
Vol.:(0123456789)

https://doi.org/10.1007/s10707-022-00469-y

1 3

HyperQuaternionE: A hyperbolic embedding model 
for qualitative spatial and temporal reasoning

Ling Cai1,2   · Krzysztof Janowicz1,3 · Rui Zhu1,4 · Gengchen Mai1 · Bo Yan1 · 
Zhangyu Wang1

Received: 21 December 2021 / Revised: 11 May 2022 / Accepted: 13 July 2022 / 

© The Author(s) 2022

Abstract
Qualitative spatial/temporal reasoning (QSR/QTR) plays a key role in research on human 
cognition, e.g., as it relates to navigation, as well as in work on robotics and artificial intelli-
gence. Although previous work has mainly focused on various spatial and temporal calculi, 
more recently representation learning techniques such as embedding have been applied to 
reasoning and inference tasks such as query answering and knowledge base completion. 
These subsymbolic and learnable representations are well suited for handling noise and 
efficiency problems that plagued prior work. However, applying embedding techniques to 
spatial and temporal reasoning has received little attention to date. In this paper, we explore 
two research questions: (1) How do embedding-based methods perform empirically com-
pared to traditional reasoning methods on QSR/QTR problems? (2) If the embedding-
based methods are better, what causes this superiority? In order to answer these questions, 
we first propose a hyperbolic embedding model, called HyperQuaternionE, to capture 
varying properties of relations (such as symmetry and anti-symmetry), to learn inversion 
relations and relation compositions (i.e., composition tables), and to model hierarchical 
structures over entities induced by transitive relations. We conduct various experiments on 
two synthetic datasets to demonstrate the advantages of our proposed embedding-based 
method against existing embedding models as well as traditional reasoners with respect to 
entity inference and relation inference. Additionally, our qualitative analysis reveals that 
our method is able to learn conceptual neighborhoods implicitly. We conclude that the suc-
cess of our method is attributed to its ability to model composition tables and learn concep-
tual neighbors, which are among the core building blocks of QSR/QTR.
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1  Introduction

In our daily life, we humans usually use qualitative expressions, such as left, north, after 
and during, to describe and infer spatial/temporal relations between two objects. The field 
that studies how to enable machines/artificial intelligence (AI) agents to represent qualita-
tive spatial and temporal expressions, and to draw inferences on top of these representa-
tions, namely qualitative spatial/temporal reasoning (QSR/QTR), is an active research topic 
in AI. In the past years, it has fostered a variety of research across various applications such 
as cognitive robotics [1], visual sensemaking [2], semantic question answering  [3], spatio-
temporal data mining [4] and (spatial) cognition and navigation [5, 6].

Since the late 1980s, a plethora of theoretical research have been dedicated to computa-
tional QSR/QTR [7–16]. Among them two best studied fundamental problems in qualita-
tive reasoning (QR) are qualitative knowledge representation and reasoning. In the past, 
a lot of work has focused on the knowledge representation aspect. For instance, non-null 
regions in an n-dimensional embedding space ℝn [17] are taken as ontological primitives, 
and binary topological relations, i.e., Region Connection Calculus (RCC)-8 relations  [8, 
18], and Allen’s temporal relations  [7] as primitive relations between two regions/time 
intervals. Reasoning, however, remains to be a challenge. Composition tables (CT) and 
conceptual neighborhood structures (CNS) are among the major reasoning techniques, 
jointly supporting inferences about spatial and temporal relations between geospatial enti-
ties or events  [5, 8, 19, 20]. For instance, one can use CT as constraints to reason over 
spatial relations. Simply put, such a method regards known binary relations as constraints 
between regions. Then the reasoning task boils down to a consistency satisfactory problem 
(CSP), i.e., to determine whether the available information is consistent or not, given the 
CT. For example, as shown in Fig. 1, the possible topological relation between property1 
and property2 is either partially overlap or externally connected after path-consistency 
checking built up on RCC-8’s composition table [21, 22].

Despite those success stories of traditional QR approaches, several limitations remain. 
First, constraint-based methods are prone to erroneous information, e.g, introduced by 
noise. Errors may occur at any stage during information collection, and, thus, are inevitable 

*

*

po|ec

po

(b)(a)

Fig. 1   Constraint network-based reasoning. The symbol ∗ in red denotes all RCC-8 relations. Full names of 
relations are described in Table 1. Figure 1(a) illustrates the initial constraints between entities imposed by 
the relations on edges, and Fig. 1(b) shows the resulting relations after path-consistency checking
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in reality, which may break down the traditional reasoning capabilities. For instance, if the 
relation between house2 and property2 is wrongly recorded as dc instead of ec, inferring 
unknown relations based on CT will fail. Second, traditional QR approaches are only appli-
cable to a limited number of reasoning tasks, such as deducing new knowledge, check-
ing consistency, updating existing knowledge, and discovering a minimal set of useful 
representations. Albeit seemingly different, all these tasks are in fact mutably transform-
able and can be solved essentially in a similar fashion  [23]. Such a shortage of applica-
tions is partially attributed to the symbolic knowledge representation used in traditional 
QR, which prohibits it from being beneficial to other tasks which purely rely on numeric 
computations. Meanwhile, the symbolic representation of knowledge is usually in the form 
of triples (i.e., ⟨subject, relation, object⟩ ). Traditional QR approaches only make full use 
of pairwise constraints between entities while failing to benefit from higher-order inter-
actions. Third, reasoning over spatial/temporal calculi is NP-complete [21], which makes 
traditional QR methods difficult to scale. Extra efforts (e.g., identifying maximal tracta-
ble subsets containing all basic relations and different optimizing strategies) are needed 
to improve the efficiency, which becomes even more problematic with an increasing num-
ber of relations. These limitations, consequently, necessitate more robust spatial/temporal 
reasoners.

The past decade has witnessed great breakthroughs in Machine Learning (ML). Embed-
ding/sub-symbolic techniques, in particular, have been applied to tackle various reason-
ing tasks. Examples include word/sentence similarity measuring  [24–26], question/query 
answering [27–30], dynamic interaction inference [31], as well as knowledge graph com-
pletion and reasoning [32–35]. Generally speaking, their success can be attributed to learn-
able sub-symbolic representations (i.e., embeddings) in contrast to symbolic representa-
tions. At training, an embedding method is trained to draw patterns of and interactions 
between entities from data and sub-symbolic representations of entities are learned accord-
ingly. This training process is analogous to knowledge abstraction, which preserves the 
core essentials of entities but ignores subtle details. Moreover, such a process of automatic 
abstraction makes embedding models less prone to local errors and data incompleteness, 
and improve their generability [36, 37].

Despite their appealing characteristics, the adoption of sub-symbolic approaches to 
QSR/QTR remains mostly unexplored. To fill in this gap, we propose a hyperbolic embed-
ding model, called HyperQuaternionE, as an implicit reasoner for spatial and temporal 
reasoning. In the model design, we consider the following two prominent characteristics 
of spatial/temporal reasoning. First, composition tables, which specify role chains of rela-
tions, have been the backbone of most qualitative reasoning methods. In order to enable 
embedding models to automatically find and take use of such role chains, we introduce 
quaternions, an extension of complex numbers, in the embedding space. Quaternion muti-
plication follows the non-commutative law and thus is well suited for modeling relation 
composition. Additionally, quaternions can be used to model other properties of relations 
(e.g., symmetric and anti-symmetric) and inverse relations. Second, hierarchical structures 
over entities must be considered. Certain spatial and temporal relations, such as non-tan-
gentially proper par and before, are transitive, thus inducing hierarchical structures over 
entities (e.g., regions or temporal intervals). This suggests that a hyperbolic embedding 
space, which can embed trees with arbitrarily low distortion [38], would be more appropri-
ate than Euclidean space. Therefore, we adopt hyperbolic space as our embedding space 
and transfer quaternions to this space to preserve the properties mentioned above. We eval-
uate our method on two tasks, namely entity inference and relation inference, which are to 
identify entities that have a given (spatial/temporal) relation (e.g., partially overlapping) 
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to a target entity, and to infer the relation held between two given entities, respectively. 
Finally, we conduct a qualitative analysis over the trained models in order to uncover the 
reasoning mechanisms behind our model.

The remainder of this paper is structured as follows. Section  2 introduces important 
concepts and terms applied in the proposed method. Section 3 summarizes related work 
on spatial and temporal reasoning, knowledge graph embedding models, and their applica-
tions in geospatial knowledge graphs. Section 4 elaborates on the motivation of our pro-
posed embedding model and its formulation. To compare the reasoning ability of different 
models, Section 5 presents the datasets, baseline methods, as well as evaluation metrics 
used in the study, followed by an experimental summary of key findings. Section 6 con-
cludes our work and points out future research directions.

2 � Background

Before reviewing related work, we first introduce concepts and terms used in the literature.

2.1 � Basic definitions

Definition 1  (Spatial and Temporal Relations) In this paper, we focus on the eight topo-
logical relations of RCC-8 [8], and the thirteen temporal relations developed by Allen [7]. 
Table 1 and 2 list those relations together with their inherent properties (i.e., transitive and 
symmetric).

