapes in many shape repositories are modeled by
artists and often come with rich metadata, like part
annotations and part hierarchies. Although part-
related information may be inconsistent with the
ground truth, it can be used to weakly supervise
the training of shape segmentation networks. Yi et
al. [32] learn hierarchical shape segmentations and
labeling from noisy scene graphs from online shape
repositories and transfer the learned knowledge to new
geometry. Muralikrishnan et al. [33] discover semantic
regions from shape tags. Wang et al. [34] learn to
group existing fine-grained and meaningful shape
segments into semantic parts. Sharma et al. [35]
embed 3D points into a feature space based on the
annotated part tag and group hierarchy and then
fine-tune the point features with a few labeled 3D
data items for shape segmentation. Zhu et al. [36]
utilize part information from a 3D repository to
train a part prior network for proposing per-shape
parts for an unsegmented shape, and then train a
co-segmentation network to optimize part labelings
across the input dataset. Xu and Lee [37] learn
shape segmentation with an assumption that each
shape in the large training dataset has at least
one labeled point per semantic part. Unlike these
weakly supervised methods, our method requires no
additional weak supervision on unlabeled data.

https://isunchy.github.io/projects/semi_supervised_3d_segmentation.html
https://isunchy.github.io/projects/semi_supervised_3d_segmentation.html
https://isunchy.github.io/projects/semi_supervised_3d_segmentation.html
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2.4 Unsupervised 3D pretraining
Unsupervised pretraining [38] has demonstrated its
advantage in many computer vision and natural
language processing tasks, where a feature encoding
network is pretrained on a large amount of unlabeled
data and then is fine-tuned for downstream tasks
using a small amount of labeled data. For 3D
analysis tasks, Hassani and Haley [39] pretrain a
multi-scale graph-based encoder with the ShapeNet
dataset [40] using a multi-task loss. Wang et al. [41]
use multiresolution instance discrimination loss for
pre-training, while Hou et al. [42] and Xie et al. [43]
employ contrastive loss. Instead of using this two-step
training: pretraining and fine-tuning, our network is
trained with both labeled and unlabeled data from
the beginning. Given the same amount of labeled
data, our semi-supervised method is superior to a fine-
tuned pretrained network on 3D object segmentation
and indoor scene segmentation.

2.5 Semi-supervised segmentation
Semi-supervised learning tries to employ unlabeled
data to facilitate supervised learning, thus reducing
the amount of labeled data needed for training; see
Ref. [44] for a detailed survey. Many approaches were
first developed for image classification, like temporal
ensembling [45] that aggregates the prediction
of multiple previous network evaluations, Mean-
Teacher [46] that averages model weights instead
of predictions, FixMatch [47] that uses confidence-
aware pseudo-labels of weakly-augmented data to
guide the strongly-augmented data prediction, and
MixMatch [48] that guesses low-entropy labels for
data-augmented unlabeled data and mixes labeled
and unlabeled data using MixUp. For image seg-
mentation, Ouali et al. [1] utilize cross-consistency
to train image segmentation networks, where pixel
features extracted by the encoder are perturbed and
enforced to be consistent with network predictions
after decoding. Ke et al. [2] use two networks
with different initializations and dynamically penalize
inconsistent pixel-wise predictions for the same image
input. French et al. [49] improve image segmentation
accuracy by imposing strong augmentation on
unlabeled training images via region masking
and replacement. Wang et al. [50] employ the
Mean-Teacher model with improved uncertainty
computation and use auxiliary tasks with task-
level consistency for medical image segmentation.
Unlike the above semi-supervised image segmentation

methods that leverage pixel-level consistency only, or
use task-level consistency, our approach utilizes 3D
shape part hierarchy and maximizes 3D segmentation
consistency at multiple levels, including point level,
part level, and hierarchical level.

For 3D segmentation, Bae-Net [11] can learn a
branched network from labeled data and unlabeled
data for shape segmentation. Although this approach
works well for segmenting 3D shapes into a few large
parts, it is nontrivial to extend it to many fine-grained
semantic 3D segments due to its large network size,
and it is unclear whether it can handle the large
variety of part structures well. Wang et al. [51]
propose to retrieve a similar 3D shape with part
annotations from a mini-pool of shape templates for
a given input 3D shape, and learn a transformation
to morph the template shape towards the input
shape. From the transformed template, a part-specific
probability space is learned to predict point part
labels, and part consistency within the training batch
is utilized. However, its prediction accuracy can be
severely affected by the chosen template and the
deformation quality.

2.6 Structure-aware shape synthesis
A set of geometric operations has been developed
for generating 3D shapes from shape parts, such
as part assembly [52–54], structural blending [55],
and set evolution [56]. Although these methods
are effective for generating high-quality 3D shapes,
some require special pre-processing and interactive
editing. Recent methods composite [57–59] or edit
shapes by learning structural variations within a large
set of segmented 3D shapes [60]. Another set of
methods [61–63] utilizes the functionality of shape
structures to guide 3D shape synthesis. In our work,
we develop a simple and automatic part substitution
scheme for generating shapes with proper structural
and geometric variations from a small number of
labeled 3D shapes, whose quality is sufficient to
improve network training. We also notice that recent
point cloud augmentation techniques [64–66] that mix
points of different shapes randomly to generate more
varied shapes can enhance point cloud classification,
and can be extended to shape segmentation [67].
However, random augmentation does not respect
shape structure and can lead to limited improvements
only, as our experiments show. Instead, our part
substitution scheme enriches structural variations
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of the labeled dataset and improves the network
performance.

