
Vol.:(0123456789)

Machine Learning (2023) 112:1131–1170
https://doi.org/10.1007/s10994-022-06200-0

1 3

Naive automated machine learning

Felix Mohr1 · Marcel Wever2

Received: 3 March 2021 / Revised: 12 May 2022 / Accepted: 26 May 2022 /
Published online: 29 September 2022
© The Author(s) 2022

Abstract
An essential task of automated machine learning (AutoML) is the problem of automati-
cally finding the pipeline with the best generalization performance on a given dataset.
This problem has been addressed with sophisticated black-box optimization techniques
such as Bayesian optimization, grammar-based genetic algorithms, and tree search algo-
rithms. Most of the current approaches are motivated by the assumption that optimiz-
ing the components of a pipeline in isolation may yield sub-optimal results. We present
Naive AutoML , an approach that precisely realizes such an in-isolation optimization of the
different components of a pre-defined pipeline scheme. The returned pipeline is obtained
by just taking the best algorithm of each slot. The isolated optimization leads to substan-
tially reduced search spaces, and, surprisingly, this approach yields comparable and some-
times even better performance than current state-of-the-art optimizers.

Keywords Automated Machine Learning · Data Science · Black-Box Optimization

1 Introduction

An important task in Automated machine learning (AutoML) is the one of automati-
cally finding the pre-processing and learning algorithms with the best generalization
performance on a given dataset. The combination of such algorithms is typically called
a (machine learning) pipeline (Feurer et al., 2015) because several algorithms for data
manipulation and analysis are put into (partial) order. The choices to be made in pipeline
optimization include the algorithms used for feature pre-processing and learning as well as
the hyperparameters of the chosen algorithms.

Editors: Annalisa Appice, Grigorios Tsoumakas.

 * Felix Mohr
 felix.mohr@unisabana.edu.co

 Marcel Wever
 marcel.wever@uni-paderborn.de

1 Universidad de La Sabana, Chia, Colombia
2 Paderborn University, Paderborn, Germany

http://orcid.org/0000-0002-9293-2424
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06200-0&domain=pdf

1132 Machine Learning (2023) 112:1131–1170

1 3

Maybe surprisingly, all common approaches to this problem try to optimize over all
decision variables simultaneously (Thornton et al., 2013; Feurer et al., 2015; Olson and
Moore , 2019; Mohr et al., 2018; Yang et al., 2019), and, to our knowledge, it has never
been tried to optimize the different components in isolation. While one might intuitively
expect significant interactions between the optimization decisions, one can argue that
achieving a global optimum by local optimization of components could be at least consid-
ered a relevant baseline to compare against.

We present two approaches for pipeline optimization that do exactly this: They opti-
mize a pipeline locally instead of globally. The most extreme approach, Naive AutoML ,
assumes that a locally optimal decision is also globally optimal, i.e., the optimality of a
local decision is independent of how other components are chosen. In practice, this means
that all components that are not subject to a local optimization process are left blank,
except the learner slot, e.g., classifier or regressor, which is configured with some arbi-
trary default algorithm, e.g., kNN, in order to obtain a valid pipeline. Since Naive AutoML
might sometimes be too naive, we consider a marginally less extreme optimizer, called
Quasi-Naive AutoML . Quasi-Naive AutoML defines an order in which components are
considered and optimizes each slot based on the previous decisions; it is only naive with
respect to upcoming decisions.

On top of naivety, both Naive AutoML and Quasi-Naive AutoML assume that hyper-
parameter optimization is irrelevant for choosing the best algorithm for each slot. That is,
they assume that the best algorithm under default parametrization is also the best among
all tuned algorithms. Therefore, both Naive AutoML and Quasi-Naive AutoML optimize a
slot by first selecting an algorithm and then optimize the hyperparameters of each chosen
algorithm in a second phase.

Our experimental evaluation shows that these simple techniques are surprisingly strong
compared to state-of-the-art optimizers. While Naive AutoML is outperformed in the long
run (24 h), it is competitive with state-of-the art approaches in the short run (1 h runtime).
On the contrary, Quasi-Naive AutoML even outperforms the state-of-the-art techniques in
the short run and is often competitive in the long run (24h) by achieving a close-to-optimal
performance in the majority of the cases.

While these results might suggest Quasi-Naive AutoML as a meaningful base-
line over which one should be able to substantially improve, we see the actual role of
Quasi-Naive AutoML as the door opener for sequential optimization of pipelines. The cur-
rently applied black-box optimizers come with a series of problems discussed in recent lit-
erature such as lack of flexibility (Drozdal et al., 2020; Crisan and Fiore-Gartland , 2021).
The naive approaches follow a sequential optimization approach, optimizing one compo-
nent after the other. While flexibility is not a topic in this paper, it can be arguably realized
more easily in custom sequential optimization approaches than in black-box optimization
approaches. The strong results of Quasi-Naive AutoML seem like a promise that exten-
sions of Quasi-Naive AutoML such as Mohr and Wever (2021) could overcome the above
problems of black-box optimizers without sacrificing global optimality. We discuss this in
more depth in Sect. 5.3.

1133Machine Learning (2023) 112:1131–1170

1 3

2 Problem definition

Even though the vision of AutoML is much broader, a core task of AutoML addressed by
most AutoML contributions is to automatically compose and parametrize machine learning
algorithms to optimize a given metric such as accuracy.

In this paper, we focus on AutoML for supervised learning. Formally, in the super-
vised learning context, we assume some instance space X and a label space Y . A data-
set D ⊂ {(x, y) | x ∈ X, y ∈ Y} is a finite relation between the instance space and the
label space, and we denote as D the set of all possible datasets. We consider two types
of operations over instance and label spaces:

1. Pre-processors. A pre-processor is a function t ∶ DA → (XA → XB) , where DA is the
space of datasets with instances from some space XA . The pre-processor t takes a dataset
and maps it to a function, which in turn converts an arbitrary instance x of instance space
XA into an instance of another instance space XB.

2. Predictor Builders. A predictor builder (often called learner) is a function
p ∶ Dp → (Xp → Y) that takes a dataset with instances from space Xp and creates a
predictor, which assigns an instance of its instance space Xp to a label in the label space
Y . The constructed predictor is also often called a hypothesis.

In this paper, a pipeline P = t1◦..◦tk◦p is a sequential concatenation with the usual
semantic: Training a pipeline on dataset D ⊆ X × Y means to (i) set D0 = D , (ii)
to sequentially induce t̃i = ti(Di−1) and compute subsequent data Di = t̃i(Di−1) for
1 ≤ i ≤ k , and (iii) to eventually create a predictor p̃ = p(Dk) . This leads to a trained
pipeline t̃1◦..◦t̃k◦p̃ , which maps an instance x ∈ X to a label y ∈ Y by passing it
through all the t̃i and finally the predictor. We denote as P the space of all such sequen-
tial pipelines. In general, the first part of a pipeline could be not only a sequence but
also a pre-processing tree with several parallel pre-processors that are then merged
(Olson and Moore , 2019), but we do not consider such structures in this paper since
they are not necessary for our key argument. An extension to such tree-shaped pipe-
lines is canonical future work.

In addition to the sequential structure, many AutoML approaches restrict the search
space still a bit further (Thornton et al., 2013; Feurer et al., 2015; Mohr et al., 2018).
First, often a particular best order in which different types of pre-processor should be
applied is assumed. For example, we assume that feature selection should be conducted
after feature scaling. So P will only contain pipelines compatible with this order. Sec-
ond, the optimal pipeline uses at most one pre-processor of each type. These assump-
tions allow us to express every element of P as a concatenation of k + 1 functions,
where k is the number of considered pre-processor types, e.g., feature scalers, feature
selectors, etc. If a pipeline does not adopt an algorithm of one of those types, say the
i-th type, then ti will simply be the identity function.

The theoretical goal in supervised machine learning is to find a pipeline that opti-
mizes a prediction performance metric (error rate, log-loss, ..) averaged over all
instances from the same source as the given data. This performance cannot be com-
puted in practice, so instead one optimizes some function � ∶ D × P → ℝ that esti-
mates the performance of a candidate pipeline based on available data, e.g., using hold
out or cross validation.

1134 Machine Learning (2023) 112:1131–1170

1 3

Consequently, a supervised AutoML problem instance is defined by a dataset D ∈ D ,
a search space P of pipelines, and a performance estimation metric � ∶ D × P → ℝ for
solutions. An AutoML solver A ∶ D → P is a function that creates a pipeline given
some training set Dtrain ⊂ D . The performance of A is given by �

[
�
(
Dtest,A(Dtrain)

)]
,

where the expectation is taken with respect to the possible (disjoint) splits of D into
Dtrain and Dtest . The goal of any AutoML solver is to optimize this metric, and we
assume that A has access to � (but not to Dtest) in order to evaluate candidates with
respect to the objective function.

3 Related work

Works on machine learning pipeline optimization can be roughly separated by the core
topic they address. Some approaches propose methods to structure and explore a search
space. We call these pipeline optimization approaches and discuss them in Sect. 3.1. A sec-
ond group of approaches focuses on efficiency aspects of the optimization process. Since
these ideas often make rather lose assumption about the used optimizer, they are relatively
orthogonal and compatible with many optimizers. We discuss them in Sect. 3.2. While
these two sections give a rather broad overview, Sect. 3.3 discusses other efforts in simpli-
fying the optimization problem in itself.

