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Abstract
Deep learning provides accurate collaborative filtering models to improve recommender system results. Deep matrix

factorization and their related collaborative neural networks are the state of the art in the field; nevertheless, both models

lack the necessary stochasticity to create the robust, continuous, and structured latent spaces that variational autoencoders

exhibit. On the other hand, data augmentation through variational autoencoder does not provide accurate results in the

collaborative filtering field due to the high sparsity of recommender systems. Our proposed models apply the variational

concept to inject stochasticity in the latent space of the deep architecture, introducing the variational technique in the neural

collaborative filtering field. This method does not depend on the particular model used to generate the latent representation.

In this way, this approach can be applied as a plugin to any current and future specific models. The proposed models have

been tested using four representative open datasets, three different quality measures, and state-of-the-art baselines. The

results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected

noise effect. Additionally, a framework is provided to enable the reproducibility of the conducted experiments.
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1 Introduction

Recommender Systems (RSs) are an artificial intelligence

field that provides methods and models to predict and

recommend items to users (e.g., films to persons, e-com-

merce products to costumers, services to companies,

Quality of Service (QoS) to Internet of Things (IoT)

devices, etc.) [1]. Current popular RSs are Spotify, Netflix,

TripAdvisor, Amazon, etc. RSs are usually categorized

attending to their filtering strategy, mainly demo-

graphic [2], content-based [3], context-aware [4],

social [5], Collaborative Filtering (CF) [1, 6] and filtering

ensembles [7, 8]. CF is the most accurate and widely used

filtering approach to implement RSs. CF models have

evolved from the K-Nearest Neighbors (KNN) algorithm to

the Probabilistic Matrix Factorization (PMF) [9], the non-

Negative Matrix Factorization (NMF) [10] and the Baye-

sian non-Negative Matrix Factorization (BNMF) [11].

Currently, deep learning research approaches are growing

in strength: they provide improvement in accuracy com-

pared to the Machine Learning (ML)-based Matrix Fac-

torization (MF) models [12]. Additionally, deep learning

architectures are usually more flexible than the MF-based

ones, introducing combined deep and shallow learn-

ing [13], integrated content-based ensembles [14], gener-

ative approaches [15, 16], among others.

Deep Matrix Factorization (DeepMF) [17] is a neural

network model that implements the popular MF concept.

DeepMF was designed to take as input a user-item matrix

with explicit ratings and nonpreference implicit feedback,
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although current implementations use two embedding

layers whose inputs are, respectively, user and items. The

experimental results evidence the DeepMF superiority over

the traditional approaches based on ML-focused RS, par-

ticularly the most used MF models: PMF, NMF, and

BNMF. Currently, DeepMF is a popular model that is

rapidly replacing the traditional MF models based on

classical ML. Additionally, DeepMF has been used in the

RS field to combine social behaviors (clicks, ratings,...)

with images [18], and a social trust-aware RS has been

implemented by using DeepMF to extract features from the

user-item rating matrix for improving the initialization

accuracy [19]. QoS predictions have also been addressed

by using DeepMF [20]. To learn attribute representations, a

DeepMF model has been used that creates a low-dimen-

sional representation of a dataset that lends itself to a

clustering interpretation [21]. Finally, the classical matrix

completion task has been addressed by using the DeepMF

approach [22].

The not so widely spread Neural Collaborative Filtering

(NCF) model [13] may be seen as an augmented DeepMF

model, where deeper layers are added to the ‘Dot’ one.

Additionally, the ‘Dot’ layer can be replaced by a

‘Concatenate’ layer. Figure 1 shows the explained

concepts. NCF slightly outperforms the DeepMF accuracy

results, but it increases the required runtime to train the

model and to run the forward process: it is necessary to

execute the ‘extra’ Multi-Layer Perceptron (MLP) on top

of the ‘Dot’ or ‘Concatenate’ layers. Moreover,

compared to DeepMF, the NCF architecture adds new

hyper-parameters to set: mainly the number of hidden

layers (depth) and their size (number of neurons in each

layer) of the MLP architecture.

The hypothesis of the paper is that we can improve the

existing CF neural models by adding a variational stage

that borrows its operative from the Variational Autoen-

coders (VAE). VAEs not only improve latent factor-based

models, but they also manage nonlinear probabilistic

latent-variable models. While VAEs have been extensively

used in the image-generative area, they have rarely been

covered in the CF field. Autoencoders perform a nonlinear

PCA, and VAEs improve their results by performing a

nonlinear factor analysis. Unfortunately, regular autoen-

coders do not ensure the regularity of the latent space; this

is the reason why, in image processing, they do not perform

fine producing new content from random encodings:

Without explicit regularization, some combinations of the

latent space are meaningless once decoded. The VAEs

superiority comes from their ‘variational’ behavior, which

allows to make suitable regularizations such as in the

statistic variational method. Using VAEs, inputs are

encoded as distributions instead of single points, making it

possible to naturally express latent space regularization.

