
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:6373–6421
https://doi.org/10.1007/s11227-022-04894-6

1 3

High‑performance and balanced parallel graph coloring
on multicore platforms

Christina Giannoula1 · Athanasios Peppas1 · Georgios Goumas1 ·
Nectarios Koziris1

Accepted: 15 October 2022 / Published online: 7 November 2022
© The Author(s) 2022

Abstract
Graph coloring is widely used to parallelize scientific applications by identifying
subsets of independent tasks that can be executed simultaneously. Graph coloring
assigns colors the vertices of a graph, such that no adjacent vertices have the same
color. The number of colors used corresponds to the number of parallel steps in a
real-world end-application. Therefore, the total runtime of the graph coloring kernel
adds to the overall parallel overhead of the real-world end-application, whereas the
number of the vertices of each color class determines the number of the independ-
ent concurrent tasks of each parallel step, thus affecting the amount of parallelism
and hardware resource utilization in the execution of the real-world end-application.
In this work, we propose a high-performance graph coloring algorithm, named
ColorTM, that leverages Hardware Transactional Memory (HTM) to detect coloring
inconsistencies between adjacent vertices. ColorTM detects and resolves coloring
inconsistencies between adjacent vertices with an eager approach to minimize data
access costs, and implements a speculative synchronization scheme to minimize
synchronization costs and increase parallelism. We extend our proposed algorith-
mic design to propose a balanced graph coloring algorithm, named BalColorTM,
with which all color classes include almost the same number of vertices to achieve
high parallelism and resource utilization in the execution of the real-world end-
applications. We evaluate ColorTM and BalColorTM using a wide variety of large
real-world graphs with diverse characteristics. ColorTM and BalColorTM improve
performance by 12.98× and 1.78× on average using 56 parallel threads compared to
prior state-of-the-art approaches. Moreover, we study the impact of our proposed
graph coloring algorithmic designs on a popular end-application, i.e., Community
Detection, and demonstrate the ColorTM and BalColorTM can provide high-perfor-
mance improvements in real-world end-applications across various input data given.

Keywords  Parallel graph coloring · Balanced graph coloring · Distance-1 coloring ·
Pagerank · Community detection · Multicore architectures · Shared memory
architectures · Parallel graph algorithms · High-performance computing · HPC

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04894-6&domain=pdf

6374	 C. Giannoula et al.

1 3

1  Introduction

Graph coloring assigns colors to the vertices of a graph such that any two adja-
cent vertices have different colors. Graph coloring kernel is widely used in many
important real-world applications including the conflicting job scheduling [1–5],
register allocation [6–10], sparse linear algebra [11–14], machine learning (e.g.,
to select non-similar samples that form an effective training set), and chromatic
scheduling of graph processing applications [15–18]. For instance, the chro-
matic scheduling execution is as follows: given the vertex coloring of a graph,
chromatic scheduling performs N steps that are executed serially, where N is the
number of colors used to color the graph, and at each step the vertices assigned
to the same color are processed in parallel, i.e., representing independent tasks
that are executed concurrently. In addition, it is of vital importance that program-
mers manage the registers of modern CPUs effectively, and thus compilers [9,
10] optimize the register allocation problem via graph coloring: compilers con-
struct undirected graphs, named register inference graphs (RIGs), with vertices
representing the variables used in the source code and edges between vertices
representing variables that are simultaneously active at some point in the program
execution, and then compilers leverage the graph coloring kernel to identify inde-
pendent variables that can be allocated on the same registers, i.e., if there no edge
in the RIG connecting the associated vertices of the variables.

To achieve high system performance in the aforementioned real-world scenar-
ios, software designers need to improve three key aspects of the graph coloring
kernel. First, they need to minimize the number of colors used to color the input
graph. For example, in the chromatic scheduling scheme minimizing the number
of colors used to color the graph reduces the number of the sequential steps per-
formed in the multithreaded end-application. However, minimizing the number of
colors in graph coloring is an NP-hard problem [19], and thus prior works [3, 4,
11, 20–26] introduce ordering heuristics that generate effective graph colorings
with a relatively small number of colors. Second, given that the execution time of
the graph coloring kernel adds to the overall parallel overhead of the real-world
end-application, software engineers need to design high-performance graph col-
oring algorithms for modern multicore computing systems. Third, an effective
graph coloring for a real-world end-application necessitates a balanced distribu-
tion of the vertices across the color classes, i.e., the sizes of the color classes to
be almost the same. Producing color classes with high skew in their sizes, i.e.,
high disparity in the number of vertices distributed across color classes, typically
causes load imbalance and low resource utilization in real-world end-application.
For example, in the register allocation scenario high disparity in the sizes of the
color classes results to a large number of registers needed (high financial costs),
equal to the size of the largest color class produced, while a large portion of the
registers remains idle (unused) for a long time during the program execution
(i.e., in time periods corresponding to many color classes with small sizes), thus
causing low hardware resource utilization. Therefore, software designers need to
propose balanced and fast graph coloring algorithms for commodity computing

6375

1 3

High‑performance and balanced parallel graph coloring on…

systems. Our goal in this work is to improve the last two key aspects of the graph
coloring kernel by introducing high-performance and balanced multithreaded
graph coloring algorithms for modern multicore platforms.

With a straightforward parallelization of graph coloring, coloring conflicts may
arise when two parallel threads assign the same color to adjacent vertices. To deal
with this problematic case, recent works [27–31] perform two additional phases: a
conflict detection phase, which iterates over the vertices of the graph to detect color-
ing inconsistencies between adjacent vertices, and a conflict resolution phase, which
iterates over the detected conflicted vertices to resolve the coloring inconsistencies
via recoloring. Nevertheless, these prior works [27–31] are still inefficient, as we
demonstrate in Sect. 5, because they need to traverse the whole graph at least two
times (one for coloring the vertices and one for detecting coloring conflicts), and
also detect and resolve coloring conflicts with a lazy approach, i.e., much later in the
runtime compared to the time that the coloring conflicts appeared. As a result, prior
approaches access the conflicted vertices of the graph multiple times, mainly using
the expensive last levels of the memory hierarchy (e.g., main memory) of commod-
ity multicore platforms, thus incurring high data access costs.

In this work, we present ColorTM [32],1 a high-performance graph coloring algo-
rithm for multicore platforms. ColorTM is designed to provide low synchronization
and data access costs. Our algorithm proposes (a) an eager conflict detection and
resolution approach, i.e., immediately detecting and resolving coloring inconsisten-
cies when they arise, such that to minimize data access costs by accessing conflicted
vertices immediately using the low-cost lower levels of the memory hierarchy of
multicore platforms, and (b) a speculative computation and synchronization scheme,
i.e., leveraging Hardware Transactional Memory (HTM) and speculatively perform-
ing computations and data accesses outside the critical section, such that to provide
high levels of parallelism and low synchronization costs by executing multiple small
and short critical sections in parallel. Specifically, ColorTM consists of three steps:
for each vertex on the graph, it (i) speculatively finds a candidate legal color by
recording the colors of the adjacent vertices, (ii) validates and updates the color of
the current vertex by checking the colors of the critical adjacent vertices within an
HTM transaction to detect potential coloring conflicts, and (iii) eagerly repeats steps
(i) and (ii) for the current vertex multiple times until a valid coloring is found.

However, ColorTM does not provide any guarantee on the sizes of the color
classes relative to each other. As we demonstrate in our evaluation (Sect. 5), the
color classes produced by ColorTM for real-world graphs have high disparity in
the number of vertices across them, thus causing load imbalance and low resource
utilization in real-world end-applications. Therefore, we extend our algorithmic
design to propose a balanced graph coloring algorithm, named BalColorTM [32].
BalColorTM achieves high system performance and produces highly balanced color
classes, i.e., having almost the same number of vertices across color classes, target-
ing to provide high hardware resource utilization and load balance in the real-world
end-applications of graph coloring.

1  This paper is an extended version of [33].

6376	 C. Giannoula et al.

1 3

We evaluate ColorTM and BalColorTM on a dual socket Intel Haswell server
using a wide variety of large real-world graphs with diverse characteristics.
ColorTM improves performance by 12.98× on average using 56 parallel threads
compared to state-of-the-art graph coloring algorithms, while providing similar
coloring quality. BalColorTM outperforms prior state-of-the-art balanced graph
coloring algorithms by 1.78× on average using 56 parallel threads, and provides
the best color balancing quality over prior schemes (see Sect. 5). Finally, we
study the effectiveness of our proposed ColorTM and BalColorTM in parallel-
izing a widely used real-world end-application, i.e., Community Detection [34],
and demonstrate that our proposed algorithmic designs can provide significant
performance improvements in real-world scenarios. ColorTM and BalColorTM
are publicly available [32] at https://​github.​com/​cgian​noula/​Color​TM.

This paper makes the following contributions:

•	 We design high-performance and balanced graph coloring algorithms, named
ColorTM and BalColorTM, for modern multicore platforms.

•	 We leverage HTM to efficiently detect coloring inconsistencies between adja-
cent vertices (processed by different parallel threads) with low synchroniza-
tion costs. We propose an eager conflict resolution approach to efficiently
resolve coloring inconsistencies in multithreaded executions by minimizing
data access costs.

•	 We evaluate ColorTM and BalColorTM using a wide variety of large real-
world graphs and demonstrate that they provide significant performance
improvements over prior state-of-the-art graph coloring algorithms. Our pro-
posed algorithmic designs significantly improve performance in multithreaded
executions of real-world end-applications.

2 � Prior graph coloring algorithms

In this section, we describe prior state-of-the-art graph coloring algorithms [27–31].
Section 2.1 presents the sequential graph coloring algorithm. Section 2.2 describes
prior parallel (no guarantee on the sizes of color classes) graph coloring algorithms
proposed in the literature, while Sect. 2.3 presents prior balanced (color classes are
highly balanced) graph coloring algorithms proposed in the literature.

Fig. 1   The Greedy algorithm

https://github.com/cgiannoula/ColorTM

6377

1 3

High‑performance and balanced parallel graph coloring on…

2.1 � The greedy algorithm

Figure 1 presents the sequential graph coloring algorithm, called Greedy [1].
Consider an undirected graph G = (V ,E) , and the neighborhood N(v) of a ver-
tex v ∈ V defined as N(v) = {u ∈ V ∶ (v, u) ∈ E} . For each vertex v of the graph,
Greedy records the colors of v′s adjacent vertices in a forbidden set of colors,
and assigns the minimum legal color to the vertex v based on the forbidden set of
colors.

The Greedy approach produces at most Δ + 1 colors [1], where Δ is the degree
of the graph G. The degree of the graph is defined as Δ = max

v∈V
{deg(v)} , where

deg(v) is the degree of a vertex v, which is the number of its adjacent vertices
deg(v) = |N(v)| . However, finding the minimum number of colors to color a graph
G is an NP-hard problem [35]. In this work, we have experimented with the first-fit
ordering heuristic [1], in which the vertices of the graph are processed and colored
in the order they appear in the input graph representation G, since this heuristic can
provide high coloring quality based on prior works [1, 21, 36]. We leave the explo-
ration of other ordering heuristics for future work.

2.2 � Prior parallel graph coloring algorithms

To parallelize the graph coloring problem, the vertices of the graph are distributed
among parallel threads. However, due to crossing edges, the coloring subproblems
assigned to parallel threads are not independent, and the parallel algorithm may
terminate with an invalid coloring. Specifically, a race condition arises when two
parallel threads assign the same color to adjacent vertices. The algorithm implies
that when a parallel thread updates the color of a vertex, the forbidden set of colors
of the adjacent vertices has not been changed. Thus, the nature of this algorithm
imposes that the reads to the colors of the adjacent vertices of a vertex v have to be
executed atomically with the write-update to the color of the vertex v.

Fig. 2   The SeqSolve algorithm

6378	 C. Giannoula et al.

1 3

2.2.1 � The SeqSolve algorithm

Figure 2 presents the parallel graph coloring algorithm proposed by Gebremedhin
et al. [28], henceforth referred to as SeqSolve. This algorithm consists of three
steps: (i) multiple parallel threads iterate over the whole graph and speculatively
color the vertices of the graph with no synchronization (lines 3–6), (ii) multiple
parallel threads iterate over the whole graph and detect coloring inconsistencies
that appeared in the (i) step (lines 7–13), and (iii) only one single thread resolves
the detected coloring inconsistencies by re-coloring the conflicted vertices (lines
14–16). Since the (iii) step is executed by only a single thread, no coloring inconsist-
encies appear after this step. Note that when a coloring conflict arises between two
adjacent vertices, only one of the involved adjacent vertices needs to be re-colored,
e.g., using a simple order heuristic among the vertices (line 11).

In the SeqSolve algorithm, we make three key observations. First, if the num-
ber of coloring conflicts arises in a multithreaded execution is low, the algorithm
might scale well [28]. However, as the number of parallel threads increases and the
graph becomes denser, i.e., the vertices of the graph have a large number of adjacent
vertices, many more coloring conflicts arise in multithreaded executions. In such
scenarios, a large number of coloring inconsistencies is resolved sequentially, i.e.,
by only one single thread, thus achieving limited parallelism. Second, we note Seq-
Solve traverses the whole graph at least two times, i.e., step (i) and step (ii). Assum-
ing large real-world graphs that do not typically fit in the Last Level Cache (LLC)
of contemporary multicore platforms, the whole graph is traversed twice using the
main memory, thus incurring high data access costs. Third, we observe that Seq-
Solve detects and resolves the coloring conflicts lazily, i.e., much later in the runt-
ime compared to the time that the coloring conflicts appear. Specifically, a coloring
inconsistency in a vertex v might appear in step (i). However, SeqSolve detects the
coloring inconsistency in vertex v in step (ii), i.e., after first coloring all the remain-
ing vertices of the graph. Similarly, SeqSolve resolves the coloring inconsistency of
the vertex v in step (iii), i.e., after first detecting if coloring inconsistencies exist in
all the remaining vertices of the graph (step (ii)). As a result, many conflicted ver-
tices are accessed multiple times in the runtime, however with a lazy approach, i.e.,
accessing them through the expensive last levels of the memory hierarchy of com-
modity platforms, thus incurring high data access costs.

2.2.2 � The IterSolve algorithm

Figure 3 presents the parallel graph coloring algorithm proposed by Boman
et al. [27, 30], henceforth referred to as IterSolve. This algorithm consists of two
repeated steps: (i) multiple parallel threads iterate over the uncolored vertices of the
graph and speculatively color the uncolored vertices of the graph with no synchroni-
zation (lines 5–8), (ii) multiple parallel threads iterate over the recently colored ver-
tices of the graph and detect coloring inconsistencies appeared in the (i) step (lines

6379

1 3

High‑performance and balanced parallel graph coloring on…

9–15). The steps (i) and (ii) are iteratively repeated until there are no coloring incon-
sistencies in any adjacent vertices of the graph.