3.1 Basic pipeline optimization approaches

The first work we are aware of that tries to algorithmically find an optimal pipeline is
GEMS (Statnikov et al., 2005). GEMS selection of the best pipeline from a pre-defined
portfolio of configurations is based on cross-validation. The problem is here addressed
as an algorithm selection problem as hyperparameters are not explicitly subject to opti-
mization. All the subsequent approaches discussed in this section address the com-
bined algorithm selection and configuration (CASH) problem, which is the problem not
only to choose an algorithm or to optimize hyperparameters but to address both aspects
simultaneously.

There are mainly three approaches following the idea of tree-based optimization of data
science workflows (Engels , 1996). The first approach we are aware of was designed for
the configuration of RapidMiner modules based on hierarchical task network (HTN) plan-
ning (Kietz et al., 2009, , 2021) most notably MetaMiner (Nguyen et al., 2012, , 2014).
With ML-Plan (Mohr et al., 2018), the idea of -based graph definitions was later combined
with a best-first search using random roll-outs to obtain node quality estimates. Similarly,
(Rakotoarison et al., 2019) introduced AutoML based on Monte-Carlo Tree Search, which
is closely related to ML-Plan. However, the authors of Rakotoarison et al. (, 2019) do not
discuss the layout of the search tree, which is a crucial detail, because it is the primary
channel to inject knowledge into the search problem.

The CASH AutoML problem has also been addressed with evolutionary algorithms. One
of the first approaches was PSMS (Escalante et al., 2009), which used swarm particles for
optimization. More recent tools include TPOT (Olson and Moore , 2019), RECIPE de (Sá
et al., 2017), and GAMA Gijsbers || (Vanschoren , 2019). All these approaches are explicitly
or implicitly based on grammars, which allow not just one pre-processing step but an arbitrary
number of such techniques and hence go beyond the type of pipelines covered in this paper.

1135Machine Learning (2023) 112:1131–1170

1 3

In this, they are similar to the tree search based approaches. The optimizing motor of the
above tools is the genetic algorithm scheme NSGA-II (Deb et al., 2002). Focusing on stacking
ensembles, another genetic approach was presented with AutoStacker (Chen et al., 2018).

Another line of research based on Bayesian Optimization (BO) was initialized with the
advent of Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2017). Like Naive AutoML ,
Auto-WEKA assumes a fixed structure of the pipeline, admitting a feature selection step and
a predictor. The decisions are encoded into a large vector that is then optimized using the
BO tool SMAC (Hutter et al., 2011). Auto-WEKA optimizes pipelines with algorithms of the
Java data analysis library WEKA (Hall et al., 2009). Note that experimental comparisons with
Auto-WEKA must be handled with care since Auto-WEKA by default discards pipelines that
are, in a cross-validation, not competitive after the first fold evaluation. For the Python frame-
work scikit-learn (Pedregosa et al., 2011), the same technique was adopted by auto-sklearn
(Feurer et al., 2015). In contrast to Naive AutoML , BO does not greedily commit to some
parts of the search space but tries to cover it globally and only exclude parts of it that are
unlikely to reveal a new best pipeline.

A recent line of research adopts a type of black-box optimization relying on the framework
of multipliers (ADMM) (Boyd et al., 2011). The main idea here is to decompose the optimiza-
tion problem into two sub-problems for different variable types, considering that algorithm
selection variables are Boolean while most parameter variables are continuous. This approach
was first presented in Liu et al. (, 2020).

3.2 Efficiency‑enhancing technologies

Several techniques have been proposed to identify good pipelines faster. First, warm-starting
employs not a random initial order of candidates but prioritizes based on beliefs about which
pipeline is more suitable. As such, warm-starting is a meta-learning technique (Vanschoren
, 2019). Approaches here include nearest neighbors as in auto-sklearn (Feurer et al.,, 2015),
collaborative filtering like OBOE (Yang et al., 2019), probabilistic matrix factorization (Fusi
et al., 2018), and recommendations based on average ranks (Cachada et al., 2017). Another
approach to improve efficiency followed by Successive Halving (SH) and Hyperband (HB)
to increase efficiency is multi-fidelity optimization, in which candidates are first evaluated on
small budgets (training set sizes) and only considered for high budgets if competitive (Jamie-
son and Talwalkar , 2016; Li et al., 2017). These approaches are largely orthogonal to our con-
tribution, and several of them could be used complementary inside Naive AutoML , e.g., those
for warm-starting or for hyperparameter tuning.

3.3 Simplifying approaches

We are not the only ones to propose simplifications of the search space. An approach for
AutoML based on beam search was proposed (Kishimoto et al., 2021) in parallel to our pre-
liminary work (Mohr and Wever , 2021). The idea is very similar to Naive AutoML in that it
proposes to quickly prune partial pipelines that look sub-optimal. It is however less extreme
since it considers at least a couple of alternatives opposed to Naive AutoML . Second, Auto-
Gluon (Erickson et al., 2020) suggests to not optimize at all but simply apply stacking (Wolp-
ert , 1992) to a set of bagged (Breiman , 1996) learning algorithms, which have been defined a
priori. Finally, a decompositional approach was presented in the Dragonfly framework (Kan-
dasamy et al., 2020). This framework models the belief of the objective function as a Gaussian
Process (GP), which is however not one huge GP but the sum over “smaller” GPs, one for

1136 Machine Learning (2023) 112:1131–1170

1 3

each partition of the search space. The motivation for this approach is to break the curse of
dimensionality since GPs have been shown to only work well on low-dimensional problems.

4 Naive AutoML and Quasi-Naive AutoML

This section describes the Naive AutoML approach in detail. We first explain the
assumptions underlying Naive AutoML in Sect. 4.1. The Naive AutoML algorithm
itself is then formally introduced in Sects. 4.2, and 4.3 explains its modification towards
Quasi-Naive AutoML.

4.1 Assumptions

Naive AutoML builds on top of two assumptions. First it assumes that pipeline slots can
be optimized locally, which is formalized in Sect. 4.1.1. Second, it assumes that the best
tuned algorithm for a slot is also the algorithm that performs best if being used with default
parameters. This is discussed in Sect. 4.1.2.

4.1.1 Naivety assumption

Naive AutoML assumes that the optimal pipeline is the one that is locally best for each
of its pre-processors and the final predictor. In other words, taking into account pipelines
with (up to) k pre-processors and a predictor, we assume that for all datasets D and all
1 ≤ i ≤ k + 1

is invariant to the choices of c1, ..ci−1, ci+1, .., ck+1 . Note that, for simplicity of notation, we
here use the letter c instead of t for pre-processors or p for the predictor.

We dub the approach Naive AutoML because of the assumption of independence of
decisions. Consider P an urn of pipelines and denote as Y the event that an optimal pipe-
line is drawn. Then

in which we consider cj to be fixed components for j ≠ i , and only ci being subject to opti-
mization. Applying Bayes’ theorem again to ℙ(ci | Y) and observing that the remaining
product is a constant regardless the choices of ci≠j , it follows that the optimal solution is
the one that maximizes the probability of being locally optimal, and that this choice is
independent of the choice of the other components. This is identical to the assumption that
motivates the Naive Bayes classifier.

A direct consequence of the naivety assumption is that we can leave all components cj≠i
except the predictor component ck+1 even blank when optimizing ci . This is because (i),
by the naivety assumption, the choice for those components would not influence the best
choice for ci and (ii), by pipeline syntax, they are not required to construct a pipeline that

(1)c∗
i
∈ argmin

ci
�(D, c1◦..◦ck+1)

ℙ(Y | c1, .., ck+1) ∝ ℙ(c1, .., ck+1 | Y)ℙ(Y)
naive
= ℙ(ci | Y)

k+1∏

j=1,j≠i

ℙ(cj | Y)ℙ(Y),

1137Machine Learning (2023) 112:1131–1170

1 3

can be evaluated. The latter is however not true for the last component: We cannot assess
the performance of a pipeline that only has a pre-processor but no predictor. So we can-
not optimize pre-processing slots without using any predictor in the final slot. This being
said, when optimizing a pre-processor ci , we will have to commit to some predictor in the
slot ck+1 ; below we explain two strategies to set the predictor. On the other hand, it seems
usually reasonable (under the naivety assumption) to leave the other pre-processing slots
≠ i blank. Pre-processing algorithms usually lead to a net increase of the training time of a
pipeline in spite of potentially reduced dataset sizes on which subsequent algorithms in the
pipeline work. Omitting them hence often substantially reduces the runtime of candidate
evaluations.

It is clear that the naivety assumption does seldomly hold in practice. One way to
see this is the fact that it would enable us even to use a guessing predictor to optimize
the pre-processing steps. In fact, a reasonable default choice for the predictor would
be the fastest learner, and the arguably fastest algorithm is one that just guesses an
output (or maybe always predicts the most common label). It is unlikely that such
a predictor is of much help when optimizing a pre-processor even if it is part of the
candidates for ck+1 . On the practical side, we circumvent this problem by choosing a
predictor that is known to frequently exhibit learning behavior on data such as kNN or
a decision tree.

4.1.2 Separate algorithm selection and algorithm configuration

On top of the naivety assumption, Naive AutoML additionally assumes that even each com-
ponent ci can be optimized by local optimization techniques. More precisely, it is assumed
that the algorithm that yields the best component when using the default parametrization
is also the algorithm that yields the best component if all algorithms are run with the best
parametrization possible.

