
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:7877–7899
https://doi.org/10.1007/s11227-022-04976-5

1 3

CC‑IFIM: an efficient approach for incremental frequent
itemset mining based on closed candidates

Maged Magdy1  · Fayed F. M. Ghaleb1 · Dawlat A. El A. Mohamed1 ·
Wael Zakaria1 

Accepted: 22 November 2022 / Published online: 8 December 2022
© The Author(s) 2022

Abstract
Frequent itemset mining (FIM) is the crucial task in mining association rules that
finds all frequent k-itemsets in the transaction dataset from which all association
rules are extracted. In the big-data era, the datasets are huge and rapidly expanding,
so adding new transactions as time advances results in periodic changes in correla-
tions and frequent itemsets present in the dataset. Re-mining the updated dataset is
impractical and costly. This problem is solved via incremental frequent itemset min-
ing. Numerous researchers view the new transactions as a distinct dataset (partition)
that may be mined to obtain all of its frequent item sets. The extracted local fre-
quent itemsets are then combined to create a collection of global candidates, where
it is possible to estimate the support count of the combined candidates to avoid re-
scanning the dataset. However, these works are hampered by the growth of a huge
number of candidates, and the support count estimation is still imprecise. In this
paper, the Closed Candidates-based Incremental Frequent Itemset Mining approach,
or CC-IFIM, has been proposed to decrease candidate generation and improve the
accuracy of the global frequent itemsets that are retrieved. The proposed approach
is able to prune several produced candidates in earlier steps before performing any
further computations. To improve the accuracy of the computation of the support
count of the produced candidates, the similarity between partitions has been evalu-
ated using just the local closed candidates rather than all candidates. The experimen-
tal findings demonstrated that the CC-IFIM approach is superior to its competitors
in terms of efficiency and accuracy.

Keywords  Frequent itemsets · Incremental frequent itemsets · Similarity
measurements · Closed frequent itemsets

Maged Magdy, Fayed F. M. Ghaleb, Dowlat A. El A. Mohamed and Wael Zakaria have contributed
equally to this work.

 *	 Wael Zakaria
	 Wael.Zakaria@sci.asu.edu.eg

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1054-3642
http://orcid.org/0000-0001-6718-0980
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04976-5&domain=pdf

7878	 M. Magdy et al.

1 3

1  Introduction

Association rule mining (ARM) is one of the key tasks in data mining. It discovers
interesting correlations among set of items in large transaction datasets. ARM has
developed into a powerful tool with immense potential and wide applications such
as market basket analysis, medical diagnosis, bioinformatics, fraud detection and the
internet of things.

Formally, consider I = {I1, I2,… , Im} is a set of m items and a dataset
D = {T1, T2,… , Tn} is a set of n transactions, where Ti ⊆ I  , ARM is a process of
mining all strong association rules (AR) by performing the following two tasks [1].
Firstly, generate all frequent k-itemsets ( FI  ); k = 1, 2,… ,m . The k-itemset X (a set
of k items) is called frequent if sup(X) ≥ minsup × n ; sup(X) = |Ti;X ⊆ Ti| and
minsup is give threshold (say 80% ). Secondly, from the extracted FI  , the strong
association rules (AR) have been mined; an association R ∈ AR on the form
R ∶ X → Y  ; X ∪ Y ∈ FI  , X ∩ Y = � . The rule R is strong if supp(R) > minsup and
conf(R) > minconf ; sup(R) = sup(X∪Y)

n
 and conf(R) = sup(X∪Y)

sup(X)
 , where minsup and

minconf are given thresholds.
Frequent itemsets mining ( FIM ) is the crucial task in AR that finds all FI among

a set of items in D . The exponential complexity of FIM attracts researchers to
develop new algorithms to improve it. In huge datasets, the traditional algorithms,
such as Apriori [1], FP-growth [9], Eclat [19] and Quick-Apriori [17] require expo-
nential time and memory for mining all FI  . In several applications, transaction
datasets are growing continuously, so adding incremental transactions to the original
dataset requires repeating the mining processes. These kinds of algorithms are con-
sidered static because they have no way to merge the new transactions without re-
mining the updated datasets. Due to their exponential complexity, traditional mining
approaches fail to address the continuously increasing dataset.

To overcome these obstacles, incremental frequent itemset mining ( IFIM ) is uti-
lized. There are two categories for IFIM approaches: the Apriori-based [4, 5, 20]
and the tree-based approaches [9, 10, 13, 15]. Apriori-based approaches suffer from
the I/O overhead of scanning the dataset many times and the cost of computation
and memory of generating a huge number of candidates. As well as FP tree-based
approaches suffer from complex operations for adjusting trees [18].

