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Abstract
Frustration, which is one aspect of the field of emotional recognition, is of particular interest
to the video game industry as it provides information concerning each individual player’s
level of engagement. The use of non-invasive strategies to estimate this emotion is, there-
fore, a relevant line of research with a direct application to real-world scenarios. While
several proposals regarding the performance of non-invasive frustration recognition can be
found in literature, they usually rely on hand-crafted features and rarely exploit the poten-
tial inherent to the combination of different sources of information. This work, therefore,
presents a new approach that automatically extracts meaningful descriptors from individ-
ual audio and video sources of information using Deep Neural Networks (DNN) in order
to then combine them, with the objective of detecting frustration in Game-Play scenar-
ios. More precisely, two fusion modalities, namely decision-level and feature-level, are
presented and compared with state-of-the-art methods, along with different DNN architec-
tures optimized for each type of data. Experiments performed with a real-world audiovisual
benchmarking corpus revealed that the multimodal proposals introduced herein are more
suitable than those of a unimodal nature, and that their performance also surpasses that of
other state-of-the–art approaches, with error rate improvements of between 40% and 90%.

Keywords Multimodal · Audiovisual · Neural network · Emotion · Frustration

1 Introduction

The field of affective computing, which is understood as the process of estimating human
emotions by means of computational tools [35], is becoming progressively more relevant
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in the video game industry owing to the inherent relationship between the emotions evoked
in the player and the overall user experience [30], with the objective being to create per-
sonalized game scenarios for each player [25]. Video games are currently considered to
be possibly the main Human-Computer Interaction environment in which users are more
open to an alteration in emotional state in order to enhance their own experience [49]. The
actual estimation of the user’s emotional state is, therefore, a key element in the process of
providing proper feedback to the system [7].

In this regard, scientific literature reports several proposals with which to estimate such
emotional states and engagement levels. It is generally possible to broadly divide these
proposals into two main families: (i) the so-called invasive techniques, in which this pro-
cess is carried out using sensing devices, most typically data from electroencephalography
(EEG) headsets [6], although electrocardiogram, facial electromyography, electrodermal
activity and respiration arterial data have also being considered [13], and (ii) non-invasive
approaches, in which the premise is to gather the information required without introduc-
ing external elements suchas tackling the problem as a facial recognition task [3], as the
face is considered the most expressive part of the body [32, 37], or considering the use of
eye-tracking technologies [23].

Of all the different emotions a video game user may experience, frustration is one of the
key elements to estimate because it is significantly correlated with engagement success [19].
Frustration appears when the user is not able to achieve a goal and, if not properly moni-
tored, may lead the user to disregard not only the goal but also the actual game [12]. The
study of this particular problem is, therefore, clearly beneficial for the video game industry.

Despite the aforementioned relevance of quantifying a user’s frustration level, this par-
ticular task has been poorly addressed and the few works can be found in literature basically
differ as regards the principle used to estimate this emotion. For instance, Miller and
Mandryk [28] studied this problem by assuming that the players’ affective state is related to
the touch pressure they apply to game controllers. Other authors, however, address this task
by relying on the use of audio recordings, video captures, and combinations of both sources
of information obtained from the actual game users [12, 41, 42].

Regardless of the actual proposal used to estimate user emotions, most approaches ana-
lyze the data collected by considering Machine Learning (ML) within a general framework.
Furthermore, the current Deep Learning paradigm, which is represented by Deep Neural
Networks (DNNs), is the current trend in most recent emotion-estimating proposals owing
to its demonstrated effectiveness and great capacity for generalization in highly disparate
tasks [11, 21, 36, 45].

In this regard, it is necessary to point out that the use of DNNs to solve the frustration
recognition problem is not new, since state-of-the-art approaches already consider them [41,
42]. Nevertheless, these proposals do not take advantage of the complete potential of these
learning techniques, signifying that there is significant room of improvement that should be
further explored and studied.

This work, therefore, proposes a non-invasive multimodal approach based on DNNs that
detects frustration by making use of audiovisual data. More precisely, we consider the sep-
arate exploitation of the audio and video data in order to take advantage of the nuances of
each modality so as to then explore different policies with which to synergistically com-
bine both sources of information. We specifically propose two fusion modes with the aim
of improving the results of the single-source methods, which deal with audio and video sep-
arately, along with the results provided by the existing approaches described in Section 2.
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Our results for real-world benchmarking data for frustration detection show that this multi-
modal approach is beneficial as regards addressing the proposed task and that it outperforms
existing state-of-the-art proposals.