Just like for the naivety assumption itself, we stress that this assumption is just
an algorithmic decision, which does not necessarily hold in practice. In fact, the
results on some datasets in the experiments clearly suggest that this assumption is
not always correct. Our goal is precisely to study the extent by which state-of-the-art
approaches can improve over the naive approach by not making this kind of simplify-
ing assumptions.

However, our experiments indicate that the variance of the variable describing the
improvement of a hyperparameter configuration over the performance with default con-
figuration is relatively low for many learners – at least for the here considered datasets and
learners. In other words, we are well aware that the simplifying assumptions are not always
correct (specifically keeping some exceptions like neural networks or SVMs in mind), but
we are interested in quantifying (on a moderate empirical basis) how often an optimal solu-
tion is indeed easily identified by a naive approach; this is surprisingly often the case. This
should serve as a baseline for future work.

4.2 The Naive AutoML optimizer

The Naive AutoML optimizer is formally described in Alg. 1 and consists of three phases
(i) algorithm selection, (ii) hyperparameter tuning, and (iii) definition and training of the
final pipeline.

1138 Machine Learning (2023) 112:1131–1170

1 3

In the first phase (l. 1-9), it selects the best component for each slot of the pipe-
line based on default hyperparameter values. For each slot s and each component cs
that can be used for it, the algorithm builds one pipeline that only consists of cs . This
is done via the function getPipeline(s, cs , �s), in which the third argument �s are the
hyperparameters for cs ; these are omitted in the first phase (indicated by the ⊥ sym-
bol) so that the default hyperparameters are being used. If s is a pre-processor slot,
getPipeline appends an additional standard prediction component, e.g., kNN. The
score of that pipeline is computed with a customizable validation function Validate,
e.g., k-fold cross-validation with some arbitrary metric. We here assume w.l.o.g. that
the metric is to be minimized. Whenever a new (locally) best solution is found, it is
memorized (v∗

s
).

Algorithm 1 Naive AutoML - Optimization Routine
Require: Components C = (C1, .., Ck+1) for pipeline slots
Require: dataset D (only used for final training)
Require: validation function Validate (has access to D)
1: for all slot s ← 1, .., k + 1 do
2: c∗s , v

∗
s ← ⊥,∞ // dummy initialize vars for best choice/score for this slot

3: for all candidate cs ∈ Cs in random order do
4: vs ← Validate(getPipeline(s, cs,⊥)) // get score of pipeline with cs in slot s
5: if vs < v∗s then
6: c∗s , v

∗
s ← cs, vs // if this is a best observation for this slot, memorize the decision

7: end if
8: end for
9: end for
10: θ∗s ← ⊥ ∀s : 1 ≤ s ≤ k + 1 // set best seen hyperparameters to None
11: while timeout not reached do
12: for all slot s ← 1, .., k + 1 do
13: θs ← choose configuration for c∗s
14: vs ← Validate(getPipeline(s, cs, θs))
15: if vs < v∗s then
16: θ∗s , v

∗
s ← θs, vs // update hyperparams for algorithm of slot

17: end if
18: end for
19: end while
20: i ← 1 // last phase, train and, if necessary, trim pipeline
21: while training ((c∗i , θ

∗
i), .., (c

∗
k+1, θ

∗
k+1)) on D fails do

22: i ← i+ 1
23: end while
24: return trained pipeline ((c∗i , θ

∗
i), .., (c

∗
k+1, θ

∗
k+1))

In the second phase (l. 10-19), the algorithm runs in rounds in which it tries new
hyperparameters �s for each component c∗

s
 (in isolation). If the performance of such a

pipeline is better than the currently best, the hyperparameters �∗
s
 for that slot’s compo-

nent are updated correspondingly. In our implementation, the non-deterministic choice
in l. 13 is simply a uniform random sample from the space of hyperparameter values.
Instead of optimizing slot after slot for some time, each main HPO step performs one
optimization step for each slot. This procedure is repeated until the overall timeout is
exhausted. Interleaving the hyperparameter tuning steps has little effect in our random
search implementation but plays a role if the step in l. 13 employs a model-based opti-
mizer, which can constraint the search space to several small spaces instead of a single

1139Machine Learning (2023) 112:1131–1170

1 3

exponentially bigger one. Analyzing the implication of this when using, for example,
Bayesian Optimization, is interesting future work.

In the final phase (l. 20-24), the pipeline defined by the local decisions is trained
and returned. Let p∗ = ((c∗

1
, �∗

1
), .., (c∗

k+1
, �∗

k+1
)) be that pipeline. It can happen (and in

practice, it does happen occasionally) that p∗ is not executable on specific data. For
example, a pipeline p∗ for scikit-learn (Pedregosa et al., 2011) may contain a Stand-
ardScaler, which produces negative attribute values for some instances, and a Multino-
mialNB predictor, which cannot work with negative values. Since the two components
were never executed together during search, the optimizer did not detect any problem
with the two outputs StandardScaler and MultinomialNB in isolation (and according to
the naivety assumption no problem should occur). Several repair possibilities would be
imaginable, e.g., to replace the pre-processors with earlier found candidates for that slot,
or to simply try earlier candidates of p∗ . To keep things simple, in this paper, we just
removed pre-processors from left to the right until an executable pipeline p∗� is created;
in the extreme case just leading to a predictor without pre-processors. This case should
however be rare. In our experiments, it occurred in less than 1% of the runs. The effect
does not occur, by construction, in Quasi-Naive AutoML.

For simplicity of the code, the training of the final pipeline is not included in the overall
timeout. Anticipating this runtime is a non-trivial problem, which can however be tried to
be treated with local runtime models of the components (Mohr et al., 2021).

4.3 The Quasi-Naive AutoML optimizer

The Quasi-Naive AutoML Optimizer makes two minor changes in the above code of
Naive AutoML . First, it defines a permutation � on the set of slots {1, .., k + 1} in which
they should be optimized. This order is used to traverse the loop in the first phase, i.e.,
s ← �(1), .., �(k + 1) in l. 1. Since every pipeline must contain a predictor, � will order the
predictor first, i.e., �(1) = k + 1 , and then assume some order of decisions on the pre-pro-
cessors. In our experiments, we used �(i) = i − 1 for i > 1 . Second, the getPipeline routine
does not leave components of previous decision steps blank (or plugs in the default predic-
tor) but puts in the component c∗

s
 chosen for the respective slot s in its default parametriza-

tion. More formally, if 𝜎(i) < 𝜎(j) and the algorithm is building a pipeline with slot j as
decision variable, then slot i is filled with (c∗

i
,⊥) . Notably, it does not use the best hyperpa-

rameters found for ci , not even in the second phase. In practice, one would of course use the
best hyperparameters �∗

i
 seen so far in phase 2 instead of ⊥ since this has no extra cost over

⊥ . Here we abstain from this strategy since we are verifying the naivety assumption, which
tells that �∗

i
 should not affect the choice of �j.

Under this adjustment, the naivety assumption in Eq. (1) is relaxed as follows. Instead of
assuming that all other components are irrelevant for the best choice of a component in the
pipeline, one now only assumes that the subsequently chosen components are irrelevant for
the optimal choice. In contrast, the previously made decisions are relevant for the current
optimization question. Concerning the naivety assumption, they are relevant in the sense
that the previously decided components cannot be chosen arbitrarily in the naivety property
but are supposed to be fixed according to the choice that was made for that slot.

In practice, Quasi-Naive AutoML is usually preferable over strict Naive AutoML .
The only advantage offered by strict Naive AutoML is that one can optimize the differ-
ent slots in parallel. However, Quasi-Naive AutoML can also be parallelized in the

1140 Machine Learning (2023) 112:1131–1170

1 3

optimization process of a single slot (evaluate several candidates in a slot in parallel), so
strict Naive AutoML is only of theoretical interest.

5 Evaluation

We compare Naive AutoML and Quasi-Naive AutoML with (even) simpler baselines as
well as state-of-the-art optimizers used in the context of AutoML. We stress that we aim
at comparing optimizers and not whole AutoML tools. That is, we explicitly abandon pre-
vious knowledge that can be used to warm-start an optimizer and also abandon post-pro-
cessing techniques like ensembling (Feurer et al., 2015); Gijsbers || (Vanschoren , 2019) or
validation-fold-based model selection (Mohr et al., 2018). Those techniques are (largely)
orthogonal to the optimizer and hence irrelevant for its analysis. It is, of course, conceiv-
able that some optimizers benefit more from certain additional techniques like warm-start-
ing etc. than others, but this kind of analysis is beyond our scope.

When comparing the naive approaches with state-of-the-art optimizers, we should
recognize that the naive approaches are indeed very weak optimizers. First, in contrast to
global optimizers, the naive approaches do not necessarily converge to an optimal solu-
tion because large parts of the search space, possibly containing the optimal solution, are
pruned early. In other words, the naive approaches cannot outperform the others in the long
run. Second, the highly stochastic nature of the algorithms also does not give high hopes
for great performance in the short run. Both Naive AutoML and Quasi-Naive AutoML are
closely related to random search, which can be considered one of the most simple base-
lines. In fact, Naive AutoML is a random search in a decomposed search space: While the
HPO phase is an explicit random search, the algorithm selection phase simply iterates over
all possible algorithms, which is equivalent to a random search due to the small number of
candidates (all of them are considered anyway).