The CF improvement using VAEs is because the item and

the user latent factor distributions are regularized in the

training stage, ensuring that their latent spaces have good

properties and conveniently generalize RS predictions. The

VAEs regularization has two main properties: (1) com-

pleteness: points sampled in the latent space give mean-

ingful content once decoded, and (2) continuity: close

points in the latent space provide similar contents when

they are decoded. To accomplish these properties, usually

regularization is done by enforcing distributions to be close

to a centered and reduced standard normal distribution.

Regularization involves a higher reconstruction error that

can be balanced using the Kullback–Leibler divergence.

The use of VAE in the CF field provides a better

Fig. 1 Deep Matrix Factorization (DeepMF) versus Neural Collaborative Filtering (NCF)
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generalization; it not only can improve recommendations,

but it also makes easier to use the latent codifications of

items and users to make clustering, to explain recommen-

dations, and to generate augmented datasets. The com-

pleteness and continuity properties make possible these

additional benefits of the VAEs in the CF area.

The rest of the paper has been structured as follows: In

Sect. 2, we describe the main ideas involved in our pro-

posal, as well as its differences with the related work in

variational CF-based recommender systems. In Sect. 3, the

proposed model is explained. Section 4 shows the experi-

ments’ design, results and their discussions. Finally, Sect. 5

contains the main conclusions of the paper and the future

works.

2 Fundamentals and related work

2.1 VAEs as generative models

Variational Autoencoders (VAEs) act as regular autoen-

coders; they aim to compress the input raw values into a

latent space representation by means of an encoder neural

network, whereas the decoder neural network makes the

opposite operation seeking to decompress from latent space

to output raw values. The main difference between clas-

sical autoencoders and VAEs is the latent space design,

meaning, and operation. Classical autoencoders do not

generate structured latent spaces, whereas VAEs introduce

a statistical process that forces them to learn continuous

and structured latent spaces. In this way, VAEs turn the

samples into parameters of a statistical distribution, usually

the means and variance of a Gaussian distribution. From

the parameters in the multivariate distribution, we draw a

random sample and a latent space sample is obtained for

each training input. This operation procedure is represented

in Fig. 2.

The stochasticity of the random sampling improves the

robustness and forces the encoding of continuous and

meaningful latent space representations, as it can be seen in

Fig. 3, where it is shown the VAE latent space represen-

tation and its cumulative normal distribution.

Due to their properties, VAEs have been used as gen-

erative deep learning models in the image processing field.

Reconstruction of a multispectral image has been per-

formed by means of a VAE [23] that parameterizes the

latent space of Gaussian distribution parameters. VAEs

have been also used to create superresolution images as in

[24], where a model is proposed to encode low-resolution

images in a dense latent space vector that can be decoded

for target high resolution image denoising. The blur image

problem using VAE is tackled in [25] by adding a condi-

tional sampling mechanism that narrows down the latent

space, making it possible to reconstruct high resolution

images. Moreover, in [26], the authors propose a flexible

autoencoder model able to adapt to varying data patterns

with time. By importing the VAE concept from image

processing, several papers have used these models to

improve RS results. For instance, denoising and variational

autoencoders are tested in [27], where the authors reported

the superiority of the VAE option against other models, or

in [28], where variational autoencoders are combined with

social information to improve the quality of the

recommendations.

2.2 Our proposal: Deep variational models

The aim of this paper is to propose a neural architecture

that joins the best of the DeepMF and NCF models with the

VAE concept. This novel models will be called, respec-

tively, Variational Deep Matrix Factorization (VDeepMF)

and Variational Neural Collaborative Filtering (VNCF). In

contrast with the autoencoder and Generative Adversarial

Network (GAN) approaches in the CF field [16, 29, 30], we

shall not use the generative decoder stage and we maintain

the regression output layer presented in the DeepMF and

the NCF models. The main advantage in the use of the

VAE operation is the robustness that it confers to the latent

representation. This robustness can be seen by observing

Fig. 3. If we consider each dot drawn as a train sample

representation in the latent space, then test samples are

most likely to be correctly classified in the VAE model

(right graph in Fig. 3) than being correctly classified in the

regular autoencoder model (left graph in Fig. 3). In short,

the variational approach stochastically ‘spreads’ the sam-

ples in the latent space, improving the chances of classi-

fying correctly the training samples.

In our proposed RS CF scenario, we expect that rating

values can be better predicted when a variational latent

space has been learnt, because this space covers a wider,

more robust, and more representative latent area. Whereas

with a traditional autoencoders each sample would be

coded as a value in the latent space (white circle in Fig. 4),

the VAE encodes the parameters of a multivariate distri-

bution (e.g., mean and variance of both the blue and the

orange Gaussian distributions in Fig. 4). From the learnt

distribution parameters, random sampling is carried out to

generate stochastic latent space values (gray circles in

Fig. 4). Each epoch in the learning process generates a new

set of latent space values. Once the proposed model has

been trained, when a huser, itemi tuple is presented to the

model, the obtained latent space value (green circle in

Fig. 4) can be better predicted in the VAE scenario than in

the regular autoencoder scenario: the random sampled

values (gray circles) of the enriched latent space will help

to associate the predicted sample (green circle) with their
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associated training samples (white circle), making the

prediction process much more robust and accurate.

