
International Journal on Software Tools for Technology Transfer (2023) 25:167-184
https://doi.org/10.1007/s10009-022-00690-y

Special Issue: TACAS 2021

GENERAL

Verified Propagation Redundancy and Compositional UNSAT
Checking in CakeML

Yong Kiam Tan · Marijn J. H. Heule · Magnus O. Myreen

Accepted: 4 November 2022 / Published online: 27 February 2023
© The Author(s) 2023

Abstract Modern SAT solvers can emit independently-
checkable proof certificates to validate their results. The
state-of-the-art proof system that allows for compact proof
certificates is propagation redundancy (PR). However, the
only existing method to validate proofs in this system with a
formally verified tool requires a transformation to a weaker
proof system, which can result in a significant blowup in
the size of the proof and increased proof validation time.
This article describes the first approach to formally verify
PR proofs on a succinct representation. We present (i) a
new Linear PR (LPR) proof format, (ii) an extension of the
DPR-trim tool to efficiently convert PR proofs into LPR
format, and (iii) cake_lpr, a verified LPR proof checker
developed in CakeML. We also enhance these tools with
(iv) a new compositional proof format designed to enable
separate (parallel) proof checking. The LPR format is back-
wards compatible with the existing LRAT format, but extends
LRAT with support for the addition of PR clauses. More-
over, cake_lpr is verified using CakeML’s binary code
extraction toolchain, which yields correctness guarantees
for its machine code (binary) implementation. This further
distinguishes our clausal proof checker from existing check-
ers because unverified extraction and compilation tools are
removed from its trusted computing base. We experimen-
tally show that: LPR provides efficiency gains over existing

The first author was supported by A*STAR, Singapore, the second
author was supported by the National Science Foundation (NSF)
under grant CCF-2010951, and the third author was supported by the
Swedish Foundation for Strategic Research, Sweden. This work was
also supported by NSF award number ACI-1445606 at the Pittsburgh
Supercomputing Center (PSC).

Yong Kiam Tan and Marijn J. H. Heule
Computer Science Department, Carnegie Mellon University,
Pittsburgh, USA
E-mail: yongkiat@cs.cmu.edu
E-mail: marijn@cmu.edu

Magnus O. Myreen (B)
Chalmers University of Technology, Gothenburg, Sweden
E-mail: myreen@chalmers.se

proof formats; cake_lpr’s strong correctness guarantees
are obtained without significant sacrifice in its performance;
and the compositional proof format enables scalable parallel
proof checking for large proofs.

Keywords linear propagation redundancy · binary code
extraction · compositional proof checking

1 Introduction
Given a formula of propositional logic, the task of a SAT
solver is to decide whether there exists an assignment that
satisfies the formula. Such a satisfying assignment, if found
by a SAT solver, is easily verifiable by independent checkers
and so one does not need to trust the inner workings of the
solver. The situation with unsatisfiable formulas, i.e., where
no satisfying assignment exists, is not as straightforward.
Here, SAT solvers must produce an unsatisfiability proof
(also called a refutation) for the input formula. Ideally, the
proof system and corresponding proof format for such proofs
should be sufficiently expressive, allowing SAT solvers to
efficiently produce proofs that correspond to the SAT solving
techniques they use at runtime. At the same time, the resulting
proofs ought to be efficiently checkable by independent and
trustworthy tools.

The de facto standard proof system for propositional
unsatisfiability proofs is Resolution Asymmetric Tautology
(RAT) [31]. The associated DRAT format [55] combines
clause addition based on RAT steps and clause deletion.
Independent checking tools can validate proofs in the DRAT
format; they have been used to check the results of the SAT
competitions since 2014 [55] and in industry [20]. Enriching
DRAT proofs with hints is the main technique for develop-
ing efficient verified proof checkers, e.g., existing verified
checkers use the enriched proof formats LRAT [10] and
GRAT [39].

A recently proposed proof system, called Propagation
Redundancy (PR) [28], generalizes RAT. There exist short

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00690-y&domain=pdf

168 Yong Kiam Tan et al.

PR proofs without new variables for many problems that
are hard for resolution, such as pigeonhole formulas, Tseitin
problems, and mutilated chessboard problems [26]. Due to
the absence of new variables it is easier to find PR proofs
automatically [27], and it is considered unlikely that there
exist short RAT proofs for these problems that do not intro-
duce new variables nor reuse eliminated variables [28]. Such
PR proofs can be checked directly [28], or they can first
be transformed into DRAT proofs or even Extended Res-
olution proofs by introducing new variables [25, 34]. In
theory, the blowup is small, i.e., polynomial-sized. How-
ever, in practice, the transformed proofs can be significantly
more expensive to validate compared to the original PR
proofs [28].

A natural question arises: why should proof checkers be
trusted to correctly check proofs if we do not likewise trust
SAT solvers to correctly determine satisfiability? One answer
is that proof checkers are much easier to implement so their
code can be carefully audited. Another answer is that the
algorithms underlying proof checkers have been formally
verified in a proof assistant [10, 20, 39]. However, to get
executable code for these verified checkers, some additional
unverified steps are still required. Although unlikely, each of
these steps can introduce bugs in the resulting executable:
(a) the algorithms are extracted by unverified code gener-
ation tools into source code for a programming language;
(b) unverified parsing, file I/O, and command-line inter-
face code is added; (c) the combined code is compiled by
unverified compilers to executable machine code.

The contributions of this article are: (i) a new Lin-
ear PR (henceforth LPR) proof format that enriches PR
proofs with hints and is backwards compatible with the
LRAT format, (ii) an extension of the existing DPR-trim
tool [28] to efficiently convert PR proofs into LPR for-
mat, and (iii) cake_lpr, an efficient verified LPR proof
checker with correctness guarantees, including for steps
(a)–(c) enumerated above. The cake_lpr tool was used to
validate the unsatisfiability proofs for the 2020 SAT Com-
petition because of its strong trust story combined with easy
compilation and usage. Moreover, the stronger PR proof sys-
tem could be supported in future competitions. The tool is
publicly available at: https://github.com/tanyongkiam/cake_
lpr

This article extends our conference version [53] with:
(iv) a new compositional proof format consisting of a top-
level summary proof whose proof steps can be separately
justified by respective underlying proofs and (v) verified

extensions in cake_lpr to support the compositional proof
format. The new correctness result for cake_lpr allows
users to exploit verified compositional proof checking by
running parallel instances of the tool to check very large
unsatisfiability proofs, such as those typically found in SAT-
solver aided proofs of mathematical results [23, 29, 35]. In
particular, we explain how compositional proofs can be con-
veniently generated from the cube-and-conquer [22] SAT
solving technique that is naturally parallelizable. Together
with our verified checker, this enables a fully parallel pipeline
for SAT solving, proof generation, and verified proof check-
ing. To the best of our knowledge, this is the first verification
result for a proof checker that formally accounts for multiple,
separate executions of the checker.

Section 3 shows howPR proofs are enriched to obtain LPR
proofs and presents the corresponding LPR proof checking
algorithm (Contributions (i) & (ii)). Existing LRAT proof
checkers can be extended in a clean and minimal way to
support LPR proofs. Section 4 introduces the compositional
proof format which extends an underlying clausal proof for-
mat with support for separate proof checking (Contribution
(iv)). Section 5 explains the implementation of our proof
checker in CakeML, as well as the correctness guarantees and
high-level verification strategy behind the proofs (Contribu-
tions (iii) & (v)). Section 6 benchmarks our proof checker
against existing implementations. A summary comparison of
the new proof checker against existing verified proof checkers
is in Table 1.

2 Background
This section provides background on CakeML and its related
tools. It also recalls the standard problem format and clausal
proof systems used by SAT solvers.

2.1 HOL4 and CakeML

HOL4 is a proof assistant implementing classical higher-
order logic [51] and CakeML [45] is a programming
language with syntax and semantics formally defined in
HOL4. Tools for developing verified CakeML software are
used to fill the verification gaps in the correspondingly
enumerated items in Section 1:

(a) Two tools are used to produce (or extract) verified
CakeML source code in HOL4:

123

https://github.com/tanyongkiam/cake_lpr
https://github.com/tanyongkiam/cake_lpr

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 169

Table 1 A comparison of SAT proof checkers that have been verified in various proof assistants [10, 20, 39]. Green background (cells with +)
indicates, in our view, desirable properties, e.g., LPR is based on a stronger proof system than LRAT and GRAT, while red backgrounds (cells with
×) indicate less desirable properties. Yellow backgrounds (cells with −) are also undesirable but to a lesser extent.

Property ACL2 checker [20] Coq checker [10] GRATchk [39] cake_lpr

Proof System
(Section 3) − LRAT − LRAT − GRAT + LPR

Executable Code
(Section 5) −

Directly
Executed ×

Unverified
Extraction ×

Unverified
Extraction +

Binary Code
Extraction

Checking Speed
(Section 6) + Fast × Slow + Very Fast + Fast (Parallelizable)

– the CakeML proof-producing translator [46] auto-
matically synthesizes verified source code from pure
algorithmic specifications;

– the CakeML characteristic formula (CF) frame-
work [19] provides a separation logic which can
be used to manually verify (more efficient) imper-
ative code for performance-critical parts of the proof
checker.

(b) CakeML provides a foreign function interface (FFI)
and a corresponding formal FFI model [15]. These are
used to verify system call interactions, e.g., file I/O
and command-line interfaces, under carefully specified
assumptions on the system environment.

(c) Most importantly, CakeML has a compiler that is ver-
ified [54] to preserve the semantics of source CakeML
programs down to their compiled machine-code imple-
mentations. Hence, all guarantees obtained from the
preceding steps can be carried down to the level of
machine code with proofs.

The combination of these tools enables binary code
extraction [36] where verified machine code is extracted
directly in HOL4. Several CakeML programs have been
verified using these tools, including: certificate checkers
for floating-point error bounds [6] and vote counting [18],
an OpenTheory article checker [1], and the bootstrapped
CakeML compiler [54]. Other toolchains can be used to
build verified checkers, e.g., Œuf provides a similar binary
code extraction toolchain in the Coq proof assistant [44]; the
Verified Software Toolchain [9] provides a program logic for
a subset of C which can be compiled with the verified com-
piler CompCert [40]; and the Isabelle Refinement framework
can produce verified LLVM implementations [37, 38].

