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Abstract
Graph coloring is widely used to parallelize scientific applications by identifying 
subsets of independent tasks that can be executed simultaneously. Graph coloring 
assigns colors the vertices of a graph, such that no adjacent vertices have the same 
color. The number of colors used corresponds to the number of parallel steps in a 
real-world end-application. Therefore, the total runtime of the graph coloring kernel 
adds to the overall parallel overhead of the real-world end-application, whereas the 
number of the vertices of each color class determines the number of the independ-
ent concurrent tasks of each parallel step, thus affecting the amount of parallelism 
and hardware resource utilization in the execution of the real-world end-application. 
In this work, we propose a high-performance graph coloring algorithm, named 
ColorTM, that leverages Hardware Transactional Memory (HTM) to detect coloring 
inconsistencies between adjacent vertices. ColorTM detects and resolves coloring 
inconsistencies between adjacent vertices with an eager approach to minimize data 
access costs, and implements a speculative synchronization scheme to minimize 
synchronization costs and increase parallelism. We extend our proposed algorith-
mic design to propose a balanced graph coloring algorithm, named BalColorTM, 
with which all color classes include almost the same number of vertices to achieve 
high parallelism and resource utilization in the execution of the real-world end-
applications. We evaluate ColorTM and BalColorTM using a wide variety of large 
real-world graphs with diverse characteristics. ColorTM and BalColorTM improve 
performance by 12.98× and 1.78× on average using 56 parallel threads compared to 
prior state-of-the-art approaches. Moreover, we study the impact of our proposed 
graph coloring algorithmic designs on a popular end-application, i.e., Community 
Detection, and demonstrate the ColorTM and BalColorTM can provide high-perfor-
mance improvements in real-world end-applications across various input data given.
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1  Introduction

Graph coloring assigns colors to the vertices of a graph such that any two adja-
cent vertices have different colors. Graph coloring kernel is widely used in many 
important real-world applications including the conflicting job scheduling [1–5], 
register allocation [6–10], sparse linear algebra [11–14], machine learning (e.g., 
to select non-similar samples that form an effective training set), and chromatic 
scheduling of graph processing applications  [15–18]. For instance, the chro-
matic scheduling execution is as follows: given the vertex coloring of a graph, 
chromatic scheduling performs N steps that are executed serially, where N is the 
number of colors used to color the graph, and at each step the vertices assigned 
to the same color are processed in parallel, i.e., representing independent tasks 
that are executed concurrently. In addition, it is of vital importance that program-
mers manage the registers of modern CPUs effectively, and thus compilers  [9, 
10] optimize the register allocation problem via graph coloring: compilers con-
struct undirected graphs, named register inference graphs (RIGs), with vertices 
representing the variables used in the source code and edges between vertices 
representing variables that are simultaneously active at some point in the program 
execution, and then compilers leverage the graph coloring kernel to identify inde-
pendent variables that can be allocated on the same registers, i.e., if there no edge 
in the RIG connecting the associated vertices of the variables.

To achieve high system performance in the aforementioned real-world scenar-
ios, software designers need to improve three key aspects of the graph coloring 
kernel. First, they need to minimize the number of colors used to color the input 
graph. For example, in the chromatic scheduling scheme minimizing the number 
of colors used to color the graph reduces the number of the sequential steps per-
formed in the multithreaded end-application. However, minimizing the number of 
colors in graph coloring is an NP-hard problem [19], and thus prior works [3, 4, 
11, 20–26] introduce ordering heuristics that generate effective graph colorings 
with a relatively small number of colors. Second, given that the execution time of 
the graph coloring kernel adds to the overall parallel overhead of the real-world 
end-application, software engineers need to design high-performance graph col-
oring algorithms for modern multicore computing systems. Third, an effective 
graph coloring for a real-world end-application necessitates a balanced distribu-
tion of the vertices across the color classes, i.e., the sizes of the color classes to 
be almost the same. Producing color classes with high skew in their sizes, i.e., 
high disparity in the number of vertices distributed across color classes, typically 
causes load imbalance and low resource utilization in real-world end-application. 
For example, in the register allocation scenario high disparity in the sizes of the 
color classes results to a large number of registers needed (high financial costs), 
equal to the size of the largest color class produced, while a large portion of the 
registers remains idle (unused) for a long time during the program execution 
(i.e., in time periods corresponding to many color classes with small sizes), thus 
causing low hardware resource utilization. Therefore, software designers need to 
propose balanced and fast graph coloring algorithms for commodity computing 
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systems. Our goal in this work is to improve the last two key aspects of the graph 
coloring kernel by introducing high-performance and balanced multithreaded 
graph coloring algorithms for modern multicore platforms.

With a straightforward parallelization of graph coloring, coloring conflicts may 
arise when two parallel threads assign the same color to adjacent vertices. To deal 
with this problematic case, recent works [27–31] perform two additional phases: a 
conflict detection phase, which iterates over the vertices of the graph to detect color-
ing inconsistencies between adjacent vertices, and a conflict resolution phase, which 
iterates over the detected conflicted vertices to resolve the coloring inconsistencies 
via recoloring. Nevertheless, these prior works  [27–31] are still inefficient, as we 
demonstrate in Sect. 5, because they need to traverse the whole graph at least two 
times (one for coloring the vertices and one for detecting coloring conflicts), and 
also detect and resolve coloring conflicts with a lazy approach, i.e., much later in the 
runtime compared to the time that the coloring conflicts appeared. As a result, prior 
approaches access the conflicted vertices of the graph multiple times, mainly using 
the expensive last levels of the memory hierarchy (e.g., main memory) of commod-
ity multicore platforms, thus incurring high data access costs.

In this work, we present ColorTM [32],1 a high-performance graph coloring algo-
rithm for multicore platforms. ColorTM is designed to provide low synchronization 
and data access costs. Our algorithm proposes (a) an eager conflict detection and 
resolution approach, i.e., immediately detecting and resolving coloring inconsisten-
cies when they arise, such that to minimize data access costs by accessing conflicted 
vertices immediately using the low-cost lower levels of the memory hierarchy of 
multicore platforms, and (b) a speculative computation and synchronization scheme, 
i.e., leveraging Hardware Transactional Memory (HTM) and speculatively perform-
ing computations and data accesses outside the critical section, such that to provide 
high levels of parallelism and low synchronization costs by executing multiple small 
and short critical sections in parallel. Specifically, ColorTM consists of three steps: 
for each vertex on the graph, it (i) speculatively finds a candidate legal color by 
recording the colors of the adjacent vertices, (ii) validates and updates the color of 
the current vertex by checking the colors of the critical adjacent vertices within an 
HTM transaction to detect potential coloring conflicts, and (iii) eagerly repeats steps 
(i) and (ii) for the current vertex multiple times until a valid coloring is found.

However, ColorTM does not provide any guarantee on the sizes of the color 
classes relative to each other. As we demonstrate in our evaluation (Sect.  5), the 
color classes produced by ColorTM for real-world graphs have high disparity in 
the number of vertices across them, thus causing load imbalance and low resource 
utilization in real-world end-applications. Therefore, we extend our algorithmic 
design to propose a balanced graph coloring algorithm, named BalColorTM [32]. 
BalColorTM achieves high system performance and produces highly balanced color 
classes, i.e., having almost the same number of vertices across color classes, target-
ing to provide high hardware resource utilization and load balance in the real-world 
end-applications of graph coloring.

1  This paper is an extended version of [33].
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We evaluate ColorTM and BalColorTM on a dual socket Intel Haswell server 
using a wide variety of large real-world graphs with diverse characteristics. 
ColorTM improves performance by 12.98× on average using 56 parallel threads 
compared to state-of-the-art graph coloring algorithms, while providing similar 
coloring quality. BalColorTM outperforms prior state-of-the-art balanced graph 
coloring algorithms by 1.78× on average using 56 parallel threads, and provides 
the best color balancing quality over prior schemes (see Sect.  5). Finally, we 
study the effectiveness of our proposed ColorTM and BalColorTM in parallel-
izing a widely used real-world end-application, i.e., Community Detection [34], 
and demonstrate that our proposed algorithmic designs can provide significant 
performance improvements in real-world scenarios. ColorTM and BalColorTM 
are publicly available [32] at https://​github.​com/​cgian​noula/​Color​TM.

This paper makes the following contributions:

•	 We design high-performance and balanced graph coloring algorithms, named 
ColorTM and BalColorTM, for modern multicore platforms.

•	 We leverage HTM to efficiently detect coloring inconsistencies between adja-
cent vertices (processed by different parallel threads) with low synchroniza-
tion costs. We propose an eager conflict resolution approach to efficiently 
resolve coloring inconsistencies in multithreaded executions by minimizing 
data access costs.

•	 We evaluate ColorTM and BalColorTM using a wide variety of large real-
world graphs and demonstrate that they provide significant performance 
improvements over prior state-of-the-art graph coloring algorithms. Our pro-
posed algorithmic designs significantly improve performance in multithreaded 
executions of real-world end-applications.

2 � Prior graph coloring algorithms

In this section, we describe prior state-of-the-art graph coloring algorithms [27–31]. 
Section 2.1 presents the sequential graph coloring algorithm. Section 2.2 describes 
prior parallel (no guarantee on the sizes of color classes) graph coloring algorithms 
proposed in the literature, while Sect. 2.3 presents prior balanced (color classes are 
highly balanced) graph coloring algorithms proposed in the literature.

Fig. 1   The Greedy algorithm

https://github.com/cgiannoula/ColorTM
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2.1 � The greedy algorithm

Figure  1 presents the sequential graph coloring algorithm, called Greedy  [1]. 
Consider an undirected graph G = (V ,E) , and the neighborhood N(v) of a ver-
tex v ∈ V  defined as N(v) = {u ∈ V ∶ (v, u) ∈ E} . For each vertex v of the graph, 
Greedy records the colors of v′s adjacent vertices in a forbidden set of colors, 
and assigns the minimum legal color to the vertex v based on the forbidden set of 
colors.

The Greedy approach produces at most Δ + 1 colors [1], where Δ is the degree 
of the graph G. The degree of the graph is defined as Δ = max

v∈V
{deg(v)} , where 

deg(v) is the degree of a vertex v, which is the number of its adjacent vertices 
deg(v) = |N(v)| . However, finding the minimum number of colors to color a graph 
G is an NP-hard problem [35]. In this work, we have experimented with the first-fit 
ordering heuristic [1], in which the vertices of the graph are processed and colored 
in the order they appear in the input graph representation G, since this heuristic can 
provide high coloring quality based on prior works [1, 21, 36]. We leave the explo-
ration of other ordering heuristics for future work.

2.2 � Prior parallel graph coloring algorithms

To parallelize the graph coloring problem, the vertices of the graph are distributed 
among parallel threads. However, due to crossing edges, the coloring subproblems 
assigned to parallel threads are not independent, and the parallel algorithm may 
terminate with an invalid coloring. Specifically, a race condition arises when two 
parallel threads assign the same color to adjacent vertices. The algorithm implies 
that when a parallel thread updates the color of a vertex, the forbidden set of colors 
of the adjacent vertices has not been changed. Thus, the nature of this algorithm 
imposes that the reads to the colors of the adjacent vertices of a vertex v have to be 
executed atomically with the write-update to the color of the vertex v.

Fig. 2   The SeqSolve algorithm
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2.2.1 � The SeqSolve algorithm

Figure 2 presents the parallel graph coloring algorithm proposed by Gebremedhin 
et  al.  [28], henceforth referred to as SeqSolve. This algorithm consists of three 
steps: (i) multiple parallel threads iterate over the whole graph and speculatively 
color the vertices of the graph with no synchronization (lines 3–6), (ii) multiple 
parallel threads iterate over the whole graph and detect coloring inconsistencies 
that appeared in the (i) step (lines 7–13), and (iii) only one single thread resolves 
the detected coloring inconsistencies by re-coloring the conflicted vertices (lines 
14–16). Since the (iii) step is executed by only a single thread, no coloring inconsist-
encies appear after this step. Note that when a coloring conflict arises between two 
adjacent vertices, only one of the involved adjacent vertices needs to be re-colored, 
e.g., using a simple order heuristic among the vertices (line 11).

