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Abstract
The analysis of linear ill-posed problems often is carried out in function spaces using 
tools from functional analysis. However, the numerical solution of these problems 
typically is computed by first discretizing the problem and then applying tools 
from finite-dimensional linear algebra. The present paper explores the feasibility 
of applying the Chebfun package to solve ill-posed problems with a regularize-first 
approach numerically. This allows a user to work with functions instead of vectors 
and with integral operators instead of matrices. The solution process therefore is 
much closer to the analysis of ill-posed problems than standard linear algebra-based 
solution methods. Furthermore, the difficult process of explicitly choosing a suitable 
discretization is not required.

Keywords Ill-posed problem · Inverse problem · Chebfun · Truncated SVE · 
Tikhonov regularization
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1 Introduction

We are interested in the solution of Fredholm integral equations of the first kind,
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with a square integrable kernel κ. The Ωi are subsets of ℝdi for i = 1,2, where di is a 
small positive integer. Such integral equations are common in numerous applications 
including remote sensing, computerized tomography, and image restoration.

Two major problems arise when solving (1.1): (i) The function space is of infinite 
dimensionality, and (ii) small changes in g may correspond to large changes in x as 
exemplified by

where the maximum can be made tiny by choosing m large, despite the fact that the 
maximum of | cos(2�mt)| is one. This is a consequence of the Riemann–Lebesgue 
theorem; see, e.g., [7, 12] or below for discussions of this result. The second 
problem is particularly relevant when the available right-hand side g is a measured 
quantity subject to observational errors, as is the case in many applications.

Usually one deals with problem (i) by first discretizing the functions x(t) and 
g(s) in (1.1) using, for instance, n piece-wise constant, linear, or polynomial basis 
functions; see e.g., [11] or [13]. The kernel κ(s,t) is discretized analogously. This 
transforms the integral (1.1) into a linear system of algebraic equations. Problem 
(ii) causes the coefficient matrix of said system to be ill-conditioned when n is 
large. Straightforward solution of this linear system of equations generally is not 
meaningful because of severe error propagation. Therefore, the linear system has 
to be regularized. This can, for instance, be achieved by Tikhonov regularization 
or truncated singular value decomposition (TSVD). While the first dampens the 
influence of small singular values, the latter outright ignores them. One is then often 
faced with a trade-off between a small discretization error and a small error caused 
by the regularization; see, e.g., Natterer [18]. In fact, often the more basis functions 
are used for the discretization, the more ill-conditioned the resulting coefficient 
matrix becomes, and the larger the need of regularization.

In this paper, we first regularize and then discretize the problem. Regularization 
is achieved by modifying the singular value expansion (SVE) of the kernel. This 
expansion provides an excellent starting point for discretizing the problem. The 
discretized problem is a linear system of equations with a diagonal matrix. This 
system can be solved trivially. Furthermore, a user does not have to choose the 
number of discretization points. Regularizing first simplifies the discretization.

We will compute the SVE of the kernel using Chebfun [6], which is a software 
package that simulates working with functions in MATLAB. Chebfun approximates 
functions by piece-wise polynomials. The computed solution is a piece-wise 
polynomial approximation of the desired solution x(t) of (1.1). The advantage of 
using Chebfun is that the computed solution will feel and behave like a function. 
Therefore, our approach is arguably closer to directly solving (1.1) than to 
discretizing the integral equation before solution.

This paper is organized as follows. In the second section, we provide basic 
definitions, introduce our notation, and briefly discuss Chebfun and the singular 

(1.1)∫ �1

�(s, t)x(t)dt = g(s), s ∈ �2,

max
s∈�2

|∫
�1
�(s, t) cos(2�mt)dt|, �1 = �2 = [0, 1],
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value expansion. Section 3 discusses the truncated singular value expansion method 
(TSVE) for the solution of ill-posd problems, and the Tikhonov regularization 
method is described in Section 4. Numerical results that illustrate the performances 
of these methods are reported in Section  5. After we have established that this 
regularize-first approach works for linear ill-posed problems in one space-
dimension, we will extend the ideas to problems in two space-dimensions in 
Section 6. Concluding remarks can be found in Section 7.

We note that other approaches to work with functions are described in the 
literature; see, e.g., Yarvin and Rokhlin [25]. We are not aware of discussions of this 
approach to the solution of linear ill-posed problems. The availability of Chebfun 
[6] makes the regularize-first technique easy to implement.

2  Basics

Let L2(�i) for i = 1,2 be spaces of Lebesgue measurable square integrable functions 
with inner products

where a(t) represents the complex conjugate of a(t) ∈ ℂ . Based on these inner 
products, we define the L2-norms

The spaces L2(�i) for i ∈{1,2} equipped with the norms above are complete 
vector spaces, i.e., they are Hilbert space; see, e.g., [11]. A given kernel 
�(⋅, ⋅) ∈ L2(�1 ×�2) induces the bounded linear operator A ∶ L2(�1) → L2(�2) 
defined by

see, e.g., [11, Thm. 3.2.7]. The operator is sometimes called a Hilbert-Schmidt 
integral operator and the kernel κ a Hilbert-Schmidt kernel. We can write (1.1) as

We assume here that g is in the range of A. If A has a nontrivial null space, then we 
are interested in the solution of (2.3) of minimal norm. We refer to this solution as 
xexact.

In applications that arise in the sciences and engineering, the right-hand side g 
of (1.1) often is a measured quantity and therefore is subject to observational errors. 
We are therefore interested in the situation when the error-free function g is not 
available, and only an error-contaminated approximation g� ∈ L2(�2) of g is known. 
We assume that gδ satisfies

(2.1)⟨a, b�i
⟩ = ∫ �i

a(t)b(t)dt, for i = 1, 2,

‖f‖�i
= ⟨f , f ⟩1∕2

�i
, for i = 1, 2.