From the above explanations, the VAE operation can be

defined following Fig. 2 in its ‘Variational layers’ stage:

first, two dense layers code the normal distribution

parameters that set the mean and variance of the latent

factors. In the CF scenario, two dense layers are arranged

to code the normal distribution parameters of the items, and

two other different dense layers are used to code the normal

distribution parameters of the users. This variational

approach regularizes the latent factors and makes it pos-

sible to reach the explained completeness and continuity

goals. Once the distribution parameter layers are regular-

ized, it is necessary to obtain a single latent factor point to

code each user or item in the dataset; that is, for each user

and item in the input of the model we need to combine its

mean and variance. A normal random function is used to

generate the latent factor point, coding the item (or the

user) in the model input. Then, each latent factor point is

obtained by combining: the normal random value, its item

mean (or its user mean) and its item variance (or its user

variance). This operation is usually performed using a

neural ‘Lambda’ layer. Each Lambda layer result can be

seen as a regularized version of the DeepMF nonvariational

Fig. 2 Operation of a trained Variational Autoencoder (VAE) model.

When a new sample is presented to the encoder stage (the handwritten

digit ’2’ in this example), the model produces in the latent space a

probability distribution. Typically, this distribution belongs to a

known family (a multivariate normal distribution in this example), so

its shape is determined by some numerical parameters (mean and

standard deviation in our case). With this information, the decoder

stage generates an instance by sampling this distribution (getting a

slightly different digit ’2’ in this example). This introduces a

stochastic component in the generation procedure that enriches the

latent space and variability of the generative model

Fig. 3 Representation of a VAE latent space for the MNIST dataset (left side) and its cumulative normal distribution (right side)
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approach. Finally, we obtain the prediction of the rating of

the user to the item by combining the ‘Lambda’ user and

item factors using a dot product. In short, our variational

approach incorporates the following substages: (1) Con-

verting the input embedding factors to normal distribution

values; and thus, making a regularization to generate

continuous and complete latent factor codes, (2) Combin-

ing the normal distribution latent factor codes to obtain

single latent factor values, and (3) Predicting ratings by

making the dot product of the regularized latent factor

values.

2.3 VAEs for recommender systems

Current CF-based variational autoencoders usually obtain

raw augmented data. One strategy is to synthetize ratings

from user to items or generated relevant versus not relevant

votes from users to items [16, 27, 31], and another

approach is to pre-train a VAE model to map data vectors

into the latent space, an idea that has been intensively

studied in several variants [32–36].

In any case, these strategies force practitioners to

sequentially run two separated models: the generative

model (GAN or VAE) that provides augmented data, and

the regression CF model that makes predictions and rec-

ommendations. This approach presents three main draw-

backs: (1) complexity, as two separate models are

necessary, (2) large time consumption, and (3) sparsity

management. As we will explain deeper in the following

section, our proposed model does not generate raw aug-

mented data. On the contrary, its innovation is based on the

use of a single model to internally manage both augmen-

tation and prediction aims. Particularly significant is the

way in which the proposed model addresses the sparsity

problem: we do not make augmentation on the sparse raw

data (ratings cast from users to item), but an internal

‘augmentation’ process in the dense latent space of the

model (Figs. 3 and 4). Each sample that is randomly gen-

erated from the latent space feeds the model regression

layers. Thereby, we propose a model that first generates

stochastic variational samples in a dense latent space, and

then, these generated samples act as inputs of the regres-

sion stage of the model.

To test these ideas, the hypothesis considered in this

paper is that the augmented samples will be more accurate

and effective if they are generated in an inner and dense

latent space rather than in a very sparse input space. It is

important to realize that enriching the inner latent space

can improve the recommendation results, but it also injects

noise to the latent space that may potentially worsen the

results. It is expected that the proposed approach will work

better with poor latent spaces, whereas when it is applied to

rich spaces, the spurious entropy added by the variational

stage could worsen recommendations. Thus, medium-size

CF datasets, or large and complex ones are better candi-

dates to improve their results when the variational proposal

is applied, whereas large datasets with predictable data

distributions will probably not benefit from the noise

injection of the variational architecture.

3 Proposed model

The proposed neural architecture will mix the VAE and the

DeepMF (or the NCF) models. From the VAE, we take the

encoder stage and its variational process, and from the

DeepMF or the NCF model, we use its regression layers.

This is an innovative approach in the RS field, since the

VAE and GAN neural networks have only been used as a

posteriori stage to make data augmentation, i.e., to obtain

enriched input datasets to feed the CF DeepMF or NCF

models. Hence, the traditional approach needs to separately

train two models, first the VAE and then the DeepMF/NCF

networks. As discussed in Sect. 2.3, these combined solu-

tions present important disadvantages in terms of model

complexity, time consumption and poor sparsity

management.