Definition 2  (Knowledge Graphs) Formally, a Knowledge Graph (KG) can be represented 
as G = (V ,E) , where V is the set of nodes/entities and E is the set of edges with labels, 
denoting relations held between two entities. A statement then consists of a head entity, 
a relation, and a tail entity, written as ⟨h, r, t⟩ , where h, t ∈ V  and r = �(e), e ∈ E . � is a 
mapping function from an edge to its label. One way to represent such a type of knowledge 
is known as the RDF (Resource Description Framework), a standard mostly used in the 
Semantic Web literature. We use the term Knowledge Graph here to denote such a set of 
RDF statements. Naturally, a statement claiming a spatial or temporal relation between two 
entities (i.e., geometries or temporal intervals) can be represented as a triple. For instance, 

Table 1   List of spatial relations Name (abbrev.) Transitive Symmetric

disconnected (dc) ✗ ✓
externally connected (ec) ✗ ✓
partially overlapping (po) ✗ ✓
tangentially proper part (tpp) ✗ ✗
tangentially proper part inverse (tppi) ✗ ✗
non-tangentially proper part (ntpp) ✓ ✗
non-tangentially proper part inverse (ntppi) ✓ ✗
equal (eq) ✓ ✓
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a statement that geometry A is disconnected to geometry B can be represented as triple 
⟨A, dc,B⟩ . Note that we use a unified name – spatial KGs (SKGs) – to refer to KGs involv-
ing only spatial relations or/and temporal relations.

Definition 3  (Knowledge Graph Embedding) Given their symbolic nature, it is difficult 
to apply RDF-based knowledge graphs directly to applications that require notions such 
as quantitative measurements of similarity. For instance, most recommender systems are 
built upon sub-symbolic approaches and it is hard for symbolic KGs to contribute directly. 
In order to address this limitation, knowledge graph embeddings (KGE) were proposed, 
which aim at encoding entities and relations of a KG into a high-dimensional continuous 
vector space while preserving the underlying structures. Specifically, a KGE model pro-
jects symbolic representations of a head entity and a tail entity – h and t, to points in a con-
tinuous vector space – their numeric vector representations, � and � , respectively. Addition-
ally, it assumes the relation r acts as a transformation operator, transforming � to � in this 
continuous space, such as translation, rotation, etc. Note that we use plain symbols (e.g., h) 
to denote symbolic representations and the bold format (e.g., � ) to denote numeric vector 
representations.

Mathematically, the embedding of an entity, or a relation, is mostly formalized as 
� ∈ ℝ

d , or � ∈ ℝ
d , in Euclidean space. Trained on symbolic representations of statements 

presented in KGs, a KGE model is optimized towards minimizing the loss of reproduc-
ing those presented statements. More details on embedding models will be reviewed in 
Section 3.

Definition 4  (Entity Inference) Entity Inference refers to answering queries in which one 
of the entity in a statement is missing, usually expressed as either ⟨?h, r, t⟩ or ⟨h, r, ?t⟩ , cor-
responding to missing head or missing tail entities. A plain text example would be which 
city is located in California?, or which event occurred during the COVID-19 pandemic?

Definition 5  (Relation Inference) Relation Inference refers to inferring the relation 
between two entities, usually in the form of ⟨h, ?r, t⟩ . Example queries include: what is the 
topological relation between Los Angeles to California? and which temporal relation holds 
between the Bronze Age and Stone Age?

Definition 6  (Quaternion) A quaternion q has the form of q = a + bi + cj + dk , where 
a, b, c, d ∈ ℝ and a is the real part and bi, cj, dk are three imagery parts. Alternatively, we 

Table 2   List of temporal relations

Name (abbrev.) Transitive Symmetric Name (abbrev.) Transitive Symmetric

before (<) ✓ ✗ after (>) ✓ ✗
meets (m) ✗ ✗ met-by (mi) ✗ ✗
overlaps (o) ✗ ✗ overlapped-by (oi) ✗ ✗
during (d) ✓ ✗ contains (di) ✓ ✗
starts (s) ✓ ✗ started-by (si) ✓ ✗
finishes (f) ✓ ✗ finished-by (fi) ✓ ✗
equal (=) ✓ ✓
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can express a quaternion as [a,�] , where � ∈ ℝ
3 , consisting of three imagery components. 

q is a pure quaternion when a = 0.

It was first introduced in 1843 by Irish mathematician William Rowan Hamilton and 
applied to mechanics in 3D space. We can view it as a generalization of complex numbers 
(i.e., a + bi ) but it contains two more imagery parts. Similar to multiplication over complex 
numbers, there is a rule for the three imagery units i, j, k: i2 = j2 = k2 = ijk = −1 . Accord-
ing to polynomial multiplication, the multiplication of two quatertions qx = a + bi + cj + dk 
and qy = e + fi + gj + hk can be calculated as below:

According to (1), we can easily derive that qxqy ≠ qyqx , meaning that quaternion multi-
plication does not conform to the commutative law. This lays the foundation of modeling 
asymmetric composition tables for qualitative spatial and temporal reasoning, which will 
be discussed in Section 4.

Important properties and definitions of quaternions are given as below: 

1.	 Inversion of a quaternion: qq−1 = q−1q = 1 (q ≠ 0).
2.	 Conjugate of a quaternion: q∗ = a − bi − cj − dk = a − � . In addition, (pq)∗ = q∗p∗.
3.	 Norm of a quaternion: ‖q‖ ∶=

√
qq∗ =

√
q∗q =

√
a2 + b2 + c2 + d2 =

√
a2 + ‖�‖2 . 

When ‖q‖ = 1 , we call q a unitary quaternion, denoted as qu.

Because qq∗ = q∗q = ‖q‖2 , one way of deriving quaternion inverse is q−1 = q∗

‖q‖2 . In par-
ticular, when q is a unitary quaternion, q−1 = q∗.

Definition 7  (Hyperbolic Space) Hyperbolic space is a homogeneous space which exhibits 
hyperbolic geometry with a constant negative sectional curvature.

There are different hyperbolic models to describe hyperbolic space mathematically, 
such as the Poincaré plane model  [39] and the hyperboloid model (the Lorentz 
model)  [40]. Here, we introduce the Poincaré ball model, which is the generalization of 
the Poincaré plane model. Mathematically, a d-dimensional Poincaré ball of radius 
1√
c
(c > 0) can be expressed as 𝔹d

c
= {� ∈ ℝ

d
∶ c‖�‖2 < 1} , where ‖ ⋅ ‖ is the Euclidean 

norm. Such a ball has a negative curvature −c , and with a larger c, the space is more 
curved. Note that Euclidean space has a curvature of zero, corresponding to c = 0 , and 
spherical space has a constant positive curvature. When c = 1 , the distance between two 
points in the hyperbolic space is given by:

where ‖ ⋅ ‖ is the Euclidean norm.
This formula provides a desirable property that allows hyperbolic space to embed trees/

hierarchical data. According to this formula, we can observe that when a point is close 
to the origin (i.e., ‖�‖ ≈ 0 ), the distance between it and any other point will be smaller. 

(1)qxqy = (a + bi + cj + dk) ∗ (e + fi + gj + hk) =

⎡
⎢⎢⎢⎣

a − b − c − d

b a − d c

c d a − b

d − c b a

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e

f

g

h

⎤⎥⎥⎥⎦

(2)dH(�, �) = arcosh(1 + 2
‖� − �‖2

(1 − ‖�‖2)(1 − ‖�‖2) )
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Conversely, as points move towards the boundary of the ball (e.g., ‖�‖ ≈ 1 ), the distance 
will be larger and the distance dH(�, �) between two points approaches dH(�, 0) + dH(0, �) . 
Also, as points move away from the root/origin, more “space” is available to separate 
points (e.g., nodes in a tree) in hyperbolic space. This is analogous to the shortest distance 
between two sibling nodes in a tree, which is equal to the length of the path through their 
parent. This means hyperbolic distance exhibits a desirable resemblance to tree metrics. 
Figure 3 illustrates how a tree-like 2D embedding space looks like.

3 � Related work

A plethora of Knowledge Graph Embedding (KGE) models have been developed in the 
past decade. Relations in KGs have different properties, such as symmetry, anti-symme-
try, inversion, and transitivity  [42]. Different models preserve varying properties due 
to distinct ways of manipulating relations. Accordingly, we roughly divide them into 
four groups – translation, rotation, mixed manner, and others. Particularly, this group 
focuses on which properties of relations (e.g., symmetric and inverse) are preserved and 
whether the model is able to encode relation composition by design. Last but not least, 
we review related work on hyperbolic embeddings, which sheds lights on modeling 
hierarchical relations.

Relations as translation  The most representative KGE model is TransE  [43]. It 
assumes that for a statement ⟨h, r, t⟩ , � is resulted from � being translated by � in a vec-
tor space. Translation operation in a real vector space can be easily achieved by vector 
addition, and thus the idea of TransE is formalized as � + � = � . A number of variants 
were proposed subsequently to address issues with the original TransE. For example, 
TransH argued that TransE cannot deal with other types of relations except for 1-to-1 
relation type, and, thus, introduced relation-aware hyperplanes [44]. TranSparse intro-
duced adaptive sparse matrices to address the heterogeneity and imbalance issues of 
entities and relations in KGs [45]. This group of methods is simple yet very effective, 
and lays the foundation of most KGE methods. However, they fail to encode simple 
properties of relations and logic patterns. For instance, they cannot model symmetric 
property of relations. If relation r is symmetric, both � + � = � and � + � = � should 
hold according to TransE, which leads � to be close to � . Additionally, although TransE 
is able to achieve relation composition, the order of relations is not considered. Namely, 
it presumes that r1◦r2 = r2◦r1 . Therefore, TransE ignores the non-commutativity law 
in relation composition, which causes issues in modeling role chains in composition 
tables for spatial and temporal reasoning. Moreover, TransE cannot deal with hierar-
chical relations either.