While it could be argued that this proposal is possibly limited in terms of the number
of data modalities considered and the sophistication of the neural architectures, it should
be noted that, as mentioned previously, the results are already better than those of state-
of-the-art strategies. In this regard, and as will be discussed below, additional sources of
information, along with other learning schemes, may further improve these results, thus
making them of great relevance for future work.

The present work is organized as follows: Section 2 provides a literature review on emo-
tional recognition, focusing on the particular case of frustration, and also on multimodal
learning systems. Section 3 then goes on to describe the multimodal approach proposed in
this work, while Section 4 provides details on the corpus and metrics considered for the
evaluation of the proposal. Section 5 presents the results of the experimentation carried out,
and finally, Section 6 concludes the work and proposes future lines with which to further
study the topic.

2 Background

This section provides the background required for the remainder of this work. It first
explores the topic of emotion analysis so as to then concentrate on that of frustration
recognition, after which the topic of multimodal exploitation of information is presented.

2.1 Emotion recognition

The emotion recognition task is highly complex, and scientific literature, therefore, provides
a wide range of methods with which to tackle it [5]. Of these, speech analysis constitutes
quite a common framework in which to perform this task. Kwon et al. [20] proposed a
combination of specific features such as pitch, energy, and Mel Frequency Cepstral Coeffe-
cients (MFCCs), among others, to be later processed by a Support Vector Machines (SVM)
classifier in order to recognize the emotion presented in the audio recording. Another exam-
ple is the work by Yang et al. [48], which detects emotions in songs by using regression
algorithms, obtaining the best results with Support Vector Regression (SVR).

As mentioned previously, more recent works rely on DNN architectures. For example,
the work by Wootaek et al. [24] presents an approach based on a Convolutional Recurrent
Neural Network (CRNN) that automatically extracts potential features to be used in the
classification of emotions obtained from recordings of speech. Another similar example is
the work by Mirsamadi et al. [29], which biases the feature extraction process by using
a weighted-pooling strategy to promote those features that best represent the emotions in
question.

Although speech is commonly employed to study emotions, other sources of information
have also been explored. For instance, the work by Ebrahimi et al. [8] presents an approach
based on Recurrent Neural Networks (RNNs) in order to analyze facial expressions and
classify them according to a set of predefined categories. In their work, Bahreini et al. [2]
similarly recognize facial emotions but employ a fuzzy logic approach. Finally, as stated
above, other invasive approaches base their performance on the acquisition of additional
data such as brain activity by using EEG devices and processing them [16, 33, 39], but they
have the constraint of specific hardware requirements.
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2.1.1 Analysis of frustration

Since frustration is a particular type of emotion, the general frameworks presented above can
be adapted to its sole detection and recognition. However, given the relevance of this topic,
several strategies have been especially devised in order to tackle this problem. For example,
Fernandez and Picard [10] proposed a method based on Hidden Markov Models in order to
recognize frustration in speech signals. More recently, Malta et al. [26] presented a work in
which the frustration of drivers was detected by using a Bayesian network, considering the
correlation between frustration and several inputs, such as speech, video recordings and the
driver’s use of pedals.

In the particular context of this work, despite being scarce, there are, nevertheless, some
works that analyze frustration in the context of video games. Song et al. [42] proposed a
multimodal approach with which to estimate the frustration level by combining audio and
video inputs through the use of neural networks. However, the authors relied on hand-crafted
facial features extracted from the video and MFCCs, which may arguably not be the best
descriptors for the task in hand. The approach uses a standard Long Short-Term Memory
(LSTM) model to process both audio and video features, and does not, therefore, completely
exploit the capabilities of both DNNs and the different sources of information available.
This work was further improved by Meishu et al. [41], who employed more complex neural
networks with residual connections but relied exclusively on speech data, thus ignoring the
information provided by the video images.

2.2 Multimodal audiovisual analysis

Multimodality [44] is the trend in ML of exploiting different sources of data in order to
then carry out a certain combination, which results in a more robust and proficient model.
Of all the different combination possibilities, namely fusion policies, the following are
highlighted:

– Early fusion: this combines the data sources before they are processed by the learning-
based model. Its main advantage is that only one model has to be trained, but it requires
a proper preprocessing stage for the data sources to enable them to be combined. The
high degree of source variability, therefore, hinders the creation of a proper model that
is able to correctly classify data.

– Late or decision fusion: this is based on the processing of each data source by an inde-
pendent model and then combining their individual classification decisions. In contrast
to early fusion, each model learns a specialized set of features, which is a much easier
to achieve. This strategy is typically used when the sources are significantly different
from each other.

– Intermediate or feature fusion: this is a feature-level fusion of the learning models, and
is typically carried out by concatenating the features obtained before the final decision
is made. This allegedly makes it possible to obtain more robust classifiers. However,
this scheme increases the complexity of the model, since it consists of a single model
with several inputs and one output.