In sharp contrast, our proposed approach efficiently

joins the VAE and the Deep CF regression concepts to

obtain improved predictions with a single training process.

In the learning stage, the training samples feed the model

(left hand side of Fig. 5). Each training sample consists of

the tuple huser, item, ratingi (rating casted by the user to

the item). In the DeepMF/NCF architecture, each user is

represented by his/her vector of voted ratings, and each

item is represented by its vector of received ratings. The

model learns the ratings (third element in the tuples) casted

by the users to the items (first and second elements in the

Fig. 4 Latent space representation of the proposed variational model.

From the learnt means and variances of the multivariate Gaussian

distribution, a random sampling process is run to spread the latent

space sample values (gray circles) that will help to accurately predict

the unknown sample rating values (green circle)
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tuples). In other words, the ratings are outputs of the neural

network (right hand side of Fig. 5).

Thanks to this architecture, the variational stage is nat-

urally embedded into the model, so it can be flexibly used

to inject variability into the samples. It is worth mentioning

that this stage is also trained simultaneously to the pre-

dictive part of the model, mutually influencing each other,

which we expect will lead to better results than a simple

separate learning.

3.1 Formalization of the model

The architectural details of the proposed models are shown

in Fig. 6. For simplicity, only the Variational Deep Matrix

Factorization (VDeepMF) architecture is shown in this

figure. The corresponding model for NCF, named Varia-

tional Neural Collaborative Filtering (VNCF), is analogous

to the VDeepMF one: it has the same ‘Embedding’ and

‘Variational’ layers and we should only replace the

‘Dot’ layer of DeepMF by a ‘Concatenate’ layer fol-

lowed by a MLP.

To fix the notation, let us suppose that our dataset

contains U users and I items. In general, the aim of any

deep learning model for CF-based prediction is to train a

(stochastic) neural network that implements a function

h : RU � RI ! R:

This function h operates as follows. Let us codify the u-th

user of the dataset (resp. the i-th item) using one-hot-en-

coding as the u-th canonical basis vector eu (resp. the i-th

canonical basis vector ei). Then, we have that the outcome

of the model is the following

hðeu; eiÞ 2 R ¼ Prediction of the score that the

u0th user would assign to thei0th item:

To train this function h, in the learning phase the neural

network is fed with a set

X ¼ hu; i; rif g

of training tuples hu; i; ri of a user u that rated item i with a

score r. The function h is trained to minimize the error

EðhÞ ¼
X

hu;i;ri2X
dðhðeu; eiÞ; rÞ: ð1Þ

Here, d : R� R ! R is any metric on R. Typical choices

are the so-called Mean Squared Error (MSE) and Mean

Absolute Error (MAE), respectively, given by

dMSEðx; yÞ ¼ ðx� yÞ2; dMAEðx; yÞ ¼ jx� yj:

Our proposal for the VDeepMF consist on decomposing h

has a combination of a ‘Embedding’, followed by a

‘Variational’ stage and a final ‘Dot’ layer, as shown

in Fig. 6), that is

h ¼ Dot � Variational � Embedding:

Notice that, at the end of the day, h is a deep leaning model

with novel customary layers designed for the RS problem.

In this way, h can be trained to reduce the error EðhÞ of

Eq. (1) with the standard Deep Learning (DL) methods,

such as the backpropagation algorithm.

3.2 The embedding layer

The first ‘Embedding’ layer (left hand side of Fig. 6) is

borrowed from the Natural Language Processing

(NLP) [13]. The idea is that this layers provides a fast

translation of users and items into their respective

Fig. 5 Proposed VDeepMF/

NCF approach. CF samples are

encoded in the latent space by

means of a variational process

and then predictions are

obtained by using a regression

neural network

7822 Neural Computing and Applications (2023) 35:7817–7831

123



representations in the latent spaces. To be precise, this

layer implements a linear map

Embedding : RU � RI ! RL � RL;

that maps a pair ðeu; eiÞ into a pair of dense vectors

ðvu;wiÞ 2 RL � RL that represents the u-th user and the i-th

item, being L[ 0 the dimension of the representations.

For our purpose, we implement the ‘Embedding’ layer

as a regular MLP dense layer, in sharp contrast with other

approaches in NLP such as word2vec [37, 38], GloVe [39]

or ELMo [40], among others. The reason is that these later

approaches seek to find an embedding preserving some

metric information of the words, typically, the likelihood of

finding two words together or their semantic similarity.

However, in our case, since we perform context-free CF

prediction, no a priori information about the similarity

between users or items is available. Indeed, this is precisely

the ultimate goal of the RS: to find an appropriate repre-

sentations of these users and items in the latent space. For

this reason, we decided not to add any extra mechanism

that could bias this training process, so the ‘Embedding’

layer will act as a regular dense layer to be trained in

parallel during the learning process.