Nowadays where the number of transactions is very huge and continuously
changing, all the above approaches are not applicable because they cannot get the
results in an efficient way. Therefore, some approaches [3, 18] introduced approxi-
mated solutions for IFIM . These approaches can be utilized in mining FI as well.
For IFIM , the FPMSIM approximated approach [18] considers the new transac-
tions as a separate dataset to be mined, from which all local FI are mined. Sub-
sequently, the extracted local FI  s of both the original and the incremental data-
sets are combined together to produce global candidates. The support count of each
candidate is estimated using a kind of statistical model such as Jaccard similarity
between the produced candidates of the original and incremental datasets. Although
the approach [18] has good results, it produces many candidate itemsets that can be
pruned before any further computation. As well as, the estimating of the support

7879

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

count of all candidates is imprecise, which causes the loss of global FI  . The pur-
pose of this paper is to address the issues raised in the FPMSIM [18]. CC-IFIM,
or closed candidates-based incremental frequent itemset mining, is the name of the
proposed approach. The suggested approach makes use of a pruning mechanism to
eliminate certain early, pointless candidates. The CC-IFIM approach measures the
similarity between just the closed candidates of the original and incremental data-
sets rather than all produced candidates in order to increase the estimated accuracy
of the support count of all candidates. The experimental results on five benchmark
datasets showed that the CC-IFIM approach is more efficient and accurate than the
FPMSIM approach.

The remainder of this paper is organized as follows: The related works are dis-
cussed in Sect. 2, where FPMSIM , which is the source of CC-IFIM, is given specific
attention. Section 3 introduces the proposed approach CC-IFIM. Section 4 discusses
the experimental results. Finally, Sect. 5 concludes the paper.

2 � Related work

In this section, the incremental frequent itemsets mining is classified into two cat-
egories: exact approaches that find all FI (Sect. 2.1), and approximated approach
that tries to find approximated FI denoted by FIapprox ; FIapprox ⊆ FI (Sect. 2.2).

2.1 � Exact approaches

The exact approach can be classified into two major categories: Apriori-based and
FP-tree-based as shown in the following two subsections:

2.1.1 � Apriori‑based

Apriori-based approach firstly scans the incremental dataset to extract its FI  s, then
re-scanning the original dataset to get the exact support of each candidate, as in FUP
[4], FUP2 [5]. However, re-scanning the original dataset causes I/O cost overload.

In 2001, Zhou et al. [20] developed the MAAP algorithm, which utilizes the char-
acteristics of Apriori to improve the overall performance. In the Apriori algorithm,
high-level itemsets are joined by low-level itemsets, where in the Apriori algorithm
uses high-level itemsets to induct low-level itemsets. MAAP compares frequent pat-
terns with new transactions to generate new association rules. In addition, MAAP
can improve the performance of FUP [4]; however, the problem of re-scanning the
dataset still exists.

2.1.2 � FP tree‑based

Rather than employing the generate-and-test strategy of Apriori-based algorithms,
the tree-based framework constructs an extended prefix-tree structure, called Fre-
quent Pattern tree (FPtree), to capture the content of the transaction database [9].

7880	 M. Magdy et al.

1 3

In 2008, Hong et al. [10] proposed a fast and effective method for updating the
structure of the FP-tree, called the FUFP (Fast Updated Frequent Pattern) algorithm,
in which only frequent items are saved in the FUFP-tree. The FUFP algorithm can
quickly update and modify the tree by dividing items. When the original large item
becomes smaller, it will be directly deleted from the FUFP-tree. Instead, as the orig-
inal item gets larger, it is added to the end of the head table in descending order. But
it needs to re-scan the original dataset to find the transactions of the newly enlarged
items and insert them into the FUFP tree.

In 2014, two remarkably efficient algorithms are introduced: FIN [7] and Pre-
Post+ [8] with POC tree and PPC tree, respectively. These two structures are prefix
trees and similar to FP-tree, Moreover, both algorithms employ two additional data
structures called Nodeset and N-list, respectively, to significantly improve mining
speed. However, N-list consumes a lot of memory, and for some datasets, Nodeset’s
cardinality grows significantly [6].

The preceding issue was resolved in 2016 by Deng, by proposing an algorithm
called dFIN [6] that is based on a new data structure called DiffNodeset instead
of Nodeset. In contrast to Nodeset, the DiffNodeset of each k-itemset (k ≥ 3) is
extracted by the difference between the DiffNodesets of two (k-1)- itemsets. Numer-
ous investigations demonstrate that DiffNodeset’s cardinality is lower than Node-
set’s. As a result, the dFIN algorithm is quicker than Nodeset-based algorithms.
However, the calculation of the difference between two DiffNodesets can be time-
consuming for some datasets.

In 2017, Huynh et al. [11] proposed a tree structure IPPC (Incremental Pre-Post-
Order Coding) algorithm which supports incremental tree construction, and an algo-
rithm for incrementally mining frequent itemsets, IFIN (Incremental Frequent Item-
sets Nodesets). Through experiments, algorithm IFIN has demonstrated its superior
performance compared to FIN [7] and PrePost+ [8]. However, in the case of datasets
comprising a large number of distinct items but just a small percentage of frequent
items for a certain support threshold, we investigate that IPPC tree becomes to lose
its advantage in running time and memory for its construction compared to other
trees such as POC and PPC of algorithms FIN and PrePost+.

In 2021, Satyavathi et al. [14] proposed the FIN_INCRE algorithm by enhanc-
ing FIN algorithm [7] for efficient mining of incremental association rules which
require scanning of the original dataset only once. After scanning the dataset, it
generates POC-Tree and from which it produces item sets that occur frequently.
Then, they are used to generate association rules. When some new instances
are inserted into the original dataset, the algorithm scans only the newly added
instances. Then, it updates POC-Tree and frequent itemsets before actually updat-
ing the mined association rules.