In the SeqSolve algorithm, we make three key observations. First, if the num-
ber of coloring conflicts arises in a multithreaded execution is low, the algorithm 
might scale well [28]. However, as the number of parallel threads increases and the 
graph becomes denser, i.e., the vertices of the graph have a large number of adjacent 
vertices, many more coloring conflicts arise in multithreaded executions. In such 
scenarios, a large number of coloring inconsistencies is resolved sequentially, i.e., 
by only one single thread, thus achieving limited parallelism. Second, we note Seq-
Solve traverses the whole graph at least two times, i.e., step (i) and step (ii). Assum-
ing large real-world graphs that do not typically fit in the Last Level Cache (LLC) 
of contemporary multicore platforms, the whole graph is traversed twice using the 
main memory, thus incurring high data access costs. Third, we observe that Seq-
Solve detects and resolves the coloring conflicts lazily, i.e., much later in the runt-
ime compared to the time that the coloring conflicts appear. Specifically, a coloring 
inconsistency in a vertex v might appear in step (i). However, SeqSolve detects the 
coloring inconsistency in vertex v in step (ii), i.e., after first coloring all the remain-
ing vertices of the graph. Similarly, SeqSolve resolves the coloring inconsistency of 
the vertex v in step (iii), i.e., after first detecting if coloring inconsistencies exist in 
all the remaining vertices of the graph (step (ii)). As a result, many conflicted ver-
tices are accessed multiple times in the runtime, however with a lazy approach, i.e., 
accessing them through the expensive last levels of the memory hierarchy of com-
modity platforms, thus incurring high data access costs.

2.2.2 � The IterSolve algorithm

Figure  3 presents the parallel graph coloring algorithm proposed by Boman 
et  al.  [27, 30], henceforth referred to as IterSolve. This algorithm consists of two 
repeated steps: (i) multiple parallel threads iterate over the uncolored vertices of the 
graph and speculatively color the uncolored vertices of the graph with no synchroni-
zation (lines 5–8), (ii) multiple parallel threads iterate over the recently colored ver-
tices of the graph and detect coloring inconsistencies appeared in the (i) step (lines 
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9–15). The steps (i) and (ii) are iteratively repeated until there are no coloring incon-
sistencies in any adjacent vertices of the graph.

In the IterSolve algorithm, we make four key observations. First, the program-
mer needs to explicitly define forward progress in the source code, so that the 
IterSolve algorithm terminates. Specifically, to ensure forward progress when a 
coloring inconsistency appears between two adjacent vertices, the programmer 
needs to explicitly define only one of them to be re-colored (line 13), e.g., based 
on the vertices’ ids. Otherwise, the two adjacent vertices may always obtain the 
same color, if they are always being processed by different threads. Second, simi-
larly to SeqSolve, IterSolve traverses the whole graph at least two times (steps (i) 
and (ii)), i.e., in the first iteration of the while loop in line 4, where the set U is 
equal to the set V (line 3). In the first iteration of the while loop, the whole large 
real-world graph is accessed through the main memory twice, thus incurring high 
data access costs. Third, similarly to SeqSolve, IterSolve detects and resolves 
the coloring conflicts lazily. Specifically, a coloring inconsistency in a vertex v 
might appear in step (i) (line 7), it is detected in step (ii) (line 13), i.e., after first 
coloring all the remaining uncolored vertices of the graph. Moreover, IterSolve 
resolves the coloring inconsistency of a vertex v in step (i) (with re-coloring), i.e., 
after first detecting if coloring inconsistencies exist in all the remaining recently 
colored vertices of the graph (step (ii)). Thus, IterSolve incurs high data access 
costs on the many conflicted vertices, which are accessed multiple times in the 
runtime with lazy approach, through the last levels of the memory hierarchy of 
commodity platforms. Fourth, the iterative process of resolving coloring conflicts 
may introduce new conflicts, and thus, IterSolve might need additional iterations 
to fix them. This scenario may happen when adjacent vertices are assigned to 
the same thread and incur coloring inconsistencies, they will be assigned and 
processed by different parallel threads in the next iteration. The authors of the 
original IterSolve papers [27, 30] empirically observe that a few iterations of Iter-
Solve are needed to produce a valid coloring. However, the authors used synthetic 
and not real-world graphs in their evaluation. In addition, the more iterations are 

Fig. 3   The IterSolve algorithm
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needed, the more lazy traversals on the conflicted vertices of the graph are per-
formed, which can significantly degrade performance.

2.2.3 � The IterSolveR algorithm

Figure  4 presents the parallel graph coloring algorithm proposed by Rokos 
et al. [29], henceforth referred to as IterSolveR. Rokos et al. observed that the Iter-
Solve algorithm (Fig.  3) can be improved by merging the steps (i) and (ii) into a 
single detect-and-re-color step, thus eliminating one of the two barrier synchroni-
zations of IterSolve (lines 8 and 15 in Fig.  3). When a coloring inconsistency on 
a vertex v is found, the vertex v can be immediately re-colored (line 18 in Fig. 4). 
However, the new re-coloring on the vertex v may again introduce a coloring incon-
sistency in multithreaded executions, since re-colorings are performed concurrently 
by multiple parallel threads (line 11). Therefore, the vertex v is marked as recently 
re-colored vertex (line 19), and needs to be re-validated in the next iteration of Iter-
SolveR. Overall, IterSolveR (Fig. 4) first speculatively colors all the vertices of the 
graph and marks them as recently colored vertices (lines 3–6). Then, it executes one 
single repeated step (lines 8–21): multiple parallel threads iterate over the recently 
colored vertices of the graph, and detect if coloring inconsistencies have appeared, 
which in that case are immediately resolved via re-coloring. This step is repeated 
until there are no recently re-colored vertices: in one single iteration of this step, 
there are no coloring inconsistencies detected in any adjacent vertices of the graph.

In the IterSolveR algorithm, even though one barrier synchronization is elimi-
nated compared to IterSolve, we observe that IterSolveR still traverses the whole 
graph at least twice: (i) in Step 0 (lines 4–5), and (ii) in the first iteration of the while 
loop in line 8, where the set U is equal to the set V (line 7), including all the vertices 
of the graph. Thus, IterSolveR traverses the large real-world graph twice through the 

Fig. 4   The IterSolveR algorithm
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main memory, incurring high data access costs. In addition, we find that similarly to 
SeqSolve and IterSolve, the IterSolveR algorithm also detects the coloring inconsist-
encies lazily. Specifically, a coloring inconsistency on a vertex v might appear in the 
re-coloring process of lines 17–19, since the re-coloring process is concurrently exe-
cuted on multiple conflicted vertices by multiple parallel threads. However, re-col-
oring inconsistencies of lines 17–19 are detected in the next iteration of the step (i) 
in lines 13–16, i.e., after first processing all the remaining vertices of the set U (line 
11). Therefore, as we demonstrate in our evaluation (Sect. 5.2), IterSolveR is still 
inefficient, incurring high data access costs on multiple conflicted vertices which are 
accessed multiple times in the runtime with a lazy approach.

2.3 � Prior balanced graph coloring algorithms

To provide a balanced coloring on a graph in which the color classes produced 
include almost the same number of vertices, an initial graph coloring is obtained 
using a balanced-oblivious algorithm (e.g., see Sect. 2.2), and subsequently the bal-
anced graph coloring is obtained using a balanced-aware (henceforth referred to as 
balanced for simplicity) graph coloring algorithm, as we describe next. Specifically, 
given a graph G = (V ,E) , we can assume that the number of colors produced by the 
initial coloring step (i) is C. A strictly balanced graph coloring results in the size 
of each color class being b = V∕C.2 Therefore, we refer to the color classes whose 
sizes are greater than b as over-full classes, and those whose sizes are less than b as 
under-full classes. Balanced graph coloring algorithms leverage the quantity of b, 
which can be extracted by first executing an initial balanced-oblivious graph color-
ing on the graph, in order to provide balanced color classes on a graph.

Fig. 5   The CLU algorithm

2  Please note that in our work we make the following assumption: in a real-world end-application, the 
vertices of the graph represent sub-tasks that have almost equal load/weights of computation. If the ver-
tices of the input graph have different load/weights of computation, a pre-processing step needs to be 
applied in the original graph: vertices with large computation weights/load are split into multiple smaller 
vertices, each of them has one weight/load unit of computation.
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2.3.1 � The Color‑Centric (CLU) algorithm

Figure 5 presents the color-centric balanced graph coloring algorithm proposed by 
Lu et al. [31], henceforth referred to as CLU. In this scheme, vertices belonging in 
the same color class are processed concurrently, and a subset of vertices from each 
over-full color class is moved to under-full color classes in order to achieve high 
color balance. Only vertices belonging in over-full color classes are considered for 
re-coloring, while graph coloring balance is achieved without increasing the number 
of color classes produced by the initial graph coloring.

The CLU algorithm (Fig.  5) processes the over-full color classes sequentially 
(lines 6 and 16), while vertices belonging to the same over-full color class are pro-
cessed concurrently (line 8). CLU iterates over each vertex v of an over-full color 
class, and finds the minimum color of an under-full color class that is permissible 
to be assigned at the vertex v (line 11). If such a color exists, the vertex v is re-
colored with a color of an under-full color class (lines 12–15). The CLU algorithm 
iterates over the vertices of each over-full color class until that particular over-full 
class becomes balanced at a certain point in the execution, i.e., until when its size 
becomes smaller or equal to b (lines 9–10). Then, the vertices belonging to that 
color class are no longer considered for re-coloring (line 10). Thus, this algorithm 
terminates when either vertex-balance across color classes is achieved or vertex-bal-
ance across color classes is no longer available, i.e., there are no more permissible 
re-colorings for any vertex belonging in an over-full color class.

In the CLU algorithm, we make two key observations. First, parallel threads 
always process vertices of the same color, thus no coloring inconsistencies are pro-
duced: since vertices had the same color in the initial coloring, they are not adjacent 
vertices, and thus they can be re-colored with the same color of an under-full color 
class without violating correctness. This way, CLU requires only one iteration over 
the vertices of all the over-full color classes. Second, the parallel performance of 
CLU depends on the number of the over-full color classes produced in the initial 
coloring. CLU requires F steps, where F is the number of over-full color classes 
produced in the initial coloring. At each of these steps, i.e., for each over-full color 
class on the initial coloring, CLU introduces a barrier synchronization among paral-
lel threads (line 16). This way, it increases the synchronization costs, which might 
significantly degrade scalability in multithreaded executions.

2.3.2 � The Vertex‑Centric (VFF) algorithm

Figure 6 presents the vertex-centric balanced graph coloring algorithm proposed by 
Lu et  al.  [31], henceforth referred to as VFF. The VFF algorithm is the balanced 
graph coloring counterpart of the IterSolve algorithm (Fig. 3). In this scheme, verti-
ces from different color classes are processed concurrently by parallel threads. Thus, 
in contrast to CLU, VFF introduces coloring inconsistencies. However, similarly to 
CLU, in VFF only vertices belonging in over-full color classes are considered for 
re-coloring, i.e., to be moved to under-full color classes, while graph coloring bal-
ance is also achieved without increasing the number of color classes produced by the 
initial graph coloring.
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Similarly to IterSolve, VFF (Fig. 6) consists of two repeated steps: (i) multiple 
parallel threads iterate over vertices of over-full color classes and speculatively re-
color them with permissible colors of under-full color classes, if possible (lines 
8–18), and (ii) multiple parallel threads iterate over the recently re-colored verti-
ces and detect coloring inconsistencies that appeared in the (i) step (lines 19–26). 
Similarly to CLU, VFF iterates over the vertices of an over-full color class until that 
particular over-full class becomes balanced at a certain point in the execution, i.e., 
until when its size becomes smaller or equal to b (lines 11–12). Then, the vertices 
belonging to that particular color class are no longer considered for re-coloring (line 
12). The steps (i) and (ii) are iteratively repeated until there are no coloring incon-
sistencies in any adjacent vertices of the graph, and the algorithm terminates when 
either vertex-balance across color classes is achieved or vertex-balance across color 
classes is no longer available, i.e., there are no more permissible re-colorings for any 
vertex belonging in an over-full color class.