Relations as rotation  One seminal example in this group is RotatE, which assumes that a 
relation acts as a rotation in 2D space and encodes a relation as a unit complex vector [42]. 
Similar to TransE in the real space, RotatE can be formalized as ‖�⊗ � − �‖ = 0 , where 
⊗ is the vector multiplication in the complex space instead. RotatE by design succeeds in 
modeling multiple logic patterns, such as symmetry, anti-symmetry, inversion, and relation 
composition. However, it is incapable of dealing with the order of relations in composition, 
either. Recently, due to the non-commutative law of quaternion multiplication, quaternions, 
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which have two more imaginary elements than complex numbers, have been introduced to 
address this issue. RotatE3D assumes that a tail entity is resulted from a head entity being 
rotated by �in3D [46]. Despite its effectiveness in capturing various logic patterns, it falls 
short of modeling hierarchical relations from transitive relations. Such relations are in fact 
prominent in spatial and temporal reasoning since most spatial/temporal relations are tran-
sitive. In this paper, we also make use of quaternions to capture additonal logic patterns 
and extend it to hyperbolic space in order to encode hierarchical structures.

Relations as mixed operators  Recently,  [47] argue that existing work considers the rela-
tion to be either a translation or rotation operator but not both, thus limiting the representa-
tional and inferring ability of sub-symbolic models. Hence, they introduce dual quaternions 
to represent relations, which embrace the properties of translation and rotation simultane-
ously. Despite its intuitive physical and geometric interpretations, the unified framework do 
not improve significantly on data sets that encode hierarchical hypernym relations, such as 
specific type of.

Other methods  Another track of studies are based on tensor factorization, such as Dist-
Mult [48] and RESCAL [49] in real space and ComplEx [50] and TNTComplEx [51] in 
complex space. This type of methods measures the compatibility score of two entities and a 
relation in a statement. For example, DistMult defines the score as the result of �⊙ � ∗ �T , 
where ⊙ is the element-wise vector multiplication and ∗ the dot product. Such methods do 
not have intuitive geometric interpretations and often fail to capture logic patterns as well 
as properties of spatial/temporal relations.

Hyperbolic embeddings  All the aforementioned methods are not effective in modeling 
hierarchical data, since their embeddings are built in Euclidean space. Recent embedding 
methods based on hyperbolic geometry exhibit promising results when modeling parsimo-
nious and taxonomic patterns in data, since hyperbolic geometry is natural to model tree-
like structures with low distortion   [38, 52–55]. Specifically, as a counterpart to TransE 
in the hyperbolic space, MuRP, was proposed by [54] to handle hierarchical data in KGs. 
It achieves remarkable performance with fewer parameters than TransE. However, MuRP 
faces the same issues as TransE does since they both conform to the translation assump-
tion. In order to encode various logic patterns and to preserve other properties of rela-
tions, [56] proposed to combine hyperbolic rotation and reflection with attention. While 
substantial improvements are observed, this method mainly focuses on anti-symmetric and 
symmetric relations. On the contrary, our paper aims at taking a broader range of relation 
properties (e.g., symmetric and anti-symmetric), inverse relation, and relation composition 
(i.e., role chains in composition tables) into account when designing an embedding model 
for QSR/QTR.

4 � HyperQuaternionE

In this section, we first introduce the motivation of the proposed embedding model and 
then formulate the idea mathematically.
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4.1 � Motivation

Composition tables, which specify role chains of relations1, have been widely used in tra-
ditional qualitative spatial and temporal reasoning methods, and are identified as one of 
the key reasoning techniques [5, 8, 19]. An embedding method should also be able to auto-
matically find and take full use of such role chains in its inference and reasoning. One 
core requirement for such an embedding method is to model asymmetric role chains in 
composition tables; namely r1◦r2 ≠ r2◦r1 , where ◦ denotes the composition operation. For 
example, if we know geographic entity A is disconnected to geographic entity B and B 
is tangential proper part of geographic entity C, the relation of A to C will fall into one 
of five possible relations, i.e., dc, ec, po, tpp or ntpp according to the composition table. 
By contrast, if we first know A is tangential proper part of B and B is disconnected to 
C, then the relation of A to C must be disconnected. This means the order of relations 
in role chains matters. In order to take this into account, we use quaternions, an exten-
sion of complex numbers, to automatically capture role chains from training data, thanks 
to the non-commutative law of quaternion multiplication. Additionally, quaternions can be 
readily used to model varying properties of relations (e.g., symmetric and anti-symmetric 
relations) and inverse relations, which further contributes to inference and reasoning over 
spatial and temporal information.

In addition to the need of capturing role chains in composition tables, we notice that 3/8 
spatial relations in RCC8, and 9/13 temporal relations in Allen’s temporal intervals [7] are 
transitive (see Tables 1 and 2). Geometrically, transitive relations usually induce tree-like 
structures over entities, in which as the depth of a tree increases, the number of child nodes 
grows exponentially. As shown in Fig. 2, as the root – the US, branches out, more and more 
child nodes emerge. Also, although some relations (such as tpp and tppi) are not transitive, 

the US

CA

AZ

NY

Fig. 2   Example of a hierarchical tree. This tree is induced by ntppi (non-tangentially proper part inverse) 
relation, which means a preceding entity has a nttpi relation to its succeeding entities in this tree

1  For instance, if entity A is non-tangential proper part of entity B and entity B is externally connected to 
entity C, then entity A must be disconnected to entity C.
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they may still induce a tree-like structure over entities to some degree. Thereby, an embed-
ding method for spatial and temporal reasoning should be built on a suitable embedding 
space, which is able to encode non-Euclidean structures exhibited in data (e.g., hierar-
chies). Past works have demonstrated that hyperbolic embeddings are more suitable for 
data exhibiting non-Euclidean geometric properties, such as hierarchy [38]. This is because 
hyperbolic space can be naturally viewed as a continuous analogy to hierarchical trees in 
discrete space and it grows exponentially with an increasing radius, which corresponds 
to an exponential increase in the number of child nodes with increasing tree depth  [54]. 
Therefore, given the abundance of transitive spatial/temporal relations, we embed entities 
and relations in hyperbolic space rather than Euclidean space.

Despite the aforementioned advantages of quaternions and hyperbolic space, the tech-
nical bottleneck of the model design rests on how to harmonize quaternions and hyper-
bolic space while preserving their respective properties. The transformation of quaternions, 
which are originally defined in Euclidean space, into a hyperbolic space is not trivial, since 
quaternion-related vector operations (e.g., vector addition, matrix-vector multiplication, 
and vector inner product over quaternions) and geometric metrics (e.g., the closed form of 
distance) in Euclidean space is hard to be generalized to hyperbolic space.

In this paper, we propose a hyperbolic embedding model, called HyperQuaternionE, in 
which this challenge is tackled. In the following, we will first introduce preliminary con-
cepts and notations, then propose our model, and finally analyze which relation properties 
and composition patterns our model can preserve.

4.2 � Preliminaries

Quaternion multiplication and 3D rotation  As mentioned above, one significant advan-
tage of using quaternions in KGE models lies in the ability of quaternions to model asym-
metric role chains in composition tables; namely r1◦r2 ≠ r2◦r1 . This is guaranteed by 
the non-commutative law of quaternion multiplication (Definition 6). Here, we give a 
geometrical interpretation by contrasting the role of complex numbers in 2D rotation and 
that of quaternions in 3D rotation. In 2D space (see RotatE  [42]), a 2D rotation can be 
achieved by the multiplication of a complex number (i.e., a 2D vector to be rotated) and 
a unitary complex number (i.e., the rotating angle). The rotation direction is either clock-
wise or counter-clockwise, and the rotation is around the origin. Thus, the order of two 
consecutive rotations does not make a difference to the resulting vector. That is, the result 
of rotating a vector by �1 first and then by �2 is the same as that of rotating the same vector 
by �2 first and then by �1 ; both equal to rotating a vector by an angle of �1 + �2 at the end. 
By contrast, quaternions are related to rotations in 3D space, which are originally used in 
computer graphics [57, 58]. Any point in 3D space in the form of vectors can be expressed 
as a pure quaternion, and 3D rotation as quaternion multiplication over a pure quaternion 
(i.e., the point to be rotated) and a unitary quaternion (i.e., the rotation). Unlike rotations 
in 2D space, where a vector is always rotated around the origin, each 3D rotation specifies 
a distinct rotating axis and a rotating angle. That is, rotating results are determined by both 
rotation axes and angles. As such, the result of performing several 3D rotations over a vec-
tor consecutively differs from that of performing the same 3D rotations in another order.

Mathematically, 3D rotations can be formalized as (1). We denote the 3D point ( � ∈ ℝ
3 ) to 

be rotated as a pure quaternion v = [0, �] , a unitary quaternion qu = [cos(�), sin(�)�] ( � is 
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the rotating angle and � is the rotating axis) as the rotating vector and the resulting point as 
v� = [0, ��] ( �� ∈ ℝ

3).