Early and late fusion are fairly common in the literature. For example, Snoek et al. [38]
compare both strategies in semantic video analysis, concluding that late fusion tends to
provide a slightly better performance. Another comparison is presented in the work by
Gunes and Piccardi [15], which combines facial and body-gesture features in order to rec-
ognize emotions by employing two traditional ML algorithms, namely Decision Trees and
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Bayesian Networks. These authors conclude that fusion modalities are better than uni-
modal models, and that feature fusion performs particularly well. Another example is the
work by Wimmer et al. [46], which proposes the use of the SVM classifier with a low-
level combination of features extracted from audiovisual data for emotion recognition, thus
improving performance with regard to unimodal scenarios. It also highlights the work by
Pantic et al. [34], in which an adaptive neural network classifier is presented and assessed
in different study cases, such as the combination of hand gestures and facial features or
the combination of speech and video features. Güçlütürk et al. [14] studied the fusion of
audiovisual and textual information for first impression analysis using Deep Residual Net-
works. All these works endorse the benefits of multimodal fusion approaches. More related
works can be found in the work of Wu et al. [47], in which there are multiple strategies for
multimodal methods for emotion recognition.

This work further explores the idea of frustration recognition by considering multimodal
strategies in Game-Play scenarios using audiovisual data. More precisely, in contrast to
previous works tackling this task, we propose the use of DNNs in order to automatically
extract a set of meaningful descriptors from the audio and video sources of information so
as to then assess the synergistic capabilities of different data fusion policies. This partic-
ular strategy is a new approach in this respect and, as stated in Section 5.2, outperforms
the results achieved by state-of-the-art unimodal speech-based [41] and audio-and-video
multimodal [42] approaches to a remarkable extent.

3 Methodology

In this section, we present our multimodal proposal for frustration detection during Game-
Play, which considers the information from both audio and video recordings. We, therefore,
first describe the approach considered for the audio source of information, and then do so
for the video input. Finally, we introduce the proposal employed to combine both sources
of information in order to determine the presence of frustration.

3.1 Audio classification

With regard to the audio data, previous work [42] proposes an approach based on LSTM
to process a set of MFCCs previously extracted from the raw signal. While MFCCs have
been considered to a great extent in audio speech analysis [31], it has been proved that a
configuration based on Convolutional Neural Networks (CNNs) applied to an initial time-
frequency representation of the signal is a more appropriate way in which to find suitable
features with which to detect frustration in audio recordings [41]. Our audio analysis will,
therefore, also consider this idea rather than that of using hand-crafted features.

Formally, let Xa be an audio recording in raw format and let Sa be its associated time-
frequency representation. We consider a neural network architecture based on CNN layers
in order to process Sa and automatically extract the most suitable features for the frustration
classification. This scheme is shown in Fig. 1.

The main difference between the audio processing performed by [42] and our method is
that we propose the use of convolution layers to automatically extract those features that are
most appropriate from the point of view of the neural network. Our premise is that this will
support the performance of the classification task, since the neural network is responsible
for it. In contrast, [42] directly uses those features provided by the MFCCs, which, although
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Fig. 1 Scheme of the unimodal frustration classifier approach based on speech data

they may appear adequate according to visual perception, may not be the most suitable for
processing by the neural network.

Since the use of time-frequency representations is common in audio processing, note that
different representations other than the MFCCs can also be considered. In Section 5.1.1,
therefore, we shall study the input representation, along with other parameters, such as
sample rate or the specific classifier model to be used, in order to discover the most suitable
configuration for the task in hand.

3.2 Video images classification

Let Xv be a video composed by a sequence of N image frames such that Xv = {xv,i | 1 ≤
i ≤ N}.
As shown in Fig. 2, the objective of the proposed method is to detect frustration in single-

frame video images Xv . However, since only the facial expressions are useful as regards
this detection, our system preprocesses each frame xv,i in order to obtain its trimmed and
resized version sv,i and subsequently create a new video Sv = {sv,i | 1 ≤ i ≤ N} in
which only the face is present. This makes it possible to automatically extract features with
CNN rather than having to employ hand-selected features. The details of this preprocessing
are described in Section 5.1.2.1

An RNN model then provides the decision concerning the presence of frustration in
the Sv trimmed version of the video. This kind of architectures receives a time-correlated
sequence of data, in this case, each single sv,i image frame, and makes the classification
decision after processing all the frames in the sequence.

