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Investigations on speaker adaptation
using a continuous vocoder within recurrent
neural network based text-to-speech
synthesis
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Abstract
This paper presents an investigation of speaker adaptation using a continuous vocoder
for parametric text-to-speech (TTS) synthesis. In purposes that demand low computa-
tional complexity, conventional vocoder-based statistical parametric speech synthesis can
be preferable. While capable of remarkable naturalness, recent neural vocoders nonethe-
less fall short of the criteria for real-time synthesis. We investigate our former continuous
vocoder, in which the excitation is characterized employing two one-dimensional param-
eters: Maximum Voiced Frequency and continuous fundamental frequency (F0). We show
that an average voice can be trained for deep neural network-based TTS utilizing data from
nine English speakers. We did speaker adaptation experiments for each target speaker with
400 utterances (approximately 14 minutes). We showed an apparent enhancement in the
quality and naturalness of synthesized speech compared to our previous work by utilizing
the recurrent neural network topologies. According to the objective studies (Mel-Cepstral
Distortion and F0 correlation), the quality of speaker adaptation using Continuous Vocoder-
based DNN-TTS is slightly better than the WORLD Vocoder-based baseline. The subjective
MUSHRA-like test results also showed that our speaker adaptation technique is almost as
natural as the WORLD vocoder using Gated Recurrent Unit and Long Short Term Mem-
ory networks. The proposed vocoder, being capable of real-time synthesis, can be used for
applications which need fast synthesis speed.
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1 Introduction

Text-to-speech (TTS) synthesis, a field of speech processing, converts the written text into
speech. It is used in many application and industrial fields such as smartphones, railway
announcements, robotics, healthcare, and education [17, 37]. It offers many benefits for stu-
dents with a learning disability [5]. It can be used to overcome time consumed by reading
via audiobooks using a TTS. It can also enhance literacy skills, improve reading compre-
hension, the ability to recall information, and the pronunciation improvement [38, 40]. It
also makes it easy for anyone else searching for more convenient access to digital materials.
TTS health-assistance technologies would significantly enhance people’s health and lower
their healthcare expenditures [22, 23].

One type of text-to-speech synthesis employs statistical parametric synthesis (SPSS),
with two primary machine learning techniques: deep neural networks (DNN) and Hidden
Markov models (HMM). DNNs have become the prevalent acoustic models for text-to-
speech synthesis. It is used to generate high-level data representations.

Furthermore, a considerable improvement in voice quality may be accomplished with
the availability of multi-task learning [45, 49]. In the parametric model, the speech signal
is processed into parameters indicating fundamental frequency (F0) and speech spectrum,
subsequently, input into a machine learning system. After the statistical model has been
learned on the training data, the parameter sequences are rebuilt into speech signals utilizing
reconstruction techniques (excitation models, vocoders).

SPSS naturalness can be improved through further developing vocoding approaches.
Although neural vocoding systems can produce speech similar to natural speech (e.g.,
WaveNet [41]), and WaveGlow [32], their high computational complexity remains problem-
atic. Additionally, they necessitate vast data and processing resources, making it challenging
to train for real-time applications, particularly in embedded environments. SPSS, which uses
vocoders to model high-quality synthetic speech, is an efficient and more easily adaptable
solution. Besides, controllability options make vocoder-based SPSS preferable over neural
vocoders.

Deep learning algorithms perform exceptionally well when training on a large enough
dataset. Subsequently, this technique means that to train a model for speech synthesis, we
need a lot of speech from a target speaker (e.g., 60 minutes). Eventually, it limits the tech-
nology’s capacity to scale to a variety of voices. In TTS, the simple fine-tuning creates a
high-quality model when the data from the target speaker is adequate [20]. In this case, we
can restrict the tuning to a particular part alternately to the whole system to avoid overfit-
ting [9, 26] Adaptation methods may be used to produce new voices using only a small
amount of adaptation data from a target speaker [27]. Because of the potential performance
of speaker adaptation, SPSS has a significant advantage over unit-selection speech synthesis
in terms of changing speaker attributes, emotions, and speaking styles [25]. Recent neu-
ral vocoders can produce incredibly natural speech, yet they usually fall short of real-time
synthesis requirements [30, 34].

