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Abstract
The advent of the Big Data era has brought considerable challenges to storing and managing massive data. Moreover,

distributed storage systems are critical to the pressure and storage capacity costs. The Ceph cloud storage system only

selects data storage nodes based on node storage capacity. This node selection method results in load imbalance and limited

storage scenarios in heterogeneous storage systems. Therefore, we add node heterogeneity, network state, and node load as

performance weights to the CRUSH algorithm and optimize the performance of the Ceph system by improving load

balancing. We designed a cloud storage system model based on Software Defined Network (SDN) technology. This system

model can avoid the tedious configuration and significant measurement overhead required to obtain network status in

traditional network architecture. Then we propose adaptive read and write optimization algorithms based on SDN tech-

nology. The Object Storage Device (OSD) is initially classified based on the Node Heterogeneous Resource Classification

Strategy. Then the SDN technology is used to obtain network and load conditions in real-time and an OSD performance

prediction model is built to obtain weights for performance impact factors. Finally, a mathematical model is proposed for

multi-attribute decision making in conjunction with the OSD state and its prediction model. Furthermore, this model is

addressed to optimize read and write performance adaptively. Compared with the original Ceph system, TOPSIS_PA

improves the performance of reading operations by 36%; TOPSIS_CW and TOPSIS_PACW algorithms improve the

elastic read performance by 23 to 60% and 36 to 85%, and the elastic write performance by 180 to 468% and 188 to 611%,

respectively.
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1 Introduction

With the rapid spread of social networking services and the

growing number of Internet of Things (IoT) [1] devices, the

world’s digital information is increasing each year

exponentially. According to market research firm IDC,

available data will increase to 180 ZB by 2025 [2]. Many

distributed storage systems are being actively developed in

industry and academia to efficiently manage to store big

data in a scalable and reliable manner. Furthermore, we

could develop more practical cloud service discovery

mechanisms in cloud environments in the future [3, 4].

Typical storage systems include GFS [5], Ceph [6], Azure

Storage [7], Amazon S3 [8], Openstack [9], etc. These

storage systems are linked to many common servers to

provide storage services to the public. Most of them utilize

multiple replicas or corrective codes to achieve high reli-

ability and fast recovery with scalability, high perfor-

mance, and low cost. Ceph [6] is a reliable, self-balancing,

self-recovering distributed storage system that eliminates

traditional metadata nodes. It maps data to storage nodes
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through a pseudo-random data mapping function called

Controlled Replication Under Scalable Hashing (CRUSH)

[10]. Ceph requires only a small amount of local metadata

and simple computation to achieve data addressing. The

system’s scalability has no theoretical limitation, so the

industry has widely used it.

The network interconnects the nodes in a large-scale

Ceph heterogeneous distributed storage system consisting

of thousands of storage nodes. Currently, the network has

become one of the bottlenecks limiting performance.

However, the developers didn’t consider the underlying

network conditions, node load, and heterogeneity in the

design of Ceph. The data storage location is weighted only

by the storage capacity of the nodes [8]. The type of OSD

(Object Storage Device), the nodes’ computing power, and

the nodes’ residual bandwidth affect the heterogeneous

storage nodes’ I/O performance. For example, HHD- type

OSD read and write performance is significantly lower than

SSD-type. The cluster nodes occupy large network band-

width when the network load increases (e.g., data migration

within the cluster). With limited residual bandwidth and

low computing power, the storage node’s performance

reduces significantly, lowering the overall system’s read

and write performance. As a result, if we can obtain the

network status, load situation, and heterogeneity informa-

tion of the cluster, we could use it as the weight for

selecting OSDs in real-time. The client will dynamically

select the best performing OSD or group of OSDs to

complete read and write requests. And the performance of

the cluster will improve. But the Ceph community did not

fully consider how to exploit heterogeneous storage nodes’

performance. It is necessary to manually edit the CRUSH

Map to adapt to different storage performance require-

ments [11], which was time-consuming and labor-

intensive.

Furthermore, the same CRUSH Map cannot flexibly

adapt to situations where the system’s read and write per-

formance requirements change dynamically. Therefore, if

we can achieve a storage system, it could adaptively pro-

vide services for various storage application scenarios. We

can reduce the cost of manual editing, achieve optimal

allocation of system resources, and improve the quality of

service to clients.

Therefore, this paper designs a system architecture that

combines the Ceph storage system with Software Defined

Network (SDN), based on the traditional Ceph distributed

file system. The Ceph cluster runs in an SDN environment.

The OSDs are classified using the Node Heterogeneous

Resource Classification Strategy. The SDN controller col-

lects information on heterogeneity, network status, and

load for each type of OSD. And We use it as the basis for

OSD selection in real-time. Following that, we establish

the OSD read/write performance prediction model to

dynamically adjust the relationship between the load factor

and the performance weight of the OSD. Moreover, we

establish a mathematical model for multi-attribute deci-

sion-making in conjunction with the OSD load state.

Finally, we propose the TOPSIS_PA (Technique for Order

Preference by Similarity to Ideal Solution_ Primary

Affinity), TOPSIS_CW (Technique for Order Preference

by Similarity to Ideal Solution_CRUSH Weight), and

TOPSIS_PACW (Technique for Order by Similarity to

Ideal Solution_Primary Affinity and CRUSH Weight)

algorithms to improve the performance of reading/writing

operations. TOPSIS series algorithms adaptively optimize

the read/ write performance of the cluster through a

mathematical model. This paper has the following specific

contribu-tions:

(1) Classifying OSDs based on a Node Heterogeneous

Resource Partitioning Strategy. We combine the

initial node’s heterogeneity and network condition as

a basis for classifying different types of OSDs;

(2) Establishing predictive models for the read/write

performance of different types of OSDs. We adjust

the performance weights of OSDs dynamically with

varying states of the load so that we could determine

the performance weights with finer granularity;

(3) Dynamic Pool is proposed to meet a variety of

performance requirements. In Dynamic Pool, we

establish a mathematical model for multi-attribute

decision-making. The TOPSIS_PA, TOPSIS_CW,

and TOPSIS_PACW adaptive read/write optimiza-

tion algorithms are proposed along with the mathe-

matical model.

The structure of this paper is as follows: Chapter 1 is the

introduction. Chapter 2 focuses on related work. Chapter 3

analyzes the limitations of CRUSH and heterogeneous

resource management in Ceph. Chapter 4 focuses on the

architecture and implementation of the system. Chapter 5

conducts the experimental evaluation. Chapter 6 is the

conclusion and outlook.

2 Related work

The widely used algorithms are the consistent HASH

algorithm [12], the elastic HASH algorithm, and the

CRUSH algorithm [10]. Chen Tao et al. [13] of the

National University of Defense Technology proposed the

CCHDP algorithm. It combines the clustering algori-thm

with the consistent HASH method to reduce the storage

space while introducing a small number of virtual devices

and reducing the time consumed for locating data. Jia C J

et al. [14] described an essentially perfect hashing algo-

rithm for calculating the position of an element in an
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ordered list, appropriate for the construction and manipu-

lation of many-body Hamilto-nian, sparse matrices. How-

ever, these node selection algorithms do not consider the

network load condition when considering the data location

mapping relation-ship. In the open source Ceph cloud

storage system, this paper combines the factors of node

heterogeneity, node network conditions, and node load in

the CRUSH algorithm. Then, to improve the performance

of distributed storage systems, we design adaptive read/

write performance optimization algorithms for specific

storage scenarios.

In dealing with reading/writing load and adaptive per-

formance tuning of Ceph distributed storage systems,

Jeong et al. [15] proposed lock contention-aware messen-

ger (Async-LCAM) to dynamically add or remove allo-

cated threads to balance the workload between worker

threads by periodically tracking lock contention per con-

nection. Qian et al. [16] proposed a stable accelerated

merging-in-memory (MIM) archi-tecture to balance the

fluctuation phenomenon of the log file system. Moreover,

they improve the system’s I/O performance by leveraging

the efficient data structure of hash table-based multi-linked

tables in memory. Yang et al. [17] used a scaling-based file

distribution mechanism to integrate Ceph, HDFS, and

Swift storage environments. In this mechanism, subfiles are

distributed to different storage services to improve the I/O

performance of the system. Kong et al. [18] developed a

Mean Time To Recovery (MTTR) and performance pre-

diction model. The model presents good quadratic and

linear relationship predictions of performance and MTTR

when tuning the recovery and balancing parameters of the

Ceph cluster. It provides potentially inefficient parameters

that lead to performance loss during recovery. Further-

more, it gives more efficient recovery operations and ref-

erence metrics to ensure the reliability and quality of

service of the Ceph cluster. However, these load balancing

strategies and adaptive performance tuning efforts don’t

incorporate storage network state considerations.