To operationalize the terms “short run” and “long run”, we choose time windows of 1h
and 1d, respectively. These time limits are, of course, arbitrary but are common practice
(Thornton et al., 2013; Feurer et al., 2015; Mohr et al., 2018) and seem to represent a good
compromise taking into account the ecological impact of such extensive experiments.

These observations then motivate three research questions, all of which are limited to
the context of single-label classification, i.e., ignoring multi-label classification, regression,
and other problems:

RQ 1: Do the naive approaches find better pipelines than state-of-the-art (SOTA) opti-
mizers in the short run?

RQ 2: By which margin can SOTA optimizers outperform the naive approaches in the
long run and how long do they need to achieve such a performance?

RQ 3: To which degree is the naivety assumption justified as far as algorithm selection is
concerned?

Due to the common limitations in this type of research, we answer the above questions in a
limited way based on a collection of datasets. In principle, the questions require to general-
ize over all possible datasets, which is not feasible in practice. Our evaluation and hence
the possible conclusions are limited to a collection of 62 datasets on binary and multi-class
classification described below.

1141Machine Learning (2023) 112:1131–1170

1 3

In the whole evaluation, the default classifier used in Naive AutoML is a kNN algorithm
with k = 5 . This classifier is used whenever Naive AutoML configures a pre-processing
algorithm. For Quasi-Naive AutoML , this is not necessary since the classifier is the first
algorithm to be fixed, so whenever a pre-processing algorithm is optimized, the classifier
has already been chosen before.

5.1 Experiment setup

5.1.1 Compared optimizers and search space definition

The evaluation is focused on the machine learning package scikit-learn (Pedregosa et al.,
2011). As simple baselines we consider a random forest (Breiman , 2001) and a random search
that uniformly draws (unparametrized) pipelines and then uniformly chooses the values for
the hyperparameters. On the state-of-the-art side, we compare solutions with the competitive
AutoML tools auto-sklearn (Feurer et al., 2015) and GAMA Gijsbers || (Vanschoren , 2019).
For the former, we use version 0.12.6, which underwent substantial changes and improvements
compared to the original version (Feurer et al., 2015). We are not aware of other approaches
that have shown to substantially outperform these tools at the optimizer level. Some works
claim to outperform auto-sklearn Rakotoarison et al. (, 2019) and Liu et al. (, 2020), but the
implementations are either not available Liu et al. (, 2020) or could not be adjusted to our setup
(Rakotoarison et al. (, 2019). Since the claimed gaps are either not reported (Liu et al., 2020)
or mostly small (Rakotoarison et al., 2019), we ignored those approaches in the evaluation.
Code of the naive approaches and the experiments are available.1

Focusing only on the optimizers, the state-of-the-art baselines are Bayesian optimiza-
tion (BO) and evolutionary algorithms (EA). The tools only serve to setup those optimizers
for an AutoML task. auto-sklearn employs BO by means of SMAC (Hutter et al., 2011). In
a nutshell, SMAC is a BO approach that uses Random forests (Breiman , 2001) to model
the objective function and query next candidates for evaluation. GAMA employs the EA by
means of the NSGA-II-based optimization (Deb et al., 2002). NSGA-II is a genetic algo-
rithm capable of optimizing multiple objectives simultaneously and returning a set of non-
dominated solutions.

To maximize the comparability and avoid confounding factors, (i) all components of the
tools except the optimizer have been disabled, (ii) the search space has been unified, and
(iii) a common pipeline evaluation technique has been applied. Aspect (i) refers to disa-
bling warm-starting and ensemble building. Regarding (ii), we adopted the pipeline struc-
ture dictated by auto-sklearn since all tools except auto-sklearn can be configured relatively
easily in their search space and pipeline structure. This pipeline consists of three steps,
including so-called data-pre-processors, which are mainly feature scalers, feature-pre-pro-
cessors, which are mainly feature selectors and decomposition techniques, and finally the
estimator. Appendix B shows the concrete list of algorithms used for each category. We
also used the hyperparameter space defined by auto-sklearn for each of the components.
Unfortunately, the search spaces are not absolutely identical as auto-sklearn has proprietary

1 https:// github. com/ fmohr/ naive automl.

https://github.com/fmohr/naiveautoml

1142 Machine Learning (2023) 112:1131–1170

1 3

components (balancing, minority coalescer) that cannot be switched off or easily added to
the other tools. The search spaces of the naive approaches and GAMA are identical except
that GAMA requires explicitly described domains for the hyperparameters, which does
not match the concept of numerical hyperparameters used in auto-sklearn and the naive
approaches through the ConfigSpace library (Lindauer et al., 2019). We hence sampled
10000 values for each hyperparameter and used these as a discrete space; this sampling
mechanism already included log-scale sampling where applicable.2 To achieve (iii), the
evaluation mechanism for a concrete pipeline candidate was fixed among all approaches to
5-fold cross-validation.

5.1.2 Benchmark datasets

The evaluation is based on the datasets in the “AutoML Benchmark All Classification”
study3 on the openml.org platform (Vanschoren et al., 2013). The covered datasets are
a superset of those proposed in Gijsbers et al. (, 2019) and cover classification for both
binary and multi-class classification with numerical and categorical attributes. Within this
scope, the dataset selection is quite diverse in terms of numbers of instances, numbers of
attributes, numbers of classes, and distributions of types of attributes. Appendix A lists the
relevant properties of each of these datasets to confirm this diversity. Our assessment is
hence limited to binary and multi-class classification.

Datasets with missing values or categorical attributes were pre-processed. Miss-
ing values were imputed by the median (numerical attributes) or mode (categorical
attributes), and categorical attributes were replaced by a Bernoulli encoding. Thereby
we avoid implicit search space differences, because auto-sklearn comes with some
pre-processors specifically tailored for categorical attributes. Since these are partially
hard-coded and not easily applicable with GAMA and the naive approaches, we simply
eliminated this decision variable from the search space. This pre-processing should
usually be done by the optimizer itself only on the training data, but we could not mod-
ify auto-sklearn and GAMA accordingly, so that we took this middle ground solution;
we expect the side effects by this decision to be small. Even though the imputation is
identical for all optimizers and hence probably without too much effect on the com-
parison, it is arguably arbitrary, so that we excluded datasets with more than 5% miss-
ing values from the experiments. The final evaluation was conducted on the remaining
62 datasets.

5.1.3 Validation mechanism and performance metrics

Results are reported summarizing, in different forms, log-losses computed in 10
repeated runs per dataset for each optimizer. For this, we chose a 90% train fold size and
a 10% test fold size. Running each optimizer 10 times with different such random splits
corresponds to a 10 iterations Monte Carlo cross-validation with 90% train fold size.
Of course, splits were identical per seed among all optimizers. The minimized metric
is the log-loss as suggested in the context of the AutoML benchmark (Gijsbers et al.,

3 The original study is found at https:// www. openml. org/s/ 271. The selection here is based on a discussion
around this study https:// github. com/ openml/ autom lbenc hmark/ issues/ 187# issue comme nt- 74071 6098.

2 All these efforts were realized in collaboration with the authors of GAMA.

https://www.openml.org/s/271
https://github.com/openml/automlbenchmark/issues/187#issuecomment-740716098

1143Machine Learning (2023) 112:1131–1170

1 3

2019) for multi-class classification. We also use it for binary classification to keep the
overview simpler.

Note that our primary focus here is not on test performance but validation performance.
This paper compares optimizers, so we should measure them in terms of what they opti-
mize, namely validation performance. It can clearly happen that strong optimization of that
metrics yields no better or even worse performance on the test data (over-fitting). Even
though test performance is, in our view, not relevant for the research questions, we conduct
the outer splits and hence provide test performance results in order to maximize insights
for the 1d run.

5.1.4 Resources and used hardware

Timeouts were configured as follows. For the short (long) run, we applied a total runtime
of 1h (24h), and the runtime for a single pipeline execution was configured to take up to
20 minutes (for both scenarios). The memory was set to 24GB and, despite the technical
possibilities, we did not parallelize evaluations. That is, all the tools were configured to run
with a single CPU core. The computations were executed in a computing center with Linux
machines, each of them equipped with 2.6Ghz Intel Xeon E5-2670 processors and 32GB
memory.

5.2 Results

5.2.1 RQ 1: Do the naive approaches find better pipelines than state‑of‑the‑art (SOTA)
optimizers in the short run?

To answer this question, consider Fig. 1, which summarizes the results for an overall time-
out of 1h in terms of validation performance. That is, the performance of an optimizer up
to some point of time t is the best (lowest) average log-loss observed in any 5-fold CV of
pipeline evaluations up to t. Averaging these scores across the different runs of an opti-
mizer on a dataset defines an anytime curve for each optimizer and dataset, and the left
plot shows the mean ranks inferred from those curves over time. The right plot summarizes
the absolute gaps in terms of log-loss to the best solution at some point of time. That is, on
a specific random seed, there is at each point of time t some approach that has observed
a best performance. The gap of an optimizer at time t is the difference between the per-
formance of the best pipeline it has tried up to t and the best such performance among all

500 1000 1500 2000 2500 3000 3500

Runtime (s)

1

2

3

4

5

6

V
al
id
at
io
n
R
an

k

500 1000 1500 2000 2500 3000 3500

Elapsed Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

V
al
id
at
io
n
L
og
-L
os
s
(l
og
-s
ca
le
)

rf random auto-sklearn GAMA naive quasi-naive

Fig. 1 Mean validation ranks (left) and gaps (right) after 1h. On the right, the black dotted line is a visual
aid for a log-loss gap of 0.1, which is arguably negligible

1144 Machine Learning (2023) 112:1131–1170

1 3

optimizers. The mean gap is drawn as a solid line. The horizontal black dotted line is a
visual aid for a log-loss of 0.1.