We proposed in our previous work [28] a speaker adaptation system based on a con-
tinuous vocoder and a Feed-forward deep neural network (FFNN) text-to-speech synthesis
system. In this paper, we investigated the recurrent neural networks (RNNs) such as Long
Short Term Memory networks (LSTM) and Gated Recurrent Unit (GRU) in both WORLD
vocoder (baseline system) and continuous vocoder. As well, on the basis of data from nine
speakers, we show that an average voice can be trained for DNN-TTS and that speaker
adaptability is possible with 400 utterances (about 14 minutes).
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The remaining part of the paper is structured as follows. Section 2 summarizes the
speech signal structure. Section 3 comprises a summary of relevant scientific publications,
including innovative approaches in text-to-speech synthesis based on speaker adaptation. In
Section 4, the continuous vocoder is introduced in detail and compared to other vocoders.
The design of the system, tools, and dataset are described in Section 5. The results are then
explained in (Section 6). Finally, in Section 7, the conclusion is given.

2 Speech signal structure

A concept is initially generated in the speaker’s brain at the linguistic level of communica-
tion before being translated into words, phrases, and sentences. The brain makes electrical
signals that move at the nerves at the physiological level. The vocal cords and tract muscles
are triggered by these electrical signals. Changes in vocal tract pressure are caused by the
movement of the vocal cords and vocal tract, and the lips produce the sounds [33].

The vibration of vocal cords creates the voiced sounds, and the rate of vibration of vocal
cords is referred to as a fundamental frequency (F0). The perceptual correlate of F0 is named
pitch. The formant frequencies generally are the energy attention at higher frequency ranges.

In the time domain, the speech waveform represents time on the linear horizontal axis
and amplitude on the vertical axis. The primary levels of timing information in the speech
acoustic are envelope, periodicity, and fine structure (the top part of Fig. 1). The envelope
shows the slow outline of the overall changes in the intensity over the signal. The repeating
peaks at a regular periodic rate mean we have voiced sounds. The fine structure possesses
all high frequencies ups and downs in the waveform corresponding to the highest frequency
changes. In the frequency spectrum, the frequency is on the horizontal axis and the ampli-
tude on the vertical axis. Finally, the spectrogram shows the frequency content change over
time the bottom part of (Fig. 1).

3 Related work

In addition to improving the naturalness of synthesized speech, synthesizing new voices
with a small amount of data is an enthusiastic research topic. Numerous approaches are
proposed to address this concern. They all share the same basic principle: use a large corpus
to repay a target speaker’s lack of data. Because DNNs have a high number of parameters
and the parameters of the DNN model cannot be interpreted as directly as the parameters
of the HMM model, DNN-based TTS adaptation is more complicated than HMM-based
adaptation [7].

One way for speaker adaptation is to transmit speaker codes to the main network, which
can then adjust the layer weights. These speaker codes can be learned or i-vectors. A super-
vised method of learning speaker codes for DNN-HMM systems’ speaker adaptation was
suggested by [48]. These algorithms learn a bias for the sigmoid nonlinearities at the product
of fully connected layers employing speaker codes. Besides, a neural fusion architecture of
a unit concatenation approach and SPSS to enhance the similarity of the synthesized speech
to the target speaker was proposed [11]. Despite that, the naturalness has not been upgraded.

In addition, auxiliary speaker embedding-based DNN adaptation strategies encode
speaker-dependent (SD) properties in a compact vector representation in additional speaker
embedding-based approaches. SD embedding vectors are employed as supplemental input
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Fig. 1 The speech waveform and spectrogram info. of the word “nudge” (drawn using Praat software)

features for DNNs, allowing for more effortless speaker adaptability during system train-
ing and evaluation. The SD auxiliary feature estimation is done separately from the other
components of the recognition system. An instance of i-vectors were learned from univer-
sal background models based on the Gaussian mixture model was given by [36]. D-vectors
have been employed to transmit the speaker-specific data in adaptation [6]. A DNN speaker
adaptation framework based on full Bayesian learning to simulate speaker-dependent (SD)
parameter uncertainty with limited speaker-specific adaptation data was offered by [47].

Some speaker adaptation approaches are model-based adaptation techniques (e.g., the
learning hidden unit contributions (LHUC)). The amount of speaker-specific adaptation data
effectively influences the modeling subdivisions of the SD parameters in this design. When
trained on a large quantity of speech data with multiple speakers, the LHUC technique
posits that a neural network’s hidden representations are base vectors learned to interpret
the acoustic space of several speakers [44].