Based on the above analysis, we need to collect the

network status information of storage nodes efficiently and

in real-time. However, traditional network state measure-

ment methods require cumbersome config-uration and

significant measurement overhead [19, 20]. The SDN

technology is an emerging programmable network model.

The network model separates the control and data planes.

Its control level is moving towards centrality and unifica-

tion. The SDN controller senses global network state, static

topology, dynamic flow table information, and other

information. The SDN switch simply performs the appro-

priate actions accord-ing to the uniform rules issued by the

controller. In a distributed storage network, we could use

SDN to obtain network state information of Ceph with less

hardware configuration and measurement overhead. This

paper uses the flow measurement method of OpenFlow

protocol, SDN’s mainstream network measurement func-

tion. OpenTM [21] constructs a network-wide flow matrix

by obtaining the routing information in the OpenFlow

controller and reading the active flow table entry statistics

on different switches at regular intervals. Moreover, we

obtain the network information and load status of the Ceph

cluster in conjunction with the Ryu controller. Research on

using SDN technology to optimize the load of storage

clusters has emerged. Liberato et al. [22] proposed residue-

defined networking architecture as a new approach for

enabling key features like ultra-reliable and low-latency

communication in Micro Datacenters networks. Kafetzis

[23] et al. introduced a bridge called SDR between cen-

tralized network control inherent in SDN and the dis-

tributed nature of MANETs. The SDR offers the add-on

features of flexible and fast PHY and MAC layer adapta-

tion. For solid, autonomous, and ultimately better network

control implementations span all layers, the SDR is

towards realizing and implementing the holy grail of nat-

ural cross-layer optimization. Girisankar et al. [24]

designed an SDN architecture that integrates optimization

algorithms in the optical data network center and performs

the data storage scheduling, effectively reducing cluster

load. These studies on using SDN to optimize network

routing and link aspects of storage systems illustrate the

feasibility of adopting SDN technology in distributed

storage networks.

3 Background and motivation

In this section, we present the CRUSH algorithm’s limi-

tations, load balancing, and on-demand allocation of

heterogeneous resources during data storage on Ceph sys-

tems, as well as preliminary ideas and methods for

addressing these issues.

3.1 Ceph system data stored process

Figure 1 shows the whole process of client data mapping.

The reliability and scalability provided by the Ceph dis-

tributed file system don’t achieve without supporting the

underlying component Reliable Auto-nomic Distributed

Object Store [25] (RADOS). The RADOS contains many

Object Storage Devices (OSDs) and a small number of

Monitor nodes responsible for managing the OSDs. It is

responsible for smartly managing the underlying Ceph

devices. When storing data, client data are cut and num-

bered according to fixed-size data objects and mapped

evenly to each PG. And the PGs are mapped to a group of

OSDs by the CRUSH [10] algorithm.
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The mapping of data objects to PGs and the mapping of

PGs to OSDs are the two processes in the whole data

mapping path that have the most impact on the data

selection OSD in the system. The process of mapping data

objects to PGs is:

HASH oidð Þ&mask ¼ pgid ð1Þ

Equation (1) indicates that the object name identifier

(oid) obtain by dividing the file. The hash function takes

oid as input to generate a random value. The hashed value

and the ‘‘mask’’ value are bitwise processed to get the PG

number pg_id. In the event of a large number of objects

and PGs, this mapping process assures that the distribution

of data items is approximately uniform and that the

selection is random. Pgid is a structural variable containing

pool_id and pg_id, the actual PG number. In the CRUSH

algorithm, the mapping process of PG to OSD is:

CRUSH pgid; CRUSH Map; rulenoð Þ ¼ OSD0; OSD1; . . .; OSDið Þ

ð2Þ

OSDi denotes the ith object storage device. The number

of replicas specified determines the size of i. Pgid denotes

the second mapping’s output value. CRUSH Map denotes a

cluster map containing information such as the cluster

topology. And ruleno denotes the replica placement rule’s

number (PPR). The CRUSH algorithm’s inputs include a

globally unique PG identity, cluster topology, and CRUSH

rules. These inputs control the mapping process to assist

PGs in migrating flexibly across multiple OSDs, which

enables advanced features such as data dependability and

automated balancing.

CRUSH is a hash-based pseudo-random data distribu-

tion algorithm developed by improving the RUSH [26]

series algorithm. It enhances efficiency and flexibility

while solving reliability and data replication problems by

mapping data objects to storage devices in a controlled

manner. It also achieves decentralization and avoids the

bottleneck effect caused by central nodes in storage sys-

tems. The CRUSH algorithm selects storage locations in a

pseudo-random way, although it has the following issues

and limitations: The input parameters of the storage node

selection function crush_do_rule include weight vector,

replica placement rules, CRUSH Maps, and so on, as can

be seen from the CRUSH algorithm’s function call process.

The CRUSH Maps record the cluster’s storage hie-rarchi-

cal structure, replica mapping, and proportional weights

calculated only from storage capacity. In deciding the PG

distribution to the OSD, the weight value is the only lim-

itation on the selection algorithm in different types of

Buckets. This storage capacity as the only factor in the

decision can only satisfy the uniformity of data distribution

in the cluster but ignores the impact of node heterogeneity,

including CPU and memory size, different OSD types,

underlying network, and node load on the cluster perfor-

mance. If the heterogeneous cluster has inferior network

performance and a high load, selecting overloaded OSDs

for the client will degrade the overall cluster performance.

Based on the above analysis, the CRUSH algorithm in

Ceph calculates the data distribution based on the storage

capacity as the only determinant to obtain the OSD

weights. This mapping method can only satisfy the uni-

formity of spatial data distribution in the cluster but ignores

the impact of the underlying network, and OSD load on the

cluster read/write performance. It is necessary to optimize

the read/write performance of the Ceph system by con-

sidering the node’s network state information and the load

information. In short, we need to establish an adaptive

OSD selection strategy to improve the read/write

performance.

3.2 Storage pool with PG

As shown in Fig. 1, the PG is a collection of some data

objects. At the architectural level, the PG is the bridge

between the client and the ObjectStore. It is responsi-ble

for converting all requests from the client into transactions.

The ObjectStore can understand these transactions and

distribute and synchronize them between OSDs. The

ObjectStore completes the actual data storage of the OSD,

encapsulating all I/O operations to the underlying storage.

Storage pools use PGs as basic units and manage them. To

achieve an on-demand allocation of storage resources,

RADOS manages the pooling of OSDs in the cluster. A

storage pool is a virtual concept that represents a set of

constraints. We can design a set of CRUSH rules for a

specific storage pool. These rules could limit the conditions

Fig. 1 Ceph cloud storage system data mapping process
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such as the range of OSDs it uses, replica strategies, and

fault domains (physically isolated, distinct fault domains).

3.3 Load imbalance and heterogeneous resource
allocation issues

In the multi-replica mode of the Ceph storage system,

Fig. 2 shows its read operation and write operation,

respectively. To ensure data security, Ceph adopts a model

of strict consistency writing of objects. When a client

requests to write an object, the primary OSD first writes the

data object in it. Then the primary OSD sends the data

object to each subordinate OSD. The primary OSD does

not send the feedback of successful writes to the client until

it receives the feedback of successful writes from all sub-

ordinate OSD nodes. The primary OSD also writes suc-

cessfully, thus ensuring the consistency of writing to all

replica data. This strict consistency writing strategy leads

to long write latency [27]. In addition, when the Ceph

cloud storage system performs read operations, only the

primary OSD performs read operations. The subordinate

OSD nodes are not selected to perform read operations,

resulting in relatively high I/O pressure on the master OSD.

Moreover, the system can not achieve the read performance

of the subordinate OSDs, thus affecting the overall read

performance of the cluster.

