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Abstract
Depth sensors of low-cost acquisition devices (e.g. Microsoft Kinect, Asus Xtion) are coming into widespread use; however,
3D acquired data are generally large, heterogeneous, and complex to analyse and interpret. In this context, our overall goal
is the analysis of the action of a subject in a 3D video, e.g. the action of a human or the movement of its subparts. To this
end, the action classification is achieved through the analysis of the temporal variation of geometric (e.g. centroid path,
volume variation, activated voxels) and kinematic (e.g. speed) properties in consecutive frames. Then, these descriptors and
the corresponding histograms are used to search a frame in a 3D video and to compare 3D videos. Our approach is applied to
3D videos represented as triangle meshes or point sets, and eventually to an underlying skeleton or to markers (if available).
Our tests on the MIT, Berkley, i3DPost, NTU, and DUTH data sets confirm the usefulness of the proposed approach for the
analysis and comparison of 3D videos, as well as for action classification.

Keywords Shape analysis · 3D videos · 3D Video understanding · 3D Video classification and spatio-temporal reasoning ·
3D Video action recognition

1 Introduction

InComputerVision, the analysis of 2D images and videos has
been studied for decades to address several problems, such
as pose [4] and action [34,52] recognition, reconstruction of
3D human motion from 2D images [24] or 2D videos [11].
These methods have been specialised to indoor physical
security [44], human–robot [19] and human–objects [51]
interactions. In this context, depth sensors of low-cost acqui-
sition devices (e.g.MicrosoftKinect, AsusXtion) are coming
into widespread use and offer unprecedented opportunities
for a deeper understanding of the world around us and for
expanding the way of interactions with digital environments.
The richness of geometric data in 3D videos allows us to
discriminate among different kinds of actions through geo-
metric and kinematic descriptors. Since 3D acquired data are
generally large, heterogeneous, and complex to analyse and
interpret, there is an increasing need to integrate experimen-
tal observations acquired by sensors with high-level tasks,
e.g. scene understanding [41] and interpretation [53].
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This paper addresses the analysis, comparison, and clas-
sification of the action of a subject in a 3D video, e.g. the
action of a human or the movement of its subparts. In our
setting, a 3D video is represented as a sequence of consec-
utive frames; each frame contains a 3D subject, defined as
a rigid or an articulated object. This subject is represented
as a point set or a triangle mesh and is eventually associated
with a skeleton, whose nodes locate relevant features and are
connected with rigid joints.

Our method requires that the input subject is segmented
from the background. In case of raw data, learning-based seg-
mentation [35,55] can be applied to automatically segment
the input subject and to recognise the subject of interest with
respect to the background, through a semantic segmentation
of the scene. Under these assumptions, the analysis of the
action of a subject is achieved through the study of the tempo-
ral variation of its kinematic properties, which are computed
in linear time with respect to the number of input points and
video frames.

As a contribution with respect to previous work (Sect. 2),
our focus is on the study of the changes among frames
rather than on the analysis of a single frame. The proposed
approach (Fig. 1) is based on descriptors that are easily and
efficiently computable, are applicable to 3D point sets and
markers (if any), and are enough flexible to address differ-
ent tasks, such as the segmentation of subparts in terms of
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1336 S. Cammarasana and G. Patanè

Fig. 1 Main steps of the proposed spatio-temporal analysis and com-
parison of 3D videos, where a set of descriptors (e.g. the histograms
of the speed of the points) are used to search a frame in an action, to
compare and classify actions performed by different subjects

homogeneous speed and the analysis of motion patterns. As
kinematic descriptors, we introduce the pointwise, average,
and angular velocities for the classification of subparts of the
input subject with an analogous speed, and for the classifica-
tion of an action. To improve the analysis of 3D videos, we
introduce a set of geometric descriptors, which characterise
specific behaviours of the subject (Sect. 3). These descrip-
tors and the corresponding histograms are used to search a
frame in a 3D video (Sect. 4), to compare (Sect. 5) and clas-
sify (Sect. 6) 3D actions. The combination of the proposed
descriptors with markers, associated with the semantics of
the underlying sub-parts (if available), allows us to accu-
rately discriminate different actions. For our experiments,
we have selected the MIT [50], Berkley [31], i3DPost [42],
NTU [38], and DUTH [48] data sets, which include 3D
videos of humans represented as point clouds or triangle
meshes, with or without markers (Fig. 2). Finally, a video
on the main tests discussed in this paper is available at the
URL: https://www.dropbox.com/s/t3s1k7jk3ozrjn7/Video_
PAPER.mp4?dl=0.

2 Previous work

Analysis of 3D poses In [20], the pose of a 3D human is clas-
sified by studying the space occupancy of the point cloud
with respect to a cylindrical voxel grid. The identification and
comparison of the postures are addressed by analysing each
frame, without considering the temporal variation. In [2],
poselets are defined to characterise human poses, consider-
ing only static data and classifying single poses through the
analysis of key points. In [3], human action is classified by
using silhouette-based poses as features, and the prediction
of 3D human poses is based on the 2D joints’ location [28]
and neural networks.
Analysis of 3D actions The analysis of 3D actions is typi-
cally achieved by decomposing a complex action into atomic