The plot shows that the naive approaches are competitive or even stronger than state-
of-the-art tools in the short run. Naive AutoML is competitive with GAMA both of which
outperform auto-sklearn ’s SMAC in this time horizon. The right plot reveals that both
naive approaches exhibit a gap of less than 0.1 after 30 minutes of runtime on average. It
is even less than 0.05 in over 75% of the cases, and Quasi-Naive AutoML already achieves
this after 20 minutes (not shown).

Clearly, the performance differences in general are rather small. Arguably, gaps in log-
loss below 0.1 can be considered somewhat negligible. If the difference in log-loss between
two models is below 0.1 this means that the ratio of probabilities assigned to the correct
class is, on average, around 1.1. For a binary classification problem, this means that, even
for situations of rather high uncertainty, if the better model assigns 55% probability to the
correct class, the weaker model also still assigns at least 51% probability to the correct
class and will hence choose it. Now, this degree of irrelevance increases with a higher cer-
tainty of the better model or with higher numbers of classes. In other words, in concrete
situations where the two or three classes with the highest probability are at par, small dif-
ferences in log-loss will not necessarily but often also indicate identical behaviors of the
models.

The simple baselines also play an interesting role in this evaluation. First, a simple ran-
dom forest is clearly the best solution for the first 15 minutes. In other words, on the exam-
ined datasets, if a timeout of less than 15 minutes is considered, it is more recommendable
to not use an optimizer at all but simply take a random forest. Of course, this is due to the
fact that the optimizers are cold-started. Using warm-starting techniques, random forests
are typically among the first tried models. On the other hand, if the runtime is higher than
15 minutes, random forests get more and more sub-optimal. Second, the random search
is consistently outperformed in the short run by all techniques. This means that searching
blindly is a poor strategy, which is what one would expect.

Putting everything together, our assessment is that the naive approaches indeed compete
with or even outperform the other approaches in the short run. In this we ignore runtimes
of less than 15 minutes for which a simple random forest is preferable over optimizing at all
(at least on the considered datasets). Neither auto-sklearn nor GAMA can substantially out-
perform even the strict Naive AutoML approach in terms of validation performance; rather
the contrary is true. Overall, both Naive AutoML and Quasi-Naive AutoML are compet-
itive with auto-sklearn and GAMA and even slightly outperform both of them in many
cases. Among the two, Quasi-Naive AutoML has a small advantage over Naive AutoML
and hence should be preferred since it has virtually no relevant disadvantage over the
strictly naive approach.

5.2.2 RQ 2: By which margin can SOTA optimizers outperform the naive approaches
in the long run and how long do they need to achieve such a performance?

To get a first idea about the behavior of the optimizers in the long run, we again consider
the rank and gap plots, this time for the timeout of 24h in Fig. 2. The semantics in the
figures are the same as above, but there are some additional visual elements. As expected,
we can observe that, over time, the more sophisticated optimizers gain an advantage over
the naive approaches. We added a first vertical dotted black line at the point of time where
Naive AutoML is outperformed by GAMA (and quickly later by auto-sklearn) in terms of

1145Machine Learning (2023) 112:1131–1170

1 3

average rank. Next, we insert two such vertical lines at the respective points of time where
auto-sklearn and GAMA start to rank better than Quasi-Naive AutoML.

With respect to the research question, we first observe that there is on average no
advantage of neither auto-sklearn nor GAMA over the naive approaches within several
hours. Indeed, both optimizers achieve to outperform strict Naive AutoML after approxi-
mately 4h to 5h in terms of average ranks. In terms of average gaps, this point is reached
only after 10h. However, they need much more time to achieve the same effect against
Quasi-Naive AutoML . In terms of ranks, this point sets in after approximately 10h of
runtime for auto-sklearn and after 12h of runtime for GAMA . In terms of average gaps,
both auto-sklearn and GAMA do not obtain better average gap within 24h. The latter
however does not mean that auto-sklearn or GAMA would not occasionally outperform
Quasi-Naive AutoML ; the advantage is just so small that it vanishes in the average. What
can be said, for the considered datasets, is that for scenarios of less than 10h of runtime,
there is little reason to prefer either of those tools over Quasi-Naive AutoML.

Considering now the whole time horizon of 24h, the possible improvements of the
state-of-the-art optimizers are surprisingly small. Being ranked at position 2 on average,
the BO of auto-sklearn is the best optimizer in the long run, and the NSGA-II optimizer of
GAMA ranks slightly better than rank 3 on average. However, some statistics not shown in
the figures for readability reveal that the advantages of solutions found by those tools are
really small in terms of actual gaps. The 0.75 quantile of gaps of Quasi-Naive AutoML is
located at 0.025, from which we can conclude that Quasi-Naive AutoML achieves virtu-
ally optimal performance in at least 75% of the cases. Even the 0.95 quantile is located
at 0.07. If we consider, as argued above, that gaps below 0.1 are rather negligible, then
Quasi-Naive AutoML delivers on at most 3 of the 62 datasets a pipeline that is not close
to optimal. In fact, even the strictly naive approach performs competitive on average in
terms of gaps. However, the 0.95 quantile for gaps of the strict Naive AutoML approach
is increased and indicates that there is a significant number of datasets on which strict
Naive AutoML is indeed sub-optimal.

To complement these insights on validation performance with those on test perfor-
mance, we also report the distributions of absolute gaps after 24h on the test folds. These
results are summarized in Fig. 3. In general, auto-sklearn produces the best or second-best
test performance in 50% of the cases whereas GAMA and Quasi-Naive AutoML have a
slightly worse test rank performance (left plot). Among these two, both have the same
median rank, but GAMA scores slightly better under the q1-quantile. Naive AutoML is
outperformed in terms of ranks in this time horizon. However, the right plot again shows

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Elapsed Time (h)

1

2

3

4

5

6

V
al
id
at
io
n
R
an

k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Elapsed Time (h)

0.00

0.05

0.10

0.15

0.20

V
al
id
at
io
n
L
og
-L
os
s
(l
og
-s
ca
le
)

rf random auto-sklearn GAMA naive quasi-naive

Fig. 2 Same semantics as for Fig. 1 but after 24h. The vertical lines show the points of time when, in terms
of average rank, Naive AutoML is outperformed by GAMA , and when Quasi-Naive AutoML is outper-
formed by auto-sklearn and GAMA respectively. The visual aid on the right has been adjusted to an even
tighter gap bound of 0.05

1146 Machine Learning (2023) 112:1131–1170

1 3

that differences are minimal. Quasi-Naive AutoML has a gap of less than 0.01 in 50% of
the cases and less than 0.1 in 90% of the cases. Appendix C shows the concrete results per
dataset.

This being said, we answer the research question as follows. auto-sklearn , as the algo-
rithm that shows the best performance on most datasets after 24h, exhibits small to no rel-
evant performance advantage over the naive approaches on 50% of the datasets. More pre-
cisely, the gap of Naive AutoML on over 50% of the datasets is smaller than 0.1, a fairly
low value. For Quasi-Naive AutoML , the median gap is even close to 0.01, which can be
considered de facto optimal in the huge number of cases in practice: for a single instance,
a log-loss of 0.01 corresponds to a probability of above 0.99 assigned to the correct class.
While auto-sklearn is able to significantly outperform Naive AutoML in the long run on
some datasets, it rarely ever outperforms Quasi-Naive AutoML . The performance gap of
Quasi-Naive AutoML is bigger than 0.1 only once and smaller than 0.05 in more than 80%
of the cases. The same comparison holds for GAMA against Quasi-Naive AutoML ; in fact
the advantage of GAMA over Quasi-Naive AutoML is only minimal. To summarize, in
the scope of the considered datasets, state-of-the-art tools can hardly find significantly bet-
ter solutions than Quasi-Naive AutoML . On roughly 45% of the datasets, they can achieve
small but measurable improvements if run for at least 18 hours, and only in one case they
can substantially outperform Quasi-Naive AutoML.

5.2.3 RQ 3: To which degree is the naivety assumption justified as far as algorithm
selection is concerned?

The strong results of Quasi-Naive AutoML motivate a dedicated analysis of the legiti-
macy of the naivety assumption since this would explain its success. We have exam-
ined this legitimacy in the scope of the used datasets. To this end, we computed for all
of the datasets the performance of all pipelines that can be built with the considered
algorithms (with default hyperparameter values). The number of such pipelines is 1200
in our case, and since the evaluation under experiment conditions almost always takes
more than 24h (in fact 48h on average), we did not include this procedure into the set
of baselines. For each such run, we identified the set of 0.03-optimal pipelines, i.e., the
pipelines that have a (validation) log-loss of at most 0.03 more than the optimal one.
For each pipeline slot, the set of choices that is accepted as a correct choice is pre-
cisely the union of the algorithms that occur in any of the 0.03-optimal pipelines for the
respective slot.