Zero-shot multi-speaker TTS (ZS-TTS) employs only a few seconds of speech dataset
to create synthesized voices for target speakers. SC-GlowTTS is a novel model (GlowTTS
and HiFi-GAN) to enhance the likeness to the target speaker using ZS-TTS [8]. The all
pass warp (APW) has been integrated into neural network frameworks and investigated in
ZS-TTS [35]. Their research shows that APW improves multi-speaker model generaliz-
ability and speaker similarity to the target speaker. Better speaker similarity is achieved by
a multi-model speaker adaptation system (an unsupervised speech representation module
and Tacotron2) than by a single-model (Tacotron2) [50]. In addition, intriguing research
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develops a multi-model speaker adaptation, the Hieratron model framework, to control the
prosody and timbre and synthesize the speech from a limited dataset [14].

Further, the few-shot adaptation technique modifies the network’s parameters with the
target speaker’s speech. Employing two special encoders (fine-grained and coarse-grained)
for cloning unseen target speakers with a few data samples has increased the similarity and
quality of synthesized speech [12]. AdaSpeech 3 is an adaptive TTS model fine-tuning a
trained reading style TTS model for spontaneous speech [24]. Using a small amount of
target speech data, the model predicts filled pauses and changes in rhythm.

Hybrid deep learning (HDL) may represent the future direction of deep learning. It com-
bines many artificial neural network concepts such as convolutional neural network (CNN),
RNN, and Autocoder in one model. We previously tested our Continuous vocoder to build
a deep learning model based on TTS by applying a Hybrid model of Bi-LSTM and con-
ventional Uni-RNN [4]. In future research, we believe it is worth investigating the speaker
adaptation with the Continuous vocoder using a hybrid model.

The fine-tuning approach belongs to the area of transfer learning, in which information
gained from one activity may be applied to another. It was used in speech synthesis to
train an average voice model (AVM) on a large database of speakers before applying the
same network to a new speaker with fewer data. This technique was found to exceed the
synthesized speech of LHUC and an HMM-based adaptation method [39]. Due to the lack
of conducted research in speaker adaptation using the fine-tuning approach based-TTS, we
used in the current study a novel technique utilization low complexity of continuous vocoder
with a small database of target speakers to synthesize speech.

The vocoder is an essential aspect of TTS. It is responsible for translating human voices
to vocoder parameters and vice versa. It is both an analyzer and a synthesizer. It analyzes
speech by converting the waveform into a set of parameters that reflect the excitation signal
of the vocal folds and then modifying the excitation signal with a vocal-tract filter transfer
tool. Oppositely, it uses the parameters to reconstruct the original voice stream. The para-
metric representation allows for statistical modeling of speech as well as manipulation of
speech to improve intelligibility. STRAIGHT, WORLD, Mel - generalised cepstral vocoder,
adaptive harmonic model, Glottal vocoder, and Harmonic model are a few examples of
vocoders [18].

4 Continuous vocoder

During the analysis stage of the Continuous vocoder [13], the fundamental frequency
(contF0), is determined on the input waveforms. The maximum voiced frequency (MVF)
parameter is then calculated from the speech signal. As the next step, the voice signal is
subjected to 24-order Mel-Generalized Cepstral analysis (MGC) using gamma = −1/3 and
alpha = 0.42. In all phases of the analysis, the frameshift is 5 ms. The Glottal Closure
Instant (GCI) algorithm is used to find the glottal period restrictions of particular periods in
the voiced parts of the inverse filtered residual (see Fig. 2).

