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Learning enhanced features and inferring twice
for fine-grained image classification

Xuan Nie1 ·Bosong Chai1 · LuyaoWang1 ·Qiyu Liao2 ·Min Xu2

Abstract
Fine-Grained Visual Categorization (FGVC) aims to distinguish between extremely simi-
lar subordinate-level categories within the same basic-level category. Existing research has
proven the great importance of the discriminative features in FGVC but ignored the con-
tributions for correct classification from other features, and the extracted features always
contain more information about the obvious regions but less about subtle regions. In this
paper, firstly, a novel module named forcing module is proposed to force the network to
extract more diverse features for FGVC, which generates a suppression mask based on the
class activation maps to suppress the most distinguishable regions, so as to force the net-
work to extract other secondary distinguishable features as the final features. The forcing
module consists of the original branch and the forcing branch. The original branch focuses
on the primary discriminative regions while the forcing branch focuses on secondary dis-
criminative regions. Secondly, in order to solve the problem that information of small-scale
distinguishable features is lost seriously after multi-layer down-sampling, according to the
class activation maps of the first prediction, the object is cropped and scaled as the sec-
ond input. To reduce the prediction error, the first and second prediction probabilities are
fused as the final prediction result. Experimental results indicate that the proposed method
not only outperforms the baseline model by a large margin (3.7%, 5.9%, 3.1% respectively)
on CUB-200-2011, Stanford-Cars, and FGVC-Aircraft, but also achieves state-of-the-art
performance on FGVC-Aircraft.
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1 Introduction

In the past few years, Convolutional Neural Networks (CNNs) have excelled immensely
on image classification for its splendid feature extraction capability. However, different
from the traditional image classification task, where categories have a huge difference in
morphology. Fine-Grained Visual Categorization (FGVC) mainly focuses on distinguishing
between subordinate-level categories within the same basic-level category, e.g., different
kinds of birds [29], cars [17], dogs [15], aircraft [20]. FGVC is more challenging than tra-
ditional image classification for that the intra-class variances could be much higher than
the inter-class variances. The CNN model can not correctly distinguish between extremely
similar-looking categories unless it can extract subtle and discriminative features.

As shown in recent works [7, 25, 34], paying attention to multiple discriminative parts
plays a vital role in FGVC. In the early work [2, 3, 32], extra manual bounding-box or
part annotations are employed to extracting discriminative features in multiple object parts.
Recent efforts [34, 39] utilize only class labels to automatically localize the object parts.
Ding et al. [7], Sun et al. [25] show that without external interference, CNNs [13, 27, 31]
usually excel at extracting the most discriminative feature but ignores the crucial comple-
mentary information as well. Recently, the study of translation invariance [1, 24, 36] in
CNN indicates that small translation or rescaling on the input image can drastically change
the prediction of a deep network, it means that a fixed network will focus on different parts
and extract different features when the object is panned or zoomed.

In this paper, a novel framework named “forcing network” is proposed, which is referred
to as F-Net to address the challenges of FGVC. The diverse and enhanced features will be
obtained in F-Net by the forcing module which is consisted of the original branch and the
forcing branch. The original branch generates the class activation maps (CAM) to local-
ize the most discriminative parts. In the forcing branch, the suppressive mask is generated
to suppress the primary discriminative and force the network to pay attention to secondary
discriminative regions which are usually overlooked due to the network pays the most atten-
tion to the primary discriminative. After the back gradient propagation, enhanced features
will be extracted for classifiers. To reduce the prediction error, the subtle regions are mag-
nified, according to the CAM, the object is cropped and zoomed as the second input to
predict again. The first and second prediction probability are fused as the final results. In
the training phase, the most discriminative region on the cropped image is dropped to force
the network to pay attention to more regions.

Our main contributions can be summarized as follows:

– We proposed a novel “forcing network” structure. The forcing branch is introduced
as an auxiliary branch to force the network to focus on multiple regions. And extract
diverse features including primary discriminative features and confusion features for
fine-grained visual categorization.