(2.2)(Ax)(s) = ∫ �1

�(s, t)x(t)dt;

(2.3)Ax = g.
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 with a known bound δ > 0. The solution of the equation

generally is not a meaningful approximation of the desired solution xexact of (2.3), 
since A is not continuously invertible. In fact, (2.4) might not even have a solution.

The operator A depends on the kernel κ. We will now take a closer look at known 
theory about the kernel function κ. For any square integrable kernel κ, we define the 
singular value expansion (SVE) [21, §4] as

with convergence in the L2-sense. The functions �i ∈ L2(�2) and �i ∈ L2(�1) are 
referred to as singular functions. These functions are orthonormal with respect to 
the appropriate inner product (2.1) [21, §5], i.e.,

The quantities σi are known as singular values. They are nonnegative and we assume 
them to be ordered non-increasingly,

It can be shown that the only limit point of the singular values for square integrable 
kernels is zero [21, §5].1

Let the series (2.5) be uniformly convergent for s ∊  Ω2 and t ∊  Ω1. Then, as 
shown in [21, §8], the series converges point-wise. When the summation is finite, 
the kernel κ is said to be separable (or degenerate). Most applications do not have 
a separable kernel. However, square integrable kernels can be approximated well 
by such a kernel, which is obtained by truncating the number of terms in (2.5) to a 
suitable finite number ℓ. Let

This is the closest kernel of rank at most ℓ to κ in the L2-norm [21, §18 
Approximation Theorem]. We will use this result to justify the application of the 
truncated singular value expansion method (TSVE) discussed in Section 3.

‖‖‖g − g�
‖‖‖�2

≤ �,

(2.4)Ax = g� , with x ∈ L2(�1) and g� ∈ L2(�2),

(2.5)�(s, t) =

∞∑

i=1

�i�i(s)�i(t)

⟨
�i,�j

⟩
�1

=
⟨
�i,�j

⟩
�2

= �ij, for i, j = 1, 2,… .

�1 ≥ �2 ≥ �3 ≥ ⋯ ≥ 0.

(2.6)�
�
(s, t) =

�∑

i=1

�i�i(s)�i(t).

1 Schmidt calls the singular values eigenvalues, since he is mainly concerned with symmetric kernels 
and the concept of singular values was not developed when he published his paper. We follow modern 
notation here.
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We also will be using the Approximation Theorem to restrict our expansion to 
singular values that are larger than ε, where ε is a small enough cutoff, say  10− 8 or 
 10− 16. There is a trade-off between computing time and approximation accuracy. We 
try to choose ε far below the regularization error so that our choice does not have 
a significant effect on the accuracy. At the same time, a small ε means higher cost 
for computing the singular value expansion and forming the computed approximate 
solution.

In this paper, we will use two regularization methods, TSVE and Tikhonov 
regularization, to compute an approximate solution of (2.3). The right-hand side g 
is assumed not to be available; only a perturbed version gδ is assumed to be known; 
cf. (2.4).

The TSVE method is based on the Approximation Theorem mentioned above. 
Thus, we approximate the kernel κ by κℓ for some suitable ℓ ≥ 0. This results in an 
approximation Aℓ to A. We are interested in computing the solution xℓ of minimal 
norm of the problem

where

The parameter ℓ is a regularization parameter that determines how many singular 
values and basis functions of κ are used to compute the approximate solution xℓ 
of (2.4). The remaining singular values, which are smaller than or equal to σℓ, are 
ignored.

Tikhonov regularization replaces the system (2.4) by the penalized least-squares 
problem

which has a unique solution, denoted by xλ, for any nonvanishing value of the 
regularization parameter λ. Substituting the SVE (2.5) into (2.8) shows that Tikhonov 
regularization dampens the contributions to xλ of singular functions with large index 
i the most; increasing λ > 0 results in more damping. Since we cannot deal with 
an infinite series expansion, we will, in practice, first cutoff all singular values that 
are less than ε as explained above, and then apply Tikhonov regularization. This is 
sometimes referred to as a discretization by kernel approximation [11, Sect. 4.2].

The determination of suitable values of the regularization parameters, ℓ in (2.7) 
and λ in (2.8), is important for the quality of the computed approximate solution. 
Several methods have been described in the literature including the discrepancy 
principle, the L-curve criterion, and generalized cross validation; see [4, 8, 15, 
16, 19, 20] for recent discussions on their properties and illustrations of their 
performance. Regularization methods typically require that regularized solutions for 

(2.7)min
x∈L2(�1)

‖‖‖A�
x − g�

‖‖‖�2

,

(A
�
x)(s) = ∫ �1

�
�
(s, t)x(t)dt, s ∈ �2.

(2.8)min
x∈L2(�1)

�
���Ax − g�

���
2

�2

+ �2‖x‖2
�1

�
,
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several values of the regularization parameter be computed and compared in order to 
determine a suitable approximate solution of (2.4).

2.1  Chebfun

We solve (1.1) by first regularizing followed by discretization. However, we still 
want to compute the solution numerically. Thus, we need a numerical library 
that can handle functions in an efficient way. Since a function t↦f(t) represents 
uncountable many pairs of {t,f(t)}, a computer only can handle approximations to 
functions numerically.2

We chose the MATLAB package Chebfun [6] for this purpose. Chebfun uses 
piece-wise polynomials anchored at Chebyshev points, so-called chebfuns, to 
approximate functions. All computations within Chebfun’s framework are done with 
these approximations of actual functions. This means that we project the functions in 
L2(�2) onto a space of piece-wise Chebyshev polynomials over Ω2. Thus, Chebfun 
simulates computation with functions that are approximated. One may argue that 
this is a discretization. However, Chebfun’s framework is significantly different from 
other discretizations in the sense that it gives a user the feeling of computing with 
functions. In particular, a user does not explicitly have to determine a discretization 
or where to split functions into polynomial pieces.