In an extensive Ceph cloud storage system, each OSD

must handle I/O operations from multiple clients at the

same time. The read and write problems demon-strated in

Fig. 2 will magnify and worsen the Ceph cloud storage

system’s imbalanced load of I/O requests. As a result, a

portion of the OSDs will be overloaded or even die,

resulting in a dramatic decline in cluster performance,

compromising the cluster’s overall quality of service. At

the same time, different business scenarios need different

read and write performance requirements. However, the

classic Ceph cloud storage system does not give a rea-

sonable adaptive strategy to allocate its heterogeneous

resources. The heteroge-neous resources refer to the OSDs

in heterogeneous nodes. These OSDs can provide different

performance requirements such as IOPS, throughput, and

latency.

Based on the above analysis, Ceph’s strict consistency

writing strategy restricts client writes to the slowest replica

that completes the write operation. The primary replica

read strategy focus on client read operations on the primary

OSD. The read and write mechanism allows us to optimize

the read and write performance of the Ceph cluster in two

ways. In storage pools with the same classes OSDs, we

dynamically tune read and write requests to concentrate on

lower-loaded OSDs. In storage pools with different OSDs,

we focus dynamically on client read and write requests on

higher-performing OSDs or lower-loaded OSDs.

Furthermore, the heterogeneous resources of Ceph cloud

storage systems lack comprehensive manage-ment and

planning. It requires manual rewriting of the CRUSH Map

to adapt to changing storage performance requirements,

limiting the Ceph cloud storage system’s application sce-

narios. Suppose the storage system can automatically meet

various storage performance scenarios. In that case, it can

reduce the cost of manual editing and achieve the best

allocation of system resources. The application demand

scenarios include high performance read, high performance

write, low performance read and write, and other scenarios.

If the clients that only need low read and write performance

e
miT

Client Primary Replica Replica

Write

Apply update

Ack Priminary

Commit to disk

Ack Client

Read

Fig. 2 Read/write operation

process in multi-replica mode
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use high-performance read and write OSDs, it will waste

system resources.

4 System design and implementation

In this section, we present an adaptive read and write

optimization model for Ceph heterogeneous storage sys-

tems. We first incorporate the architecture of SDN tech-

nology. Then, we combine the OSD host node’s network

state and load information. Finally, we optimize the read/

write performance of the cluster from three aspects: the

limitations of the CRUSH algorithm, the load imbalance,

and storage service scenarios.

4.1 System architecture

Figure 3 shows the architecture of the distributed storage

system based on SDN technology. The bottom layer of the

system architecture consists of a monitor node and a stor-

age node. Each storage node can contain multiple OSDs,

and the monitor node main-tains global configuration

information for all nodes in the cluster. The OpenFlow

switch connects all servers. Moreover, it is responsible for

the transfer of data between them. At the top of the system

architecture is the Load Balancing Monitor Module

(LBMM), which monitors the required OSD information

using the SDN controller. The monitor node remotely calls

the information collected by the SDN controller to build an

Fig. 3 Distributed storage

system architecture

incorporating SDN technology
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OSD performance prediction model to decide to select the

OSD on the storage node.

The system architecture utilizes a network model that

separates the control plane and data plane to facilitate our

monitoring of the underlying network and load conditions.

Wang et al. [28] described in detail the design ideas and

implementation methods of the network monitoring mod-

ule based on SDN technology. We can use the SDN con-

troller’s active method to get the network’s remaining

bandwidth. Then we integrate the acquired OSD load state

information and bandwidth information. Finally, we send it

down to the Monitor node of the Ceph system through the

active way of the SDN controller.

4.2 OSD performance impact factors

In this section, we determine the read/write perfor-mance

weights of OSDs by considering the node heterogeneity,

network state, and node load to improve the load balancing

of the Ceph system. To accurately reflect the performance

of the OSD under node heterogeneity about its load state,

the performance metrics selected in this paper are as

follows:

(1) Bandwidth B, number of CPUs C, and memory size

M of the nodes. OSDs are intelligent, semi-au-

tonomous devices that consume CPU, memory, and

network bandwidth resources to perform fault recov-

ery and automatic data balancing.

(2) I/O load of OSD L. The I/O load of the OSD disk

reflects the real-time read and write situation of this

OSD. If the read or write load is high, the delay of

OSD in responding to the client’s read and write data

request will increase, leading to the death of the OSD

node in extreme cases.

(3) The number of OSDs on heterogeneous nodes is H,

and the OSD type is T. The literature [29] presented

a significant performance difference between SSD

and HDD type OSDs in handling client read and

write operations.

(4) The number of PGs occupied by the OSD is P. Two

implementations of the Object-Store, FileStore, and

BlueStore, provide APIs for reading and writing

threads, both at a PG granularity. Moreover, the

prop-ortion of PGs occupied by the OSD directly

affects the proportion of the read and write load

allocated to the client.

We choose these metrics to consider a combination of

OSD network state and load conditions. These metrics are

not necessarily correlated, especially in heterogeneous

networks and nodes. For example, with different band-

widths and node processing capabilities, the residual

bandwidth of each heterogeneous OSD node will not

necessarily be related to the I/O load of the node. The

remaining bandwidth is related to the current service vol-

ume and hardware infrastructure. Even if the same host

load does not tell us residual bandwidth in the network, this

situation has also been discussed in the literature [30]. It

demonstrates that memory and CPU utilization correlate in

some cases, but I/O load and CPU are not in some cases.

Therefore, the above selected OSD impact factors are not

necessarily related, and the selected dimensions provide a

better picture of the network condition and load of the OSD

nodes.

4.3 Node heterogeneous resource division
strategy

Algorithm 1 shows the main steps of the Node Hetero-

geneous Resource Partitioning Strategy. Line 1 is to get the

heterogeneous OSD information of the nodes in the Ceph

Cluster Computing (2023) 26:1125–1146 1131

123



system. In line 2, select i ð1� i� 7Þ performance metrics

according to the performance requirements. Then traverse

the initial heterogeneous performance set

aj ¼ fe1; e2; :::; eig, and generate a ¼ fa1; a2; :::; ajg,
1� i� t, where ei denotes the initial value of the jth OSD

performance metric, t is the total number of OSDs in the

Ceph. In line 9, initialize the OSD minimal performance set

b ¼ fa1g and the OSD minimal classification set v ¼ fg,
and continue to traverse the set a. If b [ aj 6¼ b, then

b ¼ b [ aj, and v ¼ v [ osd; otherwise b remains

unchanged. Finally, Algorithm 1 generates the OSD per-

formance set b ¼ fa1; a2; :::; alg and the OSD classification

set v ¼ fosd1; osd2; :::; osdlg, where 1� l� t, osdl is the

number of OSDs corresponding to al.
As shown in Fig. 4, we divide the Ceph heterogeneous

storage system to obtain different performance storage

pools. {Pool1, Pool2,…, Pooln} logically bundles the OSDs

into separate storage pools with gradually increasing per-

formance. Pool1 is the Pool with the worst read/write

performance. Moreover, it is generally composed entirely

of HDD-type OSDs with poor network performance and

few node resources.

Pool2 is between Pool1 and Pooln in terms of reading/

writing performance. And it may be composed of HDD-

Type and SSD-Type OSDs, with HDD-type OSDs located

on nodes with many resources and good network perfor-

mance and SSD-type OSDs situated in nodes with the

opposite. Pooln is the opposite of Pool1 in terms of OSD

performance. Furthermore, Pooln is generally made up

entirely of SSD-type OSDs. And it includes a good net-

work and nodes with more resources. Dynamic Pool can

provide dynamic read/ write performance without changing

the CRUSH Map. It provides clients with different read and

write performance requirements and achieves the best

allocation of system resources.

4.4 OSD load monitoring strategy

Algorithm 2 is responsible for obtaining the OSD load

status and runs on the cluster’s OSD nodes. It passively

receives messages forwarded from the switch via the SDN

controller. It parses the packets in the messages to collect

the OSD status.

Fig. 4 Divided performance

storage pool
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In line 1, the input parameter to the GetOSD() function

is the host IP of all nodes. We obtain the OSD of each node

and form a dictionary OSD {osd: host_ip} to record the

mapping relationships. In line 4, the GetOSDInfo() func-

tion collects the node’s CPU usage, memory usage size,

and the number of OSDs. Moreover, it collects the type, the

number of occupied PGs, and the I/O load of the OSD and

records it in the dictionary OSD_Load_Info{}. In line 14,

the SendData() function sends this load data to the switch

via a UDP message, with the destination ADDR being the

user-specified host IP.