Owing to the nature of the data in question and the relatively high sampling resolution,
the particular facial expression is barely modified in consecutive frames, signifying that a
model able to learn these long-term dependencies is required. We consequently considered
the use of the well-known LSTM architecture [43], since it is capable of modeling such
dependencies and is also considered in the work by Song et al. [42].

Please note that in this latter work, the set of hand-crafted features are a manual selection
of the features from the Facial Action Coding System [9], which defines a series of facial
features through the use of specific action units (AUs). The method selects 18 of these
AUs features and performs the extraction for each frame xv,i of the initial video data Xv ,
which are then handled by an LSTM in order to perform the frustration classification task.
Nevertheless, as explained for the audio case in the previous section, since these features
may not be the most representative for the task in hand, we propose to automatically learn

1Results without this trimming stage are not reported, since preliminary experimentation showed a remark-
able drop in the overall performance of the system.
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Fig. 2 Scheme of the unimodal frustration classifier approach for video images

them by employing CNN layers from the trimmed version Sv , since we assume that these
features may provide a better overall performance given that they are estimated for the actual
task in question.

3.3 Multimodal fusion

The key aspect of our proposal is the fusion of both audio and video information as described
above. In this regard, we considered two particular types of combinations to be studied in
the experiments: decision fusion and feature fusion.

This decision fusion case (see Fig. 3a) is based on the combination of the single decisions
made by the audio and video models through the use of a weighting factor α. This fusion
can be mathematically represented as

Pf (y|Sv,Sa) = α Pa(y|Sa) + (1 − α) Pv(y|Sv), (1)

Fig. 3 Multimodal fusion schemes with which to compute P(y | Sv,Sa)
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where Pa (y|Sa) Pv (y|Sv) represent the unimodal scores obtained by the DNNs over
the time-frequency audio representation Sa and the face-based trimmed video data Sv ,
respectively, while α ∈ [0, 1] represents a weighting factor.

The feature fusion alternative (see Fig. 3b) consists of designing an actual neural archi-
tecture with two inputs (audio and video) and one output with the classification result. The
idea is based on two parallel streams that process Sa and Sv separately in order to obtain a
particular representation of each modality by employing the neural network. These neural-
based features, denoted as Fa and Fv for the audio and video streams, respectively, are
then concatenated before making the final decision. Note that, in contrast to the previous
case, this feature fusion is performed implicitly, given that the neural network is trained
simultaneously with Sa and Sv .

Both fusion modes considered will be evaluated and compared with their unimodal
versions and other state-of-the-art results in Section 5.

4 Materials andmetrics

This section presents the experimental setup considered in order to assess the frustration
detection method proposed. More precisely, we shall describe the corpus used and the set
of evaluation metrics.

In a technical sense, we considered the following libraries and toolkits for the proposed
experimentation:

– Python.The research has been carried out in the Python programming language (v.
3.6.9).

– Tensorflow [1]: Framework for the implementation of the DNNs models (v.2.3.1).
– Keras: Collection of functions that make it possible to design architectures for neu-

ral networks. It also includes the tools employed to train the models and use them to
evaluate performance (v. 2.4.3).

– NumPy. This is an open source library in the Python programming language used for
the creation of vectors and multidimensional matrices. It provides powerful data struc-
tures that are capable of carrying out vector operations easily and efficiently. In this
research, it will be used to deal with the structures of data used with the different neural
architectures (v. 1.19.5).

– librosa library [27]: Audio analysis library used for the extraction of part of the time-
frequency representations considered (v.0.8.0).

– Cassani toolkit [4]: Audio analysis toolkit used for the extraction of the Modulation-
Spectral representation (v.0.1).

– dlib library [17]: Image analysis library used as a face detector when trimming the
initial video data (v.19.18.0).

4.1 Corpus

For the evaluation of our approach, we have considered the Multimodal Game Frustration
Database [42] of real-world recordings used by both the unimodal [41] and multimodal [42]
state-of-the-art methods. The database comprises over 5 hours of 960 × 540-pixel video
recordings at 30 frames per second split into 10-second excerpts and annotated as either rep-
resenting or not representing frustration. This corpus was created thanks to the participation
of 67 students from the Shanxi Province in China, with ages ranging from 12 to 16.
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This dataset is already provided in three separated partitions for its correct benchmarking:
a training set of 3,979 videos, a validation partition of 1,326 videos, and a test set of 1,328
elements. This configuration is maintained for comparison purposes in our experiment.
Table 1 provides a summary of the details of the corpus.

4.2 Metrics

Since this work tackles an imbalanced scenario, as shown in Table 1, the evaluation requires
a metric that is able to avoid any bias towards a particular class. We have, therefore, consid-
ered the use of the F-measure (F1). In a two-class classification problem, as in our case, F1
is described as

F1 = 2 · TP
2 · TP + FP + FN

(2)

where TP represents the True Positives or correctly classified elements, FP represents the
False Positives or type I errors and FN represents the False Negatives or type II errors.