Chebfun’s functionality includes the computation of sums and products of 
functions and derivatives, inner products, norms, and integrals. Chebfun2/3, 
Chebfun’s extensions to functions of two and three variables, also can compute 
outer products and, most importantly for us here, the singular value expansion [23]. 
The algorithm behind the singular value expansion uses a continuous analogue 
of adaptive cross approximation: The approximation of κ(s,t) is computed by 
an iterative process. First, an approximation of a maximum point (ŝ, t̂) of κ(s,t) is 
determined. The exact computation of a maximum point is not important, and the 
maximum point is not required to be unique. The function is then approximated by

where s ↦ 𝜅(s, t̂) and t ↦ 𝜅(ŝ, t) are one-dimensional chebfuns in s and t, 
respectively. This process is then repeated for κ(s,t) − κ1(s,t) to find a rank-1 
approximation of the remainder. By recursion one obtains after k steps a rank-k 
approximation of the original kernel. As soon as the remainder is sufficiently small, 
the computed rank-k approximation is the sought approximation to κ(s,t). At the end 
we have κ(s,t) ≈ C(s)MR(t)T, with C(s) and R(t) row vectors of functions, and M a 
dense matrix of size k × k.

Based on this approximation, it is easy to compute the singular value expansion. 
Chebfun’s continuous analogue of the QR factorization can be used to find 
orthogonal bases for C(s) and R(t),

𝜅1(s, t) =
𝜅(s,t̂)𝜅(ŝ,t)

𝜅(ŝ,t̂)
,

2 There are some notable exceptions such as f(t) = t. However, we cannot assume that the solution of 
(1.1) will fall into this very small set of functions.
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where the columns of Qc and Qr are orthonormal functions and the k × k matrices Rc 
and Rr are upper triangular. Let

and compute the singular value decomposition M̃ = UΣVT . Then

is the desired singular value expansion of the approximation of the kernel. The 
singular functions are the columns of Qc(s)U and Qr(t)V; see [23] for further details. 
A very similar process, known as adaptive cross approximation [2, 3], was used in 
[17] for the discrete case of matrices and vectors.

Chebfun has some limitations. Currently only functions of at most three variables 
can be approximated by Chebfun. Hence, we are limited to ill-posed problems in one 
space-dimension and to problems in higher dimension with a special structure. We 
will in Section 6 discuss problems in two space-dimensions with special kernels that 
can be handled by the present version of Chebfun. In higher dimensions, Chebfun 
is limited to domains that are tensor products of intervals, disks, spheres, or solid 
spheres. In this paper, all domains are rectangles. Chebfun also needs multivariate 
functions to be of low rank for an efficient approximation, i.e., there has to exist a 
sufficiently accurate separable approximation. This is for instance not the case for 
the kernel �(s, t) = st −min(s, t) from the deriv2 example of the Regularization 
Tools package [13]. This limits the application of the methods described in this 
paper. However, the Chebfun package is still under development and some of the 
limitations mentioned might not apply to future releases.

3  The TSVE method

Assume that the kernel can be expressed as

and is not separable, and that the solution of (1.1) can be written as

The fact that κ is non-separable implies that all σi are positive, and the assumption 
that the solution is of the form (3.2) essentially states that the solution has no 
component in the null space of A. This assumption is justified since the null space of 
A is orthogonal to all the ψj and, thus, a component in the null space would increase 
the norm of the solution, but not help with the approximation of (1.1).

C(s) = Qc(s)Rc, R(t) = Qr(t)Rr,

M̃ = RcMRT
r

�(s, t) ≈ Qc(s)U�VTQr(t)
T

(3.1)�(s, t) =

∞∑

i=1

�i�i(s)�i(t)

(3.2)x(t) =

∞∑

j=1

�j�j(t).
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Substituting (3.1) and (3.2) into (1.1), and using the orthonormality of the basis 
functions yields

We further probe the equation with ϕk(s) for all k and use the orthonormality of the 
basis functions to obtain

Thus, the exact solution of (2.3) is given by

Truncating this series after ℓ terms and using the error-contaminated right-hand 
side gδ instead of g, we obtain the TSVE solution of (2.4),

The truncation parameter ℓ can be chosen as needed. Its choice will be discussed 
below.

The following lemma links the projection of the error onto the space spanned by 
the ϕi to the bound δ for the norm of the error in the data.

Lemma 3.1 Let n(s) = g(s) − gδ(s) with ‖n‖�2
≤ � . Then,

where the ϕi are orthonormal basis functions determined by the SVE of the kernel κ.

Proof Using the basis functions ϕi, the error n can be represented as

for certain coefficients γj, where the function ϕ⊥ is orthogonal to all the functions ϕj. 
It follows that

The orthogonality of the basis functions ϕj allows us to simplify the above 
expression to

∞∑
i=1

�i�i�i(s) = g(s).

�k�k = ∫
�2
�k(s)g(s)ds, for all k.

(3.3)x(t) =

∞∑

j=1

�j�j(t), with �j =
∫

�2
�j(s)g(s)ds

�j
.

(3.4)x
�
(t) =

�∑

j=1

��
j
�j(t), with ��

j
=

∫
�2
�j(s)g

�(s)ds

�j
.