Fig. 2 Data sets used for the experimental validation

actions, which are then analysed through a set of descriptors
that encode the geometry of the input data and their temporal
evolution. In [23], the position of the body joints and a dic-
tionary of atomic actions are applied to recognise actions in
3D videos, through the human skeleton and the geometrical
and motion information of key points as descriptors. In [49],
an action, represented as a sequence of 3D points, is anal-
ysed through the time-varying occupancy of a voxel grid of
the scene. Human actions are detected by comparing features
extracted from a time-sequence of silhouettes with examples
in a training data set [36], or by extracting spatial and tem-
poral features from skeleton sequences (e.g. displacement
vector of joints), and aggregating them in a local descrip-
tor [26]. In [40], shape descriptors are applied to compare
both human shapes and clips; in [48], speed and trajectory
descriptors of key points (e.g. centroid, protrusion ends) are
combined to classify human actions. In [56], the combina-
tion of physical and geometric properties (e.g. acceleration,
reciprocal joint orientation) of skeleton joints with a CNN is
applied to characterise and classify 3D actions. In [58], a set
of geometric features (e.g. joints’ distance, angles between
joints) extracted from skeletons are used to train a multilayer
LSTM network to perform action recognition tasks. In [18],
the skeleton sequences are transformed into a collection of
clips (e.g. multiple images) to incorporate spatial relation-
ships between the joints; then, the clips are used to train a
deep CNN and to recognise 3D actions.
Analysis of human interactionThe shape and functionality of
an unknown object (e.g. a cup) are extrapolated by analysing
the human interaction with the object itself, through sensors
placed in the interacting surfaces. These studies (e.g. [33])
typically focus on a specific application (e.g. analysis of
hand-object interaction) and are limited by the sensor posi-
tion. In [21], the action recognition is performed through
a mutual analysis of object detection and activity labelling;
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then, the information on the specific use of an object becomes
the input for the action recognition. In [60], the interaction
between human characters and objects is analysed through
the detection of similarities in dynamic body-object recip-
rocal and is based on the contact interaction bisector and
surface descriptors.
Comparison of 3D actions and analysis of 3D videos For
the human gait analysis [29], kinematic and spatial-temporal
descriptors (e.g. joints angular speed) of the human skeleton
are applied to the analysis of the walk cadence and of the
stride length. To recognise 3D actions, convolutional neural
networks [45] or motion context descriptors (i.e. motion and
harmonic motion context) [10] are applied to a set of 3D
skeletons. The optical flow [37], the 3D CNN [14], and the
histogram of oriented gradients for 2D videos have been spe-
cialised to the analysis of 3D spatio-temporal data [39] and to
the segmentation of 3D videos [59]. The analysis of different
metrics for shape similarity in 3Dvideo sequences [12] shows
that temporal shape histograms give the best performance
for different people and motions comparison. Histograms of
3D joint locations [54] are used as a compact representation
of postures, which are clustered into prototypical poses of
actions, and compared to recognise human actions. In [57], a
semantic representation of human behaviour is based on the
features extracted from the 3D video and auxiliary data. For
a survey on 3D video analysis and characterisation, we refer
the reader to [7,13].

3 Kinematic and geometric descriptors

We introduce the kinematic descriptors and the speed his-
tograms, enriched with pose/volume information and geo-
metric descriptors.
Kinematic descriptors The speed of the input points charac-
terises the movement of the subject and provides a descriptor
of the underlying action. Given two consecutive frames,
the speed of a point psi of a frame s is equal to the ratio
between the variation ofpsi from its corresponding pointps−1

i
in the previous frame and the elapsed time Δt , i.e. vsi =
(psi −ps−1

i )/Δt ,whereΔt−1 is the acquisition frequency.The
modulevsi of the speed is the speed of a point between consec-
utive frames. If there is no correspondence among the points
of consecutive frames, then for each point of the frame s we
identify the closest point in the previous frame with a kd-
tree search in O(N log N ) time, where N is the number of
input points. This method generally works well if the acqui-
sition frequency is high, as commonly satisfied by current
acquisition systems, and guarantees the consistency of the
subject geometry in consecutive frames. The average speed
v = 1

T−1

∑T−1
j=1 vsj of a point is the average of the speed at

this point with respect to all the T frames and allows us to

Fig. 3 Variation of the angular speed at each point for a subject per-
forming: amarch, b handstand, and c jumping actions. A greater angle
variation is depicted as red, and the yellow colour identifies the subparts
that have null angle variation between consecutive frames

classify the subparts of the subject with a persistent speed,
e.g. a static behaviour, a slow or a fast movement, and to spe-
cialise the movement analysis on his/her subparts in order
to classify a persistent or an inconsistent behaviour during
the actions. The subparts’ segmentation of our method pro-
vides results that are analogous to learning-based methods
(e.g. [27]), with the main advantage that our segmentation
is performed on a single 3D video, without the need of a
training data set. To further characterise a specific behaviour
or movement (e.g. jumping, walking), we evaluate the direc-
tional and angular speed, by projecting the speed vsi along
a given direction (e.g. the positive z-direction) or on a plane
(e.g. xy plane); the projection is computed automatically, by
considering the related component on the desired axis/plane.
We also analyse the variation of the angles between the veloc-
ities of corresponding centroids, points, or markers (Fig. 3)
between consecutive frames orwith respect to the initial posi-
tion.
Speed histogram The speed of the input points is converted
into a speed histogram, which is used to segment the subject
into subparts with an analogous speed, to search a frame in
a 3D video (Sect. 4), and to compare (Sect. 5) and classify
(Sect. 6) 3D videos. For each frame of the input 3D video,
we subdivide the interval of the points’ speed into n uni-
form intervals and group those points whose speed belongs
to the same interval in the same cluster. Then,we compute the
frequencies, i.e. the percentage of points belonging to each
cluster and the average of the speed of the points belonging
to each cluster.

Indeed, each frame i has n clusters and each cluster has
a couple of descriptors [frqi , spdi ], where frqi and spdi
are n-dimensional arrays of frequencies and speeds. If m
markers are available (e.g. Berkley’s data set), then we com-
pute the speed of each marker, whose frequency is 1/m. In
this case, frqi and spdi are m-dimensional vectors and the
frequencies are uniformly distributed. The speed histogram is
computed in linear time with respect to the number of points
or markers.