Nevertheless, since the works compared consider the recall metric, we shall also intro-
duce it for comparison purposes. In the same terms as the F1, the recall R metric can be
defined as

R = TP

TP + FN
(3)

Moreover, since it may provide some additional insights into the performance of our
proposal, we also consider the precision P metric, which is defined as:

P = TP

TP + FP
(4)

Finally, in order to be consistent with the other works dealing with this problem, all
these metrics will be computed by taking the minority class, i.e., the frustration class as the
positive class.

5 Experimentation

This section presents the different results obtained after considering several DNNs models
in several scenarios. We first consider an initial stage so as to correctly adjust the parameters
of our proposed models in order to then assess their performance on the test partition and
compare them with the results reported by the state-of-the-art works in this field.

Please note that the models were trained until 115 epochs, and that the weights of
these epochs were maintained, which maximizes the results in the validation set. We used
the well-known Adam optimizer [18] and the categorical cross-entropy loss function. We
considered batch sizes, taking the maximum allowed by the memory restrictions up to 32.

Table 1 Amount of audiovisual
recordings of the corpus
considered with training,
validating and testing partitions,
according to the presence of
frustration

Emotion Train Validation Test

Neutral 3,564 1,188 1,189

Frustration 415 138 139
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5.1 Model optimization

As mentioned previously, in this first part of this section our objective is to correctly opti-
mize the different parameters of the model proposed. The stand-alone audio and video
models are, therefore, first analyzed and optimized in order to subsequently study the mul-
timodal cases proposed. Note that this optimization study considers only the training and
validation partitions of the data in question.

5.1.1 Audio model

With regard to the implementation of the audio processing, as described in Section 3, our
approach first processes the audio in order to extract the corresponding time-frequency rep-
resentation. We considered the use of the well-known Mel spectrogram, as occurred in the
work by Meishu et al. [41] in which its effectiveness for this particular task was proven. We
additionally included two other representations widely applied in the field of audio-based
emotion recognition: the Modulation-Spectral one [50] and MFCCs [22].

Both the Mel spectrogram and the MFCCs were obtained using the librosa library,
whereas the Modulation-Spectral representation was attained by employing the Cassani
toolkit. With regard to the neural architectures, we selected ResNet50 and Xception, since
both have been used in the reference works considered [40, 41]. Note that, since we are mod-
eling a two-class problem (frustration/non-frustration), the output of these models consists
of two neurons representing each of these labels.

As mentioned above, we trained the models using the training and validation partitions
of the corpus. The hyper-parameter tuning took place in a two-step fashion: we first studied
the most suitable type of time-frequency representation for the task in hand and we then ana-
lyzed different values of hyper-parameters in order to eventually optimize the classification
results.

For the first analysis, we fixed a sample rate (sr) of 22, 050 Hz and a hop length of
512 samples, which resulted in temporal and frequency resolutions of 23.2 ms and 43 Hz,
respectively. When the input corresponded to an MFCCs spectrogram, we fixed a total of
39 common coefficients: 13 MFCCs, 13 delta-MFCCs, and 13 second-order delta-MFCCs.

The results obtained with the validation partition using the aforementioned conditions
are shown in Table 2.

Note that, although both ResNet50 and Xception attain high-performance figures, the
Mel spectrogram is the scenario with the best recall results, with R = 93.7%, when

Table 2 Results on the validation partition in terms of R, P , and F1 measured in % for audio classification
according to the type of input data representation and the neural network model

Input Model R (%) P (%) F1 (%)

MFCCs Xception 91.4 80.2 85.4

ResNet50 90.9 74.1 81.6

Modulation Xception 82.2 70.8 75.7

ResNet50 78.0 65.4 71.1

Mel Xception 93.7 87.8 90.6

ResNet50 85.3 69.9 76.8

The figures in bold type represent the best results obtained for each metric

13626 Multimedia Tools and Applications (2023) 82:13617–13636



compared to the MFCCs case which obtains a maximum recall ofR = 91.4% and the Mod-
ulation spectral which obtainsR = 82.2%, all of which correspond to the Xception model.
While ResNet50 also attains high-performance results, Xception outperforms all of them.
For instance, upon considering the MFCCs input, the recall decreases from theR = 91.4%
obtained by the Xception model to the R = 90.9% obtained with ResNet50; the Modula-
tion spectral case also shows a reduction in recall from R = 82.2% to R = 78.0%. With
regard to the Mel spectrogram, which provided the best results of all the metrics consid-
ered, there was the same tendency as with the other results, decreasing the recall from the
R = 93.7% obtained by Xception to theR = 85.3% obtained by ResNet50. Note also that
the P and F1 metrics are highly correlated with the previous recall analysis, obtaining the
best result in all cases for the Mel spectrogram representation processed by the Xception
model. All of the above eventually led us to select the Mel spectrogram as the input data for
the audio classifier.

