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Abstract
Adversarial attack aims to fail the deep neural network by adding a small amount of perturbation to the input image, in which
the attack success rate and resulting image quality are maximized under the lp norm perturbation constraint. However, the lp
norm is not accurately correlated to human perception of image quality. Attack methods based on l0 norm constraint usually
suffer from the high computational cost due to the iterative search for candidate pixels to modify. In this work, we explore
how perceptual quality optimization can be incorporated into the adversarial attack design and propose a two-stage attack
method to reshape the adversarial noise by an initial attack and optimize the visual quality of the attacked images without
sacrificing the attack success rate. Specifically, we construct a visual attention network to generate a perceptual attention
map to modulate the adversarial noise generated by a base attack method. The network is trained to maximize the visual
quality in Structural Similarity Index Metric (SSIM) while achieving the same attack success rate. To improve the image
perceptual quality further, we propose a fast search algorithm to perform an iterative block-wise pruning of the adversarial
noise. We evaluate our method on the mini-ImageNet dataset against three different defense schemes. The results have
demonstrated that our method can achieve better attack performance in image quality, attack success rate, and efficiency
than the state-of-the-art attack methods.

Keywords Adversarial attack · Image visual quality · Deep convolution neural networks · Image classification

1 Introduction

Despite the remarkable success of deep neural networks
(DNN) in various computer vision tasks such as image classifi-
cation, object detection, and semantic segmentation, DNNs
are found vulnerable to adversarial attacks [25]. An adver-
sarial sample is a carefully crafted image to fool the target
network by adding small perturbations onto the original
clean image [2, 13, 23]. This has raised serious concerns
for the security of deep learning networks as they have been
extensively used in various applications that require high
levels of robustness and security, such as face recognition
for identification and authentication, autonomous driving,
safety inspection, and surveillance. Therefore, adversarial
attacks and defenses of deep neural networks have recently
emerged as an important research task in deep learning.
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Recently, a number of dense adversarial attack methods
have been developed, such as FGSM [9], BIM [15], and
PGD [17]. The main objective of these methods is to
maximize the attack success rate under a l2 or l∞ norm noise
constraint [17]. However, the resultant attacked images
ususally have low preceptual qualities.

Sparse attack methods based on l0 norm try to modify as
few pixels as possible to attack the image without limiting
the noise magnitude. These methods usually suffer from low
efficiency in achieving a high attack success rate as it is very
computationally intensive to search the image space for the
candidate pixels [4, 7, 12]. To alleviate the problem, JSMA
[21] and GreedyFool [7] predict a saliency or distortion
map using a trained network to guide the search process.
However, these maps are not directly optimized towards
image quality and attack success rate. On the other hand,
attacking based on the l0 norm constraint alone does not
guarantee the high visual quality of the attacked images.

The problem is to design an adversarial attack method to
simultaneously optimize the attack success rate, visual qual-
ities of the attacked images, and time efficiency or attack
complexity that can be measured by the number of model
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inferences. To this end, we propose to take advantage of the
high attack efficiency and success rate of those l2 or l∞ con-
straint based attack methods, and reshape the perturbation
noise to optimize the image quality while keeping the attack
success rate. However, it has been well recognized that the
lp norm of image noise is not accurately correlated to human
perception of image quality [23, 32]. In the literature, the
structural similarity index (SSIM) has been demonstrated
to be an effective metric for perceptual image quality [20,
23, 28, 31]. Perceptual color distance is also a good metric
for human perception [16, 32]. Figure 1 shows two adver-
sarial examples which have almost the same Peak Signal to
Noise Ratio (PSNR) between the original images (left) and
the attacked images (right). However, we can clearly see that
the adversarial noise in (a) is much more visible and annoy-
ing than that in (b), which corresponds to the significant
difference between the SSIM values. We recognize that,
in different regions of the image, the adversarial noise has
different levels of visibility. Or specifically, with the same
amount of noise, the SSIM values of different image regions
are quite different. For example, the SSIM values of the
structural regions are often higher than those in the smooth
image regions. This motivates us to argue that the perceptual
quality of the adversarial images can be improved by mod-
ulating the adversarial noise with the perceptual weights or
noise sensitivity levels of different image regions.

Based on this, we propose to develop a perceptually
optimized noise reshaping (PONS) scheme to reshape the
adversarial noise generated by a base attacker and optimize
the visual quality of the attacked images while achieving
the same attack success rate. Specifically, in the first stage,
we use a convolution SSIM model to calculate the SSIM
value between a clean image and its attacked version.
Guided by this SSIM visual quality module, the proposed
method learns a perceptual attention network that predicts a
perceptual sensitivity map to modulate the adversarial noise
in the input image, aiming to maximize the visual quality
while achieving the same attack success rate. The perceptual
attention network and attack method are jointly trained.

Within the context of image classification, we recognize
that the decision of the network is binary with the network
inference score being compared to a decision threshold.
This implies that some regions of the adversarial noise can
be removed or pruned to further improve the perceptual
quality while ensuring that the classification score remains
above the threshold to achieve the same adversarial state.
To this end, in the second stage, we propose a fast search
algorithm to perform an iterative block-wise pruning of the
adversarial noise without affecting the attack success rate.

We have tested our method on the mini-ImageNet dataset
against different defense methods. Our method is able to
significantly improve the image visual quality over the base
attack method without significant loss of the attack success

rate. Compared with the state-of-the-art attack methods, our
method can achieve better attack performance in terms of
image quality, attack success rate, and efficiency.

The major contribution of this work can be summarized
as follows:

(1) We incorporate the perceptual quality optimization
into the adversarial attack method design and propose
a two-stage attack method to reshape the adversarial
noise generated by an initial attack while achieving the
same attack success rate.