2.2 SAT Problems and Clausal Proofs

Fix a set of boolean variables 𝑥1, . . . , 𝑥𝑛, where the nega-
tion of variable 𝑥𝑖 is denoted 𝑥𝑖 , and the negation of 𝑥𝑖 is
identified with 𝑥𝑖 . Variables and their negations are called
literals and are denoted using 𝑙.

The input for propositional SAT solvers is a formula 𝐹

in conjunctive normal form (CNF) over the set of variables
𝑥1, . . . , 𝑥𝑛. Here, CNF means that 𝐹 consists of an outer
logical conjunction 𝐹 ≡

∧𝑚
𝑖=1𝐶𝑖 , where each clause 𝐶𝑖 is a

disjunction over some of the literals 𝐶𝑖 ≡ 𝑙𝑖1 ∨ 𝑙𝑖2, · · · ∨ 𝑙𝑖𝑘 ;
in general, each clause can contain a different number of
literals. Formulas in CNF can be represented directly as sets
of clauses and clauses as sets of literals. The empty clause is
denoted ⊥.

An assignment 𝛼 assigns boolean values (true or false) to
each variable; 𝛼 can be partial, i.e., it only assigns values to
some of the variables. Like formulas and clauses, a (partial)
assignment 𝛼 can be represented as a set of literals such
that 𝑙 ∈ 𝛼 iff 𝛼 assigns 𝑙 to true. For consistency, 𝛼 may
contain at most one of each literal 𝑙 or its negation. The
negation of an assignment, denoted 𝛼, assigns the negation
of all literals in 𝛼 to true. An assignment 𝛼 satisfies a clause
𝐶 iff their set intersection is nonempty. Additionally, we
define 𝐶 |𝛼 = � if 𝛼 satisfies 𝐶; otherwise, 𝐶 |𝛼 denotes the
result of removing from 𝐶 all the literals falsified by 𝛼, i.e.,
𝐶 |𝛼 = 𝐶 \𝛼. For a formula 𝐹, we define 𝐹 |𝛼 = {𝐶 |𝛼 | 𝐶 ∈

𝐹 and 𝐶 |𝛼 ≠ �}. Intuitively, 𝐹 |𝛼 contains the remaining
simplified clauses in formula𝐹 after committing to the partial
assignment 𝛼.

The task of a SAT solver is to determine whether 𝐹

is satisfiable, i.e., whether there exists a (possibly partial)
assignment 𝛼 such that 𝐹 |𝛼 is empty. Any satisfying assign-
ment can be used as certificate of satisfiability. Formulas
without a satisfying assignment are unsatisfiable. Certify-
ing unsatisfiability is more difficult and typically uses a
clausal proof system [28]. The idea behind these proof sys-
tems is briefly recalled next, using the key concept of clause
redundancy.

Definition 1 A clause𝐶 is redundantwith respect to formula
𝐹 iff 𝐹 ∧ 𝐶 and 𝐹 are both satisfiable or both unsatisfiable,
i.e., they are satisfiability equivalent.

123

170 Yong Kiam Tan et al.

A clause𝐶 that is redundant for 𝐹 can be added to 𝐹 with-
out changing its satisfiability. Clausal proof systems work by
successively adding redundant clauses to 𝐹 until the empty
clause ⊥ is added. Such a sequence of additions is illustrated
below:

𝐹

+ redundant 𝐶1
︷︸︸︷
=⇒ 𝐹 ∧ 𝐶1

+ redundant 𝐶2
︷︸︸︷
=⇒ 𝐹 ∧ 𝐶1 ∧ 𝐶2

...

=⇒
︸︷︷︸

+ redundant ⊥

𝐹 ∧ 𝐶1 ∧ 𝐶2 ∧ · · · ∧ ⊥

Satisfiability is preserved along each =⇒ step because
of clause redundancy, e.g., satisfiability of 𝐹 implies sat-
isfiability of 𝐹 ∧ 𝐶1. Since the final formula containing ⊥

is unsatisfiable, the sequence of redundant clause addition
steps 𝐶1, 𝐶2, . . . ,⊥ corresponds to a proof of unsatisfia-
bility for 𝐹. Deciding clause redundancy is as hard as
solving the SAT problem itself because ⊥ is always redun-
dant for unsatisfiable formulas. The difference between
clausal proof systems is how the redundancy of a (pro-
posed) redundant clause𝐶 is efficiently certified at each proof
step.

Many syntactic notions of redundancy are based on unit
propagation. A unit clause is a clause with only one literal.
The result of applying the unit clause rule to a formula 𝐹 is
the formula 𝐹 | 𝑙 where (𝑙) is a unit clause in 𝐹. The iterated
application of the unit clause rule to a formula 𝐹 until no unit
clauses are left is called unit propagation. If unit propagation
on 𝐹 yields the empty clause ⊥, denoted by 𝐹 	1 ⊥, we say
that 𝐹 implies ⊥ by unit propagation. The notion of implied
by unit propagation is also used for regular clauses as follows:
𝐹 	1 𝐶 iff 𝐹 ∧ ¬𝐶 	1 ⊥ with ¬𝐶 =

∧
𝑙∈𝐶 (𝑙). Observe that

¬𝐶 can be viewed as a partial assignment that assigns the
literals 𝑙, for 𝑙 ∈ 𝐶, to true. For a formula 𝐺, 𝐹 	1 𝐺 iff
𝐹 	1 𝐶 for all 𝐶 ∈ 𝐺. The main clausal proof system used
in this article is based on propagation redundant clauses,
which are defined as follows.

Definition 2 Let 𝐹 be a formula, 𝐶 a nonempty clause, and
𝛼 the smallest assignment that falsifies 𝐶. Then, 𝐶 is prop-
agation redundant (PR) with respect to 𝐹 if there exists an
assignment 𝜔 which satisfies 𝐶 and such that 𝐹 |𝛼 	1 𝐹 |𝜔.

Intuitively, a PR clause 𝐶 is redundant because any satis-
fying assignment for 𝐹 that does not already satisfy𝐶 can be
modified to a satisfying assignment for 𝐹∧𝐶 by updating its
literals assigned to true according to the (partial) witnessing
assignment 𝜔 (see [28, Theorem 1] for more details). Prop-
agation redundancy is efficiently checkable in polynomial
time using the witnessing assignment 𝜔 and PR generalizes

various other notions of clause redundancy, including the
de facto standard Resolution Asymmetric Tautology (RAT)
proof system (see [28, Theorem 2]) that is able to compactly
express all current techniques used in state-of-the-art SAT
solvers [31]. There is ongoing research towards integrating
PR in SAT solvers [27, 28]. For example, PR-based prepro-
cessing has been shown to improve solver performance on
SAT competition benchmarks [49].

In practice, clausal proof formats also support clause
deletions to speed up proof validation, especially for proof
checking steps that need to iterate over the entire formula,
e.g., 𝐹 |𝛼 	1 𝐹 |𝜔 for Def. 2. Hence, unsatisfiability proofs
for formula 𝐹 are modeled as sequences 𝐼1, . . . , 𝐼𝑛 of instruc-
tions that either add or delete a clause; an addition instruction
is a triple 〈a, 𝐶, 𝜔〉, where 𝐶 is a clause and 𝜔 is a (possi-
bly empty) witnessing assignment; a deletion instruction is
a pair 〈d, 𝐶〉 where 𝐶 is a clause. The sequence 𝐼1, . . . , 𝐼𝑛
gives rise to formulas 𝐹1, . . . , 𝐹𝑛 with 𝐹0 = 𝐹, where 𝐹𝑗

is the accumulated formula, i.e., a (multi)set of clauses,
up to the 𝑗-th instruction computed recursively according
to (1).

𝐹𝑗 =

{
𝐹𝑗−1 ∪ {𝐶 𝑗 } if 𝐼 𝑗 is of the form 〈a, 𝐶 𝑗 , 𝜔〉

𝐹𝑗−1 \ {𝐶 𝑗 } if 𝐼 𝑗 is of the form 〈d, 𝐶 𝑗〉
(1)

APR proof of unsatisfiability is valid if the last instruction
adds the empty clause 𝐼𝑛 = 〈a,⊥, ∅〉, and, for all addition
instructions 𝐼 𝑗 = 〈a, 𝐶 𝑗 , 𝜔 𝑗〉, it holds that 𝐶 𝑗 is PR with
respect to 𝐹𝑗−1 using witness 𝜔 𝑗 . In case an empty witness
is provided for 𝐼 𝑗 , then 𝐹𝑗−1 	1 𝐶 𝑗 should hold.

3 Linear Propagation Redundancy
This section describes a new clausal proof format called
Linear Propagation Redundancy (LPR) which is designed
to enable efficient validation of PR clauses using a (veri-
fied) proof checker. It also presents our enhancements to the
DPR-trim tool1 to efficiently add hints to PR proofs, thereby
turning them into LPR proofs. Throughout the section, we
emphasize how LPR can be viewed as a clean and minimal
extension of the existing LRAT proof format, which thereby
enables its straightforward implementation in existing LRAT
tools.

The most commonly used proof format for SAT solvers is
DRAT, which combines deletion with RAT redundancy [55].
DRAT proofs are easy for SAT solvers to emit and top-tier
SAT solvers support it, but they have some disadvantages

1 LPR hint addition is now part of the public GitHub version of
DPR-trim using the command-line option -L at: https://github.com/
marijnheule/dpr-trim.

123

https://github.com/marijnheule/dpr-trim
https://github.com/marijnheule/dpr-trim

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 171

Fig. 1 The grammar for the LPR format. Additions compared to the
LRAT grammar [10] are highlighted in bold.

for verified proof checking. In particular, checking whether a
clause is RAT requires a significant amount of proof search to
find the unit clauses necessary for showing the implied-by-
unit-propagation 	1 property. This complicates verification
of the proof checking algorithm and slows down the resulting
verified proof checkers. The idea behind the Linear RAT
(LRAT) [10, 20] and GRAT [39] formats is to include these
unit clauses as hints so that verified proof checkers can follow
the hints directly without the need for proof search. The
LPR format lifts this idea to allow fast validation of the PR
property as follows.