3 Method overview

3.1 Input and output

We assume that a set of fine-grained 3D semantic
part labels probably with a structural hierarchy is
pre-defined for a 3D shape category. For instance, at
a coarse level, the structure of a chair includes the
back, the seat, and the support; the chair support
can be decomposed at a finer level into vertical legs,
horizontal supports, and other small parts. We denote
the number of hierarchical levels by K; the K-th level
is the finest level.

Our goal is to predict hierarchical part labels
for each point of the input point cloud and hence
determine its shape part structure. The training
data include a small set of labeled point clouds
and a large number of unlabeled point clouds. All
point clouds are sampled from shapes within the
same shape category, so their part structures are
implicitly coherent but nevertheless have topological
and geometric variations.

3.2 Base network

Our semi-supervised learning relies on a 3D network
that takes a 3D point cloud as input and outputs
the point features. Each point feature is transformed
to probability vectors via two fully-connected (FC)
layers and a softmax function for determining the
segmentation labels at each granularity level. We
defer the exact choice of our network structure to
Section 6.

3.3 Data perturbation for semi-supervised
training

For an input point cloud S which is scaled uniformly
to fit within a unit sphere, we generate two randomly-
perturbed copies of S, denoted S′ and S′′, and
pass them to the network during the training
stage. In our implementation, the perturbation is
composed of a uniform scaling within the interval
[0.75, 1.25], a random rotation whose pitch, yaw, and
roll rotation angles are less than 10◦, and random
translations along each coordinate axis within the
interval [−0.25, 0.25]. The perturbed point cloud
is clipped by the unit box before input to the

network. This perturbation strategy follows the
approach of Ref. [41] for unsupervised pre-training.
Data perturbation makes the trained network more
robust and helps build our multilevel consistency
between the perturbed shape copies. x′i and x′′i are
the perturbed copies in S′ and S′′ respectively of xi

in S. The network with perturbed data is illustrated
in Fig. 1.

3.4 Notation

We use the following notation in the paper:
S: the input point cloud, {x1, · · · ,xn ∈ R3}.
L(k) ∈ N+: the number of semantic labels at the k-th
level.
p(k)(xi) ∈ RL(k) : the probability vector of xi at the
k-th level.
q(k)(xi) ∈ RL(k) : the one-hot vector for xi at the k-
th level, corresponding to the ground-truth semantic
label of xi.

3.5 Loss design
For the labeled point cloud S, we use the cross-
entropy loss to penalize dissimilarity of point semantic
labels of S′ and S′′ to the ground-truth labels at
multiple levels, as Eq. (1):

Lseg(S′, S′′) = 1
2n

n∑
i=1

K∑
k=1

[
gce

(
q(k)(xi),p(k)(x′i)

)
+

gce

(
q(k)(xi),p(k)(x′′i )

)]
(1)

where gce(·, ·) is the standard cross-entropy loss.
For both unlabeled and labeled inputs, we use the

multilevel consistency loss introduced in Section 4

Fig. 1 General neural network setup for 3D semantic segmentation.
The network takes a point cloud S as input and feeds two perturbed
copies of S: S′ and S′′, to the network, separately. The output
point features f(x) of point x are transformed to probability vectors
p(k)(xi) for determining the segmentation part label at the k-th level.
Multilevel consistency is built upon the probability vectors of points
of S′ and S′′.



Semi-supervised 3D shape segmentation with multilevel consistency and part substitution 233

to ensure the network outputs of S′ and S′′ are
consistent with each other.

3.6 Labeled data augmentation

The structure of labeled 3D shapes offers a great
possibility for synthesizing new shapes with semantics.
In Section 5, we propose a simple part-substitution
method to enrich the labeled shape set, which can
improve the performance of both supervised and semi-
supervised approaches.

4 Multilevel consistency

We now introduce our multilevel consistency for
utilizing unlabeled data for network training.
The multilevel consistency builds on point-level
(Section 4.1), part-level (Section 4.2), and hierarchical-
level (Section 4.3) consistency, and is illustrated in
Fig. 2.
4.1 Point-level consistency

A pair of points, x′i ∈ S′ and x′′i ∈ S′′, should have
probability vectors as similar as possible due to self-
consistency (see Fig. 2(a)). Based on this property,
we build a point-level consistency loss Lpoint upon
their probability vectors using the symmetric KL-
divergence loss DKL:

Lpoint = 1
2n

n∑
i=1

K∑
k=1

[
DKL

(
p(k)(x′i) ‖ p(k)(x′′i )

)
+

DKL

(
p(k)(x′′i ) ‖ p(k)(x′i)

)]
(2)

Fig. 2 Multilevel consistency on two perturbed copies of a chair
model having a two-level hierarchy. L1 and L2 are the fine and coarse
levels, respectively. Point color corresponds to predicted part label
at each level. The segmentation of L̂2 is the pseudo-part prediction
at L2 inferred from L1 according to the predefined shape hierarchy.
(a) Point-level consistency built on the corresponding point pairs
between two copies at each level. (b) Part-level consistency built
on parts with the same semantics between two copies at each level.
(c) Hierarchical consistency built on the corresponding points between
the shape copies on L̂2 and L2.

Point-level consistency is a simple extension of pixel-
level consistency which has been extensively used
in semi-supervised image segmentation. The KL-
divergence loss can be replaced with the MSE loss; the
latter has a better performance on semi-supervised
image classification in Refs. [45, 46]. However,
we found that they have similar performance on
3D segmentation, and indeed the former is slightly
better.