In the IterSolve algorithm, we make four key observations. First, the program-
mer needs to explicitly define forward progress in the source code, so that the
IterSolve algorithm terminates. Specifically, to ensure forward progress when a
coloring inconsistency appears between two adjacent vertices, the programmer
needs to explicitly define only one of them to be re-colored (line 13), e.g., based
on the vertices’ ids. Otherwise, the two adjacent vertices may always obtain the
same color, if they are always being processed by different threads. Second, simi-
larly to SeqSolve, IterSolve traverses the whole graph at least two times (steps (i)
and (ii)), i.e., in the first iteration of the while loop in line 4, where the set U is
equal to the set V (line 3). In the first iteration of the while loop, the whole large
real-world graph is accessed through the main memory twice, thus incurring high
data access costs. Third, similarly to SeqSolve, IterSolve detects and resolves
the coloring conflicts lazily. Specifically, a coloring inconsistency in a vertex v
might appear in step (i) (line 7), it is detected in step (ii) (line 13), i.e., after first
coloring all the remaining uncolored vertices of the graph. Moreover, IterSolve
resolves the coloring inconsistency of a vertex v in step (i) (with re-coloring), i.e.,
after first detecting if coloring inconsistencies exist in all the remaining recently
colored vertices of the graph (step (ii)). Thus, IterSolve incurs high data access
costs on the many conflicted vertices, which are accessed multiple times in the
runtime with lazy approach, through the last levels of the memory hierarchy of
commodity platforms. Fourth, the iterative process of resolving coloring conflicts
may introduce new conflicts, and thus, IterSolve might need additional iterations
to fix them. This scenario may happen when adjacent vertices are assigned to
the same thread and incur coloring inconsistencies, they will be assigned and
processed by different parallel threads in the next iteration. The authors of the
original IterSolve papers [27, 30] empirically observe that a few iterations of Iter-
Solve are needed to produce a valid coloring. However, the authors used synthetic
and not real-world graphs in their evaluation. In addition, the more iterations are

Fig. 3   The IterSolve algorithm

6380	 C. Giannoula et al.

1 3

needed, the more lazy traversals on the conflicted vertices of the graph are per-
formed, which can significantly degrade performance.

2.2.3 � The IterSolveR algorithm

Figure 4 presents the parallel graph coloring algorithm proposed by Rokos
et al. [29], henceforth referred to as IterSolveR. Rokos et al. observed that the Iter-
Solve algorithm (Fig. 3) can be improved by merging the steps (i) and (ii) into a
single detect-and-re-color step, thus eliminating one of the two barrier synchroni-
zations of IterSolve (lines 8 and 15 in Fig. 3). When a coloring inconsistency on
a vertex v is found, the vertex v can be immediately re-colored (line 18 in Fig. 4).
However, the new re-coloring on the vertex v may again introduce a coloring incon-
sistency in multithreaded executions, since re-colorings are performed concurrently
by multiple parallel threads (line 11). Therefore, the vertex v is marked as recently
re-colored vertex (line 19), and needs to be re-validated in the next iteration of Iter-
SolveR. Overall, IterSolveR (Fig. 4) first speculatively colors all the vertices of the
graph and marks them as recently colored vertices (lines 3–6). Then, it executes one
single repeated step (lines 8–21): multiple parallel threads iterate over the recently
colored vertices of the graph, and detect if coloring inconsistencies have appeared,
which in that case are immediately resolved via re-coloring. This step is repeated
until there are no recently re-colored vertices: in one single iteration of this step,
there are no coloring inconsistencies detected in any adjacent vertices of the graph.

In the IterSolveR algorithm, even though one barrier synchronization is elimi-
nated compared to IterSolve, we observe that IterSolveR still traverses the whole
graph at least twice: (i) in Step 0 (lines 4–5), and (ii) in the first iteration of the while
loop in line 8, where the set U is equal to the set V (line 7), including all the vertices
of the graph. Thus, IterSolveR traverses the large real-world graph twice through the

Fig. 4   The IterSolveR algorithm

6381

1 3

High‑performance and balanced parallel graph coloring on…

main memory, incurring high data access costs. In addition, we find that similarly to
SeqSolve and IterSolve, the IterSolveR algorithm also detects the coloring inconsist-
encies lazily. Specifically, a coloring inconsistency on a vertex v might appear in the
re-coloring process of lines 17–19, since the re-coloring process is concurrently exe-
cuted on multiple conflicted vertices by multiple parallel threads. However, re-col-
oring inconsistencies of lines 17–19 are detected in the next iteration of the step (i)
in lines 13–16, i.e., after first processing all the remaining vertices of the set U (line
11). Therefore, as we demonstrate in our evaluation (Sect. 5.2), IterSolveR is still
inefficient, incurring high data access costs on multiple conflicted vertices which are
accessed multiple times in the runtime with a lazy approach.

2.3 � Prior balanced graph coloring algorithms

To provide a balanced coloring on a graph in which the color classes produced
include almost the same number of vertices, an initial graph coloring is obtained
using a balanced-oblivious algorithm (e.g., see Sect. 2.2), and subsequently the bal-
anced graph coloring is obtained using a balanced-aware (henceforth referred to as
balanced for simplicity) graph coloring algorithm, as we describe next. Specifically,
given a graph G = (V ,E) , we can assume that the number of colors produced by the
initial coloring step (i) is C. A strictly balanced graph coloring results in the size
of each color class being b = V∕C.2 Therefore, we refer to the color classes whose
sizes are greater than b as over-full classes, and those whose sizes are less than b as
under-full classes. Balanced graph coloring algorithms leverage the quantity of b,
which can be extracted by first executing an initial balanced-oblivious graph color-
ing on the graph, in order to provide balanced color classes on a graph.

Fig. 5   The CLU algorithm

2  Please note that in our work we make the following assumption: in a real-world end-application, the
vertices of the graph represent sub-tasks that have almost equal load/weights of computation. If the ver-
tices of the input graph have different load/weights of computation, a pre-processing step needs to be
applied in the original graph: vertices with large computation weights/load are split into multiple smaller
vertices, each of them has one weight/load unit of computation.

6382	 C. Giannoula et al.

1 3

2.3.1 � The Color‑Centric (CLU) algorithm

Figure 5 presents the color-centric balanced graph coloring algorithm proposed by
Lu et al. [31], henceforth referred to as CLU. In this scheme, vertices belonging in
the same color class are processed concurrently, and a subset of vertices from each
over-full color class is moved to under-full color classes in order to achieve high
color balance. Only vertices belonging in over-full color classes are considered for
re-coloring, while graph coloring balance is achieved without increasing the number
of color classes produced by the initial graph coloring.

The CLU algorithm (Fig. 5) processes the over-full color classes sequentially
(lines 6 and 16), while vertices belonging to the same over-full color class are pro-
cessed concurrently (line 8). CLU iterates over each vertex v of an over-full color
class, and finds the minimum color of an under-full color class that is permissible
to be assigned at the vertex v (line 11). If such a color exists, the vertex v is re-
colored with a color of an under-full color class (lines 12–15). The CLU algorithm
iterates over the vertices of each over-full color class until that particular over-full
class becomes balanced at a certain point in the execution, i.e., until when its size
becomes smaller or equal to b (lines 9–10). Then, the vertices belonging to that
color class are no longer considered for re-coloring (line 10). Thus, this algorithm
terminates when either vertex-balance across color classes is achieved or vertex-bal-
ance across color classes is no longer available, i.e., there are no more permissible
re-colorings for any vertex belonging in an over-full color class.

In the CLU algorithm, we make two key observations. First, parallel threads
always process vertices of the same color, thus no coloring inconsistencies are pro-
duced: since vertices had the same color in the initial coloring, they are not adjacent
vertices, and thus they can be re-colored with the same color of an under-full color
class without violating correctness. This way, CLU requires only one iteration over
the vertices of all the over-full color classes. Second, the parallel performance of
CLU depends on the number of the over-full color classes produced in the initial
coloring. CLU requires F steps, where F is the number of over-full color classes
produced in the initial coloring. At each of these steps, i.e., for each over-full color
class on the initial coloring, CLU introduces a barrier synchronization among paral-
lel threads (line 16). This way, it increases the synchronization costs, which might
significantly degrade scalability in multithreaded executions.

2.3.2 � The Vertex‑Centric (VFF) algorithm

Figure 6 presents the vertex-centric balanced graph coloring algorithm proposed by
Lu et al. [31], henceforth referred to as VFF. The VFF algorithm is the balanced
graph coloring counterpart of the IterSolve algorithm (Fig. 3). In this scheme, verti-
ces from different color classes are processed concurrently by parallel threads. Thus,
in contrast to CLU, VFF introduces coloring inconsistencies. However, similarly to
CLU, in VFF only vertices belonging in over-full color classes are considered for
re-coloring, i.e., to be moved to under-full color classes, while graph coloring bal-
ance is also achieved without increasing the number of color classes produced by the
initial graph coloring.

6383

1 3

High‑performance and balanced parallel graph coloring on…

Similarly to IterSolve, VFF (Fig. 6) consists of two repeated steps: (i) multiple
parallel threads iterate over vertices of over-full color classes and speculatively re-
color them with permissible colors of under-full color classes, if possible (lines
8–18), and (ii) multiple parallel threads iterate over the recently re-colored verti-
ces and detect coloring inconsistencies that appeared in the (i) step (lines 19–26).
Similarly to CLU, VFF iterates over the vertices of an over-full color class until that
particular over-full class becomes balanced at a certain point in the execution, i.e.,
until when its size becomes smaller or equal to b (lines 11–12). Then, the vertices
belonging to that particular color class are no longer considered for re-coloring (line
12). The steps (i) and (ii) are iteratively repeated until there are no coloring incon-
sistencies in any adjacent vertices of the graph, and the algorithm terminates when
either vertex-balance across color classes is achieved or vertex-balance across color
classes is no longer available, i.e., there are no more permissible re-colorings for any
vertex belonging in an over-full color class.

Since VFF is the balanced graph coloring counterpart of IterSolve, we report
similar key observations for them. First, VFF detects and resolves the coloring con-
flicts lazily. Specifically, a coloring inconsistency in a vertex v might appear in step
(i), while it is detected in step (ii), i.e., after first iterating over all the remaining ver-
tices of over-full color classes. Moreover, VFF resolves the coloring inconsistency
in a vertex v in step (i) (re-coloring), i.e., after first detecting if coloring inconsisten-
cies exist in all the remaining recently re-colored vertices (in step (ii) of the previ-
ous iteration). Thus, VFF incurs high data access costs due to accessing multiple
conflicted vertices in the runtime through the last levels of the memory hierarchy
of commodity platforms. Second, the iterative process of resolving coloring con-
flicts may introduce new conflicts, and thus, VFF might need additional iterations

Fig. 6   The VFF algorithm

6384	 C. Giannoula et al.

1 3

to fix them. This scenario may happen when adjacent vertices are assigned to the
same thread and incur coloring inconsistencies, they will be assigned and processed
by different parallel threads in the next iteration. Note that the more iterations are
needed, the more lazy traversals on the conflicted vertices of the graph are per-
formed, which might significantly degrade performance.

2.3.3 � The recoloring algorithm

Figure 7 presents the re-coloring balanced graph coloring algorithm proposed by Lu
et al. [31], henceforth referred to as Recoloring. Recoloring is similar to the VFF
(Fig. 6) and IterSolve (Fig. 3) schemes. The key idea of this algorithm is that after
performing an initial graph coloring with C colors, all the vertices of the graph are
re-colored, having an additional condition on the color selection in order to achieve
better vertex balance across color classes compared to that produced by the initial
graph coloring. Specifically, Recoloring leverages the perfect balance b = V∕C
known from the initial graph coloring, and keeps track the sizes of the color classes
during the execution in order to improve vertex balance across color classes as fol-
lows: each vertex is re-colored using the minimum permissible color k such that the
size of the color class k is less than b.

Similarly to IterSolve and VFF, Recoloring (Fig. 7) consists of two repeated steps:
(i) multiple parallel threads iterate overall the vertices of the graph and speculatively
re-color them with a new permissible color k, that satisfies the condition that the
size of the color class k is less than b (lines 12–17), and (ii) multiple parallel threads
iterate over the recently re-colored vertices and detect coloring inconsistencies that

Fig. 7   The Recoloring algorithm

6385

1 3

High‑performance and balanced parallel graph coloring on…

appeared in the (i) step (lines 18–25). The steps (i) and (ii) are iteratively repeated
until there are no coloring inconsistencies in any adjacent vertices of the graph. In
contrast to VFF and CLU, Recoloring does not guarantee that the graph color bal-
ance achieved uses the same number of colors with the initial graph coloring. To
avoid producing a large number of color classes, the Recoloring scheme [31] (Fig. 7)
re-colors the vertices of the graph with the following order: assuming that the verti-
ces of the graph are ordered such that the vertices of the same color class are listed
consecutively (line 6), Recoloring iterates over the vertex sets of the color classes in
the reverse order compared to that produced in the initial graph coloring, i.e., start-
ing from the vertices assigned to the color class with the largest index (See line 8).
The rationale behind this heuristic is that the vertices that are "difficult" to color,
i.e., in the initial graph coloring they are assigned to a color class with large index,
will be processed early, thus aiming to produce a small number of color classes. For
more details, we refer the reader to [31].

In Recoloring, we make three key observations. First, Recoloring traverses the
whole graph, i.e., it re-colors all the vertices of the graph, while CLU and VFF re-
color only a subset of the vertices of over-full color classes. As a result, Recoloring
performs a much larger number of computations and memory accesses compared
to VFF and CLU. Second, similarly to IterSolve and VFF, Recoloring detects and
resolves coloring inconsistencies with a lazy approach, thus incurring high data
access costs. Recoloring may also introduce new conflicts, thus resulting in addi-
tional iterations to fix them. Third, even though Recoloring employs a different ver-
tex ordering heuristic to re-color vertices compared to that used in the initial graph
coloring (vertices are colored with the order they appear in the input graph), there
is no guarantee on the number of color classes that will be produced. As we dem-
onstrate in our evaluation (Sect. 5.3), Recoloring might significantly increase the
number of color classes produced compared to that produced in the initial graph
coloring.

