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Abstract
In personalised decision making, evidence is required to determine whether an action (treatment) is suitable for an individual.
Such evidence can be obtained by modelling treatment effect heterogeneity in subgroups. The existing interpretable
modelling methods take a top-down approach to search for subgroups with heterogeneous treatment effects and they may
miss the most specific and relevant context for an individual. In this paper, we design a Treatment effect pattern (TEP) to
represent treatment effect heterogeneity in data. To achieve an interpretable presentation of TEPs, we use a local causal
structure around the outcome to explicitly show how those important variables are used in modelling. We also derive a
formula for unbiasedly estimating the Conditional Average Causal Effect (CATE) using the local structure in our problem
setting. In the discovery process, we aim at minimising heterogeneity within each subgroup represented by a pattern. We
propose a bottom-up search algorithm to discover the most specific patterns fitting individual circumstances the best for
personalised decision making. Experiments show that the proposed method models treatment effect heterogeneity better
than three other existing tree based methods in synthetic and real world data sets.

Keywords Personalised decision making · Treatment effect heterogeneity · Treatment effect pattern ·
Conditional average treatment effect

1 Introduction

We study the problem of identifying the Treatment effect
patterns (TEPs) which specify subgroups where a treatment
has a significant effect on the outcome. For example,
chemotherapy is a common cancer treatment, but it is not
suitable for all patients. Finding TEPs indicating the types
of patients who are benefited (or least benefited) from
chemotherapy treatment will be helpful for personalised
medicine. For personalised marketing, it will be helpful to
identify TEPs indicating the subgroups of customers who
will buy a certain product due to a promotion (treatment).

TEPs are different from the discriminative patterns in
data mining literature, e.g. emerging patterns [11], contrast
sets [5] and subgroups [24, 27]. Discriminative patterns
specify subgroups where the distribution of the outcome
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is significantly different from that outside the subgroups,
and they are used for classification. For example, the
discriminative pattern: {family background = business}
defines a subgroup where the probability of high income (an
outcome for illustration only) is larger than that outside the
group. The pattern can be used to predict if a person has a
high income or not.

TEPs are not aimed at predicting an outcome, but are
aimed at determining whether to take a treatment (or an
action) in decision making. TEPs take a fixed pair of
the treatment and the outcome variables, and represent
subgroups where a change in the treatment variable makes a
significant change in the outcome. For example, let college
education be the treatment and salary be the outcome. The
discriminative pattern {family background = business} is
not a TEP, as for this subgroup college education would
not change their income much (this subgroup of people
are likely to have high income anyway based on their
family background). A TEP would be {family background
= illiterate}. For this subgroup of people, education can
make a big impact on their future careers. For example,
without a college education, this subgroup of people may
nearly all receive a very low salary. After the education,
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30% of individuals in this subgroup receive a salary higher
than the median salary in the population. 30% is lower than
50%, the expected percentage of the population having a
salary above the median. But for this subgroup, 30% is a
big improvement. So this TEP provides strong evidence for
personalised decision making on going to college or not.

A summary of the differences between TEPs and
discriminative patterns is shown in Table 1.

TEPs are different from high utility patterns [14, 30]
studied in recent years. Utility patterns are frequent itemsets
(attribute value sets) with the minimum utility based on an
internal or external utility measure, whereas TEPs present
conditions for a causal relationship between the treatment
and the outcome being strong or weak. Utility patterns can
be extended to utility rules, but the utility rules capture
associations, not causations.

TEPs are designed for personalised decision making.
For example, a TEP in an e-commerce application, (new
customer = true, multiple channels = true) with the treatment
effect of 0.2 (treatment: sending promotional emails;
outcome: visiting the online catalogue within one week)
provides the company evidence for targeting this group of
customers for email promotion since the email promotion
causes the online catalogue visit. In a medical application,
a TEP (MFAP3L = low, AGR2 = low, ABCC2 = low),
where MFAP3L, AGR2, and ABCC2 are genes and the low
indicates a gene expression level, with the treatment effect
of -0.16 (treatment: chemotherapy; outcome: the survival
rate) will discourage a doctor to recommend a patient
matching the pattern for a chemotherapy treatment since the
treatment does not lead to a positive outcome for this group
of patients.

Our work is closely related to treatment effect hetero-
geneity modelling [3, 21, 22, 28, 35, 43, 44], an active
research area in causal inference. We refer readers to the
Related Work section for more discussions. Here we focus
on tree based modelling methods since we are interested
in interpretable modelling considering that interpretation is
also crucial in decision making.

Treatment effect heterogeneity modelling is mainly about
Conditional Average Treatment Effect (CATE) estimation
which needs the causal graph underlying the data. Most
existing works do not explicitly use a causal graph. For
example, many works assume a given covariate set X, such

as in [3, 37]. Firstly, this covariate set is unknown to users.
Secondly, even if a covariate set can be found by another
algorithm (see discussions in the Related Work section.),
the contributions of different variables in a covariate set to
CATE estimation are different. For example, confounders
which affect both W and Y need to be adjusted in treatment
effect estimation, whereas effect modifiers which affect Y

but do not affect W [39] do not need to be adjusted in
treatment effect estimation but to be conditioned on. Such
differentiation is only possible when the causal graph (or
local causal structure) is presented.

In our pattern representation, we explicitly represent
patterns in a local causal graphic structure and this makes
causal semantic clearer. We have also proposed to use a
local structure search (instead of a global structure search
which can be inefficient) to find the two sets of variables
in our problem setting: one set to represent confounders
of the treatment and outcome, and the other set to denote
effect modifiers of the outcome since two sets play different
roles in causal effect estimation. Another advantage of
having an explicit presentation of the local causal structure
is that users can use their domain knowledge to validate
the discovered TEPs since a valid causal graph is supposed
to be consistent with the domain knowledge. Such pattern
presentation improves the interpretability and usability of a
causal effect heterogeneity model greatly.

