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Completed sample correlations and feature
dependency-based unsupervised
feature selection
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Abstract
Sample correlations and feature relations are two pieces of information that are needed to
be considered in the unsupervised feature selection, as labels are missing to guide model
construction. Thus, we design a novel unsupervised feature selection scheme, in this paper,
via considering the completed sample correlations and feature dependencies in a unified
framework. Specifically, self-representation dependencies and graph construction are con-
ducted to preserve and select the important neighbors for each sample in a comprehensive
way. Besides, mutual information and sparse learning are designed to consider the corre-
lations between features and to remove the informative features, respectively. Moreover,
various constraints are constructed to automatically obtain the number of important neigh-
bors and to conduct graph partition for the clustering task. Finally, we test the proposed
method and verify the effectiveness and the robustness on eight data sets, comparing with
nine state-of-the-art approaches with regard to three evaluation metrics for the clustering
task.

Keywords Unsupervised learning · Sample correlation · Unsupervised feature selection ·
Graph learning · Self-representation · Mutual information · Sparse learning

1 Introduction

For various research fields, i.e., machine learning, pattern recognition, network secu-
rity, facial expression recognition, education, biology, psychology, medicine, many high-
dimensional data are used to describe the complex subject [23, 33, 34, 48, 51].

The high-dimensional data are not easy to process due to the issues, such as “dimen-
sion disaster”, the cost of the hardware, and the execution times. Hence, the dimensionality
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reduction technology has attracted attentions which can remove noise data as well as find
the valuable information by using the predefined rules or constructed models [4].

The main purpose of dimensionality reduction is to search a projection matrix in orig-
inal high-dimensional data space, obtain the novel data with lower dimensions so that the
data become divisible in the low-dimensional feature subspace and remove unnecessary out-
liers. Generally, the existing dimensionality reduction ways are broadly classified to feature
extraction ways and feature selection ways [18, 29]. Feature extraction ways derive use-
ful information from the original data to construct the novel data description, while feature
selection ways exploit important information among original data with certain evaluation
schemes, removing the influence of noise, outliers and redundant features and, at the same
time, preserving the representative features [29].

For the number of obtaining labels in training procedure, feature selection ways contain
supervised ways, semi-supervised ways, and unsupervised ways [40, 42]. In supervised
ways, labels guide the selection of discriminant features according to certain criteria [21,
44]. Semi-supervised ways select important features using a particularly small percentage of
labeled data and the numerous unlabeled data [22, 54]. For unsupervised ways, they employ
various score evaluation metrics to exploit features through the uniqueness of features, such
as variance [42, 47]. However, labels are difficult to mark by experts and the annotation cost
is expensive. By this reason, unsupervised feature selection ways have become the important
technology for the unseen and unknown data.

In unsupervised feature selection, many researchers usually embed the manifold regu-
larization method into the feature selection model to find low-dimensional embedding, and
apply smoothness to adjacent cluster labels for obtaining more compact data representation
[17, 37]. For example, Cai et al. achieved good clustering performance by jointly learning
the importance of each feature in different dimensions [7]. Liu et al. proposed a method
by combining the global similarity with the local similarity to search the subset of features
[26]. Feng et al. used automatic encoder to find the representative features subset, preserv-
ing the local correlations among data through the hidden layer [13]. Moreover, the common
methods explore the representative features by the conducted model and utilize the selected
features to connect with the task learning. In this way, it could easily lead to sub-optimal
solution by these two steps, that is, the selected features are not suitable to task learning
while task learning is not related to the model construction.

To solve the above issues, we design a novel unsupervised feature selection approach via
taking the completed sample correlations and feature dependencies into account in a unified
framework. Specifically, we consider sample importance to consider global structure among
the samples by using a self-representation way, where each sample can be represented by
all samples linearly, and a dynamic graph representation can be learned to consider local
structure between the samples during the procedure. Besides, we take the dependencies
between the features into account by mutual information, and then, a controllable sparse
learning (i.e., �2,p-norm) is utilized to remove the noisy and redundant features. More-
over, rank constraint and neighbors constraint is designed to conduct graph partition and to
search the optimal number of neighbor, respectively, for clustering task and each sample.
The final experiments on eight data sets with nine comparison methods test the clustering
performance.

We summarize the contributions of the proposed method in the following.

– The proposed method considers completed sample correlations and feature dependen-
cies in a joint unsupervised model, it not only extends the novel method of unsupervised
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learning, but it also indicates the flexibility of embedded way which can embed differ-
ent technologies to solve the issues (e.g., guarantee the optimization of model and task
simultaneously in the framework of unsupervised learning) for various types of data.
Moreover, experiments on eight data sets have verified the validity of the proposed
method in comparison to other methods.

– The proposed method provides a reliable unsupervised learning method and inter-
pretable features for task learning. Besides, we design a new optimization algorithm to
optimize our proposed method and obtain a global optimal solution.