(2) We develop a perceptual attention network that learns
to predict a perceptual attention map to modulate the
adversarial noise so that the SSIM visual quality of
the image is optimized without significant loss of the
attack success rate.

(3) We propose a fast binary search algorithm to perform
iterative block-wise pruning of the adversarial noise
to further improve the perceptual image quality, which
does not affect the adversarial state of the image.

(4) Our experimental results on mini-ImageNet dataset
with different defense schemes have shown that the
proposed method is able to significantly improve the
attack performance over the state-of-the-art.

2 Related work

2.1White-box adversarial attack

This section reviews the related white-box adversarial
attack methods as this work belongs to this category. In
the white-box attack setting, the parameters of the target
model are exposed to the attack process. For deep neural
networks, Szegedy et al. pointed out an intriguing weakness
of them within the context of image classification and
developed a box-constrained L-BFGS method to generate
adversarial examples [25]. To overcome the computation
efficiency problem, Goodfellow et al. proposed the fast
gradient sign method (FGSM) by performing a single
gradient step [9]. Kurakin et al. extended this method
to an iterative version and demonstrated the adversarial
examples in physical world scenarios by feeding adversarial
images obtained from cell-phone camera to an ImageNet
Inception classifier [15]. Dong et al. proposed a broad class
of momentum-based iterative algorithms to generate more
transferable adversarial examples, and applied momentum
iterative algorithms to an ensemble of models [8]. The PGD
method developed in [17] also works in an iterative manner.
To improve the transferability of adversarial examples, Xie
et al. applied random transformations to the input images at
each iteration of the attack process to create more diverse
input noise patterns [30]. To circumvent the “obfuscated
gradients” problem introduced by the defense methods,
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Fig. 1 Comparison between
SSIM and PSNR. The first
column is the original images. In
the second column, we can see
that the upper image has much
more distortion than the lower
one when compared to the
originals. However, the two
PSNR scores are very close.
SSIM score better reflects the
visual distortions in images. A
higher SSIM score means fewer
distortions in the image

Athalye et al. proposed Backward Pass Differentiable
Approximation (BPDA) to provide proximate gradient
when the true gradient is unavailable [1]. Carlini and
Wagner proposed a set of three adversarial attacks in [3]
and declared that defensive distillation did not significantly
increase the robustness of neural networks. Zhao et al.
exploited human color perception and improved C&W
[3] by minimizing the perturbation size with respect to
perceptual color distance. Croce et al. extended the usual
Projected Gradient Descent (PGD) attack to the L0 norm to
generate highly sparse adversarial examples [4].

Sparse attack methods attempt to make the perturbations
imperceptible by constraining the magnitude of the adver-
sarial noise using lp norm, such as the l0, l2, and l∞ norms
[22]. To search for a minimal adversarial perturbation for
a given image, Moosavi-Dezfooli et al. proposed Deep-
Fool [19] which can generate adversarial examples with less
amount of perturbations than the FGSM method [9] while
achieving similar attack success rates. An extreme case
of minimizing image perturbation is the one-pixel attack
method in which only one pixel in the image is changed
to fool the classifier. Su et al. achieved an attack success
rate of 70.97% on the tested images by changing just one
pixel of the input image [24]. SparseFool [18] converts
the l0 constraint problem into an l1 constraint problem and

exploits the boundaries’ low mean curvature to compute
sparse adversarial perturbations. GreedyFool [7] selects a
few of the most effective candidate pixels to modify using a
predicted distortion map as guidance. TSAA [12] translates
a benign image into an adversarial image by a generator net-
work which is trained to learn the mapping between natural
images and sparse adversarial images.

2.2 Defense against adversarial attack

In this work, we evaluate the attackmethods against different
defense schemes. Here we briefly review the related defense
works. Recently, many methods have been developed for
defending deep neural networks against adversarial attacks.
Adversarial training is a common method to increase the
network robustness by adding adversarial examples into
the training data [14, 26, 27]. Tramer et al. proposed an
ensemble adversarial training method to augment training
data with perturbations transferred from other models [27].
Transformation to the input is another way to defend against
adversarial attacks, such as bit-depth reduction, JPEG
compression, and total variance minimization [10]. The
network structure can be modified to improve its robustness
to adversarial attacks. Dhillon et al. pruned a random subset
of activations according to their magnitude to enhance
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network robustness [6]. Cihang et al. proposed a feature
denoising method using non-local means or other filters.
Along with adversarial training, the adversarial robustness
can be substantially improved [29].

3Method

In this section, we present the proposed perceptually optimized
noise reshaping (PONS) method for adversarial attacks.

3.1 Problem formulation

Let X be a natural image, and yT be the corresponding
ground-truth label, also referred to as the target label. A
classifier�θ(X) = y takes an imageX as input and predicts
its label y ∈ Y , where Y is the output label space. The
goal of the adversarial attack is to generate an adversarial
noise Z constrained by lp norm so that the attacked image
Xa = X + Z is misclassified by the target model. In this
work, the image quality SSIM(X, Xa) is maximized during
the attack process. Mathematically, it is written as

argmax
Z

SSIM(X, X + Z)

s.t . �θ(X + Z) �= �θ(X) (1)

s.t . ||Z||p ≤ ε,

where ε is the perturbation budget, p is the order of matrix
norm and it can be 0, 1, 2 or ∞.