The second step was the optimization of the hyper-parameters of the input represen-
tation, i.e., the hop length and sample rate parameters. For this analysis, we considered
three different sample rate values, along with two different hop lengths. Table 3 shows the
results obtained from the previously selected input representation for the two neural models
considered in the work.

One relevant difference between this and the previous experiment was that the best results
for all the metrics considered were not consistently attained by one particular DNNs and
hyper-parameter configuration. In general, the Xception model outperformed the ResNet50
for all metrics and hyper-parameter configurations considered. More specifically, accord-
ing to the P and F1 metrics, Xception achieved the best overall results for the task in hand
with a hop length of 512 samples and 22,050 Hz of sample rate, attaining P = 87.8% and
F1 = 90.6%. With regard to ResNet50, the best results were P = 79.3% and F1 = 81.0%.
The first was obtained with 1,024 hop length samples and a sampling rate of 22,050 Hz,
whereas the second was obtained with 512 hop length samples and 11,025 Hz. Since the

Table 3 Results obtained with the validation partition for the Mel spectrogram hyper-parameter tuning

Model hop length (samples) sr (Hz) R (%) P (%) F1 (%)

Xception 512 11,025 94.3 85.7 89.8

22,050 93.7 87.8 90.6

44,100 92.6 80.2 86.0

1024 11,025 91.1 84.6 87.7

22,050 93.1 86.5 89.7

44,100 92.1 81.1 86.3

ResNet50 512 11,025 84.0 78.3 81.0

22,050 85.3 69.9 76.8

44,100 85.5 69.8 76.9

1024

11,025 78.1 79.1 78.6

22,050 81.0 79.3 80.1

44,100 85.1 68.0 75.4

The figures in bold type highlight the best results for each model and metric considered
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baseline state-of-the-art approaches [41, 42] reported the results in terms of R, we conse-
quently decided to focus on this particular metric in order to determine the configuration
for the final experiments. The hyper-parameter optimization using the validation partition
shows that Xception attained the best recall results (R = 94.3%) when considering a hop
length of 512 samples and a sample rate of 11,025 Hz, which resulted in a temporal and
frequency resolution of 46.4 ms and 21.5 Hz, respectively. We, therefore, considered this
configuration for the final comparison with the state-of-the-art proposals.

5.1.2 Videomodel

As described in Section 3.2, our proposal first trims the frames in order to obtain smaller
images that focus on the face of the individual using the face detector of the aforemen-
tioned dlib library. We have resized the resulting images to 64 × 64 pixels for reasons of
simplification.2

The classifier used in this case is a combination of CNN and LSTM, whose details are
shown in Table 4. We considered three variations of the model, henceforth denominated as
M1,M2 andM3, with an increasing number of layers, respectively.

One of the most important hyper-parameters to adjust in this section is the number of
frames of the video data to be introduced into the network. As mentioned previously, the
data collection contains 10-second video excerpts recorded at 30 frames per second, which
results in videos of 300 frames. However, since the difference between consecutive frames
in terms of expression is usually almost imperceptible, some of them could be ignored.

On that premise, in our experiments, we subsampled the number of frames so as to
decrease the complexity of the learning task. More precisely, we experimented with two
particular subsampling rates: taking one frame either every five or ten of the initial frames.
This preprocessing results in excerpts of 30 and 60 frames, depending on the subsampling
rate selected.

The results obtained with the different network models proposed for each of the
subsampling policies considered are shown in Table 5.

We discovered that the most complex model—M3—provided the best results with the
60-frame policy for all the metrics computed. With regard to the other models,M2 attained
better results thanM1 for both subsampling policies, with a maximum recall ofR = 90.1%
for M1 with 30 frames andR = 93.7% forM2 with 30 frames. However, sinceM3 with
60 frames obtained the best overall recall results withR = 94.2%, this particular configura-
tion was selected for the final experiments. The other metrics were found to follow a similar
trend, and it consequently became clear that M3 was superior to the other alternatives for
this task.

5.1.3 Fusion model

Having optimized the individual models for audio and video classification, we then com-
bined them to build the multimodal audiovisual approach. As mentioned in Section 3.3, we
considered two possible combinations: decision fusion and feature fusion.