An assignment 𝜔 reduces a clause 𝐶 if 𝐶 |𝜔 ⊂ 𝐶 and
𝐶 |𝜔 ≠ �. To check the PR property 𝐹 |𝛼 	1 𝐹 |𝜔, it suf-
fices to check, for each clause 𝐶 ∈ 𝐹 reduced by 𝜔, that
𝐹 |𝛼 	1 𝐶 |𝜔. In practice, a smaller 𝜔 yields a cheaper PR
check. The LPR format extends the PR format by adding, for
each clause reduced by the witness, a list of all unit clause
hints required for showing the implied-by-unit-propagation
property. Additionally, in order to point to clauses, the LPR
format includes an index for each clause at the beginning
of each line. The grammar of the LPR format is shown
in Fig. 1.

The DPR-trim tool [28, Sect. 6] is built on top of
DRAT-trim and facilitates verification of DPR proofs, a
generalization of DRAT proofs with PR clause addition.
If a clause addition step includes a witnessing assignment
𝜔, then the PR redundancy check is performed. Otherwise
DPR-trim falls back on the RAT check from the DRAT-trim
code base. Deletion steps are not validated. DPR-trim has
similar features compared to DRAT-trim, including back-
ward checking, extraction of unsatisfiable cores, and proof
optimization.

Our extension to DPR-trim enriches input PR proofs by
finding and adding all required unit clause hints to produce
LPR proofs. Most of the changes generalize the code to
produce LRAT proofs in DRAT-trim. The main PR-specific
optimization shrinks the witness 𝜔 where possible: every

literal in 𝜔 ∩ 𝛼 is removed as well as any literal in 𝜔 that is
implied by unit propagation from 𝐹 |𝛼. The shrinking was
shown to be correct [28], but has not been implemented so
far. We observed that the witnesses in thePR proofs produced
by SaDiCaL [27] can be substantially compressed using this
method.

Fig. 2 (left) shows an example formula in the standard
DIMACS problem format. The DIMACS format includes a
header line starting with “p cnf ” followed by the number
of variables and the number of clauses. The non-comment
lines (not starting with “c ”) represent clauses, and they
end with “0”. Positive integers denote positive literals, while
negative integers denote negative literals. By convention (fol-
lowing LRAT), the clauses are implicitly indexed according
to their order of appearance in the file, starting from index
1. Fig. 2 (right) shows a corresponding proof in LPR for-
mat.2 Deletion lines in LPR are formatted identically to
LRAT [10] (not shown here). For clause addition lines, the
LPR format only differs from LRAT in case the clause to
be added has PR but not RAT redundancy. A clause addi-
tion line in LPR format consists of three parts. The first
part is the first integer on the line, which denotes the index
of the new clause. The second part exactly matches the PR
proof format [28]. It consists of the redundant clause and
its witness; the first group of literals is the clause while the
(potentially empty) witness starts from the second occur-
rence of the first literal of the clause until the first 0 that
separates the unit clause hints. The third part (after the first
0) are the unit clause hints, which exactly matches the LRAT
format [10].

The checking algorithm for LPR, shown in Fig. 3, overlaps
significantly with that for LRAT (see [10, Algorithm 1]). The
only differences are in Steps 4 and 5.1. In Step 4, the witness
is used (if present) instead of always using the first literal in
𝐶 𝑗 . In Step 5.1, clauses are skipped if they are satisfied by the
witness. Notice that a clause can only be both reduced and
satisfied by a witness if the witness consists of at least two
literals, while in the LRAT format witnesses always consist
of exactly one literal. Note also that the algorithm does not
check whether 𝐶 𝑗 |𝜔 = �, which is a requirement for PR.
This omission is allowed because the first literal in 𝜔 in the
LPR (and PR) format is syntactically the same as the first
literal in 𝐶 𝑗 .

2 The 12 line PR proof in Fig. 2 (right) can be converted to a longer
264 lineRAT proof using earlier techniques [27] (not shown for brevity);
to the best of our knowledge, there are no known short RAT proofs for
these problems that do not introduce new variables nor reuse eliminated
variables [28].

123

172 Yong Kiam Tan et al.

Fig. 2 (Left) Clauses of an unsatisfiable pigeonhole formula (4 pigeons, 3 holes) in the DIMACS format used by SAT solvers. The first 4 clauses
encode that each pigeon belongs to at least one hole, e.g., the variable 1 (resp. 4, 7, 10) is set to true iff pigeon A (resp. B, C, D) is in the first
hole; the latter 18 clauses encode that no two pigeons share the same hole, e.g., the clause -1 -4 encodes that pigeons A and B do not share the
first hole. (Right) The LPR refutation consisting of clause-witness pairs and unit clause hints. The first bold integer in each line is the clause index
while other bold integers are the unit clause hints. Dropping the bold integers yields a proof in the PR format. Redundant spaces have been added
to improve readability.

Fig. 3 Algorithm to check a single clause addition step in the LPR
format. The bold parts show the additions compared to LRAT proof
checking [10].

4 Compositional Proofs
This section presents a new compositional proof format for
unsatisfiability proof checking, motivated by the need to
check very large unsatisfiability proofs behind SAT-solver
aided proofs of mathematical results [23, 29, 35]. The rules

of compositional proofs in propositional logic have been
discussed in earlier work [24]; here, we define a format for
compositional proofs and present a proof checking frame-
work for the entire toolchain. Intuitively, the format consists
of a top-level summary proof and a set of underlying proofs
which are used to justify the top-level proof steps, see Fig. 4
for an illustration (explained below). The underlying proofs
can be checked separately and in parallel to speed up proof
checking. Section 4.1 presents the proof format and its proof
checking algorithm. Section 4.2 explains our technique for
generating compositional proofs from the cube-and-conquer
SAT solving technique [22].

4.1 Compositional Proof Checking

Compositional proofs are modeled using instruction
sequences 𝐼1, . . . , 𝐼𝑛 similar to clausal proofs (Section 2.2)
except addition instructions are of the form 〈a, 𝐶〉, i.e., they
do not carry witnesses. The accumulated formulas 𝐹𝑗 are
defined according to equation 1.

The key idea behind compositional proof checking is
to justify a range of instructions simultaneously using an
underlying clausal proof, see Fig. 4. More precisely, given
a pair of indices (𝑖, 𝑗), with 𝑖 ≤ 𝑗 , the algorithm checks
that satisfiability of the accumulated formula 𝐹𝑖 implies sat-
isfiability of the accumulated formula 𝐹𝑗 . By transitivity
of satisfiability implication, this means that a proof with 𝑛

instructions can be checked by separately checking 𝑘 ranges
(𝑖0, 𝑖1), (𝑖1, 𝑖2), . . . , (𝑖𝑘−1, 𝑖𝑘) for some choice of indices
0 = 𝑖0 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 = 𝑛. If all 𝑘 checks succeed,
then satisfiability of 𝐹 implies satisfiability of 𝐹𝑛 and, in
particular, if 𝐹𝑛 also contains ⊥ then the input formula 𝐹

is unsatisfiable. Satisfiability implication for each pair 𝐹𝑖 ,
𝐹𝑗 is checked using an underlying clausal proof and its

123

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 173

Fig. 4 Illustration of a compositional proof: the top-level proof is a sequence of instructions 𝐼1, . . . , 𝐼𝑛 that can add or delete clauses; the indexes
𝑖0, . . . , 𝑖𝑘 divide the top-level proof steps into ranges; and the boxes indicate underlying clausal proofs which are separately checked (indicated
by�) using instances of appropriate proof checkers, e.g., cake_lpr.

Fig. 5 Compositional proof checking algorithm for range (𝑖, 𝑗) based
on an underlying clausal proof format.

corresponding proof checker. A formal description of the
algorithm for checking range (𝑖, 𝑗) is in Fig. 5. By design,
there is significant flexibility in how the underlying proofs
can be checked:

– The indexes 𝑖0, 𝑖1, . . . , 𝑖𝑘 can be chosen arbitrarily by
tools, as long as they cover all steps of the top-level proof
with 𝑖0 = 0, 𝑖𝑘 = 𝑛.

– Different clausal proof formats and corresponding proof
checkers can be used for each underlying proof.

– The underlying proofs can be checked separately, in any
order, and in parallel by running multiple instances of
proof checkers on several machines.

Fig. 6 The grammar for the DRAT format [55], re-used for compo-
sitional proofs. Each 〈𝑙𝑖𝑛𝑒〉 represents either addition (no prefix) or
deletion (prefixed by “d”) of a clause.

To enable re-use of existing parsing tools, compositional
proofs are syntactically represented using the DRAT for-
mat [55], recalled in Fig. 6. Clauses are implicitly numbered
according to their order of addition, continuing from the last
(implicit) index of the corresponding DIMACS CNF. For
example, starting from a DIMACS file with 5 clauses (indices
1–5), the first added clause in the compositional proof has
index 6, the second has index 7, and so on. Deletion steps
are ignored for the purposes of indexing.

4.2 Compositional Proof Generation

Compositional proofs can be generated particularly conve-
niently from cube-and-conquer SAT proofs [22]. Given an
input formula 𝐹, the basic idea behind cube-and-conquer is to
partition 𝐹 into a set of subformulas 𝐹∧𝐺1, 𝐹∧𝐺2, . . . , 𝐹∧

𝐺𝑛, and to solve each subproblem separately. Here, each
𝐺𝑖 = 𝑙1 ∧ 𝑙2 ∧ · · · ∧ 𝑙 𝑗 is a cube, i.e., a conjunction of literals,
such that the disjunction of cubes

∨𝑛
𝑖=1𝐺𝑖 is a tautology.