4.2 Part-level consistency

Due to data perturbation, the predicted part
distributions of S′ and S′′ at the same part level can
be different. We impose a novel part-level consistency
to minimize this difference.

For a point x′ ∈ S′, its predicted part label at the
k-th level is determined by argmaxm{p

(k)
m (x′i),m =

1, · · · , L(k)}, where p(k)
m (x′i) is the m-th component

of p(k)(x′i). Using the predicted part labels of all
points at the k-th level, we can partition S′ into a
set of parts, denoted {P(k)

1 , · · · ,P(k)
L(k)}, where some

sub-partitions can be empty. We call these parts a
pseudo-partition. On S′′, we also compute a pseudo-
partition, denoted {Q(k)

1 , · · · ,Q(k)
L(k)}.

For a pseudo-part P(k)
l , we define two statistical

quantities: belonging-confidence and outlier-confidence,
denoted by BC(P(k)

l ) and OC(P(k)
l ), respectively. The

belonging-confidence measures the confidence with
which points in P(k)

l belong to P(k)
l and the outlier-

confidence measures the confidence with which the
remaining points outside P(k)

l do not belong to P(k)
l .

They are defined as Eq. (3). BC(P(k)
l , S′) =MEAN{p(k)

l (y), ∀y ∈ S′ ∩ P(k)
l }

OC(P(k)
l , S′) =MEAN{p(k)

l (y), ∀y ∈ S′\P(k)
l }

(3)
As the pseudo-partitions of S′ and S′′ should be

consistent with each other, we can impose the pseudo-
partition of S′ onto S′′, i.e., partition S′′ according
to the point assignment of {P(k)

1 , · · · ,P(k)
L(k)}, and

compute the corresponding belonging-confidence and
the outlier-confidence values on S′′. Because of self-
consistency, we expect these values to be as close as
possible to the corresponding values computed on S′.
Similarly, we can also impose the pseudo-partition
of S′′ onto S′ in a similar way. We call this type of
consistency part-level consistency, and define the loss
function as Eq. (4):
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Lpart =
K∑

k=1

L(k)∑
j=1

[α‖BC(P(k)
j , S′)−BC(P(k)

j , S′′)‖2+

β‖OC(P(k)
j , S′)−OC(P(k)

j , S′′)‖2+

α‖BC(Q(k)
j , S′′)−BC(Q(k)

j , S′)‖2+

β‖OC(Q(k)
j , S′′)−OC(Q(k)

j , S′)‖2 ]
(4)

Here, α and β are dynamically adjusted: α = β = 1/2
when the sub-partition appearing in the BC term is
nonempty; otherwise, we set α = 0, β = 1. Figure 2(b)
illustrates part consistency on a chair model.

4.3 Hierarchical consistency

For a shape category possessing a part structure
hierarchy, the semantic segmentation labels at
different levels are strongly correlated. We propose
hierarchical consistency to utilize this structure prior.

For a point x ∈ S, we can use its probability vector
at level (k+1) to infer its part label probability at level
k, i.e., its parent level, just by merging the probability
values of p(k+1)(x) to form the probability vector at
level k, according to the predefined shape hierarchy.
For instance, in the chair structure, suppose the
chair arm contains two parts: a vertical bar and
a horizontal bar. We add the probability values of
the vertical bar and horizontal bar together and set
their sum as the probability value of the chair arm.

In this way, we can create a pseudo-probability
vector for x at level k, denoted p̂(k)(x). Ideally
p̂(k)(x′i) should be the same as p(k)(x′′i ) predicted
by the network and vice versa. We call this relation
hierarchical consistency, and define a loss function on
the points of S′ and S′′ using KL-divergence as Eq. (5):

Lh := 1
2n

n∑
i=1

K−1∑
k=1

[
DKL

(
p̂(k)(x′i) ‖ p(k)(x′′i )

)
+

DKL

(
p̂(k)(x′′i ) ‖ p(k)(x′i)

)]
(5)

Figure 2(c) illustrates hierarchical consistency on a
chair model.

Note that the above hierarchical consistency is
defined across two perturbed shapes. In fact, it is
possible to impose hierarchical consistency on a single
perturbed shape using DKL

(
p̂(k)(x′i) ‖ p(k)(x′i)

)
, but

in practice we find that these consistency terms are
easily satisfied as the multilevel probability vectors
of the same shape are highly correlated, so do not
give much assistance in semi-supervised training.

5 Multilevel part substitution

We propose a simple multilevel part-substitution
algorithm to enrich the labeled 3D shapes for training.
Given a randomly sampled labeled shape S, our
algorithm executes the following steps to synthesize
new shapes with geometry and structural variation.

Part selection is carried out first. We treat the
hierarchical structure of shape S as a tree, where
each shape part is a tree node. We visit each node
from the coarsest level to the finest level. For a
node at level k, a uniform random number in [0, 1] is
generated. If the number is smaller than a predefined
threshold θk, we set the subtree under this node as a
replacement candidate and stop visiting its children.
Finally, we collect a set of subtrees to be replaced.

Next, part substitution is performed. For a part
subtree P in the candidate list, we randomly select
a subtree Q from those other shapes in which the
root node of Q has the same semantic label as P ’s
root node. Note that simple substitution of P by Q
may result in strange-looking and partly-overlapping
results (see Fig. 3(c)), so we replace P by Q as follows,
to avoid unpleasant results as much as possible. We
consider two cases.