The flow of the remaining parts is described as: information about related works is given
in Section 2. The descriptions of proposed method is showed in Section 3. In Section 4,
the optimization process, the convergence analysis, the complexity analysis, and determin-
istic parameter are discussed. Section 5 shows the experiments’ performance. Finally, a
conclusion is given in Section 6.

2 Related work

Feature selection focuses on searching a small percentage of features to represent all data,
and it is useful to help unseen data to obtain the reliable predict label for the task learning
[3, 58]. Many feature selection algorithms have been developed including nature-inspired
algorithms [5, 46]. However, since a great expense of obtaining labels in real world,
unsupervised learning has become the mainstream way to conduct feature selection.

Generally, the existing unsupervised learning schemes regarding the strategies of feature
selection contain three types of categories, i.e., filter-based, wrapper-based and embedded-
based [1, 2, 20]. Specifically, the filter-based approaches select the informative feature
subset by ranking the scores of features according to the predefined evaluation criteria
[36, 38, 45]. For example, Cekik and Uysal proposed a filter-based unsupervised learning
method to conduct shot text classification by the rough set theory [8]. Solorio et al. devised a
filter-based learning method to recognize mixed features by considering information theory
and spectral way [43]. He et al. conducted a graph Laplacian to preserve the local correla-
tions among the data and select the subset of features with larger scores by decomposing
the Laplacian matrix [17]. Yao et al. designed the locally linear embedding score to select
the important features for the clustering task [52].

Compared with the filter-based schemes, the wrapper-based schemes construct the
learner to search features so better features selection performance can be obtained [42].
Zhao et al. proposed a joint architecture considering both supervised and unsupervised,
and utilized the graph Laplacian score by taking the correlation of features into account
[55]. Chen et al. presented a framework by integrating a cosine measurement and support
vector machine to select important features and obtain the classification performance [9].
Nouri-Moghaddam et al. proposed a wrapper feature selection method utilizing the forest
optimization method which selects the informative features and extracts the non-dominated
solution [32]. Feofanov et al. designed a wrapper feature selection method with partially
labeled data, which distributes pseudo labels to unlabeled data and conducts a feature selec-
tion genetic method to guarantee sparsity and to remove unimportant features [14]. Hence,
the wrapper-based methods can achieve the better classification results by conducting the
feature selection method.
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However, the filter-based method is heavily dependent on the selected score calculation,
so the effect of the score method directly determines the final classification or clustering
performance. Besides, the simple learning method in wrapper is hard to solve the data with
high dimensions, leading to the consumption of heavy computational resources. Moreover,
both the filter and the wrapper methods select the features independently, and it may lead to
a sub-optimal solution to model construction for the tasks (e.g., classification or clustering).
Consequently, the filter-based and the wrapper-based schemes may not solve the real issues
in practice. In order to solve the above issues, the embedded-based method is proposed
and show the potential ability for the tasks. This is because the embedded-based methods
provides a joint model to combine feature selection with task learning, which have demon-
strated better performance for a variety of tasks [28, 39, 42, 53]. For example, Zhu et al.
conducted a feature selection combined with coupled dictionary learning, where dictionary
learning is used to reconstruct the data and a coefficient matrix is learned to represent fea-
ture importance [56]. Zhu et al. [57] used subspace clustering to guide embedded-based
unsupervised model via iteratively learning the clustering labels and important features. Zhu
et al. proposed a robust unsupervised spectral feature selection which considers the local
structure of samples and the global structure of features, and employs the sparse learning
(i.e., �2,1-norm) to remove the redundant features [58]. Liu et al. presented a robust neigh-
borhood embedding method to select the important subset of features by minimizing the
error of loss function and the regularization term [27]. Lim and Kim proposed a feature
dependency-based unsupervised learning model to maintain the correlations between the
features by using information theory [24]. Wu et al. developed an adaptive embedded-based
way to search reliable and informative features subset in the intrinsic subspace [50]. Hence,
the embedded-based methods demonstrate better learning ability and have easier operability
for selecting a reliable subset of features.

3 Method

3.1 Notation

The used symbol markers in Table 1 and the scalar, vector, and matrix is defined by normal
italic letter, boldface lower-case, and boldface upper-case letter, respectively, in this section.

Table 1 The used symbol
markers X A matrix

x A vector of X

xi,· The i-th row of X

x·,j The j-th column of X

xi,j The element in the i-th row and the j-th column of X

‖X‖F The Frobenius norm of X, i.e.,
√∑

i,jx
2
i,j

‖X‖2,p The �2,p-norm of X, i.e., (
∑

i

√∑
j x

2
ij )

1/p

rank(X) The rank of X

tr(X) The trace of X

XT The transpose of X

X−1 The inverse of X

1 An all-one-element vector
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3.2 Completed sample correlations

Given an original matrix X ∈ R
d×n, where n and d, respectively, denote the number of

samples and features. The common supervised feature selection is

min
W

‖WT X − Y‖2
F + γ ‖W‖2,1, (1)

where coefficient weight is W ∈ R
d×c, the reduced dimension is c, regularization term is

‖.‖2,1 and γ is the trade-off positive parameter. However, the labels are costly to obtain in
practise due to the huge volume of data limitation as well as the expensive access to labels,
so that (1) has a limitation to apply for numerous data in various research topics.