123

174 Yong Kiam Tan et al.

Fig. 7 Compositional proof used for the cube-and-conquer parallel SAT solving strategy. The boxes correspond to underlying proofs generated
by DRAT-trim for each cube which can be checked using cake_lpr or other LRAT tools [10]. In practice, the cubes 𝐺𝑖 used in the top-level proof
steps can be simplified to core subsets 𝐻𝑖 ⊆ 𝐺𝑖 obtained from incremental SAT solving.

Thus, if every subproblem 𝐹 ∧𝐺𝑖 is unsatisfiable, then 𝐹 is
unsatisfiable.

The compositional unsatisfiability proof for 𝐹 under cube-
and-conquer is shown in Fig. 7, analogous to Fig. 4. Here,
the top-level proof is the sequence of 𝑛 additions of negated
cubes ¬𝐺𝑖 (which are clauses), followed by addition of the
empty clause. The first 𝑛 underlying proofs justify unsatisfi-
ability of 𝐹 under each cube, while the last proof shows that
the cube-and-conquer strategy correctly partitions the space
of assignments.

The top-level proof steps can be simplified while gener-
ating the underlying clausal proofs for each step. In practice,
each subproblem 𝐹 ∧ 𝐺𝑖 is tackled using incremental SAT
solvers that support solving 𝐹 under assumptions (or partial
assignments) 𝐺𝑖 . Such assumptions are typically provided
either via iCNF files [56] or via the solver API; an exam-
ple formula with three cubes expressed in iCNF (DIMACS
files extended with assumptions) is shown in Fig. 8. If the
formula 𝐹 is found to be unsatisfiable under assumptions
𝐺𝑖 , incremental solvers can further compute a subset of the
cube 𝐻𝑖 ⊆ 𝐺𝑖 that was involved in determining unsatisfiabil-
ity [13]. The negation ¬𝐻𝑖 can be used in the compositional
proof in place of ¬𝐺𝑖 , e.g., the topmost cube in Fig. 8 has
a proof with 𝐻𝑖 ⊂ 𝐺𝑖 . Since existing solvers with incre-
mental support can only log proofs in the DRAT format,
we modified DRAT-trim to convert such partial proofs into
LRAT proofs that end with the addition of clause ¬𝐻𝑖 . In
addition, when generating the LRAT proof for ¬𝐻𝑖 , the
compositional proof checking algorithm Fig. 5 allows us
to assume all previously added clauses, i.e., starting with

Fig. 8 (Left) Incremental CNF files for the pigeonhole formula
from Fig. 2 split using three cubes (assumptions are specified using
a ... 0 lines). (Middle) Generated DRAT proofs for each incremental
CNF; the last line in each proof is ¬𝐻𝑖 . (Right) The top-level com-
positional proof for the pigeonhole formula in Fig. 2 built from ¬𝐻𝑖 .

𝐹 ∧ ¬𝐻1 ∧ · · · ∧ ¬𝐻𝑖−1, which may help to simplify the
LRAT proof.

The final line in compositional unsatisfiability proofs is
the addition of the empty clause. In most use cases, there
exists a short justification of the empty clause using the added
clauses in the compositional proof, e.g., the conjunction of
preceding clauses in the compositional proof is typically

123

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 175

unsatisfiable (in our case, by construction). Thus, a SAT
solver can be used on that formula to produce the justification
of the empty clause in the appropriate clausal proof format.
Alternatively, if the compositional proof was constructed
using more complicated cube-and-conquer strategies [22],
then the underlying tree structure used to generate the cubes
can be used to guide the resolution steps for obtaining the
empty clause.

5 CakeML Proof Checking
This section explains the implementation and verification
of cake_lpr, our verified CakeML LPR proof checker.
Section 5.1 focuses on the high-level verification strat-
egy which we used to reduce the verification task to
mostly routine low-level proofs (details of the latter are
omitted). Section 5.2 explains the main verified theorems
for the proof checker. Section 5.3 highlights some of
the verified performance optimizations used in the proof
checker.

5.1 Implementation and Verification Strategy

The development of cake_lpr proceeds in three refinement
steps, where each step progressively produces a more con-
crete and performant implementation of the proof checker.
These refinements are visualized in the three columns
of Fig. 9 for LPR proof checking. A similar verification
process was used to add support for compositional proof
checking.

Step 1 formalizes the definition of CNF formulas and their
unsatisfiability, as well as the PR proof system described
in Section 2.2. The inputs and outputs to the proof system
are abstract and not tied to any concrete representation at this
step. For example, input variables are drawn from an arbitrary
type 𝛼, while clauses and CNFs are represented using sets.
The correctness of the PR proof system is proved in this step,
i.e., we show that a valid PR proof implies unsatisfiability of
the input CNF. The proof essentially follows [28, Theorem
1].

Step 2 implements a purely functional version of the
LPR proof checking algorithm from Fig. 3. Here, the inputs
and outputs are given concrete representations with com-
putable datatypes, e.g., literals are integers (similar to
DIMACS), clauses are lists of integers, and CNFs are
lists of clauses. These concrete representations lift natu-
rally to the abstract, set-based representation from Step
1. The output is a YES or NO answer according to the
algorithm from Fig. 3. The correctness theorem for Step
2 shows that LPR proof checking correctly refines the
PR proof system, i.e., if it outputs YES, then there exists
a valid PR proof for the input (lifted) CNF; by Step 1,
this implies that the CNF is unsatisfiable. If the output

is NO, the input CNF could still be unsatisfiable, but the
input LPR proof is not valid according to the algorithm
in Fig. 3.

Step 3 uses imperative features in the CakeML
source language, e.g., (byte) arrays and exceptions,
to improve code performance; these optimizations are
detailed further in Section 5.3. This step also adds
user interface features like parsing and file I/O so
that the input CNF formula is read (and parsed)
from a file, and the results are printed on the stan-
dard output and error streams. The verification of
this step uses CakeML’s proof-producing translator [46]
and characteristic formula framework [19] to prove
the correctness of the source code implementation of
cake_lpr; this code is subsequently compiled with the
verified CakeML compiler [54]. Composing the correct-
ness theorem for source cake_lpr with CakeML’s compiler
correctness theorem yields the corresponding correctness
theorem for the cake_lpr binary.

At the point of writing, the verified cake_lpr binary can
be invoked from the command-line in five ways, each with
associated soundness proofs (Section 5.2):

1. cake_lpr <DIMACS>
Parses the input file in DIMACS format and prints the
parsed formula.

2. cake_lpr <DIMACS> <LPR>
Runs LPR proof checking on the parsed formula.

3. cake_lpr <DIMACS1> <LPR> <DIMACS2>
Runs LPR transformation checking on the parsed for-
mulas, i.e., DIMACS1 is checked to imply DIMACS2
(satisfiability-wise) using the LPR proof [10].

4. cake_lpr <DIMACS> <COMP> i-j <LPR>
Runs compositional proof checking on the parsed for-
mula and compositional proof COMP for the range i–j
and underlying LPR proof LPR.

5. cake_lpr <DIMACS> <COMP> -check <OUTPUT>
Checks the combined result of several compositional
proof checker executions (see below).

Recall from Section 4.1 that cake_lpr needs to be exe-
cuted (with option 4) for a set of ranges covering the lines of
the compositional (top-level) proof COMP and we expect users
to exploit this compositionality by running separate instances
of cake_lpr in parallel on several machines. Accordingly,
an important correctness caveat for compositional proof
checking is that users correctly set up separate executions
for their respective systems.

Option 5 is designed to add a simple layer of protection
against user error when setting up separate (or parallel) exe-
cutions. In particular, cake_lpr outputs the following string
for each successful run of option 4, where md5 takes the MD5
hash of the input files:

s VERIFIED RANGE md5(DIMACS) md5(COMP) i-j

123

176 Yong Kiam Tan et al.

Fig. 9 The three step refinement used in the development of cake_lpr.

The MD5 hash is chosen for convenience because it is
available on most machines, so users can, e.g., manually
compare md5 hashes of their input DIMACS and proof files
to check that the correct files were used on all machines.
By concatenating these outputs into an output file OUTPUT
and executing cake_lpr with option 5, cake_lpr can be
used to check that the output file contains the correct hashes
and that the specified ranges appropriately cover the entire
compositional proof. Our implementation checks range cov-
erage (e.g., that ranges 0–2, 4–8, 2–4, 8–12 can be strung
together to check range 0–12) by reusing a verified reacha-
bility checking function originally developed for a verified
compiler optimization in the CakeML compiler [32].

5.2 Correctness Theorems

The main correctness theorem for cake_lpr in HOL4 is
shown in Fig. 10. The first line (2) (in red) summarizes rou-
tine assumptions for compiled CakeML programs that use
its basis library. Briefly, it assumes that the command-line
cl and file system fs models are well-formed and the com-
piled code is placed in (and executed from) code memory
of a machine state ms according to CakeML’s x64 machine
model mc.

The first guarantee (3) (in blue) is that the machine-
code implementation always terminates normally according
to CakeML’s x64 machine-code semantics. Notably, this
means the binary never crashes and it may emit some I/O
events when run; however, it possibly terminates with an out-
of-memory error (extend_with_resource_limit) if the CakeML
runtime runs out of stack or heap space [54]. The second
guarantee (4) (in green) states that the only observable change
to the filesystem after executing cake_lpr are some strings
printed on standard output out and standard error err. To
minimize user confusion, cake_lpr is designed to print all
error messages to standard error and only success messages
on standard output.

Finally, lines (5) (in black) list the output behaviors of
cake_lpr for each command-line option.3
1. When cake_lpr is given one command-line argument

(length cl = 2)4, it attempts to read and parse the file before
printing (if successful) the parsed formula to standard
output. The DIMACS parser (parse_dimacs) is proved to
be left inverse to the DIMACS printer (print_dimacs) as
follows:
	 every wf_clause fml ⇒
parse_dimacs (print_dimacs fml) = Some fml

This says that for any well-formed formula fml, printing
that formula into DIMACS format then parsing it yields
the formula back. All parsed formulas are proved to be
well-formed (not shown here).