Since VFF is the balanced graph coloring counterpart of IterSolve, we report 
similar key observations for them. First, VFF detects and resolves the coloring con-
flicts lazily. Specifically, a coloring inconsistency in a vertex v might appear in step 
(i), while it is detected in step (ii), i.e., after first iterating over all the remaining ver-
tices of over-full color classes. Moreover, VFF resolves the coloring inconsistency 
in a vertex v in step (i) (re-coloring), i.e., after first detecting if coloring inconsisten-
cies exist in all the remaining recently re-colored vertices (in step (ii) of the previ-
ous iteration). Thus, VFF incurs high data access costs due to accessing multiple 
conflicted vertices in the runtime through the last levels of the memory hierarchy 
of commodity platforms. Second, the iterative process of resolving coloring con-
flicts may introduce new conflicts, and thus, VFF might need additional iterations 

Fig. 6   The VFF algorithm
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to fix them. This scenario may happen when adjacent vertices are assigned to the 
same thread and incur coloring inconsistencies, they will be assigned and processed 
by different parallel threads in the next iteration. Note that the more iterations are 
needed, the more lazy traversals on the conflicted vertices of the graph are per-
formed, which might significantly degrade performance.

2.3.3 � The recoloring algorithm

Figure 7 presents the re-coloring balanced graph coloring algorithm proposed by Lu 
et al.  [31], henceforth referred to as Recoloring. Recoloring is similar to the VFF 
(Fig. 6) and IterSolve (Fig. 3) schemes. The key idea of this algorithm is that after 
performing an initial graph coloring with C colors, all the vertices of the graph are 
re-colored, having an additional condition on the color selection in order to achieve 
better vertex balance across color classes compared to that produced by the initial 
graph coloring. Specifically, Recoloring leverages the perfect balance b = V∕C 
known from the initial graph coloring, and keeps track the sizes of the color classes 
during the execution in order to improve vertex balance across color classes as fol-
lows: each vertex is re-colored using the minimum permissible color k such that the 
size of the color class k is less than b.

Similarly to IterSolve and VFF, Recoloring (Fig. 7) consists of two repeated steps: 
(i) multiple parallel threads iterate overall the vertices of the graph and speculatively 
re-color them with a new permissible color k, that satisfies the condition that the 
size of the color class k is less than b (lines 12–17), and (ii) multiple parallel threads 
iterate over the recently re-colored vertices and detect coloring inconsistencies that 

Fig. 7   The Recoloring algorithm
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appeared in the (i) step (lines 18–25). The steps (i) and (ii) are iteratively repeated 
until there are no coloring inconsistencies in any adjacent vertices of the graph. In 
contrast to VFF and CLU, Recoloring does not guarantee that the graph color bal-
ance achieved uses the same number of colors with the initial graph coloring. To 
avoid producing a large number of color classes, the Recoloring scheme [31] (Fig. 7) 
re-colors the vertices of the graph with the following order: assuming that the verti-
ces of the graph are ordered such that the vertices of the same color class are listed 
consecutively (line 6), Recoloring iterates over the vertex sets of the color classes in 
the reverse order compared to that produced in the initial graph coloring, i.e., start-
ing from the vertices assigned to the color class with the largest index (See line 8). 
The rationale behind this heuristic is that the vertices that are "difficult" to color, 
i.e., in the initial graph coloring they are assigned to a color class with large index, 
will be processed early, thus aiming to produce a small number of color classes. For 
more details, we refer the reader to [31].

In Recoloring, we make three key observations. First, Recoloring traverses the 
whole graph, i.e., it re-colors all the vertices of the graph, while CLU and VFF re-
color only a subset of the vertices of over-full color classes. As a result, Recoloring 
performs a much larger number of computations and memory accesses compared 
to VFF and CLU. Second, similarly to IterSolve and VFF, Recoloring detects and 
resolves coloring inconsistencies with a lazy approach, thus incurring high data 
access costs. Recoloring may also introduce new conflicts, thus resulting in addi-
tional iterations to fix them. Third, even though Recoloring employs a different ver-
tex ordering heuristic to re-color vertices compared to that used in the initial graph 
coloring (vertices are colored with the order they appear in the input graph), there 
is no guarantee on the number of color classes that will be produced. As we dem-
onstrate in our evaluation (Sect.  5.3), Recoloring might significantly increase the 
number of color classes produced compared to that produced in the initial graph 
coloring.

3 � ColorTM: overview

In the graph coloring kernel, there are three key optimization aspects: (i) minimize 
the number of colors used to color the vertices of the input graph, (ii) minimize 
the actual execution time it takes to color the vertices of the input graph, and (iii) 
minimize the actual execution time it takes to balance the vertices across the color 
classes produced. Our goal in this work is to improve the last two key aspects of 
the graph coloring kernel. Our proposed algorithmic design is a high-performance 

Fig. 8   A naive approach
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graph coloring algorithm for multicore platforms. ColorTM provides low synchro-
nization and data access costs by relying on two key techniques, that we describe in 
detail next.

3.1 � Speculative computation and synchronization

As already discussed, the graph coloring kernel implies that the reads to the colors 
of the adjacent vertices of a vertex v have to be executed atomically with the write-
update to the color of the vertex v. Figure 8 presents a straightforward parallelization 
scheme of the graph coloring problem. A naive parallelization approach would be 
to distribute the vertices of the graph across parallel threads, and for each vertex to 
include within a critical section the whole block of code that computes and assigns a 
permissible color to that vertex. However, this approach results to large critical sec-
tions with large data access footprints and long duration, and significantly limits the 
amount of parallelism and the scalability to a large number of threads.

We observe that it is not necessary to include inside the critical section (i) the 
computations performed to find a permissible color for a vertex v, and (ii) the 
accesses to all the adjacent vertices of the vertex v. Figure 9 presents an overview 
of ColorTM. For each vertex v, we design ColorTM to implement a speculative 
computation scheme through two sub-steps: (i) speculatively compute a permissible 
color k for the vertex v (line 5) without using synchronization and track the set of 
critical adjacent vertices (line 6), i.e., a subset of v’s adjacent vertices that can cause 
coloring inconsistencies with the vertex v (see Sect. 4.2 for more details), and (ii) 
execute a critical section (using synchronization) that validates the speculative color 
k computed in step (i) over the colors of the critical adjacent vertices (lines 8–9) and 
assigns the color k to the vertex v, if the validation succeeds (lines 10–14). With the 
proposed speculative computation scheme, we provide small critical sections, i.e., 

Fig. 9   ColorTM: overview
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having small data access footprints and short duration, thus achieving high amount 
of parallelism and high scalability to a large number of threads.

In addition, we leverage Hardware Transactional Memory (HTM) to implement 
synchronization on critical sections (lines 7, 12, and 14 of Fig. 9). HTM enables a 
speculative synchronization mechanism: multiple critical sections of parallel threads 
are executed concurrently with an optimistic approach that they will not cause 
any data inconsistency, even though their data access sets might overlap. In con-
trast, fine-grained locking with software-based locks (e.g., provided by the pthread 
library) constitutes a more conservative synchronization approach: multiple criti-
cal sections of parallel threads are executed concurrently, only if their data access 
sets do not overlap. Therefore, HTM can enable a higher number of critical sections 
to be executed in parallel compared to that enabled with the fine-grained locking 
scheme. We provide more details in Sect. 4.1. With the speculative synchronization 
approach of HTM, ColorTM further minimizes synchronization costs and provides 
high amount of parallelism.

3.2 � Eager coloring conflict detection and resolution

We design ColorTM to detect and resolve coloring inconsistencies eagerly, i.e., 
immediately detecting and resolving coloring inconsistencies at the time that the 
coloring conflicts appear. This way, the conflicted vertices are accessed multiple 
times, however within a short time during runtime. Therefore, application data cor-
responding to conflicted vertices can remain and be located in the first levels of the 
memory hierarchy of commodity platforms (i.e., in the low-cost cache memories), 
thus enabling ColorTM to improve performance by achieving low data access costs.

In Fig.  9, parallel threads concurrently compute speculative colors for multi-
ple vertices of the graph (lines 4–6), and at that time coloring inconsistencies may 
appear. Then, parallel threads immediately detect possible coloring conflict incon-
sistencies for the current vertices using synchronization (lines 7-14). This way, par-
allel threads detect conflicts by accessing application data with low access latencies, 
since the data accessed in lines 7–14 has just been accessed within a short time, i.e., 
in lines 4–6. Next, if coloring conflicts arise (line 13), parallel threads immediately 
resolve the coloring conflicts by directly retrying to find new colors for the current 
vertices (goto RETRY​ inline 15) (without proceeding to process new vertices). 
This way, parallel threads resolve conflict inconsistencies by accessing application 
data with low access latencies, since the data accessed in lines 4–6 after the execu-
tion of goto RETRY​ has just been accessed within a short time, i.e., in lines 7–14 
of the previous iteration.

In ColorTM, we highlight two important key design choices. First, ColorTM 
executes only one single parallel step (line 2). In contrast to prior state-of-the-art 
parallel graph coloring algorithms  [27–31], ColorTM completely avoids barrier 
synchronization among parallel threads: multiple parallel threads repeatedly iterate 
over each vertex of the graph until a valid coloring is found. By completely avoiding 
barrier synchronization, ColorTM can provide high scalability. Second, ColorTM 
does not perform re-colorings to vertices: once a vertex is assigned a permissible 
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color, it will not be re-colored again during the runtime. This way, colored vertices 
will not introduce coloring inconsistencies with vertices that will be processed next. 
Prior lazy iterative graph coloring schemes including IterSolve, IterSolveR, VFF and 
Recoloring do not use data synchronization when they assign permissible colors to 
vertices. This way, many vertices are re-colored multiple times with different colors 
during runtime, and thus new additional coloring inconsistencies might be intro-
duced due to re-colorings. Instead, ColorTM employs HTM synchronization (lines 
7, 12 and 14 of Fig.  9) when it assigns permissible colors to vertices (line 11 of 
Fig. 9). This way, vertices are assigned only one final color during the runtime, thus 
avoiding introducing new coloring inconsistencies due to re-colorings.

4 � ColorTM: detailed design

ColorTM [33] is a high-performance graph coloring algorithm that leverages HTM 
to implement synchronization among parallel threads, and performs speculative 
computations outside the critical section in order to minimize the memory footprint 
and computations executed inside the critical section. In the section, we describe the 
detailed design and correctness of ColorTM. We also extend our proposed design 
to introduce a new balanced graph coloring algorithm, named BalColorTM, which 
evenly distributes the vertices of the graph across color classes.

4.1 � Speculative synchronization via HTM

ColorTM leverages HTM to implement synchronization among parallel threads 
instead of using fine-grained locking. As already discussed, HTM is a more optimis-
tic synchronization approach and can provide higher levels of parallelism compared 
to the fine-grained locking scheme. Specifically, multiple critical sections with over-
lapped data access sets can be executed in parallel with HTM, while they need to be 
executed sequentially with fine-grained locking.

(a) (b)

Fig. 10   An example execution scenario in which threads T1 and T2 attempt to concurrently find colors 
for the vertices v and x, respectively, using a HTM and b fine-grained locking for synchronization. The 
white circles represent uncolored vertices, and the colorful circles represent vertices that have already 
obtained a color
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Figure 10 provides an example of the aforementioned scenario in graph coloring. 
Consider the scenario where thread T1 attempts to assign a color to the vertex v, 
and thread T2 attempts to assign a color to the vertex x. Thread T1 needs to atomi-
cally read the colors of the adjacent vertices of the vertex v, i.e., u, r, z vertices, and 
write the corresponding color to the vertex v. Similarly, Thread T2 needs to atomi-
cally read the colors of the adjacent vertices of the vertex x, i.e., u vertex, and write 
the corresponding color to the vertex x. With HTM (Fig. 10a), T1’s and T2’s trans-
actions can be executed and committed concurrently: neither the write-set of T1’s 
transaction does not conflict with the read-set of T2’s transaction, nor the write-set 
of T2’s transaction does not conflict with the read-set of T1’s transaction. Therefore, 
even though T1’s and T2’s critical sections have overlapped data access sets, i.e., 
both of them include the color of the vertex u in their read-sets, they can be executed 
concurrently with HTM. In contrast, with fine-grained locking, T1’s and T2’s critical 
sections are executed sequentially (Fig. 10b): threads T1 and T2 compete to acquire 
the same lock, i.e., the lock associated with the vertex u, in order to execute their 
critical sections. Thus, only one of threads T1 and T2 will acquire the lock, and will 
proceed. Given that T1’s and T2’s critical sections have overlapped data access sets, 
i.e., both of them include the color of the vertex u in their read-sets, they will be 
executed sequentially when using the fine-grained locking scheme for synchroniza-
tion. As a result, we conclude that in graph coloring HTM can provide higher levels 
of parallelism compared to fine-grained locking.