If the leaf nodes of P and Q have no common parts
sharing the same semantics, we simply compute the
affine transformation from the bounding box of Q
to the bounding box of P and apply it to Q when
replacing P .

However, if P and Q share some common semantic
parts, denoted Ps ∈ P , Qs ∈ Q, we align Qs
and Ps first to avoid odd results. The alignment
transformation matrix is applied to Q directly. We
also rescale the transformed Q to ensure that it is
inside the original bounding box of S, to make the
result visually plausible: see Fig. 3(d).

Fig. 3 Multilevel part substitution. The two front legs of the chair
in (a) are selected to replace the four legs in (b). (c) Unsatisfactory
substitution by aligning the two regions directly. (d) Good substitution
by aligning the common parts (front legs) first. While the result is
not physically plausible, it is suitable for training.
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The θk values affect the degree of structure
variation: frequent substitutions at the coarse level
bring more structural variations. In our experiments,
we set all θk to 0.5. Figure 4 shows a set of novel chairs
synthesized from three chairs. More synthesized
shapes used in our experiments are illustrated in
Appendix C.

After generation, as all parts of the synthesized
shapes inherit their original semantics, these shapes
can be used as labeled data. Note that after part
substitution, two different shape parts in a shape may
overlap. We detect points inside these overlapping
regions using a simple nearest neighbor search and
do not use their labels during training, to avoid
contradictions.

Fig. 4 Randomly generated shapes from three labeled chairs. Point
colors correspond to semantic IDs at the finest level.

6 Network design, loss, and training
data

In this section, we present details of our network
structure, loss function, and training batches.
6.1 Network structure

We use an octree-based U-Net structure as our base
network. The network is built upon the efficient
open-source octree-based CNN [27, 68]. The U-Net
structure has five and four levels of domain resolution,
as illustrated in Fig. 5 and Appendix A, for object
segmentation and scene segmentation, respectively.
The maximum depths of the octree for 3D object
segmentation and scene segmentation are 6 and 9,
respectively. The input point cloud is converted to an
octree first, whose nonempty finest octants store the
average of the normals of the points within them. The
point feature for a given point is found by trilinear
interpolation within the octree. The numbers of
network parameters for 3D object segmentation and
3D scene segmentation are 5.3× 106 and 39.2× 106,
respectively. We call our network MCNet, for multi-

Fig. 5 Octree-based U-Net structure for shape segmentation.
Conv(C, S, K) and Deconv(C, S, K) represent octree-based
convolution and deconvolution, respectively. C, S, K are the number
of output channels, stride, and kernel size, respectively. The network
structure for indoor scene segmentation is provided in the Appendix.

consistency 3D deep learning network. In Section 7
we also demonstrate the efficiency of our approach
based on other point-based backbones.

6.2 Loss function

Given a point cloud S in a training batch, the loss
defined on its two randomly-perturbed copies S′ and
S′′ is
Ltc = γLseg(S′, S′′)+λptsLpoint+λpartLpart + λhLh

(6)
γ = 0 if S is an unlabeled point cloud.

6.3 Training batch construction

Half of the batch data is randomly selected from
the labeled data, and the rest is randomly selected
from the unlabeled dataset. If synthetic labeled data
(Section 5) are available, half of the labeled data in the
batch are selected from them, and the remainder are
selected from the original labeled data. The labeled
data in a batch may be duplicated if the labeled
dataset is quite small. The network is trained from
scratch with random initialization.

7 Experiments and analysis

In this section, we demonstrate the efficacy and
superiority of our semi-supervised approach on
shape segmentation and scene segmentation, and an
ablation study to validate our design.

Our experiments were conducted on a Linux server
with a 3.6 GHz Intel Core I7-6850K CPU and a Tesla
V100 GPU with 16 GB memory for experiments on
shape objects, and a Tesla V100 with 32 GB memory
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for indoor scenes. We implemented our network using
the TensorFlow framework [69].
7.1 Shape segmentation

7.1.1 Datasets
Our semi-supervised 3D segmentation approach was
evaluated on the following datasets with different
ratios of labeled data.

PartNet. The PartNet dataset [70] provides fine-
grained, hierarchical segmentation of 26,671 models in
24 object categories, and defines three levels (coarse,
medium, fine) of segmentation for the benchmark.

Shape categories with customized hierarchy. We
defined a two-level part hierarchy on two shape
categories: the Chair from PartNet and the
Airplane from ShapeNet [40], to further validate
the effectiveness of our approach on other shape
data and structural hierarchies. At the fine level,
our new data provide finer-grained part labels than
PartNet. For instance, each chair leg is treated as a
different object part while all legs of a chair belong
to a single part in the PartNet level-3 segmentation.
The hierarchical relationship between each level also
differs from PartNet. The hierarchical fine-grained
structures of these two categories are illustrated in
Fig. 6. To avoid confusion, we call our chair dataset
Chair2. The Chair2 dataset contains 3303 models for
training and 826 models for testing, and the Airplane
dataset contains 1404 models for training and 366
models for testing.

ShapeNetPart. ShapeNetPart [32] contains 16
shape categories from ShapeNet. Each model is a

Fig. 6 Two-level fine-grained and hierarchical structures for our
Airplane and Chair2 datasets. Unique colors at the fine level
correspond to distinguishable shape parts, as a segmentation label.
Several parts at the fine level are merged to form a unique segmentation
label at the coarse level, and assigned the same color. Both Chair2
and Airplane have 8 different part labels at the coarse level, while at
fine levels they have 36 and 20 part labels, respectively.

point cloud with 2–6 part labels without a structural
hierarchy.