– Based on class activation maps, the object is cropped to the center of the image and
the subtle regions will be magnified for the second prediction. The sum of the two
prediction probability serves as the final prediction.

– Comprehensive experiments were carried on the widely-used fine-grained benchmarks,
including CUB-200-2011, FGVC-aircraft, and Stanford-cars. The comparison results
demonstrated that our method outperforms the majority of methods and achieves state-
of-the-art performance on FGVC-Aircraft.

The rest of the paper is organized as follows. Section 2 contains the literature review.
Section 3 contains the methodology (method). Section 4 contains the results. Section 5
contains the conclusions and policy implications.
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2 Related work

In this section, we briefly review the related works of fine-grained visual categorization.
For FGVC, the traditional image classification method was used in the earliest stage. The

commonly used image feature extraction method is the SIFT method. After the features are
lifted by SIFT [21], the features are clustered by K-nearest [22] and other clustering meth-
ods. Such methods are computationally complex and time-consuming. There have been a
variety of methods proposed for FGVC. In the early work [2, 3, 32, 38], the cumbersome
and expensive manual bounding box or part annotations are adopted. Later, part or box
annotations were replaced by extracting features of multiple parts or discriminative parts
in a weakly supervised way. MA-CNN [39] generated multiple parts by clustering, weight-
ing, and pooling from spatially-correlated channels and then classified an image by each
individual part. MA-CNN takes a long time to train and has low accuracy. NTS-Net [34]
adopted self-supervision to effectively localize informational regions without the demand of
bounding-boxes or part annotations. DCL [5] partitioned the input image into local regions
and then shuffles them as another destructed sample. It will pay more attention to discrimi-
native regions to recognize the destructed image. The adversarial learning module is added
to the DCL to prevent the network from overfitting to the noisy features caused by ran-
dom image scrambles. S3N [7] collected peaks from the class response maps to estimate
the discriminative and complementary information receptive fields and learn a set of sparse
attention for capturing the subtle yet fine-detailed visual evidence as well as preserving con-
tent information. DB [25] found subtle differences between similar-looking categories by
suppressing the most prominent discriminative regions in class activation maps in the train-
ing phase. DB network enables the network to notice multiple regions in the inference stage
by randomly suppressing the feature expressions of different regions in the training stage.
DB can achieve higher accuracy with fewer parameters.

Bilinear [18] CNN model is another effective stream for FGVC, the output of two CNN
branches is multiplied using the outer product at each location of the image and pooled
to obtain the bilinear vectors as the features for the classification layer. Following the
impressive performance, some improved bilinear models are proposed. TASN [40] pro-
posed trilinear attention sampling to learn subtle feature representations from hundreds of
part proposals for FGVC. Gao et al. [9] compacted bilinear pooling with low-dimension
and low-rank bilinear pooling [16] by applying a low-rand bilinear classifier was proposed
to reduce the consumption in computation time and parameters memory. HBP [35] adapted
bilinear pooling between different layers that enabled the inter-layer interaction of features.
Xiong et al. [33] proposed an efficient framework for RGB-D scene recognition, which
adaptively selects important local features to capture the great spatial variability of scene
images. Wang et al. [30] present multiscale representation for scene classification, which is
realized by a global–local two-stream architecture.

FGVC is improved by various other methods as well. MAMC [26] leveraged metric
learning to learn multiple relevant parts by pulling positive features closer while pushing
negative features away. API-Net [41] recognized a pair of fine-grained images by interac-
tion. In MC-loss [4], each class was predicted by a specific number of channels, and each
group consists of a discriminative component and a diversity component. GCL [31] pro-
posed a criss-cross Graph propagation sub-network to learn region correlations. MGE-CNN
[37] developed several experts to classifier the image, and each expert learns with prior
knowledge from the previous expert, in the end, a gating network was used to determine
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the contribution of each expert. A gradient-boosting loss that seeks to resolve ambiguities
among closely related classes is proposed in DB [25] as well.