With regard to the decision fusion, according to (1), it is necessary to study the optimal
value of α for our multimodal method. Figure 4 shows the result of this combination with

2These particular values were selected on the basis of preliminary experiments.
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Table 5 Results obtained for the validation set of the video classification for the different models and
subsampling policies considered

Model # frames R (%) P (%) F1 (%)

M1 30 90.1 82.7 86.3

60 88.9 81.1 84.8

M2 30 93.7 83.0 88.0

60 92.8 80.6 86.3

M3 30 93.3 78.6 83.9

60 94.2 83.7 88.7

The figures in bold type represent the best results attained for each metric

α ∈ [0, 1] and a granularity of 0.1. Note that α = 0 corresponds to the unimodal audio
model, while α = 1 represents the unimodal video model.

In this graph, the red curve represents the performance of our multimodal proposal in
terms of the recall metric. The maximum goodness of the method when the fusion is per-
formed equally is evident, i.e., α = 0.5, obtaining a result of R = 97.6%. If this value is
compared with the second-best result—95.5% when α = 0.4—, it will be noted that there
is an important difference between them. Indeed, the error rate is reduced by over 46%,
from 4.5% (when α = 0.4) to 2.4% (α = 0.5), thus proving the need to properly adjust this
hyper-parameter. Furthermore, the frustration detection of our multimodal proposal outper-
forms both the unimodal models considered. After this analysis we, therefore, eventually
selected α = 0.5 for the final experiments. However, it is worth highlighting the wide range
of values of α with which our multimodal approach based on decision fusion outperforms
the performance of the unimodal methods, particularly when α ∈ [0.1, 0.8]. Moreover, the
experiment proves that this combination never provides worse figures than the unimodal

94

95

96

97

98

0 0.2 0.4 0.6 0.8 1

(%
)

Audio unimodal
Video unimodal

Multimodal fusion

Fig. 4 Effect of the hyper-parameter α on the multimodal decision fusion when compared with the unimodal
approaches in terms of R on the validation partition
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approaches, the worst case being when α = 0.9, in which the performance of the fusion
model equals that of the video unimodal. These results reinforce the idea that our combi-
nation of audio and video data may be beneficial for the detection of frustration, and this
premise, in fact, holds true for the majority of values of α.

The second fusion scenario is the feature fusion. This consists of combining the proba-
bility predictions of the two unimodal approaches described above in order to make a single
decision about the presence of frustration aided by the individual descriptors extracted for
each type of data. Table 6 shows a comparison between the best decision fusion model
obtained (α = 0.5) and this second type of multimodal fusion.

Focusing on the recall metric, the decision fusion provides a performance ofR = 97.6%,
whereas the feature fusion remains atR = 95.6%. The other metrics evaluated also attained
a superior performance when comparing the decision fusion with the feature fusion.

5.2 Final results and comparison with the state of the art

In this section, we show the results obtained in the test partition of the corpus considered
and comparatively assess them using those obtained by the state-of-the-art approaches men-
tioned above. As commented on previously, the reference works in literature that address
the frustration detection task report only the recall metric, and we shall, therefore, consider
only this particular measure for comparative purposes.

Table 7 shows the results obtained with the test partition of the corpus considered for all
the different unimodal and multimodal proposals studied in this work, along with the results
reported by the reference state-of-the-art methods.

Upon studying the results reported for the state-of-the-art methods, it will be observed
that the multimodal approach by Song et al. [42] provides the worst recall results, with
a value of R = 60.3%, while the unimodal method [41] outperforms those results with
R = 93.1%. This remarkable difference between the scores obtained suggests that the
aforementioned multimodal approach may not be properly exploiting its available sources
of information, as a unimodal approach clearly outperforms it. Note that [41] performed this
classification task through the use of more complex models, thus exploiting the capabilities
of the neural networks, but that only audio was considered for the experiments, signifying
that a valuable amount of information that could have been useful in the classification task
was missed.

With regard to the unimodal audio and video strategies proposed in this work, note that
they also attain competitive results, with recall values of R = 91.7% and R = 89.6%,
respectively. Note also that, when compared with [41], our audio-based model attains
slightly worse results, since the recall decreases fromR = 93.1% toR = 91.7%. Although
our unimodal approaches do not achieve the results obtained by the unimodal state-of-the-
art method, they significantly outperform the existing multimodal method. The benefits of
the influence of the automatic learning performed by the convolution layers when compared

Table 6 Comparison between the two fusion modalities considered on the validation partition of the corpus

Fusion type R(%) P(%) F1(%)

Decision 97.6 95.3 96.5

Feature 95.6 86.9 91.0

In the case of the decision fusion, we consider the α = 0.5 value, which optimizes the result.
The figures in bold type highlight the best results each figure of metric considered
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Table 7 Results regarding the test partition of the corpus