3.2 Method overview

In this work, we propose a novel two-stage adversarial
attack framework that takes advantage of the high attack
efficiency and success rate of a base attack method and
reshapes the perturbation noise to optimize the visual
quality of the attacked images while maintaining the
same attack success rate. As illustrated in Fig. 2, the
proposed PONS method uses the SSIM perceptual quality
and sensitivity analysis to drive the adversarial noise
generation process. In the first stage, we use a convolution
model to calculate the SSIM index between the attacked
image and the input, and a perceptual attention network
to predict the perceptual sensitivity map, which is used
to modulate the adversarial noise generated by the base
attack method. The attacker network and the perceptual
attention map prediction network are learned end-to-end
to optimize the SSIM image qualities while achieving
successful adversarial attacks. In the second stage, we
propose a fast binary search method to perform a block-wise
pruning of the adversarial noise based on the perceptual
sensitivity map to improve the image qualities further.

3.3 SSIM prediction network and perceptual
sensitivity map

SSIM has been extensively used as a metric to measure
the perceptual quality of images. Here we give a brief
definition. For more details, please go to the reference [28].
Let A and B be the two images being compared. A window

Fig. 2 Diagram of the proposed
PONS method. The lower figure
is a two-stage attack process. In
the first stage, the perceptual
attention network (PAN) is used
to predict a perceptual attention
mask using the extracted
features from the images to
modulate the adversarial noise
generated by the base attack
method. In the second stage, to
further reduce the perturbation,
a block-wise perturbation
pruning is applied to find out
image blocks to turn off the
perturbation. In the upper figure,
the perceptual attention network
is trained to optimize the image
quality (Lq ) and attack success
rate (Lc), where the SSIM
model is used to calculate the
SSIM score between the clean
image and the adversarial
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moves pixel-by-pixel from the top left corner to the bottom
right corner of the image. In each step, the local statistics
�(Aj , Bj ) is calculated within local window j as follows
[28]:

θ(Aj , Bj ) = (2 · mAj
mBj

+ C1) · (2 · σAj Bj
+ C2)

(m2
Aj

+ m2
Bj

+ C1)(σ
2
Aj

+ σ 2
Bj

+ C2)
, (2)

where mAj
, mBj

, σAj
, σBj

, and σAj Bj
represent the average

intensity of image patchesAj andBj , the standard deviation
of Aj and Bj , and covariance between Aj and Bj ,
respectively. C1 and C2 are two small constants introduced
to avoid numerical instability. The SSIM index between A

and B is defined by [28]

�(A, B) =
∑Ns

j=1W(Aj , Bj )θ(Aj , Bj )
∑Ns

j=1W(Aj , Bj )
, (3)

where Ns is the number of local windows in the image
and W(Aj , Bj ) is the weights applied to window j

[28]. It should be noted that the above computation is
highly nonlinear. In this work, we use a PyTorch model
(https://github.com/aserdega/ssim-pytorch) to approximate
the SSIM function �(, ).

We introduce the perceptual sensitivity map to measure
the impact of adversarial noise on the image quality at
different locations. For image A, B with size of [W, H, C],
we propose to use the feature map F(m, n, c), 1 ≤ m ≤ W ,
1 ≤ n ≤ H , 1 ≤ c ≤ C, from the last layer of the
SSIM calculation network. This feature map represents the
impact of the difference between the attacked image and the
original clean image on the overall image SSIM quality. The
perceptual sensitivity map σ(m, n) is defined as

σ(m, n) = 1 − 1

C

C∑

c=1

|F(m, n, c)|. (4)

Figure 3 shows an example of the perceptual sensitivity
map. The figure shows that the smooth areas are relatively
whiter than those texture-rich regions, which means smooth
areas are more sensitive to adversarial perturbation.

3.4 SSIM-optimized adversarial attack

The core idea of our method is to reshape the perturbation
noise in adversarial examples that are successfully attacked
by a base attack method. The base attacker usually has
a high attack success rate. This work considers PGD and
its variant BPDA as the base attack method. The PGD is
an iterative version of the original FGSM method which
adds perturbation along the gradient direction of the loss
∇xL(X, yT ; θ) onto the input X to generate adversarial
example as follows [9]:

Xa = X + ε · sign(∇XL(X, yT ; θ)), (5)

where L(·) is usually defined as the cross-entropy loss, and
ε controls the l∞-norm of the difference between X and Xa .
The PGD method iteratively updates the image as [17]

Xa
t+1 = �ε[X; Xa

t + α · sign(∇XL(Xa
t , y; θ))], (6)

where t is the iteration index, α is the step size, and
�ε[X; Xa] is a clipping function which makes sure that the
largest difference between X and Xa is less than ε.

As illustrated in Fig. 3, different image regions have
different levels of sensitivity to the adversarial noise.
Motivated by this observation, we propose to modulate
the adversarial noise by a learned perceptual weight mask
M = [M(m, n)], as illustrated in Fig. 2. The perceptually
modulated PGD attack is given by

Xa
t+1 = �ε[X + Zt+1 · M]. (7)

where Zt+1 is the final perturbation generated by the
base attack method. The perceptual mask M reshapes
the adversarial noise such that, in those image regions
whose visual quality levels are sensitive to noise, the noise
magnitude is reduced.

In our proposed method, this perceptual mask M is
predicted by the perceptual attention network which is
learned with the target network, the attack network, and
the SSIM network. The output mask has the same size as
the input image. The proposed perceptual mask prediction
network is based on an auto-encoder-decoder structure with
a Resnet-18 backbone [11]. The training process is to
maximize the SSIM qualities while achieving successful

Fig. 3 Example of perceptual
sensitivity map. Images from
left to right are the original, the
adversarial, and the
corresponding perceptual
sensitivity map, respectively.
Smooth areas are relatively
whiter than texture-rich regions,
which means higher sensitivity
to noise
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attacks of the original images. Specifically, let yA be the
attack target, the incorrect label that the attack forces the
classifier �θ to produce, and ya be the current classifier
softmax output. We use the following cross-entropy loss LC

between the attack target yA and the actual classifier output
ya

LC(yA, ya) = −
C∑

i=1

yA
i · log2 ya

i . (8)

The following loss is then used to train the perceptual
attention network

LM = LC(yA, ya) − λ · �(Xa
t+1, X), (9)

where λ is a weight factor, �(Xa
t+1, X) measures the SSIM

quality between the current attacked image Xa
t+1 and the

original image X.