Our method obtains diverse features that contain the primary discriminative features and
confusion features by enhancing the secondary discriminative regions. Compared with ran-
dom suppression, suppressing primary the discriminative regions in class activation maps
that force the network to pay more attention to the confusing regions which are usually over-
looked due to the network pays the most attention to the primary discriminative regions.
Compare with multiple frameworks, the first and the second prediction in our method share
the same framework, and we only increase an extra convolutional layer, based on backbone
such as ResNet-50 [13]. Since the object is panned and magnified in the second input, the
network will focus on the parts different from the first prediction. In the training phase, we
use the average of the first and the second loss as the final loss, it reduces the loss of the
oscillation from the first wrong prediction.

3 Methodology

In this section, the F-Net and the CAM-based cropping moudule are described in detail,
the overview architectures of the two modules are illustrated in Figs. 1 and 2, respectively.
F-Net consists of two components including the feature extracting module and the forcing
module. The feature extracting module is the convolutional backbone of Resnet-50 [13].
The forcing module and CAM-based cropping module will be described detailly in this
Sections 3.1 and 3.2, respectively. To acquire class activation maps conveniently, the fully
connected layer for classification is replaced with a 1 × 1 convolutional layer. The 1 × 1
convolutional layer has an output channel number equaling to the number of classes to
acquire class activation maps. Given an input image, the feature maps for classification
are produced by the feature extracting module. We denote the extracted feature maps as
FεRN×W×H , with height H , width W , and the number of channels N .

3.1 Forcingmodule

The proposed forcing module is inspired by DB [25]. The forcing module aims to force the
network to extract more diverse features for the classifier, it consists of the original branch
and forcing branch. The original branch and forcing branch share the same feature extract
model, but the inputs of the two branches are different. The destination of the original branch
is to generate the class activation maps and to localize the primary discriminative regions.
After the feature maps F is convoluted by 1 × 1 convolutional layer, class activation maps
M ′εRC×W×H is obtained, where W , H , and C represent the feature’s width, height, and
the number of classes, respectively. Then we perform global average pooling, in order to
obtain the predicted class activation maps M ′

pεRW×H , where p is the index of maximum

in predicted vector V εRC . Here, C refers to the number of classes.

V = g(M ′), (1)

where g(·) is Global Average pooling. For forcing branch, M ′
p is utilized to generate a mask

to suppress top-k discriminative positions of F . Since the top-k positions are suppressed,
the forcing branch has to pay attention to other confused positions. Here, we describe the
procedure to generate the input for the forcing branch in detail. Firstly, M ′

p is reshaped to a
vector of size W times H , i.e. WH and sorted in descending order, then, the k-th values T
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Fig. 1 Overview of F-Net. F-Net consists of the feature extracting module and the forcing module The feature
extracting module is convolutional layers that extract features. The forcing module contains the original
branch and forcing branch

is obtained as the threshold value.

T = Sort (M ′
p)[k], (2)

where Sort (·) denotes sorting in descending order,[·] represents getting value from vector
and k is a hyperparameter that denotes the number of suppressive positions. Let B be the
suppressive mask derived from M ′

p such that:

B(i, j) =
{

α M ′
p(i, j) >= T

1 M ′
p(i, j) < T

, (3)

where i and j represent row and column of the feature’s position respectively and α

is a hyperparameter that denotes suppressing factor. Finally, the input of forcing branch
GεRC×W×H is obtained, which is generated as follows:

G = B � F, (4)

where � denotes the element-wise multiplication of the two tensors. After the classification
convolution is performed, the output of the forcing branch M ′′εRC×W×N is obtained. Let
M be the output of the forcing module, M is obtained as :

M = M ′ + M ′′ (5)

The confidence scores will be obtained after M is fed to global average pooling.