(3.5)
∞∑

i=1

(

� �2

�i(s)n(s)ds

)2

≤ �2,

n(s) =

∞∑

j=1

�j�j(s) + �⟂(s)

∫ �2

�i(s)n(s)ds = ∫ �2

�i(s)

(
∞∑

j=1

�j�j(s) + �⟂(s)

)
ds.
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The same argument can be used to show that

 Combining these results shows (3.5). □

4  Tikhonov regularization

Instead of solving (2.3) exactly, we solve the minimization problem

where the regularization parameter λ > 0 typically is determined during the solution 
process. This parameter balances the influence of the norm of the residual Ax − gδ 
and the norm of the solution x. Using the definition of the L2-norm, (4.1) can be 
written as

This minimization problem can be solved in a variety of ways. For instance, one 
could apply a continuous version of Golub–Kahan bidiagonalization to the operator 
A. Then A is reduced to (an infinite) bidiagonal matrix. The bidiagonalization 
process can be truncated as soon as a solution of the reduced problem that satisfies 
the discrepancy principle has been found; this approach is analogous to the 
computations described in [5] for discretized problems. A straightforward way to 
solve (4.2), though not necessarily the fastest, is to determine the minimizer by 
applying the SVE (2.5). We will use this approach in the computed examples. Thus, 
substituting (3.1) and (3.2) into (4.2), and using the orthonormality of the basis 
functions, we obtain

We now can compute the solution as

∫ �2

�i(s)n(s)ds = �i.

∞�

j=1

�2
j
≤ ‖n‖2

�2
≤ �2.

(4.1)min
x∈L2(�1)

�
��Ax − g���

2

�2
+ �2‖x‖2

�1

�
,

(4.2)min
x∈L2(�1)

{

∫ �2

|||Ax − g�
|||
2

ds + �2∫ �1

|x|2dt
}
.

min
x∈L2(�1)

∞∑
i=1

�
�2
i
�2
i
− 2�i�i∫ �2

�i(s)g
�(s)ds + �2�2

i

�
+ ∫

�2
�g�(s)�2ds.

(4.3)x�(t) =

∞∑

j=1

�
(�)

j
�j(t), with �

(�)

j
=

�j∫ �2
�j(s)g

�(s)ds

(�2
j
+ �2)

.
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5  Numerical experiments

In this section, we illustrate the performance of the methods described in 
Sections 3 and 4 by reporting some numerical results. In particular, we compare 
the performance of the regularize-first approaches based on Chebfun discussed 
in this paper to more commonly used discretize-first approach. Both approaches 
have their advantages and the regularize-first approach can be expected to be 
slower due to the effort required to work with chebfuns. The examples of this 
section show this to be the case, but usually not by very much. This indicates 
that the regularize-first approach based on Chebfun is a practical solution 
method for many linear ill-posed problems.

We first consider five test problems in one space-dimension. These problems 
are from Regularization Tools by Hansen [13]. In the next section, we will follow 
up with two 2D problems, an image deblurring problem with Gaussian blur and 
a diffusion problem inspired by IR Tools [10]. All computations were carried out 
in MATLAB R2020b running on a computer with two CPUs: Intel(R) Xeon(R) 
E5-2683 v4@2.10 GHz processor with 512 GB of RAM. There are two MATLAB 
Live Scripts accompanying this paper that showcase the most important of the 
following numerical experiments.

The software used for the experiments in this section together with Matlab live 
scripts explaining the main idea of the paper are available as the na54 package.3

Table 1  1D examples used for the numerical experiments

Example Domain κ(s,t), x(t) and g(s) Reference

Baart Ω1 = [0,π]  �(s, t) = exp(s cos(t)) [1, Ex. 4.2]
Ω2 = [0,π/2]  x(t) = sin(t) 

 g(s) = 2 sinh(s)∕s 
Fox-Goodwin4 Ω1 = [0, 1]  �(s, t) = (s2 + t2)

1

2 [9, p. 520]

Ω2 = [0, 1] x(t) = t 

g(s) =
1

3
(1 + s2)

3

2 − s3

Gravity Ω1 = [0, 1]  �(s, t) = (1 + (s − t)2)−
3

2 [24, p. 17]

Ω2 = [0, 1]  x(t) = sin(t�) +
1

2
sin(2�t) 

Shaw  �1 = [−
�

2
,
�

2
] 

�(s, t) = (cos(s) + cos(t))
(

sin(u)

u

)2 [22, p. 97]

 �2 = [−
�

2
,
�

2
]  u = �(sin(s) + sin(t))

x(t) = 2e−6(t−0.8)
2

+ e−2(t+0.5)
2

Wing Ω1 = [0, 1]  �(s, t) = t exp(−st2) [24, p. 109]
Ω2 = [0, 1]  x(t) = 1[ 1

3
,
2

3
]

 g(s) = exp (−s∕9)−exp (−4s∕9)

2s

3 https:// github. com/ thoma smach/ Ill- posed_ Probl ems_ with_ Chebf un
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Each test problem from Regularization Tools by Hansen [13] provides us with 
an integral equation of the form (1.1). These test problems are listed in Table 1. 
For two examples, Gravity and Shaw, the function g(s) is not explicitly given 
in the table, and is instead computed by evaluating the integral (1.1) with Cheb-
fun. In example Wing, the expression 1[ 1

3
,
2

3
] denotes the indicator function, which 

is 1 for all points in [ 1
3
,
2

3
] and 0 otherwise. We compare the regularize-first 

approach using Chebfun-based computations with the discretize-first approach, 
where the discretizations are determined by MATLAB functions in Regulariza-
tion Tools4 [13]. For the discretize-first approach, these problems are discretized 
by a Nyström method or a Galerkin method with orthogonal test and trial func-
tions to give a linear system of equations Ãx = g , where Ã ∈ ℝ

n×n is the discre-
tized integral operator, x ∈ ℝ

n is a discretization of the exact solution xexact, and 
g ∈ ℝ

n is the corresponding error-free right-hand side vector. We generate the 
error-contaminated vector g� ∈ ℝ

n according to

where e ∈ ℝ
n is a random vector whose entries are from a normal distribution with 

mean zero and variance one. The parameter α > 0 is the noise level.
For the regularize-first approach, we use the MATLAB package Chebfun [6] to 

represent the kernel κ(s,t), the function g(s) that represents the error-free right-hand 
side, and the desired solution x(t). We define the error-contaminated function gδ(s) 
by

where F(s) is a smooth Chebfun function, generated by the Chebfun command 
randnfun(𝜗,Ω2), with maximum frequency about 2π/𝜗 and standard normal 
distribution N(0,1) at each point, and α > 0 is the noise level. The noise level is 
defined analogously as in the discretized problems to achieve comparability. In the 
computed examples, we let 𝜗 =  10− 2. This gives Chebfun’s analogue of noise.