To this end, ColorTM employs HTM to deal with race conditions that arise when 
parallel threads concurrently process adjacent vertices. HTM can detect and resolve 
coloring inconsistencies among parallel threads as follows:

–	 HTM can detect coloring conflicts HTM detects coloring conflicts that arise due 
to crossing edges. For a vertex v to be colored, we enclose within the transaction 
(i) the memory location that stores the color of the current vertex v (the transac-
tion’s write-set), and (ii) the memory locations that store the colors of the criti-
cal adjacent vertices of the vertex v (the transaction’s read-set). When parallel 
threads attempt to concurrently update-write the colors of adjacent vertices using 

Fig. 11   An example execution scenario in which threads T1 and T2 attempt to concurrently update the 
colors of the vertices v and u, respectively, using two different transactions, and the HTM mechanism 
detects read-write conflicts to their data sets. The white circles represent uncolored vertices, and the 
colorful circles represent vertices that have already obtained a color
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different transactions, the HTM mechanism detects read-write conflicts across 
the running transactions: a running transaction attempts to write the read-set of 
another running transaction. Figure  11 provides an example scenario on how 
HTM detects coloring inconsistencies among two parallel threads. When the 
thread T1 attempts to color the vertex v using HTM, the corresponding running 
transaction includes the memory location of the color of the vertex v in its write-
set, and the memory locations of the colors of the v’s adjacent vertices, i.e., u, r 
and z vertices, in its read-set. Similarly, when the thread T2 attempts to color the 
vertex u using HTM, the corresponding running transaction includes the memory 
location of the color of the vertex u in its write-set, and the memory locations of 
the colors of the u’s adjacent vertices, i.e., v and x vertices, in its read-set. When 
T1′s and T2′s transactions are executed concurrently, HTM detects a read-write 
conflict either on the color of the vertex v or the color of the vertex u: either T1′s 
transaction attempts to write the read-set of T2′s transaction or T2′s transaction 
attempts to write the read-set of T1′s transaction. Therefore, one of the two run-
ning transactions will be aborted by the HTM mechanism, and the other one will 
be committed.

–	 HTM can resolve coloring conflicts In case of n conflicting running transactions 
(read-write conflicts explained in Fig. 11), the HTM mechanism aborts n − 1 run-
ning transactions and commits only one of them. In prior graph coloring schemes 
such as SeqSolve (line 11 of Fig. 2), IterSolve (line 13 of Fig. 3), VFF (line 23 
of Fig. 6) and Recoloring (line 22 of Fig. 7), the programmer explicitly defines 
a coloring conflict resolution policy among conflicted vertices to guarantee for-
ward progress, i.e., the programmer explicitly defines which of the conflicted 
vertices will be re-colored next. In contrast, in ColorTM when coloring conflicts 
arise among multiple running transactions, the programmer does not need to 
explicitly define a conflict resolution policy: the HTM mechanism itself com-
mits one of the multiple conflicted transactions and aborts the remaining running 
transactions. Thus, the conflict resolution policy implemented in the underlying 
hardware mechanism of HTM determines which vertices will continue to be pro-
cessed for coloring.

However, currently available HTM systems [37–40] are best-effort HTM imple-
mentations that do not guarantee forward progress: a transaction may always fail 
to commit and thus, a non-transactional execution path (fallback path) needs to be 
implemented. The most common fallback path is to implement a coarse-grained 
locking solution: each transaction can be retried up to a predefined number of times 
(pre-determined threshold), and if it exceeds this threshold, it fall backs to the acqui-
sition of global lock, which allows only one single thread to execute its critical sec-
tion. To implement this, the global lock is added to the transactions’ read sets: inside 
the transaction the thread always reads the value of the global lock variable. During 
the multithreaded execution, when the transaction of a parallel thread exceeds the 
predefined threshold of retries, the parallel thread acquires the global lock by writ-
ing to the value of the global lock variable, and then the concurrent running transac-
tions of the remaining threads are aborted (read-write conflict) and wait until the 
global lock is released.
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4.2 � Critical adjacent vertices

ColorTM implements a speculative computation approach to achieve high perfor-
mance. Specifically, for each vertex v, all necessary computations to find a permis-
sible color k are performed outside the critical section (line 5 in Fig. 9) such that 
avoid unnecessary computations inside the critical sections. Within the critical sec-
tion, ColorTM only validates the speculative color k (line 9 in Fig. 9) by comparing 
it with the colors of the adjacent vertices of vertex v. However, the speculative color 
k for a vertex v does not need to be validated with the colors of all the adjacent ver-
tices of vertex v: we observe that some adjacent vertices can be omitted from the 
validation process of the critical section, because they do not cause any coloring 
inconsistency with the vertex v. Specifically, we can omit from the validation step 
performed within the critical section the following adjacent vertices of vertex v: 

1.	 The adjacent vertices that are assigned to be processed by the same thread with 
the vertex � . Given that the vertices of the graph are distributed across multiple 
threads, coloring conflicts cannot arise between adjacent vertices that are assigned 
to the same parallel thread. Therefore, we omit from the validation step of the 
critical section the adjacent vertices assigned to the same thread as the current 
vertex v.

2.	 The adjacent vertices that have already obtained a color. As already explained, 
ColorTM does not perform re-colorings to the vertices of the graph: once a vertex 
is assigned a permissible color within the critical section (using synchronization), 
it will not be re-colored again during runtime. Multiple parallel threads repeat-
edly iterate over a vertex until a valid coloring is found, which is assigned to it 
using data synchronization, and then proceed to the remaining vertices. Therefore, 
in ColorTM coloring conflicts do not arise between adjacent vertices that have 
already obtained a color: the colors assigned to adjacent vertices are taken into 
consideration in the computations performed outside the critical section (line 5 
in Fig. 9) to find a speculative color for the current vertex, and will not be modi-
fied when the critical section is executed (lines 7–15 in Fig. 9), since ColorTM 

Fig. 12   An example execution scenario in which the graph is partitioned across two parallel threads. The 
white circles represent uncolored vertices, and the colorful circles represent vertices that have already 
obtained a color. When the threads T1 and T2 attempt to color the vertices v and u, respectively, the criti-
cal adjacent vertices that need to be validated within the critical section (HTM) are only the vertices u 
and v, respectively
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does not perform re-colorings. Therefore, adjacent vertices of a vertex v that have 
already obtained a color when the speculative coloring computation step (line 5 in 
Fig. 9) is executed, do not cause any coloring inconsistency when critical section 
is executed (lines 7–15 in Fig. 9). Hence, we can safely omit from the validation 
step of the critical section the adjacent vertices that have already been assigned 
a color.

Figure 12 presents an example execution scenario of a graph partitioned across two 
parallel threads T1 and T2. In Fig. 12, the white vertices represent uncolored ver-
tices and the colorful vertices represent vertices that have already obtained a color 
during runtime. In this scenario, threads T1 and T2 attempt to color the vertices v 
and u, respectively. According to our described optimizations, the adjacent vertices 
that need to be validated inside the critical sections (via HTM) of the vertices v and 
u are only the vertices u and v, respectively.

Overall, for the current vertex v to be colored, the necessary adjacent vertices that 
need to be validated inside the critical section, referred to as critical adjacent verti-
ces, are the uncolored adjacent vertices assigned to different parallel threads com-
pared to the thread to which the vertex v is assigned to. By accessing inside the criti-
cal section only a few data needed to ensure correctness, ColorTM provides short 
critical sections and small transaction footprints, and achieves high levels of paral-
lelism and low synchronization costs, i.e., low abort ratio in hardware transactions 
of HTM (see Sect. 1). Note that having large transactions footprints in HTM transac-
tions can cause three important problems: (i) if the transaction read- and write-sets 
are large, the available hardware buffers of HTM may be oversubscribed (hardware 
overflow), and in that case the HTM mechanism will abort the running transactions 
due to capacity aborts, (ii) if the duration of a running transaction is long (e.g., due 
to expensive data accesses), the running transactions may be aborted due to a time 
interrupt (when the duration of a transaction exceeds the time scheduling quantum, 
the OS scheduler schedules out the software thread from the hardware thread and 
the transaction is aborted), and (iii) the longer the transactions last and the larger 
their data sets are, the greater the probability that running transactions are aborted 
due to (read-write) data conflicts among them.

4.3 � Implementation details

Figure 13 presents ColorTM in detail. ColorTM distributes the vertices of the graph 
across multiple threads, which color the vertices of the graph through one single 
parallel step (lines 4–29): multiple parallel threads repeatedly iterate over each ver-
tex of the graph until a valid coloring on each vertex is performed.

For each vertex v, there are two sub-steps. In the first sub-step (lines 6–13), the 
parallel thread keeps track (i) the forbidden set of colors assigned to the adjacent 
vertices of the vertex v (line 10), and (ii) the critical adjacent vertices of the vertex v 
(lines 11–12), which are the uncolored adjacent vertices assigned to different paral-
lel threads (line 11), and then computes a speculative color k that is permissible for 
the vertex v using the compute_speculative_color() function (line 13). 
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In the second sub-step (lines 14–29), the parallel thread validates and assigns (if 
allowed) the speculative color k to the vertex v using data synchronization via HTM 
(lines 18–29). Specifically, the colors of the critical adjacent vertices are compared 
to the speculative color k within a hardware transaction (lines 20–23) to ensure that 
the color k is still permissible to be assigned to the vertex v. If the validation suc-
ceeds (line 24), the color k is assigned to the vertex v within the same transaction 
(line 25) to ensure correctness: recall that the reads on the colors of the critical 
adjacent vertices need to be executed atomically with the write-update on the color 
of the vertex v. Instead, if the validation step fails due to a coloring inconsistency 
appeared during runtime (line 27), the parallel thread repeatedly and eagerly retries 
to find a new permissible color for the current vertex v (line 29). Note that if there 
are no critical adjacent vertices to be validated (line 15), the speculative color k is 
directly assigned to the vertex v without using synchronization (line 16).

Note that in the second sub-step (lines 14–29), ColorTM does not check if the 
colors of the critical adjacent vertices have not been modified since the first sub-
step (lines 6–13). Instead, the validation of the second sub-step only checks that the 
colors of the critical adjacent vertices are different from the speculative color k com-
puted in the first sub-step (line 13). In the meantime, different parallel threads may 
have just assigned new colors to critical adjacent vertices, which however are differ-
ent from the color k, and thus causing no coloring inconsistencies. In that scenario, 
the validation of the second sub-step succeeds. This way, ColorTM provides high 

Fig. 13   The ColorTM algorithm
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levels of parallelism: multiple parallel threads that have just assigned different colors 
than the color k to critical adjacent vertices of the vertex v will not cause any vali-
dation failure in the critical section of the vertex v, and the corresponding running 
transaction will be safely committed.

4.4 � Progress and correctness

We clarify in detail how ColorTM resolves the race conditions that may arise during 
runtime. There are two race conditions that may cause coloring inconsistencies in 
multithreaded executions. First, while a parallel thread computes a speculative color 
k for the vertex v (lines 9–13 of Fig.  13), different parallel threads may have just 
assigned the color k to one or more adjacent vertices of the vertex v. In that scenario, 
the validation step of lines 20–23 of Fig. 13 fails (line 22, 27), since the speculative 
color k has been assigned to at least one critical adjacent vertex (line 21). Then, the 
corresponding parallel thread will retry to find a new permissible color for the ver-
tex v (line 29). Second, a race condition arises when n parallel threads (assuming n 
> 1) attempt to write-update the same color k to n adjacent vertices (fully connected 
adjacent vertices) within n different running transactions. In that scenario, the HTM 
mechanism detects read-write data conflicts on running transactions, because one 
(or more) running transaction attempts to write to the read-sets of another running 
transactions. Recall that the colors of the critical adjacent vertices are included in 
the read-set of each running transaction (lines 21 of Fig. 13). Then, the HTM mech-
anism aborts n − 1 running transactions, and commits only one of them. When the 
aborted n − 1 transactions retry (each transaction can retry up to a predefined num-
ber of times), the validation step of lines 20–23 fails (lines 27 of Fig. 13), since at 
that time the n − 1 parallel threads observe that there is one critical adjacent vertex 
that has just been assigned to the color k (the committed transaction). Afterwards, 
since the validation failed, the n − 1 parallel threads will retry to find new permis-
sible colors for their current vertices (lines 27–29 of Fig. 13).