2. If two arguments are given (length cl = 3), then if the
string “s VERIFIED UNSAT\n” is printed onto standard
output, cake_lpr was provided with a file (in its first
argument), and the file parses in DIMACS format to a
formula fml whose lifted representation (interp fml) is
unsatisfiable.

3–5. The specifications for the remaining cases have a
similar flavor and are omitted here for brevity.

The correctness theorem for cake_lpr’s compositional
proof checking is shown in Fig. 11. The definition check_suc-
cessful_par characterizes a successful set of runs of cake_lpr
using command line options 4 and 5 on input strings fmlstr
and pfstr. The lines in red (6) say that there is a list of
output strings outs such that every entry of this list is pro-
duced from the standard output of an execution of cake_lpr
with command-line option 4 (with appropriate setup of each

3 These lines feature HOL4 definitions for interacting with the
filesystem fs, e.g., inFS_fname fs s says the string s is a valid file-
name in fs, all_lines fs s returns the file contents as a list of strings (per
line), and file_content fs s returns the file content as a raw string.
4 By convention, the default (zeroth) command-line argument is

always the name of the executable.

123

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 177

Fig. 10 The end-to-end correctness theorem for the CakeML LPR proof checker. The cases for command-line options 1 and 2 are shown here
(other cases are elided with . . . for brevity).

Fig. 11 The correctness theorem for compositional proof checking.

machine’s filesystem and command-line arguments).5 The
lines in blue (7) say that outs is successfully checked by
an execution of cake_lpr with command-line option 5 and
the corresponding success string (concat [. . .]) is printed to
standard output. Using this definition, the correctness theo-
rem (8) says that on a successful set of runs, satisfiability of
the formula fml parsed from fmlstr implies satisfiability of the
final formula run_proof fml pf obtained by running all lines
of the parsed proof pf on fml, i.e., if fml is 𝐹0 and pf has 𝑛
instructions, then run_proof fml pf computes the accumulated
formula 𝐹𝑛 as defined in Section 4.1.

5 In practice, this models users concatenating the outputs of multiple
cake_lpr executions into a single file.

The theorems in Figures 10 and 11 have a trusted com-
puting base (TCB) where the CakeML compiler itself is not
present. The TCB does, however, still include CakeML’s
model of the foreign function interface and assumed seman-
tics for the targeted hardware platform. CakeML’s TCB is
discussed in detail in prior publications [36, 42].

5.3 Verified Optimizations

To minimize verification effort, CakeML’s imperative fea-
tures are only used for the most performance-critical steps
of cake_lpr. Our design decisions are based on empirical
observations about the LPR proof checking algorithm. These
are explained below with reference to specific steps in the
algorithm outlined in Fig. 3.

123

178 Yong Kiam Tan et al.

5.3.1 Array-based representations

In practice, many LPR proof steps do not require the full
strength of a PR (or RAT) clause. Hence, a large part of proof
checking time is spent in the Step 3 loop of the algorithm
(reverse unit propagation) and it is important to compute the
main loop bottleneck, 𝐶𝑖 |𝛼 in Step 3.1, as efficiently as pos-
sible. Here, CakeML’s native byte arrays are used to maintain
a compact bitset-like representation of the assignment 𝛼, so
that 𝐶𝑖 |𝛼 can be computed in one pass over 𝐶𝑖 with constant
time bitset lookup for each literal in 𝐶𝑖 .

For proof steps requiring the full strength of PR clauses,
Step 5 loops over all undeleted clauses in the formula. For-
mulas are represented as an array of clauses6 together with
a lazily updated list that tracks all indices of the array con-
taining undeleted clauses. This enables both constant-time
lookup of clauses throughout the algorithm and fast itera-
tion over the undeleted clauses for Step 5. Deletion in the
index list is done in (amortized) constant time by remov-
ing a deleted index only when the index is looked up in
Step 5.1.

Additionally, for each literal, the smallest clause index
where that literal occurs (if any) is lazily tracked in a lookup
array; for a given witness 𝜔, all clauses occurring at indices
below the index of any literal in 𝜔 can be skipped in Step
5.1.

5.3.2 Proof checking exceptions

There are several steps in the proof checking algorithm that
can fail (report NO) if the input proof is invalid, e.g., in Step
3.3. In a purely functional implementation, results are rep-
resented with an option: None indicating a failure and Some
res indicating success with result res. While conceptually
simple, this means that common case (successful) interme-
diate results are always boxed within a Some constructor and
then immediately unboxed with pattern matching to be used
again. In cake_lpr, failures instead raise exceptions which
are directly handled at the top level. Thus, successful results
can be passed directly, i.e., as res, without any boxing. Sup-
port for verifying the use of exceptions is a unique feature of
CakeML’s CF framework [19].

5.3.3 Hashtables

For compositional proof checking (Fig. 5), it is important to
check the inclusion of clauses 𝐹𝑗 ⊆ 𝐺 efficiently since both
formulas can contain a large number of clauses. To achieve
this, the formula 𝐺 (in the array-based representation) is
converted into CakeML’s verified hashtable library using a
simple rolling hash for clauses. This allows every clause in

6 Deleted clauses are no longer referenced by the array and are
automatically freed by CakeML’s garbage collector.

𝐹𝑗 to be checked against the hashtable for 𝐺 in near-constant
time.

5.3.4 Buffered I/O streams

Proof files generated by SAT solvers can be large, e.g.,
ranging from 300 MB to 4 GB for the second benchmark
suite in Section 6. These files are streamed into memory line
by line because each proof step depends only on informa-
tion contained in its corresponding line in the file. This
streaming interaction is optimized using CakeML’s veri-
fied buffered I/O library [41] which maintains an internal
buffer of yet-to-be-read bytes from the read-only proof file to
batch and minimize the number of expensive filesystem I/O
calls.

5.3.5 Producing MD5 hashes

As part of this work, we verified a CakeML library for
computing the MD5 hash of an input stream which is con-
nected with the buffered I/O library to efficiently compute
hashes for the compositional proof checking command-line
options 4 and 5 in Section 5.1. The verification shows that
our imperative implementation of MD5 hashing matches
its functional specification. In particular, since the MD5
hash is provided solely for user convenience, we do not
prove any formal cryptographic properties of the hashing
function.

6 Benchmarks
This section compares the CakeML LPR proof checker
against other verified checkers on two benchmark suites
(Sections 6.1 and 6.2) and a RAT microbenchmark (Sec-
tion 6.3). It also evaluates the compositional proof format on
unsatisfiability proofs of Erdős discrepancy properties [35]
(Section 6.4). The first suite is a collection of problems
with PR proofs generated by the satisfaction-driven clause
learning (SDCL) solver SaDiCaL [27]; the second suite con-
sists of unsatisfiable problems from the SAT Race 2019
competition.7 The RAT microbenchmark consists of proofs
for large mutilated chessboards generated by a BDD-based
SAT solver [8]. The unsatisfiability proofs for the Erdős
discrepancy properties are generated by cube-and-conquer
(see Section 4.2). Raw timing data used to produce the fig-
ures and tables in this section is available from the cake_lpr
repository.

7 The suites are available at http://fmv.jku.at/sadical/ and http://sat-
race-2019.ciirc.cvut.cz/ respectively. Note thatcake_lprwas also used
to validate proofs for the 2020 SAT Competition (results not reported
here).

123

http://fmv.jku.at/sadical/
http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 179

The CakeML checker is labeled cake_lpr (default
4GB heap and stack space), while the other proof check-
ers used are labeled acl2-lrat (verified in ACL2 [20]),
coq-lrat (verified in Coq [10]), and GRATchk (verified
in Isabelle/HOL [39]) respectively. All experiments were
ran on identical nodes with Intel Xeon E5-2695 v3 CPUs
(35M cache, 2.30GHz) and 128GB RAM; more specific
configuration options for each benchmark suite are reported
below.

6.1 SaDiCaL PR Benchmarks

The SaDiCaL solver produces PR proofs for hard SAT prob-
lems in its benchmark suite [27] and it is experimentally
much faster than a plain DRAT-based CDCL solver on
those problems [27, Section 7]. The PR proofs are directly
checked by cake_lpr after conversion into LPR format with
DPR-trim. For all other checkers, the PR proofs were first
converted to DRAT format using pr2drat (as in an earlier
approach [27]), and then into LRAT and GRAT formats using
the DRAT-trim and GRATgen8 tools respectively. All tools
were ran with a timeout of 10000 seconds and all timings are
reported in seconds (to one d.p.). Results are summarized in
Tables 2 and 3.

All benchmarks were successfully solved by SaDiCaL
except mchess19 which exceeded the time limit. For the
remaining benchmarks, generating and checking LPR proofs
required a comparable (1–2.5x) amount of time to solving
the problems, except mchess, for which LPR generation
and checking is much faster than solving the problems
(Table 2). Unsurprisingly, direct checking of LPR proofs
is much faster than the circuitous route of converting into
DRAT and then into either LRAT or GRAT (Table 3).
Unlike LPR, checking PR proofs via the LRAT route is
5–60x slower than solving those problems; this is a sig-
nificant drawback to using the route in practice for certifying
solver results. Compared to an unverified C implementa-
tion of LPR proof checking, cake_lpr is approximately
an order of magnitude slower on these benchmarks; a
detailed comparison against unverified proof checking is
in Section 6.3.

The backwards compatibility of cake_lpr is also shown
in Table 3, where it is used to check the generated LRAT
proofs. Among the LRAT checkers, acl2-lrat is fastest,
followed by cake_lpr (LRAT checking), and coq-lrat.
Although cake_lpr (LRAT checking) is on average 1.3x
slower than acl2-lrat, it scales better on the mchess
problems and is actually much faster than acl2-lrat on
mchess18. We also observed that the GRAT toolchain

8 The GRATgen tool supports parallel proof generation and was ran
with 8 threads.

(summing SaDiCaL, pr2drat, GRATgen and GRATchk
times) is much slower than the LRAT toolchains (sum-
ming SaDiCaL, pr2drat, DRAT-trim and fastest LRAT
checking times). This is in contrast to the SAT Race
2019 benchmarks below (see Fig. 12), where we observed
the opposite relationship. We believe that the differ-
ence in checking speed is due to the various checkers
having different optimizations for checking the expen-
sive RAT proof steps produced by conversion from PR
proofs.