The discrepancy principle is used to determine the truncation parameter ℓ in (3.4) 
in the TSVE method, and the Tikhonov regularization parameter λ in (4.3). The 
discrepancy principle prescribes that the truncation index ℓ be chosen as small as 
possible so that the solution xℓ of (3.4) satisfies

where η ≥ 1 is a user-supplied constant independent of δ. We let η = 1 in the 
examples. The discrepancy principle, when used with Tikhonov regularization, 
prescribes that the regularization parameter λ > 0 be chosen so that the solution xλ of 
(4.1) satisfies

g
� = g + �

‖g‖2
‖e‖ 2

e,

g�(s) = g(s) + �
‖g‖�2

‖F‖�2

F(s),

‖‖‖∫ �1
�(s, t)x

�
(t)dt − g�(s)

‖‖‖�2

≤ ��,

4 In Regularization Tools this example is called foxgood. We chose to name it by the full name of both 
authors.
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We use the MATLAB function fminbnd to find the λ-value.
One of the five test problems that we are interested in solving is Baart. 

This example is a Fredholm integral equation of the first kind (1.1) with 
�(s, t) = exp(s cos(t)) , g(s) = 2 sinh(s)∕s , and solution x(t) = sin(t) , where Ω1 = 
[0,π] and Ω2 = [0,π/2]. We compute approximate solutions by applying the 
TSVE and Tikhonov regularization with Chebfun. The approximate solutions, 
xℓ(t) and xλ(t), respectively, can be determined by using the formulas (3.4) and 
(4.3). Figure 1(a) displays the kernel κ of the Baart example. The right-hand 
side function g(s) and the corresponding error-contaminated function gδ(s) are 
illustrated in Fig.  1(b), where the noise level is  10− 2. Figure  1(c)  depicts the 
exact solution and the computed approximate solutions determined by TSVE 
and Tikhonov regularization with Chebfun. The latter figure shows that our 
methods give fairly accurate approximations of the exact solution.

Next, we apply the methods to several different examples and compare them 
to standard TSVD and Tikhonov regularization in a discretized setting. The 
quality of the computed approximate solutions is measured by the relative error 
norm

where ‖⋅‖∗ denotes the scaled Euclidean vector norm ( 1
n

∑n

i=1
x2
i
)1∕2 if x ∈ ℝ

n is a 
vector, or the L2-norm if x is a function.

‖‖‖∫ �1
�(s, t)x�(t)dt − g�(s)

‖‖‖�2

= ��.

RE ∶=
��xmethod − x��∗

‖x‖∗
,

Table 2  Comparison of TSVE with Chebfun and for the discretized problem

Noise level Example Discretized With Chebfun

n error time error time

10− 3 Baart 554 1.19 ⋅  10− 1 4.79 ⋅  10− 2 1.19 ⋅  10− 1 2.74 ⋅  10− 1

Fox-Goodwin 892 1.44 ⋅  10− 2 8.97 ⋅  10− 2 1.43 ⋅  10− 2 1.40 ⋅  10− 1

Gravity 372 1.97 ⋅  10− 2 2.00 ⋅  10− 2 1.97 ⋅  10− 2 3.26 ⋅  10− 1

Shaw 1694 4.71 ⋅  10− 2 3.53 ⋅  10− 1 4.70 ⋅  10− 2 7.63 ⋅  10− 2

Wing 318 6.03 ⋅  10− 1 1.36 ⋅  10− 2 6.03 ⋅  10− 1 2.28 ⋅  10− 1

10− 2 Baart 226 1.68 ⋅  10− 1 1.31 ⋅  10− 2 1.68 ⋅  10− 1 1.70 ⋅  10− 2

Fox-Goodwin 1184 3.15 ⋅  10− 2 1.34 ⋅  10− 1 3.15 ⋅  10− 2 5.40 ⋅  10− 2

Gravity 94 6.11 ⋅  10− 2 1.39 ⋅  10− 3 6.11 ⋅  10− 2 3.36 ⋅  10− 2

Shaw 998 5.01 ⋅  10− 2 1.31 ⋅  10− 1 5.01 ⋅  10− 2 4.60 ⋅  10− 2

Wing 1938 6.03 ⋅  10− 1 4.40 ⋅  10− 1 6.03 ⋅  10− 1 1.06 ⋅  10− 2

10− 1 Baart 438 3.45 ⋅  10− 1 5.05 ⋅  10− 2 3.45 ⋅  10− 1 3.63 ⋅  10− 1

Fox-Goodwin 1344 5.54 ⋅  10− 2 3.69 ⋅  10− 1 5.53 ⋅  10− 2 2.94 ⋅  10− 1

Gravity 1670 1.05 ⋅  10− 1 3.36 ⋅  10− 1 1.05 ⋅  10− 1 3.76 ⋅  10− 1

Shaw 1714 1.37 ⋅  10− 1 3.53 ⋅  10− 1 1.35 ⋅  10− 1 7.01 ⋅  10− 2

Wing 330 6.08 ⋅  10− 1 1.60 ⋅  10− 2 6.08 ⋅  10− 1 3.47 ⋅  10− 1
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Tables  2 and  3 compare the TSVE and Tikhonov regularization methods 
when used with Chebfun to standard methods for the test problems Baart, 
Fox-Goodwin, Gravity, Shaw, and Wing. These problems are discretized 
integral equations of the first kind and are described in [13].