Finally, we would like to point out that, even though

from a conceptual point of view the ‘Embedding’ layer is

just a dense layer, to save time and space, these

‘Embedding’ layers are typically implemented through

lookup tables. In this way, instead of feeding the network

with the one-hot encoding of the user u (resp. the item i),

we input it via its ID as user (resp. as item). The lookup

table efficiently recovers the u-th (resp. i-th) column of the

embedding matrix that contains vu (resp. wi) so that the

translation can be conducted in a more efficient way than

with a standard MLP layer by exploiting the sparsity of the

input.

3.3 The variational layer

The variational process is carried out by the ‘Varia-

tional’ stage (labeled as ‘variational layers’ at the

middle of Fig. 6). This is the core of our proposed model.

From the latent space representation ðvu;wiÞ 2 RL � RL

of the u-th user and the i-th item, two separated dense

layers return the mean and variance parameters of two

Gaussian multivariate distribution. In this way, if fix a

latent space dimension K[ 0, the first part of this

‘Variational’ stage (left part of the middle rectangle of

Fig. 6) computes a map

Sðvu;wiÞ ¼ ðl1ðvuÞ; r21ðvuÞ; l2ðwiÞ; r2ðwiÞÞ 2 R4K :

The outputs l1ðvuÞ; l2ðwiÞ of S will be interpreted as the

means of two Gaussian distributions to the user and the

item, respectively, whereas r21ðvuÞ; r2ðwiÞ will represent

variance.

The second part of the ‘Variational’ stage (left

right of the middle rectangle of Fig. 6) is ruled by a pair of

random vectors ðPl1ðvuÞ;r21ðvuÞ;Ql2ðwiÞ;r2ðwiÞÞ where

P�N ðl1ðvuÞ; diag r21ðvuÞÞ;
Q�N ðl2ðwuÞ; diag r22ðwiÞÞ:

Here, N ðl;RÞ denotes a K-dimensional multivariate nor-

mal distribution of mean vector l and diagonal covariance

matrix R, i.e., whose probability density function is

Fig. 6 Proposed VDeepMF

architecture. The NCF

architecture will have identical

‘Embedding’ and ‘Variational’

layers to the VDeepMF one; it

will just replace the ‘Dot’ layer

for a ‘Concatenate’ layer,

followed by an MLP
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f ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞK detR

q exp � 1

2
ðs� lÞtR�1ðs� lÞ

� �
:

Notice that, in our case, the covariance matrix is always

diagonal.

In this setting, the task of the ‘Variational’ stage is

just to sample P and Q. In this manner

Variationalðvu;wiÞ ¼ ðp; qÞ 2 RK � RK ;

where p is a sample of P ¼ PðSðvu;wiÞÞ�N ðl1ðvuÞ;
diag r21ðvuÞÞ and q is a sample of Q ¼ QðSðvu;wiÞÞ�
N ðl2ðwuÞ; diag r22ðwiÞÞ. This pair represents the stochastic
latent representations associated with ðvu;wiÞ.

3.4 The join layer

This is the only layer that depends on the particular choice of

the architecture. In the case of the Variational Deep Matrix

Factorization (VDeepMF) architecture, this final layer is a

‘Dot’ layer (labeled as ‘regression layer’ at right hand side of

Fig. 6). It is just a linear layer that simply computes the dot

product of the latent vectors p and q. Therefore

Dotðp; qÞ ¼ p � q:

In the case of VNCF, this simple layer is replaced by a

fully connected MLP

H : RK ! RK ! R

that extracts the nonlinear relations from p and q.
Therefore, summarizing the process, the proposed

VDeepMF model h computes

hðeu; eiÞ ¼ Dot � Variational � Embeddingðeu; eiÞ
¼ Pl1ðvuÞ;r21ðvuÞ � Ql2ðwiÞ;r2ðwiÞ:

Analogously, the VNCF model returns the proposed

VDeepMF model h computes

hðeu; eiÞ ¼ H � Variational � Embeddingðeu; eiÞ
¼ HðPl1ðvuÞ;r21ðvuÞ;Ql2ðwiÞ;r2ðwiÞÞ:

In both cases, hðeu; eiÞ is a random variable that, when

sampled, returns a natural number that should be inter-

preted as the predicted rating by h for the user u regarding

item i.

4 Empirical evaluation

In this section, we describe the empirical experiments

carried out to evaluate the performance of the variational

approach in the DeepMF and NCF models.

4.1 Experimental setup

The experimental evaluation has been performed over four

different datasets to measure the performance of the pro-

posed method over different environments. The selected

datasets are: FilmTrust [41], an small dataset that contains

the ratings of thousands of items to movies; MovieLens

1 M [42], the gold standard dataset in CF-based RS;

MyAnimeList [43], a dataset extracted from Kaggle1 that

contains the ratings of thousands of users to anime comics;

and Netflix [44], a popular dataset with hundred of millions

ratings used in the Netflix Prize competition. Table 1 shows

the main parameters of these datasets. The corpus of these

datasets has been randomly splitted into training ratings

(80% of the ratings) and test ratings (20% of the ratings).