Tree based methods have been adapted for interpretable
causal heterogeneity modelling [3, 37]. These methods
employ a top-down approach to recursively split a
(sub)population into subgroups with different treatment
effects. Their subgroup search is restricted by the choice of
root node since all paths include the root, and this limits
their capability for capturing significant heterogeneous
subgroups.

In this paper, we employ a bottom-up search approach
for identifying TEPs (subgroups), starting from the most
specific patterns described by the set of all direct causes of
the outcome. The patterns with small numbers of records are
merged to be statistically significant. The merging process
is implemented by generalisation which aims at minimising
heterogeneity within a subgroup of a generalised pattern
while maximising the specificity of patterns. When using
the discovered TEPs, the most specific pattern matching a
person’s situation is used for personalised decision making.

Table 1 Differences between TEPs & discriminative patterns

Discriminative patterns TEPs (w.r.t pair (W, Y ))

{W = 1, X1 = 1} → Y = 1 {(X1 = 1, X2 = ∗), X3 = ∗}

Nature Association between {W = 1, X1 = 1} & Y = 1 Causation: changing W leads to a change in Y when X1 = 1.

Semantics Influence of other variables on the pattern is not indicated. (X1, X2, X3) are direct causes of Y and (X1, X2) confound (W, Y ).

Usability Classification Personalised decisions
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The contributions of our work are summarised in the
following:

1. We design a new representation for causal effect hetero-
geneity modelling, TEPs, which explicitly represent the
local causal structure for interpretable modelling and
evaluation.

2. We derive solutions to use the local causal structure for
unbiased CATE estimation in our problem setting.

3. We develop a bottom up generalisation algorithm
to discover TEPs by considering within pattern
homogeneity and pattern specificity. The bottom up
approach ensures that the most specific pattern is used
for predicting CATE for an individual.

2 Problem definition

Let D be a data set containing n records of the triple
(W, Y,X), where W is the treatment variable, Y the
outcome variable, and X the set of pretreatment variables
representing background conditions and/or characteristics
of an individual, denoted by a record in D. Pre-treatment
variables are not influenced by W or Y but may influence
W or Y . We assume that W has an effect on Y . W takes
two values, 1 and 0, standing for treatment and control
respectively. and Y is a binary variable.

We are interested in answering the question: “For a
subgroup of individuals, will they benefit from receiving the
treatment (W = 1)?”

What we need is to estimate CATE, i.e. the change
of Y as a result of changing or intervening on W under
condition X = x. To make the objective formally, we use
Pearl’s do operator [31], a notation commonly used in causal
inference literature, to represent an intervention. The do
operation mimics setting a variable to a certain value (not
just passively observing a value) in a real world experiment.
The probability given a do operation, e.g. prob(y | do(W =
1)), indicates the probability of Y = 1 when W is set to 1,
and is different from prob(y | W = 1), the probability of
Y = 1 when observing W = 1.

Let P = p (or simply p) where P ⊆ X be a pattern which
represents a subgroup in the population. For example, (male,
professional) is a pattern representing a type of employees.
CATE associated with pattern p is defined as the following.

CAT Ep(W, Y ) = prob(y | do(W = 1), p) −
prob(y | do(W = 0), p) (1)

When P is an empty set, CATE∅(W, Y ) is the Average
Treatment Effect (ATE) in the population, specifically.

AT E(W, Y ) = prob(y | do(W = 1)) −
prob(y | do(W = 0)) (2)

To make CATE estimation close to the individual level,
we need p to be specific. However, the estimated CATE
may not be reliable when there are a small number
of samples in the subgroup of p. Given a data set, a
pattern cannot be too specific since its CATE estimation
has to be reliable. In contrast, a general pattern may
contain heterogeneous treatment effects within its subgroup.
Putting both considerations together, we have the following
problems to be tackled in this paper.

Definition 1 (Problem definition) Given a data set D of
(W, Y,X) and X is a pretreatment set of (W, Y ), we aim to
design and find a set of patterns for personalised decision
making. A pattern should be as specific as possible while
its subgroup should be large enough for reliable CATE
estimation. The CATEs of sub subgroups in the subgroup
should have as a small difference as possible.

Equation (1) is conceptual and the CATE of a pattern
cannot be estimated directly from data yet. Our next step is
to develop an analytic expression to estimate CATE for a
pattern from data. Firstly, we will introduce the background
of causal graphs and the calculus of intervention.

3 Causal DAG and do calculus

A DAG (Directed Acyclic Graph), denoted as G = (V,E),
is a directed graph where V contains a set of nodes, E
contains a set of directed edges, and no node has a sequence
of directed edges pointing back to itself. If there exists an
edge V1 → V2 in G, V1 is a parent node of V2 and V2 is
a child node of V1. We use PA(V2) to denote the set of all
parents of V2. A path is a sequence of nodes linked by edges
regardless of their directions. A directed path is a path on
which all the edges follow the same direction. Node V1 is an
ancestor of node V2 if there is a directed path from V1 to V2,
and equivalently V2 is a descendant of V1. V2 is a collider if
V1 → V2 ← V3.

Definition 2 (Markov condition [31]) Let G = (V,E) be
a DAG and P(V) be the probability distribution over V.
P(V) and G satisfy the Markov condition if, ∀V ∈ V, V

is conditionally independent of all of its non-descendants
given PA(V ).

When the Markov condition holds, the joint distribution
of V is factorised as prob(V) = ∏

Vi∈V prob(Vi | PA(Vi)).

Definition 3 (Faithfulness [36]) If all the conditional
independence relationships in P(V) are entailed by the
Markov condition applied to DAG G = (V,E), and vice
versa, P(V) and G are faithful to each other.
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The faithfulness assumption is to ensure that the DAG
G = (V,E) represents all the conditional independence
relationships in the joint distribution P(V) and vice versa.