Three noise levels α are considered. The number of discretization points, n, 
which is shown in the third column of the tables, is even and chosen between 2 
and 2000, such that the smallest absolute difference between the relative error of 
the solution for the discretized problem and the relative error of the solution for 
the continuous problem is achieved. Thus, we choose the number of discretization 
points n so that the discretized problem gives an approximate solution of about the 
same accuracy as the approximate solution determined with Chebfun. This choice 
makes a comparison of the CPU times required by the methods meaningful. The 
computing time required for determining this choice of n is not included in the CPU 
time. We remark that the determination of a suitable value of n when solving a 
problem of the form (2.4) can be difficult: a too large value results in unnecessarily 
large CPU time, while a too small value gives a computed solution of unnecessarily 
poor resolution. Figure 2 shows the run time and accuracy for each n for the example 
Shaw. In the figure, we also annotate the different problems with the choice of the 
discretization. The regularize-first approach using Chebfun does not require a user 
to explicitly choose the discretization. This is one of the main advantages over the 
discretize-first approach.

The relative errors obtained by applying TSVD and Tikhonov regularization in 
the discretized setting are reported in the fourth column of Tables 2 and 3, respec-
tively. The sixth column of the tables shows the relative errors obtained when 

Table 3  Comparison of Tikhonov with Chebfun and for the discretized problem

Noise level Example Discretized With Chebfun

n error time error time

10− 3 Baart 98 1.46 ⋅  10− 1 2.12 ⋅  10− 3 1.47 ⋅  10− 1 1.15 ⋅  10− 1

Fox-Goodwin 1484 1.08 ⋅  10− 2 2.41 ⋅  10− 1 1.08 ⋅  10− 2 4.97 ⋅  10− 1

Gravity 214 1.33 ⋅  10− 2 6.97 ⋅  10− 3 1.33 ⋅  10− 2 1.29 ⋅  10− 1

Shaw 562 4.80 ⋅  10− 2 5.40 ⋅  10− 2 4.80 ⋅  10− 2 1.36 ⋅  10− 1

Wing 1672 5.85 ⋅  10− 1 3.07 ⋅  10− 1 5.84 ⋅  10− 1 1.18 ⋅  10− 1

10− 2 Baart 132 1.82 ⋅  10− 1 4.72 ⋅  10− 3 1.82 ⋅  10− 1 6.48 ⋅  10− 1

Fox-Goodwin 54 2.85 ⋅  10− 2 1.96 ⋅  10− 3 2.85 ⋅  10− 2 5.69 ⋅  10− 1

Gravity 394 4.00 ⋅  10− 2 3.03 ⋅  10− 2 4.01 ⋅  10− 2 1.87 ⋅  10− 1

Shaw 1626 6.25 ⋅  10− 2 3.11 ⋅  10− 1 6.25 ⋅  10− 2 1.66 ⋅  10− 1

Wing 1952 6.03 ⋅  10− 1 4.59 ⋅  10− 1 6.03 ⋅  10− 1 1.42 ⋅  10− 1

10− 1 Baart 270 3.39 ⋅  10− 1 2.15 ⋅  10− 2 3.39 ⋅  10− 1 5.86 ⋅  10− 1

Fox-Goodwin 1206 5.34 ⋅  10− 2 1.66 ⋅  10− 1 5.34 ⋅  10− 2 5.04 ⋅  10− 1

Gravity 56 1.17 ⋅  10− 1 1.39 ⋅  10− 3 1.17 ⋅  10− 1 1.47 ⋅  10− 1

Shaw 440 1.49 ⋅  10− 1 2.73 ⋅  10− 2 1.49 ⋅  10− 1 1.52 ⋅  10− 1

Wing 908 6.03 ⋅  10− 1 1.11 ⋅  10− 1 6.03 ⋅  10− 1 1.18 ⋅  10− 1
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Fig. 1  Example—“Baart”: (a) kernel, (b) right-hand side, (c) solutions
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applying TSVE and Tikhonov regularization with Chebfun. We also report the CPU 
times in seconds for each method in the fifth and seventh columns of the tables. The 
tables show the computed approximate solutions determined by the Chebfun-based 
regularize-first methods to give as accurate approximations of the exact solutions 
as the approximate solutions determined by discretize-first methods. Moreover, we 
observe that the methods based on Chebfun are competitive with respect to run time 
for some problems, while they are slower for most problems. The last column of 
Tables 2 and 3 shows that applying TSVE with Chebfun is faster than applying Tik-
honov regularization with Chebfun. This is reasonable since the TSVE method does 
not require the use of a root-finder.

The accuracy and run time for the discretize-first methods depend on the number 
of discretization points n; Chebfun-based regularize-first methods do not require a 
user to choose a discretization level n. Thus, in Figs. 2, 3, 4, 5, and 6, we show the 
relative accuracy on the vertical axis and the run time on the horizontal axis; being 

Fig. 2  Example—“Shaw”, α = 1.00 e − 2

Fig. 3  Example—“Baart”, α = 1.00 e − 3
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Fig. 4  Example—“Fox-Goodwin”, α = 1.00 e − 3

Fig. 5  Example—“Gravity”, α = 1.00 e − 3.

Fig. 6  Example—“Wing”, α = 1.00 e − 2.
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closer to the origin is better. The figures illustrate that the accuracy and computing 
time of the implementations with Chebfun are competitive.

6  Problems in two space‑dimensions

Linear ill-posed problems based on integral equations in one space-dimension 
are arguably less challenging than ill-posed problems in two space-dimensions. 
We therefore also consider Fredholm integral equations of the first kind in two 
space-dimensions,

The obvious main difference from the situation discussed above is that κ is now 
a function of four variables. This poses a main obstacle, since Chebfun does not 
have a Chebfun4 version for the computation with functions of four variables. We 
will discuss two different examples, Gaussian blur and inverse diffusion, that 
illustrate how this limitation can be overcome. The solution methods for these 
problems differ, since blur has a kernel that can be written as a product and we will 
exploit this. Solving diffusion requires a more general, but also more expensive, 
approach.