The evaluation of the proposed method has been ana-

lyzed from three different points of view: the quality of the

predictions [45], the quality of the recommendations [46],

and the quality of the recommendation lists [47].

To measure the quality of the predictions, we have

compared the real rating ru;i of an user u to an item i of the

test split Rtest with the predicted one, r̂u;i. These compar-

isons have been carried out in three ways: using the MAE

as in Eq. (2), using the MSE as in Eq. (3) and computing

the proportion of the explained variance R2 as in Eq. (4).

Notice that, in Eq. (4), �r denotes the mean of the ratings

contained in the test split.

MAE ¼ 1

#Rtest

X

hu;ii2Rtest

j ru;i � r̂u;i j; ð2Þ

MSE ¼ 1

#Rtest

X

hu;ii2Rtest

ru;i � r̂u;i
� �2

; ð3Þ

R2 ¼ 1�

X

hu;ii2Rtest

ru;i � r̂u;i
� �2

X

hu;ii2Rtest

ru;i � �r
� �2 : ð4Þ

To measure the quality of the recommendations, we have

analyzed the impact of the top N recommended items to the

user u, collected in the list TN
u . Using precision Eq. (5), we

measure the proportion of relevant recommendations (i.e.,

the user rated the item with a rated equal or greater than a

threshold h) among the top N. Here, U denotes the set of

user in the test split. In a similar vein, using recall Eq. (6),

we measure the proportion of the test items rated by the

user u, Rtest
u , that were relevant to him or her and were

included into the recommended items TN
u . For the con-

ducted experiments, the used thresholds are h ¼ 3 for

FilmTrust, h ¼ 4 for MovieLens and Netflix, and h ¼ 8 for

MyAnimeList. These thresholds were chosen in agreement

1 www.kaggle.com.
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with the results of [48], where it was shown that these

values represent a fair trade-off between provided coverage

of the dataset and prediction accuracy.

Precision ¼ 1

#U

X

u2U

fi 2 TN
u j ru;i � hg
N

; ð5Þ

Recall ¼ 1

#U

X

u2U

fi 2 TN
u j ru;i � hg

fi 2 Rtest
u j ru;i � hg : ð6Þ

Additionally, we have measure the quality of the recom-

mendations using the harmonic mean of the precision and

the recall using F1 score Eq. (7).

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

ð7Þ

However, evaluating the quality of recommendations based

solely on user ratings provides a biased view of the rec-

ommender’s performance. Therefore, we have also deter-

mined the novelty Eq. (8) of the recommendations. Novelty

[49] is calculated by assigning more weight to those items

that have received fewer ratings. In other words, the nov-

elty of an item is inversely proportional to the number of

ratings received for an item (#Ri) with respect to the total

number of votes in the recommender system (#R).

Novelty ¼ 1

#U

X

u2U

P
i2TN

u
� log2

#Ri

#R

� �

N
: ð8Þ

Finally, to measure the quality of the recommendation lists,

we use the normalized Discounted Cumulative Gain

(nDCG). Suppose that the recommendation list of the user

u, TN
u , is sorted decreasingly so that the items predicted as

more relevant are placed in the first positions. Given

i 2 TN
u , let posTN

u
ðiÞ be the position of the item i in the

recommendation list. Analogously, suppose that the real

top N recommendations to user u, RN
u , as sorted decreas-

ingly and denote by posRN
u
ðiÞ the position of the item i 2 RN

u

in the list. In this setting, the Discounted Cumulative Gain

(DCG) and the Ideal Cumulative Gain (IDCG) of the user

u 2 U are defined as in Eq. (9).

DCGu ¼
X

i2TN
u

2ru;i � 1

log2 posTN
u
ðiÞ þ 1

� � ;

IDCGu ¼
X

i2RN
u

2ru;i � 1

log2 posRN
u
ðiÞ þ 1

� � :

ð9Þ

In this way, nDCG is given by the mean of the ratio

between DCG and IDCG as in Eq. (10).

nDCG ¼ 1

#U

X

u2U

DCGu

IDCGu
: ð10Þ

Due to the stochastic nature of the variational embedded

space of the proposed method, the test predictions used to

evaluate the proposed method have been computed as the

average of the 10 predictions performed for each pair of

user u and item i.

Overall, the proposed variational architecture ade-

quately improves simple models such as the DeepMF one,

approaching their results to larger models such as the NCF.