Fig. 2 Overview of CAM-based cropping module. This module crops the object region as the center of the
input image for the second prediction. The first and second prediction probabilities are fused as the final
result
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3.2 CAM-based croppingmodule

CAM-based cropping module is proposed to crop the object into the image’s center and
infer again. The first prediction always focuses on the obvious regions while the second
prediction may pay attention to some subtle regions which will be amplified after the CAM-
based cropping module. The summation of raw prediction and the second prediction is as
to the final prediction. Here, we explain the procedure to crop the object. In the forcing
module, we have described the generation of class activation maps MεRC×W×H . Since
the top-1 map usually highly responds on part of the object and the high response regions
from other maps are other parts of the object, instead of using the top-1 map to localize the
discriminative region, we utilize top-8 maps to crop the whole object.

Denote MpεRW×H as the element-wise summation of top-8 maps. Mp consists of the
object and backgrounds. The threshold value t is set to distinguish between the object and
backgrounds. t is generated as follows:

m = max(Mp), (6)

t = m × d,where d ∼ rand(0.4, 0.6), (7)

where m is the maximum of Mp . Because of the diversity of samples, we generate a random
number d from the uniform distribution between 0.4 and 0.6 in the training phase. d is set
to the minimum value of 0.4 in the random number in the test phase to ensure the whole
object will be cropped. Then, crop mask B2 is obtained as follows:

B2(i, j) =
{
1 Mp(i, j) >= t

0 Mp(i, j) < t
, (8)

The response values greater than or equal to t belong to the object, otherwise belong to the
backgrounds. We generate a bounding box that can cover all positions of 1 in B2 and crop
the object from the raw image as the second input. In the training phase, the discriminative
parts are dropped on the second input. It should be noted that discriminative parts do not
drop in the test phase. The drop mask is obtained as follows:

m1 = max(M1), (9)

E(i, j) =
{
0 M1(i, j) >= m1 × 0.75
1 M1(i, j) < m1 × 0.75

, (10)

where M1 is the top-1map of M and m1 is the maximum of M1. As the training progresses,
the size of the high response area changes all the time, so the threshold value is set to a
fixed value of 0.75 instead of random values. The position of 0 on E will be dropped in the
second input.

3.3 Multi-predictionmodel

The multi-prediction model is to make two predictions for the same image, the first and
the second share the same network, but the input is different. The second input of the
multi-prediction model is also different in the training phase and the test phase. The multi-
prediction model process is shown in Fig. 2. The multi-prediction model training phase
process is shown by the blue arrows in Fig. 2. In the training phase, the original image I is
input to the network for the first time, and the prediction result Prop1 is obtained. Accord-
ing to the first predicted class activation map, the I target is first clipped and expanded by
linear interpolation, the clipping factor d is a random number between 0.4 and 0.6, and then
the main feature area is discarded to obtain the second predicted Input image I2. After going
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through the same network model, the second prediction result Prob2 is obtained. Both
Prob1 and Prob2 are predicted probability values through softmax, and the final prediction
result P is calculated as follows:

P = (P rob1 + Prob1) ÷ 2, (11)

In this classification task, by using the cross-entropy function as the loss function, the cross-
entropy loss is calculated as follows:

L = −
∑

i

yi log ŷi , (12)

where yi is the prediction result, ŷi is the true label, and i is the category subscript and takes
values from 0 to c − 1. During multi-prediction model training, the final prediction result
P is not used to calculate the loss value, but the first prediction result Prob1 and the second
prediction result Prob2 are used to calculate the loss value, The calculation process is as
follows:

Loss = (−
∑

i

P rob1i log ŷi + −
∑

i

P rob2i log ŷi ) ÷ 2, (13)

The final loss is the average of the cross-entropy of the first prediction and the cross-entropy
of the second prediction. The flow of the testing phase is shown by the green arrows in
Fig. 2. During the testing phase, inputting the original image I into the network to get the
first prediction result Prob1 firstly. According to the first predicted class activation map,
only the I target is clipped and expanded by linear interpolation, the clipping factor d is 0.4,
and the main feature loss module is not performed, and the second predicted input image I2
is obtained. After the same network model, the second prediction result Prob2 is obtained.
The final prediction result P is calculated in the same way as in the training phase.