3.5 Block-wise binary pruning of adversarial noise

In the above section, we have learned a network to predict
a perceptual attention mask M(m, n) to modulate the
adversarial noise. It should be noted that this learned mask
M(m, n) is a continuous value that aims to maximize the
overall SSIM image quality of the attacked image. This
prediction and quality optimization is a global process,
and all entries of the mask M are jointly predicted from
one network inference. From our experiments, we observe
that the value of each individual entry M(m, n) can be
fine-tuned to further improve the perceptual quality of the
attacked image. To this end, we propose a fast and efficient
method, called block-wise binary pruning to perform local
adjustment of the perceptual mask. Specifically, we equally
partition the mask M into non-overlapping blocks and, for
each block, the proposed algorithm will make the following
binary decision: the adversarial noise within this block
being kept (indicated by 1) or totally removed / pruned
(indicated by 0). Conceptually, we need to remove or turn
off the adversarial noise in those image blocks with high
levels of sensitivity to noise to maximize the perceptual
quality while achieving a successful attack of the image.
In (4), we have derived the perceptual sensitivity map from
the SSIM index calculation network. We propose to use
this perceptual sensitivity map [σ(m, n)]W×H to guide the
block-wise binary pruning of adversarial noise. Each entry
σ(m, n) of this map represents the perceptual sensitivity of
an image pixel. The central task here is: we need to select
a subset of these image blocks to remove or prune their
adversarial noise, i.e., setting their attack noise to zeros, so
that the SSIM perceptual quality of the attacked image is
maximized without changing the adversarial state. Clearly,
it is very computationally intensive to search for this subset
of image blocks. Most importantly, at each search step, we

need to run the classification network to check whether
the resulting image is still successfully attacked or not.
Therefore, the number of search steps has to be very limited.

To address this issue, we propose a fast binary search
algorithm to obtain a sub-optimal solution. Specifically, we
first sort the perceptual sensitivity value σ [k] of all blocks
in an ascending order, denoted by σ [k], 1 ≤ k ≤ W

w
×

H
h
, where σ [k] is the mean value of σ(m, n) in the k-th

image block with size [w, h]. We aim to find a decision
threshold σP such that all adversarial noise in image blocks
with σ [k] > σP will be removed while the noise in the
remaining blocks will be kept. With the image blocks sorted
according to the perceptual sensitivity, this search can be
efficiently implemented with the following binary search
method. Specifically, let {It } be the sequence of search
positions (or k values). Here, t is search step index. At
search step t , we set σP = σ [It ] or remove adversarial
noise in all image blocks with indices k > It . Let the
corresponding pruned adversarial noise be Z[It ]. We then
evaluate the classification network on the attacked image
X + Zt to produce the classification output �θ(X + Z[It ]).
If the image is successfully attacked, we denote it by �(X+
Z[It ]) = 1. Otherwise, �(X + Z[It ]) = 0.

Initially, we set I0 = 0 and I1 = W
w

× H
h
. Certainly,

we have �(X + Z[0]) = 0 since the adversarial noise in
all blocks are removed and X + Z[0] becomes the original
image. If �(X + Z[1]) = 0, which means that the original
attack is not successful, the search stops, and the adversarial
attack fails. Otherwise, the proposed binary search process
continues as follows: at search step t , let

I+
t = min{Ij | �[X + Z[Ij ]) = 1, j < t}, (10)

which is the smallest index with successful attack, and

I−
t = max{Ij | �[X + Z[Ij ]) = 0, j < t}, (11)

which is the largest index with failed attack. Then, in our
proposed binary search, we set

It+1 = I+
t + I−

t

2
. (12)

Once the It+1 is determined, we will evaluate �(X +
Z[It+1]) and repeat the above steps until It+1 − It <

1. The overall binary search-based method is outlined as
Algorithm 1. Figure 4 shows four examples of the above
binary search process. The horizontal axis is the total
number of blocks where the adversarial noises are removed.
As the number of pruned blocks increases, the SSIM quality
of the attacked image improves significantly. The ending
value represents the point where the attack fails, which is
the target value that the binary algorithm aims to find.
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Fig. 4 SSIM scores keep increasing when turning off the noise on
more and more image blocks until the classification result by the model

changes. The X-axis is the number of image blocks where the per-
turbations are turned off. The rightmost number in each figure is the
switching point that the classification result flips

3.6 Attack complexity analysis

Besides the computation consumed by the base attack
method, the extra complexity of our method comes from the
inference of the perceptual attention prediction network and
the binary search for adversarial noise pruning. The first part
is a one-time cost, which is relatively small, depending on
the model complexity. The complexity of the second part is
the number of search steps multiplied by the complexity of
the target classification network. Theoretically, our binary

search in Algorithm 1 has the complexity of log2(Nb),
where Nb = W

w
× H

h
is the number of image blocks. In our

experiments, the image size is 224 × 224, the block size is
4×4, so the total number of blocks is N = 3136. Therefore,
the maximum number of model inferences is 12.

4 Experiments

In this section, we provide extensive experimental results
to evaluate the performance of our proposed perceptual
attention-guided visual quality optimization algorithm for
adversarial attacks.