Based on Algorithm 2, the SDN controller delivers the

UDP packets containing the OSD load information via

Packet-In messages. The Ryu controller running in the

SDN network maintains the dictionary ip_to_port {(dpid,

in_port), src_ip}, which records the IPs of hosts con-

nected under different switches ports. When the Ryu

controller receives a Packet-In message [28], it first

determines whether the Ceph Monitor node sends the

message based on the dictionary ip_to_port. If so, it

records the packet’s msg.datapath information as the path

to the Packet Out message. Then the IPv4 and UDP

packet header protocols are parsed by get_protocols() to

determine if they are the specified ADDR and port

number.

After a successful match, the _parse_udp(dpid, port,

msg_ data) function [28] decodes the packet content. It

identifies the host sending the message based on the input

port and dpid of the message. Since the OSD {osd: hos-

t_id} records the mapping between hosts and OSDs, we

transcribe the bandwidth and load information of hosts into

the bandwidth and load information of each OSD.

Algorithm 3 is the process by which the Ryu controller

packages the OSD load information and sends it to the

Ceph monitor node via Packet-Out packets. In Line 1, the

Cluster Computing (2023) 26:1125–1146 1133
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Ryu controller integrates the data containing OSD load and

bandwidth information into a Data dictionary. Then calls

add_protocol() function to construct UDP packets. Finally,

we send out Packet_Out messages based on dictionary

ip_to_port {}.

4.5 Adaptive read/write optimization algorit-hm
based on performance prediction
and TOPSIS model

4.5.1 OSD read/write performance prediction model

In this subsection, we consider the complex non-linear

relationship between OSD performance metrics and reads/

writes performance. Then we select a random forest as the

model for building OSD performance prediction and

dynamically obtaining the impact of different load factors

on OSD performance. Random forest is a powerful inte-

grated model and an extension of the bagging algorithm. It

combines the advantages of statistical inference and

machine learning methods [31] to make predictions based

on a set of regression or classification trees rather than a

single tree. Moreover, it combines the outputs of each tree

to obtain the final output, which makes the performance

prediction accurate and builds a more stable model. The

literature [32] compares the error rates of Random Forest

(RF), Support Vector Machine (SVM), Artificial Neural

Network (ANN), and K-Nearest Neighbors (KNN) pre-

dictions. The random forest algorithm builds models that

perform significantly better than other machine learning

algorithms. In addition, the method is robust to over-fitting

and makes no assumptions about the predictor variables.

Figure 5 illustrates the OSD read/write performa-nce

prediction model. It consists of three main phases:

Step 1. Heterogeneous resource classification stage.

Based on the node Heterogeneous Resource Partition-ing

Strategy, we obtain the OSD minimal classification set

v ¼ fosd1; osd2; :::; osdlg, where 1� l� t, osdl is the

number of OSD.

Step 2. OSD load information collection stage.

(1) The Crush Weight (CW) value of all OSDs in the

cluster is set to 1 to initialize the uniform distribution

of PG to all OSDs so that the read and write

performance loads converge. Reset counter n, where

n takes on the value range 1; l½ �;
(2) Take the step of CW as s and set the acquisition time

interval as t. For each OSD in the set v, the CW value

gradually increases by s until the IOPS of the cluster

no longer grows, or the expected performance

requirements are met. Then use the active way of

SDN controller to achieve the periodic acquisition of

network usage bandwidth of Ceph cluster nodes.

Firstly, we use the passive way to obtain the load

state information of OSDs, including the node’s used

bandwidth, the CPU usage, the memory usage size,

the number of PGs occupied by the OSD, and the

amount of real-time I/O data (in kB) of the OSD.

Furthermore, the algorithm begins to generate the

parameter sets consumei ¼ fbwi1; cpui2;memi3;

pgsi4; w ioi5g and r ioi or consumei ¼ fbwi1;

cpui2; memi3; pgsi4; r ioi5g and w ioi. Moreover,

we obtain the current read and write performance of

the cluster IOPSi. The consumei is a set of resource

consumption sets. The r ioi and the w ioi are the

corresponding OSD read and write performance.

Secondly, we construct the vector set S ¼

n == l ?

Classify the OSD of 
all Ceph nodes

Reset n, m

Set the nth OSD 
training set S as 
function input

B bootstrap samples 
are selected from S 

and stored in Ti

For B samples, select 
k features out of 7 

features

Create the mth 
decision tree of 

depth d and store it 
in Cx

m == k?

m = m + 1

Aggregating B 
sample trees to 

predict the 
performance of 

OSD

returnn = n + 1 yes

no

no

Develop optimal 
model rf_reg and 
perform feature 

importance analysis

yes

Fig. 5 OSD Performance Prediction Model
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consume1; r io1; IOPS1f g; . . .; consumep; r iop;
��

IOPSpgg or S ¼ consume1; w io1; IOPS1f g; . . .;f
consumep; w iop; IOPSp

� �
g of the nth OSD. The

parameter p is the number of elements in the vector

set S of each OSD generated;

(3) The SDN controller sends down the load informa-

tion in the vector set S to the Monitor node of Ceph

through Packet-Out. Finally, the Monitor node uses

Random Forest to build the performance prediction

model of the OSD.

Step 3. Building the OSD performance prediction model

stage.

(1) Using the vector S as the input to the random forest,

bootstrap samples of size B are selected from the

entire sample and stored in Ti;

(2) The number of sample features is set to 5, and k

features out of the five feature numbers are selected

for the B bootstrap samples. And the best segmen-

tation points are obtained by building a decision tree,

which is repeated k times to generate k decision trees

and store them in Cx; the maximum depth of the

decision tree is set to d;

(3) The model rf_reg corresponding to the para-meters

with the best effect is formulated. And the feature

importance analysis of OSD performance indicators

is performed to obtain the corresponding feature

weights of OSDs. Then we aggregate the predictions

of B bootstrap sample trees to predict the new

performance of OSD pre ioi. pre ioi is r ioi or

w ioi.

In this subsection, we build an OSD performance pre-

diction model based on the load monitoring strategy of

SDN technology and random forest. It can better under-

stand the relationship between OSD’s read and write per-

formance and consumption. For example, when the Ceph

system processes I/O requests from clients, we could use

the nodes’ remaining resources to optimize read/write

performance accordingly. This model also prepares the

next section for building a multi-attribute decision model.

4.5.2 Multi-attribute decision model based on TOPSIS

When the prediction model rf_reg accuracy reaches the

desired value, we can obtain the OSD’s feature weights by

feature importance analysis. This model can reflect accu-

rately the impact of the network state and load factor on its

performance.

We obtain the integrated performance weights of the

OSDs based on the feature weights. Then we select the best

OSD or set of OSDs. This problem can attribute to the

multi-attribute decision problem in mathematical

coordination. The Technique for Order Preference by

Similarity to Ideal Solution (TOPSIS) [33] is an effective

multi-attribute decision-making scheme. The main calcu-

lation process is first to normalize the indicators, assign

weights according to their importance and construct a

weighted normalization matrix. Then, the ideal solution is

determined. And the maximum and minimum values of the

parameters of each indicator are selected from the weighted

normalization matrix. Finally, we calculate the distance

between the positive and negative ideal solutions to find the

relative closeness of each solution. In the Ceph system, we

first classify the OSDs. Then we build a TOPSIS model to

optimize the performance of the different storage pools.

For each type of resource pool, except for storage capacity,

other indicators to measure the merits of OSDs in the

remaining bandwidth B, CPU remaining size C, memory

remaining size M, and PG ratio P are positive indicators.

The larger the value, the better the OSD’s network per-

formance and processing I/O capability. I/O load L is a

negative indicator. The smaller the value, the better the

performance of the OSD. The negative sign in building the

TOPSIS model indicates negative indicators. The designed

OSD selection algorithm is as follows:

Step 1. We construct the OSD weight factor decision

matrix X in Eq. (3). Then we obtain the normalized deci-

sion matrix X
0
by normalizing Eq. (4). The fij is the ele-

ment in the matrix X, i and j are the row and column

numbers, respectively, and n is the number of OSDs.

X ¼

B1 C1 M1 P1 �L1
B2 C2 M2 P2 �L2
..
. ..

. ..
. ..

. ..
.

Bn Cn Mn Pn �Ln

2

6664

3

7775
ð3Þ

X
0

ij ¼
fijffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

f 2ij

s ; i ¼ 1; 2; :::; n; j ¼ 1; 2; :::; 5 ð4Þ

Step 2. We obtain weights for performance impact

factors based on the OSD read and write performance

prediction model. The remaining bandwidth B, the occu-

pied PG ratio P, the I/O load L, the CPU utilization C, and

the memory utilization M affect OSD performance differ-

ently. The relative weight of the remaining bandwidth, the

OSDs occupied PG ratio, and the I/O load is significant.