To keep the relations between the samples, sample self-representation is employed to
search the global correlations of samples via assuming that each sample has the poten-
tial correlations with other parts of samples, that is, we can represent every sample by its
important neighbor ones. It is an inherent property of one sample and has shown better
performance in machine learning [19, 25]. Specifically, a linear combination way can be
conducted to each sample x·,i in X and we have a sparse unsupervised feature selection
model by

min
W

‖WT X − WT XS‖2
F + γ ‖W‖2,1, (2)

where S ∈ R
n∗n is self-representation matrix, where each row is defined as WT x·,i ≈∑n

j=1W
T x·,j si,j . Equation (2) can obtain dependable self-representation weight matrix and

the reasons can be showed as follows, (1) there exist abundant noisy features in the origi-
nal data set, but WT X can project the original data X into the low-dimensional subspace,
obtaining the “clean” data. (2) It uses the inter-reconstruction representation and nearest
neighbors to represent each sample that may cover the manifold structure among the original
data set. Obviously, the larger value the si,j has, the more important the related neighbors
are involved in the self-representation weight matrix.

Equation (2) has shown the global relations of samples, but the completed relationship
is composed of global representation and local representation. Hence, we describe the local
correlation consideration by

min
W

∑n

i,j
‖WT x·,i − WT x·,j‖2

2si,j , (3)

where each element si,j represents the strength of similarity between two samples (i.e., x·,i
and x·,j ) in Euclidean space. That is, the value of si,j is larger while x·,j is close to x·,i ,
otherwise si,j is small. Besides, a Gaussian kernel is employed to calculate the distance
between samples, such as d(x·,i , x·,j ) = exp(−‖x·,i − x·,j‖2

2/2σ) where σ is an adjustable
parameter.

Although (2) or (3) are widely used in the existing unsupervised feature selection works
[18, 35], there exist various aspects to improve the above models. (1) Both (2) and (3) have to
select the important adjacent samples (i.e., the value of K) in advance since the size of K is
essential parameter to model construction, but the predefined identify size K to each sample
may lead to capturing inaccurate manifold information among data [11]. For example, if K

takes the small value, it is hard to capture the important neighboring information of each
sample. In contrast, the selected neighboring samples may contain uncorrelated ones while
the vale of K is larger. (2) The parameter σ controls the size of edge weights between
each samples and its neighbors in the Gaussian kernel function, but it is a time-consuming
process. In this way, it increases the difficulty of model construction as well as rises the
time complexity of dealing with big data. (3) As we examine this formula (3) carefully, we
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find the graph matrix is learned from the original data projection by WT in the intrinsic
subspace. In other words, graph matrix is dependent on the weight matrix, the reverse is not
true.

Motivated by the above discussions, we modify (3) by the following two aspects, (1) a
joint model is conducted to learn graph matrix and weight matrix simultaneously, and each
of them iteratively optimize itself by alternating mutual iterative optimisation until obtain-
ing their optimal results; (2) the distribution of the samples in the intrinsic subspace are
considered to search optimal graph representation, as well as constraints that are designed
to find optimal number of neighbors for each sample, rather than employ both K and σ to
conduct a fixed graph representation. Hence, we integrate (2) with (3) in a joint structure
and design the new objective function as follows,

min
W,S

‖WT X − WT XS‖2
F + γ ‖W‖2,1

+α
(∑n

i,j

(
‖WT x·,i − WT x·,j‖2

2si,j + λ‖si,·‖2
2

))

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0, (4)

where α and β are trade-off parameters, ‖si,·‖2
2 is utilized to avoid trivial solution, N (i)

denotes the nearest neighbors set for i-th sample, and sTi 1 = 1 achieves shift invariant
similarity.

Different from the previous unsupervised feature selection approaches [19, 25, 31, 58],
our (4) conducts a dynamic graph matrix via considering completed sample correlations
(i.e., global message and local information) and an adaptive weight matrix in a joint frame-
work. Obviously, each sample by our method can adaptively select the different number of
nearest neighbors and can take global information and local information into account at the
same time.