4.1 Experimental setup and datasets

In this section, we compare the performance of our
method to the state-of-the-art attack methods with different
defensive schemes. The methods include two dense attack
methods PGD and BPDA, and four sparse attack methods
Perc CW [32], PGDL0+σ [4], GreedyFool [7] and TSAA
[12]. The performance is studied in metrics of the SSIM
score between the clean image and the adversarial, attack
success rate, and attack efficiency in terms of the number of
target model inferences.

As Perc CW is optimized on the color distance score,
we also use perceptual color distance to measure the quality
of the adversarial images [32]. To compare to Perc CW
and PGDL0+σ , we only compare the adversarial image
qualities at five different attack success rates as it is time-
consuming to get the desired attack success rate due to the
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high dimensional search space of their hyperparameters.
For example, Perc CW has five parameters that can affect
the attack success rate. We keep running these two tools
with different hyperparameter settings and use the attack
result if its attack success rate is within [0.85 0.95].
GreedyFool [7] and TSAA [12] are l0 norm based attack
methods. GreedyFool requires a large number of iterations
to obtain good attack results. So we only evaluate it using
one model. TSAA is slightly different from the others as it
is designed mainly for the black-box attack to improve the
transferability of the adversarial examples. We still show its
results for comparison.

The dataset is the mini-ImageNet [5] which consists of
60,000 images for 100 classes. We select 20 classes, and for
each class, 100 images are randomly selected as test images,
and the rest is used for training.

4.2 Experimental results

4.2.1 Resnet-34 with adversarial training for defense

In this experiment, the target model is Resnet-34 which is
adversarially trained on the training dataset, and the default
classification accuracy is 76%. During adversarial training,
the adversarial examples are generated by PGD with default
parameters ε = 0.05, alpha = 0.01, num iter = 10,
where alpha, num iter are the step size and the number
of iterations, respectively. The parameter of λ in (9) is set
to 0.001 during training of the mask prediction network.
Table 1 shows the average SSIM score of PGD and our
method at different values of ε. The scores are calculated
over all tested images that are correctly classified by the
target model. We can see that the SSIM gain obtained by
the proposed PONS algorithm is quite significant. When
ε = 0.03, which is quite small, the SSIM gain is about
7%. For the loss of attack success rate, it is quite small.

Table 1 Comparison of SSIM and attack success rate between PGD
and our method

ε 0.03 0.05 0.06 0.07 0.08 0.09 0.1

SSIM quality of the attacked image

PGD 0.88 0.78 0.74 0.71 0.69 0.67 0.66

PONS 0.95 0.94 0.93 0.93 0.93 0.93 0.93

Gain +0.07 +0.16 +0.19 +0.24 +0.25 +0.26 +0.27

Attack Success Rate

PGD 0.75 0.91 0.94 0.96 0.97 0.97 0.97

PONS 0.74 0.89 0.93 0.95 0.96 0.97 0.97

The model Resnet-34 is adversarially trained for defense. Our method
has consistently achieved substantial improvement in SSIM over
PGD, especially when ε ≥ 0.03, without significant loss of attack
success rate

Table 2 Comparison of SSIM score against Perc CW and PGDL0+σ

under the same attack success rate. The target model is Resnet-34 with
adversarial training

Attack success rate 0.85 0.87 0.89 0.94 0.95

Perc CW [32] 0.90 0.85 0.69 0.60 0.59

PONS 0.94 0.94 0.94 0.94 0.94

Gain +0.04 +0.09 +0.25 +0.34 +0.35

Attack success rate 0.86 0.88 0.90 0.92 0.94

PGDL0+σ [4] 0.89 0.89 0.87 0.87 0.84

PONS 0.94 0.94 0.94 0.94 0.94

Gain +0.05 +0.05 +0.07 +0.07 +0.10

Table 2 shows the average SSIM score of Perc CW [32]
and PGDL0+σ [4] and ours. Our method improves the SSIM
score and outperforms these two state-of-the-art methods by
large margins, especially at high attack success rates. For
example, for Perc CW, the SSIM gain of our method is 0.35
at the attack success rate 0.95, and for PGDL0+σ , when the
attack success rate is 0.94, the SSIM gain is 0.1.

4.2.2 Resnet-101 with feature denoising for defense

In the following experiment, the target model is the Resnet-
101 network which is modified by adding Feature denoising
layers [29] to reduce the effect of adversarial noise. The
model is also adversarially trained using PGD attacked
images. The model has a classification accuracy of 80% on
clean images. Table 3 shows the average SSIM score of the
baseline PGD method and our PONS method at different
values of ε. Similar to the previous experiment, our method
has significantly improved the SSIM quality. For the attack
success rate, the loss is very small, mostly less than 1%.
For tests with ε = 0.06, 0.07, 0.09, 0.1, the drop of success
rate is zero. Table 4 shows the average SSIM scores of
Perc CW, PGDL0+σ and our method, where we can see

Table 3 Comparison of SSIM and attack success rate between PGD
and our method

ε 0.03 0.05 0.06 0.07 0.08 0.09 0.1

SSIM Quality of the Attacked Image

PGD 0.91 0.84 0.80 0.78 0.75 0.74 0.72

PONS 0.96 0.95 0.94 0.94 0.93 0.93 0.93

Gain +0.04 +0.07 +0.17 +0.20 +0.24 +0.26 + 0.29

Attack Success Rate

PGD 0.66 0.85 0.89 0.90 0.92 0.93 0.93

PONS 0.65 0.84 0.89 0.90 0.91 0.93 0.93

The target model is Resnet-101 modified by attaching feature
denoising layers for defense. Our method has consistently achieved
substantial improvement in SSIM over PGD, especially when ε ≥
0.03, without significant loss of attack success rate
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Table 4 SSIM comparison against Perc CW and PGDL0+σ under the
same attack success rate

Attack success rate 0.86 0.90 0.92 0.92 0.93

Perc CW [32] 0.96 0.90 0.91 0.89 0.86

PONS 0.94 0.94 0.94 0.94 0.93

Gain -0.20 +0.04 +0.03 +0.05 +0.07

Attack success rate 0.85 0.87 0.89 0.91 0.93

PGDL0+σ [4] 0.90 0.90 0.89 0.89 0.87

PONS 0.95 0.94 0.94 0.94 0.93

Gain +0.05 +0.04 +0.05 +0.05 +0.06

The target model is Resnet-101 with feature denoising layers for
defense

that our method has achieved much higher SSIM scores,
especially when the attack success rate is greater than 0.9.