4 Experiments

In this section, we show comprehensive experiments to verify the effectiveness of F-Net.
Firstly, three datasets used to verify our method and the implementation details will be
described in Sections 4.1 and 4.2. Then we compare our model with other methods among
the three common fine-grained visual classification datasets in Section 4.3. Finally, we
analyze the contribution of each component in the proposed framework in Section 4.4.

4.1 Datasets

We comprehensively evaluate our method with three challenging fine-grained datasets,
including CUB-200-2011 [29], Stanford Cars [17], and FGVC Aircraft [20]. The detailed
statistics with category numbers and data splits are shown in Table 1.

Table 1 Three common
fine-grained visual classification
datasets

Dataset Class Train Test

CUB-200-2011 [29] 200 5994 5794

Standford Cars [17] 196 8144 8041

FGVC Aircraft [20] 100 6667 3333
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4.2 Implementation details

In the following experiments, ResNet-50 [13] implemented in Pytorch [23] is adopted as
the backbone and the fully connected layer is replaced with a 1 × 1 convolutional layer
which has the same output channel as the number of classes. The feature extracting convo-
lutional layers is initialized by pre-trained ResNet-50 weights from ImageNet [6], and the
classification layer is initialized by Xavier initialization [11].

In the training phase, the images are resized to 515× 512 and then randomly cropped to
448 × 448 with random horizontal flipping. The cropped threshold d is randomly selected
from 0.4 to 0.6 for every sample and the dropped threshold is set to 0.75, as described
in Section 3.2. We train our network using Stochastic Gradient Descent (SGD) with the
momentum of 0.9, epoch number of 100, weight decay of 0.0001, and a mini-batch of 6
on GTX-2080ti(11G) GPU. The initial learning rate is set to 0.001 and decayed on the
30th epoch with a decay rate of 0.1. Source code is released at https://github.com/boxyao/
Forcing-Network.

4.3 Quantitative results

We do not use any manual annotations except for the class labels. For fair comparisons, our
method is compared with methods without human-defined bounding boxes or part anno-
tations. The comparisons with the various recent and top-performing methods on three
challenging datasets, including CUB-200-2011, FGVC aircraft, and Stanford-cars. Table 2
illustrates the results of three datasets.

Table 2 Comparison with the state-of-the-art on the CUB-200-2011, Stanford Cars, and FGVC Aircraft
benchmarks