After that in the synthesis stage, depending on the contF0, voiced excitation is made
up of principal component analysis (PCA) residuals that overlap-added pitch simultane-
ously. Subsequently, at the frequency specified by the MVF parameter, this voiced excitation
is low-pass filtered frame by frame. White noise is employed at frequencies greater than
MVF’s value. Then, both voiced and unvoiced excitation are combined. Applying a time
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Fig. 2 General framework of the continuous vocoder

domain envelope to the unvoiced segments is presented as a means of modeling unvoiced
sounds to eliminate any remaining buzziness and reduce the noise part [1, 3]. Consequently,
to synthesize speech from the excitation and MGC parameter stream, a Mel generalized-log
spectrum approximation (MGLSA) filter is utilized. The continuous vocoder is adaptable
and straightforward, with only two 1-dimensional parameters for modeling excitation. It can
implement its synthesis algorithm in real-time because it is computationally viable. It has
the convenience of not requiring a voiced/unvoiced decision, which implies that alignment
failures between voiced and unvoiced portions are shunned. But on the other hand, failure
in MVF modeling can result in voicing issues. The continuous vocoder is also viable in sta-
tistical voice conversion utilizing a feed-forward deep neural network and is comparable to
the baseline WORLD vocoder [2].

Furthermore, utilizing a temporal envelope such as Discrete All Pole, Frequency Domain
Linear Prediction, Low Pass Filter, and True envelopes, the continuous vocoder accurately
simulates the noise component of the excitation source [4]. This feature offers our continu-
ous vocoder the advantage over the most generally used vocoder STRAIGHT [21] because
the noise segment of the excitation reference is not precisely modeled in the excitation
parameters of STRAIGHT [15].

4.1 Baseline: WORLD vocoder

We chose the WORLD vocoder as a baseline due to its ability to synthesize high-quality
voice [29]. The WORLD vocoder employs a source-filter-based speech production model
with mixed excitation, alike to the legacy STRAIGHT vocoder [43]. The WORLD vocoder
uses DIO, CheapTrick, and PLATINUM algorithms to extract the parameters (F0, spectral
envelope, and aperiodic parameter), respectively. The above continuous vocoder uses two
one-dimensional parameters to generate the excitation signal, whereas the WORLD system
employs a five-dimensional band aperiodicity. Moreover, unlike the continuous vocoder, the
WORLD vocoder might carry errors at transition boundaries of voiced and unvoiced parts
of speech [4].

5 Methodology

For both systems using the continuous and WORLD vocoders, we performed the methods
outlined below. We created an average voice model (AVM), which we then customized for
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the target speaker. The open-source Merlin [46] framework was utilized to apply the generic
FFNN, and RNN model-based TTS.

5.1 Speech corpus

The research work was carried out using the VCTK-Corpus [42]. This CSTR VCTK Cor-
pus includes voice data from 109 English speakers (62 female) who speak diverse accents.
A total of 400 phrases are read by each speaker. The sentences were taken from a news-
paper, the rainbow passage, and an elicitation section. The dataset is around 44 hours
long in total. All of the recordings were made at a sampling rate of 96 kHz (24 bits) and
subsequently down-sampled to 48 kHz. The dataset was created for multi-speaker TTS
and speaker-adaptive purposes [10, 31]. We re-sampled the waveforms of the database to
16 kHz. The training experiment employed 85 percent of the data, while the testing and
validation experiments used the remaining data.

5.2 Build an average voice model

This strategy is classified as transfer learning, which means that the learnings in one activ-
ity can be applied to another similar work. In speech synthesis, an AVM can be trained on
a large sample of speakers and then used to adjust to a new speaker with fewer data. The
AVM learns how the text and speech features are related. It can change some of the param-
eters (i.e., weights of the neural networks) for the new speaker. We developed the AVM
throughout the range of 9 speakers (six females (p225, p228, p229, p230, p231, and p233)
and three males (p226, p227, and p232). We have created the data and directories, labels,
acoustic characteristics (MGC, MVF, and lf0) for the continuous and (lf0, mgc, and bap) for
the WORLD vocoder. Then we trained the acoustic and duration models. We trained these
models using FFNN, LSTM, and GRU.

5.3 Adapt the AVM for the target speakers

To overcome limited data of the target speaker, this model collects universal features from
the average voice (multiple speakers) model and is trained independently for the target
speaker. For analysing purposes, we did adaptation experiments with four speakers (p234
(female), p236 (female), p237 (male), and p247 (male)). We further trained the average
acoustic and duration models for the four target speakers by using FFNN, LSTM, and
GRU. Each speaker’s adaptation data consists of 400 utterances (about 14 minutes). Finally,
we synthesized the sentences using the Continuous vocoders and compared the resulted
synthesized speech with the results that we obtained by the baseline vocoder.