However, FP tree-based approaches suffer from complex operations for adjusting
FP-tree.

7881

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

2.2 � Approximated approaches

Regardless of using Apriori [2] or FP-Tree [9], the key of these approaches are
reducing both I/O cost and a complex generating of FP-trees.

In 2017, Li et al. [12] proposed a three-way decision update pattern (TDUP)
approach along with a synchronization mechanism for this issue. With two support-
based measures, all possible itemsets are divided into positive, boundary, and neg-
ative regions. TDUP efficiently updates frequent itemsets and reduces the cost of
re-scanning. However, TDUP may miss some potential frequent itemsets with incre-
mental data updates.

In 2021, Xun et al. [18], developed an approach for incremental frequent item-
sets mining based on frequent pattern tree and multi-scale called FPMSIM . A par-
titioning-based FPMSIM is valid for not only parallel programming of mining all
FI’s, but also for addressing the problem of incremental frequent itemsets mining.
In general, As shown in Algorithm 1, FPMSIM divides the dataset into scales or
partitions using a multi-scale concept in which each partition may have the same
essence and characteristics. Using FP-growth [2] and for each partition, the local
frequent itemsets FI have been extracted. The union of all local frequent itemsets
is considered as global candidates C. To estimate the support of global candidates,

7882	 M. Magdy et al.

1 3

Jaccard method [16] is used for measuring the similarities between scales or par-
titions. Finally, the global frequent itemsets are candidates whose candidates with
support is greater than or equal to global minsup. In big data, this approach is effi-
cient and scalable which produced an acceptable FIapprox compared with the exact
FI  , however, it produces many candidate itemsets that can be pruned before any
further computation. Additionally, the estimating of the support count of all can-
didates is imprecise, which causes the loss of global FI  . Consequently, miss some
potential frequent itemsets.

3 � The proposed approach CC‑IFIM

In this section, an improved approach of FPMSIM approach [18] has been intro-
duced. This approach has been called Closed Candidates-based Frequent Itemset
Mining and denoted(CC-IFIM). Although FPMSIM and CC-IFIM have some com-
mon phases there are a lot of differences between them, The core difference is ignor-
ing the division of the dataset into scales, which requires an additional cost for get-
ting further information as in FPMSIM . This kind of division is not applicable in
most cases of real applications.

7883

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

Consider a transaction dataset D and minimum support count minsupD . Algo-
rithm 2 shows the steps of extracting FI  , where CC-IFIM works as follows:

1.	 Divide D into partitions P={P1,P2,… ,Pk} where:

•	
⋃k

j=1
Pj = D ; k the number of partitions.

•	 For i ≠ j , Pi ∩ Pj = ∅.
•	 Each Pj has its own minsup called minsupPj

.

2.	 Using Apriori [2] or FP-tree [9] algorithm, ∀ Pj ∈ P mine its frequent itemsets
FI

j = {f j
1
, f

j

2
,… , f

j
qj
} . Where, each frequent set f ∈ FIj is a local frequent itemset

of D ; suppj(f) ≥ minsupPj
 , while it is called a global candidate itemset of D.

3.	 Generate a set of candidates denoted by CD ; CD =
⋃k

j=1
FI

j . Let q is the number
of generated candidates (i.e., q =∣ CD ∣ ). Each itemset c ∈ CD is called a candidate
itemset of D.

4.	 Build a matrix S ∈ ℝ
q×k ; in which the rows represent the candidates ci ;

i = 1, 2,… , q and columns represent the partitions pj ; j = 1, 2,… , k . The ele-
ment S(i, j); 1 ≤ i ≤ q , 1 ≤ j ≤ k of the matrix S is determined as follows:

5.	 An extra column m ∈ ℝ
q×1 with dimension q is associated to the matrix S as fol-

lows:

where p+(i) = {j = S(i, j) ≠ 0} gives the partition j in which ci is frequent (i.e.,
supj(ci) ≥ 0).

6.	 Extract closed candidates Using the candidates’ CD and the matrix S, which con-
tains local frequent itemsets, extract only the closed candidates’ CCD which con-
tains all local closed frequent itemset (Definition 1).

Definition 1  (local closed frequent itemset) A local frequent itemset ci ∈ CD is a
local closed frequent itemset, if there is no local frequent itemset ci� ∈ CD ; ci′ ⊃ ci
and S(i, j) = S(i�, j);j = 1, 2,… , k.

	 7.	 Using CCD , build its corresponding new matrix called Sclosed ∈ ℝ
qc×k;qc =∣ CCD ∣ ,

qc ≤ q , and Sclosed(i, j) = S(i, j); cci ∈ CCD and j = 1, 2,… , k . In CC-IFIM, the
matrix Sclosed is used for creating the similarity matrix MCC as shown in the next
step instead of the matrix S as in FPMSIM.