3.3 Feature dependency consideration

An optimal subset of features are learned through all features during feature selection and
the corresponding common time complexity is O(2d ). However, it may result in non-trivial
problem. By this reason, we convert the combination way into an estimation way, that is,
we employ mutual information [36] to consider the feature dependencies rather than use the
iterative feature combination approach. Specifically, according to the definition of mutual
information in information theory, the joint distribution and the marginal distribution are two
basic variables. Then, mutual information is the relative entropy between joint distribution
and marginal distribution. Hence, we consider mutual information between features that can
be represented by

MI(x·,i; x·,j ) = F(x·,i ) + F(x·,j ) − F(x·,i , x·,j ), (5)

where F(x·,i , x·,j ) = −∑d
i

∑d
j P (x·,i , x·,j ) log

P(x·,i ,x·,j )

P (x·,i )P (x·,j )
denotes the joint entropy,

F(x·,i ) and F(x·,j ) denote the marginal entropy.
Due to the mutual information representing degree of interdependence between features,

we calculate the dependence matrix Q to preserve the feature dependency and it can be
described as

Qi,j = MI(x·,i; x·,j ), if i �= j ; Qi,j =
∑

i �=k
Qi,k, otherwise. (6)

where Q denotes the dependencies between features and selects the independent features.
It emphasizes the feature dependencies by its adjacent neighbor using mutual information
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i.e., i = j , otherwise, it only calculates mutual information between features. Furthermore,
we conduct one regularization term tr(WT QW) embedding into the minimization problem
in (4), since a positive semi-definite matrix Q which would be tractable in the optimization
process and can be updated by the change of adjacent information.

3.4 Proposedmethod

The learned graph S comes from both sample self-representation and intrinsic space spanned
by WT X. Moreover, graph matrix S guides weight matrix learning W and feature depen-
dency matrix construction Q, but the three matrices are not known in advance. This paper
integrates completed sample correlations in (4) with feature dependency consideration in a
unified framework to solve this problem, and designs the objective function as

min
W,S

‖WT X − WT XS‖2
F + βtr(WT QW) + γ ‖W‖2,1

+α
∑n

i,j
(‖WT x·,i − WT x·,j‖2

2si,j + λ‖si,·‖2
2)

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0. (7)

Although sparsity-based term ‖W‖2,1 can select informative features by ranking the
importance of features, it is not flexible to control the degree of features. Thus, we employ
�2,p-norm to select important features which may share more structures when p is small.
Besides, low-rank constraint is embedded into graph S to preserve the connection with
the task learning. Moreover, there are three parameters in (7) that need to be adjusted that
increase the time complexity and decrease the model execution efficiency, so we employ
a parameter-free way to release the parameters on regularization term tr(WT QW). As the
main diagonal element in Q is connected with the graph matrix S, and other elements are
not affected, so feature dependency matrix construction Q does not need to be updated as
an independent variable in the optimization process. Therefore, we have

min
W,S

‖WT X − WT XS‖2
F + βtr(WT QW) + γ ‖W‖2,p

+α
∑n

i,j
(‖WT x·,i − WT x·,j‖2

2si,j + λ‖si,·‖2
2)

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0,

if j ∈ N (i), otherwise 0, rank(LS) = n − c, (8)

where β = √
1/tr(WT QW) can be automatic updated, p denotes a parameter for adjust-

ing the sparsity of features, S learns both global and local information as well as extract c

connected components for the final clustering task. rank(LS) denote the i-th smallest eigen-
values for LS and LS denote a positive semi-definite matrix and rank(LS) ≥ 0. Moreover,
according to the theorem of Ky Fan [12] and the definition of rank(LS) in [30], we convert
(8) into the following objective function

min
W,S,F

‖WT X − WT XS‖2
F + βtr(WT QW)

+α
∑n

i,j
(‖WT x·,i − WT x·,j‖2

2si,j + λ‖si,·‖2
2)

+γ ‖W‖2,p + δtr(FLSFT )

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0, (9)
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where the parameter δ controls the importance of regularization term. To decrease the num-
ber of parameters, we utilize the parameter-free way to release this parameter and set it to
δ = √

1/tr(FLSFT ).

4 Model analysis

For model analysis, we give a detail discussion of the proposed method from four aspects,
i.e., optimization, convergence analysis, complexity analysis, and deterministic parameter
λ.

4.1 Optimization

Equation (9) is not jointly convex for all variables (i.e., W, S, and F), but is convex for
each variable while fixing others. By observing this, the alternative optimization scheme is
employed to optimize (9) until the proposed model converges. The pseudo description can
be found in the Algorithm 1.

Algorithm 1 The pseudo of the proposed model in (9).

(i) Optimize F via fixing W and S
After fixing W and S, (9) can be converted into

min
F

δtr(FLSFT ). (10)

The optimal F can be obtained by conducting eigenvalue decomposition to LS and
selecting all eigenvectors relating to the smallest c non-zero eigenvalues.