5.4 Training topology

Feed-forward neural networks and a couple of versions of the recurrent neural networks
(LSTM and GRU) utilized in our study are described in this part. These neural networks are
used to predict speech reconstruction acoustic features, and textual and phonetic transcrip-
tions are turned into a sequence of linguistic features as input. Hyperparameters are the same
for both systems (Continuous and WORLD vocoders). We engaged a high-performance
NVidia Titan X graphics processing unit (GPU) for the networks’ training.

1. Feed-Forward Neural Networks
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FFNN is the simplest type of neural network that can be used for TTS purposes. We
applied the FFNN of six hidden layers with tangent hyperbilic units (1024 neurons, sgd
optimizer, 25 epochs, and 265 batch size).

2. Long Short Term Memory networks
Unlike feed-forward mapping, which is done frame by frame of speech, linguistic

attributes are sequence-to-sequence mapped to vocoder parameters in RNN [16].
At the bottom, we used a four-layer feed-forward neural network. We utilized LSTM

on top of the feed-forward layers. The feed-forward layers have 1024 hidden units using
a tangent activation function in each layer.

Meantime, LSTM implementations used 512 units. In addition, Adam optimizer was
used. The hyperparameters were set up, including batch size 512, dropout rate 0.1,
learning rate 0.001, and training epochs 30.

3. Gated Recurrent Unit
GRUs are incredibly similar in architecture to LSTM, where both use gates to govern

data flow in networks. The differences in their architecture are the GRU does not have
a cell state, and LSTM has three gates (input, forget, and output) while GRU has only
reset and update gates.

We used a four-layer feed-forward at the bottom of the neural network design. After
that, we utilized GRU on top of the feed-forward layers. The feed-forward layers have
512 hidden units using a tangent activation function in each layer. In addition, GRU
executions used 256 units. Moreover, Adam optimizer was used. The hyperparameters
were set up, including batch size 256, dropout rate 0.0, learning rate 0.002, and training
epochs 30.

The pseudocode of our work is summarized in the following steps:

1: Initialize Continuous vocoder in Merlin
2: Train the Continuous vocoder using the multiple speakers’ dataset
3: Generate MVF, F0, MGC from the dataset
4: Adapt the model to the target speaker
5: Generate MVF, F0, MGC from target speaker dataset
6: Synthesis speech
7: Build a baseline vocoder with the same steps (1-6)
8: Objective and Subjective evaluations for both models
9: IF the synthesized speech = reasonable quality THEN

The result is ready!
ELSE

Optimize the model design
10: ENDIF

6 Results

We used objective and subjective evaluations to test the quality of the synthesized waves
of the target speaker. We compared all the results obtained by continuous vocoder with
WORLD vocoder. In the objective evaluation, we independently tested our continuous
vocoder parameters with speaker adaptation in deep neural networks using Mel-Cepstral
Distortion (MCD), F0-correlation (F0-CORR), and spectrogram analysis.
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6.1 Objective evaluation

1. MCD(dB):
We determined the Mel-Cepstral Distortion measure coefficients per the whole

model output (1). The MCD is a measure of the difference between two mel cepstra
sequences. The notion is that the lower the MCD between synthesized and natural mel
cepstral sequences, the closer synthetic speech is to natural speech reproduction. Based
on these findings, the efficiency of the continuous vocoder systems against the WORLD
baseline scheme could be concluded (Table 1).

MCD = 1

N

N∑

j=1

√√√√
K∑

i=1

(
xi,j − yi,j

)2 (1)

x and y are the ith cepstral coefficients of the natural and synthetic speech signals,
respectively. Table 1 shows slightly better MCD values of WORLD vocoder with FFNN
than continuous vocoder FFNN. In contrast, with LSTM and GRU, the continuous
vocoder was slightly better compared to the WORLD vocoder, while being significantly
not different. Also, we can observe some speaker dependency, i.e., for two out of the
four speakers, the WORLD has lower MCD, while for the other two speakers, the Con-
tinuous vocoder has lower MDC values. Thus, we can say that the two vocoders are
roughly equivalent in this measure.