Finally, we clarify that ColorTM provides forward progress and eventually ter-
minates: each parallel thread retries to find a new permissible color for a current 
vertex v (line 29 of Fig. 13) up to a limited number of retries. Specifically, a paral-
lel thread retries to find a new color for a vertex v, when the validation step of lines 
20–23 of Fig. 13 fails. However, for each vertex v the validation step can fail up to 
a bounded number of times: the validation step fails when one (or more) critical 
adjacent vertex has been assigned to the same color k′ with the speculative color k 
computed for the vertex v. Therefore, in the worst case, the validation step might fail 
up to deg(v) times, where deg(v) is the adjacency degree of the vertex v. When all 
v’s adjacent vertices have obtained a color, there are no critical adjacent vertices to 
be validated (line 15 of Fig. 13), and thus, the speculative color k is directly assigned 
to the vertex v (line 16 of Fig. 13), and the validation step is omitted. As a result, 
each parallel thread retries to find a color for each vertex v of the graph at most 
deg(v) times. However, in our evaluation, we find that the validation step fails only 
for a few times: across all our evaluated large real-world graphs (Table 1) and using 
a large number of parallel threads (up to 56 threads) the validation step failures are 
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less than 0.01%. Overall, we conclude that ColorTM correctly handles all the race 
conditions that may arise in multithreaded executions of the graph coloring kernel, 
and effectively terminates with a valid coloring.

4.5 � The BalColorTM algorithm

Figure 14 presents the balanced counterpart of ColorTM, named as BalColorTM. 
Similarly to CLU and VFF, in BalColorTM (i) only the vertices of the over-full color 
classes are considered for re-coloring, i.e., to be moved from over-full to under-full 
color classes in order to achieve high vertex-balance across color classes, and (ii) 

Fig. 14   The BalColorTM algorithm
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graph coloring balance is achieved without increasing the number of color classes 
produced by the initial graph coloring (e.g., using ColorTM).

Similarly to ColorTM, BalColorTM (Fig. 14) has one single parallel step (lines 
7–42): multiple parallel threads repeatedly iterate over each vertex of the over-full 
color classes until either a valid re-coloring to an under-full class is performed, or 
there is no permissible re-coloring for this vertex to an under-full color class (line 
42). For each vertex of an over-full color class c, there are two sub-steps. In the 
first sub-step (lines 8–20), the parallel thread keeps track the forbidden set of colors 
assigned to the adjacent vertices of the vertex v (line 16), and the set of the critical 
adjacent vertices (lines 17–18) of the vertex v. In BalColorTM, note that the criti-
cal adjacent vertices of a vertex v (line 17) are the adjacent vertices that (i) belong 
to over-full color classes (recall that the vertices assigned under-full color classes 
are not considered to be re-colored/moved, and thus they do not cause any coloring 
inconsistency during runtime), and (ii) are assigned to different threads compared 
to the parallel thread in which the vertex v is assigned to. Then, the parallel thread 
speculatively computes a color k of an under-full color class that is permissible to 
be assigned to the vertex v (lines 19–20). If a permissible color k exists (without 
increasing the number of color classes produced by the initial graph coloring), the 
parallel thread attempts to assign the speculative color k to the vertex v in the sec-
ond sub-step (lines 21–42). If there is no permissible color k of an under-full color 
class (line 41), the parallel threads continue to process the next vertices (line 42). In 
the second sub-step, if there are critical adjacent vertices that need to be validated, 
the parallel thread validates the speculative color k over the colors of the critical 

Table 1   Large real-world graph dataset

Graph name #Vertices #Edges degmax degavg degstd
degstd

degavg

Queen_4147 (qun) 4,147,110 329,499,284 81 79.45 6.34 0.080
Geo_1438 (geo) 1,437,960 63,156,690 57 43.92 4.39 0.100
Flan_1565 (fln) 1,564,794 117,406,044 81 75.03 11.43 0.152
Bump_2911 (bum) 29,11,419 127,729,899 195 43.87 6.96 0.159
Serena (ser) 1,391,349 64,531,701 249 46.38 9.24 0.199
delaunay_n24 (del) 16,777,216 100,663,202 26 5.99 1.34 0.222
rgg_n_2_23_s0 (rgg) 8,388,608 127,002,786 40 15.14 3.89 0.257
kmer_A2a (kmr) 170,728,175 360,585,172 40 2.11 0.57 0.267
cage15 (cag) 5,154,859 99,199,551 47 19.24 5.73 0.298
road_usa (usa) 23,947,347 57,708,624 9 2.41 0.93 0.386
dielFilterV3real (dlf) 1,102,824 89,306,020 270 80.98 36.56 0.451
audikw_1 (aud) 943,695 77,651,847 345 82.29 42.44 0.516
vas_stokes_2M (vas) 2,146,677 65,129,037 637 30.34 37.18 1.226
stokes (stk) 11,449,533 349,321,980 720 30.51 41.44 1.358
uk-2002 (uk) 18,520,486 298,113,762 2450 16.10 27.53 1.710
soc-LiveJournal1 (soc) 4,847,571 68,993,773 20,293 14.23 36.08 2.535
arabic-2005 (arb) 22,744,080 639,999,458 9905 28.14 78.84 2.802
FullChip (fch) 2,987,012 26,621,990 2,312,481 8.91 1806.80 202.725
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adjacent vertices within an HTM transaction (lines 27–39). If the validation suc-
ceeds (line 33), the parallel thread moves the vertex v from the color class c to the 
color class k by re-coloring it (line 34), and atomically updates the sizes of the color 
classes c and k (lines 36–37) accordingly. If the validation step fails due to a col-
oring inconsistency appeared during runtime (line 38), the parallel thread eagerly 
retries to find a new permissible color of an under-full color class for the vertex v 
(line 40). Finally, note that BalColorTM iterates over the vertices of each over-full 
color class until that particular over-full class becomes balanced at a certain point in 
the execution (lines 9–10), i.e., until the size of the particular color class becomes 
smaller or equal to b = V∕C . Then, the vertices belonging to that color class are no 
longer considered for re-coloring (line 10). Overall, BalColorTM terminates when 
either vertex-balance across color classes is achieved or vertex-balance across color 
classes is no longer available, i.e., there are no more permissible re-colorings for any 
vertex belonging to an over-full color class.

Similarly to ColorTM, BalColorTM completely avoids barrier synchronization, 
since it includes only one single parallel step. This way BalColorTM significantly 
minimizes synchronization costs compared to prior balanced graph coloring algo-
rithms (e.g., CLU, VFF, Recoloring) that employ barrier synchronization. Moreover, 
it also integrates an eager approach to detect and resolve coloring conflicts appear-
ing during runtime among parallel threads, that concurrently move vertices from 
over-full to under-full color classes. With the eager coloring policy, BalColorTM 
provides high performance by minimizing access latency costs to application data 
compared to that of prior balanced graph coloring algorithms (e.g., CLU, VFF, 
Recoloring), which integrate a lazy approach to detect and resolve coloring conflicts. 
Finally, BalColorTM effectively implements short critical sections (short running 
transactions with small transaction footprints) by (i) speculatively performing the 
computations to find permissible colors for the vertices of the over-full color classes 
outside the critical section (lines 9–13), and (ii) accessing inside the critical sections 
only the necessary data to ensure correctness, i.e., for each vertex v BalColorTM 
only accesses the colors of a small subset of v’s adjacent vertices (critical adjacent 
vertices). Via short running transactions, BalColorTM achieves low synchronization 
costs and provides high amount of parallelism.

5 � Evaluation

5.1 � Evaluation Methodology

We conduct our evaluation using a 2-socket Intel Haswell server with an Intel Xeon 
E5-2697 v3 processor with 28 physical cores and 56 hardware threads. The proces-
sor runs at 2.6 GHz and each physical core has its own L1 and L2 caches of sizes 32 
KB and 256 KB, respectively. Each socket includes a shared 35 MB L3 cache. We 
statically pin each software thread to a hardware thread, and enable hyperthreading 
only on 56-thread executions, unless otherwise stated. In our evaluation (Sect. 5), 
the numbers reported are averaged across 5 runs of each experiment.
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Table  1 shows the characteristics of the large real-world graphs used in our 
evaluation. We select 18 representative graphs from the Suite Matrix Collection 
that vary in vertex and graph degrees, and are used in different application 
domains. For each graph, Table 1 presents the number of vertices (#vertices), the 
number of edges (#edges), the maximum ( degmax ) degree, the average ( degavg ) 
degree and the standard deviation of the vertices’ degrees ( degstd ), and the last 
column of this table shows the ratio of the standard deviation of the vertices’ 
degrees to the average degree ( degstd

degavg
).

This section evaluates the proposed ColorTM and BalColorTM algorithms. 
First, we compare the coloring quality and the performance over prior state-of-
the-art graph coloring algorithms (Sect. 5.2). Second, we compare the color bal-
ancing quality and the performance of BalColorTM over prior state-of-the-art 
balanced graph coloring algorithms (Sect.  5.3). Finally, we evaluate the perfor-
mance of Community Detection [34] by parallelizing it using ColorTM and Bal-
ColorTM (Sect. 5.4) via chromatic scheduling.

5.2 � Analysis of parallel graph coloring algorithms

We compare the following parallel graph coloring implementations:

•	 The sequential Greedy algorithm presented in Fig. 1.
•	 The SeqSolve algorithm presented in Fig. 2.
•	 The IterSolve algorithm presented in Fig. 3.
•	 The IterSolveR algorithm presented in Fig. 4.
•	 A variant of our proposed algorithm (Fig. 13) that uses fine-grained locking 

instead of HTM, henceforth referred to as ColorLock. Specifically, each ver-
tex of the graph is associated with a software-based lock. In the beginning 
of the critical section (line 18 in Fig.  13), parallel threads acquire the cor-
responding locks of both the current vertex v and the critical adjacent verti-
ces of the vertex v. Then, when the critical section ends (lines 26 and 28 in 
Fig. 13), parallel threads release the acquired locks. To avoid deadlocks, we 
impose a global order when acquiring/releasing locks based on the vertices’ 
id: parallel threads acquire/release locks of multiple vertices starting from the 
lock associated with the vertex with the smallest vertex id, iterating via an 
increasing order of the vertices’ ids, and finishing to the lock associated with 
the vertex with the highest vertex id.

•	 Our proposed ColorTM algorithm (Fig. 13) that leverages HTM. Each transac-
tion can retry up to 50 times, before resorting to a non-transactional fallback 
path. The non-transactional path is a coarse-grained locking solution for the 
critical section (lines 18–28 in Fig. 13).

For a fair comparison, in all graph coloring schemes we color the vertices 
in the order they appear in the input graph representation (first-fit ordering 
heuristic [21]).
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5.2.1 � Analysis of the coloring quality

Table 2 compares the coloring quality of all parallel graph coloring implementations 
in single-threaded and multithreaded executions.

We make two key observations. First, there is low variability on the number of 
colors used across the different graph coloring schemes. The parallel graph color-
ing schemes provide similar graph coloring quality, because the number of colors 
produced is primarily determined by the order in which the vertices are colored [20, 
21]. In this work, we use the first-fit ordering heuristic in all schemes, i.e., color-
ing the vertices in the order they appear in the input graph representation, and we 
leave the experimentation of other ordering heuristics for future work. Second, we 
find that in most schemes the coloring quality becomes slightly worse as the num-
ber of threads increases. As the number of threads increases, the number of color-
ing conflicts that arise during runtime typically increases, and thus parallel threads 
might resolve coloring inconsistencies by introducing a few additional color classes. 
The SeqSolve scheme does not typically increase the number of colors used in mul-
tithreaded executions, because the coloring inconsistencies are resolved using one 
single thread. Overall, we conclude that since all graph coloring schemes employ 
the same ordering heuristic, they provide similar coloring quality.

5.2.2 � Performance comparison

Figure 15 evaluates the scalability achieved by all parallel graph coloring implemen-
tations in our large real-world graphs, when increasing the number of threads from 1 
to 56, i.e., the maximum available hardware thread capacity of our machine.