Theorem 1  (Euler-Rodrigues-Hamilton Formula   [59]) Any rotation in 3D space can be 
derived by quaternion multiplication. The result of rotating a 3D point � by an angle of � 
around a unit axis � (i.e., qu ) can be expressed as follows:

where v‖ is the component of � parallel to � and v⊥ the component of � perpendicular to 
� . qu = p2

u
 and pu = [cos(

�

2
), sin(

�

2
)�] . This theorem can be interpreted as the component 

of � perpendicular to � is rotated twice by �
2
 around � . Proofs to this theorem can be found 

in [59, 60].

Theorem 2  Product of two unit quaternions is still a unit quaternion.

Proof  Let p and q be two arbitrary quaternions. According to Property 2 in Definition 6, 
‖pq‖ =

√
pq(pq)∗ =

√
pqq∗p∗ =

√
p(qq∗)p∗ =

√
pp∗

√
qq∗ = ‖p‖‖q‖ . Thus when p and q 

are unit quaternions; namely ‖p‖ = ‖q‖ = 1 , ‖pq‖ = 1 , i.e., pq is a unitary quaternion. This 
property ensures that a number of consecutive rotations can be replaced by a single rota-
tion, which is fundamental to the modeling of relation composition.

Poincaré Ball Model  Similar to [54] and [56], this work uses a d-dimensional Poincaré 
ball model to form the hyperbolic embedding space for embedding tree-like structures ( 
Definition 7). Reasons for choosing such a model are two-fold. It provides convenient com-
munication between hyperbolic space and Euclidean space via exponential and logarithmic 
maps  [52], thus making it relatively easy to incorporate quaternions rooted in Euclidean 

(3)v� = v‖ + quv⊥ = puvp
−1
u

= puvp
∗

u

Fig. 3   Illustration of embedding 
a hierarchical tree (with two 
being the branching factor) into 
a 2D hyperbolic plane. Distances 
between any two directly con-
nected points (in blue) are equal 
and distances grow exponentially 
when approaching to the edge of 
the plane. (source from [41])
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space to hyperbolic space. Moreover, it is well-suited for gradient-based optimization 
methods (see Section 4.2.1).

When c is considered, the hyperbolic distance of two points �, � ∈ �
d
c
 is defined as its 

geodesic distance in the space, which has the desirable property of forming a tree-like 
embedding space (see Fig. 3). It is formulated as follows:

where arctanh(⋅) denotes the inverse hyperbolic tangent. The Möbius addition (i.e., ⊕c ) of 
two points �, � ∈ �

d
c
 can be expressed as below:

where ‖ ⋅ ‖ is the Euclidean norm. We can obtain that �⊕c (−�) = (−�)⊕c � = � . This 
property helps model inverse relations in the embedding space.

4.2.1 � Bridging quaternion and hyperbolic space

Exponential map and logarithmic map  As mentioned in Section  4.1, the difficulty of 
model design lies in how to simultaneously preserve inherent properties from both hyper-
bolic space and quaternions that are well-studied in Euclidean space. In this paper, instead 
of directly generalizing möbius transformation as well as Poincaré distance with quater-
nion entries [61], we adopt a simple strategy by introducing exponential and logarithmic 
maps [52], which bridges between tangent space (which sits in Euclidean space) and hyper-
bolic space. By doing so, we can perform quaternion operations in tangent space while 
measuring hyperbolic distance in hyperbolic space.

For a point � ∈ �
d
c
 , its tangent space representation ( �E ) is defined as a d-dimensional 

vector, which approximates the hyperbolic space �d
c
 around � (origin). The two mappings 

( expc
0
(⋅) and logc

0
(⋅) ) at the origin have the following closed-form expressions:

where expc
0
(⋅) maps �E in the tangent space to �d

c
 and conversely, logc

0
(⋅) maps �H in �d

c
 to 

the tangent space. Note that we use �H to denote � in the hyperbolic space while �E being 
in Euclidean space.

4.3 � Model formulation

The core idea behind the proposed HyperQuaternionE is to encode relations as 3D rota-
tions, and assumes that for a triple ⟨h, r, t⟩ , the tail entity t is the result of the head entity h 

(4)dc(�, �) =
2√
c
arctanh(

√
c ‖(−�)⊕c �‖)

(5)�⊕c � =

(1 + 2c�T� + c‖�‖2)� + (1 − c‖�‖2)�
1 + 2c�T� + c2‖�‖2‖�‖2

(6)expc
0
(�E) =tanh(

√
c‖�E‖) �E√

c‖�E‖ = �H

(7)logc
0
(�H) =arctanh(

√
c‖�H‖) �H√

c‖�H‖ = �E
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being rotated by relation r. This indicates two key steps in our method: rotating the head 
entity by the relation and measuring the distance between the tail entity and the head entity 
after being rotated. Despite being similar to the rotation family introduced in Section 3, the 
main difference is that in our method these two steps are performed in different spaces. The 
rotating step is performed in the tangent space with the aim to use quaternions in order to 
capture role chains from data, and the distance measuring step is executed in hyperbolic 
space so as to form a tree-like embedding space for hierarchical data. Mathematically, for 
a triple ⟨h, r, t⟩ in a KG, these two steps can be formalized as follows. Note that for entities 
and relations, their embeddings are first randomly initialized, denoted as �E, �E, �E ∈ ℝ

d (d 
is the dimension), and are learned automatically through training.

In the first step, a 3D rotation on the head entity h performed by relation r is achieved by 
Theorem 1. Concretely, head entities are modeled as 3D points to be rotated, and tail enti-
ties are modeled as results of head entities being rotated by relations (i.e., 3D rotation). In 
order to utilize quaternions to implement 3D rotation, we convert real value entries in �E 
and �E into quaternions. Hence each head embedding �E ∈ ℝ

d can be expressed as d
3
 pure 

quaternions. Specifically, it can be written as VE
h
= [h1, h2, ..., hi]

T , where hi = [0,�i] is a 
pure quaternion and �i ∈ ℝ

3 ( i ∈ {1, 2, ...,
d

3
} ) denotes a 3D point. Similarly, each relation 

is represented by d

3
 unitary quaternions, whose embedding can be written as 

QE
r
= [qr,1, qr,2, ..., qr, d

3

]
T , where each qr,i ( i ∈ {1, 2, ...,

d

3
}) is a unitary quaternion. Accord-

ing to (3), 3D rotation in the embedding space is given as follows:

where ⊚ denotes element-wise quaternion multiplication and (QE
r
)
∗
= [h∗

1
, h∗

2
, ..., h∗

i
]
T 

denotes the conjugate of QE
r
 . ���E

hr,4
 is the rotating result of the head entity and contains d

3
 

pure quaternions. concat(⋅) is to concatenate three imagery components of these pure qua-
ternions in order to recover the original dimension d.

In the second step, to form a tree-like embedding space for hierarchical data, we meas-
ure the distance between the resulting head embedding and the tail embedding in hyper-
bolic space. Since the first step is performed in tangent spaces, we first map Euclidean 
embeddings into hyperbolic embeddings via exponential maps shown in  (6). However, 
rather than using a generic curvature c, a relation-aware learnable curvature cr is intro-
duced for each relation because relations of different kinds may yield hierarchical struc-
tures of varying degrees. For example, a graph where only the relation tangential proper 
part holds between entities would have a higher hierarchy index than the one induced by 
the relation disconnected. The relation-aware exponential maps are shown below.

where ���H
hr

 and �H are embeddings of ���E
hr

 and �E in hyperbolic space, respectively.
Finally, the distance is calculated by using the following formula:

(8)���E
hr,4

=Rot3D(�E, �E) = QE
r
⊚ VE

h
⊚ (QE

r
)
∗

(9)���E
hr
=concat(���E

hr,4
)

(10)���H
hr
=exp

cr
0
(���E

hr
) = tanh(

√
cr‖���Ehr‖)

���E
hr√

cr‖���Ehr‖

(11)�H =exp
cr
0
(�E) = tanh(

√
cr‖�E‖) �E√

cr‖�E‖
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Equation (12) is originated from (4), but contains a relation-aware learnable curvature cr to 
consider the difference of embedding spaces induced by various relations.

Similar to previous work [42, 48], we optimize the model by minimizing the distance 
between ���H

hr
 and a valid tail t (meaning that ⟨h, r, t⟩ exists in our KG) and maximizing 

that to a negative tail. More specifically, for a triple ⟨h, r, t⟩ in a KG, t itself is a positive 
tail and we construct negative tails by replacing t with another entity (i.e., t′ ), which is 
randomly picked from all other entities. It is done by n times in order to obtain n negative 
tails. Finally, the optimizer is to pull the correct t towards ���H

hr
 as close as possible while 

pushing negative ones far away, which can be formalized as:

where � denotes the sigmoid function and � is a hyper-parameter indicating the tolerance of 
distance between the positive/negative and the resulting entity embedding.

Likewise, with regard to relation inference, for each positive triple ⟨h, r, t⟩ , we corrupt it 
by replacing r with other (spatial/temporal) relations nr times so as to generate nr relation-
based negative samples. To consider both tasks, we construct a joint loss function and use a 
scalar � to adjust their respective contributions:

Last but not least, we introduce a way of representing relations such that they can be 
ensured to be unitary quaternions. This is of great importance to achieve 3D rotations 
based on Theorem 1. Recall that only three values are needed to determine a unitary qua-
ternion. So for any three arbitrary values �, �1, �2 ∈ [−�, �] , a unitary quaternion can be 
constructed as follows:

Based on the definition of quaternion norm (see Property  3), ‖qu‖ = 1 can be readily 
ensured (See Appendix 1 for proofs). In what follows, we analyze relation properties and 
composition patterns that are preserved by using the proposed model.