	 8.	 Using CCD , build a symmetric similarity matrix MCC ∈ ℝ
k×k , where MCC(j, j

�)
is the similarity between the partitions Pj and Pj′ for all j, j� = 1, 2,… , k and
j ≠ j′ . The three versions of similarity such as Jaccard, Dice, or Cosine [16] has

(3)S(i, j) =

{
supj(ci) if ci ∈ FI

j

0 otherwise

(4)m(i) =∣ p+(i) ∣, i = 1, 2,… , q

7884	 M. Magdy et al.

1 3

been used from which the more accurate method will be chosen as a suitable
similarity measurement. The similarity Jaccard matrix is calculated as follows:

 Simply, you can read Sclosed(i, j) ≠ 0 by the candidate ci is frequent at partition
j. Therefore, MCC(j, j

�) is the number of closed candidates that are frequent in
both partitions j and j′ divided by the number of candidates that are frequent
in at least one partition. In CC-IFIM, we discovered that the Jaccard similarity
matrix is not the suitable method for measuring the similarity between parti-
tions as shown in the experimental result section. The similarity Dice matrix is
calculated as follows:

 The Cosine similarity method is calculated as follows:

Based on any version of similarity method, obviously MCC(j, j) = 1 ,
MCC(j, j

�) = MCC(j
�, j) . The value or coefficient MCC(j, j

�) ranges between 0 and
1. MCC(j, j

�) = 1 means the partitions j and j′ are similar, while MCC(j, j
�) = 0

means the partitions j and j′ are dissimilar and there is no intersection between
them.

	 9.	 Pruning step After creating matrix MCC , we back again to CD and its correspond-
ing matrix S. Before estimating the global support, a new hypothesis was used
in earlier step to predict whether the candidate ci is globally frequent or not.
Therefore, ∀ci ∈ CD , Critical_sup can be calculated as follows:

 where

 Since, at S(i, j) = 0 , ci is infrequent at partition j. Therefore, the most expected
support value should be minsupj − 1 that is the largest number less than
minsupj . Remove row i from table S, consequently remove candidate ci from
CD if its Critical_sup(ci) < minsup . This step reduces the computation and
memory cost for building the matrix S.

(5)MCC(j, j
�) =

|ci ∈ CCD; Sclosed(i, j) ≠ 0 and Sclosed(i, j
�) ≠ 0|

|ci ∈ CCD; Sclosed(i, j) ≠ 0 or Sclosed(i, j
�) ≠ 0|

(6)MCC(j, j
�) = 2

|ci ∈ CCD; Sclosed(i, j) ≠ 0 and Sclosed(i, j
�) ≠ 0|

|ci ∈ CCD; Sclosed(i, j) ≠ 0| + |ci ∈ CCD;Sclosed(i, j
�) ≠ 0|

(7)MCC(j, j
�) =

�ci ∈ CCD; Sclosed(i, j) ≠ 0 and Sclosed(i, j
�) ≠ 0�

√
�ci ∈ CCD; Sclosed(i, j) ≠ 0�.

√
�ci ∈ CCD; Sclosed(i, j

�) ≠ 0�

(8)Critical_sup(ci) =

k∑

j=1

S�(i, j)

(9)S�(i, j) =

{
minsupj − 1 if S(i, j) = 0

S(i, j) otherwise

7885

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

	10.	 To estimate the support of each candidate ci ∈ CD at any partition j with
S(i, j) = 0 . The estimated support S(i, j) is computed according to the following
equation:

	11.	 For each candidate ci ∈ CD , estimate a global support using the following equa-
tion:

	12.	 Add ci to the global frequent itemsets FI  , if ci satisfies the following condition:

The following example is used for discussing each step of CC-IFIM for extract-
ing FI and the differences between FPMSIM and CC-IFIM. Consider the trans-
action dataset D (Fig. 1) that contains sixteen transactions ( n = 16 ) and five items
I = {a, b, c, d, e} ( |I| = 5 ). And minsup = 50% of D = 0.5 ∗ 16 = 8 . CC-IFIM
works as follows:

	 1.	 Firstly, D is divided into four partitions ( k = 4 ): P1,P2,P3 , and P4 (Fig. 1).
Where minsupPj

= 50%of Pj = 0.5 × 4 = 2;j = 1, 2, 3, 4.

(10)S(i, j) =

�
supapp =

1

m(i)

∑k

j�=1,j�≠j
M(j�, j) × S(i, j�) if supapp ≤ minsupj

minsupj otherwise

(11)sup(ci) =

k∑

j=1

S(i, j)

(12)sup(ci) ≥ minsupD

Fig. 1   Transaction dataset D and their partitions

7886	 M. Magdy et al.

1 3

	 2.	 For each partition Pj , mine its frequent itemsets FIj (Fig. 2).
	 3.	 Generate the candidates CD =

⋃4

j=1
FI

j and its corresponding matrix S (Fig. 3).
	 4.	 Build a matrix S (Fig. 3) according to Eq. 3. For instance, the candidate itemset

ci = {bc} is frequent at partitions P1 , P2 , and P4 with S(i, 1) = 2 , S(i, 2) = 2 ,
and S(i, 4) = 3 . While this itemset {bc} is infrequent at partitions P3 , therefore
S(i, 3) = 0.

	 5.	 Adding the column m (Fig. 3) that contains the number of partitions in which the
itemset is frequent. Where at candidate ci = {a} , m(i) = 3 means {a} is frequent
at three partitions (as shown at partitions 1, 2, 4).