The following causal sufficiency assumption is needed
when estimating treatment effects in data in addition to the
Markov condition and faithfulness assumption.

Definition 4 (Causal sufficiency [36]) For every pair of
variables observed in a data set, all their common causes are
also observed in the data set.

Given the three assumptions, a DAG learned from data
is a causal DAG, and parents are interpreted as the direct
causes of their children.

d-Separation as defined below is an important concept
to read the conditional independences/dependencies among
nodes from a causal DAG.

Definition 5 (d-Separation [31]) A path p in a DAG is d-
separated by a set of nodes Z if and only if (1) S contains
the middle node, Vk of a chain Vi → Vk → Vj , Vi ←
Vk ← Vj , or a fork Vi ← Vk → Vj in p; and (2) when p

contains a collider Vk , i.e. Vi → Vk ← Vj , none of Vk and
its descendants is in S.

When all paths between V1 and V2 are d-separated by S
in a DAG, we have . We call S blocks a set of
paths if it d-separates all the paths simultaneously.

Now we use DAG for causal effect estimation.

Definition 6 (The backdoor criterion [31]) Given a causal
DAG G = (V,E), for an ordered pair of variables (W, Y ) in
V, a set of variables Z ⊆ V \ {W, Y } is said to satisfy the
backdoor criterion if (1) Z does not contain a descendant
node of W , and (2) Z d-separates every path between W and
Y , containing an arrow into W .

Once a set Z satisfying the backdoor criterion with
respect to the variable pair (W, Y ) is identified. prob(y |
do(W = w),Z) is reduced to prob(y | W = w,Z) where
w ∈ {0, 1}. This means that the causal effect defined by
do() operations can be estimated in data. The set Z is called
an adjustment (or deconfounding) set relevant to (W, Y ).

do-calculus rules [31] are more general criteria for
reducing a do() operation to a normal statistical expression,
and are used in our derivations of CATEs for patterns. The
do() operation on a variable, e.g. do(X = x) in DAG G can
be represented by removing all incoming edges of X from
G. Let V1 and V2 be two variables in G. GV1

represents the
mutilated graph of G by removing all incoming edges of
V1, GV2 the mutilated graph of G by removing all outgoing
edges of V2, GV1,V2

the mutilated graph of G by removing

all incoming edges of V1 and V2, and GV1V 2 the mutilated
graph of G by removing all incoming edges of V1 and all
outgoing edges of V2. When V1 or V2 represents a variable
set, the edge removal is then for each variable in the set. The
rules of do-calculus are given as Theorem 3.4.1 in [31].

4 Bottom up discovery of TEPs

4.1 CATE estimation in the local causal structure

An exemplar sketch of causal DAG in the problem setting
is shown in Fig. 1. A,A′,F,F′ are parents and ancestors of
W and Y respectively. B,B′,Z are parents and/or ancestors
of both W and Y . Z is an adjustment set of (W, Y ) (to
be discussed later in this section). O contains irrelevant
variables which are independent of both W and Y .

In Section 2, pattern p is defined as a value assignment of
set P ⊆ X. Based on the causal graph and do-calculus, we
have the following refinement.

Theorem 1 Given a variable pair (W, Y ) and a set of
pretreatment variables X. W has a treatment effect on Y .
Patterns defined in PA′(Y ) where PA′(Y ) = PA(Y )\W
capture all treatment effect heterogeneities of W on Y

defined by X and a superset of PA′(Y ).

Proof Let us consider a pattern X = x. Based on the
definition, CATEx(W, Y ) = prob(y | do(W = 1), x) −
prob(y | do(W = 0), x).

Let w be a value of treatment W . Since the two terms of
CATEx(W, Y ) are the same except for the values of W . We
show how the expression with do(w) is simplified.

Fig. 1 An illustrative causal DAG in the problem setting. Two
dash edges mean alternative paths, either into Z or B (not both).
A,A′,B,B′,Z,F,F′ and O are sets and there are edges between
variables in a set. Edges between two sets can be multiple although
only one edge is shown
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Let X = PA′(Y )∪Nwhere PA′(Y )∩N = ∅.N represents
the set of all non-parent nodes of Y . Let N1 be a variable in
N, and N′ = N\N1. We have the following reduction.

prob(y | do(w), x)

= prob(y | do(w),PA′(Y ) = p,N′ = n′, N1 = n1)

= prob(y | do(w),PA′(Y ) = p,N′ = n′)
(do calculus rule 1 in Theorem 3.4.1 [31])

In the above reduction, the following rationale is used.
Firstly, if there are one or more paths linking N1 to
Y in the mutilated graph GW where all the incoming
edges of W are removed. N1 is d-separated from Y by
PA′(Y ) in GW . Hence, (equivalently

since there are no colliders at N′
in GW . Therefore, N1 is removed from the equation
based on do calculus rule 1 in Theorem 3.4.1 [31].
Secondly, if there is not a path linking N1 to Y in

trivially holds and hence the
do calculus rule 1 is applied.

By repeatedly using Rule 1 in Theorem 3.4.1 [31], all
variables in N′ are removed from the equation one by one.
We obtain the following equation.

prob(y | do(w), x) = prob(y | do(w),PA′(Y ) = p).
So CATEx is determined by a pattern defined by the

parents of Y excluding W .
Following the above procedure, any pattern defined by a

superset of PA′(Y ) can be reduced to a pattern in PA′(Y )

with the same CATE.
Hence patterns defined in PA′(Y ) capture all treatment

effect heterogeneities defined by X and a superset of
PA′(Y ).

Theorem 1 reduces the complexity for finding patterns
significantly. This is different from feature selection since
A,A′,B,B′,Z′,F′ are all associated with Y . The strength
of association between two adjacent variables may not be
stronger than that between two unadjacent variables. For
example, the association between A (or A′) and Y could be
stronger than the association between Z (or F) and Y . So
feature selection cannot find the parents of Y .