The weighting coefficients W is:

W ¼ WBWCWMWPWL½ � ð5Þ

The normalized weighted decision matrix Z is:

Zj ¼ Wj � X
0

ij; i ¼ 1; 2; :::; n; j ¼ 1; 2; :::; 5 ð6Þ

Step 3. The positive and negative ideal solutions of the

weighted decision matrix Z are:
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Zþ ¼ ðZþ
1 ; Z

þ
2 ; :::; Z

þ
5 Þ ¼ maxfZijjj ¼ 1; 2; :::; 5g ð7Þ

Z� ¼ ðZ�
1 ; Z

�
2 ; :::; Z

�
5 Þ ¼ minfZijjj ¼ 1; 2; :::; 5g ð8Þ

Step 4. The distances Dþ and D� for each OSD to the

positive and negative ideal solutions are:

Dþ ¼ ðDþ
1 ;D

þ
2 ; :::;D

þ
n Þ

Dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X5

j¼1

ðZij � Zþ
j Þ

2

vuut ð9Þ

D� ¼ ðD�
1 ;D

�
2 ; :::;D

�
n Þ

D�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X5

j¼1

ðZij � Z�
j Þ

2

vuut ð10Þ

Step 5. Calculate the relative read or write closeness Cþ
i

of each OSD to the optimal OSD pair, with larger values

indicating the better performance of the OSD.

Cþ
i ¼ D�

i

Dþ
i þ D�

i

; i ¼ 1; 2; :::; n ð11Þ

Building on the original CRUSH algorithm, we consider

five metrics for network performance and OSD load.

Moreover, we use these constraints as the OSD weighting

factors when selecting an OSD for a read or write operation.

Then we could acquire the optimal OSD or set of OSDs by

building and solving a multi-attribute decision model.

4.5.3 Adaptive read/write optimization model

In the multi-replica application scenario of the Ceph

heterogeneous system, we hope to obtain uniform data

distribution and efficient read and write performance when

processing read requests. We analyze the adaptive read

optimization model by two primary and subordinate OSD

selection processes. Phase 1: To meet the cluster’s bal-

anced storage space, Ceph selects a set of OSDs for PGs

with storage capacity as the weight. Phase 2: After all PGs

have selected OSDs, the TOPSIS model is used to calculate

the relative read proximity of OSDs. The OSDs are scored

for reading performance and stored as a dictionary

OSD_Perf_Set {osd: Cþ
i }.

We can adjust the OSD’s PA (Primary Affinity) value

with a value of [0, 1]. The PA value determines the

probability that the OSD will become the primary OSD.

The primary and subordinate OSD selection module runs

on the monitoring node of Ceph. We add a customized

OSD_INFO_Map to the Cluster Map maintained by Ceph

to record the network status and load information of all

OSDs in the cluster. In the second stage of primary and

subordinate OSD selection, we update the PA value of the

OSD according to the information in the OSD_INFO Map.

Furthermore, we propose the TOPSIS_PA (Technique for

Order Preference by Similarity to Ideal Solution_Primary

Affinity) algorithm.

We analyze and build the adaptive write optimization

model from two phases of the complete data write mapping

path. Phase 1: Map data object to PGs. After the client data

has been split and numbered according to a fixed size, we

can obtain data object identifiers. A pseudo-random func-

tion uses these identifiers to map the data evenly to the

PGs. Phase 2: Map PGs to OSD. The TOPSIS model uses

the pgid, CRUSH_Map, ruleno, and OSD_INFO_Map to

obtain the OSD relative write proximity Cþ
i to score the

write performance of the OSD and store it as a dictionary

OSD_Perf_Set{osd: Cþ
i }.

We can adjust the OSD’s CW (Crush Weight) value to

determine where the PG completes the distribution on the

OSD again. In the second stage of the data write mapping

path, we update the CW value of OSD according to the

information in OSD_INFO Map. Moreover, we propose the

TOPSIS_CW (Technique for Order Preference by Similarity

to Ideal Solution_ CRUSH Weight) algorithm. When we

update OSD’s CW value, the cluster will cause the band-

width consumption of client data migration and data recov-

ery. So we divide Ceph’s RADOS cluster network into a

public network and a cluster network for deployment.

Algorithm 4 is the TOPSIS series of performance opti-

mization algorithms, including TOPSIS_PA, TOPSIS_CW,

and TOPSIS_PACW, to optimize the read, write and read/

write performance of the Ceph system, respectively.

TOPSIS_PACW indicates that both TOPSIS_PA and

TOPSIS_CW are used to optimize read and write perfor-

mance. In line 1, we call the GetOSDPerf() function to get

the relative proximity of each OSD using the TOPSIS

model. If an OSD is ‘‘down’’, it will not participate in this

optimization. In line 7, we call the SetOSDPaCw() function

to update the OSD’s PA value or CW value. If the Opti-

mize_Pool flag bit is equal to 0, the value of OSD_Perf_Set

directly updates to the PA or CW value corresponding to

the OSDs. Otherwise, we select the OSDs in the specified

resource pool and find the OSD with the largest value of

osd_perf_set and add up its PA or CW value in steps s,

where 0� s� 1. The program calls the OSD performance

prediction model to predict whether the IOPS value of the

OSD is optimized. If it is not, the program will cancel the

adjustment. The values 0, 1, and 2 of Select indicate the

execution of TOPSIS_PA, TOPSIS_CW, and TOPSIS_-

PACW optimization algorithms, respectively. Type is the

mapping dictionary of OSD number and disk type.

This section describes the architecture and im-plementa-

tion of a distributed storage system based on SDN technol-

ogy. We first classify the OSDs based on Node

Heterogeneous Resource Partitioning Strategy. Then we
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monitor the underlying network and load status of the Ceph

cluster. We design packet-in and Packet-out algorithms of

SDN to monitor the OSD’s load status. Finally, we establish

the OSD’s read/write performance prediction model and the

multi-attribute decision-making model. And we propose the

TOPSIS series of algorithms to improve the read and write

performance of Ceph heterogeneous storage systems.

5 Experimental evaluation

5.1 Experimental setup

In this section, we demonstrate the impact of the designed

prototype on its performance under an actual experimental

platform. The source code is available at https://github.

com/ZhikeLi/SDN-Ceph.git. Moreover, we verify the

effectiveness of the adaptive read and write optimization

algorithm for Ceph heterogeneous storage systems. The

Ceph cluster in the testing environment has six physical

machines of the X86 architecture. The cluster realizes the

deployment of SDN multi-controllers to support network

communi-cation services for an extensive cloud storage

system. We divide the system network into a public net-

work and a cluster network. The public network is

responsible for communication between the client and the

cluster, the cluster network is responsible for communi-

cation among OSDs for data recovery and migration. The

Ceph cluster has three physical machines: monitoring and

storage nodes. The other three physical machines are

storage nodes. One, two, and three of them contain one

OSD (SSD disk), two OSDs (one SSD disk and one HDD

disk), and three OSDs (all HDD disks), respectively.

Table 1 lists specific hardware configuration and the soft-

ware environment: Ceph version number 14.2.15, Ryu

version 4.8, OpenFlow 1.3 protocol, and CentOS Linux

release 7.4.1708.

To stress test and verify the storage system, a main-

stream benchmarking tool, Fio (version 3.7), is used for

performance evaluation in this paper. We formulate 4 KB,

16 KB, 64 KB, 256 KB, and 1024 KB data objects for

testing in our experiments. And we use four workloads:

random write, random read, sequential write, and sequen-

tial read. For the FIO benchmark, we set the iodepth

parameter to 128 and numjobs parameter to 8 to generate

high I/O traffic in the cluster.

In the test, the Storage Pool of the Ceph cluster sets the

number of replicas to 2 and the number of PGs to 512,

setting the value generally to an integer around

OSDs� 100=Replicas. The parameter OSDs is the number

of OSD. The parameter Rplicas is the number of replicas.

The number of PGs must be an integer power of 2.