6.2 SAT Race 2019 Benchmarks

We further benchmarked the verified checkers on a suite of
102 unsatisfiable problems from the SAT Race 2019 com-
petition.9 For all problems, DRAT proofs were generated
using the state-of-the-art SAT solver CaDiCaL before con-
version into the LRAT or GRAT formats. Proofs generated
by CaDiCaL on this suite rarely require RAT (or PR) steps,
so the checkers are stress-tested on their implementation of
file I/O, parsing, and reverse unit propagation based on the
annotated hints (Step 3.1 from Fig. 3); cake_lpr is the only
tool with a formally verified implementation of the former
two steps. All tools were ran with the SAT competition solver
timeout of 5000 seconds.

A summary of the results is given in Table 4, where
all proofs generated by CaDiCaL were checked by at least
one verified checker. The acl2-lrat checker fails with a
parse error on one problem even though none of the other
checkers reported such an error; GRATgen aborted on two
problems for an unknown reason. Plots comparing LRAT
proof checking time and overall proof generation and check-
ing time (LRAT and GRAT) are shown in Fig. 12. From
Fig. 12 (top), the relative order of LRAT checking speeds
remains the same as Table 3, where cake_lpr is on aver-
age 1.2x slower than acl2-lrat, although cake_lpr is
faster on 28 benchmarks. From Fig. 12 (bottom), both LRAT
toolchains are slower than the GRAT toolchain (average 3.5x
slower for cake_lpr and 3.4x for acl2-lrat). Part of this
speedup for the GRAT toolchain comes from GRATgenwhich
can be run in parallel (with 8 threads). This suggests that
adding native support for GRAT-based input to cake_lpr
or adding LRAT support to GRATgen could be worthwhile
future extensions.

9 There are 117 problems from the competition which are known
to be unsatisfiable; CaDiCaL proved unsatisfiability for 102 problems
within the 5000 seconds timeout.

123

180 Yong Kiam Tan et al.

Table 2 Timings for PR benchmarks with conversion into LPR format. The “Total (LPR)” column sums the generation and checking times. The
timing for mchess19 is omitted because SaDiCaL timed out; timings for the Urquhart U.-s3-* benchmarks are omitted because they took a
negligible amount of time (< 1.0s total).

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

hole20 1.0 0.5 0.7 2.2
hole30 6.9 2.4 6.1 15.4
hole40 31.3 10.0 25.1 66.3
hole50 101.7 35.5 87.9 225.1
mchess15 18.5 1.1 2.1 21.7
mchess16 21.7 1.2 2.1 25.0
mchess17 34.8 1.6 3.4 39.8
mchess18 59.8 2.3 5.2 67.2

Problem SaDiCaL DPR-trim cake_lpr
(LPR)

Total
(LPR)

U.-s4-b1 0.7 0.6 0.3 1.6
U.-s4-b2 0.3 0.4 0.2 0.8
U.-s4-b3 0.4 0.4 0.2 1.0
U.-s4-b4 0.3 0.5 0.3 1.1
U.-s5-b1 2.5 0.9 1.3 4.7
U.-s5-b2 1.2 0.6 0.7 2.4
U.-s5-b3 3.2 1.5 2.0 6.8
U.-s5-b4 5.5 1.5 3.2 10.1

Table 3 Timings for PR benchmarks, first converted to DRAT and subsequently converted into LRAT and GRAT formats. The “Total (LRAT)”
and “Total (GRAT)” columns sum the fastest generation and checking times for the LRAT and GRAT formats respectively. The “Total (LPR)”
column (in bold, fastest total time) is reproduced from Table 2 for ease of comparison. Fail(T) indicates a timeout. Timings for the mchess19 and
U.-s3-* benchmarks are omitted as in Table 2.

Prob. pr2drat DRAT-trim
cake_lpr

(LRAT) acl2-lrat coq-lrat GRATgen GRATchk
Total
(LPR)

Total
(LRAT)

Total
(GRAT)

hole20 0.8 4.4 18.5 7.9 966.7 4.6 18.2 2.2 14.2 24.6
hole30 6.8 61.4 180.4 105.9 Fail(T) 24.5 647.9 15.4 181.0 686.1
hole40 32.4 460.0 1039.5 711.8 Fail(T) 101.3 Fail(T) 66.3 1235.5 -
hole50 108.6 2663.0 4697.4 3292.2 Fail(T) 337.2 Fail(T) 225.1 6165.5 -
mchess15 7.7 48.2 49.3 36.2 Fail(T) 48.4 2023.1 21.7 110.6 2097.7
mchess16 9.0 62.0 59.8 53.2 Fail(T) 55.2 2903.8 25.0 145.9 2989.6
mchess17 14.5 105.0 97.3 88.5 Fail(T) 86.1 7050.9 39.8 242.7 7186.3
mchess18 25.1 195.0 152.7 296.8 Fail(T) 135.9 Fail(T) 67.2 432.5 -
U.-s4-b1 0.5 2.5 3.6 3.3 135.7 3.6 44.8 1.6 7.0 49.7
U.-s4-b2 0.2 0.8 1.4 1.0 23.2 1.7 8.2 0.8 2.3 10.4
U.-s4-b3 0.3 1.3 2.0 1.5 49.2 2.4 16.2 1.0 3.5 19.3
U.-s4-b4 0.3 1.1 1.8 1.4 38.3 2.0 10.3 1.1 3.1 12.9
U.-s5-b1 4.2 13.6 16.7 12.5 3048.7 17.4 933.2 4.7 32.8 957.3
U.-s5-b2 1.7 5.6 7.3 5.5 614.7 7.7 189.6 2.4 13.9 200.2
U.-s5-b3 5.0 18.4 26.3 22.2 8750.5 21.1 2316.3 6.8 48.8 2345.6
U.-s5-b4 11.3 34.2 36.9 30.1 Fail(T) 40.6 Fail(T) 10.1 81.0 -

Table 4 A summary of the SAT Race 2019 benchmark results on 102 unsatisfiability proofs generated by CaDiCaL. The N/A row counts problems
that timed out or failed in an earlier step of the respective toolchains.

Status DRAT-trim acl2-lrat cake_lpr coq-lrat GRATgen GRATchk

Success 97 96 97 36 100 100
Timeout 5 0 0 61 0 0
Other Failures 0 1 0 0 2 0
N/A 0 5 5 5 0 2

6.3 Mutilated Chessboard RAT Microbenchmarks

The following microbenchmark suite tests the LRAT check-
ers on large mutilated chessboard problems (up to 100 by
100) solved by pgbdd, a BDD-based SAT solver [8]. Unlike
the previous benchmark suites, LRAT proofs are emitted
directly by the solver so additional DRAT-trim conversion
is not needed. All tools were ran with a timeout of 10000
seconds and all timings are reported in seconds (to one
d.p.). For additional scaling comparison, we also report

results for lrat-check, an unverified LRAT proof checker
implemented in C.

The results in Table 5 show the impact of cake_lpr’s
RAT optimizations (Section 5.3). Notably, cake_lpr scales
essentially linearly in the size of the proofs (up to ≈ 10
million proof steps). As a result, cake_lpr is significantly
faster than acl2-lrat and coq-lrat on these RAT-heavy
proofs and it comes within a 5x factor of the unverified
lrat-check tool.

123

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 181

Fig. 12 (Left) SAT Race 2019 proofs checked within a given (per instance) time limit for the LRAT proof checkers. (Right) SAT Race 2019 proofs
generated and checked within a given (per instance) time limit for the LRAT and GRAT toolchains.

Table 5 Timings for the RAT microbenchmark. The number of proof steps and file size of the proofs (in MB) are shown in the last two columns.
Fail(T) indicates a timeout.

Problem pgbdd lrat-check cake_lpr acl2-lrat coq-lrat LRAT Steps File Size
mchess20 3.9 0.5 0.5 19.6 3405.2 125752 5
mchess40 47.5 1.0 3.5 453.4 Fail(T) 769287 36
mchess60 311.7 2.7 10.6 4885.2 Fail(T) 2300522 114
mchess80 1164.1 4.8 22.6 Fail(T) Fail(T) 5089457 259
mchess100 3599.0 9.3 44.2 Fail(T) Fail(T) 9506092 499

6.4 Erdős Discrepancy Properties

The Erdős Discrepancy Problem (EDP) asks if, for every𝐶 >

0 and infinite ±1 sequence (𝑥1, 𝑥2, 𝑥3, . . .), there exists 𝑘, 𝑑
such that |

∑𝑘
𝑖=1 𝑥𝑖 ·𝑑 | > 𝐶. Konev and Lisitsa [35] provided

a SAT-solver aided proof of the EDP in the case 𝐶 = 2. We
demonstrate the parallel scalability of compositional proof
checking (Section 4) using cake_lpr’s compositional proof
checking option on a cube-and-conquer proof generated by
iGlucose, a version of Glucose 3.0with support for iCNF
files, and the technique reported in Section 4.2. The technique
yields a 5226 line compositional top-level proof where each
line is justified by an underlying LRAT proof, see Fig. 8. The
underlying proofs consist of 20 million clause addition lines
in total and they vary widely in size, ranging from 88 bytes
to 110 MB.

Proof steps are allocated evenly to parallel threads by their
index. For example, with two threads, the first thread would
check all odd-numbered proof steps by sequentially running
instances of cake_lpr to check the underlying proofs for
ranges (𝑖0, 𝑖1), (𝑖2, 𝑖3), . . . , while the second thread checks
all even-numbered proof steps for ranges (𝑖1, 𝑖2), (𝑖3, 𝑖4), . . . ,
and similarly for more parallel threads. Results are summa-
rized in Table 6 with wall-clock execution times reported
in seconds and relative speedup against a single thread. All
values are rounded to one decimal place.

The speedup is nearly linear for lower number of threads
(1–32) but drops off at 64 and 128 threads. This is likely
due to the unbalanced nature of proof sizes, where large

Table 6 Timings (wall-clock) for the EDP benchmark. Speedup is
calculated relative to 1 thread.