3 � ColorTM: overview

In the graph coloring kernel, there are three key optimization aspects: (i) minimize
the number of colors used to color the vertices of the input graph, (ii) minimize
the actual execution time it takes to color the vertices of the input graph, and (iii)
minimize the actual execution time it takes to balance the vertices across the color
classes produced. Our goal in this work is to improve the last two key aspects of
the graph coloring kernel. Our proposed algorithmic design is a high-performance

Fig. 8   A naive approach

6386	 C. Giannoula et al.

1 3

graph coloring algorithm for multicore platforms. ColorTM provides low synchro-
nization and data access costs by relying on two key techniques, that we describe in
detail next.

3.1 � Speculative computation and synchronization

As already discussed, the graph coloring kernel implies that the reads to the colors
of the adjacent vertices of a vertex v have to be executed atomically with the write-
update to the color of the vertex v. Figure 8 presents a straightforward parallelization
scheme of the graph coloring problem. A naive parallelization approach would be
to distribute the vertices of the graph across parallel threads, and for each vertex to
include within a critical section the whole block of code that computes and assigns a
permissible color to that vertex. However, this approach results to large critical sec-
tions with large data access footprints and long duration, and significantly limits the
amount of parallelism and the scalability to a large number of threads.

We observe that it is not necessary to include inside the critical section (i) the
computations performed to find a permissible color for a vertex v, and (ii) the
accesses to all the adjacent vertices of the vertex v. Figure 9 presents an overview
of ColorTM. For each vertex v, we design ColorTM to implement a speculative
computation scheme through two sub-steps: (i) speculatively compute a permissible
color k for the vertex v (line 5) without using synchronization and track the set of
critical adjacent vertices (line 6), i.e., a subset of v’s adjacent vertices that can cause
coloring inconsistencies with the vertex v (see Sect. 4.2 for more details), and (ii)
execute a critical section (using synchronization) that validates the speculative color
k computed in step (i) over the colors of the critical adjacent vertices (lines 8–9) and
assigns the color k to the vertex v, if the validation succeeds (lines 10–14). With the
proposed speculative computation scheme, we provide small critical sections, i.e.,

Fig. 9   ColorTM: overview

6387

1 3

High‑performance and balanced parallel graph coloring on…

having small data access footprints and short duration, thus achieving high amount
of parallelism and high scalability to a large number of threads.

In addition, we leverage Hardware Transactional Memory (HTM) to implement
synchronization on critical sections (lines 7, 12, and 14 of Fig. 9). HTM enables a
speculative synchronization mechanism: multiple critical sections of parallel threads
are executed concurrently with an optimistic approach that they will not cause
any data inconsistency, even though their data access sets might overlap. In con-
trast, fine-grained locking with software-based locks (e.g., provided by the pthread
library) constitutes a more conservative synchronization approach: multiple criti-
cal sections of parallel threads are executed concurrently, only if their data access
sets do not overlap. Therefore, HTM can enable a higher number of critical sections
to be executed in parallel compared to that enabled with the fine-grained locking
scheme. We provide more details in Sect. 4.1. With the speculative synchronization
approach of HTM, ColorTM further minimizes synchronization costs and provides
high amount of parallelism.

3.2 � Eager coloring conflict detection and resolution

We design ColorTM to detect and resolve coloring inconsistencies eagerly, i.e.,
immediately detecting and resolving coloring inconsistencies at the time that the
coloring conflicts appear. This way, the conflicted vertices are accessed multiple
times, however within a short time during runtime. Therefore, application data cor-
responding to conflicted vertices can remain and be located in the first levels of the
memory hierarchy of commodity platforms (i.e., in the low-cost cache memories),
thus enabling ColorTM to improve performance by achieving low data access costs.

In Fig. 9, parallel threads concurrently compute speculative colors for multi-
ple vertices of the graph (lines 4–6), and at that time coloring inconsistencies may
appear. Then, parallel threads immediately detect possible coloring conflict incon-
sistencies for the current vertices using synchronization (lines 7-14). This way, par-
allel threads detect conflicts by accessing application data with low access latencies,
since the data accessed in lines 7–14 has just been accessed within a short time, i.e.,
in lines 4–6. Next, if coloring conflicts arise (line 13), parallel threads immediately
resolve the coloring conflicts by directly retrying to find new colors for the current
vertices (goto RETRY​ inline 15) (without proceeding to process new vertices).
This way, parallel threads resolve conflict inconsistencies by accessing application
data with low access latencies, since the data accessed in lines 4–6 after the execu-
tion of goto RETRY​ has just been accessed within a short time, i.e., in lines 7–14
of the previous iteration.

In ColorTM, we highlight two important key design choices. First, ColorTM
executes only one single parallel step (line 2). In contrast to prior state-of-the-art
parallel graph coloring algorithms [27–31], ColorTM completely avoids barrier
synchronization among parallel threads: multiple parallel threads repeatedly iterate
over each vertex of the graph until a valid coloring is found. By completely avoiding
barrier synchronization, ColorTM can provide high scalability. Second, ColorTM
does not perform re-colorings to vertices: once a vertex is assigned a permissible

6388	 C. Giannoula et al.

1 3

color, it will not be re-colored again during the runtime. This way, colored vertices
will not introduce coloring inconsistencies with vertices that will be processed next.
Prior lazy iterative graph coloring schemes including IterSolve, IterSolveR, VFF and
Recoloring do not use data synchronization when they assign permissible colors to
vertices. This way, many vertices are re-colored multiple times with different colors
during runtime, and thus new additional coloring inconsistencies might be intro-
duced due to re-colorings. Instead, ColorTM employs HTM synchronization (lines
7, 12 and 14 of Fig. 9) when it assigns permissible colors to vertices (line 11 of
Fig. 9). This way, vertices are assigned only one final color during the runtime, thus
avoiding introducing new coloring inconsistencies due to re-colorings.

4 � ColorTM: detailed design

ColorTM [33] is a high-performance graph coloring algorithm that leverages HTM
to implement synchronization among parallel threads, and performs speculative
computations outside the critical section in order to minimize the memory footprint
and computations executed inside the critical section. In the section, we describe the
detailed design and correctness of ColorTM. We also extend our proposed design
to introduce a new balanced graph coloring algorithm, named BalColorTM, which
evenly distributes the vertices of the graph across color classes.

4.1 � Speculative synchronization via HTM

ColorTM leverages HTM to implement synchronization among parallel threads
instead of using fine-grained locking. As already discussed, HTM is a more optimis-
tic synchronization approach and can provide higher levels of parallelism compared
to the fine-grained locking scheme. Specifically, multiple critical sections with over-
lapped data access sets can be executed in parallel with HTM, while they need to be
executed sequentially with fine-grained locking.

(a) (b)

Fig. 10   An example execution scenario in which threads T1 and T2 attempt to concurrently find colors
for the vertices v and x, respectively, using a HTM and b fine-grained locking for synchronization. The
white circles represent uncolored vertices, and the colorful circles represent vertices that have already
obtained a color

6389

1 3

High‑performance and balanced parallel graph coloring on…

Figure 10 provides an example of the aforementioned scenario in graph coloring.
Consider the scenario where thread T1 attempts to assign a color to the vertex v,
and thread T2 attempts to assign a color to the vertex x. Thread T1 needs to atomi-
cally read the colors of the adjacent vertices of the vertex v, i.e., u, r, z vertices, and
write the corresponding color to the vertex v. Similarly, Thread T2 needs to atomi-
cally read the colors of the adjacent vertices of the vertex x, i.e., u vertex, and write
the corresponding color to the vertex x. With HTM (Fig. 10a), T1’s and T2’s trans-
actions can be executed and committed concurrently: neither the write-set of T1’s
transaction does not conflict with the read-set of T2’s transaction, nor the write-set
of T2’s transaction does not conflict with the read-set of T1’s transaction. Therefore,
even though T1’s and T2’s critical sections have overlapped data access sets, i.e.,
both of them include the color of the vertex u in their read-sets, they can be executed
concurrently with HTM. In contrast, with fine-grained locking, T1’s and T2’s critical
sections are executed sequentially (Fig. 10b): threads T1 and T2 compete to acquire
the same lock, i.e., the lock associated with the vertex u, in order to execute their
critical sections. Thus, only one of threads T1 and T2 will acquire the lock, and will
proceed. Given that T1’s and T2’s critical sections have overlapped data access sets,
i.e., both of them include the color of the vertex u in their read-sets, they will be
executed sequentially when using the fine-grained locking scheme for synchroniza-
tion. As a result, we conclude that in graph coloring HTM can provide higher levels
of parallelism compared to fine-grained locking.

To this end, ColorTM employs HTM to deal with race conditions that arise when
parallel threads concurrently process adjacent vertices. HTM can detect and resolve
coloring inconsistencies among parallel threads as follows:

–	 HTM can detect coloring conflicts HTM detects coloring conflicts that arise due
to crossing edges. For a vertex v to be colored, we enclose within the transaction
(i) the memory location that stores the color of the current vertex v (the transac-
tion’s write-set), and (ii) the memory locations that store the colors of the criti-
cal adjacent vertices of the vertex v (the transaction’s read-set). When parallel
threads attempt to concurrently update-write the colors of adjacent vertices using

Fig. 11   An example execution scenario in which threads T1 and T2 attempt to concurrently update the
colors of the vertices v and u, respectively, using two different transactions, and the HTM mechanism
detects read-write conflicts to their data sets. The white circles represent uncolored vertices, and the
colorful circles represent vertices that have already obtained a color

6390	 C. Giannoula et al.

1 3

different transactions, the HTM mechanism detects read-write conflicts across
the running transactions: a running transaction attempts to write the read-set of
another running transaction. Figure 11 provides an example scenario on how
HTM detects coloring inconsistencies among two parallel threads. When the
thread T1 attempts to color the vertex v using HTM, the corresponding running
transaction includes the memory location of the color of the vertex v in its write-
set, and the memory locations of the colors of the v’s adjacent vertices, i.e., u, r
and z vertices, in its read-set. Similarly, when the thread T2 attempts to color the
vertex u using HTM, the corresponding running transaction includes the memory
location of the color of the vertex u in its write-set, and the memory locations of
the colors of the u’s adjacent vertices, i.e., v and x vertices, in its read-set. When
T1′s and T2′s transactions are executed concurrently, HTM detects a read-write
conflict either on the color of the vertex v or the color of the vertex u: either T1′s
transaction attempts to write the read-set of T2′s transaction or T2′s transaction
attempts to write the read-set of T1′s transaction. Therefore, one of the two run-
ning transactions will be aborted by the HTM mechanism, and the other one will
be committed.

–	 HTM can resolve coloring conflicts In case of n conflicting running transactions
(read-write conflicts explained in Fig. 11), the HTM mechanism aborts n − 1 run-
ning transactions and commits only one of them. In prior graph coloring schemes
such as SeqSolve (line 11 of Fig. 2), IterSolve (line 13 of Fig. 3), VFF (line 23
of Fig. 6) and Recoloring (line 22 of Fig. 7), the programmer explicitly defines
a coloring conflict resolution policy among conflicted vertices to guarantee for-
ward progress, i.e., the programmer explicitly defines which of the conflicted
vertices will be re-colored next. In contrast, in ColorTM when coloring conflicts
arise among multiple running transactions, the programmer does not need to
explicitly define a conflict resolution policy: the HTM mechanism itself com-
mits one of the multiple conflicted transactions and aborts the remaining running
transactions. Thus, the conflict resolution policy implemented in the underlying
hardware mechanism of HTM determines which vertices will continue to be pro-
cessed for coloring.

However, currently available HTM systems [37–40] are best-effort HTM imple-
mentations that do not guarantee forward progress: a transaction may always fail
to commit and thus, a non-transactional execution path (fallback path) needs to be
implemented. The most common fallback path is to implement a coarse-grained
locking solution: each transaction can be retried up to a predefined number of times
(pre-determined threshold), and if it exceeds this threshold, it fall backs to the acqui-
sition of global lock, which allows only one single thread to execute its critical sec-
tion. To implement this, the global lock is added to the transactions’ read sets: inside
the transaction the thread always reads the value of the global lock variable. During
the multithreaded execution, when the transaction of a parallel thread exceeds the
predefined threshold of retries, the parallel thread acquires the global lock by writ-
ing to the value of the global lock variable, and then the concurrent running transac-
tions of the remaining threads are aborted (read-write conflict) and wait until the
global lock is released.

6391

1 3

High‑performance and balanced parallel graph coloring on…

4.2 � Critical adjacent vertices

ColorTM implements a speculative computation approach to achieve high perfor-
mance. Specifically, for each vertex v, all necessary computations to find a permis-
sible color k are performed outside the critical section (line 5 in Fig. 9) such that
avoid unnecessary computations inside the critical sections. Within the critical sec-
tion, ColorTM only validates the speculative color k (line 9 in Fig. 9) by comparing
it with the colors of the adjacent vertices of vertex v. However, the speculative color
k for a vertex v does not need to be validated with the colors of all the adjacent ver-
tices of vertex v: we observe that some adjacent vertices can be omitted from the
validation process of the critical section, because they do not cause any coloring
inconsistency with the vertex v. Specifically, we can omit from the validation step
performed within the critical section the following adjacent vertices of vertex v:

1.	 The adjacent vertices that are assigned to be processed by the same thread with
the vertex � . Given that the vertices of the graph are distributed across multiple
threads, coloring conflicts cannot arise between adjacent vertices that are assigned
to the same parallel thread. Therefore, we omit from the validation step of the
critical section the adjacent vertices assigned to the same thread as the current
vertex v.

2.	 The adjacent vertices that have already obtained a color. As already explained,
ColorTM does not perform re-colorings to the vertices of the graph: once a vertex
is assigned a permissible color within the critical section (using synchronization),
it will not be re-colored again during runtime. Multiple parallel threads repeat-
edly iterate over a vertex until a valid coloring is found, which is assigned to it
using data synchronization, and then proceed to the remaining vertices. Therefore,
in ColorTM coloring conflicts do not arise between adjacent vertices that have
already obtained a color: the colors assigned to adjacent vertices are taken into
consideration in the computations performed outside the critical section (line 5
in Fig. 9) to find a speculative color for the current vertex, and will not be modi-
fied when the critical section is executed (lines 7–15 in Fig. 9), since ColorTM

Fig. 12   An example execution scenario in which the graph is partitioned across two parallel threads. The
white circles represent uncolored vertices, and the colorful circles represent vertices that have already
obtained a color. When the threads T1 and T2 attempt to color the vertices v and u, respectively, the criti-
cal adjacent vertices that need to be validated within the critical section (HTM) are only the vertices u
and v, respectively

6392	 C. Giannoula et al.

1 3

does not perform re-colorings. Therefore, adjacent vertices of a vertex v that have
already obtained a color when the speculative coloring computation step (line 5 in
Fig. 9) is executed, do not cause any coloring inconsistency when critical section
is executed (lines 7–15 in Fig. 9). Hence, we can safely omit from the validation
step of the critical section the adjacent vertices that have already been assigned
a color.