5.2 Heterogeneous system resource division

The cluster data collected includes 12 OSDs and four types

of heterogeneous OSD resources. Firstly, based on the

Node Heterogeneous Resource Classification Strategy,

Table 2 shows the results of the OSD heterogeneous

resource division. OSD_Type indicates the category num-

ber of the classified OSDs. Five performance metrics are
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selected: node bandwidth limit (GB/s), number of CPUs,

memory size (G), number of node OSDs, and OSD disk

type (1 for HDD, 2 for SSD). By collecting OSD_Info data,

Algorithm 1 constructs the OSD minimal performance set

b ¼ 1; 8; 8; 3; 1f g; 1; 16; 8; 1; 2f g; 1; 16; 8; 2; 1f g;f
1; 16; 8; 2; 2f gg and OSD minimal classification set

v ¼ 6; 9; 10; 30f g.

5.2.1 Discover the potential of heterogeneous system
resources

To demonstrate how the TOPSIS series of algorithms affect

the performance of heterogeneous clusters, we pick two

from each class of OSDs in Table 2, generating sets d = {4,

6, 8, 9, 10, 16, 7, 30}. We test the impact on the perfor-

mance of clusters of heterogeneous OSDs in set d. We then

scale to more complex heterogeneous environments. In the

original heterogeneous cluster, the initial value of PA of

the OSDs ranges from [0,1]. The smaller the PA value, the

smaller the read load on the OSDs. The CW value of the

OSD is a positive correlation weight converted from stor-

age capacity. The larger the CW value of the OSDs, the

more PGs they carry. Thus the more read and write load the

OSDs need to carry. Figures 6 and 7a, b, c, and d show the

normalized throughput curves for simultaneous 100%

random read operations and 100% random write operations

for the same RBD block, respectively. The experimental

test read/write object size is 16 KB. The horizontal

coordinate 1 of Fig. 6b and Fig. 7b denotes the random

read and random write normalized throughput of the

original cluster, respectively. We normalize the random

read and write throughputs represented by coordinate 1 to 1

as the baseline throughput. We test the impact of OSD_-

Type, PA value, and CW value on the cluster performance

and compare it with the benchmark throughput.

As shown in Fig. 6b, at horizontal coordinate 2 we

update the PA value of the first class of OSDs to 0.1. This

operation means that we reduce the read load on the first

class of OSDs while concentrating more read load on the

other three classes of OSDs with better read performance.

The read performance improves by 5%. At horizontal

coordinate 3, we update the PA of type 1 and type 2 OSDs

to 0.1. Read performance improves by 20%. In horizontal

coordinate 4, we update the PA values of type 1, type 2,

and type 3 OSDs to 0.1 so that the type 4 OSDs concentrate

more on the read load. Read performance improves by

12%. Overall, the cluster read performance increased and

then decreased as I kept updating the PA values for the

different categories of OSDs. This operation is because,

with a constant write load distribution, we concentrate

more on reading performance on the best performing

OSDs, causing the OSDs to become a ‘‘hot spot’’. Based on

the predictive model and the TOPSIS mathematical model,

we get the relative closeness of the OSDs in real-time and

then make optimization decisions. This model avoids this

‘‘hot spot’’ problem. In Fig. 7b, horizontal coordinates 2, 3,

and 4, the write performance of the cluster remains

unchanged.

Figures 6a and 7a show the normalized random read and

write throughputs for four different classes of OSDs,

respectively. When we measured the performance of each

type of OSDs, the cluster selected only two OSDs of the

same type to provide read and write services. The read and

write performance of the 1 and 2 types of OSDs (corre-

sponding to horizontal coordinates 1 and 2) is almost equal

and less than the baseline read and write performance.

Type 3 and type 4 OSDs (corresponding to horizontal

coordinates 3 and 4) have almost equal read and write

performance and are greater than the baseline read and

write performance. Type 1 and type 2 OSDs are both HDD-

type disks. Type 3 and type 4 OSDs are both SSD-type

disks. The main difference between the first two types of

OSDs and the last two types of OSDs is the computational

power of the node on which they reside. Since the nodes

did not reach the upper limit of computing power during

our testing, the impact on OSD performance was

insignificant.

As shown in Fig. 6c and Fig. 7c, at horizontal coordi-

nate 1, we update the CW values of all OSDs to 1 and

restrict the range of values to [0,1]. This operation allows

us to easily observe the impact of changes in CW values on

Table 1 Physical environment hardware configuration

Ceph node1 (94)

Processor Intel (R) Core (TM) i7-4790 @ 3.60 GHz

Memory 16 GB

Network 1 Gb/s

OS CentOS Linux release 7.3.1611 (Core)

Ceph node2 (92)

Processor Intel (R) Core (TM) i77700 @ 3.60 GHz

Memory 8 GB

Network 1 Gb/s

OS CentOS Linux release 7.3.1611 (Core)

SDN Controller (92)

Processor Intel (R) Core (TM) i7-4790 @ 3.60 GHz

Memory 16 GB

Network 1 Gb/s

OS Ubuntu 20.04.3 LTS

Client node (92)

Processor Intel (R) Core (TM) i7-4790 @ 3.60 GHz

Memory 16 GB

Network 1 Gb/s

OS CentOS Linux release 7.3.1611 (Core)
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performance. The read and the write performance improve

by 12% and 41%, respectively. Because SSD-type OSDs

typically have less storage capacity than HDD-type OSDs,

SSD-type OSDs carry fewer PGs and less read and write

load. At this point, the number of PGs taken by OSDs tends

to be the same, and the read/write load also tends to be the

same. However, SSD-type OSDs are more capable of

handling reads and writes. This operation increases the

overall reading and writing performance of the cluster. At

horizontal coordinate 2, we update the CW value of the

first type of OSDs to 0.1. This operation means more PGs

are distributed among the other three types of OSDs with

better performance to complete read and write requests.

The read and the write performance improve by 6% and

57%, respectively. At horizontal coordinate 3, we update

the CW value to 0.1 for both type 1 and type 2 OSDs. The

read and the write performance improve by 19% and 382%,

respectively. In horizontal coordinate 4, we update the CW

values of Type 1, Type 2, and Type 3 OSDs to 0.1. The

read and the write performance improve by 20% and 222%,

respectively. Overall, as I keep updating the CW values for

the different categories of OSDs, the improvement in

reading performance keeps increasing while the write

performance increases and decreases. This change indi-

cates that there is also a ‘‘hot spot’’ problem.

As shown in Fig. 6d and Fig. 7d, at horiz-ontal coordi-

nate 1 we initialize all OSDs with PA and CW values of 1,

both taking values in the range [0,1]. The read and the write

performance improve by 12% and 41%, respectively. At

horizontal coordinate 2, we update the PA and CW values

of the first class of OSDs to 0.1. This operation means we

concentrate the read load and migrate more PGs to com-

plete read and write requests on the other three types of

better-performing OSDs. Read and write performance is

improved by 25% and 225%, respectively. At horizontal

coordinate 3, we update the PA and CW values of the first

and second-class OSDs to 0.1. Read and write performance

improves by 29% and 248%, respectively. In horizontal

coordinate 4, we update the PA and CW values of the first

three types of OSDs to both 0.1. The read and the write

Table 2 OSD hetero-geneous

resources classification
OSD bw cpu mem Host Type Set bi OSD_Type

{4, 6, 12, 17, 18, 23} 1 8 8 3 1 {1, 8, 8, 3, 1} 1

{8, 9} 1 16 8 1 2 {1, 16, 8, 1, 2} 2

{10, 16} 1 16 8 2 1 {1, 16, 8, 2, 1} 3

{7, 30} 1 16 8 2 2 {1, 16, 8, 2, 2} 4

Fig. 6 Comparison of the random read normalized throughput of the heterogeneous cluster under different constraints

Fig. 7 Comparison of the random write normalized throughput of the heterogeneous cluster under different constraints
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performance improve by 31% and 343%, respectively.

Overall, as I keep updating the PA and CW values for the

different categories of OSDs, the read performance

improvement keeps increasing, and the writing perfor-

mance improves and then decreases. This change indicates

that there is also a ‘‘hot spot’’ problem. In horizontal

coordinates 2, 3, and 4, we get that the overall read per-

formance of the cluster exceeds that of the highest read

performance type 3 and type4 OSDs. As the number of

OSDs gets more extensive, each OSD shares less of the

read load since the read operations only end on the primary

OSD.