	 6.	 Generate the closed candidates CCD (Definition 1). For instance, the candidates
ci = {ab} and ci� = {abc} are frequent and have the same support count at parti-
tions P1 , P2 , and P4 . where, ci′ ⊃ ci , and S(i, j) = S(i�, j);j = 1, 2, 4 . According to
Definition 1, {bc} is non-closed candidate. Therefore {bc} is not included in CCD
due to the two frequent itemsets {bc} and {abc} share the same information. So,
the closed candidate abc is enough to calculate the similarity between partitions.
While, the candidate ci = {ac} is a closed candidate because ci = {ac} and its
the only super candidate ci� = {abc} not have the same support at corresponding
partitions, as shown S(i, j) ≠ S(i�, j);j = 1, 2 which violates Definition 1. There-
fore, CCD = {a, b, c, d, e, ab, ac, ce, abc}.

Fig. 2   The frequent itemsets of each partition FIj ; j = 1, 2, 3, 4

7887

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

	 7.	 From a matrix S, extract only a matrix Sclosed that corresponds to CCD (Fig. 3).
	 8.	 Using the CCD and its matrix Sclosed (Fig. 3) and based on Jaccard similar-

ity method, calculate the similarity coefficients between each pair of par-
titions. According to Eq. (5), the matrix MCC (Fig. 3) has been created.
MCC(1, 2) = MCC(2, 1) =

7

9
= 0.7778 , means 7 and 9 are the numbers of the

intersection and union between two partitions P1 and P2 , respectively.
	 9.	 Apply pruning step (Fig. 3), for the itemset ci = {ad} , S(i, 1) = S(i, 2) = 2 ,

S(i, 3) = S(i, 4) = 0 , this mean the itemset {ad} is infrequent at P3 and P4 .
Then using our hypothesis S�(i, j�) = minsup − 1 = 2 − 1 = 1;j� = 3, 4
then Critical_supp(ad) = 2 + 2 + 1 + 1 = 6 < minsupD = 8 . This means
the candidate {ad} is a global infrequent itemset. Therefore, in CC-
IFIM, the itemset {ad} must be ignored from CD . While the candidate
{a} , i t s Critical_supp(a) = 3 + 4 + 1 + 3 = 11 > minsupD = 8 . There-
fore, the candidate a may be valid as a frequent global itemset. Finally,
CD = {a, b, c, d, e, ab, ac, bc, ce, abc} . The shaded cells in CCD represent the
ignored candidates (Fig. 3). As well as, the values that correspond to the pruned
candidates are ignored.

	10.	 Using MCC and Eq. (5), estimate the support of all candidates
ci ∈ CD;S(i, j) = 0;j = 1, 2, 3, 4 (Fig. 3). As shown, for itemset ci = {a} ,
S(i, 3) =

1

m(i)

∑4

j=1,j≠3
MCC(j, 3) × S(i, j) = 1

3
(MCC(1, 3) × S(i, 1) +MCC(2, 3)

×S(i, 2) +MCC(4, 3) × S(i, 4)) =
1

3
(0.55556 × 3 + 0.3333 × 4 + 0.44444 × 3) = 1.4444 . The resulted S is shown

in CC-IFIM partition at the middle of Fig. 3.

Fig. 3   CC-IFIM versus FPMSIM : the candidates CD and its matrix S, the closed candidates CCD and its
corresponding matrix Sclosed

7888	 M. Magdy et al.

1 3

	11.	 For each candidate c ∈ CD , estimate its global support (Fig. 3). As shown,
sup(a) = 3 + 4 + 1.4444.3 = 11.444 > minsup = 8 , then the itemset {a} is global
frequent and has been added to FI .

	12.	 Finally FI = {a, b, c, d, e, ab, ac, bc, ce, abc};sup(c) ≥ minsup;c ∈ FI .

•	 Incremental dataset Finally, this approach will also deal with any incremental
datasets as a new partition P2 , where P1 is the original dataset. Similarly as
shown in Algorithm 2, FI1 and FI2 are extracted for the partitions P1 and P2 ,
respectively. All the steps as shown in Algorithm 2 have been applied to P1
and P2 . Where, form the candidates C = FI

1 ⋃
FI

2 . Then form a matrix S for
the two partitions P1 and P2 as mentioned earlier. Find the closed candidates
CC , then the similarity matrix MCC that is corresponding to the closed candi-
dates from CC (Definition 1). Apply the pruning step, then Using MCC estimate
the support of zero entries in matrix SC to find the global support of all candi-
dates. From FI that satisfies miusup threshold.

•	 The Differences between traditional, FPMSIM,and CC-IFIM approaches The
traditional approach is applied to the transaction dataset D (Fig. 1), where the
extracted FIOriginal = {a, b, c, d, e, ab, ac, bc, ce, abc} . Using FPMSIM , the simi-
larity matrix MC (shown at FPMSIM partition at the right of Fig. 3) is measured
based on the original matrix S that corresponds CD instead of MCC as in CC-IFIM.
In FPMSIM that is based on Jaccard similarity, the matrix MC is calculated
according to the following equation:

 The reason of calculating similarity matrix based on CCD instead of CD returns to
the following property: if there are two frequent itemsets X and Y have the same
support at all the corresponding partitions, and X ⊂ Y  , There are the same and
share the same information. Therefore, using X and Y for computing the sim-
ilarity between two partitions j and j′ decrease the coefficient M(j, j�) because
the denominator is increased twice, one for X and one for Y, consequently, the
calculated similarity coefficient is decreased. Instead, we have to ignore X and
keep only Y, consequently, the denominator is increased once which leads to
increase the similarity coefficient compared to the previous. This means that the
computed similarity based only on local closed candidates is more realistic and
better. For example, Using CCD , MCC(1, 2) = 7∕9 = 0.7778 . Where, the number
of itemsets which are frequent in P1 and P2 (intersection) is 7. Where, the inter-
sected itemsets in CCD are {a, b, c, d, ab, ac, abc} . while the union is 9 which is
{a, b, c, d, e, ab, ac, ce, abc} . Similarly, but using CD , MC(1, 2) = 9∕17 = 0.52941 .
As shown in (Fig. 3) the coefficients of matrix MCC are greater than the coeffi-
cients of matrix MC . Therefore, the estimated support of CC-IFIM is greater than
FPMSIM.

Back to the example, it is worth noting that, for calculating the similarity matrix,
we consider the whole candidates in CD before applying the pruning step as in our

(13)MC(j, j
�) =

|ci ∈ CD; S(i, j) ≠ 0 and S(i, j�) ≠ 0|
|ci ∈ CD; S(i, j) ≠ 0 or S(i, j�) ≠ 0|

7889

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

proposed approach. Based on MC , the corresponding S is calculated (shown at the
FPMSIM partition at the right of Fig. 3), and the global support is estimated. Finally,
the extracted FIFPMSIM = {a, b, c, d, e, ab, ac, ce} . As shown, FIFPMSIM ⊂ FIOriginal ,
where there are two frequent itemsets missing in FPMSIM . While in CC-IFIM,
FIproposed = FIOriginal . Finally, as shown in Fig. 3, it is clear that there is waste of
time and memory used for processing useless thirteen candidates as in FPMSIM
compared to our proposed approach CC-IFIM.

4 � Experimental results

In this section, we compare CC-IFIM with FPMSIM [18]. We have implemented
both two approaches using Python. The implemented approaches have been applied
to various real datasets and synthetic datasets (as shown in Table 1) (URL:http://​
fimi.​ua.​ac.​be.) which are widely used for performance evaluation in the pattern min-
ing area.

Accidents and Mushroom are dense datasets, while Retail is a sparse dataset.
Generally, a dense dataset is composed of relatively long transactions and a small
number of items, and a sparse dataset is characterized by relatively short transac-
tions and a large number of items.

we have used a synthetic sparse dataset T10I4D100K and a real dataset, online
news portal click-stream data (Kosarak). The efficiency (running time) of the CC-
IFIM compared to FPMSIM is shown in Sect. 4.1. Section 4.2 introduces the rich
comparative study that shows the accuracy of CC-IFIM compared to FPMSIM using
three measurements; coverage, precision, and average support error.

4.1 � Efficiency of CC‑IFIM

Using several minsup thresholds on the mentioned datasets:

•	 Running time Since the generation of FI of each part is similar in both FPMSIM
and CC-IFIM, the running time of FI generation is not included in the com-
parisons. Figure 4 shows the running time in seconds of CC-IFIM compared to
FPMSIM . In CC-IFIM, the running time is calculated starting from pruning CD ,

Table 1   Characteristics of
datasets

Dataset Num. of
transactions

Num. of items Avg. length

T10I4D100K 10000 870 10
T40I10D100K 10000 1000 40
Mushroom 8124 120 22
Accidents 340183 468 33.8
Retail 88162 16470 10.3
Kosarak 990002 41270 8.1

http://fimi.ua.ac.be
http://fimi.ua.ac.be

7890	 M. Magdy et al.

1 3

getting CCD , calculating MCC , then estimating the zeros entries in the matrix S.
While in FPMSIM , the running time is calculated starting from calculating MC ,
then estimating the zeros entries in the matrix S. All results show CC-IFIM is
better than FPMSIM . Where in Mushroom, Accidents, Retail, T10I4D100K, and
T10I4D100K datasets, CC-IFIM reduced the execution time of FPMSIM around
10–12%, 10–42%, 16–34%, 10–18%, and 10–18%, respectively. In Kosarak data-
set, CC-IFIM reduced the execution time of FPMSIM around 10–13%. Although
our approach consumes time for extracting the closed candidates, our approach
with the pruning step is more efficient than FPMSIM.

•	 Memory consumption Fig. 5 shows the memory consumption of CC-IFIM com-
pared to FPMSIM . All results show CC-IFIM uses memory more efficiently than
FPMSIM . As a result, our approach consumed less memory than FPMSIM.

Fig. 4   Execution time between FPMSIM and CC-IFIM for different datasets with varying minsup

7891

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

4.2 � Accuracy of CC‑IFIM Using MCC

The coverage, precision, and average support error of CC-IFIM are evaluated against
FPMSIM [18].