ScanNet. The ScanNet dataset [71] contains 1613
3D indoor scenes with 20 labels for semantic
segmentation. The numbers of scenes for training,
validation, and testing are 1201, 312, and 100,
respectively.

For the above datasets, we used a fixed seed to
randomly pick a small fraction of the labeled training
data, around 2%, and set it as the labeled data for
semi-supervised training, and the remaining labeled
training data were treated as unlabeled data in our
training: no label information was utilized during
training and part substitution. The original testing
dataset was used as unseen test data for evaluating
the trained network.

Each training batch contained 16 shapes. A
maximum of 80,000 iterations was used. We used the
SGD optimizer with a learning rate of 0.1, decayed
by a factor of 0.1 at the 40,000-th and 60,000-th
iterations. For the loss function, we empirically set
λpts = λpart = λh = 0.01, via a simple grid search on
the four biggest categories of PartNet. To conduct
a statically meaningful evaluation, we ran training
on each shape category three times with different
randomly-selected labeled data, and report average
results.
7.1.2 PartNet segmentation
On all 24 shape categories of PartNet, we expe-
rimented with our semi-supervised training scheme
with different ratios of labeled data for our
MCNet: 2%, 5%, 10%, and 20%. We generated as
many randomly synthesized labeled shapes by part
substitution as the number of original training data
shapes. Following Ref. [70], we used the following
metrics to evaluate the results.

p-mIoU. The IoU between the predicted point set
and the ground-truth point set for each semantic part
category is first computed over the test shapes, and
then the per-part-category IoUs are averaged. This
metric helps evaluate how an algorithm performs for
any given part category [70], but does not characterize
the segmentation quality at the object level.

s-mIoU. The part-wise IoU is first computed for
each shape, then the mean IoU over all parts is
computed on this shape, and finally, these mean
IoUs are averaged over all test shapes. This metric
is sensitive to missing ground-truth parts and the
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appearance of unwanted predicted parts in a shape.
We choose MIDNet [41] as a basis for comparison,

which has unsupervised 3D pretraining with a fine
tuning method and provides state-of-the-art results
on PartNet with a small amount of labeled data.
MIDNet was pretrained on the ShapeNet dataset.

We fine tuned MIDNet with the same limited labeled
data as our method, using the multilevel segmentation
loss in Fig. 5. The results are reported in Table 1.
Our MCNet achieved superior results to MIDNet on
all tests at all segmentation levels.

In Fig. 7, we illustrate segmentation results and

Table 1 Segmentation results on PartNet. All metrics are averaged across 24 categories. r is the fraction of labeled data used for training

Coarse level Medium level Fine level Avg

r Method p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

2%
MIDNet 44.7 63.5 29.8 43.9 24.9 40.6 38.2 54.7
MCNet 47.6 68.4 33.4 48.9 27.4 45.8 41.3 60.0

5%
MIDNet 53.2 69.1 35.9 48.4 32.7 46.0 46.7 60.7
MCNet 54.9 71.9 38.5 52.0 34.2 49.3 48.8 63.5

10%
MIDNet 57.5 71.7 39.7 51.9 37.6 50.3 51.6 63.8
MCNet 60.9 75.5 43.9 54.6 40.2 52.0 54.8 67.0

20%
MIDNet 64.2 75.7 44.6 55.4 43.3 54.2 57.7 68.0
MCNet 65.2 78.5 48.7 58.6 45.2 56.4 59.4 70.7

Fig. 7 Fine-level segmentation results from our MCNet and MIDNet. 2% labeled data were used in training. Point colors in the segmentation
results correspond to part ID. In the error maps alongside the segmentation results, red points indicate wrongly predicted labels. The top three
sets of examples came from the PartNet test set; those at the bottom came from the Chair2 and Airplane test data.
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error maps resulting from our approach and MIDNet
on a set of test shapes, trained with 2% labeled data.
The results clearly show that our method has lower
segmentation error.

We also replaced our octree-based CNN backbone
with other popular point-based deep learning
frameworks: PointNet++ [17] and PointCNN [18],
and tested their segmentation performance. Table 2
reports the significant improvements brought by
our multilevel consistency and part substitution,
compared to their purely-supervised baseline. We
also found that these backbones did not yield better
results than the octree-based CNN backbone.
7.1.3 Segmentation on shape categories with

customized hierarchy
Like the experiments on PartNet, the experiments on
Chair2 and Airplane also showed that our approach is
significantly better than MIDNet (see Table 3). Several
segmentation results are also illustrated in Fig. 7.