Lemma 1  HyperQuaternionE can model symmetric/anti-symmetric properties of relations.

Thus, when we plug (16) into (17), it yields:

The correspondence of �E
i
 in hyperbolic space is given by (6):

(12)dcr (���H
hr
, �H) =

2√
cr
arctanh(

√
cr ‖(−���Hhr)⊕cr

�H‖)

(13)L = −log �(� − dcr (���H
hr
, �H)) −

1

n

n∑
i=1

log �(dcr (���H
hr
, ��

�

H
)) − �)

(14)L
�

= L − �
1

nr

nr∑
i=1

log �(d
cri (RotH

hri
, tH)) − �)

(15)qu = cos(�) + sin(�)cos(�1)cos(�2)i + sin(�)cos(�1)sin(�2)j + sin(�)sin(�1)k

(16)�E
i
=qr,i�

E
i
q∗
r,i

(17)�E
i
=qr,i�

E
i
q∗
r,i

(18)�E
i
= qr,i(qr,i�

E
i
q∗
r,i
)q∗

r,i
= q2

r,i
�E
i
(q∗

r,i
)
2
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When we substitute �E
i
 in (19) with (18), we obtain the following:

It indicates that the sufficient and necessary condition of modeling symmetric relations is 
that q2

r,i
= ±1 holds. Clearly, in 3D space, a rotation angle of k ∗ 180◦ ( k ∈ {1, 3, 5, ...} ) sat-

isfies this condition. Likewise, we can derive that q2
r,i
≠ ±1 is the sufficient and necessary 

condition for modeling anti-symmetric relations.

Lemma 2  HyperQuaternionE can model inversion of relations.

If ⟨h, r1, t⟩ and ⟨t, r2, h⟩ hold, similarly, according to Theorem 1, in the tangent space for 
each rotation we have:

The correspondence of �E
i
 in hyperbolic space is given by (6):

Then, we can obtain:

Clearly, this equation can have multiple solutions. For instance, for a relation r1 with its 
quaternion representation in a dimension being qr1,i = [�1, �1] , it inverse relation r2 at the 
same dimension can be constructed as qr2,i = [�1,−�1] or qr2,i = [−�1, �1].

(19)�H
i
= tanh(

√
cr‖�Ei ‖)

�E
i√

cr‖�Ei ‖

�H
i
=tanh(

√
cr‖�Ei ‖)

q2
r,i
�E
i
(q∗

r,i
)
2

√
cr‖�Ei ‖

=q2
r,i

tanh(
√
cr‖�Ei ‖)�Ei√
cr‖�Ei ‖

(q∗
r,i
)
2

=q2
r,i
�H
i
(q∗

r,i
)
2

⇔q2
r,i
= ±1

(20)�E
i
=qr1,i�

E
i
q∗
r1,i

(21)�E
i
=qr2,i�

E
i
q∗
r2,i

(22)�H
i
= tanh(

√
cr2‖�Ei ‖)

�E
i√

cr2‖�Ei ‖

�H
i
=tanh(

√
cr2‖�Ei ‖)

(qr2,iqr1,i)�
E
i
(qr2,iqr1,i)

∗

√
cr2‖�Ei ‖

=(qr2,iqr1,i)
tanh(

√
cr2‖�Ei ‖)�Ei√
cr2‖�Ei ‖

(qr2,iqr1,i)
∗

=(qr2,iqr1,i)�
H
i
(qr2,iqr1,i)

∗

⇒qr2,i = ±q∗
r1,i
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Lemma 3  HyperQuaternionE can capture non-commutative patterns of relation composi-
tion. In special cases, HyperQuaternionE can model commutative patterns.

Non-commutative composition of relations implies that r1◦r2 ≠ r2◦r1 while commuta-
tive composition indicates that r1◦r2 = r2◦r1 . Here ◦ refers to quaternion multiplication. 
According to Theorem 2, r1◦r2 yields another relation r3, namely r1◦r2 = r3 , and like-
wise r2◦r1 = r4 . Due to the non-commutative law of quaternion multiplication (see (1)), 
r3 ≠ r4 can be naturally guaranteed. On the other hand, in special cases, for example, when 
r1 and r2 share the same rotating axis, we can conclude that r1◦r2 = r2◦r1 = r3 = r4 (i.e., 
commutative composition).

Table 3 summarizes varying properties of relations and patterns of relation composi-
tion that different models can preserve. As can be seen, the proposed HyperQuaternionE 
achieves all. Note that our HyperQuaternionE method can be applied to other KGs where 
aforementioned properties of relations and patterns of relation composition exist com-
monly. We leave the investigation as future work.

5 � Experiments

In this section, we introduce the experimental data and baseline methods. Plus, experimen-
tal results are reported quantitatively and qualitatively.

5.1 � Data preparation

We synthesize two datasets –region187 and interval205 for spatial reasoning and tem-
poral reasoning, respectively. Both datasets are generated from randomly generated 
rectangular regions and intervals. For region187, we first generate 200 pairs of points. 
Each pair is used to represent the top left and bottom right corners of a rectangle. We 
further filter out invalid cases (e.g., the top left and the bottom right points share the 
same x/y value). Then we calculate the spatial (topological) relation between any two 
rectangles based on their geometries and organized them as triples (e.g., (rectangle 1, 
dc, rectangle 2)). Additionally, we sample 5 rectangles to establish more eq relations 

Table 3   Varying properties and patterns modeled by differing models

*Note that - means inapplicable

TransE [43] RotatE [42] Rotate3D [46] HyperRo-
tatE [56]

HyperQua-
ternionE

Property Symmetric ✗ ✓ ✓ ✓ ✓
Anti-symmetric ✓ ✓ ✓ ✓ ✓
Inversion ✓ ✓ ✓ − ✓

Composition commutative ✓ ✓ ✓ − ✓
non-commutative ✗ ✗ ✓ − ✓

Hierarchy induced by transitive 
relations

✗ ✗ ✗ ✓ ✓
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since it is relatively rare to yield the same rectangles from the previous step. A similar 
process is adopted to generate interval205. Finally, we randomly split both datasets into 
training ( 70% ), validation(15% ), and testing sets ( 15% ). Table 4 describes statistics of 
the two datasets.

5.2 � Baseline methods

Our model is compared with four baselines: three embedding models and one traditional 
method used in spatial and temporal reasoning. The three embedding methods (i.e., RotatE, 
QuaternionE/Rotate3D, HyperRotatE/RotH) are chose upon Table 32. All these models are 
unified in the same framework and thus adopt the same protocols for data processing, train-
ing, as well as evaluation.

Traditional methods are built upon path consistency checking over a constraint 
network, where nodes represent entities (e.g., rectangles or intervals in this paper) 
and edges are labelled with a set of possible relations between entities [7]. By prop-
agating temporal/spatial composition tables over the network  [62], this network 
will be refined as the relations between entities that do not conform to composition 
tables will be ruled out. Similarly, in our experiment, we construct a network by 
using training and testing datasets, where relations in the testing set all are changed 
to be a set of all possible relations in the beginning (namely eight relations for spa-
tial reasoning and thirteen relations for temporal reasoning). Through propagation, 
relations that lead to inconsistency will be discarded and the remaining relations 
are viewed as inference results. Figure  1 gives an illustrative interpretation. We 
name this method as constraint network method and use an open-sourced package to 
implement it3.

5.3 � Experimental settings

In order to achieve a fair comparison, we ensure that all compared models share approxi-
mately the same number of parameters. The number of learnable parameters used in each 
model is shown in Appendix 2. Similar to [56], we carry out two experimental settings 
– low-dimensional and high-dimensional. More details on the number of parameters as 
well as the best parameter setting are shown in Table 5. Note that four hyper-parameters 
are chose from various ranges: learning rate – lr:[0.05, 0.1], margin in (14) – �:[8, 10, 12], 
batch size – b :[512, 1024] and negative samples – n: [8, 16, 32, 64]. For the weighting 
parameter � in (14), we set it as 0.5 empirically.

Table 4   Statistics of region187 
and interval205

Dataset #entities #relations #train #valid #test

region187 187 8 24,460 5,241 5,243
interval205 205 13 29,399 6300 6301

2  We omited TransE here, since its performance is relatively weak.
3  https://​github.​com/​alrei​ch/​qualr​eas
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5.3.1 � Evaluation metrics

At testing, we compare different methods on two tasks: entity inference (Definition 4) 
and relation inference (Definition 5). Note that the constraint network method can only 
achieve the relation inference task while being incapable of inferring missing enti-
ties. Specifically, for each test sample ⟨h, r, t⟩ , we generate three queries: ⟨?h, r, t⟩ and 
⟨h, r, ?t⟩ for the former task, and ⟨h, ?r, t⟩ for the latter. For each query, we utilize (12) 
as the scoring function and measure distances between each candidate entity or rela-
tion and the correct answer. Then all candidate entities/relations are scored and later 
ranked by distances in the inference process. A smaller distance means a better fit to a 
query, indicating a higher likelihood of the entity/relation to be true. Following previ-
ous works  [43, 50, 63], we choose two popular ranking-based metrics, namely Mean 
Reciprocal Rank (MRR), which measures inverse ranks of gold answers over all test 
samples on average and H@k ( k ∈ {1, 2, 3} ), which measures the proportion of gold 
answers being ranked in the top k on average. In general, the higher the rank is, the bet-
ter a model performs. Meanwhile, during the evaluation, we also follow [43] to filter out 
inference results that are already true in the KG4.