The parents of Y can be found in a causal graph. In some
real world applications, parents of Y are known by domain
experts since they are direct causes of Y . The parents of Y

can be learned in data in our problem setting and we will
discuss learning parents in data in Section 4.4.

PA′(Y ) contains confounders and the parents of Y only.
Confounders are variables that affect both (the selection of)
treatment W and effect Y , and hence need to be adjusted in
treatment effect estimation. In graphical terms, Confounders
have paths into both W and Y in our problem setting. Let

set Z be parents of Y and parents (or ancestors) of W .
F = PA′(Y )\Z is the set of parents of Y only, and they do
not have paths into W . In our problem setting, since
variables in F are not parents or ancestors ofW . We separate
Z from other variables because of the following property.

Corollary 1 Set Z is a minimal adjustment set for pair
(W, Y ) and the average treatment effect of W on Y is
AT E(W, Y ) = ∑

z(prob(y | W = 1, z) − prob(y | W =
0, z))prob(z)

Proof Set Z blocks all the backdoor paths of (W, Y ) since
F = PA′(Y )\Z do not have backdoor paths into W .
According to Theorem 1, set Z is an adjustment set and the
ATE(W, Y ) is calculated by the summation shown. A subset
of Z leaves a backdoor path unblocked, and does not satisfy
Theorem 1. Hence, set Z is minimal.

The parents of Y only (which are d-separated from W

by an empty set) are effect modifiers, e.g. F. The average
treatment effects between (W, Y ) conditioned on different
values of F are different [39].

4.2 Theminimal TEP set

Now we can define treatment effect patterns to represent the
causal heterogeneity in data.

Definition 7 (Treatment effect patterns (TEPs)) Given a
variable pair (W, Y ) and a set of pretreatment variables
X. Let P = PA′(Y ) ⊆ X. A TEP is a value set
P = p representing a subgroup of population and its
associated treatment effect is CATE(W, Y )p. To represent
the local causal structure around Y , a TEP is represented as
{(Z = z),F = f} where Z ∪ F = P, Z ∩ F = ∅, Z denotes a
set of confounders and F stand for a set of effect modifiers.

Let us use PA′(Y ) = {X1, X2, X3}, Z = {X1, X2} and
F = {X3} as an example. p1 = {(X1 = 1, X2 = 0), X3 =
1} is a TEP.

Definition 8 (Specific and general TEPs) A TEP p is one
of the most specific patterns if all its values are specified. A
general pattern contains one or more unspecific values ‘∗’,
and represents the union of subgroups of two or more most
specific TEPs. When we consider the relationship between
two TEPs, we drop unspecified values. If p2 ⊂ p1, TEP p2
is more general than TEP p1 or TEP p1 is more specific than
TEP p2.
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For example, consider p1 = {(X1 = 1, X2 = 0), X3 =
1} and pattern p2 = {(X1 = 1, X2 = ∗), X3 = 1}. pattern
p2 is more general than pattern p1 or pattern p1 is more
specific than pattern p2.

Note thatX = ∗ in a TEP does not mean simply dropping
variable X as in the traditional emerging patterns [11],
contrast sets [5] and subgroups [24, 27] since an unspecified
value of a variable in Z affects the CATE estimation as
discussed below.

Now we derive CATE(W, Y ) when there are unspecified
values, i.e. ‘∗’s. Let Z = Z1 ∪ Z2 and F = F1 ∪ F2 where
Z1 and F1 contain specified values and Z2 and F2 contain
unspecified values.

Theorem 2 In the problem setting, CATEp(W, Y ) =∑
z2

(prob(y | W = 1, z1, z2, f1)
−prob(y | W = 0, z1, z2, f1))prob(z2 | z1, f1)
Proof Based on the definition, CATEp(W, Y ) = prob(y |
do(W = 1), z1, f1) − prob(y | do(W = 0), z1, f1) since
P = {Z1,F1}.

Let w be a value of treatment W . Since the two terms of
CATEp(W, Y ) are the same except for the values of W . We
will show how do(W = w) (shorted as do(w)) is reduced a
do free expression.

prob(y | do(w), z1, f1) =
∑

z2

prob(y, z2 | do(w), z1, f1)

=
∑

z2

(prob(y | do(w), z1, z2, f1)prob(z2 | do(w), z1, f1))

= (Rule 2)
∑

z2

(prob(y | w, z1, z2, f1)prob(z2 | do(w), z1, f1))

= (Rule 3)
∑

z2

(prob(y | w, z1, z2, f1)prob(z2 | z1, f1))

In the second last step of reduction, do calculus rule 2 in
Theorem 3.4.1 [31] has been used. In the mutilated graph
GW where edge W → Y is removed, W is d-separated
from Y by Z1,Z2. There are no colliders at F1. Hence,

in GW and “do” is removed from
do(W).

In the last step of reduction, do calculus rule 3 in
Theorem 3.4.1 [31] has been used. In the mutilated graph
GW where edges into W have been removed, W is d-
separated from Z2 by the empty set. W is d-separated from
Z2 by set {Z1,F1} since there are no colliders at Z1,F1.
Hence, in GW and do(Z2) is removed
from the equation.

Therefore, the Theorem is proved.

The CATE of the most general pattern, such as, p3 =
{(X1 = ∗, X2 = ∗), X3 = ∗}, is the ATE(W, Y ) in the
population.

We are interested in significant patterns with reliable
statistics.

Definition 9 (Significant patterns) Pattern p is significant
if the difference � = |prob(y | W = 1, PA′(Y ) = p) −
prob(y | W = 0, PA′(Y ) = p)| is greater than 0 statistically.

We use a critical ratio statistic as in [13] to test the
significance of difference �. Based on the values of W

and Y , we obtain the following cross table where n∗j =
n1j + n0j , ni∗ = ni1 + ni0, and np is the total number of
samples in subgroup p.