Table 2 Segmentation results on PartNet with different backbone
networks. All metrics are averaged across 3 levels of the test dataset
for 24 categories. r is the proportion of labeled data used for training.
Baseline is the supervised approach with multilevel segmentation loss.
Ours is the backbone with our semi-supervised approach

PointNet++ PointCNN OCNN

r Method p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

2%
Baseline 34.6 47.6 35.3 50.6 35.8 51.2

Ours 39.7 57.7 40.7 58.3 41.3 60.0

5%
Baseline 42.3 53.6 42.9 55.2 42.8 54.7

Ours 47.8 62.6 49.2 62.2 48.8 63.5

10%
Baseline 48.0 59.2 49.1 61.0 49.4 60.9

Ours 51.5 65.1 52.3 65.7 54.8 67.0

20%
Baseline 53.5 63.9 54.0 63.8 56.2 66.4

Ours 56.2 68.6 56.5 68.3 59.4 70.7

Table 3 Segmentation results on the test dataset containing Chair2
and Airplane. r is the proportion of labeled data used for training

Fine level Coarse level

r Method p-mIoU s-mIoU p-mIoU s-mIoU

2%
MIDNet 75.7 85.6 87.9 87.4

MCNet 82.4 89.0 91.4 91.4

5%
MIDNet 81.0 87.5 90.1 89.0

MCNet 84.5 90.2 92.1 92.1

10%
MIDNet 82.8 88.0 90.4 89.9

MCNet 85.7 90.5 92.3 92.2

20%
MIDNet 83.5 89.4 90.9 90.8

MCNet 86.0 91.1 92.2 92.7

7.1.4 ShapeNetPart segmentation
As there is no structural hierarchy in ShapeNetPart,
hierarchy consistency loss was dropped from our loss
function. We report the mean IoU across all categories
(c-mIoU) and across all instances (i-mIoU), commonly
used metrics in the ShapeNetPart segmentation
benchmark. Table 4 compares results from various
methods using 5% labeled data for training. It is clear
that our method is superior to others, while MIDNet
is second best. We also made a more thorough
comparison to MIDNet using other ratios of labeled
training data. The results in Table 5 show that MCNet
always performed much better than MIDNet.

We also conducted a few-shot experiment by
following the setting in the state-of-the-art few-shot
3D segmentation method [51]: eight categories of
ShapeNetPart were tested and 10 labeled shapes
used for training. We trained our network 5 times
and sampled 10 labeled shapes randomly from the
original dataset each time, reporting average results
in Table 6. It shows that our method is superior to
that of Ref. [51] for most of the tested categories.

7.2 ScanNet segmentation

7.2.1 Setting
We have also applied our semi-supervised method
to indoor semantic scene segmentation. We choose
the ScanNet dataset [71] as a testbed, and used

Table 4 Segmentation results for different methods on ShapeNetPart,
with 5% labeled training data

Method c-mIoU i-mIoU
SO-Net [72] — 69.0
PointCapsNet [73] — 70.0
MortonNet [74] — 77.1
JointSSL [75] — 77.4
Multi-task [39] 72.1 77.7
ACD [76] — 79.7
MIDNet [41] 77.7 80.7
MCNet 79.8 82.2

Table 5 Segmentation results for ShapeNetPart. Higher mIoU values
are better. r is the proportion of labeled data used for training

r Method c-mIoU i-mIoU

2%
MIDNet 73.9 78.4
MCNet 76.1 81.2

5%
MIDNet 77.7 80.7
MCNet 79.8 82.2

10%
MIDNet 79.2 82.3
MCNet 81.8 84.2

20%
MIDNet 81.7 83.1
MCNet 83.0 84.3
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Table 6 mIoU results for our method and that of Ref. [51], for eight
shape categories selected by Ref. [51]

Category Ref. [51] Ours

Airplane 67.3 73.9

Bag 74.4 81.7

Cap 86.3 84.4

Chair 83.4 87.2

Lamp 68.7 76.5

Laptop 93.8 95.4

Mug 90.9 95.5

Table 74.2 74.8

Mean 79.8 83.7

1%, 5%, 10%, and 20% labeled scenes from the
original training dataset, with the remainder of the
training dataset regarded as unlabeled data. For a fair
comparison, we used the labeled scenes from Ref. [42].
We measured mean IoU to evaluate segmentation
quality on the validation set. As the ScanNet dataset
does not provide hierarchical segmentation, we
defined a two-level segmentation on ScanNet: classes
at the fine level are the original segmentation classes;
at the coarse level, we merged the semantic classes
into 6 categories using semantic affinity according to
WordNet [77], calling this hierarchy HW. Details of
these hierarchies are presented in Appendix B. As
our part substitution is not intended for 3D scenes,
we did not synthesize 3D labeled scenes for training.
7.2.2 Data perturbation
We used the same augmentation configuration as
Ref. [42]: a random rotation with pitch, yaw, and roll
angles less than 3◦, 180◦, 3◦, respectively, a uniform
scaling in the range [0.9, 1.1], random translations
along x-, y-axes within the range [0.8, 1.2], and a
color transformation including auto contrast, color
translation, and color jitter. We randomly sampled
20% points from a scene in each training iteration.
7.2.3 Parameters and training protocol
Each batch contained 4 shapes, with two from the
labeled scenes and two from the unlabeled scenes. A
maximum of 60,000 iterations was used. We used the
SGD optimizer with a learning rate of 0.1, decayed at
the 30,000-th and 45,000-th iterations by a factor of
0.1. We tried different multilevel consistency weights,
and found that smaller weights improve results when
the proportion of labeled data is low. The optimal
settings we found are reported alongside the network
results in Table 7.