We draw three findings. First, ColorTM and ColorLock achieve the lowest execu-
tion time across all schemes in single-threaded executions. Using one single thread, 
ColorTM and ColorLock on average outperform SeqSolve by 1.55× and 1.42× , 
respectively, and they on average outperform IterSolve by 1.17× and 1.06× , respec-
tively. With only one thread, ColorTM and ColorLock have identical executions to 
the sequential Greedy algorithm (Fig. 1): thanks to the optimizations proposed in 
Sect.  4.2, the list of critical adjacent vertices that need to be validated inside the 

Table 2   The geometric mean on the number of colors produced across all large real-world graphs (lower 
is better) for each parallel graph coloring implementation using one core (1 thread), all cores of one 
socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity of 
our machine with hyperthreading enabled (56 threads)

Coloring scheme 1 thread 14 threads 28 threads 56 threads

Greedy 42.58 – – –
SeqSolve 42.58 42.34 42.33 42.18
IterSolve 42.58 44.05 43.94 44.04
IterSolveR 42.58 43.61 43.88 44.58
ColorLock 42.58 45.75 45.67 46.14
ColorTM 42.58 46.20 45.77 46.28
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critical section is empty, and thus ColorTM and ColorLock completely eliminate 
using synchronization (either HTM of fine-grained locking). Second, we find that 
IterSolveR exhibits the lowest scalability across all schemes. IterSolveR merges two 
parallel for-loops into a single parallel for-loop in order to eliminate one of the two 
barriers used in IterSolve. Even though IterSolveR reduces the barrier synchroni-
zation costs, it increases the load imbalance among parallel threads, thus causing 
significant performance overheads. Third, we observe that the scalability of Seq-
Solve, IterSolve, and IterSolveR is highly affected by the NUMA effect, i.e., the 

Fig. 15   Scalability achieved by all parallel graph coloring implementations in large real-world graphs
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non-uniform memory access latencies to the application data. For example, when 
increasing the number of threads from 7 to 14 (only one NUMA socket is used) 
the performance of SeqSolve, IterSolve, IterSolveR, ColorLock and ColorTM 
improves by 1.24× , 1.75× , 1.06× , 1.62× and 1.65× , respectively, averaged across all 
large graphs. However, when increasing the number of threads from 14 to 28, i.e., 
using both NUMA sockets of our machine, the performance of SeqSolve and Iter-
Solve only improves by 1.03× and 1.26× , respectively, while the performance of and 
IterSolveR decreases by 2.13× , averaged across all large graphs. In contrast, when 
increasing the number of threads from 14 to 28, the performance of ColorLock and 
ColorTM significantly improves by 1.77× and 1.97× , respectively, averaged across 
all graphs. This is because our proposed algorithmic design implemented in Color-
Lock and ColorTM leverages better the deep memory hierarchy of commodity mul-
ticore platforms thanks to its eager conflict detection and resolution policy, thus 
achieving lower data access costs. Overall, we conclude that our proposed algorith-
mic design achieves the best scalability in modern multicore platforms.

Figure  16 compares the speedup achieved by all schemes over the sequential 
Greedy scheme, when varying the number of hardware threads used in all large real-
world graphs.

We make two key observations. First, all parallel graph coloring schemes 
achieve lower speedup in very irregular graphs including the soc, arb and fch 
graphs, compared to all the remaining real-world graphs. In very irregular graphs, 
the number of edges per vertex significantly varies across vertices  [41–43]: typi-
cally only a few vertices have a much larger number of edges over the vast major-
ity of the remaining vertices of the graph. Therefore, in irregular graphs parallel 

Fig. 16   Speedup achieved by all parallel graph coloring implementations over the sequential Greedy 
scheme in large real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28 
threads), and the maximum hardware thread capacity of our machine with hyperthreading enabled (56 
threads)
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threads typically cause more coloring inconsistencies than regular graphs, which 
are resolved during runtime, increasing the execution time. Second, we find that 
ColorTM achieves significant performance improvements over all the prior state-
of-the-art graph coloring schemes. ColorTM outperforms SeqSolve, IterSolve, and 
IterSolveR by 3.43× , 1.71× and 5.83× , respectively, when using 14 threads, and by 
8.46× , 2.84× and 27.66× , respectively, when using the maximum hardware thread 
capacity of our machine (56 threads). This is because SeqSolve, IterSolve, and Iter-
SolveR traverse all the vertices of the graph at least twice, and employ a lazy conflict 
resolution policy, thus incurring high data access costs. Instead, ColorTM traverses 
more than once only the conflicted vertices, and resolves coloring inconsistencies 
with an eager approach, thus better leveraging the deep memory hierarchy of mul-
ticore platforms and reducing data access costs. In addition, ColorTM outperforms 
ColorLock by 1.34× and 1.67× when using 14 and 56 threads, respectively. As 
explained, HTM is a speculative hardware-based synchronization mechanism, and 
thus ColorTM provides high-performance improvements over ColorLock thanks to 
significantly minimizing data access and synchronization costs. Note that in the fine-
grained locking approach of ColorLock, for each adjacent vertex accessed inside the 
critical section, the parallel thread needs to acquire and release the corresponding 
software-based lock, thus performing additional memory accesses in the memory 
hierarchy for accessing the lock variable. Overall, we conclude that ColorTM sig-
nificantly outperforms all prior state-of-the-art parallel graph coloring algorithms 
across a wide variety of large real-world graphs.

To confirm the performance benefits of ColorTM across multiple computing plat-
forms, we evaluate all schemes on a 2-socket Intel Broadwell server with an Intel 
Xeon E5-2699 v4 processor at 2.2 GHz having 44 physical cores and 88 hardware 
threads. Figure 17 compares the speedup achieved by all schemes over the sequen-
tial Greedy scheme in all large real-world graphs using 88 threads, i.e., the maxi-
mum hardware thread capacity of the Intel Broadwell server. We find that ColorTM 
provides significant performance benefits over prior state-of-the-art graph coloring 
algorithms, achieving 11.98× , 4.33× and 22.06× better performance over SeqSolve, 
IterSolve, and IterSolveR, respectively.

Fig. 17   Speedup achieved by all parallel graph coloring implementations over the sequential Greedy 
scheme in large real-world graphs using the maximum hardware thread capacity of an Intel Broadwell 
server with hyperthreading enabled (88 threads)
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5.3 � Analysis of balanced graph coloring algorithms

We compare the following balanced graph coloring implementations:

•	 The CLU algorithm presented in Fig. 5.
•	 The VFF algorithm presented in Fig. 6.
•	 The Recoloring algorithm presented in Fig. 7.
•	 Our proposed BalColorTM algorithm (Fig. 14) that leverages HTM. Each trans-

action is retried up to 50 times, before resorting to a non-transactional fallback 
path. The non-transactional path is a coarse-grained lock scheme for the critical 
section (lines 27–39 in Fig. 14).

For a fair comparison, in all graph coloring schemes we color the vertices in the 
order they appear in the color classes produced by the initial coloring.

Table 3   Color balancing quality achieved by ColorTM and all balanced graph coloring implementations 
in the large real-world graphs

We present the relative standard deviation (in %) on the sizes of the color classes obtained by each 
scheme (lower is better). In ColorTM and Recoloring, we provide inside the parentheses the number of 
color classes produced. The CLU, VFF and BalColorTM produce the same number of color classes with 
the initial coloring scheme

Input graph Initial coloring Balanced graph coloring schemes

ColorTM CLU VFF Recoloring BalColorTM

qun 63.62 (48) 0.212 1.669 14.739 (48) 0.009
geo 70.28 (36) 0.321 0.635 17.664 (34) 0.020
fln 65.42 (45) 0.576 0.611 20.384 (51) 0.044
bum 64.32 (36) 0.179 0.647 17.950 (33) 0.009
ser 73.64 (39) 0.405 0.751 16.651 (38) 0.024
del 100.06 (9) 0.002 0.013 35.136 (10) 0.001
rgg 115.30 (22) 0.018 3.783 21.799 (23) 0.003
kmr 189.79 (11) 0.0003 0.0002 31.492 (12) 0.0004
cag 122.89 (19) 0.014 0.649 34.197 (20) 0.005
usa 105.09 (5) 0.001 0.024 0.0005 (5) 0.0005
dlf 57.95 (54) 2.58 2.53 22.551 (57) 3.01
aud 84.02 (60) 5.243 2.780 19.498 (54) 3.575
vas 144.18 (38) 0.084 18.527 25.373 (34) 0.016
stk 141.41 (35) 0.016 17.684 25.375 (34) 0.003
uk 1882.66 (944) 0.437 0.237 65.994 (1355) 1.732
soc 945.35 (324) 1.136 1.466 58.190 (459) 1.886
arb 3351.79 (3248) 0.681 1.499 68.521 (4772) 3.410
fch 125.70 (9) 0.012 0.271 33.854 (10) 0.451



6404	 C. Giannoula et al.

1 3

5.3.1 � Analysis of color balancing quality

Table  3 compares the quality of balance in the color class sizes produced by 
the balanced-oblivious ColorTM and all our evaluated balanced graph coloring 
implementations. Similarly to [31], we evaluate the color balancing quality using 
the relative standard deviation of the color class sizes expressed in %, which is 
defined as the ratio of the standard deviation of the color class sizes to the aver-
age color class size. The closer the value of this metric is to 0.00, the better is 
the color balance. For the ColorTM and Recoloring schemes, we also include 
in parentheses the number of color classes produced. As already explained in 
Sect. 2.3, the CLU, VFF, and BalColorTM schemes produce the same number of 
color classes with the initial coloring. In this experiment, we evaluate all algo-
rithms using the maximum hardware thread capacity of our machine, i.e., 56 
threads, in order to evaluate the color balancing quality of all schemes using the 
maximum available parallelism provided by the underlying hardware platform.

We draw three findings from Table 3. First, we observe that the balanced-obliv-
ious ColorTM scheme incurs very high disparity in the sizes of the color classes 
produced. Specifically, the color balancing quality of ColorTM is 1887.01× , 
287.70× , 10.32× , and 4266.03× worse than that of CLU, VFF, Recoloring and 
BalColorTM, respectively. Second, even though Recoloring is effective over 
ColorTM by providing better color balancing quality, its color balancing quality 
is the worst compared to all the remaining balanced graph coloring schemes. In 
addition, in highly irregular graphs (graphs with high maximum degree and high 
standard deviation in the vertices’ degrees) such as uk, soc and arb, Recol-
oring significantly increases the number of color classes produced over the ini-
tial coloring. Recoloring re-colors the vertices of the graph with a different order 
compared to that used in the initial graph coloring scheme, which in turn may 
introduce new additional color classes. Third, we find that BalColorTM provides 
the best color balancing quality compared to all prior state-of-the-art balanced 
graph coloring schemes. Specifically, the color balancing quality of BalColorTM 
is 2.26× , 14.82× and 413.31× better compared to that of CLU, VFF and Recolor-
ing, respectively. Overall, we conclude that our proposed BalColorTM provides 
the best color balancing quality over prior state-of-the-art schemes in all large 
real-world graphs.

To better illustrate the effect of balancing the vertices across color classes, we 
present in Fig.  18 the sizes of all the color classes produced by ColorTM, CLU, 
VFF, Recoloring and BalColorTM for a representative subset of our evaluated real-
world graphs. Specifically, the x-axis represents the color index i of each color class 
produced in the input graph, and the y-axis shows how many of the vertices of the 
graph have been colored with the color i. The uk, soc and arb graphs are web 
social networks [44] with a highly power-law distribution [41–43]: only a few verti-
ces have a very high degree, while the vast majority of the remaining vertices of the 
graph has very low degree. In such graphs, ColorTM inserts the vast majority of the 
vertices in the first few color classes, and the remaining few vertices are assigned to 
different separate color classes. Moreover, as already explained, Recoloring intro-
duces a large number of new additional color classes in such real-world graphs.
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5.3.2 � Performance comparison

Figure 19 evaluates the scalability achieved by all balanced graph coloring imple-
mentations in a representative subset of our evaluated large real-world graphs, as 
the number of threads increases from 1 to 56, i.e., up to the maximum available 
hardware thread capacity of our machine. We present the execution time of only the 
kernel that balances the vertices across color classes (excluding the execution time 
of the initial graph coloring).