Threads cake_lpr Speedup
1 3871.7 -
2 1985.4 2.0
4 998.2 3.9
8 517.4 7.5
16 273.2 14.2
32 136.4 28.4
64 76.5 50.6
128 60.2 64.3

LRAT proofs dominate the overall proof checking time at
high levels of parallelism. A more advanced parallelization
scheme, e.g., with a scheduler, could further improve proof
checking performance.

7 Related Work
Verified Proof Checking. There are several RAT-based
verified proof checkers, in ACL2 [20], Coq [10], and
Isabelle/HOL [39]; these verified checkers all use an unver-
ified preprocessing tool to add proof hints to DRAT proofs,
either DRAT-trim or GRATgen. Alternative preprocessing
tools are available, e.g., based on the recently proposed FRAT
format [4]. The DRAT format is itself an extension of the

123

182 Yong Kiam Tan et al.

DRUP format [21]; the Coq checker is based on a predeces-
sor verified checker for the GRIT [11] format. The ACL2
checker can be efficiently and directly executed (without
extraction) using imperative primitives native to the ACL2
kernel [20]. However, the implementation of these features
in ACL2 itself must be trusted to trust the proof checking
results [50], hence the yellow background in Table 1. SMT-
Coq [2, 14] is another certificate-based checker for SAT and
SMT problems in Coq. Its resolution-based proof certificates
can be checked natively using native computation extensions
of the Coq kernel.

Verified checkers are available for other logics, such as
the Verified TESC Verifier for first-order logic [3], Pastèque
for the practical algebraic calculus [33], and various checkers
for higher-order logics (and type theories) underlying proof
assistants [1, 47, 52].

Applications. SAT solving is a key technology underlying
many software and hardware verification domains [7, 30].
Certifying SAT results adds a layer of trust and is clearly a
worthwhile endeavor. Solver-aided proofs of mathematical
results [23, 29, 35] are particularly interesting and challeng-
ing to certify because these often feature complicated SAT
encodings, custom (hand-crafted) proof steps, and enormous
resulting proofs [29]. Our cake_lpr checker is designed to
handle the latter two challenges effectively. For the first chal-
lenge, the SAT encoding of mathematical problems can also
be verified within proof assistants. This was done for the
Boolean Pythagorean Triples problem building on the Coq
proof checker [12].

Verified SAT Solving. An alternative to proof checking is to
verify the SAT solvers [16, 17, 43, 48]. This is a significant
undertaking but it would allow the pipeline of generating
and checking proofs to be entirely bypassed. Furthermore,
such verification efforts can yield new insights about key
invariants underlying SAT solving techniques compared to
prior pen-and-paper presentations, e.g., the 2WL invari-
ant [17]. However, the performance of verified SAT solvers
are not yet competitive with modern (unverified) SAT solving
technology [16, 17].

8 Conclusion

This work presents the LPR proof format for verified check-
ing of PR proofs and a compositional proof format for
separate (parallel) proof checking. It also demonstrates
the feasibility of using binary code extraction to verify
cake_lpr, a performant proof checker supporting both for-
mats down to its machine-code implementation. Given the
strength of the PR proof system, there is ongoing research
into the design of satisfaction-driven clause learning tech-
niques [27, 28, 49] for SAT solvers based on PR clauses.

Our proof checker opens up the possibility of using a ver-
ified checker to help check and debug the implementation
of these new techniques. It also gives future SAT compe-
titions the option of providing PR as the default (verified)
proof system for participating solvers. Another interesting
direction is to add cake_lpr support for other proof for-
mats [5, 39]. In particular, this would allow users to build
compositional proofs that utilize different underlying proof
formats for separate parts of the proof.

Acknowledgements We thank the anonymous reviewers for their help-
ful feedback on this article, as well as Jasmin Blanchette and the
TACAS’21 anonymous reviewers for their helpful feedback on the ear-
lier conference version. We also thank Peter Lammich for help with
GRATgen and Stefan O’Rear for help with profiling CakeML programs.

Funding Open access funding provided by Chalmers University of
Technology.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Abrahamsson, O.: A verified proof checker for higher-order logic.

J. Log. Algebraic Methods Program. 112, 100530 (2020). https://
doi.org/10.1016/j.jlamp.2020.100530

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner,
B.: A modular integration of SAT/SMT solvers to Coq through
proof witnesses. In: Jouannaud, J., Shao, Z. (eds.) CPP, LNCS,
vol. 7086, pp. 135–150. Springer (2011). https://doi.org/10.1007/
978-3-642-25379-9_12

3. Baek, S.: A formally verified checker for first-order proofs. In:
Cohen, L., Kaliszyk, C. (eds.) ITP, LIPIcs, vol. 193, pp. 6:1–6:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://
doi.org/10.4230/LIPIcs.ITP.2021.6

4. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format
for SAT solver-elaborator communication. Log. Methods Comput.
Sci. (2022). https://doi.org/10.46298/lmcs-18(2:3)2022

5. Barnett, L.A., Biere, A.: Non-clausal redundancy properties. In:
Platzer, A., Sutcliffe, G. (eds.) CADE, LNCS, vol. 12699, pp. 252–
272. Springer (2021). https://doi.org/10.1007/978-3-030-79876-
5_15

6. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O.,
Fox, A.C.J.: A verified certificate checker for finite-precision

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.4230/LIPIcs.ITP.2021.6
https://doi.org/10.4230/LIPIcs.ITP.2021.6
https://doi.org/10.46298/lmcs-18(2:3)2022
https://doi.org/10.1007/978-3-030-79876-5_15
https://doi.org/10.1007/978-3-030-79876-5_15

Verified Propagation Redundancy and Compositional UNSAT Checking in CakeML 183

error bounds in Coq and HOL4. In: Bjørner, N., Gurfinkel, A.
(eds.) FMCAD, pp. 1–10. IEEE (2018). https://doi.org/10.23919/
FMCAD.2018.8603019

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model
checking without BDDs. In: Cleaveland, R. (ed.) TACAS, LNCS,
vol. 1579, pp. 193–207. Springer (1999). https://doi.org/10.1007/
3-540-49059-0_14

8. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs
with a BDD-based SAT solver. In: Groote, J.F., Larsen, K.G. (eds.)
TACAS, LNCS, vol. 12651, pp. 76–93. Springer (2021). https://
doi.org/10.1007/978-3-030-72016-2_5

9. Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-
Floyd: a separation logic tool to verify correctness of C programs.
J. Autom. Reason. 61(1–4), 367–422 (2018). https://doi.org/10.
1007/s10817-018-9457-5

10. Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M.,
Schneider-Kamp, P.: Efficient certified RAT verification. In:
de Moura, L. (ed.) CADE, LNCS, vol. 10395, pp. 220–236.
Springer (2017). https://doi.org/10.1007/978-3-319-63046-5_14

11. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient
certified resolution proof checking. In: Legay, A., Margaria, T.
(eds.) TACAS, LNCS, vol. 10205, pp. 118–135 (2017). https://doi.
org/10.1007/978-3-662-54577-5_7

12. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Formally
verifying the solution to the Boolean Pythagorean triples problem.
J. Autom. Reason. 63(3), 695–722 (2019). https://doi.org/10.1007/
s10817-018-9490-4

13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia,
E., Tacchella, A. (eds.) SAT, LNCS, vol. 2919, pp. 502–518.
Springer (2003). https://doi.org/10.1007/978-3-540-24605-3_37

14. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds,
A., Barrett, C.W.: SMTCoq: a plug-in for integrating SMT solvers
into Coq. In: Majumdar, R., Kuncak, V. (eds.) CAV, LNCS, vol.
10427, pp. 126–133. Springer (2017). https://doi.org/10.1007/978-
3-319-63390-9_7

15. Férée, H., Pohjola, J.Å., Kumar, R., Owens, S., Myreen, M.O., Ho,
S.: Program verification in the presence of I/O - semantics, verified
library routines, and verified applications. In: Piskac, R., Rümmer,
P. (eds.) VSTTE, LNCS, vol. 11294, pp. 88–111. Springer (2018).
https://doi.org/10.1007/978-3-030-03592-1_6

16. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM, LNCS, vol. 11460, pp. 148–165. Springer
(2019). https://doi.org/10.1007/978-3-030-20652-9_10

17. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver
with watched literals using Imperative HOL. In: Andronick, J.,
Felty, A.P. (eds.) CPP, pp. 158–171. ACM (2018). https://doi.org/
10.1145/3167080

18. Ghale, M.K., Pattinson, D., Kumar, R., Norrish, M.: Verified cer-
tificate checking for counting votes. In: Piskac, R., Rümmer, P.
(eds.) VSTTE, LNCS, vol. 11294, pp. 69–87. Springer (2018).
https://doi.org/10.1007/978-3-030-03592-1_5

19. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified
characteristic formulae for CakeML. In: Yang, H. (ed.) ESOP,
LNCS, vol. 10201, pp. 584–610. Springer (2017). https://doi.org/
10.1007/978-3-662-54434-1_22

20. Heule, M., Hunt Jr., W.A., Kaufmann, M., Wetzler, N.: Efficient,
verified checking of propositional proofs. In: Ayala-Rincón, M.,
Muñoz, C.A. (eds.) ITP, LNCS, vol. 10499, pp. 269–284. Springer
(2017). https://doi.org/10.1007/978-3-319-66107-0_18

21. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking
clausal proofs. In: FMCAD, pp. 181–188. IEEE (2013). https://
doi.org/10.1109/FMCAD.2013.6679408

22. Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and con-
quer: Guiding CDCL SAT solvers by lookaheads. In: Eder, K.,
Lourenço, J., Shehory, O. (eds.) HVC, LNCS, vol. 7261, pp. 50–
65. Springer (2011). https://doi.org/10.1007/978-3-642-34188-5_
8

23. Heule, M.J.H.: Schur number five. In: McIlraith, S.A., Weinberger,
K.Q. (eds.) AAAI, pp. 6598–6606. AAAI Press (2018)