Table 7 Fine level segmentation results for ScanNet. r is the
proportion of labeled data used for training. −H means without
hierarchy, and +H means with hierarchy. The model from Ref. [42]
was used to generate its segmentation results

r Method mIoU

1%

Ref. [42] 29.3
Our supervised baseline 27.0

MCNet−H (λpts = λpart = 0.005) 28.7
MCNet+H (λpts = λpart = λh = 0.005) 29.4

5%

Ref. [42] 45.4
Our supervised baseline 47.9

MCNet−H (λpts = λpart = 0.05) 48.2
MCNet+H (λpts = λpart = λh = 0.05) 48.3

10%

Ref. [42] 59.5
Our supervised baseline 58.1

MCNet−H (λpts = λpart = 0.1) 59.1
MCNet+H (λpts = λpart = λh = 0.1) 60.3

20%

Ref. [42] 64.1
Our supervised baseline 62.8

MCNet−H (λpts = λpart = 0.1) 63.9
MCNet+H (λpts = λpart = λh = 0.1) 64.9

7.2.4 Results
We compared our supervised baseline, i.e., using the
segmentation loss and labeled data only, our method
with and without structural hierarchy loss, and the
state-of-the-art unsupervised pretraining with fine-
tuning method proposed by Ref. [42]. As Table 7
shows, our supervised baseline and our method
without using the hierarchy loss worked less well
than Ref. [42] except in the test with 5% labeled
data. With the additional hierarchy loss, our method
performed best in all tests.
7.2.5 Sensitivity to customized hierarchy
To study whether our method on ScanNet is sensitive
to the customized hierarchy, we randomly grouped
fine level parts into 6 categories three times, and
created three different two-level hierarchies: HA, HB,
and HC. Table 8 reports the segmentation results
using these customized hierarchies. We find that
MCNet achieves similar results using HW, HA, HB,

Table 8 Fine level segmentation results for ScanNet using a different
customized hierarchy. r is the proportion of labeled data used for
training

r HW HA HB HC

1% 29.4 29.2 29.7 29.5
5% 48.3 48.9 48.6 48.4
10% 60.3 60.2 60.2 60.0
20% 64.9 64.8 64.4 64.7
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and HC, so conclude that while our approach benefits
from hierarchical relationships, it is insensitive to the
hierarchy construction.

7.3 Ablation study

We next evaluate the efficacy of our consistency
loss, part substitution, and hyper-parameter selection
approaches, using the four biggest categories from
PartNet: Chair, Table, Storage, and Lamp, as our
testbed. We used 2% labeled data here only. Results
are reported in Table 9. The network was trained for
each shape category individually.
7.3.1 Multilevel consistency loss and part substitution
We designed a series of ablation studies to validate
the advantage of our multilevel consistency losses
and part substitution, using as baseline our network
trained with the multilevel segmentation loss on
the limited labeled data only. Table 10 reports
results for the baseline (1) and the baseline with
different combinations of our multilevel consistency
losses with semi-supervised training. We state how
many labeled shapes were synthesized via multilevel

Table 9 Numbers of shapes in the four shape categories from PartNet
used in our ablation study

Chair Lamp Storage Table

Labeled 90 31 32 114
Unlabeled 4399 1523 1556 5593
Test 1217 419 451 1668

part substitution from the 2% labeled data used for
training; N indicates the total number of labeled and
unlabeled data items.

Experiments (2)–(4) clearly show that utilization
of any consistency loss can improve segmentation
accuracy. Experiment (5) indicates that synthesizing
labeled shapes by part substitution can significantly
improve the network results even when used in a
purely supervised training manner. Combinations of
different types of consistency losses (6)–(9) further
boost network performance; combining all consistency
losses in (9) works best. Adding synthesized labeled
shapes (10)–(12) further helps the network to reach
its highest accuracy. The configuration in (12) is
the default and optimal setting of MCNet used in
Section 7.1.

Concurrent work to this work, PointCutMix [67]
proposes a data augmentation method which finds the
optimal assignment between two labeled point clouds
and generates new training data by replacing points
in one sample with their optimally assigned pairs. We
implemented their approach and used the generated
shapes to enhance training. A few synthesized shapes
are illustrated in Appendix C. Experiments (13) and
(14) show that their data augmentation method can
enhance the network accuracy to a certain degree,
but does not bring as significant an improvement as
our approach, due to its lack of awareness of part
structures during data synthesis.

Table 10 Ablation study for MCNet trained on four categories from PartNet using different loss combinations and synthesized shapes, and
2% labeled data. X indicates that the corresponding loss was employed during training. Aug is the number of synthesized shapes used. N is
the total number of labeled and unlabeled data items. In (13) and (14), we used the method of Ref. [67] to generate augmented labeled shapes
for training. Quality metrics were measured on the test dataset

Experimental configuration Coarse level Medium level Fine level Avg

ID Lseg Lpoint Lpart Lh Aug p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

(1) X 0 37.7 56.2 25.6 34.0 21.8 30.3 28.3 40.2
(2) X X 0 40.3 59.8 27.6 37.1 23.4 33.6 30.4 43.5
(3) X X 0 40.5 57.9 26.4 35.3 22.5 31.1 29.8 41.4
(4) X X 0 39.9 59.1 27.1 37.7 23.3 33.6 30.1 43.5
(5) X N 41.2 62.1 28.7 40.4 24.2 36.2 31.3 46.2
(6) X X X 0 41.3 61.3 27.7 39.8 23.6 35.9 30.9 45.6
(7) X X X 0 40.5 62.4 27.7 40.9 23.5 36.9 30.6 46.7
(8) X X X 0 41.3 60.6 27.6 38.6 23.5 34.6 30.8 44.6
(9) X X X X 0 42.7 62.7 28.4 41.5 24.2 37.5 31.7 47.2
(10) X X X X N/4 42.8 64.7 29.7 43.7 26.0 39.5 32.8 49.3
(11) X X X X N/2 42.8 65.3 30.3 44.1 26.1 39.9 33.1 49.8
(12) X X X X N 43.1 65.6 30.5 44.2 26.3 39.9 33.3 49.9
(13) X N [67] 38.2 54.6 27.7 35.0 23.4 31.6 29.8 40.4
(14) X X X X N [67] 40.4 59.8 30.1 39.9 24.9 36.2 31.8 45.3
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7.3.2 Data perturbation
We also examined how data perturbation affects the
performance of MCNet. The experimental setup was as
in Section 7.3.1; we only varied the ranges of rotation,
scaling, and translation data perturbation parameters,
with results shown in Table 11. Configuration (1) is
our default configuration.