Y = 1 Y = 0 Total

W = 1 n11 n10 n1∗ r1 = n11/n1∗
W = 0 n01 n00 n0∗ r0 = n01/n0∗
total n∗1 n∗0 np r = n∗1/np

� = |r1 − r0| is significantly grater than 0 if z > zc

where z = |r1−r0|− 1
2 ( 1

n1∗ + 1
n0∗ )

√
r(1−r)( 1

n1∗ + 1
n0∗ )

and zc is the critical value at

a confidence level. For example, when the confidence level
is 95%, zc = 1.96.

The most specific TEPs and their general TEPs form a
lattice in space X. The number of TEPs can be large. We
aim at finding the minimal set of TEPs that explain every
individual with the most specific TEP. A TEP covers a
record in a data set if the TEP is a subset of the record when
unspecified values in the TEP are dropped.

Definition 10 (The minimal significant TEP set) A TEP set
is significant and minimal with respect to a data set when
1) each TEP is significant except that the most general TEP
may be insignificant; 2) all TEPs in the set cover all records
in the data set; and 3) each TEP is the most specific for some
records, i.e. it covers at least one record that is not covered
by another more specific TEP in the set.

The minimum in the above definition means non-
redundancy. A more general TEP is redundant if it does not
cover any new records in addition to its more specific TEPs.
A redundant TEP is excluded from the minimal significant
TEP set. Figure 2 shows the minimal significant TEP
set. Note that a record may be covered by more than one
TEP. For example, some records are covered by both TEPs
{(0, ∗), 0} and {(0, ∗), ∗} (for PA′(Y ) = {(X1, X2), X3}).
We consider that {(0, ∗), 0} (the more specific one among
two) is the TEP covering the records. TEP {(0, ∗), ∗}
is not redundant since it covers records covered by TEP
{(0, 0), 0} which is not in the minimal significant TEP
set. Note that it is possible that there are not enough
significant TEPs to cover all instances in a data set and
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Fig. 2 An illustration of the
minimal significant TEP set
whose members are in the box
with the solid line. TEPs with
‘?’ treatment effects are
insignificant. This example also
shows how TEPs are discovered
via pattern generalisation

those uncovered instances are explained by the most general
TEP corresponding to ATE(W, Y ). This is caused by the
data limitation, and using ATE(W, Y ) to estimate treatment
effect is reasonable.

Finding the minimal significant TEP set is to solve a set
cover problem, which is NP-hard [7]. We will propose a
greedy algorithm to find the minimal TEP set.

4.3 TEP discovery via pattern generalisation

We start with the set of most specific TEPs, some or all of
which are insignificant. The main reason for an insignificant
TEP is that the subgroup of the TEP is small. We will merge
the subgroup with other subgroups to make the TEP of the
merged subgroup significant.

Definition 11 (TEP generalisation) Generalisation is a
merge process where one or more specified values are
replaced by unspecified values ‘∗’s. A generalised TEP
represents two or more (if there are more than one
unspecified value) most specific TEPs.

An example of TEP generalisation is given in
Fig. 2. Patterns {(0, 0), 1} and {(0, 1), 1} (for PA′(Y ) =
{(X1, X2), X3}) are generalised as pattern {(0, ∗), 1}. Pat-
terns {(0, 0), 0}, {(0, ∗), 0} and {(0, 1), 1} are generalised as
patterns {(0, ∗), ∗}.

There are two constraints in the generalisation.

1. The generalisation should involve as small heterogene-
ity as possible. A generalised TEP denotes the number
of subgroups represented by a set of most specific
TEPs with different treatment effects. The differences
between the treatment effects should be as small as pos-
sible to make the resulted causal effect represent the
treatment effects of all subgroups well.

2. The generalisation should keep the specificity as high
as possible. An unspecified value means a loss of
specificity. The higher the speciality, the treatment
effect represented by a TEP closer to the individual
treatment effect. The lower the speciality, the treatment
effect represented by a TEP closer to the average causal

effect in the population. For the purpose of personalised
decision making, we wish a TEP is as specific as
possible, and hence the number of ‘∗’ values should
be minimised. A bottom up approach as proposed
in this paper has an advantage over other existing
top-down partition approaches to produce specific
patterns.

We use the following measure to quantify the heterogene-
ity.

Definition 12 (Diversity) Let a generalised TEP p represent
k most specific TEPs, p1, p2, . . . , pk, and θ be the average
treatment effect of k the TEPs. The diversity of treatment
effect of pattern p is DV(p) = 1

k

∑k
1(CATEpk − θ).

In the merge process, we prefer a merger with the
smallest diversity.

The specificity loss is measured by the number of ‘∗’
in a generalised TEP. To minimise the loss, the TEPs to
be merged should have the smallest edit distance (or the
number of different values).

The generalisation can be modelled as a multiple objec-
tive optimisation problem following the two constraints. We
design a level-wise generalisation algorithm by using the
ε-constraint strategy for a Pareto optimal solution [29]. In
each step, we constrain the specificity loss to the smallest
possible loss, and search for the generalisation to minimise
heterogeneity. More specifically, the search strategy is as the
following.

1. for each insignificant pattern, find its closest patterns
with the smallest edit distance (to maximise the
specificity).

2. In the set of closest patterns, choose a pattern to
generalise resulting in the smallest diversity in the
generalised pattern (to minimise the heterogeneity).

Let diversity dv0 be the diversity of the most general
TEP in the data set. We do not merge patterns resulting in
a diversity larger than dv0 since in this case, the average
treatment effect represents the individuals in the generalised
pattern better.

1 3

J. Li et al.8186



4.4 Algorithm

Based on the above discussions, we propose a DEEP
algorithm to find the minimal set of significant TEPs
in Algorithm 2. The algorithm consists of three phases:
Finding the local causal structure {Z,F}; Initialisation of
the most specific TEPs; and Generalising for discovering
significant TEPs. After discussing the three phases, we will
discuss the complexity of the algorithm and how to use
TEPs for personalised decision making.