This tendency can be observed in both predictions and

recommendation quality measures. Additionally, shorter

running times are needed to train the proposed variational

approach compared to baselines. This is the expected

behavior in the hypothesis of the paper, but a remarkable

constraint must be considered: the variational stage works

particularly well when applied to not too large datasets,

whereas using large datasets, the variational approach

could not be necessary. The key idea is the ability of the

Table 1 Main parameters of the

datasets used in the experiments
Dataset N users N items N ratings Scores Sparsity (%)

FilmTrust 1508 2071 35,494 0.5 to 4.0 98.86

MovieLens 6040 3706 1,000,209 1 to 5 95.53

MyAnimeList 69,600 9927 6,337,234 1 to 10 99.08

Netflix 480,189 17,770 100,480,507 1 to 5 98.82

Table 2 Quality of the predictions

FilmTrust MovieLens MyAnimeList Netflix

(a) Mean Absolute Error. The lower the better.

VDeepMF 0.6567. 0.6827 0.8722 0.7176

DeepMF 0.7957 0.6993 0.9044 0.6830

VNCF 0.6410 0.7263 0.9281 0.7474

NCF 0.6361 0.7021 0.8874 0.6903

(b) Mean Squared Error. The lower the better.

VDeepMF 0.7324 0.7529 1.3453 0.8581

DeepMF 1.2046 0.7939 1.5017 0.7789

VNCF 0.6844 0.8179 1.4605 0.8952

NCF 0.6743 0.7908 1.3674. 0.7774

(c) R2 score. The higher the better.

VDeepMF 0.1438 0.3980 0.4549 0.2711

DeepMF - 0.4082 0.3652 0.3916 0.3384

VNCF 0.1999 0.3460 0.4083 0.2396

NCF 0.2118 0.3677 0.4460. 0.3397

The best results for each quality measure are highlighted in bold
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proposed model to deal with entropy: The variational stage

increases entropy by generating stochastic latent factors

and then enriching the latent space and making it more

robust to the input sample variability. The intrinsic com-

pleteness and continuity properties of the VAE are the

foundations on which the variational approach gets robust,

continuous, and structured latent spaces. These enriched

spaces provide the improved results obtained in the

experiments.

4.2 Experimental results

Table 2 includes the quality of the predictions performed

by the proposed model. Best values for each dataset are

highlighted in bold. Table 2a contains the MAE Eq. (2),

Table 2b contains the MSE Eq. (3), and Table 2c contains

the R2 score Eq. (4). We can observe that the proposed

variational approach improves the prediction capability of

DeepMF in all datasets except of Netflix and reports worse

predictions when it is applied to NCF.

We justify these results by taking into account the fea-

tures of the deep learning models used and the properties of

each dataset. On the one hand, the larger the size of the

dataset, the less necessary it is to enrich the votes with the

proposed variational approach. In other words, when the

dataset is small, the amount of Shannon entropy [50] that it

contains might be quite limited. By using a variational

method to generate new samples, we add some extra

entropy that enriches the dataset, giving the chance to the

regressive part of exploiting this extra data. However, large

datasets usually present a large entropy in such a way that

the regressive models can effectively extract very subtle

information from them. In this setting, if we add a varia-

tional stage, instead of adding new relevant variability to

the dataset, we only add noise that muddies the underlying

patterns. For this reason, the variational approach is of no

benefit in huge datasets like Netflix.

On the other hand, the NCF model is more complex than

the DeepMF one, so data enrichment has less impact for

complex models that are able to find more sophisticated

relationships between data than simpler models. In fact,

Fig. 7 Quality of the recommendations measured by precision and recall. The higher the better
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based on these results, we can assert that including the

variational approach into a simple model such as DeepMF

is equivalent to using a more complex model such as NCF.

Furthermore, Figs. 7 and 8 show the quality of the

recommendations using precision Eq. (5), recall Eq. (6) and

F1 Eq. (7) quality measures. In FilmTrust (Figs. 7a and

8a), MovieLens (Figs. 7b and 8b) and MyAnimeList

(Figs. 7c and 8c), we can observe that the proposed

variational approach reports a benefit for the DeepMF

model and it worsens the results of the NCF model. In

addition, VDeepMF model is the model that computes the

best recommendations for these datasets. In contrast, in

Netflix (Figs. 7d and 8d), the proposed variational

approach does not improve the quality of the recommen-

dations, with NCF being the model that provides the best

recommendations for this dataset. These results are con-

sistent with those analyzed when measuring the quality of

the predictions. Consequently, it is evident that the pro-

posed variational approach works adequately when the

dataset is not too large and the model used is not too

complex.

Fig. 9 contains the quality of recommendations regard-

ing novelty Eq. (8). It is observed that, when the variational

stage is added to the DeepMF model, a significant

improvement of the novelty of the recommendations in

small datasets is achieved. As the dataset becomes larger,

the impact of the variational step is detrimental to the

model. Thus, the variational stage has a positive impact on

the FilmTrust (Fig. 9a) and MovieLens (Fig. 9b) datasets

and a negative impact on the MyAnimeList (Fig. 9c) and

Netflix (Fig. 9d) datasets. On the contrary, when a varia-

tional stage is added to the NCF model, its impact on

novelty is practically zero regardless of the dataset size.