6.1  Gaussian blur

The problem blur models Gaussian blur with a kernel that is based on a tensor 
product of 1D-blur kernels. It is given by

with

where σ is the standard deviation of the Gaussian distribution. The exact solution 
x(t1,t2) is constructed as a continuous “image”5 that we blur and contaminate by 
noise, and then try to reconstruct. In our example, we let σ = 0.2 and construct the 
exact solution as

(6.1)∫ �1

�(s1, s2, t1, t2)x(t1, t2)dt1dt2 = g�(s1, s2), (s1, s2) ∈ �2.

(6.2)�(s1, s2, t1, t2) = �1(s1, t1) × �2(s2, t2)

�i(si, ti) =
1√
2��2

exp

�
−

�
ti − si

�2

2�2

�
, i = 1, 2,

x(t1, t2) =
{
(t1, t2) ∈ � ∶ −0.5 ≤ t1 ≤ 0.2and − 0.6 ≤ t2 ≤ −0.2

}
,

5 With a continuous “image” we mean a mapping from [0, 1] × [0, 1] to [0, 1], where the function value 
represents a gray-scale value. Thus, a gray-scale value exists for all points continuously and not just for 
discrete points on a grid. The mapping itself is not necessarily continuous.
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which is shown in Fig. 7(a).6 The error-free right-hand side function is determined 
by

 and the error-contaminated function gδ(s1,s2) in (6.1) is defined by

g(s1, s2) ∶= ∫ �

�(s1, s2, t1, t2)x(t1, t2)dt1dt2

g�(s1, s2) = g(s1, s2) + �
‖g‖�2

‖F‖�2

F(s1, s2),

Fig. 7  Example—“Blur2D”, α = 1.00 e − 2

6 Note that for the plot we, as it is customary, evaluated the function on a grid. The plot shows linear 
interpolation of the function values at the grid points.
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where F(s1,s2) is a smooth Chebfun function in two space-dimensions with maxi-
mum frequency about 2π/𝜗 and standard normal distribution N(0,1) at each point; 
α is the noise level. In this problem, we let the noise level and 𝜗 equal  10− 2. The 
error-free right-hand side is shown in Fig. 7(c), and Fig. 7(e) depicts the noise that 
we added to generate the error-contaminated function gδ.

A kernel that can be separated into a product of two functions as in (6.2) can be 
handled by Chebfun. We first compute the singular value expansions of κ1 and κ2. They 
allow us to approximate κ as

where both the σi and μj denote singular values. We seek an approximate solution in 
the form

By substituting (6.3) and (6.4) into (6.1), and using the orthonormality of the 
basis functions, we get

We probe this equation with �(1)
p
(s1)�

(2)
q
(s2) for all p and q, and use the 

orthonormality of the basis functions, to obtain

This allows us to implement the solution algorithm using functions of at most two 
variables and, thus, do not exceed the capabilities of Chebfun2. For the solution of 
the forward problem, that is for blurring the exact solution in the setup process of 
the example, we use Chebfun3 [14],

The product κ1(s1,t1)x(t1,t2) is a function of three variables, s1, t1, and t2. The 
result of the inner integral is a function of s1 and t2. Thus, the product with κ2(s2,t2) 
is another function of three variables.

Equation (6.3) provides a singular function expansion that also can be used for 
Tikhonov regularization. Instead of solving (6.1) exactly, we solve

(6.3)�(s1, s2, t1, t2) ≈

r1∑

i=1

�i�
(1)

i
(s1)�

(1)

i
(t1)

r2∑

j=1

�j�
(2)

j
(s2)�

(2)

j
(t2),

(6.4)x(t1, t2) =

r1∑

k=1

r2∑

�=1

�k��
(1)

k
(t1)�

(2)

�
(t2).

r1∑

i=1

r2∑

j=1

�i�j�ij�
(1)

i
(s1)�

(2)

j
(s2) = g�(s1, s2).

(6.5)�ij =
∫

�2
g�(s1, s2)�

(1)

i
(s1)�

(2)

j
(s2)ds1ds2

�i�j

.

g(s1, s2) = ∫
�1
�(s1, s2, t1, t2)x(t1, t2)dt1dt2

= ∫
�1,2

∫
�1,1

�1(s1, t1)x(t1, t2)dt1�2(s2, t2)dt2.

(6.6)min
x∈L2(�1)

�
���∫ �1

�(⋅, ⋅, t1, t2)x(t1, t2)dt1dt2 − g�
���
2

�2

+ �2‖x‖2
�1

�
.
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Using the fact that the kernel is separable, substituting (6.3) and (6.4) into (6.6), and 
using the orthonormality of the basis functions, we get

and obtain the solution

This provides us with the tools to reconstruct the exact image x(t1,t2) from 
its blurred version. Similarly as for the problems in one space-dimension, the 
truncation parameter ℓ in (6.4) and the Tikhonov regularization parameter λ in 
(6.8) are determined with the aid of the discrepancy principle, where we set η to 
be 10 in our example. The reconstructed images obtained with Tikhonov and 
TSVE regularization with Chebfun are shown in Fig.  7(b)  and (d), respectively. 
The two reconstructed images are seen to be of roughly the same quality, with the 
image determined by Tikhonov regularization being slightly less oscillatory. The 
computing times for both methods differ significantly: the TSVE with Chebfun 
required 411 s, while Tikhonov regularization with Chebfun took 1206 s.

6.2  Inverse diffusion

We next consider an integral equation with a non-separable kernel κ(s1,s2,t1,t2). In 
the following, we will first describe the example and then discuss a method to solve 
the problem. This example is a continuous version of the PRdiffusion example 
provided in IR Tools [10].