4.2.3 Resnet-50 with input transformation for defense

Input transform has been demonstrated as an effective
method for adversarial defense [10]. In this experiment,
the input transformation is bit reduction [10], which
removes the least 5 significant bits of each pixel value.
Or, equivalently, the pixel values are quantized into the
set {0, 32, 64, 128, 160, 192, 224}. It should be noted that
this bit reduction processing is not differentiable. In this
case, the BPDA method uses an identity function during the
gradient backward propagation process. During the BPDA
attack, the number of steps is set to 200, and the learning
rate is set to 0.1. The target model is Resnet-50, which is
also adversarially trained using PGD-attacked images. The
baseline classification accuracy on clean images is 77.3%.
Table 5 shows the average SSIM score of BPDA and our
method at different values of ε. Our PONS method can
significantly improve the SSIM visual quality of the images
attacked by BPDA. In the meantime, the drop of attack

Table 5 Comparison of SSIM score and attack success rate between
BPDA and ours

ε 0.03 0.05 0.06 0.07 0.08 0.09 0.1

SSIM Quality of the Attacked Images

BPDA 0.94 0.82 0.75 0.70 0.64 0.60 0.56

PONS 0.98 0.95 0.92 0.90 0.88 0.86 0.85

Gain +0.04 +0.13 +0.17 +0.20 +0.24 +0.26 +0.29

Attack Success Rate

BPDA 0.53 0.74 0.85 0.91 0.95 0.98 0.99

PONS 0.52 0.74 0.85 0.90 0.94 0.96 0.98

The target model is Resnet-50 with the defense method of bit-depth
reduction. The SSIM improvement is quite significant, especially
when ε ≥ 0.03. Moreover, the loss of attack success rate is ignorable

Table 6 SSIM score comparison against Perc CW and PGDL0+σ

under the same attack success rate

Attack success rate 0.88 0.89 0.91 0.92 0.93

Perc CW [32] 0.90 0.88 0.56 0.55 0.55

PONS 0.91 0.91 0.90 0.89 0.88

Gain +0.01 +0.03 +0.34 +0.34 +0.33

Attack success rate 0.85 0.88 0.90 0.93 0.95

PGDL0+σ [4] 0.90 0.88 0.86 0.83 0.80

PONS 0.92 0.91 0.90 0.89 0.87

Gain +0.02 +0.03 +0.04 +0.04 +0.03

The target model is Resnet-50 with the defense method of bit-depth
reduction

success rate remains very small. Again, Table 6 compares
the average SSIM against Perc CW and PGDL0+σ . The
improvement is consistent and significant.

4.2.4 Color distance comparison

We notice that Perc CW is optimized on the color distance
or difference [16, 32] between the attacked image and
the original one. Table 7 shows the color distance scores
between Perc CW and our method at different attack
success rates in each of the previous tests. Smaller color
distance with respect to the natural image means better
image quality of the adversarial. We can see that even
though our method is not optimized on the color distance,
the reported average color distance is still comparable to

Table 7 Color distance comparison at different attack success rates
between Perc CW and our method in each of the previous tests

Resnet-34 with Adversarial Training Defense

Attack success rate 0.85 0.87 0.89 0.94 0.95

Perc CW 0.89 0.66 1.18 4.13 4.49

PONS 0.82 0.84 0.86 0.97 1.00

Gain -0.07 +0.18 -0.32 -3.16 -3.49

Resnet-101 with Feature Denoising Defense

Attack success rate 0.86 0.90 0.91 0.92 0.93

Perc CW 0.55 0.93 0.93 1.00 1.18

PONS 0.83 0.89 0.92 0.94 0.97

Gain +0.28 -0.04 -0.01 -0.06 -0.21

Resnet-50 with Bit-depth Reduction Defense

Attack success rate 0.88 0.89 0.91 0.92 0.93

Perc CW 0.91 1.00 4.73 4.90 5.38

PONS 1.00 1.03 1.11 1.15 1.19

Gain +0.09 +0.03 -3.62 -3.75 -4.19

A smaller color distance score means better image quality. The color
distance scores in the table are the original scores divided by 1000
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that of Perc CW. For most of the cases, our method is even
better.