Figure 12 presents an example execution scenario of a graph partitioned across two
parallel threads T1 and T2. In Fig. 12, the white vertices represent uncolored ver-
tices and the colorful vertices represent vertices that have already obtained a color
during runtime. In this scenario, threads T1 and T2 attempt to color the vertices v
and u, respectively. According to our described optimizations, the adjacent vertices
that need to be validated inside the critical sections (via HTM) of the vertices v and
u are only the vertices u and v, respectively.

Overall, for the current vertex v to be colored, the necessary adjacent vertices that
need to be validated inside the critical section, referred to as critical adjacent verti-
ces, are the uncolored adjacent vertices assigned to different parallel threads com-
pared to the thread to which the vertex v is assigned to. By accessing inside the criti-
cal section only a few data needed to ensure correctness, ColorTM provides short
critical sections and small transaction footprints, and achieves high levels of paral-
lelism and low synchronization costs, i.e., low abort ratio in hardware transactions
of HTM (see Sect. 1). Note that having large transactions footprints in HTM transac-
tions can cause three important problems: (i) if the transaction read- and write-sets
are large, the available hardware buffers of HTM may be oversubscribed (hardware
overflow), and in that case the HTM mechanism will abort the running transactions
due to capacity aborts, (ii) if the duration of a running transaction is long (e.g., due
to expensive data accesses), the running transactions may be aborted due to a time
interrupt (when the duration of a transaction exceeds the time scheduling quantum,
the OS scheduler schedules out the software thread from the hardware thread and
the transaction is aborted), and (iii) the longer the transactions last and the larger
their data sets are, the greater the probability that running transactions are aborted
due to (read-write) data conflicts among them.

4.3 � Implementation details

Figure 13 presents ColorTM in detail. ColorTM distributes the vertices of the graph
across multiple threads, which color the vertices of the graph through one single
parallel step (lines 4–29): multiple parallel threads repeatedly iterate over each ver-
tex of the graph until a valid coloring on each vertex is performed.

For each vertex v, there are two sub-steps. In the first sub-step (lines 6–13), the
parallel thread keeps track (i) the forbidden set of colors assigned to the adjacent
vertices of the vertex v (line 10), and (ii) the critical adjacent vertices of the vertex v
(lines 11–12), which are the uncolored adjacent vertices assigned to different paral-
lel threads (line 11), and then computes a speculative color k that is permissible for
the vertex v using the compute_speculative_color() function (line 13).

6393

1 3

High‑performance and balanced parallel graph coloring on…

In the second sub-step (lines 14–29), the parallel thread validates and assigns (if
allowed) the speculative color k to the vertex v using data synchronization via HTM
(lines 18–29). Specifically, the colors of the critical adjacent vertices are compared
to the speculative color k within a hardware transaction (lines 20–23) to ensure that
the color k is still permissible to be assigned to the vertex v. If the validation suc-
ceeds (line 24), the color k is assigned to the vertex v within the same transaction
(line 25) to ensure correctness: recall that the reads on the colors of the critical
adjacent vertices need to be executed atomically with the write-update on the color
of the vertex v. Instead, if the validation step fails due to a coloring inconsistency
appeared during runtime (line 27), the parallel thread repeatedly and eagerly retries
to find a new permissible color for the current vertex v (line 29). Note that if there
are no critical adjacent vertices to be validated (line 15), the speculative color k is
directly assigned to the vertex v without using synchronization (line 16).

Note that in the second sub-step (lines 14–29), ColorTM does not check if the
colors of the critical adjacent vertices have not been modified since the first sub-
step (lines 6–13). Instead, the validation of the second sub-step only checks that the
colors of the critical adjacent vertices are different from the speculative color k com-
puted in the first sub-step (line 13). In the meantime, different parallel threads may
have just assigned new colors to critical adjacent vertices, which however are differ-
ent from the color k, and thus causing no coloring inconsistencies. In that scenario,
the validation of the second sub-step succeeds. This way, ColorTM provides high

Fig. 13   The ColorTM algorithm

6394	 C. Giannoula et al.

1 3

levels of parallelism: multiple parallel threads that have just assigned different colors
than the color k to critical adjacent vertices of the vertex v will not cause any vali-
dation failure in the critical section of the vertex v, and the corresponding running
transaction will be safely committed.

4.4 � Progress and correctness

We clarify in detail how ColorTM resolves the race conditions that may arise during
runtime. There are two race conditions that may cause coloring inconsistencies in
multithreaded executions. First, while a parallel thread computes a speculative color
k for the vertex v (lines 9–13 of Fig. 13), different parallel threads may have just
assigned the color k to one or more adjacent vertices of the vertex v. In that scenario,
the validation step of lines 20–23 of Fig. 13 fails (line 22, 27), since the speculative
color k has been assigned to at least one critical adjacent vertex (line 21). Then, the
corresponding parallel thread will retry to find a new permissible color for the ver-
tex v (line 29). Second, a race condition arises when n parallel threads (assuming n
> 1) attempt to write-update the same color k to n adjacent vertices (fully connected
adjacent vertices) within n different running transactions. In that scenario, the HTM
mechanism detects read-write data conflicts on running transactions, because one
(or more) running transaction attempts to write to the read-sets of another running
transactions. Recall that the colors of the critical adjacent vertices are included in
the read-set of each running transaction (lines 21 of Fig. 13). Then, the HTM mech-
anism aborts n − 1 running transactions, and commits only one of them. When the
aborted n − 1 transactions retry (each transaction can retry up to a predefined num-
ber of times), the validation step of lines 20–23 fails (lines 27 of Fig. 13), since at
that time the n − 1 parallel threads observe that there is one critical adjacent vertex
that has just been assigned to the color k (the committed transaction). Afterwards,
since the validation failed, the n − 1 parallel threads will retry to find new permis-
sible colors for their current vertices (lines 27–29 of Fig. 13).

Finally, we clarify that ColorTM provides forward progress and eventually ter-
minates: each parallel thread retries to find a new permissible color for a current
vertex v (line 29 of Fig. 13) up to a limited number of retries. Specifically, a paral-
lel thread retries to find a new color for a vertex v, when the validation step of lines
20–23 of Fig. 13 fails. However, for each vertex v the validation step can fail up to
a bounded number of times: the validation step fails when one (or more) critical
adjacent vertex has been assigned to the same color k′ with the speculative color k
computed for the vertex v. Therefore, in the worst case, the validation step might fail
up to deg(v) times, where deg(v) is the adjacency degree of the vertex v. When all
v’s adjacent vertices have obtained a color, there are no critical adjacent vertices to
be validated (line 15 of Fig. 13), and thus, the speculative color k is directly assigned
to the vertex v (line 16 of Fig. 13), and the validation step is omitted. As a result,
each parallel thread retries to find a color for each vertex v of the graph at most
deg(v) times. However, in our evaluation, we find that the validation step fails only
for a few times: across all our evaluated large real-world graphs (Table 1) and using
a large number of parallel threads (up to 56 threads) the validation step failures are

6395

1 3

High‑performance and balanced parallel graph coloring on…

less than 0.01%. Overall, we conclude that ColorTM correctly handles all the race
conditions that may arise in multithreaded executions of the graph coloring kernel,
and effectively terminates with a valid coloring.

4.5 � The BalColorTM algorithm

Figure 14 presents the balanced counterpart of ColorTM, named as BalColorTM.
Similarly to CLU and VFF, in BalColorTM (i) only the vertices of the over-full color
classes are considered for re-coloring, i.e., to be moved from over-full to under-full
color classes in order to achieve high vertex-balance across color classes, and (ii)

Fig. 14   The BalColorTM algorithm

6396	 C. Giannoula et al.

1 3

graph coloring balance is achieved without increasing the number of color classes
produced by the initial graph coloring (e.g., using ColorTM).

Similarly to ColorTM, BalColorTM (Fig. 14) has one single parallel step (lines
7–42): multiple parallel threads repeatedly iterate over each vertex of the over-full
color classes until either a valid re-coloring to an under-full class is performed, or
there is no permissible re-coloring for this vertex to an under-full color class (line
42). For each vertex of an over-full color class c, there are two sub-steps. In the
first sub-step (lines 8–20), the parallel thread keeps track the forbidden set of colors
assigned to the adjacent vertices of the vertex v (line 16), and the set of the critical
adjacent vertices (lines 17–18) of the vertex v. In BalColorTM, note that the criti-
cal adjacent vertices of a vertex v (line 17) are the adjacent vertices that (i) belong
to over-full color classes (recall that the vertices assigned under-full color classes
are not considered to be re-colored/moved, and thus they do not cause any coloring
inconsistency during runtime), and (ii) are assigned to different threads compared
to the parallel thread in which the vertex v is assigned to. Then, the parallel thread
speculatively computes a color k of an under-full color class that is permissible to
be assigned to the vertex v (lines 19–20). If a permissible color k exists (without
increasing the number of color classes produced by the initial graph coloring), the
parallel thread attempts to assign the speculative color k to the vertex v in the sec-
ond sub-step (lines 21–42). If there is no permissible color k of an under-full color
class (line 41), the parallel threads continue to process the next vertices (line 42). In
the second sub-step, if there are critical adjacent vertices that need to be validated,
the parallel thread validates the speculative color k over the colors of the critical

Table 1   Large real-world graph dataset

Graph name #Vertices #Edges degmax degavg degstd
degstd

degavg

Queen_4147 (qun) 4,147,110 329,499,284 81 79.45 6.34 0.080
Geo_1438 (geo) 1,437,960 63,156,690 57 43.92 4.39 0.100
Flan_1565 (fln) 1,564,794 117,406,044 81 75.03 11.43 0.152
Bump_2911 (bum) 29,11,419 127,729,899 195 43.87 6.96 0.159
Serena (ser) 1,391,349 64,531,701 249 46.38 9.24 0.199
delaunay_n24 (del) 16,777,216 100,663,202 26 5.99 1.34 0.222
rgg_n_2_23_s0 (rgg) 8,388,608 127,002,786 40 15.14 3.89 0.257
kmer_A2a (kmr) 170,728,175 360,585,172 40 2.11 0.57 0.267
cage15 (cag) 5,154,859 99,199,551 47 19.24 5.73 0.298
road_usa (usa) 23,947,347 57,708,624 9 2.41 0.93 0.386
dielFilterV3real (dlf) 1,102,824 89,306,020 270 80.98 36.56 0.451
audikw_1 (aud) 943,695 77,651,847 345 82.29 42.44 0.516
vas_stokes_2M (vas) 2,146,677 65,129,037 637 30.34 37.18 1.226
stokes (stk) 11,449,533 349,321,980 720 30.51 41.44 1.358
uk-2002 (uk) 18,520,486 298,113,762 2450 16.10 27.53 1.710
soc-LiveJournal1 (soc) 4,847,571 68,993,773 20,293 14.23 36.08 2.535
arabic-2005 (arb) 22,744,080 639,999,458 9905 28.14 78.84 2.802
FullChip (fch) 2,987,012 26,621,990 2,312,481 8.91 1806.80 202.725

6397

1 3

High‑performance and balanced parallel graph coloring on…

adjacent vertices within an HTM transaction (lines 27–39). If the validation suc-
ceeds (line 33), the parallel thread moves the vertex v from the color class c to the
color class k by re-coloring it (line 34), and atomically updates the sizes of the color
classes c and k (lines 36–37) accordingly. If the validation step fails due to a col-
oring inconsistency appeared during runtime (line 38), the parallel thread eagerly
retries to find a new permissible color of an under-full color class for the vertex v
(line 40). Finally, note that BalColorTM iterates over the vertices of each over-full
color class until that particular over-full class becomes balanced at a certain point in
the execution (lines 9–10), i.e., until the size of the particular color class becomes
smaller or equal to b = V∕C . Then, the vertices belonging to that color class are no
longer considered for re-coloring (line 10). Overall, BalColorTM terminates when
either vertex-balance across color classes is achieved or vertex-balance across color
classes is no longer available, i.e., there are no more permissible re-colorings for any
vertex belonging to an over-full color class.

Similarly to ColorTM, BalColorTM completely avoids barrier synchronization,
since it includes only one single parallel step. This way BalColorTM significantly
minimizes synchronization costs compared to prior balanced graph coloring algo-
rithms (e.g., CLU, VFF, Recoloring) that employ barrier synchronization. Moreover,
it also integrates an eager approach to detect and resolve coloring conflicts appear-
ing during runtime among parallel threads, that concurrently move vertices from
over-full to under-full color classes. With the eager coloring policy, BalColorTM
provides high performance by minimizing access latency costs to application data
compared to that of prior balanced graph coloring algorithms (e.g., CLU, VFF,
Recoloring), which integrate a lazy approach to detect and resolve coloring conflicts.
Finally, BalColorTM effectively implements short critical sections (short running
transactions with small transaction footprints) by (i) speculatively performing the
computations to find permissible colors for the vertices of the over-full color classes
outside the critical section (lines 9–13), and (ii) accessing inside the critical sections
only the necessary data to ensure correctness, i.e., for each vertex v BalColorTM
only accesses the colors of a small subset of v’s adjacent vertices (critical adjacent
vertices). Via short running transactions, BalColorTM achieves low synchronization
costs and provides high amount of parallelism.

5 � Evaluation

5.1 � Evaluation Methodology

We conduct our evaluation using a 2-socket Intel Haswell server with an Intel Xeon
E5-2697 v3 processor with 28 physical cores and 56 hardware threads. The proces-
sor runs at 2.6 GHz and each physical core has its own L1 and L2 caches of sizes 32
KB and 256 KB, respectively. Each socket includes a shared 35 MB L3 cache. We
statically pin each software thread to a hardware thread, and enable hyperthreading
only on 56-thread executions, unless otherwise stated. In our evaluation (Sect. 5),
the numbers reported are averaged across 5 runs of each experiment.

6398	 C. Giannoula et al.

1 3

Table 1 shows the characteristics of the large real-world graphs used in our
evaluation. We select 18 representative graphs from the Suite Matrix Collection
that vary in vertex and graph degrees, and are used in different application
domains. For each graph, Table 1 presents the number of vertices (#vertices), the
number of edges (#edges), the maximum ( degmax ) degree, the average ( degavg )
degree and the standard deviation of the vertices’ degrees ( degstd ), and the last
column of this table shows the ratio of the standard deviation of the vertices’
degrees to the average degree ( degstd

degavg
).