The coverage is calculated using the following equation:

where FIapp is the approximated FI using any approach. fPFI is the false positive
FI  . The precision reflects the effect of false positive and false negative itemsets on
the accuracy of experimental [18], which is defined as:

(14)coverage =
|FIapp| − |fPFI|

|FI|

Fig. 5   The memory consumption of FPMSIM and CC-IFIM for different datasets with varying minsup

7892	 M. Magdy et al.

1 3

fNFI is the false negative FI .
The support estimation error is the average of the difference between the esti-

mated support sup∗(f) of the frequent itemsets f in CC-IFIM and the real support
sup(f) of these itemsets as follows:

Figures 6 and 7 shows coverage, precision, and avg_sup_error among FPMSIM and
three versions of CC-IFIM based on Jaccard, DICE and Cosine, respectively. These
results have been tested using several minsupp . On Mushroom, Retail, T10I4D100K
and T40I10D100K datasets, the overall coverage and precision of CC-IFIM are bet-
ter than FPMSIM . This means the similarity based on CCD is more accurate of esti-
mating the global itemsets support than based on CD as in FPMSIM . As shown in the
last column, that shows the average calculations, CC-IFIM based on Dice or Cosine
similarity is better than using Jaccard similarity. It is worth noting that, although
the avg_supp_error is increasing on CC-IFIM, it is very normal due to the increas-
ing of the number of FI  . In Mushroom dataset, avg_supp_error recorded 0% at
some minsup thresholds, this does not indicate that the estimation support values are

(15)precision =

(
1 −

|fPFI| + |fNFI|
|FIapp| + |FI|

)
∗ 100%

(16)ave_sup_error =
1

|FI|
∑

f∈FI

|sup∗(f) − sup(f)|
|sup(f)|

∗ 100%

Fig. 6   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based on
Jaccard, DICE and Cosine for Mushroom and retail datasets

7893

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

identical to an actual support values. It means CC-IFIM and FPMSIM didn’t esti-
mate any support values, where all values of a matrix S is non-zero.

For big data, Kosarak dataset, the traditional algorithm fails to mine all FIs ,
according to heap memory exception. Therefore, we can not able to calculate cover-
age, precision and avg_supp_error, while the approximated approaches are the suit-
able solution to mine FIs . The comparative study has been made between CC-IFIM
and FPMISM only. Figure 8 shows that the number of extracted FI  s by CC-IFIM is
more than FI  s by FPMSIM . As shown, at minsup = 0.6% CC-IFIM approach can
mine 1332 frequent itemset from 1465 candidates, while FPMISM mines only 1309.
Moreover, CC − IFIM approach pruned 131 candidates.

Fig. 7   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based on
Jaccard, DICE, and Cosine for T10I4D100K and T40I10D100K datasets

Fig. 8   Extracted FI  s of both FPMISM and CC-IFIM approaches for Kosarak dataset at various minsup

7894	 M. Magdy et al.

1 3

Fig. 9   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based on
Jaccard, DICE and Cosine for Mushroom dataset

Fig. 10   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for retail dataset

Fig. 11   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for T40I10D100K dataset

Fig. 12   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for T10D100K dataset

7895

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

Fig. 13   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for Mushroom and Retail Datasets after dividing them into 70% Original
dataset and 30% incremental dataset

Fig. 14   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for T10I4D100K and Fig. 11 datasets after dividing them into 70% original
dataset and 30% incremental dataset

7896	 M. Magdy et al.

1 3

•	 Incremental dataset Figs. 9, 10, 11 and 12 are another way of visualization that
show the comparison of FPMSIM and three versions of CC-IFIM on Mushroom,
Retail, T40I4D100K and T10I4D100K datasets, respectively.

Figures13 and 14 shows the accuracy CC-IFIM compared to FPMSIM for the
incremental datasets with different partition size to the original. Where the size of
incremental dataset is 30% of the dataset. Similarly Figs. 15 and 16 where the size of
incremental dataset is 20% of the dataset. These figure shows that CC-IFIM outper-
forms FPMSIM.

5 � Conclusion

The incremental frequent itemset mining approach is an estimated good choice
for the huge datasets that are rapidly expanding by periodically adding new trans-
actions. In which, the approach frequent pattern tree and multi-scale incremental
frequent itemset, FPMSIM , is used. It splits the dataset into several components,
applies frequent itemset mining separately, then uses Jaccard similarity based on
all local frequent itemsets the global frequent itemsets have been mined. However,
it faces two problems: performance and efficiency. In this paper, we developed

Fig. 15   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for Mushroom and retail datasets after dividing them into 80% original
dataset and 20% incremental dataset

7897

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

this approach to be more efficient and accurate. In CC-IFIM, the performance has
been increased by applying some prior candidate pruning. While the accuracy
has been increased by applying similarity measurements on local closed frequent
itemsets instead of local frequent itemsets. As well as using another similarity
methods such as Dice or Cosine which is remarkably increasing the accuracy of
CC-IFIM. The key contributions of this study are the introduction of a pruning
approach for reducing the number of candidates, as well as a novel definition of
closed itemsets termed local closed frequent itemsets, on which similarity meth-
ods rely. Future research will focus on establishing the scientific rationale for the
ideal number of partitions in division processes. Also closed and maximal incre-
mental frequent itemsets will be covered. Additionally, investigate several differ-
ent similarity models in order to propose a new one.

Acknowledgments  The authors acknowledge the role of the Artificial Intelligence and Cognitive Science
Laboratory at the Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.

Author contributions  All authors contributed equally to this work.