4.2.5 Comparison to GreedyFool and TSAA

TSAA [12] and GreedyFool [7] generate adversarial samples
based on l0 norm constraint which try to modify fewest
number of image pixels. We study their attack performance
when the perturbation magnitude, i.e., l∞ norm constraint,
is also applied. Table 8 shows the attack result using the
model Resnet-34 in Section 4.2.1 when ε changes from 0.1
to 0.5 and 1.0, in which ε = 1.0 means the adversarial attack
is fully under l0 norm constraint. The three numbers in the
table are the average SSIM, attack success rate, and the
number of model inferences. For TSAA, the performance
improves when ε increases from 0.1 to 0.5 and 1.0,
achieving the best average SSIM of 0.65 and attack success
rate of 0.53. For GreedyFool, the number of iterations used
to search for the candidate pixels affects its performance
significantly. When ε = 1.0, GreedyFool achieves the best
average SSIM (0.97) and attack success rate (0.98) within
500 iterations, i.e., the GF(500) in the table. However, the
actual average number of model inferences is as high as
669, which costs a significant amount of time. Compared
to Table 1, our method can achieve the average SSIM of
0.93 and attack success rate of 0.97 with only 12 model
inferences at ε = 0.1. In this case, GreedyFool works fully
under the l0 norm constraint. We have further checked the
Mean Squared Error (MSE) of the attacked images and
found that GF(500) has an average MSE of 104.95, and
ours is 80.02. This means that GreedyFool adds much more
perturbations to images than our method. For GF(500),
when ε = 0.5, the attack success rate drops to 0.89 at the
cost of 1009 model inferences. When only 12 iterations are

Table 8 Attack performance of TSAA [12] and GreedyFool [7] with
different values of perturbation budget

ε 0.1 0.5 1.0

TSAA 0.85/0.03/1 0.68/0.34/1 0.65/0.53/1

GF(500) 1.00/0.16/1221 0.97/0.89/1009 0.97/0.98/669

GF(12) 1.00/0.01/30 1.00/0.04/43 1.00/0.08/48

ε = 1.0 means the adversarial attack is fully under l0 norm constraint.
The target model is Resnet-34 as in Section 4.2.1. GF(12) is the
GreedyFool method with the parameter of iteration set to 12, and
GF(500) sets the parameter to 500. The three numbers in the table
are the average SSIM, attack success rate, and the number of model
inferences

Fig. 5 Figure (a), (b), and (c) shows the SSIM improvement by
the perceptual attention prediction and block-wise pruning of the
adversarial noise. In all three figures, the black line is the base
attack method, the brown line is the SSIM score with only perceptual
attention prediction, and the orange line shows the SSIM score with
both attention mask prediction and block-wise noise pruning
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used for GreedyFool, i.e., the GF(12), it fails to attack the
images. The success rate is almost zero.

4.3 Ablation studies

In the following experiments, we conduct ablation studies to
further understand the performance of the proposed PONS
method.

4.3.1 Contribution of algorithm components

Our method has two stages, perceptual attention mask
prediction, and block-wise adversarial noise pruning. In
Fig. 5, we show the average SSIM improvement brought
by each stage in the previous tests. The horizontal axis
is the perturbation budget ε. In each sub-figure, we show
the average SSIM score for (a) the baseline attack method,
(b) the baseline method plus the perceptual attention noise
reshaping, and (c) the baseline method plus both algorithm
modules. In all three tests, we can see that both algorithm
modules contribute significantly to the overall performance.
The performance gain achieved by the binary pruning
is more significant than the perceptual attention noise
reshaping, especially for the BPDA attack method. For
example, in Fig. 5 (b), at ε = 0.05, the SSIM score of
the base attack is 0.84, the perceptual attention module
increases it to 0.87, and the block-wise perturbation pruning
further increases it to 0.95.

4.3.2 Comparison of different block sorting schemes

In our method, we use SSIM sensitivity score to sort
the image blocks to find out candidate blocks to turn off
the perturbation by the binary search algorithm. Table 9
compares the average SSIM scores when different block
sorting schemes are used, namely 1) sorting by the SSIM
sensitivity, 2) original order (no sorting), and 3) randomly
sorting. From Table 9, we can see that sorting image blocks
according to the SSIM sensitivity score achieves the largest
improvement of the SSIM score. The random sorting is
the least. For example, in the test of BPDA with input
transform, when ε = 0.05, the average SSIM scores are
0.88, 0.90, 0.95 respectively, sorting based on the SSIM
sensitivity improves the average SSIM by 5 percentage
points when compared to the case without any sorting.

4.3.3 Effect of SSIM loss ratio

To train the perceptual attention model, Eq. (9) has two loss
terms, the cross-entropy between the attack target and the
predicted labels, and the SSIM image quality between the
attacked image and the input image. The value of ratio λ

affects the quality of the attention mask predicted by the

Table 9 SSIM comparison of block-wise perturbation pruning with
different block sorting methods in three experiments

ε = 0.03 0.05 0.06 0.07 0.08 0.09 0.1

PGD + Adversarial Training Defense

Random 0.93 0.89 0.87 0.86 0.85 0.85 0.84

Original 0.94 0.91 0.89 0.88 0.88 0.88 0.87

SSIM 0.95 0.94 0.93 0.93 0.93 0.93 0.93

PGD + Feature Denoising Defense

Random 0.94 0.90 0.88 0.87 0.86 0.86 0.85

Original 0.96 0.93 0.92 0.92 0.91 0.91 0.90

SSIM 0.96 0.95 0.94 0.94 0.93 0.93 0.93

BPDA + Bit-depth Reduction Defense

Random 0.96 0.88 0.84 0.80 0.76 0.74 0.71

Original 0.97 0.90 0.86 0.84 0.80 0.78 0.76

SSIM 0.98 0.95 0.92 0.90 0.88 0.86 0.85

The three image block sorting methods are 1) original order, i.e., no
sorting, 2) randomly sorting, and (3) sorting by the SSIM sensitivity
score. All three tests show that block-wise perturbation pruning with
blocks sorted by the SSIM sensitivity score gives the best performance

perceptual attention network. More weight on the SSIM
term will likely improve the image quality and decrease
the attack success rate. We redo the test of Table 1 in
Section 4.2.1, but without the block-wise noise pruning.
Table 10 shows the performance of average SSIM and attack
success rate with different values of λ. We can see that the
performance is quite robust when λ increases from 0.001 to
0.5. When it reaches 1.0, the average SSIM increases, and
the attack success rate drops significantly, compared with
the case of 0.001.