Figure 4a shows the histogram of the human performing
a squat, as a slow movement with a periodic behaviour (blue
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1338 S. Cammarasana and G. Patanè

curve); for each frame (x-axis), all the points are grouped
in n (n = 5, in our experiments) clusters and we measure
the number of points that are static or that are moving at a
different speed. Figure 4b reports the average speed of the
points belonging to each cluster (y-axis), computed for each
frame (x-axis). Figure 4c shows the speed descriptor of a
human throwing a ball, evaluated at 10markers, which allows
us to identify the correctness of the movement in terms of
the speed of the symmetric parts (e.g. left/right arms/legs).
In this case, the number of clusters of the histogram is equal
to the number of physical markers that have been placed on
the subject. Discretizing the bounding box of the frames’
sequence with an octree, the ratio between the number of
points in a voxel and the total number of points also provides
the significance of a voxel, which is zero if the voxel is empty

Fig. 4 For each frame (a, b, x-axis), we compute (a, y-axis) the his-
tograms of the frequencies in n = 5 clusters (i.e. very slow, slow,
medium, fast, very fast speed) and (b, y-axis) with the average speed
of each cluster. c (y-axis) Speed of 10 markers in a 3D video with 66
frames (x-axis)

Fig. 5 a Activated voxel coloured according to the number of points
it contains (a darker colour corresponds to a higher number of points
inside the voxel) and b speed (blue/red=low/fast). c The variation of the
number (y-axis) of activated/deactivated (blue/cyan) voxels identifies
posture changes in each frame (x-axis)

and low if the voxel contains outliers (Fig. 5a,b,d). The voxel
speed, which is defined as the average of the speed of the
points belonging to each voxel, is robust to noise and outliers
(Fig. 5b), is useful to compute a speed distribution that is
independent of the number of points.
Robust speed and geometric descriptorTo address the poten-
tial impact of the quality of the input 3D videos (e.g.
segmentation of objects in frames, point cloud sampling)
on the action classification, we apply different strategies. In
the case of clean data, already segmented from the back-
ground (e.g.MITdata set), ourmethod correctly identifies the
speed of the subparts (Fig. 6); in fact, it provides a subparts’
decomposition that is visually comparable to learning-based
methods [1,27].As themain advantage, our subparts segmen-
tation is performed on a single 3D video, without a training
phase and data set. In case of noisy data and outliers (e.g.
Berkeley data set) or of the irregular distribution of the veloc-

Fig. 6 Colour map of the average speed, from green (low speed) to red
(high speed). In the squat action a, legs are static while the torso and
the arms are moving faster; in the march action b, the hands are moving
faster, the legs and the arms aremoving atmedium speed, while the head
and the torso are basically static; in the dance action c, the hands are
moving faster, while all the rest of the body is moving at average speed;
in the handstand action d, the feet are moving faster and the torso is
static; e shows the colours legend of our results. Sub-parts segmentation
of state-of-the-art methods for the squat action subject: f [27], g [1]
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ities (e.g. i3DPost data set), we compute the voxel speed
instead of the pointwise speed, apply the voxel persistence
to further reduce the noise influence on the evaluation of the
descriptors, and prefer the use of markers (if available) with
respect to points. Markers are generally robust to noise and
particularly useful when the segmentation of the subject from
the background is not available or have low quality; in this
last case, we also evaluate the voxel speed and significance
for a more reliable identification of the outliers and the static
elements in the scene outliers.

Analysing the velocity of the voxel, we distinguish the
subject from the background and/or static elements; fur-
thermore, the significance of voxels allows us to disregard
outliers and to increase the robustness of our approach to
noise, through the computation of the frequency and veloci-
ties of the bins. The computation of the voxel speed allows
us to reduce the impact of noisy data since the voxel speed
is less affected by small shifts of the points. In contrast,
a small displacement of a point affects the speed descrip-
tor in a more significant way. To further discuss this aspect
and show the higher robustness of the proposed approach
on noisy 3D videos, we apply the Gaussian noise as a ran-
dom Gaussian displacement along the normal direction, at
each point in the frames (Fig. 7, a–c). Then, we compute the
voxel speed (Fig. 7, d–f) and the histogram of the pointwise
speed (Fig. 7g), for the ground-truth, and the noisy frame.
The error between the ground-truth and the noisy data is
computed as the norm between the speed descriptor of each
element (i.e. the voxel or the bin), and normalised with the
number of elements (i.e. 256 voxels or 25 bins). The error
of the voxel speed is 7.4 · 10−4 and 9.6 · 10−4 for the low
and high noise data, respectively; the error of the histogram
speed is 1.3 · 10−3 and 2.0 · 10−3 for low and high noise
data. As expected, both the errors grow as we increase the
noise, and the error of the voxel speed descriptor is an order
of magnitude lower than the histogram descriptor.

The analysis of 3D videos is enriched through geomet-
ric descriptors that characterise specific behaviours of the
subject and provide a fast and approximated check of the
interaction between subjects. For the analysis of the path of
a subject, we compute the curve that best fits the path of
the centroid; then, a low least-squares error between the fit-
ted and centroid curves indicates that the subject is moving
along a certain trajectory (Fig. 8a). The speed and angle vari-
ation of the centroid enriches the analysis of the behaviour of
the subject (Fig. 8b). The analysis of the temporal variation
of the volume between consecutive frames identifies changes
in the space occupancy and allows us to provide basic con-
siderations about the type of movement that the subject is
performing. For instance, the analysis of the temporal vari-
ation of the size and volume of the convex hull of a man
performing a squat (Fig. 8c,d) identifies that the subject is
moving and that his/her movement has a periodic variation.