5.3 Heterogeneous system load monitoring

We divide the data collection into two phases. Phase 1: The

SDN controller obtains the information of the storage

nodes through active and passive methods. To prevent

network congestion caused by monitoring packets sent by

the SDN controller, the time interval for monitoring in an

active way is 1 s in the experiment. And the time interval

for the passive way is equal to the time the storage node

spends to collect its information (not a fixed value). Phase

2: Ceph monitor node remotely acquires data temporarily

stored on SDN controller. We calculate the time the SDN

controller takes to collect information from each storage

node by collecting several data sets. Then the time is

extended by about 10% as the cycle time of the remote call

of the Ceph monitor node. To avoid consecutive calls to the

SDN controller by the Ceph monitor node collecting the

same data set, we extend this time by a further 10% as the

cycle time. During the two stages of data collection, each

OpenFlow monitoring packet sent was only 32 bytes. The

bandwidth occupied is less than 1/10000 of the total

bandwidth, so it is negligible to the network. In addition,

OpenFlow switches, SDN controllers, and Ceph monitor-

ing nodes are parallelized while processing their transac-

tions. The size of OpenFlow monitoring packets

periodically sent by the SDN controller and Ceph storage

node is 32 bytes. The measurement delay generated in

sending packets is at the level of microseconds. We could

ignore the influence on the millisecond delay.

5.4 Build system adaptive read/write optimiza-
tion algorithm

In this subsection, we first build the predictive model for

OSDs. Then we obtain the predictive performance weights

of the multi-attribute decision mathematical model for use

in the adaptive read–write optimization algorithm.

5.4.1 Build heterogeneous OSDs performance prediction
models

In building the prediction model, set the step size s to 1 and

the number of generated vector sets p to 1000. When the

selected OSD dataset is collected, the load size of the OSD

increases by s each time. If the CW value of the selected

OSD is repeatedly increased in steps of s until the cluster

IOPS no longer grows, the CW value is N. The parameter s

means that the OSD’s load acquisition interval [1, N] is

divided into (N - 1)/s parts. A smaller s indicates a higher

density of load data set acquisition. The parameter p

denotes the number of load data sets collected under the

OSD’s particular read and write load. The size of the

parameter p takes the inflection point where the prediction

model accuracy rises and falls or rises and stays the same.

This experiment takes pe[1,1500], and multiple investiga-

tions take the average of the prediction model accuracy to

get a better result with p = 1000. For each OSD in the set v,
we use the passive way of the SDN controller to upload the

storage node load information and repeat the generation of

the corresponding parameter sets {consumei, r_ioi, IOPSi}

and {consumei, w_ioi, IOPSi}, 1� i� 1000. The value of

Crush Weight is repeatedly increased by s until the clus-

ter’s overall read/write performance does not increase or

reach the predetermined performance requirement. Finally,

we construct the OSD’s four-vector training sets S6, S9,

S10, and S30. Table 3 shows the OSD vector set S part of

the collected information. The adaptive algorithm can

directly obtain the optimization decision results in different

application scenarios if we receive sufficient data sets to

establish the prediction model. Suppose the prediction

model needs dynamic training, such as in this experiment.

In that case, the training time of each type of OSD is about

1 s. The interval between decisions of the optimization

algorithm is half an hour. This decision time shows that the

prediction model evaluation time is much less than the

algorithm decision time.

In collecting OSD load information, we use an FIO

write and read client to read and write an RBD block

simultaneously. We use the dictionary IOPS {r_iops,

w_iops} to record the read IOPS and write IOPS. It is

important to note that more clients in a cluster read and

write to an RBD block simultaneously. The more likely it

is that a single OSD multiplexing will lead to overload.

This paper proposes a performance prediction model with

the OSD resource consumption set. It uses the OSD

resource residual set to make adaptive optimization deci-

sions. This approach has two benefits: (1) we use the OSD

resource residual set to make optimization decisions in

favor of cluster load balancing. (2)we normalize the read

and write operations of multiple clients to the same OSD
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into the total number of r_io and w_io. Then we build a

performance prediction model for the OSD with better

adaptability. The model shields the differences caused by

different numbers of client read/write operations.

5.4.2 Build multi-attribute decision models

We construct a performance prediction model using the

random forest algorithm to optimize the Ceph system

automatically. In Sect. 4.5.1, the parameters k, m, and d

denote the maximum number of features of the decision

tree parameters, the number of decision trees, and the depth

of the decision trees, respectively. A higher value of m

leads to higher accuracy of the random forest model and a

longer model evaluation time [34], setting me[1, 200].

Larger values of d can lead to overfitting of the model set

de[1, 10]. Set ke[1, 10] and import grid search cross-vali-

dation. Network search allows the model parameters to be

traversed according to our given list to find the model that

works best, and the cross-validation tells us the accuracy of

the model. To reflect the model accuracy more intuitively,

we define the prediction accuracy formula [35] as:

precision ¼ 1�

Pn

i¼1

ð dpre ioi � ioiÞ2

Pn

i¼1

ðioi � io
�
Þ2

0

BB@

1

CCA� 100% ð12Þ

The parameter dpre ioi is the performance r_io or w_io

of the predicted OSD. The parameter io
�
is the mean value

of the OSD’s true performance r_io or w_io. The parameter

ioi is the true performance r_io or w_io of the OSD. The

above Eq. (12) numerator indicates the residual of the

performance predicted by the predicted value. The

denominator indicates the residual of the performance

obtained by predicting all data with the sample mean.

When the precision\ 0, the residual of the result predicted

by the model is larger than the residual obtained by the

benchmark model (predicting all data with the sample

mean). The result means that the model predicts the result

very poorly. When the precision[ 0, the larger the preci-

sion, the smaller the numerator. The result indicates that

the residuals of the performance prediction results are

smaller, and the performance prediction effect is better.

When precision = 1, the result indicates that the model

prediction data completely fits the actual data as the best

ideal fit model.

According to Fig. 5, we build the performance predic-

tion models of the four types of OSDs in the Ceph cluster

by training the vector sets S6, S9, S10, and S30 of the four

OSDs, respectively. Finally, the values of accuracy preci-

sion of r_io and w_io corresponding to the established OSD

performance prediction models are shown in Table 4,

respectively.

When the model is as accurate as expected, we build the

prediction model rf_reg. Under varying load states,

we can obtain the performance of r_io and w_io pre-

dicted by OSD. We then used the rf_reg model to analyze

the metric performance importance. Tables 5 and 6 show

that we obtain the OSD predicted read and write perfor-

mance weights corresponding to the load factors affecting

OSD.6, OSD.9, OSD.10, and OSD.30, respectively.

As can be seen from Table 5, the HDD-type OSD

consumes 2 to 9 times more bandwidth weight than the

SSD-type OSD consumes when reading data objects. The

CPU weight has the same consumption trend. However, the

SSD-type OSD has 0.5 to 4 times more weight in the

number of PGs than the HDD-type OSD. The mem weight

has the same consumption trend.

As seen in Table 6, the HDD-type OSDs consume

slightly less bandwidth weight and mem weight than SSD-

type OSDs when writing data objects. There is no clear

pattern in the weight of CPU resources and the weight of

the number of PGs owned.

5.5 Performance evaluation

Figures 8a and b, 9a and b represent the normalized

throughput curves and latency curves obtained experi-

mentally for simultaneous 100% random write operations

and 100% random read operations on the same RBD block

at different workloads. In the designed prototype system,

TOPSIS_PA, TOPSIS_CW, and TOPSIS_PACW algo-

rithms improve the throughput of reading operations by 19

to 40%, 23 to 60%, and 36 to 85%, and reduce latency by

16 to 29%, 19 to 37% and 26 to 46%, respectively. The

TOPSIS_PA, TOPSIS_CW and TOPSIS_PACW algo-

rithms improve write throughput by 2 to 4%, 180 to 468%

and 188 to 611%, and reduce latency by 2 to 4%, 64 to 82%

Table 3 OSD vector set S part acquisition information

OSD bw cpu mem pgs r_io w_io IOPS

6 29.82 0.2 1.03 75 0 120 {1862, 53}

…
6 21.14 0.13 2.18 124 12 340 {762, 38}

9 16.4 0.06 0.98 80 8 60 {1862, 53}

…
9 8.48 0.03 2.26 382 272 788 {968, 67}

10 56.31 0.13 2.7 290 4 600 {1862, 53}

…
10 71.6 0.14 2.78 371 112 1656 {3201, 250}

30 65.55 0.1 1.42 374 148 2060 {1862, 53}

…
30 7.24 0.03 0.66 98 4 348 {3242, 264}
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and 65 to 86%, respectively. Overall the TOPSIS_PACW

algorithm provides better elastic reading and writing

performance.