4.4.1 Finding the local causal structure {Z, F} (Lines 1 - 7)

Ideally, a causal DAG is given by domain experts, and Z and
F are read from the DAG. However, in most applications, a
causal DAG is unavailable.

For finding PA(Y ) from data, one straightforward way is
to learn an entire causal DAG from data. However, learning

an entire DAG is computationally expensive or intractable
with high dimensional data.

Local structure discovery [2], i.e. discovering PC(Y ),
the set of Parents (direct causes) and Children (direct
effects) of the target Y is sufficient for our algorithm. In
our problem setting, Y does not have descendants, and
hence, PC(Y ) = PA(Y ). Several algorithms have been
developed for discovering PC(Y ), such as PC-Select [6],
MMPC (Max-Min Parents and Children) [38] and HITON-
PC [1]. These algorithms use the framework of constraint-
based Bayesian network learning and employ conditional
independence tests for finding the PC set of a variable. Their
performance is very similar. We chose MMPC because of its
newly updated implementation [23]. This is implemented in
Line 1.

To distinguish sets Z and F in PA′(Y ), we use the
following property to find F ∈ F. F ∈ PA′(Y ) is a parent of
Y only if in data. This is because edges (F, Y ) and
(W, Y ) form a collider at Y . This is implemented in Lines
2-7.

4.4.2 Initialisation of the most specific TEPs (Lines 8 - 15)

Three sets S, S and A initialised in Line 8 are used to store
significant, insignificant and all TEPs, respectively. The
data set is projected to variable set PA′(Y ) in Line 9 since
TEPs are defined in PA′(Y ). Stratification is used to count
the cross table for each pattern in Lines 10-11. The CATE
of each TEP is calculated by its cross table in Line 12. The
significant patterns passing the statistical test are added to
the TEP set in Line 13. The diversity of the most general
TEP is calculated in line 15 and assigned to dv0.

4.4.3 Generalising for discovering significant TEPs
(Lines 16 - 32)

Immediately after the above initialisation steps, all patterns
in set A are most specific without the unspecified values
‘∗’. Pairwise edit distances of all patterns are calculated and
stored in matrix M in Line 16 and the shortest distance
is found in Line 17. Note, in distance calculation, an
unspecified value ‘∗’ and a specified value (1 or 0) are
different. Two unspecified values are also different since
they may represent different values. Lines 18-31 are for
generalisation, and this process stops when S is empty or
TEPs in S are nearly generalised to their most general form
(only one specific value left). To prepare for generalisation,
all pattern pairs with the shortest edit distance are found
and added to list L and the pairs involving both significant
TEPs are excluded from the list since we aim at finding
the minimal significant TEP set. In list L, the pattern pair
with the smallest difference among their treatment effects
is generalised. If the diversity of the generalised pattern
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is larger than that of the most general TEP, dv0. The
generalised pattern is discarded and the pair is removed
from L. This is implemented in Lines 21-22. The TEPs used
in the generalisation are replaced by the generalised pattern
in both sets A and S. If the generalised pattern is significant,
it is removed from the insignificant pattern set and added to
the significant TEP set. The generalisation distance matrix
is updated using the generalised patterns and the shortest
pattern distance is found.

After the loop, the most general pattern with all ‘∗’ values
is added for those uncovered records by TEPs in the data or
coming test records that do not occur in the training data set.

4.4.4 Using TEPs for personalised decisions

Significant TEPs identified from data are used for
personalised decision making. Match an individual’s record
to the most specific TEP in the minimal significant TEP
set. If more than one TEP match the record with the same
specificity, the one with the largest n (the cardinality of
its covering set) is chosen. The treatment effect of the
individual is estimated as the CATE of the TEP. The
treatment is recommended to the individual if the CATE is
positive, and the treatment is not recommended otherwise.

4.4.5 Time complexity

Finding PA(Y ) takes O(|X||PA(Y )|k+1) where k is the size
of the maximal conditional set for conditional independence
test (usually k = 3 − 6) by MMPC [23, 38]. The
initialisation of the most specific patterns takes O(n log(n))

of time due to stratification. The pattern generalisation in
the worst case takes O(4|PA′(Y )|) when all the most specific
patterns are generalised, and in most cases, it takes less
time. The overall time complexity is O(|X||PA(Y )k+1| +
n log(n)+O(4|PA′(Y )|)). So the complexity is determined by
the number of parents of the outcome variable. DEEP works
for the data sets where the number of parents of the outcome
is not many.

5 Experiments

5.1 Baselinemethods and parameter setting

We compare DEEP with two state-of-the-art methods
for causal effect heterogeneity modelling, Causal Tree
(CT) [3], and Interaction Tree (IT) [37], and one uplift
modelling method, Uplift Decision Tree (UpliftDT) [33].
All three methods are tree based, and their interpretability is
comparable to DEEP’s since a tree path can be interpreted
as a pattern. Other causal heterogeneity and uplift modelling
models do not provide the same interpretability and hence
are not compared.

We use the CT implementation available at https://
github.com/susanathey/causalTree by the authors of [3].
For IT, we use the R implementation available at http://
biopharmnet.com/subgroup-analysis-software/. The default
parameters are used for the two methods. UpliftTree
is obtained from https://causalml.readthedocs.io/en/latest/
methodology.html#uplift-tree. Euclidean distance is used
since it performs best in the authors’ work [33]. Other
parameters are kept as the default.

The parameters of DEEP are listed as follows. The
confidence level for testing significant patterns in DEEP is
set as 95%. We have employed the R implementation of
MMPC [23] for PC discovery, and set maxk as 3, p value as
0.05 and gSquare for independence tests.

5.2 Evaluation of synthetic data sets

This part aims at evaluating the quality of TEPs for
modelling causal heterogeneity. The ground truth CATEs
are necessary and hence the evaluation has been conducted
in synthetic data sets.