Method Backbone Resolution Parameters Datasets

Bird Aircraft Cars

ResNet-50 [13] ResNet-50 448 23.9M 85.4 88.5 91.7

NTS-Net [34] ResNet-50 448 25.5M 87.5 91.4 93.9

DCL [5] ResNet-50 448 24.7M 87.8 93.0 94.5

S3N [7] ResNet-50 448 >101.5M 88.5 92.8 94.7

MGE-CNN [37] ResNet-50 448 >25.1M 88.5 − 93.9

DB [25] ResNet-50 448 23.9M 88.6 93.5 94.9

Stacked-LSTM [10] GoogleNet+ short-side 800 − 90.4 − −
ResNet-50

API-Net [41] DenseNet-161 448 30.3M 90.0 93.9 95.3

AttNet&AffNet [12] ResNet-50 448 23.8M 88.9 94.1 95.6

MC-Loss [4] B-CNN 448 67.1M 86.4 92.9 94.4

EfficientNet-B3 [28] EfficientNet-B3 448 22.6M 89.8 93.4 94.4

ConvNext-B [19] ConvNext-B 448 − 90.7 93.9 94.4

Ours ResNet-50 448 24.3M 88.4 93.3 94.5

Ours DenseNet-161 448 27.3M 89.1 94.4 94.8

Ours EfficientNet-B3 448 23.3M 90.3 94.7 95.2

Ours ConvNext-B 448 27.8M 90.0 94.2 95.0
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On the CUB-200-2011, the baseline based on ResNet-50 achieves 85.4%. our method
further outperforms the baseline by 3.0%. A further improvement of another 0.7% can be
observed when we use DenseNet-161 [14] as the backbone. Compared with MGE-CNN
[37] based on ResNet-50, which used multi-experts, we acquire almost the same accuracy
by adding an auxiliary classifier. Both our approach and the DB [25] extract diverse features
by feature suppression. Despite DB method outperform our method by 0.2%, our forcing
module outperforms DB without Gradient-boosting loss by 1%. And our method is based
on the latest backbone EfficientNet and ConvNext to further improve the accuracy. Com-
pared with API-Net based on DenseNet-161, EfficientNet and AttNet&AffNet, our method
when we use EfficientNet-B3 [28] as the backbone, has 0.3%, 1.4%, 0.5% improvement,
respectively.

On the FGVC-aircraft, the proposed F-Net on ResNet-50 and DenseNet-161 [14]
achieves 93.3%, 94.4% respectively. Compared with methods based on ResNet-50, our
methods outperform most of the methods except DB and AttNet&AffNet. Our method
based on DenseNet-161 achieves state-of-the-art performance, which further outperforms
API-Net [41] based on DenseNet-161 by 0.5%.

On the Stanford-cars, our method based on ResNet-50 obtains 94.5%, which is 2.8%
better than the baseline 91.7%. A further improvement of another 0.7% can be observed
when we use EfficientNet as the backbone. Compared with API-Net, our proposed method
based on EfficientNet-B2 is very competitive.

In Fig. 3, We visualize the experimental results of the forced module. the high-response
regions in the second column are marked by red boxes, and the high-response regions in
the third column are marked by black boxes. In the first row, the highest response area
in the original branch is the bird’s head, and the most distinguishable area is the bird’s
head, but in the forcing branch when the bird’s head features are suppressed to a certain
extent, the forcing branch puts more attention on the bird’s tail and claws. In the output
of the forced module in the fourth column, the classification basis of the network is not
only the head of the most important distinguishable area bird, but also the tail and claws
of the second important distinguishable area bird. In the second row, the primordial branch
judges that the main distinguishable area of the bird is the bird’s head, and in the forcing
branch, the bird’s feathers are judged to be the secondary distinguishable area because the
head is suppressed. In the third row, the original branch judges the bird’s wings and tail as
the most distinguishable regions, and in the forcing branch, the bird’s beak and neck are
judged as the secondary distinguishable regions because the wings and tail are suppressed.
Finally, in the forcing module, the beak and the neck are judged to be more important
distinguishable regions than the tail and wings, which indicates that the forcing branch
corrects the misclassified results in a certain possibility.

In Fig. 4, we visualize the results of our method. The results show that the proposed
structure is activated to different parts of the raw input and the cropped input. The case that
the original prediction is wrong while the cropped prediction is correct indicates that the
two-step strategy can reduce the loss of prediction once.

4.4 Ablation study

To sufficiently analyze the contribution of different components in our method. we con-
duct various experiments respectively on CUB-200-201, Stanford-Cars, and FGVC-Aircraft
using ResNet-50. Tables 3, 4 and 5 illustrate the detailed contribution of each key com-
ponent. It shows both forcing branch and crop inference are effective to improve the
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Fig. 3 The experimental results of the forced module are shown visually. From left to right, each column is
the original image, the class activation map of the original branch, the class activation map of the forcing
branch, and the class activation map of the output of the final forcing module that fuses the original branch
and the forcing branch. Among them, the high-response regions in the second column are marked by red
boxes, and the high-response regions in the third column are marked by black boxes

performance of FGVC. In the analysis of the results of the three datasets, the CAM-based
Copping Module improves the accuracy more significantly.

Impact of forcing branch Basic ResNet-50 with forcing branch achieves 87.3%, 91.7%
and 88.5% top-1 accuracy on the CUB-200-201, Stanford-Cars, and FGVC-Aircraft respec-
tively. Since the primary discriminative of the extracted features for forcing branch classifier
is suppressed, the network has to focus on other equally important parts rather than the
primary discriminative part. It also means we enhanced the weight of the secondary dis-
criminative regions in the extracted features. In the inference phase, the diverse feature will
be acquired by CNN and the classifiers of each branch will pay attention to different parts.