This section evaluates the proposed ColorTM and BalColorTM algorithms.
First, we compare the coloring quality and the performance over prior state-of-
the-art graph coloring algorithms (Sect. 5.2). Second, we compare the color bal-
ancing quality and the performance of BalColorTM over prior state-of-the-art
balanced graph coloring algorithms (Sect. 5.3). Finally, we evaluate the perfor-
mance of Community Detection [34] by parallelizing it using ColorTM and Bal-
ColorTM (Sect. 5.4) via chromatic scheduling.

5.2 � Analysis of parallel graph coloring algorithms

We compare the following parallel graph coloring implementations:

•	 The sequential Greedy algorithm presented in Fig. 1.
•	 The SeqSolve algorithm presented in Fig. 2.
•	 The IterSolve algorithm presented in Fig. 3.
•	 The IterSolveR algorithm presented in Fig. 4.
•	 A variant of our proposed algorithm (Fig. 13) that uses fine-grained locking

instead of HTM, henceforth referred to as ColorLock. Specifically, each ver-
tex of the graph is associated with a software-based lock. In the beginning
of the critical section (line 18 in Fig. 13), parallel threads acquire the cor-
responding locks of both the current vertex v and the critical adjacent verti-
ces of the vertex v. Then, when the critical section ends (lines 26 and 28 in
Fig. 13), parallel threads release the acquired locks. To avoid deadlocks, we
impose a global order when acquiring/releasing locks based on the vertices’
id: parallel threads acquire/release locks of multiple vertices starting from the
lock associated with the vertex with the smallest vertex id, iterating via an
increasing order of the vertices’ ids, and finishing to the lock associated with
the vertex with the highest vertex id.

•	 Our proposed ColorTM algorithm (Fig. 13) that leverages HTM. Each transac-
tion can retry up to 50 times, before resorting to a non-transactional fallback
path. The non-transactional path is a coarse-grained locking solution for the
critical section (lines 18–28 in Fig. 13).

For a fair comparison, in all graph coloring schemes we color the vertices
in the order they appear in the input graph representation (first-fit ordering
heuristic [21]).

6399

1 3

High‑performance and balanced parallel graph coloring on…

5.2.1 � Analysis of the coloring quality

Table 2 compares the coloring quality of all parallel graph coloring implementations
in single-threaded and multithreaded executions.

We make two key observations. First, there is low variability on the number of
colors used across the different graph coloring schemes. The parallel graph color-
ing schemes provide similar graph coloring quality, because the number of colors
produced is primarily determined by the order in which the vertices are colored [20,
21]. In this work, we use the first-fit ordering heuristic in all schemes, i.e., color-
ing the vertices in the order they appear in the input graph representation, and we
leave the experimentation of other ordering heuristics for future work. Second, we
find that in most schemes the coloring quality becomes slightly worse as the num-
ber of threads increases. As the number of threads increases, the number of color-
ing conflicts that arise during runtime typically increases, and thus parallel threads
might resolve coloring inconsistencies by introducing a few additional color classes.
The SeqSolve scheme does not typically increase the number of colors used in mul-
tithreaded executions, because the coloring inconsistencies are resolved using one
single thread. Overall, we conclude that since all graph coloring schemes employ
the same ordering heuristic, they provide similar coloring quality.

5.2.2 � Performance comparison

Figure 15 evaluates the scalability achieved by all parallel graph coloring implemen-
tations in our large real-world graphs, when increasing the number of threads from 1
to 56, i.e., the maximum available hardware thread capacity of our machine.

We draw three findings. First, ColorTM and ColorLock achieve the lowest execu-
tion time across all schemes in single-threaded executions. Using one single thread,
ColorTM and ColorLock on average outperform SeqSolve by 1.55× and 1.42× ,
respectively, and they on average outperform IterSolve by 1.17× and 1.06× , respec-
tively. With only one thread, ColorTM and ColorLock have identical executions to
the sequential Greedy algorithm (Fig. 1): thanks to the optimizations proposed in
Sect. 4.2, the list of critical adjacent vertices that need to be validated inside the

Table 2   The geometric mean on the number of colors produced across all large real-world graphs (lower
is better) for each parallel graph coloring implementation using one core (1 thread), all cores of one
socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity of
our machine with hyperthreading enabled (56 threads)

Coloring scheme 1 thread 14 threads 28 threads 56 threads

Greedy 42.58 – – –
SeqSolve 42.58 42.34 42.33 42.18
IterSolve 42.58 44.05 43.94 44.04
IterSolveR 42.58 43.61 43.88 44.58
ColorLock 42.58 45.75 45.67 46.14
ColorTM 42.58 46.20 45.77 46.28

6400	 C. Giannoula et al.

1 3

critical section is empty, and thus ColorTM and ColorLock completely eliminate
using synchronization (either HTM of fine-grained locking). Second, we find that
IterSolveR exhibits the lowest scalability across all schemes. IterSolveR merges two
parallel for-loops into a single parallel for-loop in order to eliminate one of the two
barriers used in IterSolve. Even though IterSolveR reduces the barrier synchroni-
zation costs, it increases the load imbalance among parallel threads, thus causing
significant performance overheads. Third, we observe that the scalability of Seq-
Solve, IterSolve, and IterSolveR is highly affected by the NUMA effect, i.e., the

Fig. 15   Scalability achieved by all parallel graph coloring implementations in large real-world graphs

6401

1 3

High‑performance and balanced parallel graph coloring on…

non-uniform memory access latencies to the application data. For example, when
increasing the number of threads from 7 to 14 (only one NUMA socket is used)
the performance of SeqSolve, IterSolve, IterSolveR, ColorLock and ColorTM
improves by 1.24× , 1.75× , 1.06× , 1.62× and 1.65× , respectively, averaged across all
large graphs. However, when increasing the number of threads from 14 to 28, i.e.,
using both NUMA sockets of our machine, the performance of SeqSolve and Iter-
Solve only improves by 1.03× and 1.26× , respectively, while the performance of and
IterSolveR decreases by 2.13× , averaged across all large graphs. In contrast, when
increasing the number of threads from 14 to 28, the performance of ColorLock and
ColorTM significantly improves by 1.77× and 1.97× , respectively, averaged across
all graphs. This is because our proposed algorithmic design implemented in Color-
Lock and ColorTM leverages better the deep memory hierarchy of commodity mul-
ticore platforms thanks to its eager conflict detection and resolution policy, thus
achieving lower data access costs. Overall, we conclude that our proposed algorith-
mic design achieves the best scalability in modern multicore platforms.

Figure 16 compares the speedup achieved by all schemes over the sequential
Greedy scheme, when varying the number of hardware threads used in all large real-
world graphs.

We make two key observations. First, all parallel graph coloring schemes
achieve lower speedup in very irregular graphs including the soc, arb and fch
graphs, compared to all the remaining real-world graphs. In very irregular graphs,
the number of edges per vertex significantly varies across vertices [41–43]: typi-
cally only a few vertices have a much larger number of edges over the vast major-
ity of the remaining vertices of the graph. Therefore, in irregular graphs parallel

Fig. 16   Speedup achieved by all parallel graph coloring implementations over the sequential Greedy
scheme in large real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28
threads), and the maximum hardware thread capacity of our machine with hyperthreading enabled (56
threads)

6402	 C. Giannoula et al.

1 3

threads typically cause more coloring inconsistencies than regular graphs, which
are resolved during runtime, increasing the execution time. Second, we find that
ColorTM achieves significant performance improvements over all the prior state-
of-the-art graph coloring schemes. ColorTM outperforms SeqSolve, IterSolve, and
IterSolveR by 3.43× , 1.71× and 5.83× , respectively, when using 14 threads, and by
8.46× , 2.84× and 27.66× , respectively, when using the maximum hardware thread
capacity of our machine (56 threads). This is because SeqSolve, IterSolve, and Iter-
SolveR traverse all the vertices of the graph at least twice, and employ a lazy conflict
resolution policy, thus incurring high data access costs. Instead, ColorTM traverses
more than once only the conflicted vertices, and resolves coloring inconsistencies
with an eager approach, thus better leveraging the deep memory hierarchy of mul-
ticore platforms and reducing data access costs. In addition, ColorTM outperforms
ColorLock by 1.34× and 1.67× when using 14 and 56 threads, respectively. As
explained, HTM is a speculative hardware-based synchronization mechanism, and
thus ColorTM provides high-performance improvements over ColorLock thanks to
significantly minimizing data access and synchronization costs. Note that in the fine-
grained locking approach of ColorLock, for each adjacent vertex accessed inside the
critical section, the parallel thread needs to acquire and release the corresponding
software-based lock, thus performing additional memory accesses in the memory
hierarchy for accessing the lock variable. Overall, we conclude that ColorTM sig-
nificantly outperforms all prior state-of-the-art parallel graph coloring algorithms
across a wide variety of large real-world graphs.

To confirm the performance benefits of ColorTM across multiple computing plat-
forms, we evaluate all schemes on a 2-socket Intel Broadwell server with an Intel
Xeon E5-2699 v4 processor at 2.2 GHz having 44 physical cores and 88 hardware
threads. Figure 17 compares the speedup achieved by all schemes over the sequen-
tial Greedy scheme in all large real-world graphs using 88 threads, i.e., the maxi-
mum hardware thread capacity of the Intel Broadwell server. We find that ColorTM
provides significant performance benefits over prior state-of-the-art graph coloring
algorithms, achieving 11.98× , 4.33× and 22.06× better performance over SeqSolve,
IterSolve, and IterSolveR, respectively.

Fig. 17   Speedup achieved by all parallel graph coloring implementations over the sequential Greedy
scheme in large real-world graphs using the maximum hardware thread capacity of an Intel Broadwell
server with hyperthreading enabled (88 threads)

6403

1 3

High‑performance and balanced parallel graph coloring on…

5.3 � Analysis of balanced graph coloring algorithms

We compare the following balanced graph coloring implementations:

•	 The CLU algorithm presented in Fig. 5.
•	 The VFF algorithm presented in Fig. 6.
•	 The Recoloring algorithm presented in Fig. 7.
•	 Our proposed BalColorTM algorithm (Fig. 14) that leverages HTM. Each trans-

action is retried up to 50 times, before resorting to a non-transactional fallback
path. The non-transactional path is a coarse-grained lock scheme for the critical
section (lines 27–39 in Fig. 14).

For a fair comparison, in all graph coloring schemes we color the vertices in the
order they appear in the color classes produced by the initial coloring.

Table 3   Color balancing quality achieved by ColorTM and all balanced graph coloring implementations
in the large real-world graphs

We present the relative standard deviation (in %) on the sizes of the color classes obtained by each
scheme (lower is better). In ColorTM and Recoloring, we provide inside the parentheses the number of
color classes produced. The CLU, VFF and BalColorTM produce the same number of color classes with
the initial coloring scheme

Input graph Initial coloring Balanced graph coloring schemes

ColorTM CLU VFF Recoloring BalColorTM

qun 63.62 (48) 0.212 1.669 14.739 (48) 0.009
geo 70.28 (36) 0.321 0.635 17.664 (34) 0.020
fln 65.42 (45) 0.576 0.611 20.384 (51) 0.044
bum 64.32 (36) 0.179 0.647 17.950 (33) 0.009
ser 73.64 (39) 0.405 0.751 16.651 (38) 0.024
del 100.06 (9) 0.002 0.013 35.136 (10) 0.001
rgg 115.30 (22) 0.018 3.783 21.799 (23) 0.003
kmr 189.79 (11) 0.0003 0.0002 31.492 (12) 0.0004
cag 122.89 (19) 0.014 0.649 34.197 (20) 0.005
usa 105.09 (5) 0.001 0.024 0.0005 (5) 0.0005
dlf 57.95 (54) 2.58 2.53 22.551 (57) 3.01
aud 84.02 (60) 5.243 2.780 19.498 (54) 3.575
vas 144.18 (38) 0.084 18.527 25.373 (34) 0.016
stk 141.41 (35) 0.016 17.684 25.375 (34) 0.003
uk 1882.66 (944) 0.437 0.237 65.994 (1355) 1.732
soc 945.35 (324) 1.136 1.466 58.190 (459) 1.886
arb 3351.79 (3248) 0.681 1.499 68.521 (4772) 3.410
fch 125.70 (9) 0.012 0.271 33.854 (10) 0.451

6404	 C. Giannoula et al.

1 3

5.3.1 � Analysis of color balancing quality

Table 3 compares the quality of balance in the color class sizes produced by
the balanced-oblivious ColorTM and all our evaluated balanced graph coloring
implementations. Similarly to [31], we evaluate the color balancing quality using
the relative standard deviation of the color class sizes expressed in %, which is
defined as the ratio of the standard deviation of the color class sizes to the aver-
age color class size. The closer the value of this metric is to 0.00, the better is
the color balance. For the ColorTM and Recoloring schemes, we also include
in parentheses the number of color classes produced. As already explained in
Sect. 2.3, the CLU, VFF, and BalColorTM schemes produce the same number of
color classes with the initial coloring. In this experiment, we evaluate all algo-
rithms using the maximum hardware thread capacity of our machine, i.e., 56
threads, in order to evaluate the color balancing quality of all schemes using the
maximum available parallelism provided by the underlying hardware platform.

We draw three findings from Table 3. First, we observe that the balanced-obliv-
ious ColorTM scheme incurs very high disparity in the sizes of the color classes
produced. Specifically, the color balancing quality of ColorTM is 1887.01× ,
287.70× , 10.32× , and 4266.03× worse than that of CLU, VFF, Recoloring and
BalColorTM, respectively. Second, even though Recoloring is effective over
ColorTM by providing better color balancing quality, its color balancing quality
is the worst compared to all the remaining balanced graph coloring schemes. In
addition, in highly irregular graphs (graphs with high maximum degree and high
standard deviation in the vertices’ degrees) such as uk, soc and arb, Recol-
oring significantly increases the number of color classes produced over the ini-
tial coloring. Recoloring re-colors the vertices of the graph with a different order
compared to that used in the initial graph coloring scheme, which in turn may
introduce new additional color classes. Third, we find that BalColorTM provides
the best color balancing quality compared to all prior state-of-the-art balanced
graph coloring schemes. Specifically, the color balancing quality of BalColorTM
is 2.26× , 14.82× and 413.31× better compared to that of CLU, VFF and Recolor-
ing, respectively. Overall, we conclude that our proposed BalColorTM provides
the best color balancing quality over prior state-of-the-art schemes in all large
real-world graphs.