(ii) Optimize W via fixing S and F
While S and F are fixed, the optimization process of W is convex without non-

smooth due to using �2,p-norm. Thus, we use the Iteratively Reweighted Least Square
(IRLS) [10] to optimize W until the convergence condition is satisfied.
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Then, the (9) about W can be changed to

min
W

‖WT X − WT XS‖2
F + βtr(WT QW)

+α
∑n

i,j
‖WT x·,i − WT x·,j‖2

2si,j + γ ‖W‖2,p. (11)

By utilizing the IRLS scheme, (11) is equal to

min
W

tr(WT X − WT XS)T tr(WT X − WT XS)

+βtr(WT QW) + αtr(WT XLSXT W)

+γ tr(WT MW), (12)

where LS = DS − S ∈ R
n×n denote a Laplacian matrix, DS denote a diagonal matrix

DS i,i = ∑n
j si,j , and then each element in diagonal matrix M ∈ R

d×d is described as

mi,i = 1

(2/p)(‖mi,·‖2)2−p
. (13)

As each term in (12) is convex, and we change it to

min
W

tr(WT ((X − XS)(X − XS)T

+βQ + α(XLSX) + γM)W). (14)

The optimal solution of W can be calculated to select c eigenvectors of ((X −
XS)(X−XS)T +βQ+α(XLSX)+γM) relating to c smallest non-zero eigenvalues.

(iii) Optimize S via fixing W and F
When W and F are fixed, we have a formula about S as follows,

min
S

‖WT X − WT XS‖2
F + δtr(FLSFT )

+α
∑n

i,j
(‖WT x·,i − WT x·,j‖2

2si,j + λ‖si,·‖2
2)

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0. (15)

According to the definition of tr(FLSFT ) in [30], and we have

min
S

∑n

i,j
‖B·,i − BS·,j‖2

2 + δ‖f·,i − f·,j‖2
2si,j

+α(‖WT x·,i − WT x·,j‖2
2si,j + λs2

i,j )

s.t ., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0, (16)

where B = WT X.
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Note that each i in (16) is independent by each other, and we define ei,j =
α‖WT x·,i − WT x·,j‖2

2 + δ‖f·,i − f·,j‖2
2 so (16) is formulated as

min
sTi 1=1,si,i=0,si,j ≥0

‖si,· − ei,·‖2
2. (17)

The Lagrangian function of (17) is

‖si,· − ei,·‖2
2 − Δ1(sTi 1 − 1) − Δ2si,j , (18)

where Δ1 and Δ2 denote the Lagrangian multipliers. By using the Karush-Kuhn-
Tucker (KKT) conditions [6] and calculating the derivative on (18) regarding to
si,j , we obtain the closed-form solution of si,j = max(ei,j + Δ1, 0). After rank-
ing the element in ei,· with descending order, we achieve the newly sorted vector
êi,· = [êi,1, ..., êi,n]. Moreover, due to the constraint sTi 1 = 1 and each data point is
represented by it K-nearest neighbors, the closed-form solution of si,j , j = 1, ..., n
is obtained as

si,j = êi,j + 1

K
− 1

K

∑K

j
êi,j , if j ∈ N (i), otherwise 0. (19)

4.2 Convergence analysis

We discuss the convergence of the proposed method in Algorithm 1, and we first employ
the Lemma as follows,

Lemma 1 The inequality

√
v − v

2
√

u
≤ √

u − u

2
√

u
(20)

always hold for all positive real number of u and v [49].

Then, we design a new Theorem 1 to prove the convergence of Algorithm 1.

Theorem 1 The objective function value of (8) monotonically decreases until Algorithm 1
converges.

Proof After the t-th iteration, we have obtained the current optimal F(t), W(t) and S(t) in
(9). In the (t+1)-th iteration, we have need to optimize F(t+1) by fixing W(t+1) and S(t+1).

According to (10), F(t+1) has a closed-form solution, and thus we have the inequality as
follows

‖W(t+1)T X − W(t+1)T XS(t+1)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t+1)
i,j

+λ‖s(t+1)
i,· ‖2

2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t+1)LSF(t+1)T ) + γ ‖W(t+1)‖2,p
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≤ ‖W(t+1)T X − W(t+1)T XS(t+1)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t+1)
i,j

+λ‖s(t+1)
i,· ‖2

2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t)LSF(t)T ) + γ ‖W(t+1)‖2,p (21)

When fixing F(t) and W(t+1) to update S(t+1), s
(t+1)
i,j has a closed-form solution accord-

ing to (19), i.e., global optimal solution, for all i, j = 1, ..., n, and thus the following
inequality we have is

‖W(t+1)T X − W(t+1)T XS(t+1)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t+1)
i,j

+λ‖s(t+1)
i,· ‖2

2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t)LSF(t)T ) + γ ‖W(t+1)‖2,p

≤ ‖W(t+1)T X − W(t+1)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t)LSF(t)T ) + γ ‖W(t+1)‖2,p (22)

When fixing F(t) and S(t) to update W(t+1), and according to (14), (22) can be rewritten
by

‖W(t+1)T X − W(t+1)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t)LSF(t)T ) + γ

c∑
i

(‖w(t+1)
·,i ‖2)

2(2−p)

(2/p)(‖w(t)
·,i ‖2)(2−p)