By varying the range of the random rotation angle, we
found that when using a smaller or larger angle range,
the network performance slightly decreases: see (1)–(3).

Tests (1), (4), and (5) reveal that an appropriate
shape scaling is important. Note that any part outside
the unit sphere caused by a large scaling is removed
by our perturbation, so there are fewer corresponding
points between the two perturbed shape copies used
in our consistency loss computation.

Tests (1), (6), and (7) also show that an appropriate
translation helps our training. Making translation
too large also results in missing shape geometry,
degrading the efficacy of our consistency loss.

8 Conclusions

We have presented an effective semi-supervised
approach for 3D shape segmentation. Our novel
multilevel consistency and part substitution scheme
harnesses the structural consistency hidden in both
unlabeled data and labeled data, for our network
training, leading to superior performance on 3D
segmentation tasks with few labeled data items.
We believe that our multilevel consistency will find
more applications, potentially being useful for semi-
supervised image segmentation.

There are still a few unexplored directions. Firstly,
it is possible to extend the hierarchical consistency
from points to parts and involve more structural
levels (> 3) to improve the training, which may be

especially beneficial for more complicated datasets
and part structures. Secondly, it would be helpful to
synthesize novel shapes and scenes from both labeled
and unlabeled data with more diverse structural and
geometry variations for semi-supervised learning.

Appendix

A Network structure for scene segmentation

An octree-based U-Net structure is used as our base
network. It has four levels of domain resolution: see
Fig. 8. The maximum octree depth is 9.

B ScanNet hierarchy

The coarse levels of HW, HA, HB, and HC are shown
in Table 12. Fine classes are merged to the coarse
level. Numbers in the table give the coarse label ID.

C Data augmentation by part substitution

In Figs. 9–11, we illustrate a sample set of shapes
augmented by part substitution on 2% labeled data.
The majority of the augmented shapes are plausible
and would help to enrich the labeled data for network
training. In Fig. 12, we render the augmented shapes

Fig. 8 Octree-based U-Net structure for scene segmentation. Conv(C,
S, K) and Deconv(C, S, K) represent octree-based convolution and
deconvolution, respectively. C, S, K are the number of output
channels, stride, and kernel size, respectively.

Table 11 Ablation study for MCNet trained on four categories from PartNet under different data perturbation configurations, with 2%
labeled data. Quality metrics were measured on the test dataset

Perturbation configuration Coarse level Medium level Fine level Avg

ID Rotation Scaling Translation p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU p-mIoU s-mIoU

(1) [−10◦, 10◦] [0.75, 1.25] [−0.25, 0.25] 43.1 65.6 30.5 44.2 26.3 39.9 33.3 49.9
(2) [ −5◦, 5◦] [0.75, 1.25] [−0.25, 0.25] 43.0 65.4 30.4 43.8 25.9 39.6 33.1 49.6
(3) [−20◦, 20◦] [0.75, 1.25] [−0.25, 0.25] 41.6 65.6 30.5 43.6 26.1 39.8 32.7 49.7

(4) [−10◦, 10◦] [0.90, 1.10] [−0.25, 0.25] 42.7 64.5 29.9 43.1 25.7 39.1 32.7 48.9
(5) [−10◦, 10◦] [0.60, 1.40] [−0.25, 0.25] 43.3 64.8 30.3 43.4 26.0 39.5 33.2 49.2

(6) [−10◦, 10◦] [0.75, 1.25] [−0.10, 0.10] 41.5 64.8 29.7 43.4 25.5 39.3 32.2 49.2
(7) [−10◦, 10◦] [0.75, 1.25] [−0.40, 0.40] 41.7 64.6 29.8 43.1 25.6 39.2 32.3 49.0
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Fig. 9 Augmented shapes based on 2% labeled data from PartNet.

Fig. 10 Augmented shapes based on 2% labeled data from Chair2 and Airplane.

Fig. 11 Illustration of the augmented shapes based on 2% labeled data of ShapeNetPart.
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Fig. 12 Augmented shapes based on 2% labeled data from PartNet using PointCutMix [67].

Table 12 Customized hierarchies for ScanNet. The number is the
coarse label ID

Category HW HA HB HC
Wall 1 6 4 4
Floor 2 3 6 3

Cabinet 3 5 4 2
Bed 3 3 2 5

Chair 3 2 3 3
Sofa 3 4 5 4

Table 3 3 3 5
Door 4 4 5 1

Window 1 2 6 4
Bookshelf 4 2 5 5
Picture 4 1 6 2
Counter 3 2 6 1

Desk 3 2 5 1
Curtain 5 1 2 2

Refrigerator 4 1 4 2
Shower curtain 5 2 1 2

Toilet 6 4 4 1
Sink 6 6 6 2

Bathtub 5 5 6 5
Other furniture 4 1 3 2

generated by the approach of Ref. [67]. We can
observe many implausible shape parts which do not
assist training.
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