Fig. 7 a Ground-truth frame, b low-noise, c high-noise frame; voxel
speed (256 voxels) of d ground-truth, e low, and f high noisy data;
histogram with 25 bins (x−axis) of the pointwise speed descriptor
(y−axis) g: ground-truth (blue), low noise (red), and high-noise (yel-
low) data

Fig. 8 For a marching subject, the temporal variation of the (x, y)
coordinates of the centroid allows us to identify a a circular movement
of the subject and his/her speed. bThe temporal variation (x-axis) of the
angle of the centroid (y-axis) with respect to the initial frame identifies
a circular movement. c Convex hull and d its variation (y-axis) with
respect to frames (x-axis). The bar graph shows a periodic movement
every 50 frames (i.e. ≈ 2s.)
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The proposed descriptors can be enriched with the informa-
tion encoded by the extremal human curve [40], physical [56]
and geometric [58] properties of joints, space-time interest
points detectors [22], spherical harmonics [17]. More com-
plex descriptors generally have a higher computation time:
for example, a fast algorithm for the computation of spheri-
cal harmonics [43] has a computational cost of O(n2 log n),
while our method is linear in the number of points n. For
further uses of these descriptors, we refer to the following
experimental tests.

4 Searching frames in 3D videos

We introduce the search of a frame in a 3D video (Sect. 4.1),
the experimental results (Sect. 4.2), and the analysis of the
computational cost (Sect. 4.3).

4.1 Method: frame search

We introduce temporal geometric and kinematic descriptors
of a point set P := {pi }Ni=1 in a 3D video. Firstly, we per-
form a frame-video co-registration and compare their speed
histograms. For frame-video co-registration, let us consider
a frame i of a 3D video Q and another 3D video S. If the
frame i in Q does not refer to the same subject in S, then
we “align” the subject in i with the subject in S. An initial
alignment of the subjects inQ andS is performed through the
principal component analysis [15], and for the co-registration
we apply the RANdom SAmple Consensus (RANSAC) [5]
algorithm, which computes the new sampling (i.e. the co-
registered one) through an iterative approach: after an initial
selection of the new samples and the computation of the fit-
ting between the proposed sampling and the target points, the
inliers are separated from the outliers, thus providing an out-
put sampling that considers only the meaningful points (i.e.
the inliers). For frames’ comparison, searching a frame i
in the video S is equivalent to comparing this frame with
all the frames of S. To compare a frame i ∈ Q, with a
frame j ∈ S, we compute the speed histograms (frqi , spdi )
and (frq j , spd j ) of i and j , respectively. Then, the distance
between the histograms of two input frames is defined as
d(i, j) = ‖frqi � spdi − frq j � spd j‖2, i.e. the Euclidean
distance of the difference of the weighted speed histograms
of the frames (i, j). Here, a�b is the vectorwhose entries are
the pointwise product between the corresponding entries of
a := (a( j)) j and b := (b( j)) j , i.e. (a � b)( j) = a( j)b( j).

Given the frame i in Q, we evaluate the distances for
each frame in S, i.e. d := (d(i, j)) j∈S ; similar frames
are computed as the minimum values of d with a local
search algorithm. The lower is the distance, the greater is
the similarity between the two frames. The speed histogram
is independent of the geometry of the poses and identifies the

speed similarity of the movement of two subjects, which can
be performed in a different posture and/or by subjects with a
different shape. Indeed, a static shape descriptor is applied to
identify a geometric similarity (if any) between static posi-
tions of the input subject; in our experiments,we select the 3D
shape context [6], which is invariantwith respect to rescaling,
rotation, translation and is robust with respect to geomet-
ric sampling. In particular, the kinematic descriptors (e.g.
speed histogram) compare all the frames of the 3D video and
detect the most similar frames to the reference one; when
two or more frames are both very close to the reference
one, we apply the shape context descriptor, which allows
us to compare the static poses, and improve the discrimina-
tion between different behaviours of the subject. Since the
shape context is computed at each point, a small set of key-
points is selected in order to reduce its computational cost,
without affecting its discriminative power. Key points are
not necessarily the input markers (if available) and must be
stable to surface acquisition and discretisation, distinctive,
and easily detectable. Among the methods for the selection
of key points, we have selected the intrinsic shape signature
(ISS) [61], which provides good results in terms of points’
stability and distribution.

4.2 Experimental results

MIT data set Figure 9a shows the detected poses for a human
performing a squat when he/she is in the starting pose, i.e.
we are searching the pose on the left (belonging to a subject
performing the squat action) in the video on the right (where
the squat action is performed by a different subject). The
poses in green and light green are those ones detected asmore
similar to the reference pose through the comparison of the
corresponding speed histograms. Both poses are correct in
terms of the speed of their subparts; in fact, the input subjects
are moving the arms and the knees at a similar speed, while
the feet are static. Furthermore, Table 1 (row 1–2) shows
the histogram-based distances between the reference frame
and the compared frames (Fig. 9). The green pose (i.e. frame
1) is the most similar to the reference one; then, the light
green pose (i.e. frame 50) is more similar to the reference one
than the pose referring to frame 8 (which is 7 frames distant
from the green pose). We underline that the histogram-based
distance between the reference frame and the first frame has
a low value; then, the distance increases as the movement
of the subject becomes more rapid and finally decreases to a
low value, as soon as the final position that is similar to the
initial one, in terms of speed of the subparts.

We enrich this analysis with the 3D shape context [6],
which is able to disambiguate the subject in light green (not
geometrically similar to the reference one) from the subject
in green. In fact, the 3D shape context distance between the
light greenone and the reference pose is 1.00, and the distance
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Fig. 9 The actions on the left (ref.) are searched in a 3D video (i.e. a
squat, b march, c swing step) performed by a different subject. In a,b,
the speed histogram detects two poses (green, light green) similar to
the reference one in terms of speed. Among these two poses, the 3D
shape context identifies themore similar pose in terms of static geometry
(green). cThe swing stepmovement (left) is searched in the 3D video of
the handstand action; the speed histogram identifies two poses similar
in terms of speed; and the shape context is not useful as the subjects
have a high shape difference. We also report the frame number in the
video above each 3D model

Table 1 With reference to Fig. 9, we report the histogram-based dis-
tance between the reference action and the reported frames of the three
videos: squat, march, and swing

Frame 1 8 15 22 29 36 43 50

Squat 0.11 0.21 0.32 0.40 0.39 0.36 0.24 0.12

Frame 3 9 15 21 27 33 39 45

March 0.24 0.16 0.22 0.26 0.26 0.19 0.15 0.19

Frame 14 19 24 29 34 39 44 49

Swing 0.36 0.29 0.20 0.27 0.39 0.32 0.26 0.21

of the pose in green with respect to the reference one is 0.78.
Among all the frames of the input 3D video, the object in
green is the most similar to the reference frame (a) in terms
of speed and geometry.