5.4 � Experimental results

In this subsection, we first report the performance of our model in comparison with other 
embedding methods and traditional methods, and analyze what our model learns.

5.4.1 � Comparison with embedding methods

Figures 4 and 5 show our model performance against baseline embedding methods on the 
task of entity inference, and Figs. 6 and 7 report results on the task of relation inference. 
We summarize our main findings as below.

Table 5   Best parameter setting for each model on two datasets (low-dimensional vs. high-dimensional)

Models on region187 low-dimensional high-dimensional
  HyperQuaternionE lr0.1-b512-g8-n8-h30 (5,858) lr0.05-b1024-g12-n8-h120 (23,408)
  HyperRotatE lr0.1-b512-g0-n8-h26 (5,681) lr0.05-b1024-g0-n64-d110 (23,405)
  QuaternionE lr0.1-b1024-g12-n8-h30 (5,850) lr0.1-b1024-g12-n64-h120 (23,400)
  RotatE lr0.1-b512-g10-n64-h16 (6,112) lr0.1-b1024-g12-n64-h62 (23,684)

Models on interval205 low-dimensional high-dimensional
  HyperQuaternionE lr0.01-b1024-g8-n8-h45 (9,823) lr0.05-b1024-g8-n32-h150 (32,713)
  HyperRotatE lr0.05-b1024-g0-n16-h40 (9,978) lr0.05-b1024-g0-n64-h132 (32,631)
  QuaternionE lr0.1-b1024-g12-n16-h45 (9,810) lr0.1-b512-g12-n64-h150 (32,700)
  RotatE lr0.05-b1024-g12-n32-h23 (9,729) lr0.05-b1024-g12-n32-h78 (32,994)

4  For example, for a test query (geometry 1, dc, geometry 2), it is expected that a model should output 
geometry 2 as the correct answer to a query (geometry 1, dc, ?t). However, there may exist other geometries 
in the KG that can satisfy the query. In such cases, the model should not be penalized if other valid geom-
etries are ranked ahead of geometry 2.
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(1) Our proposed method consistently outperforms baseline methods on two data-
sets in both low-dimensional and high-dimensional settings. More specifically, in terms 
of the task of entity inference, compared with the strongest baseline method - HyperRotatE 
(in orange), HyperQuaternionE (in blue) gains around 8-point improvements in terms of 
MRR in both low-dimensional and high-dimensional settings, respectively (see Fig. 4). In 
terms of H@1, HyperQuaternionE beats HyperRotatE by around 8% in the low-dimen-
sional setting, and by around 12% in the high-dimensional setting. On the interval205 data-
set (See Fig. 5), all embedding methods perform very well and the difference between our 
method and HyperRotatE is slightly subtle. Specifically, even in the low-dimensional set-
ting (with 9,823 parameters), HyperQuaternionE reaches to around 91% in terms of H@1 
and 97.85% in terms of H@3.

In terms of the relation inference task (see Fig. 6 and 7), HyperQuaternionE still con-
sistently outperforms all other embedding methods on all evaluation metrics. For example, 
HyperQuaternionE surpasses HyperRotatE by around 5% and 3 points in terms of H@1 
and MRR on the interval205 dataset, respectively. On the region187 dataset, our method 
improves HyperRotatE by around 5% and 2% in terms of H@1 in the low-dimensional set-
ting and high-dimensional setting, respectively. It is worth-noting that all embedding meth-
ods perform very well on the task of relation inference with H@1 being over 95% . We 
compare our method with traditional reasoning methods in Section 5.4.3 on this task.

(2) Hyperbolic embedding methods are more robust than Euclidean methods when 
handling spatial and temporal reasoning. Apparently, hyperbolic embedding methods 
(i.e., HyperQuaternionE consistently exceeds their Euclidean alternatives (i.e., Quaterni-
onE and RotatE) on both datasets for both tasks. For example, in the high-dimensional 
setting in Fig.  4a, HyperQuaternionE improves over QuaternionE by around 14 points 
and HyperRotatE gains around 19 points against RotatE. In Fig.  5b, HyperQuaternionE 
and HyperRotatE achieve improvements of 6.6% and 6% over their Euclidean alternatives, 
respectively. More remarkably, we find that the performance of hyperbolic embedding 
methods in low-dimensional settings is even comparable to that of their Euclidean equiva-
lents in high-dimensional settings. In Fig. 4a and b, HyperQuaternionE in the low-dimen-
sional setting (5,858 parameters) is on a par with QuaternionE in the high-dimensional 
setting (23,400 parameters). For instance, the difference in MRR (0.72 for low-dimensional 
HyperQuaternionE v.s. 0.73 for high-dimensional QuaternionE) is subtle.

5.4.2 � Comparison with traditional reasoners

We compare embedding methods in high-dimensional settings with a traditional method 
(i.e, the constraint network method which relies on composition tables) on the relation 
inference task. A challenge in this experiment is how to evaluate their inference results 
quantitatively. A traditional reasoner built upon RCC8/temporal composition tables usually 
yields a set of possible relations that could be held between two entities, despite the fact 
that there must be exactly one (spatial/temporal) relation holds between two entities. Dif-
ferently, embedding methods usually output a ranked list of relations sorted by a scoring 
function (e.g., (12)); see Table 6 for more details. In order to compare these two methods, 
we use five evaluation metrics - two absolute metrics for accuracy evaluation, two relative 
metrics for error evaluation and one for recall evaluation.

In terms of absolute metrics, we stick with H@1 and MRR to evaluate their inference 
accuracy. For H@1, when the constraint network method yields only one relation, we call 
it a success since in theory only one (spatial/temporal) relation would be held between any 
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two entities; otherwise, we view it as a “failure”. This is a “strict” evaluation. In order to 
take into account the contribution of those “failures”, we use MRR. In this case, if the con-
straint network method yields exactly one relation for a testing sample (e.g., ⟨h, ?r, t⟩ ), then 
the score for this sample is 1. Otherwise, the score for a sample with a set of inferred rela-
tions will be the average MRRs of the correct relation being ranked at any position in the 
answer set, which is 1�s�

∑�s�
n=1

1

n
 ( |s| is the number of elements in the set s).

Table 6   Examples of relation inference results. Both methods aim to infer the relation between a subject 
and an object. Column Relation denotes the correct relation, column Constraint Network and HyperQua-
ternionE denote their respective inference results. Note that constraint network method outputs a set of pos-
sible relations while HyperQuaternionE yields a ranked list of relations. Here we only show Top 1 relation 
from the ranked list

Examples Subject Relation Object Constraint Network HyperQua-
ternionE 
(Top 1)

0 103 dc 72 dc, ec, po dc
1 39 ec 153 ec, po ec
2 134 po 140 po po
3 49 po 61 po po
4 76 dc 92 dc dc
5 102 eq 186 dc, ec, eq, po, tpp, tppi eq
6 150 tppi 31 po, tppi tppi
7 22 po 3 dc, ec, po po
8 65 tpp 150 ntpp, tpp tpp
9 122 tppi 40 po, tppi tppi

Table 7   H@1 and MRR on the 
region187 dataset. ± indicates 
the following is the standard 
deviation

Bold entries indicate the best results in each corresponding comparison

constraint network HyperQuaternionE

Training Size H@1 MRR H@1 MRR

70% 76.8% 0.927 96.8%±0.3% 0.983±0.002
60% 74.9% 0.920 93.5%±0.1% 0.965±0.004
50% 71.3% 0.906 91.0%±0.5% 0.951±0.003
40% 67.1% 0.890 88.3%±0.8% 0.935±0.003
30% 60.9% 0.865 82.8%±0.4% 0.902±0.002

Table 8   H@1 and MRR on the 
interval205 dataset

Bold entries indicate the best results in each corresponding comparison

constraint network HyperQuaternionE

Training Size H@1 MRR H@1 MRR

70% 96.8% 0.989 97.9%±0.2% 0.989±0.001
60% 96.6% 0.986 97.1%±0.3% 0.984±0.002
50% 96.0% 0.984 96.7%±0.2% 0.982±0.002
40% 95.0% 0.981 95.8%±0.3% 0.979±0.004
30% 93.0% 0.971 94.2%±0.4% 0.970±0.002
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Table 7 and 8 show the accuracy comparison between the constraint network method 
and HyperQuaternionE with varying sizes of training data. We find that our model out-
performs the constraint network method on spatial reasoning tasks by significant 
margins in terms of different training sizes and achieves comparable results on tem-
poral reasoning tasks. With respect to the “strict” accuracy evaluation – H@1, Hyper-
QuaternionE consistently surpasses the constraint network method on both spatial and 
temporal relation inference. In Table  7, HyperQuaternionE beats the constraint network 
method by over 20% for all different training sizes on the region187 dataset. On the inter-
val205 dataset (see Table 8), our method consistently outperforms the constraint network 
method by around 1% . Additionally, with the training size increasing, we observe that both 
methods improve as we expect. It is worth-noting that even with only 30% data (of the 
entire graph) being in the training set, our method can obtain 82.8% and 97.9% in terms of 
H@1 on these two datasets, respectively. In terms of MRR, a similar pattern of their per-
formance is observed: HyperQuaternionE outperforms the constraint network method by 
around 5 points on the region187 dataset; however the differences between both methods 
on the interval205 dataset are relatively subtle but both achieve very high scores (i.e., over 
0.97) for all different training sizes.