The results are summarized in Fig. 4 (exact values in Appendix D). For each of the
three pipeline slots and each of the datasets, we report how often (among the 10 seeds)
an optimal algorithm was chosen by Quasi-Naive AutoML . Dark green/red means that

rf random auto-sklearn GAMA naive quasi-naive

1

2

3

4

5

6

T
es
t
R
an

k

rf random auto-sklearn GAMA naive quasi-naive
10−4

10−3

10−2

10−1

100

101

T
es
t
L
og
-L
os
s
(l
og
-s
ca
le
)

Fig. 3 Final ranks (left) and gaps (right) on the test performance on 24h timeouts. Whiskers show the medi-
ans, 90% quantiles, and maxima. Dotted lines are visual aids for 0.1 and 0.01 (colour figure online)

1147Machine Learning (2023) 112:1131–1170

1 3

Quasi-Naive AutoML always chose an optimal/suboptimal algorithm. For some datasets,
the situation is on the edge, which can be seen from the yellow or orange fields. As the
figure shows, Quasi-Naive AutoML picks in 78% of the time the correct classifier. It picks
the correct data-pre-processor in 85% of the cases and the correct feature-pre-processor in
80% of the cases. Clearly, if a wrong classifier is chosen, then this means that a classifier
that is sub-optimal on its own can be combined with some pre-processor together with
which it then outperforms the best stand-alone classifier. While this shows that the naivety
assumption is not generally correct, we see that it works just fine in many cases. One ques-
tion for future work is whether a slightly less naive algorithmic scheme such as (Kishi-
moto et al., 2021) can cover the remaining cases. While our analysis is limited to the 62
datasets under consideration, the study makes a strong case for Quasi-Naive AutoML.

5.3 Discussion

Putting the results together, the naive approach seems to make a maybe unexpectedly
strong case against established optimizers for standard classification problems. Even the
fully naive approach is competitive in the long run in 50% of the cases. When applying the
quasi-naive assumption, we obtain an optimizer that is, on the analyzed datasets, hardly
ever significantly outperformed neither by auto-sklearn nor by GAMA . Both AutoML
and GAMA manage to gain measurable advantages over Quasi-Naive AutoML as runtime
increases, but these are negligible most of the time. Whether or not Quasi-Naive AutoML
is likewise competitive in practical applications still stands to be shown. Summarizing, the
naive methods are somewhere inbetween yet simpler baselines and fully-fledged optimizers
when no time limits are applied, and they perform better in the short term.

Our results suggest an entirely new way of thinking about the optimization process
in AutoML . Until now, pipeline optimization has almost always been treated as a com-
plete black-box . However, the strong performance of Quasi-Naive AutoML suggests that
the optimization process can be realized sequentially. The ability of sequential optimiza-
tion opens the door to optimization flows, which in turn give room for specialized compo-
nents within the optimization process (Mohr and Wever , 2021). For example, based on the
observations in the optimization of one slot, it would be possible to activate or deactivate
certain optimization modules in the subsequent optimization workflow. Since this paper
has shown even Quasi-Naive AutoML to be competitive, there is some reason to believe
that such more sophisticated approaches might even be superior to black-box optimization.

6 Conclusion

In this paper, we have presented two naive approaches for the optimization of machine
learning pipelines. Contrary to previous works, these approaches fully (Naive AutoML)
or largely (Quasi-Naive AutoML) ignore the general assumption of dependencies between

3 12 23 31 54 18
1

10
49

10
67

14
57

14
61

14
64

14
68

14
75

14
85

14
86

14
87

14
89

14
94

15
15

15
90

41
34

41
35

45
34

45
38

45
41

23
51

2
23
51

7
40
49

8
40
66

8
40
67

0
40
68

5
40
70

1
40
90

0
40
97

5
40
97

8
40
98

1
40
98

2
40
98

3
40
98

4
40
99

6
41
02

7
41
14

2
41
14

3
41
14

4
41
14

5
41
14

6
41
15

6
41
15

7
41
15

9
41
16

1
41
16

3
41
16

4
41
16

5
41
16

6
41
16

7
41
16

9
42
73

2
42
73

3
42
73

4

classifier
data-pre-processor

feature-pre-processor

Fig. 4 Optimality of decisions of Quasi-Naive AutoML by pipeline slot per dataset aggregated over the ten
seeds. Green/Red means: The choice was always optimal/sub-optimal. Yellow colors in-between indicate
that the choice was optimal in some runs and sub-optimal in others

1148 Machine Learning (2023) 112:1131–1170

1 3

the choices of algorithms within a pipeline. Furthermore, algorithm selection and hyper-
parameter optimization are decoupled by first selecting the algorithms of a pipeline only
considering their default parametrizations. Only when the algorithms are fixed, their hyper-
parameters are optimized.

Results on 62 datasets suggest that naive approaches are much more competitive than
one would maybe expect. For short timeouts (1h), both naive algorithms perform highly
competitive to optimization algorithms of state-of-the-art AutoML tools and sometimes
(Quasi-Naive AutoML in fact even consistently) superior. In the long run, 24h experiments
show that Quasi-Naive AutoML is largely en par with auto-sklearn and GAMA in terms of
gaps to the best solution.

We stress that our results do not imply that global approaches (Feurer et al., 2015; Olson
and Moore , 2019; de Sá et al., 2017; Mohr et al., 2018) are obsolete. Not only is the num-
ber of datasets of our study too limited to draw such a strong conclusion with confidence,
but also is it possible that significantly better solutions exist in the global search space that
are simply not found by current global optimizers. Examining this question in more depth
is a highly non-trivial research prospect, which, because of the search space size, calls for
approaches that quantify the probability of having found an optimal pipeline based on cer-
tain smoothness assumptions. Besides, other techniques like ensembling and warm-starting
(Feurer et al., 2015) can have different influence among the approaches, so the results only
apply to optimizers but not whole tools.

However, our results clearly suggest the possibility of the existence of a generally com-
petitive semi-greedy pipeline optimizer. This demands further research and also calls for
more challenging benchmarks in which a simple greedy strategy does not perform so
strong. In fact, our findings have made such benchmarks now necessary to better justify the
usage of highly sophisticated methods.

Many aspects in this paper are deliberately kept simple to show the strength of this
simple scheme, and these limitations offer several plans for future work. These include (i)
imputation and treatment of categorical attributes as a part of the optimization, (ii) apply
more sophisticated HPO techniques such as Bayesian Optimization, and (iii) coverage of
tree-like pipelines instead of sequences only and a relaxation of a particular shape of the
pipeline in general.

Besides, the sequential optimization flow of Naive AutoML naturally motivates a
series of future work building upon this property. It seems imperative to further explore
the potential of a less naive approach as suggested in Mohr and Wever (, 2021), which
adopts a stage-based optimization scheme. Another interesting direction is to create a more
interactive version of Naive AutoML in which the expert obtains visual summaries of what
choices have been made and with the option for the expert to intervene, e.g., by revis-
ing some of the choices. This could lead to an approach considering different optimization
rounds for different slots.

Appendix A: Datasets

All datasets are available via the openml.org platform (Vanschoren et al., 2013) (Table 1).

1149Machine Learning (2023) 112:1131–1170

1 3

Ta
bl

e
1

 O
ve

rv
ie

w
 o

f d
at

as
et

s
us

ed
 in

 th
e

ev
al

ua
tio

n.
 M

ea
ni

ng
 o

f t
he

 c
ol

um
ns

 in
 th

is
 o

rd
er

: i
d

at
 o

pe
nm

l.o
rg

, n
am

e
at

 o
pe

nm
l.o

rg
, w

he
th

er
 o

r n
ot

 th
e

da
ta

se
t i

s
pa

rt
of

 th
e

A
ut

oM
L

be
nc

hm
ar

k
(G

ijs
be

rs
 e

t a
l.,

 2
01

9)
, n

um
be

r o
f i

ns
ta

nc
es

, n
um

be
r o

f f
ea

tu
re

s,
nu

m
be

r o
f n

um
er

ic
al

 fe
at

ur
es

, n
um

be
r o

f c
la

ss
es

, p
er

ce
nt

ag
e

of
 s

m
al

le
st

cl
as

s,
pe

rc
en

t-
ag

e
of

 b
ig

ge
st

cl
as

s,
%

 o
f m

is
si

ng
 e

nt
rie

s,
pe

rc
en

ta
ge

 o
f f

ea
tu

re
s

in
 th

e
[0

, 1
] i

nt
er

va
l,

pe
rc

en
ta

ge
 o

f c
en

te
re

d
fe

at
ur

es
, p

er
ce

nt
ag

e
of

 fe
at

ur
es

 w
ith

 a
 s

ta
nd

ar
d

de
vi

at
io

n
of

 1
.

Th
e

la
st

th
re

e
on

ly
 a

pp
ly

 if
 th

er
e

ar
e

nu
m

er
ic

al
 fe

at
ur

es

Id
in

 G
ijs

be
rs

et

 a
l.