Figure 9b shows an analogous analysis for the human
marching pose; the reference one (left) has been searched
in the video on the right, where the marching action is
performed by two different subjects. The proposed method
identifies two similar poses (green and light green) in terms
of speed; in fact, these two poses are moving the left arm and

the right leg at a similar speed. The speed histogram of the
march action is more complex than the previous (e.g. squat)
action; and in fact, more body sub-parts (i.e. points of the
point cloud) are moving simultaneously. Table 1 (row 3–4)
shows the histogram-based distances for the march action.
In this case, the green pose is also the most similar to the ref-
erence one (i.e. frame 39, 0.15 distance), and the light green
pose has a slightly higher distance (i.e. frame 9, 0.16 dis-
tance). Through the 3D shape context, we compare the poses
in green to the reference one in terms of geometry; the cor-
responding distance between the pose in light green and the
reference pose is 1.00, and the distance of the pose in green
from the reference pose is 0.84. Indeed, the pose in green
is the most similar to the reference pose in terms of speed
and geometry. In Fig. 9c, two poses (green) of the handstand
action are classified as similar to the swing step frame (on
the left) through the speed histogram method. Table 1 (rows
5–6) shows that the histogram-based distance between the
two green poses and the reference one is higher with respect
to squat andmarch actions; in fact, these two poses are differ-
ent from the reference one, both in terms of shape and speed
descriptors. In this case, the shape of the subjects is different,
and the 3D shape context is not able to identify similar poses;
in fact, the shape context distance of the first pose in green
from the reference one is 1.00, and the distance of the second
pose in green from the reference one is 0.96.

The nonlinear behaviour of the results (Table 1) mainly
depends on the periodicity of themovement, and on the accel-
eration/deceleration of the human body parts, which may
be nonlinear. We also underline that the histogram distance
descriptor is a measure of dynamic similarity, without any
assumption on the shape/pose of the subject. For this reason,
two poses can result different in terms of geometric shapes,
yet result similar in terms of velocities. Finally, we note that
themost similar frame of the squat action has a distance value
of 0.11, while the most similar frame of the swing action has
a distance value of 0.20. Despite the histogram descriptor
does not use any knowledge on the geometry, it is able to
correctly identify the high similarity of the squat action with
the reference frame.
i3DPost data setWeperforman analogous test on the i3DPost
data set (Fig. 10). In (a), our method correctly identifies two
poses of the walking woman, which are similar to the ref-
erence pose of the walking man. In (b), we recognise two
poses as similar to the bent person reference, in terms of
speed descriptor. Table 2 shows the histogram-based dis-
tances, between the reference frame and the compared frames
(Fig. 10). Also in these examples, the green actions are more
similar to the reference one; for example, frame 50 of the
bend action has a distance of 16 with respect to the reference
pose, and this value is the lowest among the poses of the bend
video. Then, the 3D shape context identifies the exact pose; in
fact, the distance between the pose in light green and the ref-
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Fig. 10 Each action on the left is searched in a 3D video. The speed
histogram a identifies two poses similar in terms of speed and b detects
two poses (green, light green) similar to the reference one. Then, the
3D shape context identifies the more similar pose in terms of geometry
(green). We also report the frame number in the video above each 3D
model

Table 2 With reference to Fig. 10, we report the histogram-based dis-
tance between the reference action and the reported frames of the two
videos: walk and bend

Frame 1 8 15 22 29 38 46 54

Walk 0.31 0.26 0.20 0.15 0.22 0.24 0.19 0.15

Frame 10 20 28 34 43 50 56 78

Bend 0.19 0.24 0.28 0.23 0.19 0.16 0.19 0.24

erence one is 1.00, while the distance of the green pose with
respect to the reference one is 0.72. Our method achieves
good results both with intra-person and inter-person frame
search, and the results are comparable with state-of-the-art
methods [9,12] that are not based on machine learning.

The distance between the speed histograms of two frames
(Sect. 4) is invariant with respect to rotation and transla-
tion of the input data. Scale changes have a partial influence;
in fact, the frequencies remain unchanged but the speed
of the points varies. Indeed, the scale independence of the
speed descriptor is achieved by uniformly rescaling the input
data. Data downsampling affects the correspondences among
points; in this case, the method remains the same and the

Fig. 11 Robustness of the speed histogram of the march action Q
searched in a 3D video S with a different marching subject and its
minima to scaling-sc., downsampling-smp

closest points are detected with a kd-tree search. To test
the robustness of the speed histogram, we evaluate its accu-
racy on several videos, which are achieved by applying a
roto-translation, downsampling, and rescaling to a reference
3D video. According to the results on the i3DPost data set
(Fig. 11), the distance functions have similar behaviour for
all the transformed 3D videos and almost the same minima
are correctly identified.