To better illustrate the effect of balancing the vertices across color classes, we
present in Fig. 18 the sizes of all the color classes produced by ColorTM, CLU,
VFF, Recoloring and BalColorTM for a representative subset of our evaluated real-
world graphs. Specifically, the x-axis represents the color index i of each color class
produced in the input graph, and the y-axis shows how many of the vertices of the
graph have been colored with the color i. The uk, soc and arb graphs are web
social networks [44] with a highly power-law distribution [41–43]: only a few verti-
ces have a very high degree, while the vast majority of the remaining vertices of the
graph has very low degree. In such graphs, ColorTM inserts the vast majority of the
vertices in the first few color classes, and the remaining few vertices are assigned to
different separate color classes. Moreover, as already explained, Recoloring intro-
duces a large number of new additional color classes in such real-world graphs.

6405

1 3

High‑performance and balanced parallel graph coloring on…

5.3.2 � Performance comparison

Figure 19 evaluates the scalability achieved by all balanced graph coloring imple-
mentations in a representative subset of our evaluated large real-world graphs, as
the number of threads increases from 1 to 56, i.e., up to the maximum available
hardware thread capacity of our machine. We present the execution time of only the
kernel that balances the vertices across color classes (excluding the execution time
of the initial graph coloring).

Fig. 18   Distribution of color class sizes produced by ColorTM and all our evaluated balanced graph
coloring schemes. Note that small color class sizes result in reduced parallelism in the real-world end-
application

6406	 C. Giannoula et al.

1 3

We draw three findings. First, we observe that Recoloring achieves the worst
performance over all balanced graph coloring schemes. Even in the single-threaded
executions, Recoloring performs by 3.21× , 2.26× and 3.69× worse than CLU, VFF
and BalColorTM, respectively, because it executes a much larger amount of compu-
tation, memory accesses and synchronization. Recall that Recoloring processes and
re-colors all the vertices of the graph, while the remaining balanced graph color-
ing schemes re-color only a subset of the vertices of the graph. Note that in uk and
arb graphs, all balanced graph coloring schemes need to re-color a large portion
of the graph’s vertices, thus performing closely to each other. Second, we find that
the scalability of all schemes is affected by the NUMA effect; however BalColorTM
on average scales well even when using all available hardware threads and both
NUMA sockets of our machine. When increasing the number of threads from 28
to 56, the performance of BalColorTM improves by 1.55× averaged across all large
graphs. Third, we find that in contrast to the graph coloring kernel, in many real-
world graphs the performance of the balanced graph coloring kernel scales up to 14
threads, and degrades when using 56 threads. This is because the balanced graph
coloring kernel has a lower amount of parallelism (a small subset of the vertices of
the graph are re-colored by parallel threads) than the graph coloring kernel. Thus,
our analysis demonstrates that when a kernel has low levels of parallelism, the best
performance is achieved using a smaller number of parallel threads than the avail-
able hardware threads on the multicore platform. To this end, we suggest software
designers of real-world end-applications to on-the-fly adjust the number of parallel
threads used to parallelize each different sub-kernel of the end-application based on
the parallelization needs of each particular sub-kernel.

Figure 20 compares the speedup achieved by all balanced graph coloring schemes
normalized to the CLU scheme in all large real-world graphs. We compare the actual
kernel time that balances the vertices across color classes.

We observe that BalColorTM outperforms all prior state-of-the-art balanced
graph coloring schemes across all various large real-world graphs with a large num-
ber of parallel threads used. BalColorTM outperforms CLU, VFF and Recoloring by

Fig. 19   Scalability achieved by all balanced graph coloring implementations in large real-world graphs

6407

1 3

High‑performance and balanced parallel graph coloring on…

on average 1.89× , 1.33× and 2.06× , respectively, when using 14 threads. Moreover,
BalColorTM outperforms CLU, VFF and Recoloring by on average 2.61× , 1.05×
and 1.68× , respectively, when using 56 threads, i.e., the maximum hardware thread
capacity of our machine. Overall, BalColorTM performs best over all prior schemes
in all large real-world graphs. Therefore, considering the fact that BalColorTM also
provides the best color balancing quality over prior schemes, we conclude that our
proposed algorithmic design is a highly efficient and effective parallel graph color-
ing algorithm for modern multicore platforms.

To confirm the performance benefits of BalColorTM across multiple comput-
ing platforms, we evaluate all schemes on a 2-socket Intel Broadwell server with an
Intel Xeon E5-2699 v4 processor at 2.2 GHz having 44 physical cores and 88 hard-
ware threads. Figure 21 compares the speedup achieved by all balanced graph color-
ing schemes normalized to the CLU scheme in all large real-world graphs using 88

Fig. 20   Speedup achieved by all balanced graph coloring implementations over the CLU scheme in large
real-world graphs using all cores of one socket (14 threads), all cores of two sockets (28 threads), and the
maximum hardware thread capacity of our machine with hyperthreading enabled (56 threads)

Fig. 21   Speedup achieved by all balanced graph coloring implementations over the CLU scheme in large
real-world graphs using the maximum hardware thread capacity of an Intel Broadwell server with hyper-
threading enabled (88 threads)

6408	 C. Giannoula et al.

1 3

threads, i.e., the maximum hardware thread capacity of the Intel Broadwell server.
We find that BalColorTM provides significant performance benefits over prior state-
of-the-art graph coloring algorithms, achieving 1.82× , 1.22× and 1.84× better per-
formance over CLU, VFF, and Recoloring, respectively.

5.4 � Analysis of a real‑world scenario

In this section, we study the performance benefits of our proposed graph coloring
schemes, i.e., ColorTM and BalColorTM, when parallelizing a widely used real-
world end-application, i.e., Community Detection, via chromatic scheduling. Spe-
cifically, we compare the following parallel implementations to execute the Com-
munity Detection application:

•	 The parallelization scheme for the Louvain method [45–47] provided by Grap-
polo suite [48], henceforth referred to as SimpleCD, in which the vertices are
processed as they appear in the input graph representation. The algorithm con-
sists of multiple iterations. First, each vertex is placed in a community of its own.
Then, multiple iterations are performed until a convergence criterion is met.
Within each iteration, all vertices are processed concurrently by multiple parallel
threads, and a greedy decision is made to decide whether each vertex should be
moved to a different community (selected from one of its adjacent vertices) or
should remain in its current community, targeting to maximize the net modular-
ity gain. For more details, we refer the reader to [45, 49–51].

•	 The chromatic scheduling parallelization approach using ColorTM to color the
vertices of the graph, henceforth referred to as ColorTMCD, in which the verti-
ces are processed in the order they are distributed in the color classes. The end-
to-end Community Detection execution can be broken down in two steps: (i) the
time to color the vertices of the graph with ColorTM, and (ii) the time to classify

Fig. 22   Scalability of the end-to-end Community Detection execution achieved by (i) the Grappolo [48]
parallelization approach of the Louvain method (SimpleCD) and (ii) the chromatic scheduling paralleli-
zation approach with ColorTM (ColorTMCD) and (iii) the chromatic scheduling parallelization approach
with both ColorTM and BalColorTM (BalColorTMCD) in large real-world graphs

6409

1 3

High‑performance and balanced parallel graph coloring on…

the vertices of the graph into communities via chromatic scheduling paralleliza-
tion approach. The (ii) step processes the color classes produced by the (i) step
sequentially, and all vertices of the same color class are processed in parallel.

•	 The chromatic scheduling parallelization approach using ColorTM to color the
vertices of the graph and BalColorTM to balance the vertices across color classes
produced, henceforth referred to as BalColorTMCD, in which the vertices are
processed in the order they are distributed in the color classes. The end-to-end
Community Detection execution can be broken down in three steps: (i) the time
to color the vertices of the graph with ColorTM, (ii) the time to balance the ver-
tices of the graph across color classes, and (iii) the time to classify the vertices
of the graph into communities via chromatic scheduling parallelization approach.
The (iii) step processes the color classes produced by the (ii) step sequentially,
and all vertices of the same color class are processed in parallel.

Figure 22 evaluates the scalability of all the end-to-end Community Detection par-
allel implementations in a representative subset of large real-world graphs, as the
number of parallel threads increases. We present the total end-to-end execution
time, i.e., in ColorTMCD we account for the time to color the vertices of the graph
(coloring step), and in BalColorTMCD we account for the time to color the vertices
of the graph (coloring step), and the time to balance the vertices across color classes
(balancing step).

We draw two findings. First, we find that ColorTMCD and BalColorTMCD scale
well in large real-world graphs. For example, when increasing the number of threads
from 1 to 56, ColorTMCD improves performance by 12.34× and 3.44× in bum and
arb graphs, respectively. Similarly, when increasing the number of threads from 1
to 56, BalColorTMCD improves performance by 11.38× and 3.63× in bum and arb
graphs, respectively. However, we observe that in uk and arb graphs, SimpleCD
outperforms both ColorTMCD and BalColorTMCD. In these two graphs, ColorTM
and BalColorTM produce the largest number of color classes compared to all the
remaining real-world graphs (see Table 3), i.e., they produce 944 and 3248 colors
for the uk and arb graphs, respectively. As a result, in uk and arb graphs the
chromatic scheduling parallelization approach of ColorTMCD and BalColorTMCD
executes 944 and 3248 times of barrier synchronization among parallel threads,
respectively, thus incurring higher synchronization costs over SimpleCD. Second,
the scalability of BalColorTMCD is affected more by the NUMA effect compared
to that of ColorTMCD. Specifically, when increasing the number of threads from 14
to 28, the performance of ColorTMCD improves by 1.63× averaged across all real-
world graphs, while the performance of BalColorTMCD only improves by 1.22× .
Similarly, when increasing the number of threads from 14 to 56, the performance
of ColorTMCD improves by 1.98× , while the performance of BalColorTMCD
improves by 1.50× . We find that even though balancing the sizes of color classes
provides higher load balance across parallel threads of real-world end-applications,
it might because more remote expensive memory accesses across NUMA sockets of
modern multicore machines.

Figure 23 shows the actual kernel time (without accounting for performance
overheads introduced by the coloring and balancing steps) of Community

6410	 C. Giannoula et al.

1 3

Detection by comparing the speedup of ColorTMCD and BalColorTMCD over
SimpleCD in all our evaluated large real-world graphs.

We draw two key findings. First, BalColorTM can on average outperform
ColorTM, when considering only the actual kernel time of Community Detection,
by providing better load balance among parallel threads. When only the actual
kernel time of Community Detection is considered (excluding the performance
overheads introduced by the coloring and balancing steps), BalColorTMCD on
average outperforms ColorTMCD by 1.27× , 1.01× and 1.12× when using 14,
28, and 56 threads, respectively. Second, parallelizing the Community Detec-
tion using ColorTM and BalColorTM provides significant performance speedups
over SimpleCD, the state-of-the-art parallelization approach of Louvain method
of Community Detection [45–48]. Specifically, ColorTMCD improves the perfor-
mance of the actual kernel time of Community Detection compared to SimpleCD
by 1.40× , 1.34× , and 1.20× , when using 14, 28, and 56 threads, respectively. In
addition, BalColorTMCD improves the performance of the actual kernel time of
Community Detection compared to SimpleCD by 1.77× , 1.34× , and 1.34× , when
using 14, 28, and 56 threads, respectively. We conclude that our proposed graph
coloring algorithmic designs can provide high-performance benefits in real-world
end-applications which are parallelized using coloring.

Fig. 23   Speedup of the actual kernel of the Community Detection execution achieved by (i) SimpleCD
(D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all cores of one
socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity of
our machine with hyperthreading enabled (56 threads)

6411

1 3

High‑performance and balanced parallel graph coloring on…

Figure 24 presents the speedup breakdown of ColorTMCD and BalColorTMCD
over SimpleCD in all our evaluated large real-world graphs. The performance is bro-
ken down in three steps: (i) the coloring step to color the vertices of the graph (Col-
oring), (ii) the balancing step to balance the vertices across color classes (Balanc-
ing), and (iii) the actual Community Detection kernel time (CommunityDetection).

We make two key observations. First, BalColorTMCD on average outperforms
ColorTMCD when using up to 14 threads (using one single NUMA socket). When
considering the end-to-end execution including the performance overheads intro-
duced by the coloring and balancing steps, BalColorTMCD outperforms ColorT-
MCD by 1.19× when using 14 threads, while it performs on average 1.18× and
1.10× worse over ColorTMCD, when using 28 and 56 threads, respectively. We find
that the performance overhead introduced in the balancing step of BalColorTMCD
is not compensated in the runtime of the actual kernel time of Community Detec-
tion when using both NUMA sockets of our machine. Second, we observe that both
ColorTMCD and BalColorTMCD can provide high performance in Community
Detection. ColorTMCD on average outperforms SimpleCD by 1.38× , 1.33× and
1.19× , when using 14, 28 and 56 threads, respectively. BalColorTMCD on aver-
age outperforms SimpleCD by 1.64× , 1.10× and 1.08× , when using 14, 28 and 56
threads, respectively. In addition, we observe that BalColorTMCD provides signifi-
cant performance speedups over Simple CD in many graphs such as fln, del, cag,

Fig. 24   Speedup breakdown of the end-to-end Community Detection execution achieved by (i) Simpl-
eCD (D), (ii) ColorTMCD (C) and (iii) BalColorTMCD (B) in large real-world graphs using all cores of
one socket (14 threads), all cores of two sockets (28 threads), and the maximum hardware thread capacity
of our machine with hyperthreading enabled (56 threads)

6412	 C. Giannoula et al.

1 3

aud, soc and fch, reaching up to 10.36× with 56 threads. Overall, we conclude
that our proposed parallel graph coloring algorithms can provide significant perfor-
mance improvements in real-world end-applications, e.g., parallelizing Community
Detection with chromatic scheduling, across a wide variety of input data sets with
diverse characteristics.

6 � Related work

A handful of prior works [1, 20, 21, 27–31, 33, 52, 52–54] has examined the graph
coloring kernel in modern multicore platforms. Welsh and Powell [1] propose the
original sequential Greedy algorithm that colors the vertices of the graph using
the first-fit heuristic. Recent prior works [27–30] parallelize Greedy by proposing
the SeqSolve, IterSolve and IterSolveR schemes described in Sect. 2.2. We com-
pare ColorTM with these prior schemes in Sect. 5.2, and demonstrate that our pro-
posed ColorTM outperforms these state-of-the-art schemes across a wide variety
of real-world graphs. Jones and Plassmann [53] design an algorithm, named JP,
that colors the vertices of the graph by identifying independent sets of vertices: in
each iteration, the algorithm finds and selects an independent set of vertices that
can be colored concurrently. However, JP is a recursive algorithm that typically runs
longer than the original Greedy [20, 21, 33], since it performs more computations
and needs more synchronization points, i.e., parallel threads need to synchronize
at each iteration of processing independent sets of vertices. Moreover, the original
paper [53] shows that JP provides good performance mostly in O(1)-degree graphs.
In contrast, our work efficiently parallelizes the original and widely used Greedy
algorithm for graph coloring, and our proposed parallel algorithms achieve sig-
nificant performance improvements across a wide variety of real-world graphs and
using a large number of parallel threads.