Method R (%)

State of the art

Multimodal [42] 60.3

Unimodal [41] 93.1

Our approach

Audio 91.7

Video 89.6

Decision fusion 95.9

Feature fusion 93.8

State-of-the-art methods are clearly differentiated from the results attained with the proposals described in
this work. The figures in bold type represent the best results in terms of recall

with the hand-crafted feature extraction is, therefore, demonstrated. It is important to state
that, while the actual audio architecture proposed in literature was reproduced here for the
sake of comparability, our results are slightly lower than those reported in the reference
work.3

However, when analyzing the two multimodal approaches proposed in this work, it is
evident that they are consistently better than the figures attained by the unimodal architec-
tures. With regard to feature fusion, it yields a recall score of R = 93.8%, which is thus
better than the results of both R = 60.3% by [42] and R = 93.1% by [41]. The decision
fusion attains the best overall recall value, with a score ofR = 95.9%.

While the improvements made may appear to be relatively limited, it should be noted that
decision fusion obtained only a 4.1% recall error which, when compared with the 39.7%
error provided by the state-of-the-art multimodal approach, implies a relative improvement
of 89.7% for this figure of merit. A similar analysis comparing the decision fusion with the
audio-based state-of-the-art result also yields a relative improvement of slightly more than
40%. This shows that our multimodal method is much more reliable as regards providing
feedback about users’ game-play experience.

Although the feature fusion does not achieve the best performance, it is also worth high-
lighting its high recall, with 93.8%, which from the point of view of the error made, supposes
6.2% of the absolute recall error, or in other words, a relative reduction in the error of over
10% with respect to the best state-of-the-art method, i.e., the audio-based one. These results
reinforce the premise on which we this research is based, i.e., that a multimodal approach
may be a more appropriate means to carry out the classification task than unimodal models,
since it is able to leverage the information provided by the two data sources involved—audio
and video—in order to make remarkable improvements to the detection of the frustration
when compared with single-source based models.

The results obtained, therefore, confirm that both multimodal fusion methods presented
in this work are considerably better than unimodal approaches, which only tackle either
audio or video information. Moreover, the results obtained also outperform those attained
by the state-of-the-art works addressing this same task, including the multimodal and the
unimodal proposals. Finally, note that the experimentation presented validates our proposed

3This is probably owing to certain implementation nuances that are difficult to replicate completely.
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multimodal strategies as it attains the best recall scores of all the benchmarked methods,
with the decision fusion scheme being that which obtains the best overall results.

6 Conclusions

Frustration detection constitutes the discovery of an emotion of particular interest in the
video game industry, since it is directly correlated with the users’ engagement. However, its
estimation and tracking remains an open research question, especially when invasive track-
ing devices are not considered. In this context, this work introduces a new approach with
which to detect frustration in non-invasive scenarios by considering multimodal strategies
that fuse the information extracted with a feature-learning stage based on Deep Neural Net-
works (DNNs) obtained from the different individual data sources. More precisely, when
considering audiovisual data, the idea is to extract meaningful descriptors from the audio
and video sources of data and combine them in order to eventually perform frustration
detection. Note that this fusion synergistically exploits the capabilities of DNNs to obtain a
suitable set of features with which to detect the frustration emotion for each particular data
source.

We specifically propose two multimodal approaches with which to merge the audio and
video pieces of information: a decision-level approach, which combines the individual deci-
sions made with each data source, and a feature-level policy, which combines the individual
features extracted by the DNNs from each type of data in order to then make a single deci-
sion. The experiments reveal that the two proposed multimodal fusion methods outperform
unimodal strategies, along with providing better results than the state-of-the-art schemes
obtained from the related literature. The best results were specifically obtained with the
decision-level fusion, with a recall score of 95.9%, thus improving the error rate by almost
90% in comparison to the multimodal state-of-the-art approach, and by over 40% when
compared to that of the unimodal audio-based method.

The remarkable improvement obtained with our approach validates not only the use of
multimodal approaches as regards merging different sources of information in a synergistic
manner, but also the use of DNNs as feature extractors for emotion recognition tasks other
than those related to frustration. However, this proposal still has considerable constraints,
such as the limited amount of sources of information or the simple neural architectures con-
sidered. In this respect, future work should consider the inclusion of other complementary
data i.e., eye gazing or information related to playing time. We also aim to further study
other fusion modalities, such as early fusion or to explore feature fusion methods in greater
depth. Finally, a further objective is that of exploring other neural architectures based on
residual connections since, as proved by other works in literature, they may further improve
the results obtained.
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