≤ ‖W(t)T X − W(t)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t)T x·,i − W(t)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t)T QW(t))

+δtr(F(t)LSF(t)T ) + γ

c∑
i

(‖w(t)
·,i ‖2)

2(2−p)

(2/p)(‖w(t)
·,i ‖2)(2−p)

(23)

According to Lemma 1 and for each i, we obtain

(‖w(t+1)
·,i ‖2)

(2−p) − (‖w(t+1)
·,i ‖2)

2(2−p)

(2/p)(‖w(t)
·,i ‖2)(2−p)

≤ (‖w(t)
·,i ‖2)

(2−p) − (‖w(t)
·,i ‖2)

2(2−p)

(2/p)(‖w(t)
·,i ‖2)(2−p)

(24)
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By integrating (24) with (23) and for all c, we obtain

‖W(t+1)T X − W(t+1)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t)LSF(t)T ) + γ ‖W(t+1)‖2,p

≤ ‖W(t)T X − W(t)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t)T x·,i − W(t)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t)T QW(t))

+δtr(F(t)LSF(t)T ) + γ ‖W(t)‖2,p (25)

After combining (21), (22) with (25), we finally have

‖W(t+1)T X − W(t+1)T XS(t+1)‖2
F

+α
∑n

i,j
(‖W(t+1)T x·,i − W(t+1)T x·,j‖2

2s
(t+1)
i,j

+λ‖s(t+1)
i,· ‖2

2) + βtr(W(t+1)T QW(t+1))

+δtr(F(t+1)LSF(t+1)T ) + γ ‖W(t+1)‖2,p

≤ ‖W(t)T X − W(t)T XS(t)‖2
F

+α
∑n

i,j
(‖W(t)T x·,i − W(t)T x·,j‖2

2s
(t)
i,j

+λ‖s(t)i,· ‖2
2) + βtr(W(t)T QW(t))

+δtr(F(t)LSF(t)T ) + γ ‖W(t)‖2,p (26)

According to (26), we prove that Algorithm 1 can converge to the optimal solutions.

4.3 Complexity analysis

For every iteration, the time cost of Algorithm 1 focuses on the computation cost to LS ,
((X−XS)(X−XS)T +βQ+α(XLSX)+γM), the expression in (19), and the relating time
complexity are O(cn2), O(cd2), and O(nd2) where n, d, and c, respectively, denote the
number of the samples, the features, the clusters. Hence, the time complexity of Algorithm 1
is max{O(cn2),O(nd2)} where n, d > c.

4.4 Deterministic parameter λ

K-nearest neighbors (KNN) is the main way to guide the graph matrix construction, and
this also determines the parameter λ value. In detail, we reorder ẽi,· in (19) and obtain new
vector ẽ′

i,· = [ẽ′
i,1, ..., ẽ′

i,n] after ranking all elements with descending order. By following
the KNN way to reconstruct each sample, si,k+1 = 0 can be obtained. Therefore, we have

si,j − ẽ′
i,j

2λ
+ 1

K
− 1

K

∑K

j
(si,j − ẽ′

i,j

2λ
) = 0 (27)
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and we obtain the optimal value of λ by

λ = Kẽ′
i,j − ∑K

j ẽ′
i,j

2(1 + Ksi,j − ∑K
j si,j )

(28)

5 Experiments

We introduce the source of eight data sets, and discuss nine comparison methods in detail.
Then, the related experimental setting is provided to all methods. Moreover, experimental
results on all data sets and the experimental analysis are discussed.

5.1 Data sets

Eight data sets are employed to conduct our experiments, including four benchmark data
sets (i.e., Chess, Hillva, Vechile, and Newsgroup) from UCI Machine Learning Repository,1

and image data sets (i.e., Coil,2 Yaleb,3 Orl4) and one signal data set Isolet.5 We give a
detailed description about these data sets in Table 2.

5.2 Comparisonmethods

To test the performance of the proposed method, nine state-of-the-art are employed to
be tested including the Baseline, two filter-based methods (i.e., LS LLES), two graph-
based manifold methods (i.e., Ncut and Rcut), four embedded-based methods (i.e., CDLFS,
SCUFS, RUSFS, and RNE). Besides, we introduce the comparison schemes as follows,

– Baseline [16] uses K-means way to work on all features, and then, updates sam-
ples assignment and centroids computation iteratively until the clustering results are
obtained.

– Ratio cut (Rcut) [15] constructs a graph based on all samples, and utilizes normalized
segmentation criterion to finish data division.

– Normalized cut (Ncut) [41] converts clustering task into graph partitioning problem
by extracting the global representation of all data.

– Laplacian Score (LS) [17] belongs to a filter-based unsuperivsed learning model which
keeps local relationships by graph Laplacian and selects the feature subset with larger
scores.

– Coupled Dictionary Learning Feature Selection (CDLFS) [56] uses dictionary
learning to reconstruct the data and learns a coefficient matrix to represent feature
importance.