Fig. 18   Distribution of color class sizes produced by ColorTM and all our evaluated balanced graph 
coloring schemes. Note that small color class sizes result in reduced parallelism in the real-world end-
application
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We draw three findings. First, we observe that Recoloring achieves the worst 
performance over all balanced graph coloring schemes. Even in the single-threaded 
executions, Recoloring performs by 3.21× , 2.26× and 3.69× worse than CLU, VFF 
and BalColorTM, respectively, because it executes a much larger amount of compu-
tation, memory accesses and synchronization. Recall that Recoloring processes and 
re-colors all the vertices of the graph, while the remaining balanced graph color-
ing schemes re-color only a subset of the vertices of the graph. Note that in uk and 
arb graphs, all balanced graph coloring schemes need to re-color a large portion 
of the graph’s vertices, thus performing closely to each other. Second, we find that 
the scalability of all schemes is affected by the NUMA effect; however BalColorTM 
on average scales well even when using all available hardware threads and both 
NUMA sockets of our machine. When increasing the number of threads from 28 
to 56, the performance of BalColorTM improves by 1.55× averaged across all large 
graphs. Third, we find that in contrast to the graph coloring kernel, in many real-
world graphs the performance of the balanced graph coloring kernel scales up to 14 
threads, and degrades when using 56 threads. This is because the balanced graph 
coloring kernel has a lower amount of parallelism (a small subset of the vertices of 
the graph are re-colored by parallel threads) than the graph coloring kernel. Thus, 
our analysis demonstrates that when a kernel has low levels of parallelism, the best 
performance is achieved using a smaller number of parallel threads than the avail-
able hardware threads on the multicore platform. To this end, we suggest software 
designers of real-world end-applications to on-the-fly adjust the number of parallel 
threads used to parallelize each different sub-kernel of the end-application based on 
the parallelization needs of each particular sub-kernel.

Figure 20 compares the speedup achieved by all balanced graph coloring schemes 
normalized to the CLU scheme in all large real-world graphs. We compare the actual 
kernel time that balances the vertices across color classes.

We observe that BalColorTM outperforms all prior state-of-the-art balanced 
graph coloring schemes across all various large real-world graphs with a large num-
ber of parallel threads used. BalColorTM outperforms CLU, VFF and Recoloring by 

Fig. 19   Scalability achieved by all balanced graph coloring implementations in large real-world graphs
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on average 1.89× , 1.33× and 2.06× , respectively, when using 14 threads. Moreover, 
BalColorTM outperforms CLU, VFF and Recoloring by on average 2.61× , 1.05× 
and 1.68× , respectively, when using 56 threads, i.e., the maximum hardware thread 
capacity of our machine. Overall, BalColorTM performs best over all prior schemes 
in all large real-world graphs. Therefore, considering the fact that BalColorTM also 
provides the best color balancing quality over prior schemes, we conclude that our 
proposed algorithmic design is a highly efficient and effective parallel graph color-
ing algorithm for modern multicore platforms.

To confirm the performance benefits of BalColorTM across multiple comput-
ing platforms, we evaluate all schemes on a 2-socket Intel Broadwell server with an 
Intel Xeon E5-2699 v4 processor at 2.2 GHz having 44 physical cores and 88 hard-
ware threads. Figure 21 compares the speedup achieved by all balanced graph color-
ing schemes normalized to the CLU scheme in all large real-world graphs using 88 

Fig. 20   Speedup achieved by all balanced graph coloring implementations over the CLU scheme in large 
real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28 threads), and the 
maximum hardware thread capacity of our machine with hyperthreading enabled (56 threads)

Fig. 21   Speedup achieved by all balanced graph coloring implementations over the CLU scheme in large 
real-world graphs using the maximum hardware thread capacity of an Intel Broadwell server with hyper-
threading enabled (88 threads)
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threads, i.e., the maximum hardware thread capacity of the Intel Broadwell server. 
We find that BalColorTM provides significant performance benefits over prior state-
of-the-art graph coloring algorithms, achieving 1.82× , 1.22× and 1.84× better per-
formance over CLU, VFF, and Recoloring, respectively.

5.4 � Analysis of a real‑world scenario

In this section, we study the performance benefits of our proposed graph coloring 
schemes, i.e., ColorTM and BalColorTM, when parallelizing a widely used real-
world end-application, i.e., Community Detection, via chromatic scheduling. Spe-
cifically, we compare the following parallel implementations to execute the Com-
munity Detection application:

•	 The parallelization scheme for the Louvain method [45–47] provided by Grap-
polo suite  [48], henceforth referred to as SimpleCD, in which the vertices are 
processed as they appear in the input graph representation. The algorithm con-
sists of multiple iterations. First, each vertex is placed in a community of its own. 
Then, multiple iterations are performed until a convergence criterion is met. 
Within each iteration, all vertices are processed concurrently by multiple parallel 
threads, and a greedy decision is made to decide whether each vertex should be 
moved to a different community (selected from one of its adjacent vertices) or 
should remain in its current community, targeting to maximize the net modular-
ity gain. For more details, we refer the reader to [45, 49–51].

•	 The chromatic scheduling parallelization approach using ColorTM to color the 
vertices of the graph, henceforth referred to as ColorTMCD, in which the verti-
ces are processed in the order they are distributed in the color classes. The end-
to-end Community Detection execution can be broken down in two steps: (i) the 
time to color the vertices of the graph with ColorTM, and (ii) the time to classify 

Fig. 22   Scalability of the end-to-end Community Detection execution achieved by (i) the Grappolo [48] 
parallelization approach of the Louvain method (SimpleCD) and (ii) the chromatic scheduling paralleli-
zation approach with ColorTM (ColorTMCD) and (iii) the chromatic scheduling parallelization approach 
with both ColorTM and BalColorTM (BalColorTMCD) in large real-world graphs
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the vertices of the graph into communities via chromatic scheduling paralleliza-
tion approach. The (ii) step processes the color classes produced by the (i) step 
sequentially, and all vertices of the same color class are processed in parallel.

•	 The chromatic scheduling parallelization approach using ColorTM to color the 
vertices of the graph and BalColorTM to balance the vertices across color classes 
produced, henceforth referred to as BalColorTMCD, in which the vertices are 
processed in the order they are distributed in the color classes. The end-to-end 
Community Detection execution can be broken down in three steps: (i) the time 
to color the vertices of the graph with ColorTM, (ii) the time to balance the ver-
tices of the graph across color classes, and (iii) the time to classify the vertices 
of the graph into communities via chromatic scheduling parallelization approach. 
The (iii) step processes the color classes produced by the (ii) step sequentially, 
and all vertices of the same color class are processed in parallel.

Figure 22 evaluates the scalability of all the end-to-end Community Detection par-
allel implementations in a representative subset of large real-world graphs, as the 
number of parallel threads increases. We present the total end-to-end execution 
time, i.e., in ColorTMCD we account for the time to color the vertices of the graph 
(coloring step), and in BalColorTMCD we account for the time to color the vertices 
of the graph (coloring step), and the time to balance the vertices across color classes 
(balancing step).

We draw two findings. First, we find that ColorTMCD and BalColorTMCD scale 
well in large real-world graphs. For example, when increasing the number of threads 
from 1 to 56, ColorTMCD improves performance by 12.34× and 3.44× in bum and 
arb graphs, respectively. Similarly, when increasing the number of threads from 1 
to 56, BalColorTMCD improves performance by 11.38× and 3.63× in bum and arb 
graphs, respectively. However, we observe that in uk and arb graphs, SimpleCD 
outperforms both ColorTMCD and BalColorTMCD. In these two graphs, ColorTM 
and BalColorTM produce the largest number of color classes compared to all the 
remaining real-world graphs (see Table 3), i.e., they produce 944 and 3248 colors 
for the uk and arb graphs, respectively. As a result, in uk and arb graphs the 
chromatic scheduling parallelization approach of ColorTMCD and BalColorTMCD 
executes 944 and 3248 times of barrier synchronization among parallel threads, 
respectively, thus incurring higher synchronization costs over SimpleCD. Second, 
the scalability of BalColorTMCD is affected more by the NUMA effect compared 
to that of ColorTMCD. Specifically, when increasing the number of threads from 14 
to 28, the performance of ColorTMCD improves by 1.63× averaged across all real-
world graphs, while the performance of BalColorTMCD only improves by 1.22× . 
Similarly, when increasing the number of threads from 14 to 56, the performance 
of ColorTMCD improves by 1.98× , while the performance of BalColorTMCD 
improves by 1.50× . We find that even though balancing the sizes of color classes 
provides higher load balance across parallel threads of real-world end-applications, 
it might because more remote expensive memory accesses across NUMA sockets of 
modern multicore machines.

Figure  23 shows the actual kernel time (without accounting for performance 
overheads introduced by the coloring and balancing steps) of Community 
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Detection by comparing the speedup of ColorTMCD and BalColorTMCD over 
SimpleCD in all our evaluated large real-world graphs.

We draw two key findings. First, BalColorTM can on average outperform 
ColorTM, when considering only the actual kernel time of Community Detection, 
by providing better load balance among parallel threads. When only the actual 
kernel time of Community Detection is considered (excluding the performance 
overheads introduced by the coloring and balancing steps), BalColorTMCD on 
average outperforms ColorTMCD by 1.27× , 1.01× and 1.12× when using 14, 
28, and 56 threads, respectively. Second, parallelizing the Community Detec-
tion using ColorTM and BalColorTM provides significant performance speedups 
over SimpleCD, the state-of-the-art parallelization approach of Louvain method 
of Community Detection [45–48]. Specifically, ColorTMCD improves the perfor-
mance of the actual kernel time of Community Detection compared to SimpleCD 
by 1.40× , 1.34× , and 1.20× , when using 14, 28, and 56 threads, respectively. In 
addition, BalColorTMCD improves the performance of the actual kernel time of 
Community Detection compared to SimpleCD by 1.77× , 1.34× , and 1.34× , when 
using 14, 28, and 56 threads, respectively. We conclude that our proposed graph 
coloring algorithmic designs can provide high-performance benefits in real-world 
end-applications which are parallelized using coloring.

Fig. 23   Speedup of the actual kernel of the Community Detection execution achieved by (i) SimpleCD 
(D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all cores of one 
socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity of 
our machine with hyperthreading enabled (56 threads)
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Figure 24 presents the speedup breakdown of ColorTMCD and BalColorTMCD 
over SimpleCD in all our evaluated large real-world graphs. The performance is bro-
ken down in three steps: (i) the coloring step to color the vertices of the graph (Col-
oring), (ii) the balancing step to balance the vertices across color classes (Balanc-
ing), and (iii) the actual Community Detection kernel time (CommunityDetection).

We make two key observations. First, BalColorTMCD on average outperforms 
ColorTMCD when using up to 14 threads (using one single NUMA socket). When 
considering the end-to-end execution including the performance overheads intro-
duced by the coloring and balancing steps, BalColorTMCD outperforms ColorT-
MCD by 1.19× when using 14 threads, while it performs on average 1.18× and 
1.10× worse over ColorTMCD, when using 28 and 56 threads, respectively. We find 
that the performance overhead introduced in the balancing step of BalColorTMCD 
is not compensated in the runtime of the actual kernel time of Community Detec-
tion when using both NUMA sockets of our machine. Second, we observe that both 
ColorTMCD and BalColorTMCD can provide high performance in Community 
Detection. ColorTMCD on average outperforms SimpleCD by 1.38× , 1.33× and 
1.19× , when using 14, 28 and 56 threads, respectively. BalColorTMCD on aver-
age outperforms SimpleCD by 1.64× , 1.10× and 1.08× , when using 14, 28 and 56 
threads, respectively. In addition, we observe that BalColorTMCD provides signifi-
cant performance speedups over Simple CD in many graphs such as fln, del, cag, 

Fig. 24   Speedup breakdown of the end-to-end Community Detection execution achieved by (i) Simpl-
eCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all cores of 
one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity 
of our machine with hyperthreading enabled (56 threads)
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aud, soc and fch, reaching up to 10.36× with 56 threads. Overall, we conclude 
that our proposed parallel graph coloring algorithms can provide significant perfor-
mance improvements in real-world end-applications, e.g., parallelizing Community 
Detection with chromatic scheduling, across a wide variety of input data sets with 
diverse characteristics.