We have used the code in [3] to generate synthetic data
sets. Variables are binarised using their means since DEEP
deals with binary variables. The numbers of variables are
set as 20, 40, 60, 80 and 100 respectively, and the data set
size is fixed at 10,000 for all. The number of parents of Y ,

Table 2 PEHE of different methods on 10 synthetics data sets using 10-cross validation

#Var CT DEEP IT UpliftDT

20 0.201 (0.007) 0.116 (0.005) 0.154 (0.004) 0.401 (0.070)

40 0.240 (0.005) 0.109 (0.005) 0.171 (0.007) 0.394 (0.008)

60 0.257 (0.006) 0.108 (0.003) 0.214 (0.010) 0.410 (0.007)

80 0.278 (0.005) 0.105 (0.003) 0.267 (0.012) 0.396(0.005)

100 0.285 (0.007) 0.107 (0.004) 0.312 (0.014) 0.400 (0.006)

Ave 0.252 (0.006) 0.109 (0.004) 0.223 (0.009) 0.400 (0.019)

The standard deviation is shown in the parentheses. The smallest PEHE for each data set is highlighted
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Table 3 MAPE of different methods on 10 synthetics data sets using 10-cross validation

#Var CT DEEP IT UpliftDT

20 86.0 (4.3) 51.4 (4.5) 72.3 (3.5) 246.1 (6.2)

40 103.0 (2.8) 45.0 (3.2) 73.3 (4.3) 212.8 (7.2)

60 114.1 (3.7) 47.2 (1.3) 87.5 (6.5) 234.9 (4.4)

80 125.1 (4.3) 46.4 (1.7) 110.7 (6.3) 255.2 (7.4)

100 128.3 (5.1) 45.4 (1.4) 124.3 (9.9) 224.5 (5.7)

Ave 111.3 (4.0) 47.1 (2.6) 93.6 (6.1) 234.7 (6.2)

The standard deviation is shown in the parentheses. The smallest MAPE for each data set is highlighted

i.e. |Z ∪ F|, is 8 in all data sets. 10 data sets are generated
randomly in each setting.

The ground truth CATEs are known and hence PEHE and
MAPE are used for evaluating the quality of models. The
Precision in Estimation of Heterogeneous Effects (PEHE)
[19] measures the mean squared error of estimated CATEs.

i.e. PEHE = 1
n

n∑

i

(τ̂ (xi ) − τ(xi ))
2 where τ̂ (xi ) and τ(xi )

are estimated CATE and ground truth CATE of individual xi

respectively. The Mean Absolute Percentage Error (MAPE)

is 1
n

n∑

i

| τ̂ (xi )−τ(xi )
τ (xi )

| × 100%. PEHE and MAPE are obtained

by 10-cross validation in each data set and averaging over
10 data sets.

DEEP performs better than three other methods in terms
of both PEHE and MAPE as shown in Tables 2 and 3. This
is because that DEEP keeps the information as specific as
possible and hence predicts CATEs better than others.

5.3 Evaluation on real world data sets

We evaluate the methods on four real world data
sets which are briefly described in Table 4. Criteo
uplift prediction dataset [10] is an open-access large
scale data set. We have randomly sampled 200,000
records from the original data set. The Hillstrom’s
Email dataset is from https://blog.minethatdata.com/2008/

03/minethatdata-e-mail-analytics-and-data.html. The Mar-
keting campaign data set is part of the Informa-
tion R-package (https://cran.r-project.org/web/packages/
Information/index.html). In the data sets, numerical vari-
ables have been binarised by their medians. The US Census
(KDD) data set is from the UCI Machine Learning Reposi-
tory [4]. We have selected the following attributes for easy
interpretation: ‘College degree’ (the treatment), ‘Income >

50K’ (the outcome), ‘Age < 30’, ‘Age > 60’, ‘Work-in-
Private”, ‘Work-in-Government”, ‘Self-employed’, ‘Profes-
sional’, and ‘Full time’, and ‘Sex’.

Since there are no ground truth CATEs in the real world
data sets, we cannot use PEHE and MAPE to assess the
quality of the methods. Instead, we use prediction accuracy
for the assessment. A predicted CATE indicates the chance
of improvement of an individual if s/he takes the treatment.
We cannot assess the accuracy of each prediction. However,
we can estimate the cumulative improvement of a group
of individuals. In a test data set, all individuals are ranked
by their predicted CATEs, and are then partitioned into 10
groups: Decile 1 to 10 groups with CATE in the descending
order. If a model is good, the observed difference, prob(y |
W = 1) − prob(y | W = 0), in the 10 groups will
monotonically decrease with the increase of the decile
indexes. The higher quality a model is, the steeper the
declining rate. The decile plots have been used for assessing
the quality of uplift models [17].

Table 4 A brief description of the real world data sets

Name Criteo Hillstrom’s Marketing US

Email Campaign Census

#Records 200000 42693 20000 348128

#Var 12 29 67 8

Treatment Promotional Women’s Marketing College

email email offer degree

Outcome Visit Visit Accept Income≥50K

(4.7%) (12.9%) (20.0%) (8.7%)
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Fig. 3 Decile plots of four methods in four data sets. From the 1st row to the last: CT, DEEP, IT and UplifDT. DEEP shows a more consistent
decline in four decile plots

The decile plots in Fig. 3 show that DEEP performs
overall more consistent than other methods. In data sets
Criteo, Hillstrom’s email and US Census, DEEP performs
better than others since it presents a steep declining curve.
In the Market Campaign data set, DEEP’s performance is
very competitive with CT and IT and better than UpliftDT.
No other algorithms perform as consistent as DEEP in all
four data sets. The results have been obtained by 10 times
2-fold cross validation.