4.3 Computational cost and execution time

We compute the velocity descriptor for each point of the
two videos, then we compute the histograms, and finally, we
compare the histograms and find the requested frame. The
computational cost is O(n · f r2), where n is the number of
points of each frame, and f r2 is the number of frames of the
video where we search the reference frame. Here, the num-
ber of points affects the computational cost for computing
the histogram of each frame. For example, given a reference
frame of n1 = 10K points, and 3D video of 200 frames
(each of n2 = 10K points), and given t ≈ 10−7s as the time
for computing the velocity descriptor for a single point, and
h = 0.02s as the time for computing the histogram of a point
cloud, with 25 bins, the execution time is computed as:

– Pointwise velocity: t · n1 + t · n2 · f r2 = 0.2s;
– Histogram of the reference frame: h;
– Histogram of the 3D video: h · f r2 = 0.4s;
– Histogram comparison for frame search: 0.007s;

where the total execution time for the frame search task
is about 0.6 s. Tests have been performed with MATLAB
R2020a, on a workstation with 2 Intel i9-9900KF CPUs
(3.60GHz), and 32GB RAM.
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5 Comparing 3D actions

We discuss the comparison of 3D actions (Sect. 5.1), the
experimental results (Sect. 5.2), and the analysis of the com-
putational cost (Sect. 5.3). For these tests, our method does
not require any preliminary assumption on the type of action;
the labels of the data (e.g. jumping action) are used only to
verify that similar actions have similar histograms, and the
comparison is performed only through the proposed descrip-
tors.

5.1 Method: actions comparison

To compare actions in 3D videos, we extend the previous
method (Sect. 4.1) to a block of consecutive frames instead
of considering only two frames. We notice that we can have
a certain variability in the action that we are searching; if the
two actions have a different length, then the frames’ blocks
and the corresponding speed histograms have a different size.
Furthermore, the subjects can perform the same action at the
same time length, but with a certain discrepancy in the two
3D videos. Indeed, we first align the speed histograms of
frames’ blocks,which are then compared through a similarity
distance.
Alignment of speed histograms Given two histograms repre-
sented as vectors x1 ∈ R

m, x2 ∈ R
n,m < n of different

lengths, we find a set of interpolated and evenly distributed
values that complete the smaller vector with (n−m) entries.
Firstly, we compute the unique couple [(m1, a),m1)] such
that m1 ≤ m and a · m1 + (a + 1) · (m − m1) = n. Then,
we fulfil m1 intervals with a values and the remaining inter-
vals with a + 1 values, so that the size of the two vectors
is the same. The parameter a represents the number of new
elements that are inserted in the vector of lower size x1, and
that are linearly distributed between the boundary values of
each subinterval of this vector.
Frames’ blocks comparison To compare two blocks of T
frames, we define their distance as a matrix D ∈ R

T×T ,
where the entry (i, j) is the distance between the frame i
and the frame j . Firstly, we consider the vector d := (d(i))i ,
whose i-th entry is the minimum of the i-th row of D in
a neighbourhood of the entry (i, i); i.e. the minimum dis-
tance dmin(i) = mink(D(i, i + k)), −h < k < h, between
the frame i and a set of 2h frames temporally close to i ,
with h = 5 in our experiments. Then, the distance between
these two sequences is computed as dF = ‖d‖2/(T − 1).
Our approach computes the distance of two actions by con-
sidering a window that takes into account the shifts between
them; our approach has comparable results with respect to
the dynamic time-warpingmethod [30],while theProcrustes’
analysis [8] method gives worse results, as it does not involve
the temporal consistency among frames.

To compare two arbitrary frames’ blocks, we identify
frames with a static subject (i.e. null speed), which are
considered as the instants when the action starts and ends.
Then, we select the portions of each histogram that corre-
spond to the selected frames’ blocks, represented as two
matrices A ∈ R

f A×n and B ∈ R
fB×n with f A < fB ,

where f is the number of frames and n is the number of
clusters. To compute the distance betweenA andB, we trans-
form each column A(:, j) in a new vector A∗(:, j) with the
same length as B(:, j), by applying the vector alignment
introduced in Sect. 5.1. Finally, we compute the distance
dF (A∗,B) betweenA∗ andB, andwe expect that the distance
of the same actions, even performed by different subjects, is
lower than the distance between different actions.

5.2 Experimental results

MIT data set Table 3 reports the results of the comparison
of four movements, i.e. a squat movement performed by five
different persons, a squat movement from a stand-up position
to a crouched position, a squat movement from the crouched
to the stand-up position, a walking step, and a swing dance
step.Ourmethod has good performances in terms of the iden-
tification of analogous actions (even if performed by different
persons). For example, the squat actions fromup to down per-
formed by two different subjects (ID 1 and ID 3, respectively)
have a distance of 0.30; the same squat action compared with
a march step (ID 6) has a distance of 1.00. The march step
action of subject C (ID 5) has a distance of 0.21 (i.e. it is
very similar) with respect to the same action performed by a
different subject (ID 6); the march step has a higher distance
with respect to the swing step (ID 7, distance value = 1.00).

Table 3 Comparison among7 actions (ID) and corresponding distances
(Sect. 4.1)

ID Subject Movement

1 A squat–up to down

2 A squat–down to up

3 B squat–up to down

4 B squat–down to up

5 C march–step

6 D march–step

7 E swing–dance step

ID 1 2 3 4 5 6 7

1 – 0.41 0.30 0.51 0.92 1.00 0.57

2 0.49 – 0.36 0.26 0.81 0.69 1.00

5 0.59 0.39 0.42 0.46 – 0.21 1.00

Similar actions have a lower distance (bold), even if performed by dif-
ferent subjects. Parameters: h = 10 in dmin, 25 clusters
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Fig. 12 Distance between a reference action (i.e. an instance of a bend,
b stand-up, c run) and all the other actions of different subjects

i3DPost data set We compute the distances between pairs
of actions and cluster the results according to their action’
classes. Figure 12a–c shows the distance between a refer-
ence action (i.e. (a) bend, (b) stand-up, (c) run) and all the
other actions; the distances are well clustered, and the actions
of the same cluster have a low distance with respect to the
reference action, thus showing us that the method is able to
recognise similar actions of the same class. However, a few
false-positive results are present in the actions comparison,
i.e. different actions with a low distance with the reference
one. For example, in (c) our method correctly classifies the
run actions performed by different subjects as similar to the
reference (run) action; however, a low number of false pos-