(,
20

19
)

N
am

e
In

st
an

ce
s

Fe
at

ur
es

N
um

er
ic

 fe
at

ur
es

C
la

ss
es

M
in

 %
M

aj
 %

%
 m

is
si

ng
%

 [0
,1

]
%

 �
=
0

%
 �

=
1

3
1

kr
-v

s-
kp

31
96

36
0

2
47

%
52

%
0%

N
aN

N
aN

N
aN

12
1

m
fe

at
-fa

ct
or

s
20

00
21

6
21

6
10

10
%

10
%

0%
0%

0%
0%

23
0

cm
c

14
73

9
2

3
22

%
42

%
0%

0%
0%

0%
31

1
cr

ed
it-

g
10

00
20

7
2

30
%

70
%

0%
0%

0%
0%

54
1

ve
hi

cl
e

84
6

18
18

4
23

%
25

%
0%

0%
0%

0%
18

1
0

ye
as

t
14

84
8

8
10

0%
31

%
0%

25
%

0%
0%

10
49

0
pc

4
14

58
37

37
2

12
%

87
%

0%
3%

0%
0%

10
67

1
kc

1
21

09
21

21
2

15
%

84
%

0%
0%

0%
0%

14
57

0
am

az
on

-c
om

m
er

ce
-r

ev
i

15
00

10
00

0
10

00
0

50
2%

2%
0%

22
%

0%
0%

14
61

1
ba

nk
-m

ar
ke

tin
g

45
21

1
16

7
2

11
%

88
%

0%
0%

0%
0%

14
64

1
bl

oo
d-

tra
ns

fu
si

on
-s

e
74

8
4

4
2

23
%

76
%

0%
0%

0%
0%

14
68

1
cn

ae
-9

10
80

85
6

85
6

9
11

%
11

%
0%

88
%

0%
0%

14
75

0
fir

st-
or

de
r-t

he
or

em
-

61
18

51
51

6
7%

41
%

0%
0%

4%
2%

14
85

0
m

ad
el

on
26

00
50

0
50

0
2

50
%

50
%

0%
0%

0%
0%

14
86

1
no

m
ao

34
46

5
11

8
89

2
28

%
71

%
0%

83
%

0%
0%

14
87

0
oz

on
e-

le
ve

l-8
hr

25
34

72
72

2
6%

93
%

0%
0%

0%
0%

14
89

1
ph

on
em

e
54

04
5

5
2

29
%

70
%

0%
0%

10
0%

10
0%

14
94

0
qs

ar
-b

io
de

g
10

55
41

41
2

33
%

66
%

0%
7%

0%
0%

15
15

0
m

ic
ro

-m
as

s
57

1
13

00
13

00
20

1%
10

%
0%

0%
17

%
0%

15
90

1
ad

ul
t

48
84

2
14

6
2

23
%

76
%

0%
0%

0%
0%

41
34

0
B

io
re

sp
on

se
37

51
17

76
17

76
2

45
%

54
%

0%
81

%
1%

0%
41

35
1

A
m

az
on

_e
m

pl
oy

ee
_a

c
32

76
9

9
0

2
5%

94
%

0%
N

aN
N

aN
N

aN
45

34
0

Ph
is

hi
ng

W
eb

si
te

s
11

05
5

30
0

2
44

%
55

%
0%

N
aN

N
aN

N
aN

45
38

0
G

es
tu

re
Ph

as
eS

eg
m

en
ta

98
73

32
32

5
10

%
29

%
0%

0%
75

%
0%

1150 Machine Learning (2023) 112:1131–1170

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Id
in

 G
ijs

be
rs

et

 a
l.

(,
20

19
)

N
am

e
In

st
an

ce
s

Fe
at

ur
es

N
um

er
ic

 fe
at

ur
es

C
la

ss
es

M
in

 %
M

aj
 %

%
 m

is
si

ng
%

 [0
,1

]
%

 �
=
0

%
 �

=
1

45
41

0
D

ia
be

te
s1

30
U

S
10

17
66

49
13

3
11

%
53

%
0%

0%
0%

0%
23

51
2

1
hi

gg
s

98
05

0
28

28
2

47
%

52
%

0%
0%

7%
0%

23
51

7
1

nu
m

er
ai

28
.6

96
32

0
21

21
2

49
%

50
%

0%
10

0%
0%

0%
40

49
8

0
w

in
e-

qu
al

ity
-w

hi
te

48
98

11
11

7
0%

44
%

0%
0%

0%
0%

40
66

8
1

co
nn

ec
t-4

67
55

7
42

0
3

9%
65

%
0%

N
aN

N
aN

N
aN

40
67

0
0

dn
a

31
86

18
0

0
3

24
%

51
%

0%
N

aN
N

aN
N

aN
40

68
5

1
sh

ut
tle

58
00

0
9

9
7

0%
78

%
0%

0%
0%

0%
40

70
1

0
ch

ur
n

50
00

20
16

2
14

%
85

%
0%

0%
0%

0%
40

90
0

0
Sa

te
lli

te
51

00
36

36
2

1%
98

%
0%

0%
0%

0%
40

97
5

1
ca

r
17

28
6

0
4

3%
70

%
0%

N
aN

N
aN

N
aN

40
97

8
0

In
te

rn
et

-A
dv

er
tis

em
e

32
79

15
58

3
2

13
%

86
%

0%
0%

0%
0%

40
98

1
1

A
us

tra
lia

n
69

0
14

6
2

44
%

55
%

0%
0%

0%
0%

40
98

2
0

ste
el

-p
la

te
s-

fa
ul

t
19

41
27

27
7

2%
34

%
0%

11
%

0%
0%

40
98

3
0

w
ilt

48
39

5
5

2
5%

94
%

0%
0%

0%
0%

40
98

4
1

se
gm

en
t

23
10

19
19

7
14

%
14

%
0%

6%
0%

0%
40

99
6

1
Fa

sh
io

n-
M

N
IS

T
70

00
0

78
4

78
4

10
10

%
10

%
0%

0%
0%

0%
41

02
7

1
ju

ng
le

_c
he

ss
_2

pc
s

44
81

9
6

6
3

9%
51

%
0%

0%
0%

0%
41

14
2

1
ch

ris
tin

e
54

18
16

36
15

99
2

50
%

50
%

0%
0%

0%
0%

41
14

3
1

ja
sm

in
e

29
84

14
4

8
2

50
%

50
%

0%
0%

0%
0%

41
14

4
0

m
ad

el
in

e
31

40
25

9
25

9
2

49
%

50
%

0%
0%

0%
0%

41
14

5
0

ph
ili

pp
in

e
58

32
30

8
30

8
2

50
%

50
%

0%
0%

3%
0%

41
14

6
1

sy
lv

in
e

51
24

20
20

2
50

%
50

%
0%

0%
0%

0%
41

15
0

1
M

in
iB

oo
N

E
13

00
64

50
50

2
28

%
71

%
0%

0%
0%

0%
41

15
6

0
ad

a
41

47
48

48
2

24
%

75
%

0%
83

%
8%

0%
41

15
7

0
ar

ce
ne

10
0

10
00

0
10

00
0

2
44

%
56

%
0%

0%
1%

0%

1151Machine Learning (2023) 112:1131–1170

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Id
in

 G
ijs

be
rs

et

 a
l.

(,
20

19
)

N
am

e
In

st
an

ce
s

Fe
at

ur
es

N
um

er
ic

 fe
at

ur
es

C
la

ss
es

M
in

 %
M

aj
 %

%
 m

is
si

ng
%

 [0
,1

]
%

 �
=
0

%
 �

=
1

41
15

8
0

gi
na

31
53

97
0

97
0

2
49

%
50

%
0%

0%
0%

0%
41

15
9

1
gu

ill
er

m
o

20
00

0
42

96
42

96
2

40
%

59
%

0%
0%

0%
0%

41
16

1
1

ric
ca

rd
o

20
00

0
42

96
42

96
2

25
%

75
%

0%
0%

0%
0%

41
16

3
1

di
lb

er
t

10
00

0
20

00
20

00
5

19
%

20
%

0%
0%

0%
0%

41
16

4
1

fa
be

rt
82

37
80

0
80

0
7

6%
23

%
0%

96
%

4%
0%

41
16

5
1

ro
be

rt
10

00
0

72
00

72
00

10
9%

10
%

0%
0%

0%
0%

41
16

6
1

vo
lk

er
t

58
31

0
18

0
18

0
10

2%
21

%
0%

15
%

18
%

0%
41

16
7

1
di

on
is

41
61

88
60

60
35

5
0%

0%
0%

0%
10

%
0%

41
16

8
1

ja
nn

is
83

73
3

54
54

4
2%

46
%

0%
4%

0%
0%

41
16

9
1

he
le

na
65

19
6

27
27

10
0

0%
6%

0%
4%

0%
0%

42
73

2
0

sf
-p

ol
ic

e-
in

ci
de

nt
s

22
15

02
3

9
3

2
12

%
87

%
0%

0%
0%

0%
42

73
3

0
C

lic
k_

pr
ed

ic
tio

n_
s

39
94

8
11

5
2

16
%

83
%

0%
0%

0%
0%

42
73

4
0

ok
cu

pi
d-

ste
m

50
78

9
19

2
3

9%
71

%
0%

0%
0%

0%

1152 Machine Learning (2023) 112:1131–1170

1 3

Appendix B: Considered algorithms

The following algorithms from the scikit-learn library were considered for the three pipe-
line slots (same setup for all optimizers). Please refer to https:// github. com/ fmohr/ naive
automl for the exact specification of the search space including the hyperparameter spaces.