24. Heule, M.J.H., Biere, A.: Compositional propositional proofs. In:
Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR,
LNCS, vol. 9450, pp. 444–459. Springer (2015). https://doi.org/
10.1007/978-3-662-48899-7_31

25. Heule, M.J.H., Biere, A.: What a difference a variable makes. In:
Beyer, D., Huisman, M. (eds.) TACAS, LNCS, vol. 10806, pp. 75–
92. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3_
5

26. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated
chessboards. In: Badger, J.M., Rozier, K.Y. (eds.) NFM, LNCS,
vol. 11460, pp. 204–210. Springer (2019). https://doi.org/10.1007/
978-3-030-20652-9_13

27. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for
satisfaction-driven clause learning. In: Vojnar, T., Zhang, L. (eds.)
TACAS, LNCS, vol. 11427, pp. 41–58. Springer (2019). https://
doi.org/10.1007/978-3-030-17462-0_3

28. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof
systems. J. Autom. Reason. 64(3), 533–554 (2020). https://doi.
org/10.1007/s10817-019-09516-0

29. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying
the boolean Pythagorean triples problem via cube-and-conquer. In:
Creignou, N., Berre, D.L., (eds.) SAT, LNCS, vol. 9710, pp. 228–
245. Springer (2016). https://doi.org/10.1007/978-3-319-40970-
2_15

30. Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the Alloy con-
straint analyzer. In: Ghezzi, C., Jazayeri, M., Wolf, A.L. (eds.)
ICSE, pp. 730–733. ACM (2000). https://doi.org/10.1145/337180.
337616

31. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR, LNCS, vol. 7364,
pp. 355–370. Springer (2012). https://doi.org/10.1007/978-3-642-
31365-3_28

32. Kanabar, H.: Implementing and verifying a compiler optimisa-
tion for CakeML (2018). https://hrutvik.co.uk/assets/pdf/Hrutvik_
Kanabar_dissertation.pdf. Computer Science Tripos, Part II Dis-
sertation. University of Cambridge, UK

33. Kaufmann, D., Fleury, M., Biere, A.: The proof checkers Pacheck
and Pastèque for the practical algebraic calculus. In: FMCAD, pp.
264–269. IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-
85448-042-6_34

34. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution
simulates DRAT. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR, LNCS, vol. 10900, pp. 516–531. Springer (2018). https://
doi.org/10.1007/978-3-319-94205-6_34

35. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy
properties. Artif. Intell. 224, 103–118 (2015). https://doi.org/10.
1016/j.artint.2015.03.004

36. Kumar, R., Mullen, E., Tatlock, Z., Myreen, M.O.: Software ver-
ification with ITPs should use binary code extraction to reduce
the TCB - (short paper). In: Avigad, J., Mahboubi, A. (eds.) ITP,
LNCS, vol. 10895, pp. 362–369. Springer (2018). https://doi.org/
10.1007/978-3-319-94821-8_21

37. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In:
Harrison, J., O’Leary, J., Tolmach, A. (eds.) ITP, LIPIcs, vol.
141, pp. 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22

38. Lammich, P.: Refinement to Imperative HOL. J. Autom. Rea-
son. 62(4), 481–503 (2019). https://doi.org/10.1007/s10817-017-
9437-1

39. Lammich, P.: Efficient verified (UN)SAT certificate checking. J.
Autom. Reason. 64(3), 513–532 (2020). https://doi.org/10.1007/
s10817-019-09525-z

40. Leroy, X.: Formal verification of a realistic compiler. Commun.
ACM 52(7), 107–115 (2009). https://doi.org/10.1145/1538788.
1538814

123

https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-030-72016-2_5
https://doi.org/10.1007/978-3-030-72016-2_5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/s10817-018-9490-4
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-030-03592-1_6
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080
https://doi.org/10.1007/978-3-030-03592-1_5
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1109/FMCAD.2013.6679408
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-662-48899-7_31
https://doi.org/10.1007/978-3-662-48899-7_31
https://doi.org/10.1007/978-3-319-89963-3_5
https://doi.org/10.1007/978-3-319-89963-3_5
https://doi.org/10.1007/978-3-030-20652-9_13
https://doi.org/10.1007/978-3-030-20652-9_13
https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/978-3-030-17462-0_3
https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/337180.337616
https://doi.org/10.1145/337180.337616
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-31365-3_28
https://hrutvik.co.uk/assets/pdf/Hrutvik_Kanabar_dissertation.pdf
https://hrutvik.co.uk/assets/pdf/Hrutvik_Kanabar_dissertation.pdf
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1016/j.artint.2015.03.004
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814

184 Yong Kiam Tan et al.

41. Lind, J., Mihajlovic, N., Myreen, M.O.: Verified hash map and
buffered I/O libraries for CakeML. In: Trends in Functional
Programming (TFP) (2021). Accepted for presentation

42. Lööw, A., Kumar, R., Tan, Y.K., Myreen, M.O., Norrish, M.,
Abrahamsson, O., Fox, A.C.J.: Verified compilation on a ver-
ified processor. In: McKinley, K.S., Fisher, K. (eds.) PLDI,
pp. 1041–1053. ACM (2019). https://doi.org/10.1145/3314221.
3314622

43. Maric, F.: Formal verification of a modern SAT solver by shallow
embedding into Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–
4356 (2010). https://doi.org/10.1016/j.tcs.2010.09.014

44. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman,
D.: Œuf: minimizing the Coq extraction TCB. In: Andronick, J.,
Felty, A.P. (eds.) CPP, pp. 172–185. ACM (2018). https://doi.org/
10.1145/3167089

45. Myreen, M.O.: The CakeML project’s quest for ever stronger cor-
rectness theorems (invited paper). In: Cohen, L., Kaliszyk, C.
(eds.) ITP, LIPIcs, vol. 193, pp. 1:1–1:10. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/
LIPIcs.ITP.2021.1

46. Myreen, M.O., Owens, S.: Proof-producing translation of higher-
order logic into pure and stateful ML. J. Funct. Program. 24(2–3),
284–315 (2014). https://doi.org/10.1017/S0956796813000282

47. Nipkow, T., Roßkopf, S.: Isabelle’s metalogic: Formalization and
proof checker. In: Platzer, A., Sutcliffe, G. (eds.) CADE, LNCS,
vol. 12699, pp. 93–110. Springer (2021). https://doi.org/10.1007/
978-3-030-79876-5_6

48. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified mod-
ern SAT solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI,
LNCS, vol. 7148, pp. 363–378. Springer (2012). https://doi.org/
10.1007/978-3-642-27940-9_24

49. Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Preprocessing of propa-
gation redundant clauses. In: Blanchette, J., Kovács, L., Pattinson,
D. (eds.) IJCAR, LNCS, vol. 13385, pp. 106–124. Springer (2022).
https://doi.org/10.1007/978-3-031-10769-6_8

50. Slind, K.: Trusted extensions of interactive theorem provers:
Workshop summary (2010). https://www.cs.utexas.edu/users/
kaufmann/itp-trusted-extensions-aug-2010/summary/summary.
pdf. [Online; accessed 7-September-2021]

51. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed,
O.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs, LNCS, vol. 5170,
pp. 28–32. Springer (2008). https://doi.org/10.1007/978-3-540-
71067-7_6

52. Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter,
T.: Coq Coq correct! Verification of type checking and erasure for
Coq. Coq. Proc. ACM Program. Lang. 4(POPL), 8:1-8:28 (2020).
https://doi.org/10.1145/3371076

53. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: Verified prop-
agation redundancy checking in CakeML. In: Groote, J.F., Larsen,
K.G. (eds.) TACAS, LNCS, vol. 12652, pp. 223–241. Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_12

54. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S.,
Norrish, M.: The verified CakeML compiler backend. J. Funct. Pro-
gram. 29, e2 (2019). https://doi.org/10.1017/S0956796818000229

55. Wetzler, N., Heule, M., Hunt Jr., W.A.: DRAT-trim: Efficient check-
ing and trimming using expressive clausal proofs. In: Sinz, C., Egly,
U. (eds.) SAT, LNCS, vol. 8561, pp. 422–429. Springer (2014).
https://doi.org/10.1007/978-3-319-09284-3_31

56. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework
for parallelized bounded model checking. In: Brim, L., van de Pol,
J. (eds.) PDMC, EPTCS, vol. 14, pp. 62–76 (2009). https://doi.org/
10.4204/EPTCS.14.5

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

123

https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089
https://doi.org/10.4230/LIPIcs.ITP.2021.1
https://doi.org/10.4230/LIPIcs.ITP.2021.1
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1007/978-3-030-79876-5_6
https://doi.org/10.1007/978-3-030-79876-5_6
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-031-10769-6_8
https://www.cs.utexas.edu/users/kaufmann/itp-trusted-extensions-aug-2010/summary/summary.pdf
https://www.cs.utexas.edu/users/kaufmann/itp-trusted-extensions-aug-2010/summary/summary.pdf
https://www.cs.utexas.edu/users/kaufmann/itp-trusted-extensions-aug-2010/summary/summary.pdf
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/3371076
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5

	Verified Propagation Redundancy and Compositional UNSAT
Checking in CakeML
	Abstract
	1 Introduction
	2 Background
	2.1 HOL4 and CakeML
	2.2 SAT Problems and Clausal Proofs

	3 Linear Propagation Redundancy
	4 Compositional Proofs
	4.1 Compositional Proof Checking
	4.2 Compositional Proof Generation

	5 CakeML Proof Checking
	5.1 Implementation and Verification Strategy
	5.2 Correctness Theorems
	5.3 Verified Optimizations
	5.3.1 Array-based representations
	5.3.2 Proof checking exceptions
	5.3.3 Hashtables
	5.3.4 Buffered I/O streams
	5.3.5 Producing MD5 hashes

	6 Benchmarks
	6.1 SaDiCaL PR Benchmarks
	6.2 SAT Race 2019 Benchmarks
	6.3 Mutilated Chessboard RAT Microbenchmarks
	6.4 Erdős Discrepancy Properties

	7 Related Work
	8 Conclusion
	References