Fig. 13 a Confusion matrix of Berkeley’s actions: similarity between
each pair of actions varies from 0 (blue colour) to 1 (red colour). b,c
Distance between a reference action (i.e. an instance of b jumping jacks,
c waving one-hand) and all the other actions of different subjects

itives (e.g. run-fall, run-jump-walk) are detected, due to the
similarity of these activities to the referenceone.There is only
one case where the bend action is similar to the run action
(i.e. the reference one): this result depends on the way this
instance of the bend action is performed,which is quite differ-
ent with respect to all the other instances of the same action.
In fact, analysing the results of Fig. 12a, b, this instance of
the bend action is typically out of the cluster of the same
action performed by different persons.

Berkeley’s data setWe compute the distances between pairs
of actions and cluster the results according to their action’
classes. Figure 13a shows the confusion matrix for the sim-
ilarity (i.e. the inverse of the computed distance) between
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Fig. 14 Distance between a reference action (i.e. an instance of a taking off hat, b sneezing) and all the other actions of different persons

each pair of actions. Our method correctly identifies simi-
lar actions; the similarity between actions belonging to the
same class (i.e. the diagonal blocks of the matrix) is always
very high, and the similarity among different classes is gener-
ally low. Some blocks that are out of the diagonal have high
similarity (e.g. sit-down, stand-up, sit-down, and stand-up
actions), mainly due to the similarity of the performed action
among different classes. The throwing-ball action is the only
case where the block with the highest values is detected in
a different class (i.e. bending-hands-up), as the two actions
are performed in a similar way in terms of kinematic param-
eters. In Fig. 13b,c, the actions with lower distance are those
ones belonging to the same class. The distance between the
reference action and different classes is well clustered, thus
showing us that actions of the same class are performed in a
similar way and allowing us to better discriminate between
different types of actions.

NTU’s data setWe perform the same tests on the NTU’s data
set, where the speed of the body joints is more irregular, as
the skeleton is extracted by the Kinect, and the markers are
not present. Depending on the type of action, we get a higher
variability of the results. In Fig. 14a, the reference action
(i.e. put hat) has a low distance with respect to actions of
the same class. In Fig. 14b, the reference action (i.e. sneeze)
is similar to actions belonging to other classes, due to the
irregularity of the speed of some body parts, thus leading to a
wrongcomparison amongdifferent actions.This result shows
that our algorithm generally requires a smooth motion of the
skeleton. The reduced clustering effect in Fig. 14 depends on
the higher irregularity of the 3D videos of the NTU data set,
with respect to the Berkeley data set (i.e. Fig. 12); since our
descriptors are sensitive to irregular variation of the speed of
the points, the characterisation of the actions is less precise.

DUTH’s data set According to the confusion matrix of
DUTH’s 3D videos (Fig. 15), the similarity between actions
of the same class (i.e. the diagonal blocks of the matrix) is
always very high, except for the run action that has high
variability in terms of the behaviour of the subjects. A high
similarity of some non-diagonal blocks (e.g. walk-left and
walk-right, or jump and jump-forward actions) is due mainly
to similar actions among different classes. In Fig. 15b, c,
walk-right and jump-forward actions are correctly classified
as similar to the same actions performed by different sub-
jects and to other analogous actions. Figure 16 shows a detail
of the actions’ comparison between two different actions
(i.e. jumping forward and washing window) performed by
three different persons: tall and thin man, small woman,
tall and robust woman. Our method correctly compares the
actions, independently of the subjects’ characteristics; in
fact, the similarity between the same actions is high, even if
performed by different persons. Furthermore, the “washing
window” actions have smaller distances among themselves,
with respect to the “jumping forward” actions; indeed,
this action is performed more similar among the different
subjects.

DUTH/i3DPost cross-comparison Cross-comparing
the DUTH and i3DPost actions (Fig. 17), most of the actions
are correctly recognised as similar (e.g. DUTH walk and
i3DPost walk) with a few false positives (e.g. DUTH jump
and the i3DPost run).

5.3 Computational cost and execution time

We evaluate the velocity of each point of the two videos,
then we compute the histograms, and finally, we compare the

123



1346 S. Cammarasana and G. Patanè

Fig. 15 a Confusion matrix of DUTH’s actions: similarity between
each pair of actions varies from 0 (blue colour) to 1 (red colour). b, c
Distance between a reference action (i.e. an instance of b jump forward,
c walk right) and all the other actions of different subjects

histograms to compare two actions. The computational cost
is O(n · ( f r1 + f r2)), where n is the number of points of the
point cloud of the video, and f r1,2 is the number of frames of
the two videos, respectively. As a matter of example, given
two videos of 150 and 130 frames of 8K and 10K points,
respectively, the execution time is:

– Velocity computation: t · n1 · f r1 + t · n2 · f r2 = 0.3s;
– Histogram of the first video: h1 · f r1 = 0.24s;
– Histogram of the second video: h2 · f r2 = 0.26s;
– Compare histograms and actions: 0.09s;

where h is the time for computing the histogram of a single
point cloud. Our method takes less than 1 second to compare
two different videos.

Fig. 16 With reference toFig. 15,we report the comparison between the
jumping forward action a, b, c and the washing action d, e, f, performed
by three persons of different body sizes

Fig. 17 Confusion matrix of the actions of two different data sets:
DUTH (y-axis) and i3DPost (x-axis)
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6 Classifying 3D actions

We introduce the comparison of 3D actions (Sect. 6.1) and
the experimental results (Sect. 6.2).