14808 Multimedia Tools and Applications (2023) 82:14799–14813



Fig. 4 Visualization of our method. The one to the left of the dotted line is examples where the first prediction
was wrong and the second prediction was right and the final prediction was right. The one to the right of the
dotted line is examples where the first, the second, and final predictions are right. Each of these examples
from left to right is the original image, top-1 class activation map of the original image, prediction of original
images, cropped image, top-1 class activation map of the cropped image, prediction of the cropped image,
the summation of original image prediction, and cropped image prediction

Table 3 Ablation analysis on the CUB-200-2011

Method Accuracy

ResNet-50 85.4

ResNet-50+Forcing module 87.3

ResNet-50+CAM-based copping module 88.1

ResNet-50+Forcing module+CAM-based copping module 88.4

Table 4 Ablation analysis on the Standford-Cars

Method Accuracy

ResNet-50 91.7

ResNet-50+Forcing module 92.5

ResNet-50+CAM-based copping module 93.6

ResNet-50+Forcing module+CAM-based copping module 94.5

Table 5 Ablation analysis on the Fgvc-Aircraft

Method Accuracy

ResNet-50 88.5

ResNet-50+Forcing module 89.7

ResNet-50+CAM-based copping module 90.7

ResNet-50+Forcing module+CAM-based copping module 93.3
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Table 6 Ablation study on the number of suppressing position k

k 0 1 2 3 4 5 6

Accuracy 86.9 87.0 87.1 86.8 87.3 87.2 87.0

For this, the forcing branch can improve the accuracy of the backbone network respectively
by 1.9%, 0.8% and 1.2%.

CAM-based cropping module Because we have conducted panning and rescaling of the
images, the prediction of the cropped image is different from the raw image. The Visualiza-
tion of the result in Fig. 4 shows that the network always pays attention to different parts
when the object is panned or zoomed. Analyzing the results on the CUB-200-2011, dou-
ble prediction improves the result from 85.6% to 88.1%. The 2.7% improvement shows the
second prediction can reduce the loss. Compared with double prediction, the combination
of forcing model and double prediction leads to an improvement of 0.3%. When we crop
the object to the center of the image, since the object is clearer than the first to the net-
work, the network pays attention to more object parts, but the forcing module still forces the
network to focus on other confusing parts and improve results from 88.1% to 88.4%. Com-
pared with the Forcing Module, the CAM-based Copping Module improves the accuracy
more significantly.

Hyperparameters suppressing factorα and the number of suppressing positions k The
accuracy of different k and α setting is shown in Tables 6 and 7. Because we suppress the
top-k positions based on class activation maps which is probably vital for classification,
suppressing too many positions or setting an over small α will result in lower accuracy. We
first fix α to 0.5 and compare the performance of different k. Specifically, k =4 provides
the best performance. Then we fix k to 4 and compare the performance of different α. The
experiments indicate that α=0.5 promises the best performance on CUB-200-2011.

5 Conclusion

In this paper, we proposed a forcing network to focus on multiple regions as well as
extract diverse features for fine-grained visual categorization and we combined the first
prediction and second prediction whose input is cropped based on class activation maps
from the first prediction as the final prediction to reduce the prediction errors. The forcing
network does not require bounding boxes or part annotations and can be trained end-
to-end. Our method outperforms the majority of methods of FGVC among datasets of
CUB-200-2011, FGVC-Aircraft, Stanford-Cars and achieves state-of-the-art performance
on FGVC-Aircraft. Although our method has improved the accuracy greatly, the suppressed
region is highly dependent on hyperparameters. Then we try to use hybrid model [8] of
the ensemble learning-based method to further improve the accuracy. Our future work will

Table 7 Ablation study on suppressing factor α

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Accuracy 87.0 87.1 86.7 86.9 87.3 86.9 86.9 87.0 86.9 86.9
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try to use hyperparameters as model trainable parameters to reduce the dependence on
hyperparameters while maintaining high accuracy.
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