The partial differential equation

describes a diffusion process, where u(t1,t2,τ) is the concentration at the point (t1,t2) 
in Ω1 at time τ. The time derivative of u is denoted by u̇ , and uti,ti stands for the 
second derivative in direction ti. We assume that u satisfies the initial condition

 for some given function u0, and Neumann boundary conditions for all time τ ≥ 0,

where ∂Ω1 denotes the boundary of Ω1. After T seconds, the solution of the system 
is

(6.7)
min
�ij

r1∑
i=1

r2∑
j=1

�
�2
ij
�2
i
�2
j
− 2�ij�i�j∫ �2

�
(1)

i
(s1)�

(2)

j
(s2) g

�(s1, s2)ds1ds2

+�2�2
ij

�
+ ∫

�2
�g�(s1, s2)�

2
ds1ds2

(6.8)
x�(t1, t2) =

r1∑
k=1

r2∑
�=1

�k��
(1)

k
(t1)�

(2)

�
(t2),

with �k� =
�k��

∫
�2

�
(1)

k
(s1)�

(2)

�
(s2) g

�(s1,s2)ds1ds2

�2
k
�2
�
+�2

.

u̇ = ut1,t1 + ut2,t2 , for all (t1, t2) ∈ Ω1,

u(t1, t2, 0) = u0(t1, t2),

ut1 (t1, t2, �) = 0, for all (t1, t2) ∈ �Ω1,
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We assume that uT or a noisy version of uT are given, and our task is to recover 
u0. In this example, we have Ω1 = [0,1] × [0,1] and T = 0.01. The initial condition 
is

The fundamental solution of this problem is given by

where

We have

The right-hand side is computed by solving the forward problem. As in the previous 
examples, we use Chebfun’s random function randnfun2 to generate two-
dimensional noise; see Fig. 8(e). The kernel κ can be written as

This kernel has a special structure for which one could construct a specific 
method. Instead, we opted for implementing a more general method. As in the 
one-dimensional case, we use cross approximation followed by a singular value 
decomposition to compute the singular value expansion of κ. This method follows 
the description in Section 2.1 with the difference that s = (s1,s2) and t = (t1,t2) here. 
To find an approximation to the maximum κ in Ω2 ×Ω1, we use the MATLAB 
function fminsearch. We choose as pivot for the cross approximation the 
maximizer (ŝ1, ŝ2, t̂1, t̂2) . After computing the crosses C1(s) = 𝜅(s1, s2, t̂1, t̂2) and 
R1(t) = 𝜅(ŝ1, ŝ2, t1, t2) , we update the remainder κ − C1(s)M1R1(t)T. We then repeat 
this process for the remainder so-obtained until the maximum is below a preset 
tolerance. The columns of C(s) and rows of R(t) determined by cross approximation 
are chebfun2 objects. Nevertheless, orthonormalization based on the Gram–Schmidt 
process is straightforward using Chebfun2. Thereby, one also obtains upper 
triangular matrices Rc and Rr, and the remaining computations are identical to those 
described in Section 2.1.

We developed a proof-of-concept implementation of this method. Our 
implementation lacks the run time optimization that a possible future Chebfun4 
extension provided by the Chebfun developers would have.

uT (t1, t2) = u(t1, t2, T).

u0(t1, t2) = 0.7 exp

(
−
(

t1−0.4

0.12

)2

−
(

t2−0.5

0.15

)2
)
+ exp

(
−
(

t1−0.7

0.1

)2

−
(

t2−0.4

0.08

)2
)
.

u(t1, t2, �) = ∫ 1

0
∫ 1

0

(
Γ(t1 − s1, �)Γ(t2 − s2, �)+

Γ(t1 + s1, �)Γ(t2 + s2, �)
)
u0(s1, s2)ds1ds2,

Γ(x, �) =
1√
4��

exp
�

−�2

4t

�
.

∫ 1

0
∫ 1

0
�(s1, s2, t1, t2)u0(s1, s2)ds1ds2 = uT (t1, t2).

(6.9)�(s1, s2, t1, t2) = �1(s1, t1)�2(s2, t2) + �3(s1, t1)�4(s2, t2).
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Tikhonov regularization determines the solution fλ, which is shown in 
Fig. 8(b); the exact solution is displayed in Fig. 8(a)  for comparison. Since our 
implementation of Tikhonov regularization uses the singular value expansion, we 
can easily solve the problem using TSVE, too. The TSVE regularized solution 
is shown in Fig. 8(d) and is visually about the same as the solution determined 
by Tikhonov regularization, despite having a slightly higher relative norm-wise 
error. Figure  8(c)  shows the exact right-hand side, Fig.  8(e)  depicts the added 
noise, and the difference between the right-hand side computed from the TSVE 
regularized solution and the right-hand side with noise gδ is shown in Fig. 8(f).

Fig. 8  Example—“Diffusion”, α = 1.00 e − 2
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Our proof-of-concept implementation required about half an hour for the com-
putations including about 20 min for the singular value expansion and about 10 
min for determining λ using the discrepancy principle.

This method works for all kernel functions of four variables. However, the fact 
that κ can be written as in (6.9) ensures that the columns of C(s) and the rows of 
R(t) can each be represented by chebfun2 objects of rank 2. The ranks are rel-
evant for the run time of the method. When applying the Gram–Schmidt process 
and when computing the singular functions, the ranks increase and are automati-
cally truncated by Chebfun’s arithmetic. Nevertheless, the fact that the rank ini-
tially is 2 has a dampening effect on the computational complexity.

7  Conclusion

The computed results illustrate the feasibility of using Chebfun to solve linear 
discrete ill-posed problems and in this way carry out computations in a fashion that 
is close to the spirit of the analysis of ill-posed problems found, e.g., in [7]. The 
accuracy and timings of the implementations with Chebfun are competitive.

In the future, further extensions to Chebfun including the treatment of functions 
of four or six variables will allow the application of the Chebfun-based approach 
discussed in this paper to the solution of linear ill-posed problems in two and three 
space-dimensions. In the meantime, the two methods described in Section 6 can be 
used.
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