The number of patterns (or paths from the root to leaves)
are shown in Table 5. DEEP does not discover too many
patterns and this is due to the significant test for a pattern.
A tree based method is able to find many subgroups by

increasing the tree height, but a tree based method does not
have flexibility like DEEP since all patterns from a tree are
constrained by the variable at the root: all patterns include
a value of the root variable. In contrast, DEEP does not
have such a constraint and can model any heterogeneous
subgroups.

5.4 Time efficiency

We apply DEEP and three other methods to the synthetic
data sets of 20, 40, 60, 80, and 100 variables with 10,000
records for testing their scalability with the number of
variables, and to the synthetic data sets of 5K, 10K, 20K,
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Table 5 The number of patterns (or paths from the root to leaves in a tree) from different methods in four data sets. The standard deviation is
shown in the parentheses

CT DEEP IT UpliftDT

Criteo 14.3 (4.6) 39.4 (6.1) 4.7 (1.3) 31.8 (2.5)

Hillstrom 47.5 (7.9) 24.9 (3.8) 2.4 (1.0) 38.7 (4.6)

Market 75.1 (11.0) 58.6 (13.5) 10.4 (4.1) 30.5 (2.3)

US Census 8.7 (2.4) 75.0 (1.7) 24.3 (2.1) 3.7 (1.9)

40K, 60K, and 80K with 40 variables for testing their
scalability with the data set size. Results are shown in Fig. 4.

With the number of variables, the scalability of all four
methods is good. Relatively, UpliftDT is the fastest since it
does not estimate CATEs or test reliability for tree splits. CT
is the slowest since it needs to estimate propensity scores for
CATE estimation. Logics regression is used in the propen-
sity score estimation. DEEP and IT perform similarly.

With the number of records, DEEP and UpliftDT perform
very well. The increase in data set size improves the
time efficiency of DEEP since pattern generalisation is
an expensive part of DEEP. With the increase in data set
size, the number of significant patterns at the most specific
level is increasing, and this reduces the overall number of
patterns to be merged. Since CT uses logistic regression
for propensity score estimation, its performance deteriorates
quickly with the increase in data set size. IT grows a large
tree firstly and then prunes it back to a small tree. In
the pruning process, cross validation is used to determine
whether to retain a leaf node or not, and this leads to its low
scalability with the data set size. The scalability of DEEP
the data set size is good. DEEP works for large sized data
sets.

6 Related work

Great research efforts have been made on treatment effect
estimation within two major frameworks: graphic causal
modelling [31] and potential outcome modelling [20]. The
work in this paper falls into the former.

CATEs are commonly analysed to detect treatment effect
heterogeneity and we are interested in data driven analysis.
Su et al. [37] used recursive partitioning to construct
the interaction tree (IT) for treatment effect estimation in
different subgroups by adapting the CART [25]. Athey
et al. [3] proposed to use honest estimation for tree partition
and causal effect estimation, and built the Causal Tree (CT)
based on the CART [25] to find the subpopulations with
heterogeneous treatment effects. Wager and Athey further
proposed a random forest based method for causal effect
heterogeneity modelling [41]. A meta-learning method [22]
was proposed for causal heterogeneity modelling with
unbalanced treated and control samples. In recent years,
some algorithms have been presented using deep learning
techniques [28, 35, 43, 44]. Interesting readers are referred
to a survey [16] and an evaluation paper [21].

Uplift modelling is closely linked to causal heterogeneity
modelling as shown in [17, 45]. Due to the page limit,
we refer readers to the recent surveys [9, 15]. Uplift
modelling is normally assumed in data from a well designed
randomised experiment and hence probability difference in
the treated and control groups has been used as CART
without adjustment. Therefore, it is not clear whether the
uplift modelling methods can be used in observational data.
Again only tree based methods are of our interest because of
the interpretability. Rzepakowski and Jaroszewicz adapted
decision trees for uplift modelling [33, 34].

A covariate set in causal inference should satisfy the
unconfoundedness assumption (i.e. conditional ignorabil-
ity [32]). VanderWeele and Shpitser [40] have proposed a
covariate set to be the union of causes of the treatment

Fig. 4 Time efficiency with the
number of variables (left), and
with the number of records
(right) of four methods
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and causes of the outcome without knowing the under-
lying causal structure. de Luna et al. [8] have proposed
a method to reduce a covariate set to the minimal sets
under the unconfoundedness assumption, and an implemen-
tation based on the Bayesian network has been reported
in [18]. Entner et al. [12] have proposed a method to find
covariate sets using conditional independence tests. These
works focus on ATE estimation instead of CATE estima-
tion and they have not elaborated on the role of confounders
and effect modifiers in CATE estimation. PC (parent and
child) discovery algorithms, such as PC-Select [6], MMPC
(Max-Min Parents and Children) [38] and HITON-PC [1],
can be considered covariate selection algorithms when data
sets contain pretreatment variables (both ancestral nodes of
treatment and the outcome in a causal graph term).

Causal rules [26, 46] and causal patterns [42] concernmul-
tiple treatments, not causal heterogeneity.

7 Conclusions

We have proposed TEPs to represent treatment effect het-
erogeneity in a population. TEPs encode the local causal
structure which gives users an overview of causal relation-
ships around the outcome variable. Users can evaluate TEPs
discovered in data based on the consistency between the
local causal structure and their domain knowledge, and can
also use their believed local causal structure to guide TEP
discovery. We have developed the DEEP algorithm to iden-
tify TEPs using a bottom up approach which ensures that
each TEP is as specific as possible while its subgroup has
the smallest possible treatment effect heterogeneity. When
using the discovered TEPs, the most specific TEP match-
ing a person’s situation is used for personalised decision
making. The experiments show that the DEEP models the
treatment heterogeneity better than three existing tree based
methods in both synthetic and real world data sets and
DEEP is efficient among the comparison methods. Our
future work will apply the DEEP to assist personalised deci-
sion making in various applications and extend the TEP for
other types of variables other than binary variables.
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