6 � Related work

A handful of prior works [1, 20, 21, 27–31, 33, 52, 52–54] has examined the graph 
coloring kernel in modern multicore platforms. Welsh and Powell  [1] propose the 
original sequential Greedy algorithm that colors the vertices of the graph using 
the first-fit heuristic. Recent prior works  [27–30] parallelize Greedy by proposing 
the SeqSolve, IterSolve and IterSolveR schemes described in Sect.  2.2. We com-
pare ColorTM with these prior schemes in Sect. 5.2, and demonstrate that our pro-
posed ColorTM outperforms these state-of-the-art schemes across a wide variety 
of real-world graphs. Jones and Plassmann  [53] design an algorithm, named JP, 
that colors the vertices of the graph by identifying independent sets of vertices: in 
each iteration, the algorithm finds and selects an independent set of vertices that 
can be colored concurrently. However, JP is a recursive algorithm that typically runs 
longer than the original Greedy [20, 21, 33], since it performs more computations 
and needs more synchronization points, i.e., parallel threads need to synchronize 
at each iteration of processing independent sets of vertices. Moreover, the original 
paper [53] shows that JP provides good performance mostly in O(1)-degree graphs. 
In contrast, our work efficiently parallelizes the original and widely used Greedy 
algorithm for graph coloring, and our proposed parallel algorithms achieve sig-
nificant performance improvements across a wide variety of real-world graphs and 
using a large number of parallel threads.

Deveci et al. [54] present an edge-centric parallelization scheme for graph color-
ing which is better suited for GPUs. ColorTM and BalColorTM can be straightfor-
wardly extended to color the vertices of a graph by equally distributing the edges of 
the graph among parallel threads. We leave the exploration of edge-centric graph 
coloring schemes for future work. Future work also comprises the experimenta-
tion of the graph coloring kernel on multicore computing platforms such as mod-
ern GPUs [55–58] and Processing-In-Memory systems [18, 41, 42, 59–65]. Maciej 
et al.  [20] and Hasenplaugh et al.  [21] propose new vertex ordering heuristics for 
graph coloring. Ordering heuristics define the order in which Greedy colors the ver-
tices of the graph in order to improve the coloring quality by minimizing the number 
of colors used. Instead, our work aims to improve system performance by proposing 
efficient parallelization schemes. For a fair comparison, we employ the first-fit order-
ing heuristic (the vertices of the graph are colored in the order they appear in the 
input graph representation) in all parallel algorithms evaluated in Sects. 5.2 and 5.3. 
ColorTM and BalColorTM can support various ordering heuristics [3, 4, 11, 20–26, 
66] by assigning the vertices of the graph to parallel threads with a particular order. 
We leave the evaluation of various vertex ordering heuristics for future work.
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Lu et  al.  [31] design balanced graph coloring algorithms to efficiently balance 
the vertices across the color classes. We compare BalColorTM with their proposed 
algorithms, i.e., CLU, VFF, Recoloring, in Sect. 2.3, and demonstrate that our pro-
posed BalColorTM scheme on average performs best across all large real-world 
graphs. Tas et  al.  [52] propose balanced graph coloring algorithms for bipartite 
graphs, i.e., graphs whose vertices can be divided into two disjoint and independent 
sets U and V, and every edge (u, v) either connects a vertex from U to V or a vertex 
from V to U. In contrast, ColorTM and BalColorTM are designed to be general, 
and efficiently color any arbitrary real-world graph using a large number of parallel 
threads. In addition, Tas et al. [52] also explore the distance-2 graph coloring kernel 
on multicore architectures, in which any two vertices u and v with an edge-distance 
at most 2 are assigned with different colors. Instead, our work efficiently parallelizes 
the distance-1 graph coloring kernel on multicore platforms, in which any two adja-
cent vertices of the graph connected with a direct edge are assigned with different 
colors. Finally, prior works propose algorithms for edge coloring [67], dynamic or 
streaming coloring  [68–74], k-distance coloring  [75, 76] and sequential exact col-
oring [77–80]. All these works are not closely related to our work, since we focus 
on designing high-performance parallel algorithms for the distance-1 vertex graph 
coloring kernel.

7 � Conclusion

In this work, we explore the graph coloring kernel on multicore platforms, and 
propose ColorTM and BalColorTM, two novel algorithmic designs for high per-
formance and balanced graph coloring on modern computing platforms. ColorTM 
and BalColorTM achieve high system performance through two key techniques: 
(i) eager conflict detection and resolution of the coloring inconsistencies that arise 
when adjacent vertices are concurrently processed by different parallel threads, and 
(ii) speculative computation and synchronization among parallel threads by leverag-
ing Hardware Transactional Memory. Via the eager coloring conflict detection and 
resolution policy, ColorTM and BalColorTM effectively leverage the deep memory 
hierarchy of modern multicore platforms and minimize access costs to application 
data. Via the speculative computation and synchronization approach, ColorTM and 
BalColorTM minimize synchronization costs among parallel threads and provide a 
high amount of parallelism. Our evaluations demonstrate that our proposed paral-
lel graph coloring algorithms outperform prior state-of-the-art approaches across a 

Fig. 25   Abort ratio exhibited by ColorTM in all large real-world graphs
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wide range of large real-world graphs. ColorTM and BalColorTM can also provide 
significant performance improvements in real-world scenarios. We conclude that 
ColorTM and BalColorTM are highly efficient graph coloring algorithms for mod-
ern multicore systems, and hope that this work encourages further studies of the 
graph coloring kernel in modern computing platforms.

Appendix

Analysis of ColorTM and BalColorTM execution

We further analyze the HTM-related execution behavior of our proposed ColorTM 
and BalColorTM algorithms. Figure 25 presents the abort ratio of ColorTM, i.e., the 
number of transactional aborts divided by the number of attempted transactions, in 
all real-world graphs, as the number of threads increases. In the 14-thread execution, 
we pin all threads on one single NUMA socket. In the 28-thread execution, we pin 
threads on both NUMA sockets of our machine with hyperthreading disabled. In 
the ( 14 + 14)-thread execution, we pin all 28 threads on the same single socket with 
hyperthreading enabled. In the 56-thread execution, we use the maximum hardware 
thread capacity of our machine.

We make three key observations. First, we find that the abort ratio becomes high 
in real-world graphs which have high maximum degree and high standard devia-
tion of the vertices’ degrees, e.g., dlf, aud, vas, stk, uk, soc and arb graphs. 
In graphs with high vertex degree, the transaction data access footprint is large 
and parallel threads compete for the same adjacent vertices with a high probabil-
ity, thus causing aborts in HTM. Second, we observe that when using both sock-
ets of our machine, the transactional aborts in ColorTM significantly increase due 
to the NUMA effect. Specifically, averaged across all graphs the ( 14 + 14)-thread 
execution of ColorTM exhibits 2.97× lower abort ratio compared to the 28-thread 

Fig. 26   Breakdown of different types of aborts exhibited by ColorTM in real-world graphs
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execution of ColorTM. Due to the NUMA effect, the memory accesses to the appli-
cation data are very expensive. As a result, the duration of the transactions increases, 
thus increasing the probability of conflict aborts among running transactions (See 
more details in the next experiment). Third, we observe that ColorTM exhibits a 
very low abort ratio. ColorTM has only 1.08% abort ratio on average across all real-
world graphs, when using the maximum hardware thread capacity (56 threads) of 
our machine. Our proposed speculative algorithmic design effectively reduces the 
amount of computations and data accesses performed inside the critical section 
(inside the HTM transaction), thus effectively decreasing the transaction’s footprint 
and duration. As a result, ColorTM provides a high amount of parallelism and low 
interference among parallel threads. We conclude that ColorTM has low synchroni-
zation and interference costs among a large number of parallel threads, even in real-
world graphs with high vertex degree.

Figure  26 presents the breakdown of different types of aborts exhibited by 
ColorTM in a representative subset of real-world graphs. We break down the trans-
actional aborts into four types: (i) conflict aborts: they appear when a running trans-
action executed by a parallel thread attempts to write the read-set of another running 
transaction executed by a different thread, (ii) capacity aborts: they appear when the 
memory footprint of a running transaction exceeds the size of the hardware transac-
tional buffers, (iii) lock aborts: current HTM implementations  [37–40] provide no 
guarantee that any transaction will eventually commit inside the transactional path, 
and thus the programmer provides an alternative non-transactional fallback path, 
i.e., falling back to the acquisition of coarse-grained lock that allows only a single 
thread to enter the critical section, and forces aborts to the transactions of all the 
remaining threads,3 and (iv) other aborts: they appear when a transaction fails due to 
other reasons such as cache line evictions, interrupts and/or when the duration of a 
transaction exceeds the scheduling quantum and the OS scheduler schedules out the 
software thread from the hardware thread, aborting the transaction. Note that since 
the fallback path lock is just a variable in the source code, some conflict aborts are 
caused by the writes in this lock variable. Thus, a part of the lock aborts is counted 
as conflict aborts in our measurements.

We draw three findings. First, we find that the conflict aborts significantly 
increase across all graphs when using both sockets of our machine due to the 
NUMA effect. For example, the number of conflicts aborts in the 28-thread execu-
tions is 3.32× higher compared to that in the 14-thread executions. As already men-
tioned, the NUMA effect significantly increases the duration of the running transac-
tions, and thus the probability of causing conflict aborts among running transactions 
is high. Second, as the number of threads increases, e.g., when comparing the 
56-thread execution over the 28-thread execution, the number of conflict aborts 
increases by 1.05× . This is because partitioning the graph to a higher number of 
threads results in a higher number of crossing edges among parallel threads, which 
in turn results in a larger list of critical adjacent vertices that is validated inside the 

3  To achieve this, the lock is added to each transaction’s read set, so that when the lock is acquired by a 
thread (write to the lock variable), the remaining threads are aborted and wait until the lock is released.
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HTM transactions. Therefore, the transaction footprint increases, thus increasing the 
probability of causing conflict aborts. Third, we find that in graphs with very high 
maximum degree, e.g., uk and arb graphs, the capacity aborts constitute a large 
portion of total aborts. In such graphs, the data access footprint of the transactions 
is large, resulting in a high probability of exceeding the hardware buffers. Overall, 
our analysis demonstrates that current HTM implementations are severely limited 
by the NUMA effect [81], and incur high-performance costs when using more than 
one NUMA socket on the machine. To this end, we recommend hardware design-
ers to improve the HTM implementations in NUMA machines, and suggest soft-
ware designers to propose intelligent algorithmic schemes and data partitioning 
approaches that minimize the expensive memory accesses to remote NUMA sockets 
inside the HTM transactions.

Figure 27 presents the abort ratio of BalColorTM, i.e., the number of transactional 
aborts divided by the number of attempted transactions, in all real-world graphs, as 
the number of threads increases. In the 14-thread execution, we pin all threads on 
one single socket. In the 28-thread execution, we pin threads on both NUMA sock-
ets of our machine with hyperthreading disabled. In the ( 14 + 14)-thread execution, 
we pin all 28 threads on the same single socket with hyperthreading enabled. In the 
56-thread execution, we use the maximum hardware thread capacity of our machine.

We make two key observations. First, we observe that BalColorTM on average 
incurs higher abort ratio over ColorTM, reaching up to 80% abort ratio in some mul-
tithreaded executions. Specifically, BalColorTM incurs 68.55× , 64.35× , 55.83× and 
25.91× higher abort ratio (averaged across all real-world graphs) over ColorTM, 
when using 14, 28, ( 14 + 14 ), and 56 threads, respectively. This is because Bal-
ColorTM processes and re-colors a much smaller number of vertices (a small subset 
of the vertices of the graph) compared to ColorTM, which instead processes and 
colors all the vertices of the graph. As a result, parallel threads compete for the same 
data and memory locations with a much higher probability in BalColorTM com-
pared to ColorTM, thus incurring higher abort ratio and synchronization costs. Sec-
ond, we find that in all real-world graphs the vast majority of transactional aborts 
are conflict aborts. Specifically, the portion of conflict aborts is more than 95% in all 
real-world graphs for all multithreaded executions. Typically, the lower paralleliza-
tion needs a parallel kernel has, the higher data contention among parallel threads 
it incurs. Overall, our analysis demonstrates that using a high number of parallel 
threads results in high contention on shared data due to low amount of parallelism 

Fig. 27   Abort ratio exhibited by BalColorTM in all large real-world graphs
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of the balanced graph coloring kernel. The aforementioned high contention causes 
high synchronization overheads. To this end, we recommend software designers of 
real-world end-applications to design adaptive parallelization schemes that trade off 
the amount of parallelism provided for lower synchronization costs.
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