This experiment, like the previous ones, reaffirms the

conclusion that a variational step improves the results of

simple models on small datasets.

In addition, Fig. 10 contains the nDCG results. From it,

we can observe the same trends as those shown in previous

experiments: in FilmTrust (Fig. 10a), the quality of the

recommendation lists do not vary independently of whether

the variational approach is used or not; in MovieLens

(Fig. 10b) and MyAnimeList (Fig. 10c), the combination

of the variational approach with simple modeling such as

DeepMF, provides the best results; and in Netflix

(Fig. 10d), the variational approach significantly worsens

the quality of the recommendation lists.

Fig. 8 Quality of the recommendations measured by F1. The higher the better
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5 Conclusions

In the latest trends, accuracy of RSs is being improved by

using deep learning models such as deep matrix factor-

ization and neural collaborative filtering. However, these

models do not incorporate stochasticity in their design,

unlike variational autoencoders do. Variational random

sampling has been used to create augmented input raw data

in the collaborative filtering context, but the inherent col-

laborative filtering data sparsity makes it difficult to get

accurate results. This paper applies the variational concept

not to generate augmented sparse data, but to create aug-

mented samples in the latent space codified at the dense

inner layers of the proposed neural network. This is an

innovative approach trying to combine the potential of the

variational stochasticity with the augmentation concept.

Augmented samples are generated in the dense latent space

of the neural network model. In this way, we avoid the

sparse scenario in the variational process.

Observe that the proposed model in this paper also

encodes the intrinsic locality of the users and items in the

latent space. Recall that regular MF models capture the

similarity of users and items in the latent space since pre-

dictions are constructed via inner product, a continuous

function. In the same spirit, our variational models also

preserve this locality since the output is still computed

through a continuous function: the feed-forward neural

network, a much more complicated function, but eventu-

ally continuous. Moreover, since the probability distribu-

tions representing each user and item in the latent space

depend on continuous parameters (the mean and standard

deviation of a Gaussian distribution), small variations in

these parameters, corresponding to similar items or users,

are also encoded as almost equal distributions, and thus,

their samples tend to be also close in the distributional

sense.

Thanks to these ideas, the results of the experimental

analyses conducted in this paper show an important

improvement when the proposed models are applied to

middle-size representative collaborative filtering datasets,

compared to the state-of-the-art baselines, testing both

prediction and recommendation quality measures. In sharp

contrast, testing on the huge Netflix dataset not only leads

to no improvement, but the recommendation quality

Fig. 9 Quality of the recommendations measured by novelty. The higher the better
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actually gets worse. In this manner, increasing the Shannon

entropy in rich latent spaces causes that the negative effect

of the introduced noise exceeds its benefit. Therefore, the

proposed deep variational models should be applied to seek

to a fair balance between their positive enrichment and

their negative noise injection.

To emphasize this idea, in Table 3, we show the total

time and epochs required by each model to be fitted to each

dataset using a Quadro RTX 8000 GPU. Best time for each

dataset is in bold. We can observe that including a varia-

tional layer to the model significantly reduces the required

time for fitting. Variational models are able to generate

Shannon entropy that is transferred to the regression stage,

leading to a more effective training that requires fewer

epochs to be fitted. Therefore, the fitting time needed to

reach acceptable results is substantially lower.

The results presented in this work can be considered as

generalizable, since they were analyzed in four represen-

tative and open CF datasets. Researchers can reproduce our

experiments and easily create their own models by using

the provided framework referenced in Sect. 3. The authors

of this work are committed to reproducible science, so the

code used in these experiments is publicly available.

Among the most promising future works, we propose

the following: (1) introducing the variational process in the

alternative inner layers of the relevant architectures in the

collaborative filtering area, (2) screening the learning

evolution in the training process, since it is faster than the

classical models but it also requires early stopping in the

Fig. 10 Quality of the recommendations lists measured by NDCG. The higher the better

Table 3 Fitting time using a

Quadro RTX 8000
FilmTrust MovieLens MyAnimeList Netflix

VDeepMF 61s (15 epochs) 601s (6 epochs) 7629s (9 epochs) 12655s (3 epochs).

DeepMF 75s (25 epochs) 677s (10 epochs) 13217s (20 epochs) 15697s (4 epochs)

VNCF 35s (7 epochs) 1030s (9 epochs) 9945s (9 epochs) 12650s (3 epochs)

NCF 56s (15 epochs) 876s (10 epochs) 12111s (15 epochs) 16896s (4 epochs)

Best fitting times for each datased in bold
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training stage, (3) providing further theoretical explana-

tions of the properties of the CF datasets, in terms of

Shannon entropy or other statistical features, that ensure a

good performance of the proposed models, (4) applying

probabilistic deep learning models in the CF field to cap-

ture complex nonlinear stochastic relationships between

random variables, and (5) testing the impact of the pro-

posed concept when recommendations are made to groups

of users.
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