4.3.4 Effect of block size in perturbation pruning

In block-wise perturbation pruning, increasing the block
size will speed up the process and likely lower the image
quality. Table 11 shows the average SSIM and the number
of model inferences when the block size increases from 2 to
16 for the test of Table 1 in Section 4.2.1. The table shows

Table 10 Attack performance with different values of λ in (9)

ε 0.03 0.05 0.07 0.09

λ = 0.001 0.90/0.74 0.82/0.89 0.76/0.95 0.72/0.97

λ = 0.01 0.90/0.73 0.83/0.88 0.77/0.94 0.73/0.96

λ = 0.05 0.91/0.73 0.83/0.87 0.77/0.94 0.73/0.96

λ = 0.1 0.91/0.73 0.83/0.87 0.77/0.94 0.74/0.96

λ = 0.5 0.91/0.73 0.84/0.88 0.78/0.95 0.74/0.96

λ = 1.0 0.93/0.70 0.88/0.86 0.83/0.93 0.80/0.95

The block-wise noise pruning is not used here. The two numbers in the
table are the average SSIM score and attack success rate
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Table 11 Effect of block size in block-wise perturbation pruning for
the test of Table 1 in Section 4.2.1

ε 0.03 0.05 0.07 0.09

Block size=2 0.95/10 0.94/12 0.94/13 0.94/13

Block size=4 0.95/9 0.94/11 0.93/11 0.93/11

Block size=8 0.95/7 0.94/9 0.93/9 0.93/9

Block size=16 0.95/6 0.93/7 0.92/7 0.92/7

The two numbers are the average SSIM and the number of model
inferences

that the average SSIM is highest when the block size is 2,
which is reasonable as we search for the smaller blocks to
turn off the perturbation. However, it is the slowest among
the four. For block sizes of 4 and 8, the average SSIM is very
close, which means our method can be even faster without
significant loss of the image qualities.

4.3.5 Perceptual quality comparison

Figure 6 compares the image quality of several adversarial
examples generated by the base attack method and our
method. For each pair, the left one is generated by the

base attack method, and the right one is ours. The three
rows correspond to ε = 0.05, 0.06, 0.07, respectively. For
each adversarial image, we also show the SSIM score with
respect to the clean image. We can see that our method
significantly improves the visual quality of the attacked
images. In Fig. 7, we show several pairs to compare the
quality of the adversarial images generated by Perc CW,
PGDL0+σ and our method. We also show the SSIM score
of each adversarial image. These sample pairs are taken
from attack tests with similar attack success rates. We can
see that under the same attack success rate, the qualities of
the attacked images by Perc CW, PGDL0+σ are worse than
ours.

5 Discussion and future work

In the previous section, we have compared our method to
the state-of-the-art dense and sparse attack methods against
different defense schemes. The experimental results have
demonstrated that our method can achieve significantly
better attack performance in image qualities between the
clean image and the adversarial, the attack success rate,
and the attack efficiency in terms of the number of model

Fig. 6 Image quality comparison between the result of the base attack method and our method. For each pair, the left one is from the base attack
method, and the right one is our result. The three image rows correspond to ε = 0.05, 0.06, 0.07, respectively
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Fig. 7 Image quality comparison against Perc CW and PGDL0+σ . The first row is the comparison between ours and Perc CW, and the second
row is against PGDL0+σ . The numbers in parentheses are the SSIM scores. Each pair is taken from tests with similar attack success rates

inferences. GreedyFool under l0 norm constraint, i.e., the
GF(500) in Table 8 at ε = 1.0, has achieved a significant
better average SSIM than ours at ε = 0.1 in Table 1.
However, the average MSE and attack complexity are
substantially worse than ours.

The advantage of our method is that we use a base attack
method that has strong attack capabilities so that we only
need to optimize the image qualities without significant loss
of attack success rate. Tables 1, 3, and 5 have demonstrated
this. On the other side, the attack success rate of our method
is largely determined by the base attack method as we
only reshape the adversarial noise to improve the image
quality. For this point, we can increase the perturbation
budge to obtain a high attack success rate, which will
inevitably introduce more noise to the images and require
a more powerful perceptual attention network to produce
high-quality perceptual attention masks. A better base attack
method will certainly help improve the performance of our
method.

In this work, the perceptual attention network is designed
based on the Resnet-18 backbone to demonstrate its
effectiveness. If we use a more advanced architecture for
the perceptual attention network, we expect to see more
improvement in the image quality and attack success rate.

6 Conclusion

In this work, we have observed that most existing
adversarial attack methods are designed to maximize the
attack success rate under the lp norm constraint, which
has not fully considered the perceptual sensitivity of the
adversarial noise in different image regions. Motivated

by this, we propose a novel two-stage attack method to
maximize the image perceptual quality as well as the
attack success rate. Specifically, we construct and learn
a perceptual attention network to generate a perceptual
attention mask to modulate the adversarial noise generated
by a base attack method in the input image, aiming to
maximize the visual quality while achieving the same
attack success rate. To further improve the image perceptual
quality, we propose a fast binary search algorithm to
perform an iterative pruning of the adversarial noise based
on the perceptual sensitivity map. We have conducted
comprehensive evaluations and demonstrated that our
method could significantly improve the image visual quality
over the base attack method without sacrificing the attack
success rate. When compared with the state-of-the-art
adversarial attack methods, our method can achieve better
attack performance in terms of image quality, attack success
rate, and attack efficiency.
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