Funding  Open access funding provided by The Science, Technology & Innovation Funding Authority
(STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Fig. 16   Coverage, precision and avg_sup_error among FPMSIM and three versions of CC-IFIM based
on Jaccard, DICE and Cosine for T10I4D100K and T40I10D100K Datasets after dividing them into 80%
original dataset and 20% incremental dataset

7898	 M. Magdy et al.

1 3

Data availability  The datasets used during the current study are available in the public (the Frequent
Itemset Mining Implementations) repository, [http://​fimi.​ua.​ac.​be]. The generated source codes of the
proposed approach are available from the corresponding author on reasonable request.

Declarations 

Conflict of interest  All authors declare that there is no conflict of interest.

Ethical approval  Not applicable.

Consent for publication  Not applicable.

Consent to participate  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, pp. 207–216

	 2.	 Agrawal R, Srikant R et al (1994) Fast algorithms for mining association rules. In: Proceedings 20th
International Conference Very Large Data Bases. VLDB 1215:487–499

	 3.	 Chen R, Zhao S, Liu M (2020) A fast approach for up-scaling frequent itemsets. IEEE Access
8:97141–97151

	 4.	 Cheung DW, Han J, Ng VT, Wong C (1996) Maintenance of discovered association rules in large
databases: an incremental updating technique. In: Proceedings of the Twelfth International Confer-
ence on Data Engineering, pp. 106–114

	 5.	 Cheung DW, Lee SD, Kao B (1997) A general incremental technique for maintaining discovered
association rules. Database Syst Adva Appl 97:185–194

	 6.	 Deng ZH (2016) Diffnodesets: an efficient structure for fast mining frequent itemsets. Appl Soft
Comput 41:214–223

	 7.	 Deng ZH, Lv SL (2014) Fast mining frequent itemsets using nodesets. Expert Syst Appl
41(10):4505–4512

	 8.	 Deng ZH, Lv SL (2015) Prepost+: an efficient n-lists-based algorithm for mining frequent itemsets
via children-parent equivalence pruning. Expert Syst Appl 42(13):5424–5432

	 9.	 Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a fre-
quent-pattern tree approach. Data Min Knowl Disc 8(1):53–87

	10.	 Hong TP, Lin CW, Wu YL (2008) Incrementally fast updated frequent pattern trees. Expert Syst
Appl 34(4):2424–2435

	11.	 Huynh VQP, Küng J, Dang TK (2017) Incremental frequent itemsets mining with ippc tree. In:
International Conference on Database and Expert Systems Applications, Springer, pp. 463–477

	12.	 Li Y, Zhang ZH, Chen WB, Min F (2017) Tdup: an approach to incremental mining of frequent
itemsets with three-way-decision pattern updating. Int J Mach Learn Cybern 8(2):441–453

	13.	 Lv D, Fu B, Sun X, Qiu H, Liu X, Zhang Y (2017) Efficient fast updated frequent pattern tree algo-
rithm and its parallel implementation. In: 2017 2nd International Conference on Image, Vision and
Computing (ICIVC), IEEE, pp. 970–974

http://fimi.ua.ac.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

7899

1 3

CC‑IFIM: an efficient approach for incremental frequent itemset…

	14.	 Satyavathi N, Rama B (2021) Dynamic and incremental update of mined association rules against
changes in dataset. Innov Comput Sci Eng 25:115–121

	15.	 Sun J, Xun Y, Zhang J, Li J (2019) Incremental frequent itemsets mining with FCFP tree. IEEE
Access 7:136511–136524

	16.	 Thada V, Jaglan V (2013) Comparison of Jaccard, dice, cosine similarity coefficient to find best
fitness value for web retrieved documents using genetic algorithm. Int J Innov Eng Technol
2(4):202–205

	17.	 Wael Z, Yasser K, Elham E, Fayed G (2009) Mining association rule with reducing candidates gen-
eration. In: Proceedings of Fourth International Conference on Intelligent Computing and Informa-
tion Systems (ICICIS2009). ACM

	18.	 Xun Y, Cui X, Zhang J, Yin Q (2021) Incremental frequent itemsets mining based on frequent pat-
tern tree and multi-scale. Expert Syst Appl 163:113805

	19.	 Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng
12(3):372–390

	20.	 Zhou Z, Ezeife C (2001) A low-scan incremental association rule maintenance method based on the
apriori property. In: Conference of the Canadian Society for Computational Studies of Intelligence,
Springer, pp. 26–35

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Maged Magdy1  · Fayed F. M. Ghaleb1 · Dawlat A. El A. Mohamed1 ·
Wael Zakaria1 

	 Maged Magdy
	 Maged.Magdy@sci.asu.edu.eg

	 Fayed F. M. Ghaleb
	 fmghaleb@yahoo.com

	 Dawlat A. El A. Mohamed
	 dr_dowlatkma@yahoo.com

1	 Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

http://orcid.org/0000-0003-1054-3642
http://orcid.org/0000-0001-6718-0980

	CC-IFIM: an efficient approach for incremental frequent itemset mining based on closed candidates
	Abstract
	1 Introduction
	2 Related work
	2.1 Exact approaches
	2.1.1 Apriori-based
	2.1.2 FP tree-based

	2.2 Approximated approaches

	3 The proposed approach CC-IFIM
	4 Experimental results
	4.1 Efficiency of CC-IFIM
	4.2 Accuracy of CC-IFIM Using

	5 Conclusion
	Acknowledgments
	References