Deveci et al. [54] present an edge-centric parallelization scheme for graph color-
ing which is better suited for GPUs. ColorTM and BalColorTM can be straightfor-
wardly extended to color the vertices of a graph by equally distributing the edges of
the graph among parallel threads. We leave the exploration of edge-centric graph
coloring schemes for future work. Future work also comprises the experimenta-
tion of the graph coloring kernel on multicore computing platforms such as mod-
ern GPUs [55–58] and Processing-In-Memory systems [18, 41, 42, 59–65]. Maciej
et al. [20] and Hasenplaugh et al. [21] propose new vertex ordering heuristics for
graph coloring. Ordering heuristics define the order in which Greedy colors the ver-
tices of the graph in order to improve the coloring quality by minimizing the number
of colors used. Instead, our work aims to improve system performance by proposing
efficient parallelization schemes. For a fair comparison, we employ the first-fit order-
ing heuristic (the vertices of the graph are colored in the order they appear in the
input graph representation) in all parallel algorithms evaluated in Sects. 5.2 and 5.3.
ColorTM and BalColorTM can support various ordering heuristics [3, 4, 11, 20–26,
66] by assigning the vertices of the graph to parallel threads with a particular order.
We leave the evaluation of various vertex ordering heuristics for future work.

6413

1 3

High‑performance and balanced parallel graph coloring on…

Lu et al. [31] design balanced graph coloring algorithms to efficiently balance
the vertices across the color classes. We compare BalColorTM with their proposed
algorithms, i.e., CLU, VFF, Recoloring, in Sect. 2.3, and demonstrate that our pro-
posed BalColorTM scheme on average performs best across all large real-world
graphs. Tas et al. [52] propose balanced graph coloring algorithms for bipartite
graphs, i.e., graphs whose vertices can be divided into two disjoint and independent
sets U and V, and every edge (u, v) either connects a vertex from U to V or a vertex
from V to U. In contrast, ColorTM and BalColorTM are designed to be general,
and efficiently color any arbitrary real-world graph using a large number of parallel
threads. In addition, Tas et al. [52] also explore the distance-2 graph coloring kernel
on multicore architectures, in which any two vertices u and v with an edge-distance
at most 2 are assigned with different colors. Instead, our work efficiently parallelizes
the distance-1 graph coloring kernel on multicore platforms, in which any two adja-
cent vertices of the graph connected with a direct edge are assigned with different
colors. Finally, prior works propose algorithms for edge coloring [67], dynamic or
streaming coloring [68–74], k-distance coloring [75, 76] and sequential exact col-
oring [77–80]. All these works are not closely related to our work, since we focus
on designing high-performance parallel algorithms for the distance-1 vertex graph
coloring kernel.

7 � Conclusion

In this work, we explore the graph coloring kernel on multicore platforms, and
propose ColorTM and BalColorTM, two novel algorithmic designs for high per-
formance and balanced graph coloring on modern computing platforms. ColorTM
and BalColorTM achieve high system performance through two key techniques:
(i) eager conflict detection and resolution of the coloring inconsistencies that arise
when adjacent vertices are concurrently processed by different parallel threads, and
(ii) speculative computation and synchronization among parallel threads by leverag-
ing Hardware Transactional Memory. Via the eager coloring conflict detection and
resolution policy, ColorTM and BalColorTM effectively leverage the deep memory
hierarchy of modern multicore platforms and minimize access costs to application
data. Via the speculative computation and synchronization approach, ColorTM and
BalColorTM minimize synchronization costs among parallel threads and provide a
high amount of parallelism. Our evaluations demonstrate that our proposed paral-
lel graph coloring algorithms outperform prior state-of-the-art approaches across a

Fig. 25   Abort ratio exhibited by ColorTM in all large real-world graphs

6414	 C. Giannoula et al.

1 3

wide range of large real-world graphs. ColorTM and BalColorTM can also provide
significant performance improvements in real-world scenarios. We conclude that
ColorTM and BalColorTM are highly efficient graph coloring algorithms for mod-
ern multicore systems, and hope that this work encourages further studies of the
graph coloring kernel in modern computing platforms.

Appendix

Analysis of ColorTM and BalColorTM execution

We further analyze the HTM-related execution behavior of our proposed ColorTM
and BalColorTM algorithms. Figure 25 presents the abort ratio of ColorTM, i.e., the
number of transactional aborts divided by the number of attempted transactions, in
all real-world graphs, as the number of threads increases. In the 14-thread execution,
we pin all threads on one single NUMA socket. In the 28-thread execution, we pin
threads on both NUMA sockets of our machine with hyperthreading disabled. In
the ( 14 + 14)-thread execution, we pin all 28 threads on the same single socket with
hyperthreading enabled. In the 56-thread execution, we use the maximum hardware
thread capacity of our machine.

We make three key observations. First, we find that the abort ratio becomes high
in real-world graphs which have high maximum degree and high standard devia-
tion of the vertices’ degrees, e.g., dlf, aud, vas, stk, uk, soc and arb graphs.
In graphs with high vertex degree, the transaction data access footprint is large
and parallel threads compete for the same adjacent vertices with a high probabil-
ity, thus causing aborts in HTM. Second, we observe that when using both sock-
ets of our machine, the transactional aborts in ColorTM significantly increase due
to the NUMA effect. Specifically, averaged across all graphs the ( 14 + 14)-thread
execution of ColorTM exhibits 2.97× lower abort ratio compared to the 28-thread

Fig. 26   Breakdown of different types of aborts exhibited by ColorTM in real-world graphs

6415

1 3

High‑performance and balanced parallel graph coloring on…

execution of ColorTM. Due to the NUMA effect, the memory accesses to the appli-
cation data are very expensive. As a result, the duration of the transactions increases,
thus increasing the probability of conflict aborts among running transactions (See
more details in the next experiment). Third, we observe that ColorTM exhibits a
very low abort ratio. ColorTM has only 1.08% abort ratio on average across all real-
world graphs, when using the maximum hardware thread capacity (56 threads) of
our machine. Our proposed speculative algorithmic design effectively reduces the
amount of computations and data accesses performed inside the critical section
(inside the HTM transaction), thus effectively decreasing the transaction’s footprint
and duration. As a result, ColorTM provides a high amount of parallelism and low
interference among parallel threads. We conclude that ColorTM has low synchroni-
zation and interference costs among a large number of parallel threads, even in real-
world graphs with high vertex degree.

Figure 26 presents the breakdown of different types of aborts exhibited by
ColorTM in a representative subset of real-world graphs. We break down the trans-
actional aborts into four types: (i) conflict aborts: they appear when a running trans-
action executed by a parallel thread attempts to write the read-set of another running
transaction executed by a different thread, (ii) capacity aborts: they appear when the
memory footprint of a running transaction exceeds the size of the hardware transac-
tional buffers, (iii) lock aborts: current HTM implementations [37–40] provide no
guarantee that any transaction will eventually commit inside the transactional path,
and thus the programmer provides an alternative non-transactional fallback path,
i.e., falling back to the acquisition of coarse-grained lock that allows only a single
thread to enter the critical section, and forces aborts to the transactions of all the
remaining threads,3 and (iv) other aborts: they appear when a transaction fails due to
other reasons such as cache line evictions, interrupts and/or when the duration of a
transaction exceeds the scheduling quantum and the OS scheduler schedules out the
software thread from the hardware thread, aborting the transaction. Note that since
the fallback path lock is just a variable in the source code, some conflict aborts are
caused by the writes in this lock variable. Thus, a part of the lock aborts is counted
as conflict aborts in our measurements.

We draw three findings. First, we find that the conflict aborts significantly
increase across all graphs when using both sockets of our machine due to the
NUMA effect. For example, the number of conflicts aborts in the 28-thread execu-
tions is 3.32× higher compared to that in the 14-thread executions. As already men-
tioned, the NUMA effect significantly increases the duration of the running transac-
tions, and thus the probability of causing conflict aborts among running transactions
is high. Second, as the number of threads increases, e.g., when comparing the
56-thread execution over the 28-thread execution, the number of conflict aborts
increases by 1.05× . This is because partitioning the graph to a higher number of
threads results in a higher number of crossing edges among parallel threads, which
in turn results in a larger list of critical adjacent vertices that is validated inside the

3  To achieve this, the lock is added to each transaction’s read set, so that when the lock is acquired by a
thread (write to the lock variable), the remaining threads are aborted and wait until the lock is released.

6416	 C. Giannoula et al.

1 3

HTM transactions. Therefore, the transaction footprint increases, thus increasing the
probability of causing conflict aborts. Third, we find that in graphs with very high
maximum degree, e.g., uk and arb graphs, the capacity aborts constitute a large
portion of total aborts. In such graphs, the data access footprint of the transactions
is large, resulting in a high probability of exceeding the hardware buffers. Overall,
our analysis demonstrates that current HTM implementations are severely limited
by the NUMA effect [81], and incur high-performance costs when using more than
one NUMA socket on the machine. To this end, we recommend hardware design-
ers to improve the HTM implementations in NUMA machines, and suggest soft-
ware designers to propose intelligent algorithmic schemes and data partitioning
approaches that minimize the expensive memory accesses to remote NUMA sockets
inside the HTM transactions.

Figure 27 presents the abort ratio of BalColorTM, i.e., the number of transactional
aborts divided by the number of attempted transactions, in all real-world graphs, as
the number of threads increases. In the 14-thread execution, we pin all threads on
one single socket. In the 28-thread execution, we pin threads on both NUMA sock-
ets of our machine with hyperthreading disabled. In the ( 14 + 14)-thread execution,
we pin all 28 threads on the same single socket with hyperthreading enabled. In the
56-thread execution, we use the maximum hardware thread capacity of our machine.

We make two key observations. First, we observe that BalColorTM on average
incurs higher abort ratio over ColorTM, reaching up to 80% abort ratio in some mul-
tithreaded executions. Specifically, BalColorTM incurs 68.55× , 64.35× , 55.83× and
25.91× higher abort ratio (averaged across all real-world graphs) over ColorTM,
when using 14, 28, ( 14 + 14 ), and 56 threads, respectively. This is because Bal-
ColorTM processes and re-colors a much smaller number of vertices (a small subset
of the vertices of the graph) compared to ColorTM, which instead processes and
colors all the vertices of the graph. As a result, parallel threads compete for the same
data and memory locations with a much higher probability in BalColorTM com-
pared to ColorTM, thus incurring higher abort ratio and synchronization costs. Sec-
ond, we find that in all real-world graphs the vast majority of transactional aborts
are conflict aborts. Specifically, the portion of conflict aborts is more than 95% in all
real-world graphs for all multithreaded executions. Typically, the lower paralleliza-
tion needs a parallel kernel has, the higher data contention among parallel threads
it incurs. Overall, our analysis demonstrates that using a high number of parallel
threads results in high contention on shared data due to low amount of parallelism

Fig. 27   Abort ratio exhibited by BalColorTM in all large real-world graphs

6417

1 3

High‑performance and balanced parallel graph coloring on…

of the balanced graph coloring kernel. The aforementioned high contention causes
high synchronization overheads. To this end, we recommend software designers of
real-world end-applications to design adaptive parallelization schemes that trade off
the amount of parallelism provided for lower synchronization costs.

Acknowledgements  We thank the CSLAB Research Group members of ECE NTUA for continued and
undivided support, insightful comments and valuable feedback. Christina Giannoula is funded for her
postgraduate studies from the Foundation for Education and European Culture. The ColorTM and Bal-
ColorTM algorithms are publicly available [32] at https://​github.​com/​cgian​noula/​Color​TM.​git.

Authors’ contributions  Christina Giannoula contributed to the conception and design of the study, the
technical implementation and the experimental characterization of the proposed algorithms and the writ-
ing and the review of the manuscript. Athanasios Peppas contributed to the technical implementation, the
experimental characterization and analysis of the proposed algorithms. Georgios Goumas contributed to
the design of the study, the review of the manuscript, the supervision and the financial support for the
research leading to this publication. Nectarios Koziris contributed to the review of the manuscript, the
supervision and the financial support for the research leading to this publication.

Funding  Open access funding provided by HEAL-Link Greece. Christina Giannoula receives a Ph.D.
award from the Foundation for Education and European Culture.

Availability of data and materials  Not applicable.

Declarations 

 Conflict of interest  Not applicable.