– Locally Linear Embedding Score (LLES) [52] measures relations of features and
maintains the local structure between features in original data, as well as selects larger
scores of features for the final clustering task.

1https://archive.ics.uci.edu/ml/.
2https://featureselection.asu.edu/datasets/php.
3https://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
4featureselection.asu.edu/datasets/php.
5featureselection.asu.edu/datasets/php.

15317Multimedia Tools and Applications (2023) 82:15305–15326

https://archive.ics.uci.edu/ml/
https://featureselection.asu.edu/datasets/php
https://www.cad.zju.edu.cn/home/dengcai/Data/data.html
featureselection.asu.edu/datasets/php
featureselection.asu.edu/datasets/php


Table 2 The description of the data sets

Data sets Samples Dimensions Classes Types

Chess 3196 36 2 Multivariate

Hillva 606 101 2 Sequential

Vechile 846 18 4 Multivariate

Newsgroup 20000 256 12 Text

Coil 1024 1440 20 Image

Isolet 1560 617 26 Signal

Yaleb 1024 2414 38 Image

Orl 1024 400 40 Image

– Subspace Clustering guided Unsupervised Feature Selection (SCUFS) [57]
employs self-representation and sparse subspace learning to search a robust graph
representation and coefficient matrix.

– Robust Unsupervised Spectral Feature Selection (RUSFS) [58] considers both local
structure and global structure of samples and features separately, and employs �2,1-
norm to remove the unimportant features.

– Robust Neighborhood Embedding (RNE) [27] selects the important features subset
by minimizing reconstruction error with �1-norm regularization constrain.

The employed comparison methods contain one Baseline method, two graph partition
methods (i.e., Rcut and Ncut), two filter methods (LS and LLES), and four embedded meth-
ods (CDLFS, SCUFS, RUSFS, and RNE). Thereinto, graph partition-based methods use
graph representation to consider samples’ local correlations combining with clustering task
which can also guide the samples preservation among the data, but they do not consider
the feature importance and select the representative features for the task learning. Filter-
based methods employ the specific evaluation method (i.e., Laplacian score or locally linear
embedding score) to select the informative features after ranking the scores of all features
for the task learning. However, they do not take the importance of samples and features into
account at the same time. Embedded-based methods employ different ways to the learning
of important features where the coefficient weight is used to calculate the scores of features.
But all of them consider either the part of samples importance using a self-representation
way or feature importance using sparse learning, the considerations are insufficient.

5.3 Experimental setting

We repeated the K-means clustering process twenty times and obtained the final clustering
results by calculating the average of all results, preserving the fair experimental environment
and avoiding the problem of initialization for all methods. Additionally, we followed the
parameters setting of each comparison method by the suggestion from the original paper.
For our scheme, there are two variables (i.e., α and γ ) that are setting to {10−3, ..., 103},
and p is setting to [0.5, 1.0, 1.5, 2.0], and we reported the best clustering performance by
employing a heuristic search strategy. For simplicity, we let c to be equal to the number of
classes for all methods.

We compared all methods using three evaluation metrics, i.e., clustering ACCuracy
(ACC), Normalized Mutual Information (NMI), and Purity. All metrics were limited
between 0 and 1, and the higher value the metric is, the better result the clustering task
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Table 3 The clustering results on four Benchmark data set

Methods Chess Hillva Vechile Newsgroup

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

Baseline 0.515 0.175 0.534 0.508 0.059 0.519 0.462 0.227 0.466 0.271 0.045 0.264

Rcut 0.531 0.397 0.590 0.539 0.101 0.554 0.492 0.371 0.484 0.277 0.037 0.271

Ncut 0.540 0.266 0.564 0.522 0.073 0.538 0.494 0.331 0.492 0.273 0.032 0.266

LS 0.595 0.477 0.582 0.551 0.151 0.548 0.561 0.401 0.555 0.381 0.112 0.415

CDLFS 0.651 0.501 0.644 0.584 0.189 0.572 0.593 0.444 0.580 0.401 0.144 0.433

LLES 0.657 0.519 0.658 0.599 0.192 0.610 0.627 0.420 0.611 0.459 0.202 0.466

SCUFS 0.674 0.490 0.666 0.618 0.174 0.604 0.619 0.488 0.607 0.470 0.198 0.483

RUSFS 0.688 0.503 0.675 0.634 0.202 0.647 0.644 0.489 0.641 0.517 0.233 0.497

RNE 0.672 0.511 0.680 0.642 0.222 0.628 0.655 0.509 0.633 0.528 0.206 0.513

Proposed 0.683 0.532 0.687 0.649 0.238 0.642 0.662 0.493 0.637 0.535 0.227 0.518

has. Moreover, we investigated the proposed method performance in two sides, such as the
parameters’ sensitivity, convergence performance of the proposed method.