Compared with the original Ceph system, the TOP-

SIS_PA algorithm improves read performance by 36% and

reduces latency by 29% while ensuring the data distribu-

tion balance and writing load of the Ceph system remain

unchanged.

The improved CRUSH algorithm completes the distri-

bution of PG on the OSD in the first stage, still using

storage capacity as the CW value. In contrast, the second

stage introduces the OSD’s remaining network bandwidth

and load state as constraints to obtain the PA value. And

the PA value determines the result of selecting the primary

OSD when the system performs a read operation.

According to the load status of the OSD monitored by the

SDN in real time, the system adjusts the OSD with low

load or good performance as the primary OSD to complete

the data transfer. Hence, it has higher throughput and lower

latency.

However, there is little improvement in writing opera-

tions. The Ceph’s write operations include collaborative

completion among multiple components, such as messen-

ger layer communication, internal PG processing in the

OSD, metadata logging, and synchronization operations for

writing data objects to file storage. In addition, the com-

pletion of the write operation for multiple replicas is

marked by the end of the multiple OSDs with the highest

write latency.

Therefore, even if the good-performing OSDs concen-

trate on more read operations, the read load of the poor-

performing OSDs is reduced. This transfer of reading load

does not increase the throughput of the write operations as

they include several components. In practice, the TOP-

SIS_PA algorithm is suitable for high read performance

requirements and sensitive data distribution balance

applications.

TOPSIS_CW algorithm mainly provides the elastic

write performance of the system. According to the

requirements of application scenarios, it can adaptively

sacrifice the uniform distribution of some data in exchange

for efficient elastic read and write performance. It improves

the elastic write performance by 180 to 468% and reduces

the latency by 64 to 82%. And it improves the read per-

formance by 23 to 60% and reduces the latency by 19 to

37%. The improved CRUSH algorithm introduces the

OSD’s remaining network bandwidth and load state as

constraints in PGs’ first stage of OSD selection. The PGs

are redistributed on the OSDs using the CW values of

multi-attribute decisions as weights to complete the dis-

tribution. At this time, more PGs redistribute to the high-

performance OSDs. The TOPSIS_CW algorithm greatly

reduces the coworking time for write operations among

multiple components, resulting in higher write throughput

and lower latency for the storage system. Meanwhile, the

result of Ceph read operation to select primary OSD is

determined by the PA weight value in the second stage.

However, the CW value redistributes the first-stage PGs on

the OSD. Hence, the storage system gets higher read

throughput and lower latency. In practice, the TOPSIS_CW

algorithm is suitable for applications that require high write

performance but are not sensitive to data distribution

imbalance.

The TOPSIS_PACW algorithm considers the optimiza-

tion ideas of the TOPSIS_PA and the TOPSIS_CW. It

improves elastic read performance by 36 to 85% and

reduces latency by 26 to 46%. And it improves elastic write

performance by 188 to 611% and reduces latency by 65 to

86%. It is important to note that in the case of node

heterogeneity, the performance PA value is essentially the

position of dynamically adjusting the selection of reading

primary OSD. Ceph adaptively places them on OSDs with

excellent read performance or low load. In comparison, the

performance CW value is essentially the result of

Table 4 OSD performance prediction model accuracy

Vector Set:{S} Precision(r_io) Precision(w_io)

{S6} 96.31 99.34

{S9} 96.10 93.55

{S10} 94.93 92.19

{S30} 95.68 96.20

Table 5 OSD predictive read performance weights

Weight set bw cpu mem pgs w_io

{R6} 0.42 0.17 0.12 0.18 0.11

{R9} 0.63 0.16 0.05 0.10 0.06

{R10} 0.20 0.08 0.15 0.26 0.31

{R30} 0.07 0.02 0.19 0.44 0.28

Table 6 OSD predictive write performance weights

Weight Set bw cpu mem pgs r_io

{W6} 0.21 0.08 0.22 0.31 0.18

{W9} 0.11 0.02 0.19 0.57 0.12

{W10} 0.28 0.01 0.14 0.37 0.20

{W30} 0.25 0.07 0.18 0.39 0.11
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dynamically adjusting the choice of OSD combination

when writing all replica data objects. The CW’s change

could adaptively migrate the PGs carrying data objects

onto the OSD with superior write performance or low load.

As a result, we provide the elastic read and write perfor-

mance of the Ceph system to meet more Quality of service

requirements. It not only ensures reliability but also

increases the high availability of the storage system. In

practice, the TOPSIS_PACW algorithm is suitable for

applications that require high read and write performance

but are not sensitive to unbalanced data distribution.

5.6 Advantages and disadvantages
of the TOPSIS series algorithms

In the designed prototype system, the OSDs in the Ceph

system have varying upper limits on reading and writing

performance. When optimizing read and write performance

using Load Balancing Strategy, this paper proposes the

TOPSIS series of algorithms based on performance pre-

diction and multi-attribute decision making. It can guar-

antee the load balancing of {Pool1, Pool2, …, Pooln} of the

same type of OSDs and the load balancing of different

types of OSDs in Dynamic Pool separately. When we use

OSDs with good performance to optimize read and write

performance, we should avoid the ‘‘hot spot’’ problem. For

example, the TOPSIS_PACW keeps the same performance

as TOPSIS_CW when optimizing the read and write per-

formance of 256 k and 1 M objects. This trend in perfor-

mance is a ‘‘hot spot’’ on the best-performing OSDs.

Therefore, we need to use the load state prediction

model for different classes of OSDs to make a predic-tive

evaluation of the effect before each optimization. If pre-

dictive evaluation contradicts the expected optimization

goal, Algorithm 4 will revoke the operation. This kind of

performance prediction model trained based on the actual

Fig. 8 Comparison of the normalized throughput of the TOPSIS series algorithm at different workloads

Fig. 9 Comparison of the normalized latency of the TOPSIS series algorithm at different workloads
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load state of OSDs has good reference and adaptability to

make performance optimization adjustments more reason-

able. In addition, we also consider the impact of data

migration and recovery in the cluster. Then we can make

corresponding adjustments to ensure that the OSD priori-

tizes the execution of data migration and recovery opera-

tions or the execution of optimized read and write

performance operations. So the system read and write

performance has a more fine-grained granularity.

Furthermore, Dynamic Pool adaptively migrates PGs to

Pool1 * Pooln storage pools by on-demand. The on-de-

mand means that if the range of reading and writing IOPS

that Pooli can provide is [a, b], we place the appropriate

customer demand in Pooli to reduce wasted resources.

Finally, we need to discuss how to use the relationship

between data distribution and nodes’ read/write perfor-

mance in the ceph system. To ensure system reliability, we

adaptively adjust the system read and write performance to

make system availability more robust.

6 Conclusion

For Ceph heterogeneous storage systems, we design a

network-aware approach based on software-defined net-

working technology. To improve the CRUSH Algorithm,

we propose an adaptive read/write optimization algorithm

for Ceph heterogeneous systems via performance predic-

tion and multi-attribute decision-making. Firstly, the OSDs

are classified based on the Node Heterogeneous Resource

Partitioning Strategy. Then the prediction model is estab-

lished by combining the load state of OSD. Finally, we

complete the selection of OSDs by solving the mathemat-

ical model of multi-attribute decision-making. We also

propose a Dynamic Pool to meet clients’ dynamic read and

write performance needs. The experimental results show

that TOPSIS_PA improves read performance by 36%.

TOPSIS_CW and TOPSIS_PACW algorithms improve the

elastic write performance by 180 to 468% and the elastic

read performance by 23 to 60%. In summary, the TOPSIS

series of algorithms ensures system reliability while adding

high availability.

To meet the requirements of a large-scale storage net-

work, we have implemented the cooperative communica-

tion deployment of multiple controllers in an SDN

network. It can solve the performance bottleneck problem

of a single SDN controller and improve the reliability of

the cluster. Furthermore, We need to study the overhead of

the SDN monitoring process (switch channel bandwidth

consumption, etc.) and evaluate the establishment time of

prediction models of different scales. At the same time, the

network state changes dynamically, so it is necessary to

consider the network state measurement and decisive

moment in fine granularity to optimize the cluster perfor-

mance. We need to dynamically and rationally determine

the different load factor dimension weights. These are more

meaningful research tasks that need to carry out

subsequently.
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