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Welsh DJA, Powell MB (1967) An upper bound for the chromatic number of a graph and its appli-
cation to timetabling problems. Comput J 10(1):85–86

	 2.	 Marx D (2004) Graph coloring problems and their applications in scheduling. In: Proceedings of
John Von Neumann PhD Students Conference, vol 48, pp 11–16

	 3.	 Arkin EM, Silverberg EB (1987) Scheduling jobs with fixed start and end times. Discrete Appl
Math 18(1):1–8

	 4.	 Marx D (2004) Graph colouring problems and their applications in scheduling. Period Polytech
Electr Eng 48:11–16

	 5.	 Ramaswami R, Parhi KK (1989) Distributed scheduling of broadcasts in a radio network. In: IEEE
INFOCOM, pp 497–5042

	 6.	 Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW (1981) Register
allocation via coloring. Comput Lang 6(1):47–57

https://github.com/cgiannoula/ColorTM.git
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

6418	 C. Giannoula et al.

1 3

	 7.	 Chaitin GJ (1982) Register allocation and spilling via graph coloring. In: SIGPLAN Symposium on
Compiler Construction. vol 17, pp 98–101

	 8.	 Briggs P, Cooper KD, Torczon L (1994) Improvements to graph coloring register allocation. TOP-
LAS 16(3):428–455

	 9.	 Chen W-Y, Lueh G-Y, Ashar P, Chen K, Cheng B (2018) Register allocation for intel processor
graphics. In: CGO, pp 352–364

	10.	 Cohen A, Rohou E (2010) Processor virtualization and split compilation for heterogeneous multi-
core embedded systems. In: DAC, pp 102–107

	11.	 Coleman TF, Moré JJ (1983) Estimation of sparse Jacobian matrices and graph coloring problems.
SIAM J Numer Anal 20(1):187–209

	12.	 Saad Y (1994) SPARSKIT: a basic tool kit for sparse matrix computations—Version 2
	13.	 Jones MT, Plassmann PE (1993) The efficient parallel iterative solution of large sparse linear

systems. In: George A, Gilbert JR, Liu JWH (eds) Graph theory and sparse matrix computation.
Springer, New York, pp 229–245

	14.	 Gebremedhin AH, Manne F, Pothen A (2005) What color is your Jacobian? Graph coloring for
computing derivatives. SIAM Rev 47(4):629–705

	15.	 Kaler T, Hasenplaugh W, Schardl TB, Leiserson CE (2016) Executing dynamic data-graph compu-
tations deterministically using chromatic scheduling. In: ACM TOPC vol 3(1)

	16.	 Kaler T, Hasenplaugh W, Schardl TB, Leiserson CE (2014) Executing dynamic data-graph compu-
tations deterministically using chromatic scheduling. In: SPAA, pp 154–165

	17.	 Strati F, Giannoula C, Siakavaras D, Goumas G, Koziris N (2019) An adaptive concurrent priority
queue for NUMA architectures. In: CF, pp 135–144

	18.	 Giannoula C, Vijaykumar N, Papadopoulou N, Karakostas V, Fernandez I, Gómez-Luna J, Orosa
L, Koziris N, Goumas G, Mutlu O (2021) SynCron: efficient synchronization support for near-data-
processing architectures. In: HPCA, pp 263–276

	19.	 Garey MR, Johnson DS, Stockmeyer L (1974) Some simplified NP-complete problems. In: STOC,
pp 47–63

	20.	 Besta M, Carigiet A, Janda K, Vonarburg-Shmaria Z, Gianinazzi L, Hoefler T (2020) High-perfor-
mance parallel graph coloring with strong guarantees on work, depth, and quality. In: SC, pp 1–17

	21.	 Hasenplaugh W, Kaler T, Schardl TB, Leiserson CE (2014) Ordering heuristics for parallel graph
coloring. In: SPAA, pp 166–177

	22.	 Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256
	23.	 Matula DW, Beck LL (1983) Smallest-last ordering and clustering and graph coloring algorithms. J

ACM 30(3):417–427
	24.	 Karp RM, Wigderson A (1985) A fast parallel algorithm for the maximal independent set problem. J

ACM 32(4):762–773
	25.	 Luby M (1985) A simple parallel algorithm for the maximal independent set problem. In: STOC,

vol 7, pp 567–583
	26.	 Goldberg M, Spencer T (1987) A new parallel algorithm for the maximal independent set problem.

In: SFCS, pp 161–165
	27.	 Çatalyürek ÜV, Feo J, Gebremedhin AH, Halappanavar M, Pothen A (2012) Graph coloring algo-

rithms for muti-core and massively multithreaded architectures. Parallel Comput 38(10):576–594
	28.	 Gebremedhin AH, Manne F (2000) Scalable parallel graph coloring algorithms. Concurr Pract Exp

12(12):1131–1146
	29.	 Rokos G, Gorman G, Kelly PHJ (2015) A fast and scalable graph coloring algorithm for multi-core

and many-core architectures. Euro-Par-2015, pp 414–425
	30.	 Boman EG, Bozdağ D, Catalyurek U, Gebremedhin AH, Manne F (2005) A scalable parallel graph

coloring algorithm for distributed memory computers. EuroPar, pp 241–251
	31.	 Lu H, Halappanavar M, Chavarría-Miranda D, Gebremedhin A, Kalyanaraman A: Balanced color-

ing for parallel computing applications. In: IEEE IPDPS, pp 7–16 (2015)
	32.	 Giannoula C (2022) ColorTM: a high-performance graph coloring algorithm. https://​github.​com/​

cgian​noula/​Color​TM.​git
	33.	 Giannoula C, Goumas G, Koziris N: Combining HTM with RCU to speed up graph coloring on

multicore platforms. In: ISC HPC, pp 350–369 (2018)
	34.	 Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174
	35.	 Mitchem J (1976) On various algorithms for estimating the chromatic number of a graph. Comput J

19(2):182–183

https://github.com/cgiannoula/ColorTM.git
https://github.com/cgiannoula/ColorTM.git

6419

1 3

High‑performance and balanced parallel graph coloring on…

	36.	 Lovász LM, Saks ME, Trotter WT (1989) An on-line graph coloring algorithm with sublinear per-
formance ratio. Discrete Math 75(1):319–325

	37.	 Herlihy M, Moss JEB (1993) Transactional memory: architectural support for lock-free data struc-
tures. In: ISCA, pp 289–300

	38.	 Yoo RM, Hughes CJ, Lai K, Rajwar R (2013) Performance Evaluation of Intel®transactional syn-
chronization extensions for high-performance computing. In: SC

	39.	 Cain HW, Michael MM, Frey B, May C, Williams D, Le H (2013) Robust architectural support for
transactional memory in the power architecture. In: ISCA, pp 225–236

	40.	 Wang A, Gaudet M, Wu P, Amaral JN, Ohmacht M, Barton C, Silvera R, Michael M (2012) Evalua-
tion of blue gene/Q hardware support for transactional memories. In: PACT, pp 127–136

	41.	 Giannoula C, Fernandez I, Gómez-Luna J, Koziris N, Goumas G, Mutlu O (2022) Towards efficient
sparse matrix vector multiplication on real processing-in-memory architectures. In: SIGMETRICS,
pp 33–34

	42.	 Giannoula C, Fernandez I, Luna JG, Koziris N, Goumas G, Mutlu O (2022) SparseP: towards effi-
cient sparse matrix vector multiplication on real processing-in-memory architectures. Proc ACM
Meas Anal Comput Syst 6(1):1–49

	43.	 Tang WT, Zhao R, Lu M, Liang Y, Huyng HP, Li X, Goh RSM (2015) Optimizing and auto-tuning
scale-free sparse matrix-vector multiplication on Intel Xeon Phi. In: CGO, pp 136–145

	44.	 Boldi P, Vigna S (2004) The WebGraph framework I: compression techniques. In: WWW 2004, pp
595–602

	45.	 Lu H, Halappanavar M, Kalyanaraman A (2015) Parallel heuristics for scalable community detec-
tion. Parallel Comput 47:19–37

	46.	 Chavarria-Miranda D, Halappanavar M, Kalyanaraman A (2014) Scaling graph community detec-
tion on the Tilera many-core architecture. In: HiPC, vol 47, pp 19–37

	47.	 Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in
large networks. JSTAT 10:10008

	48.	 ExaGraph (2020) Grappolo: parallel clustering using the louvain method as the serial template.
https://​github.​com/.​Exa-​Graph/​grapp​olo

	49.	 Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarrià-Miranda D, Khan A,
Gebremedhin A (2018) Distributed Louvain algorithm for graph community detection. In: IPDPS,
pp 885–895

	50.	 Naim M, Manne F, Halappanavar M, Tumeo A (2017) Community detection on the GPU. In:
IPDPS, pp 625–634

	51.	 Halappanavar M, Lu H, Kalyanaraman A, Tumeo A (2017) Scalable static and dynamic community
detection using Grappolo. In: HPEC, pp 1–6

	52.	 Tas MK., Kaya K, Saule E (2017) Greed is good: parallel algorithms for bipartite-graph partial col-
oring on multicore architectures. In: ICPP, pp 503–512

	53.	 Jones MT, Plassmann PE (1993) A parallel graph coloring heuristic. SIAM J Sci Comput
14(3):654–669

	54.	 Deveci M, Boman EG, Devine KD, Rajamanickam S (2016) Parallel graph coloring for manycore
architectures. In: IPDPS, pp 892–901

	55.	 Grosset AVP, Zhu P, Liu S, Venkatasubramanian S, Hall M (2011) Evaluating graph coloring on
GPUs. In: PPoPP, pp 297–298

	56.	 Osama M, Truong M, Yang C, Buluç A, Owens J (2019) Graph coloring on the GPU. In: IPDPSW,
pp 231–240

	57.	 Chen X, Li P, Fang J, Tang T, Wang Z, Yang C (2017) Efficient and high-quality sparse graph color-
ing on GPUS. Concurr Comput Pract Exp 29(10):4064

	58.	 Che S, Rodgers G, Beckmann B, Reinhardt S (2015) Graph coloring on the GPU and some tech-
niques to improve load imbalance. In: IPDPS, pp 610–617

	59.	 Fernandez I, Quislant R, Gutiérrez E, Plata O, Giannoula C, Alser M, Gómez-Luna J, Mutlu O
(2020) NATSA: a near-data processing accelerator for time series analysis. In: ICCD, pp 120–129

	60.	 Gómez-Luna J, El Hajj I, Fernandez I, Giannoula C, Oliveira GF, Mutlu O (2021) Benchmarking
memory-centric computing systems: analysis of real processing-in-memory hardware. In: IGSC, pp
1–7

	61.	 Gómez-Luna J, El Hajj I, Fernandez I, Giannoula C, Oliveira GF, Mutlu O (2022) Benchmarking a
new paradigm: experimental analysis and characterization of a real processing-in-memory system.
In: IEEE Access, vol 10, pp 52565–52608

https://github.com/Exa-Graph/grappolo

6420	 C. Giannoula et al.

1 3

	62.	 Gao M, Ayers G, Kozyrakis C (2015) Practical near-data processing for in-memory analytics frame-
works. In: PACT, pp 113–124

	63.	 Ahn J, Hong S, Yoo S, Mutlu O (2015) A scalable processing-in-memory accelerator for parallel
graph processing. In: ISCA, pp 105–117

	64.	 Nai L, Hadidi R, Sim J, Kim H, Kumar P, Kim H (2017) GraphPIM: enabling instruction-level PIM
offloading in graph computing frameworks. In: HPCA, pp 457–468

	65.	 Zhuo Y, Wang C, Zhang M, Wang R, Niu D, Wang Y, Qian X (2019) GraphQ: scalable PIM-based
graph processing. In: MICRO, pp 712–725

	66.	 Alabandi G, Powers E, Burtscher M (2020) Increasing the parallelism of graph coloring via short-
cutting. In: PpopP, pp 262–275

	67.	 Holyer I (1981) The NP-completeness of edge-coloring. SIAM J Comput 10(4):718–720
	68.	 Sallinen S, Iwabuchi K, Poudel S, Gokhale M, Ripeanu M, Pearce R (2016) Graph colouring as a

challenge problem for dynamic graph processing on distributed systems. In: SC, pp 347–358
	69.	 Yuan L, Qin L, Lin X, Chang L, Zhang W (2017) Effective and efficient dynamic graph coloring.

VLDB 11(3):338–351
	70.	 Bossek J, Neumann F, Peng P, Sudholt D (2019) Runtime analysis of randomized search heuristics

for dynamic graph coloring. In: GECCO, pp 1443–1451
	71.	 Barba L, Cardinal J, Korman M, Langerman S, Renssen A, Roeloffzen M, Verdonschot S (2017)

Dynamic graph coloring. In: Workshop on algorithms and data structures, pp 97–108
	72.	 Bhattacharya S, Chakrabarty D, Henzinger M, Nanongkai D (2018) Dynamic algorithms for graph

coloring. In: ACM SIAM, pp 1–20
	73.	 Solomon S, Wein N (2020) Improved dynamic graph coloring. TALG 16(3):1–24
	74.	 Chakrabarti A, Ghosh P, Stoeckl M (2021) Adversarially robust coloring for graph streams. arXiv

preprint arXiv:​2109.​11130
	75.	 Bozdağ D, Çatalyürek UV, Gebremedhin AH, Manne F, Boman EG, Özgüner F (2010) Distributed-

memory parallel algorithms for distance-2 coloring and related problems in derivative computation.
SIAM J Sci Comput 32(4):2418–2446

	76.	 Bozdag D, Çatalyürek ÜV, Gebremedhin AH, Manne F, Boman EG, Özgüner F (2005) A parallel
distance-2 graph coloring algorithm for distributed memory computers. In: HPCC, pp 796–806

	77.	 Lin J, Cai S, Luo C, Su K (2017) A reduction based method for coloring very large graphs. In:
IJCAI pp 517–523

	78.	 Verma A, Buchanan A, Butenko S (2015) Solving the maximum clique and vertex coloring prob-
lems on very large sparse networks. INFORMS J Comput 27(1):164–177

	79.	 Hebrard E, Katsirelos G (2019) A hybrid approach for exact coloring of massive graphs. In:
CPAIOR, pp 374–390

	80.	 Zhou Y, Duval B, Hao J-K (2018) Improving probability learning based local search for graph col-
oring. Appl Soft Comput 65:542–553

	81.	 Brown T, Kogan A, Lev Y, Luchangco V (2016) Investigating the performance of hardware transac-
tions on a multi-socket machine. In: SPAA, pp 121–132

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Christina Giannoula1 · Athanasios Peppas1 · Georgios Goumas1 ·
Nectarios Koziris1

 *	 Christina Giannoula
	 cgiannoula@cslab.ece.ntua.gr

	 Athanasios Peppas
	 apeppas@cslab.ece.ntua.gr

http://arxiv.org/abs/2109.11130

6421

1 3

High‑performance and balanced parallel graph coloring on…

	 Georgios Goumas
	 goumas@cslab.ece.ntua.gr

	 Nectarios Koziris
	 nkoziris@cslab.ece.ntua.gr

1	 School of Electrical and Computer Engineering, National Technical University of Athens,
Athens, Greece

	High-performance and balanced parallel graph coloring on multicore platforms
	Abstract
	1 Introduction
	2 Prior graph coloring algorithms
	2.1 The greedy algorithm
	2.2 Prior parallel graph coloring algorithms
	2.2.1 The SeqSolve algorithm
	2.2.2 The IterSolve algorithm
	2.2.3 The IterSolveR algorithm

	2.3 Prior balanced graph coloring algorithms
	2.3.1 The Color-Centric (CLU) algorithm
	2.3.2 The Vertex-Centric (VFF) algorithm
	2.3.3 The recoloring algorithm

	3 ColorTM: overview
	3.1 Speculative computation and synchronization
	3.2 Eager coloring conflict detection and resolution

	4 ColorTM: detailed design
	4.1 Speculative synchronization via HTM
	4.2 Critical adjacent vertices
	4.3 Implementation details
	4.4 Progress and correctness
	4.5 The BalColorTM algorithm

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 Analysis of parallel graph coloring algorithms
	5.2.1 Analysis of the coloring quality
	5.2.2 Performance comparison

	5.3 Analysis of balanced graph coloring algorithms
	5.3.1 Analysis of color balancing quality
	5.3.2 Performance comparison

	5.4 Analysis of a real-world scenario

	6 Related work
	7 Conclusion
	Acknowledgements
	References