Despite the fact that the constraint network method does not necessarily to uncover the 
single (true) relation between entities, inference results are theoretically guaranteed by 
composition tables based on the amount of data given. Put differently, the correct relation 
is always a member of the result/answer set. We denote this inferred results as theoretical 
results. Here we are interested in evaluating errors of our inference against the theoretical 
results. We use two relative metrics - Error Ratio and Recall-Coverage Ratio to achieve 
this. Error Ratio - ER measures the failure of our model against the inference of composi-
tion tables. For a testing sample, it examines whether the Top 1 relation produced by our 
method is a member of the theoretical results yielded by the constraint network method. 
We use the average score over all testing samples as its final Error Ratio of our model. It 
can be expressed as follows.

Here, for a testing sample i, if Top 1 relation in our ranked list is not a member of its corre-
sponding theoretical relation set, then TrueOrFalsei will be 1; otherwise, TrueOrFalsei will 
be 0. n is the number of testing samples.

In addition, we introduce a Recall-Coverage Ratio - RC-R to measure the difficulty of 
our model in recalling results from the classical RRC8 reasoner. Specifically, for a ranked 
list of relations produced by our model regarding a testing sample ⟨h, ?r, t⟩ , we calculate 
the ratio of the cardinality of the theoretical result set over the minimal length of a ranked 
list (staring from the first position) containing all relations in the theoretical set. This meas-
ure can be formulated as follows:

Here, si is the result set from the classical RCC8 reasoner for a testing sample i and pos(r) 
denotes the position index of relation r (from si ) in our ranked list (1-index).

Additionally, we calculate the Recall (R) of our method. In the literature, Recall is 
defined to measure whether a true relation is contained in the result produced by a model. 

(23)Error Ratio =
1

n

n∑
i=1

TrueOrFalsei

(24)Recall − Coverage Ratio =
1

n

n∑
i=1

|si|
maxr∈si

pos(r)
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For the constraint network method, its Recall is always 1. As mentioned above, for a testing 
sample, its inference result always contains the correct relation, since the method performs 
a filtering-out operation, which excludes impossible relations between two entities. In our 
method, we also examine our Recall against the constraint network method. For each test-
ing sample, we check whether the correct relation is contained in the top |s| of our ranked 
list ( |s| is the cardinality of the relation set s produced by the constraint network method). 
This ensures that the sublist of our ranked list used in the Recall calculation has the same 
length as the relation set from the constraint network.

Table  9 shows Error Ratio (ER), Recall-Coverage Ratio (RC-R) and Recall (R) of our 
method against the theoretical results. As expected, Error Ratio increases and Recall-Cov-
erage Ratio drops as the training size decreases. When the training size is 70% , ER is as 
low as 2.29% and 1.38% on the region187 dataset and interval205, respectively. Meanwhile, 
Recall-Coverage Ratio reaches to 96.64% and 98.91% , respectively. Even when the training 
size drops to 30% , Error Ratio is still low ( 9.63% on the region187 dataset and 3.49% on 
the interval205 dataset). Similarly, the Recall-Coverage Ratio is 88.86% and 96.37% , respec-
tively. Moreover, it is worth noting that we achieve the same Recall as the constraint network 
method does, meaning that the correct answer is also contained in the top |s| of our ranked 
list. Overall, the results from Table 9 clearly show the suitability of our method for inference.

Summing up all presented evaluations, the results demonstrate that our embedding 
method can produce results of a higher accuracy for reasoning over relations than the con-
straint network method. Moreover, although our method can also achieve a Recall of as 
high as 100% as the constraint network method does, Recall-Coverage Ratio in Table  9 
indicates these two methods may adopt different reasoning mechanisms or our embedding 
method may use other implicit inference. It would be interesting to study and analyze the 
underlying reasoning techniques in the future. In Section 5.4.4, we qualitatively analyze 
our model and examine what has been learned by our model from data.

5.4.3 � Comparison between spatial reasoning and temporal reasoning tasks

By contrasting the performance of spatial reasoning and temporal reasoning (e.g., 
Figs.  4a  and 5a, 6a  and 7a, 4b and 5b, etc.), we can easily find that achieving temporal 
reasoning is relatively easier than spatial reasoning, at least when the proportion of missing 
relations is the same. Note that we use 70% of the entire dataset as the training set for both 
spatial and temporal reasoning (see Table 4). In low-dimensional settings (see Figs. 4a and 
5a), HyperQuaternionE yields an MRR of 0.72 on the region187 dataset while obtaining 
an MRR of 0.94 on the interval205 dataset. Similarly, in Fig. 7b and  6b, HyperQuaterni-
onE in low-dimensional settings yields 88.46% and 96.32% on the region187 dataset and 
interval205, respectively. Moreover, we observe a similar pattern from Tables 7 and 8. For 

Table 9   Error Ratio, Recall-
Coverage Ratio and Recall on 
two datasets

region187 interval205

Training Size RC-R ER R RC-R ER R

70% 96.64% 2.29% 100% 98.91% 1.38% 100%
60% 93.80% 4.08% 100% 98.59% 1.83% 100%
50% 92.46% 5.95% 100% 98.38% 1.95% 100%
40% 91.52% 6.69% 100% 97.66% 2.44% 100%
30% 88.68% 9.63% 100% 96.37% 3.49% 100%
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instance, we can see that when the training size is the same, both the constraint network 
method and our method are better at reasoning about temporal relations.

In order to further test the hypothesis that temporal reasoning is relatively easier 
to achieve, we conduct experiments to compare the performance of our model in spa-
tial reasoning and temporal reasoning tasks with changing hidden dimensions, which 
determines the number of learnable parameters (see Appendix 2) and thus impacts the 
training efficiency5. Figures  8 and 9 demonstrate that our model indeed consistently 
performs better on temporal reasoning tasks, particularly on the task of entity infer-
ence. For instance, with a hidden dimension of 12, our model can yield an H@1 of 55.8 
for temporal entity inference while obtaining 36.6 for spatial entity inference. With the 
hidden dimension increasing, the gap between them is shrinking even though it is still 
significant. With a hidden dimension of 30, when the model reaches to 0.91 in terms 
of MRR on the temporal entity inference task, MRR of the spatial case yields 0.72. 
This observation may also be viewed as a potential advantage of embedding methods 
against traditional methods that rely on path-consistency checking (e.g., the constraint 
network method). For path-consistency checking based methods, as the number of rela-
tions increases, composition tables often become more complicated and thus reasoning 
over relations will be inefficient. That is, the efficiency of the traditional reasoner is 
bounded by the complication of composition tables as relations involved increase. How-
ever, empirical experiments shown above disclose that embedding-based methods like 
HyperQuaternionE, with less parameters can obtain a even better result when reasoning 
over temporal relations than over spatial relations; thus they are more efficient on rea-
soning over temporal relations. This observation indicates the fact that the performance 
and training efficiency of embedding methods may not be bounded by the complication 
of composition tables, which is another advantage of embedding methods. We leave 
more in-depth theoretical and empirical analyses as future work.

dc

ec

po

ntppntppi

eq

tpptppi

< m o

di

f

=

fi

s d

si

oi mi >

(a) (b)

Fig. 10   Conceptual neighborhood structure (CNS)  [9, 64]. Figure 10a illustrates conceptual neighbors of 
spatial relations. Figure 10b  reveals conceptual neighbors of temporal relations, in which there are three 
types of neighboring relations to the relation equal (i.e., = ), distinguished by three different colors

5  Usually a training process needs more time when the hidden dimension is high.
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5.4.4 � Qualitative analysis

In this section, we are interested in the question whether embedding methods are able 
to implicitly learn knowledge from data. This perspective not only suggests promoting 
embedding methods as a new tool for knowledge discovery, but may also help the design of 
new models. That is, if some domain knowledge can be learned implicitly, there is no need 
to make theories/domain knowledge explicit during the model design.

In particular, we examine whether embedding methods could learn conceptual neighbor-
hood structures implicitly, which is fundamental to spatial and temporal reasoning. According 
to [19, 20, 64], if two relations between pairs of entities (i.e., geometries or events) can be 
directly transformed from one to the other by continuous deformation of entities (i.e., enlarg-
ing, shrinking, lengthening or shortening), these two relations are conceptual neighbors. Con-
ceptual neighborhood structures of spatial and temporal relations are illustrated in Fig. 10.

In order to investigate whether embedding methods manage to learn these structures, we 
create (spatial/temporal) relation networks. In a spatial/temporal network, nodes are relations 
and the linkages between relations are determined by the result of the relation inference task. 
More specifically, in the relation inference task, for a testing sample, (e.g., < h, ?r, t > ), our 
model will output a ranked list of all relations sorted by scores in a descent order, in which 
a relation with a high score means a higher likelihood to be the relation held between h and 
t. We pick Top 1 and Top 2 relation from the ranked list and establish a directed edge from 
Top 1 relation to Top 2 relation to indicate these two relations are likely to be concept neigh-
bors. The underlying rationale is that relations that are conceptual neighbors are hard to be 
distinguished when determining which one is the true relation held between two entities, thus 
neighboring relations are supposed to be ranked closely by embedding methods on the task of 
relation inference. After going through all the samples, we obtain a directed relation network. 
In order to measure the strength of connections between two relation nodes, we weight each 
directed edge by the ratio of outgoing edges from the source relation node to the target relation 
node over the total number of outgoing edges from the source relation node.