2. F0-CORR:
The similarity between reference and synthesized data is reflected in the correlation

(whether they are linearly related or not). Overall, a measurement is taken frame per
frame (2). F0-CORR shows promising results for continuous vocoder as the values are
closer to 1 and higher than the baseline WORLD vocoder (Table 2). This difference in
obtained results might be related to the discontinuous fundamental frequency model of
the WORLD vocoder. In terms of F0 correlation, we can observe speaker-dependent
differences: in the case of FFNN and LSTM, the continuous vocoder was preferred by
three speakers out of four, while with the GRU system, the continuous vocoder was

Table 1 MCD errors on the dev/test sets for WORLD & continuous vocoders

Spkr WORLD vocoder WORLD vocoder WORLD vocoder

FFNN LSTM GRU

P234 5.232 / 5.246 5.466 / 5.460 5.474 /5.457

P236 5.601 / 5.297 5.819 / 5.578 5.854 / 5.702

P237 5.139 / 5.030 5.487 / 5.444 5.298 / 5.186

P247 5.360 / 5.342 5.517 / 5.530 5.566 / 5.577

Average 5.333 / 5.228 5.572 / 5.503 5.548/5.480

Cont. vocoder Cont. vocoder Cont. vocoder

P234 5.440 / 5.434 5.541 / 5.492 5.480 / 5.378

P236 5.795 / 5.547 5.817 / 5.554 5.805 / 5.518

P237 5.370 / 5.240 5.283 / 5.194 5.303 / 5.203

P247 5.502 / 5.483 5.537 / 5.512 5.446 / 5.491

Average 5.526 / 5.426 5.544 / 5.438 5.508 / 5.397
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Table 2 F0-CORR on the dev/test sets for WORLD & continuous vocoders

Spkr WORLD vocoder WORLD vocoder WORLD vocoder

FFNN LSTM GRU

P234 0.484 / 0.463 0.460 / 0.408 0.428 / 0.387

P236 0.580 / 0.565 0.548 / 0.552 0.486 / 0.489

P237 0.597 / 0.551 0.514 / 0.483 0.515 / 0.540

P247 0.588 / 0.654 0.538 / 0.622 0.547 / 0.628

Average 0.562 / 0.558 0.515 / 0.516 0.494 / 0.511

Cont. vocoder Cont. vocoder Cont. vocoder

P234 0.730 / 0.755 0.737 / 0.749 0.751 / 0.759

P236 0.480 / 0.588 0.508 / 0.572 0.505 / 0.507

P237 0.760 / 0.721 0.739 / 0.709 0.718 / 0.710

P247 0.766 / 0.682 0.769 / 0.696 0.773 / 0.693

Average 0.684 / 0.686 0.688 / 0.681 0.686 / 0.667

preferred by all four speakers. Thus, we can conclude that the continuous vocoder was
ranked as being better than the WORLD baseline in terms of F0 modeling. This can be
explained by the way they model F0 (see Section 3).

F0 − CORR =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(2)

Where xi is the natural speech frame, yi is the synthesized speech frame, x is the mean
of the natural speech frame, and y is the mean of the synthesized speech frame.

3. Demonstration sample (spectrogram):
Figure 3 shows the spectrograms of synthesized sounds by both vocoders (WORLD

and continuous). We present six spectrogram plots of three speakers of two females
(p237, p236) and a male (p247) reading the text “People look, but no one ever finds
it.”. As can be seen in the spectrograms in the right column, the continuous vocoder
distinguishes between voiced and unvoiced speech frequencies based on the MVF
parameter (i.e., spectral content below MVF is voiced, while spectral range above MVF
is unvoiced). The spectrograms in the left column do not show such a strong separa-
tion curve in terms of frequency, because the WORLD vocoder handles voicing via
band aperiodicities. Thus, the main difference between the baseline WORLD and the
proposed continuous vocoder is in the way they model the excitation component of
speech.

6.2 Subjective evaluation

We ran an online MUSHRA-like test to analyze TTS variants [19]. This investigation
compared the synthesized phrases generated by the baseline (WORLD) and the proposed
(Continuous) vocoders. Natural versions of the sentences were included as references.
Besides, we created a lower anchor variant, a spectrally distorted version of the natural
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Fig. 3 The spectrogram plot of six synthesized sounds (a) a synthesized female voice (p237) using WORLD
vocoder with FFNN, (b) a synthesized female voice (p237) using continuous vocoder with FFNN, (c) a
synthesized male voice (p247) using WORLD vocoder with LSTM, (d) a synthesized male voice (p247)
using continuous vocoder with LSTM, (e) a synthesized female voice (p236) using WORLD vocoder with
GRU, and (f) a synthesized female voice (p236) using continuous vocoder with GRU

sentence. Subjects were requested to score the naturalness of each stimulus on a scale of
0 (very unnatural) to 100 (fully natural or realistic). We generated 19 sentences from the
VCTK-Corpus using the four target speakers, of which 12 were selected for the test. The
samples were displayed in a random order (different for each participant). The MUSHRA
test comprised 96 utterances (8 systems x 4 speakers x 12 sentences).