5.4 The results of clustering performance

Tables 3 and 4 indicated clustering results of all approaches we compared and all data
sets we experimented with. Obviously, the proposed method obtained the best clustering
performance in most of data sets, followed by RUSFS, RNE, SCUFS, LLES, CDLFS, LS,
Rcut, Ncut, and Baseline. For instance, the proposed method improved averagely by 2.55%,
0.26%, and 1.63%, respectively, compared to the best comparison method (i.e., RUSFS)
with regard to ACC, NMI, and Purity in all data sets. Hence, we obtain the observations as
follows.

First, the clustering performance of embedded-based methods are better than filter-based
and graph-partition. For example, the proposed method averagely increased by 6.18% and

Table 4 The clustering results on four common data sets

Methods Coil Isolet Yaleb Orl

ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

Baseline 0.654 0.765 0.665 0.611 0.759 0.639 0.098 0.130 0.114 0.527 0.726 0.517

Rcut 0.642 0.748 0.645 0.577 0.680 0.594 0.118 0.190 0.134 0.494 0.699 0.531

Ncut 0.645 0.686 0.629 0.555 0.688 0.583 0.122 0.174 0.151 0.489 0.675 0.557

LS 0.627 0.735 0.632 0.592 0.737 0.565 0.091 0.142 0.123 0.496 0.713 0.519

CDLFS 0.648 0.744 0.641 0.629 0.727 0.615 0.137 0.234 0.145 0.552 0.723 0.564

LLES 0.666 0.767 0.662 0.559 0.688 0.551 0.137 0.195 0.124 0.534 0.734 0.547

SCUFS 0.685 0.775 0.674 0.612 0.748 0.623 0.159 0.242 0.173 0.565 0.734 0.560

RUSFS 0.697 0.801 0.720 0.645 0.788 0.679 0.180 0.263 0.211 0.594 0.753 0.611

RNE 0.669 0.770 0.663 0.628 0.772 0.634 0.117 0.171 0.136 0.554 0.752 0.599

Proposed 0.685 0.799 0.721 0.657 0.791 0.664 0.271 0.229 0.264 0.661 0.744 0.678
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Fig. 1 The sensitivity of α and γ of the proposed method on all data sets
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Fig. 2 The sensitivity of p of the proposed method on all data sets
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Fig. 3 The Objective function value of the proposed method at different iterations on all data sets
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12.38% compared to the best filter-based method (i.e., LLES) and the best graph-partition
method (i.e., Rcut), respectively, in terms of three evaluation metrics. This shows that the
embedded method demonstrated the superior performance and the better model construction
than the other two approaches.

Second, most of comparison methods are better than Baseline which utilizes K-means
on the original data set. For example, the proposed method and the worst embedded-based
method (i.e., CDLFS) improved on average by 14.46% and 6.86% in regards to ACC in
all data sets, respectively. This demonstrates the effect of feature selection is necessary to
explore the representative features and to be helpful for the clustering task.

5.5 Parameters’ sensitivity

We adjusted the parameter α and γ in {10−3, ..., 103} and p in [0.5, 1.0, 1.5, 2.0], and the
results can be found in Figs. 1 and 2.

In Fig. 1, the combination of parameters in the proposed method are sensitive to the
parameters’ setting in the experiments. In other words, various parameters combination may
output various clustering results. Therefore, it is essential to tune the parameters for the
proposed method. For example, our method obtains the best clustering results on the data set
Vechile and Isolet while setting α = 102, γ = 10−3 and α = 10, γ = 10−2, respectively.

In Fig. 2, diverse values of the parameter p relate to the clustering performance have
been demonstrated, which is denoted by “Proposed-A”, and “Porpoosed-B” denotes the best
clustering performance of our proposed method. For the most of data sets, as the value of p

increases, the clustering result first rises and then falls. For example, our method obtains the
best clustering results (i.e., 68.3%) when p = 1 and the worst clustering results (i.e., 62.5%)
when p = 0.5 on the data set Chess. Similarly, our method obtains the best clustering results
when the value of p is between 1 and 1.5 on the data set Coil.

5.6 Convergence analysis

In Fig. 3, the convergence performance of each data set can be found. Thereinto, the objec-
tive function value is monotonically reduced in (9) until Algorithm 1 obtains convergence.
Moreover, by observing all figures, we found fifteen iterations may be the best times for
most of the data sets which obtaining convergence results. Hence, the proposed Algorithm 1
is efficient for the most of data sets.

6 Conclusion

In this article, we have proposed a new unsupervised learning model to feature selection, via
involving two components, including both global and local structure preservation to samples
by self-representation way and graph representation, and local information and global infor-
mation consideration to features by mutual information and sparse learning. Moreover, the
better sample correlations and the reliable adjacent information are considered by dynamic
graph learning and low-rank constraint, respectively, for clustering task. Experiments on
eight data sets with nine comparison approaches have verified the validity of the proposed
model.
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