6.1 Method: actions classification

Even though our focus is the comparison of 3D videos, the
proposed descriptors and the corresponding distances are
general enough to classify complex actions. Given a set of
actions C = {Ci }ni=1 (e.g. walk, run, move hands) classi-
fied into n classes, for each action i ∈ C we compute its
average distance with the actions in each class of C, i.e.
dAC (i, Ck) = ∑

j∈Ck
di j/#Ck , k = 1, . . . , n, where di j is the

distance between actions i and j , computed as described in
Sect. 4.1. Then, each action is classified according to the cat-
egory with the lower distance, i.e. c = argmink dAC (i, Ck).
We define the accuracy of a class as the average of the accu-
racies of the actions that belong to it.

6.2 Experimental results

Berkeley’s data set For each action, we identify its category
as the corresponding label of the minimum distances dAC .
Table 4 shows a comparison of our method with state-of-
the-art methods (both learning and non-learning based), in
terms of classification accuracy. Our method correctly clas-
sifies 94.2% of the actions; this result is comparable with
state-of-the-art methods, although they have a slightly better
accuracy; in particular, the learning-based method (i.e. [25])
reaches a 100% accuracy. Considering the classification
accuracy of each category (Table 5), some actions (e.g. jump-
ing, waving) are recognised with a 100% accuracy or higher
than 90% (e.g. bending, clapping hands), while others (e.g.
punching, stand-up) have an accuracy around 83%.

When markers are available, our method has performance
in line with previous work, without requiring any learning
phase; this result is a significant advantage when big data are
not available for a training phase. Furthermore, the proposed
descriptors are very simple yet effective, easy to compute, and
computationally cost-effective. As an additional advantage,
our method allows us to break down the descriptors at the
human sub-parts level, e.g. to analyse the similarity of the
movements of the upper or lower limbs. In contrast, learning-

Table 4 Accuracy (acc.) computation on Berkeley’s data set

Method Acc. (%) Method Acc. (%)

Ofli et. al [32] 95.4 Vantigodi et. al [46] 96.1

Kapsouras et. al [16] 98.2 Liu et. al [25] 100

Our method: 94.2%

Table 5 Accuracy (acc.) of our descriptors on Berkeley’s data set.

Category Acc. Category Acc.

Jumping in place 100% Waving one hand 100%

Jumping jacks 100% Clapping hands 91.7%

Bending hands 91.7% Sit-down and stand-up 100%

Punching 83.3% Sit-down 91.7%

Waving two hands 100% Stand-up 83.3%

Average 94.2%

Fig. 18 DUTH data set: analysis of walk-left (blue) and walk-right
(green) actions; b bounding box analysis of walk (left) and jump right
actions, with frames on the x-axis and descriptor on the y-axis

based methods classify the action, without any additional
detail in terms of granularity of human body parts.

NTU’s& i3DPost data setsToclassify each actionof theNTU
data set, we compute the minimum of dAC and compare the
classification results with state-of-the-art methods, i.e. the
Lie group method [47] with an accuracy of 50.1% and the
Deep LSTM method [38] with an accuracy of 60.7%. Our
method generally provides good results for the classifica-
tion of smooth actions, which are in line with state-of-the-art
methods; for instance, the take-off a shoe action has a clas-
sification accuracy of 60%, and the jump-up action has an
accuracy of 50%. In contrast, some actions (e.g. take a selfie,
type on the keyboard) of the NTU data set have an irregu-
lar profile of joint velocities, with a negative impact on our
descriptors and on the resulting classification, as we assume
smooth movements. The higher number of distinct classes
of similar actions (e.g. writing, typing on the keyboard) also
reduces the capability of our method in differentiating them.
For these classes with flickered 3D videos, the classification
accuracy is lower than state-of-the-art methods (i.e. around
20%). Finally, our method has some limits in the classifica-
tion accuracy with the i3DPost data set, since the absence
of the labelled markers does not allow us to correctly iden-
tify the right class of action, with an average classification
accuracy around 40%.

DUTH data set Even though geometric and kinematic
descriptors are simple and intuitive, they provide a prelim-
inary information on the subject behaviour; for instance,
the centroid analysis (Fig. 18a) discriminates between walk-
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left and walk-right actions and the volume/speed variation
(Fig. 18b) is useful to roughly discriminate between two dif-
ferent actions, which involve a strong posture change (e.g.
jump) or have a regular behaviour (e.g. walk).

7 Conclusions and future work

We have presented a set of geometric and kinematic descrip-
tors for the characterisation of 3D videos. These descriptors
allow us to analyse and describe the behaviour of a sub-
ject, segment its subparts, and compare poses and actions,
without assuming similarity in the geometry of the sub-
jects. Our underlying assumption is that the input subject
is segmented from the background; this condition requires a
pre-processing of the raw point cloud (e.g. identification of
static elements through voxel analysis), while it is guaranteed
with markers data.

As main pros, the proposed descriptors are easy to com-
pute and manipulate, and they allow us to compare different
actions without the need of a large data set and a training
phase, through a fully unsupervisedmethod; in addition, they
achieve good actions’ classification and recognition results,
with a low computational cost. Furthermore, our method can
be applied both to point clouds and markers, and it allows
us to compare actions of the different data sets, e.g. for
the monitoring of rehabilitation activities. As main cons,
learning-based methods have better performance than ours,
in terms of classification accuracy, due to the possibility to
managemore complex descriptors. Furthermore, our method
shows some limits in the classification of actions with an
irregular speed.

As future work, we plan to apply our approach to differ-
ent applications, such as the analysis of multiple subjects and
their mutual interactions, e.g. humans in a station or human–
robot interaction in an industrial environment in order to
evaluate how much it is deviating from a predefined path.
Another application is the rehabilitation by evaluating the
quality of a postural re-education exercise, compared with a
reference one that has been precomputed in a training ses-
sion.
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