Audiences were provided an example to listen to before the test to adjust the loudness.
Twenty one non-native English speakers (17 silent situations, 4 in a noisy environment;
one female, 20 males; 26-41 years old) scored each sentence. The test took an average of
18 minutes to achieve. Figure 4 displays the average naturalness scores for the approaches
that were tried. Original utterances received 87 out of 100 scores from the listeners. The
synthesized speech using WORLD vocoder with FFNN obtained higher scores (52 out of
100) than our model using the same network topology (39). On the other hand, both systems
with GRU received almost the same votes (57 and 50, respectively). The continuous vocoder
showed an almost equivalent performance (53 out of 100) to the WORLD vocoder (59) by
using LSTM.
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Fig. 4 MUSHRA scores for the naturalness question – average results. Higher value means better overall
quality. Errorbars show the bootstrapped 95% confidence intervals

Figure 5 shows the MUSHRA test results speaker by speaker. For all speakers, the
WORLD vocoder with FFNN was preferred over the continuous vocoder. GRU presents a
different scenario. Both systems are almost equivalent in the higher f234, f236, and m247.
With the speaker m237, the WORLD vocoder obtained more evaluation scores than our
system. Moreover, WORLD vocoder obtained more scores with a synthesized speech by
the three speakers (f234, f237, and m247) than continuous vocoder using LSTM except for
one speaker (f236), which shows equal results. These disparities are statistically signifi-
cant (Mann-Whitney-Wilcoxon ranksum test, with a 95% confidence level). Despite the fact
that the naturalness scores of the Continuous vocoder did not match those of the WORLD
vocoder, we may infer that the speaker adaptation experiment with the suggested vocoder
was a success and we obtained reasonable results.

Fig. 5 MUSHRA scores for the naturalness question – speaker by speaker
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7 Conclusions and future work

Recent neural vocoders, while being capable of synthesizing highly natural speech, often
also fall short of the criteria of real-time synthesis. Classical vocoder-based SPSS can be
effective in applications demanding modest computer complexity (e.g., a chatbot in a high-
load environment like a government website, or a low-resource smartphone). This research
aimed to present a new strategy for improving the accuracy of our prior continuous vocoder
with speaker adaptation. We employed the continuous vocoder, in which the excitation is
characterized with two one-dimensional parameters: continuous F0 and MVF. During our
evaluation experiments, we prove that using data from multiple speakers it is achievable to
train an average voice model and that speaker adaptation is possible with just 400 utterances
(roughly 14 minutes). The performance strengths and shortcomings of each of the proposed
approaches (FFNN, GRU, and LSTM) for four different speakers were analyzed using a
number of metrics. The objective testing revealed that our vocoder is capable of synthe-
sizing voices using RNN topologies roughly equivalent to the baseline WORLD vocoder.
Furthermore, the MUSHRA test results proved the efficacy of our speaker adaptation strat-
egy, being only slightly worse than the WORLD vocoder in the case of GRU and LSTM.
The WORLD vocoder obtained significantly higher scores than our system in the case of
FFNN. Text-to-speech synthesis with a low-complexity vocoder and speaker adaptation can
help more natural human-computer interaction.

In future research, we will explore the speaker adaptation with the Continuous vocoder
using a hybrid model (e.g., RNN, CNN, gcForest, etc.). These models deliver more effec-
tively than the individual deep neural networks. Moreover, Transformer neural networks,
a state-of-the-art technique in natural language processing (NLP), with our model is our
target for the next search step. In addition, building a multi-model speaker adaptation sys-
tem of the Continuous vocoder with state-of-the-art sequence-to-sequence models such as
Tacotron2, FastPitch, etc., more advanced solutions would be considered.
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