Figure  11 reveals original relation networks as well as conceptual neighbor structures 
yielded by HyperQuaternionE. Figure 11a and c are original relation networks, where nodes 
are spatial/temporal relations and the label on a directed edge is the strength of connections. 
Edges between two nodes are highlighted in red when the sum of weights in both directions 
is over threshold of 0.406, which turns out to be neighborhood structures of relations shown 
in Fig. 11b and d after removing labels and arrows. In general, Fig. 11b and Fig. 10a are alike 
and Fig. 11d is similar to Fig. 10b. It indicates that our embedding method is capable of implic-
itly learning conceptual neighborhood structure of spatial/temporal relations. However, due to a 
lack of equal relations in both region187 and interval2057, it fails to completely reproduce the 
structure around eq/= . In addition, we find that for temporal relations another reason of failure 
for equal relation is that it has multiple conceptual neighbors and the proportion of outgoing 
edges to each target relation is marginal. Thereby, a relatively large threshold would easily filter 
out edges linked to the relation = ( see Fig. 12). It reveals that our method successfully rules out 
four relations (i.e., <, m, mi, and >) that are impossible to be conceptual neighbors of the rela-
tion = and learns that all the other eight relations can be transformed from it by differing pro-
portions ( 0.05 − 0.19 ). This echos the neighborhood structures around relation = in Fig. 10b.

6  This threshold is chose empirically. We also report results when thresholds vary in Figs. 13 and 14.
7  There are only 192 triples with eq relation (187 of which is self-equal (e.g., < h, eq, h > )) and 210 triples 
with = relation (205 of which is self-equal).
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(a)

(b)

(c)

(d)

Fig. 11   Conceptual neighborhood structures yielded by HyperQuaternionE
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Fig. 12   Original relation network around the relation = . Edges in blue are its outgoing edges while edges in 
black incoming
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Moreover, we set varying thresholds to investigate the closeness of neighboring rela-
tions. Figure 13 reveals that nttpi-tppi and ntpp-tpp are densely connected over changes, 
which is in line with the discovery of [9] that topological distances between them are the 
least. Furthermore, our method identifies another closely-connected chain: dc-ec-po, which 
intuitively makes sense as ec is the critical condition of continuous transformation between 
dc and po. Figure 14b, c and d confirm the stability of the found network structure between 
temporal relations. Meanwhile, it is interesting to see even when the threshold is set as 
large as 0.7 (meaning only edges with the strongest connections remains), two chain struc-
tures are recognized, where each relation and its inverse are separated in different chains.

Last but not least, we compare network structures of relations yielded by different 
embedding models (see Figs.  15 and  16 in Appendix). In general, results show that all 
embedding models are capable of implicitly learning neighborhood structures of relations 
with nuanced differences.

6 � Discussion and future work

Qualitative spatial and temporal reasoning [5, 19] have played a crucial role for a wide 
range of tasks such as topological integrity constraints in GIS, spatial queries, navigation 
and orientation in robotics, representing spatial human cognition, and so forth. Tradi-
tionally, composition tables of RCC-8 relations and temporal relations have been widely 
adopted in spatial reasoners to accomplish inference tasks. However, such symbolic reason-
ing with explicitly-injected knowledge has many restrictions that arise from the inability 
to efficiently deal with noise, missing data, high-order neighborhood information, or large 
datasets in general. This makes existing techniques unsuitable for many interesting applica-
tions, such as knowledge base completion and knowledge graph-based recommendation. 
Recently, success stories in Machine Learning (ML), in particular embedding techniques, 
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Fig. 13   Network structures with varying thresholds (spatial relations)

190 GeoInformatica (2023) 27:159–197



1 3

shed light on spatial and temporal reasoning, thanks to their subsymbolic and learnable 
representations of knowledge. In this paper, we designed novel embedding-based meth-
ods for spatial and temporal reasoning and examined how these methods perform when 
compared against traditional methods. We were especially interested in examining whether 
embedding-based methods learn domain knowledge implicitly from data.

In order to answer these questions, we developed an embedding model, named as 
HyperQuaternionE. Our method is able to encode symmetric/anti-symmetric properties of 
relations and inverse relations, and can automatically find and capture composition patterns 
of relations from data, which is key to automatic spatial and temporal reasoning. Moreo-
ver, our method provides a hyperbolic embedding space to embed tree-like structures over 
entities induced by transitive relations such as after and non-tangentially proper part. We 
evaluated our work using two synthetic datasets (region187 and interval205), and com-
pared different methods against relation inference and entity inference tasks. The experi-
mental results revealed that our embedding method achieves superior performance 
on both datasets in terms of both tasks and outperformed both other baseline embed-
ding methods and the constraint network method relying on composition tables.
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Fig. 14   Network structures with varying thresholds (temporal relations)
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We hypothesize that such strong results are partially because embedding methods are capable 
of capturing constraints from both local and global high-order information through training. Rep-
resentations of entities and relations are learnable and updated globally over iterations. Another 
advantage of embedding methods lies in that they yield ranked lists of relations with high preci-
sion rather than sets of relations without order produced by traditional methods. A ranked list is 
more preferable, since in theory exactly one topological relation between two geographical enti-
ties holds due to the relations’ jointly exhaustiveness and pairwise disjoint (JEPD) characteristic. 
Moreover, we argued that embedding methods have much broader applications than traditional 
reasoners, such as entity inference and checking the validity of relations between two entities.

In order to answer the second research question, we analysed relation inference results and 
found that embedding methods implicitly learned conceptual neighborhood structures of 
spatial relations and temporal relations, and some neighborhood structures are much 
more closely connected (such as dc-ec-po and nttpi-tppi) than others. This is a valuable dis-
covery in two aspects. First, from the viewpoint of model interpretation, it helps explain why 
embedding methods succeed in spatial and temporal reasoning. Early on,  [19, 20] pointed out 
that the representation and/or reasoning processes will be considerably simplified by incorpo-
rating conceptually neighboring relations into reasoning. Second, from the viewpoint of model 
design, this suggests that understanding and analyzing what machine learning methods are 
able to learn from existing data is of great importance to theory-informed model design. For 
instance, with “enough” data available, as shown in our paper, conceptual neighbors of rela-
tions can be learned automatically and implicitly by models from data, and, thus, incorporating 
such theories/spatial thinking explicitly would not supply extra useful information.

Following the discussion above, this work raises several questions that deserve further inves-
tigation. First, in this paper we focused on the qualitative reasoning capability of embedding 
methods, and, thus, intuitively we assume the developed methods would not be affected by the 
original geometries of geographical entities. However, given that geographical entities with com-
plex geometries (e.g., arbitrary polygons, polygons with holes, etc.) may bring about complex 
topological relations, it is worth examining the adaptability of embedding methods to such cases. 
Second, it is worth further exploring what other spatial theories or knowledge in spatial and 
temporal reasoning can be/have been learned implicitly in addition to conceptual neighborhood 
structures. This direction, broadly speaking, falls into the the bigger trend of explainable AI and 
ML in geography which is key for accountable data-driven decision making.

Appendix A: Some proofs

A.1 Unitary quaternion

 

(25)qu = cos(�) + sin(�)cos(�1)cos(�2)i + sin(�)cos(�1)sin(�2)j + sin(�)sin(�1)k

‖qu‖ =

�
cos(�)2 + (sin(�)cos(�1)cos(�2))

2
+ (sin(�)cos(�1)sin(�2))

2
+ (sin(�)sin(�1))

2

=

�
cos(�)2 + (sin(�)cos(�1))

2
+ (sin(�)sin(�1))

2

=

√
cos(�)2 + sin(�)2 = 1.
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Appendix B: Number of learnable parameters

Table 10   Number of parameters 
in each model. |E| and |R| are 
number of entities and relations, 
respectively

Model #parameters

HyperQuaternionE d ∗ |E| + (d + 1) ∗ |R|
HyperRotatE (d + 1) ∗ |E| + (3d + 1) ∗ |R|
QuaternionE d ∗ |E| + d ∗ |R|
RotatE 2d ∗ |E| + d ∗ |R|

Fig. 15   Network structures by different models (spatial relations)

Appendix C: Network structures by different embedding models

Here we compare network structures yielded by different embedding models. Note that 
since there is no practical guideline on how to determine thresholds to extract closely-con-
nected substructures, we choose threshold=0.3 and threshold=0.4 empirically. In general, 
according to Figs. 15 and 16, we can conclude that all embedding models are capable of 
implicitly learning neighborhood structures of relations with nuanced differences. By com-
paring Fig. 15d, e, f with Fig. 13b, we can find that our model yields a better structure as 
part of the substructure around eq is discovered successfully while others fail to do so. For 
network structures of temporal relations (Fig. 16e, e and 14b), they all exhibit much simi-
larity except for small differences around = , which is partly attributed to a lack of equal 
relations in datasets. However, as discussed in Section 5.4.4, our model in fact discovers 
the inner structure around = , which is filtered out by thresholds yet. Therefore, our model 
is superior to other embedding models in discovering relationships between relations.
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