Data-pre-processors

• Normalizer
• VarianceThreshold
• QuantileTransformer
• StandardScaler
• MinMaxScaler
• PowerTransformer
• RobustScaler

Feature-Pre-Processors

• FeatureAgglomeration
• PCA
• PolynomialFeatures
• Nystroem
• Selectquantile
• KernelPCA
• GenericUnivariateSelect
• RBFSampler
• FastICA

Classifiers

• SVC (once for each out of four kernels)
• KNeighborsClassifier
• QuadraticDiscriminantAnalysis
• RandomForestClassifier
• MultinomialNB
• LinearDiscriminantAnalysis
• ExtraTreesClassifier
• BernoulliNB
• MLPClassifier
• GradientBoostingClassifier
• GaussianNB
• DecisionTreeClassifier

Appendix C: Final result table

The following table shows the mean test score results of the approaches on the different
datasets together with the standard deviation. Best performances are in bold, and entries
that are not at least 0.1 worse (log-loss) than the best one or not statistically significantly
different (according to a Wilcoxon signed rank test with p = 0.05) are underlined (Table 2).

https://github.com/fmohr/naiveautoml
https://github.com/fmohr/naiveautoml

1153Machine Learning (2023) 112:1131–1170

1 3

Table 2 Avg. test Log-Loss after 1d

Id rf Random Auto-sklearn GAMA Naive Quasi-naive

3 0.05±0.0 0.01±0.0 0.01±0.0 0.01±0.01 0.02±0.03 0.01±0.01
12 0.26±0.06 0.11±0.05 0.11±0.04 0.1±0.04 2.75±4.11 0.48±0.72
23 1.45±0.24 0.9±0.06 0.89±0.05 0.9±0.03 1.0±0.06 0.92±0.06
31 0.56±0.12 0.52±0.05 0.53±0.04 0.54±0.03 0.57±0.04 0.57±0.08
54 0.49±0.06 4.19±6.41 0.36±0.07 0.42±0.09 0.99±0.37 0.67±0.46
181 1.5±0.22 1.05±0.06 1.06±0.06 1.14±0.16 1.22±0.24 1.13±0.12
1049 0.21±0.02 0.2±0.04 0.19±0.04 0.25±0.11 0.22±0.05 0.2±0.05
1067 0.56±0.17 0.39±0.08 0.33±0.04 0.33±0.04 0.36±0.06 0.35±0.04
1457 2.37±0.22 1.23±0.18 1.12±0.3 1.36±0.21 1.25±0.11 0.87±0.22
1461 0.62±0.06 0.3±0.01 0.29±0.01 0.3±0.01 0.31±0.02 0.3±0.01
1464 0.72±0.29 0.47±0.06 0.46±0.05 0.48±0.04 0.51±0.06 0.48±0.05
1468 0.32±0.05 0.15±0.08 0.16±0.1 0.17±0.09 0.18±0.07 0.13±0.07
1475 1.61±0.12 1.14±0.16 1.06±0.03 1.05±0.03 1.12±0.04 1.1±0.04
1485 0.61±0.01 0.51±0.89 0.31±0.02 0.36±0.11 0.71±0.32 0.4±0.03
1486 0.21±0.03 0.14±0.01 0.13±0.01 0.14±0.01 0.14±0.02 0.17±0.08
1487 0.17±0.05 0.16±0.04 0.15±0.02 0.18±0.07 0.21±0.06 0.15±0.01
1489 0.26±0.05 0.22±0.14 0.22±0.02 0.21±0.02 0.33±0.16 0.23±0.03
1494 0.31±0.06 0.33±0.13 0.32±0.14 0.35±0.09 0.58±0.44 0.34±0.13
1515 0.69±0.05 0.41±6.49 0.38±0.1 0.38±0.15 0.49±0.08 0.48±0.08
1590 0.55±0.04 0.35±0.01 0.35±0.01 0.35±0.01 0.39±0.04 0.35±0.01
4134 0.46±0.04 0.43±0.07 0.43±0.02 0.43±0.07 0.47±0.16 0.43±0.02
4135 0.34±0.04 0.16±0.01 0.16±0.01 0.17±0.01 0.16±0.01 0.16±0.01
4534 0.1±0.03 0.08±0.02 0.07±0.01 0.07±0.01 0.09±0.03 0.07±0.02
4538 0.92±0.02 0.98±0.36 0.84±0.03 0.83±0.29 0.89±0.05 0.88±0.03
4541 0.92±0.01 0.9±0.01 0.89±0.01 0.9±0.01 0.91±0.01 0.9±0.01
23512 0.57±0.01 0.62±0.08 0.55±0.02 0.55±0.02 0.59±0.05 0.55±0.02
23517 0.7±0.0 1.7±2.48 0.69±0.0 0.69±0.0 1.5±1.77 0.69±0.0
40498 0.94±0.11 1.21±0.32 0.76±0.06 1.09±0.55 0.89±0.31 0.75±0.09
40668 0.48±0.01 0.56±0.11 0.39±0.05 0.47±0.05 0.41±0.02 0.39±0.01
40670 0.25±0.02 0.12±0.02 0.12±0.02 0.19±0.04 0.26±0.09 0.13±0.02
40685 0.0±0.0 0.0±0.01 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
40701 0.24±0.09 0.17±0.02 0.17±0.02 0.17±0.02 0.24±0.03 0.17±0.02
40900 0.04±0.03 0.02±0.01 0.01±0.0 0.02±0.01 0.04±0.04 0.02±0.03
40975 0.16±0.03 0.0±0.0 0.01±0.01 0.0±0.0 0.22±0.19 0.11±0.16
40978 0.12±0.06 0.09±0.03 0.09±0.02 0.1±0.02 0.18±0.23 0.09±0.03
40981 0.35±0.06 0.4±0.19 0.34±0.04 0.35±0.07 0.39±0.06 0.34±0.05
40982 0.57±0.11 0.51±0.51 0.52±0.06 0.48±0.06 0.64±0.09 0.47±0.07
40983 0.06±0.04 0.34±0.39 0.03±0.01 0.04±0.01 0.41±0.65 0.07±0.06
40984 0.16±0.05 0.16±0.02 0.15±0.03 0.15±0.02 0.17±0.51 0.17±0.06
40996 0.38±0.01 0.44±0.04 0.35±0.04 0.41±0.07 0.45±0.07 0.38±0.01
41027 0.45±0.01 0.49±1.16 0.22±0.05 0.21±0.06 0.45±0.13 0.26±0.04
41142 0.55±0.01 0.58±0.15 0.51±0.02 0.52±0.02 0.66±0.07 0.52±0.02
41143 0.42±0.05 0.41±0.02 0.41±0.02 0.41±0.02 0.52±0.09 0.43±0.03
41144 0.54±0.01 0.34±0.12 0.29±0.02 0.34±0.02 0.62±0.1 0.37±0.03

1154 Machine Learning (2023) 112:1131–1170

1 3

Appendix D: Slot analysis in detail

This table details Fig. 4 and shows in which fraction of the cases, Quasi-Naive AutoML
chose a component for each of the slots that occurs in an 0.03-optimal pipeline.

Openmlid Classifier Data-pre-processor Feature-
pre-pro-
cessor

3 1.00 1.00 1.00
12 1.00 1.00 1.00
23 1.00 1.00 1.00
31 1.00 1.00 1.00
54 1.00 0.70 0.60
181 0.90 0.60 0.80
1049 1.00 1.00 1.00
1067 1.00 1.00 1.00
1457 0.00 0.70 0.50
1461 1.00 1.00 1.00
1464 1.00 1.00 1.00
1468 1.00 1.00 1.00
1475 1.00 1.00 1.00
1485 1.00 1.00 1.00
1486 0.89 1.00 1.00

Best results in bold, comparable results are underlined

Table 2 (continued)

Id rf Random Auto-sklearn GAMA Naive Quasi-naive

41145 0.51±0.02 0.44±0.03 0.4±0.03 0.41±0.02 0.57±0.02 0.46±0.02
41146 0.19±0.03 0.14±0.01 0.14±0.01 0.14±0.02 0.3±0.12 0.15±0.02
41150 0.18±0.01 0.28±0.21 0.14±0.0 0.25±0.2 0.16±0.01 0.14±0.0
41156 0.37±0.1 0.44±0.36 0.3±0.04 0.3±0.04 0.4±0.06 0.29±0.04
41157 0.5±0.07 0.48±0.35 0.46±0.98 0.37±0.12 0.48±0.86 0.35±0.14
41158 0.26±0.01 0.15±0.05 0.15±0.03 0.15±0.04 0.22±0.09 0.17±0.06
41159 0.43±0.01 0.52±0.12 0.37±0.02 0.51±0.11 0.42±0.1 0.38±0.01
41161 0.18±0.01 0.13±0.46 0.02±0.03 0.03±0.05 0.14±0.16 0.04±0.01
41163 0.33±0.01 0.03±0.02 0.05±0.03 0.08±0.49 0.05±0.01 0.05±0.01
41164 0.92±0.09 0.82±0.03 0.79±0.06 0.84±0.03 0.85±0.04 0.84±0.04
41165 1.73±0.02 1.71±0.19 1.75±0.08 1.8±0.07 1.73±0.11 1.73±0.04
41166 1.05±0.02 1.23±0.32 0.92±0.06 0.91±0.07 1.09±0.05 1.03±0.03
41167 0.83±0.01 1.66±0.56 1.83±0.3 5.6±10.21 2.8±0.13 2.32±0.03
41168 0.77±0.01 0.7±0.01 0.68±0.02 0.69±0.01 0.79±0.01 0.74±0.02
41169 6.14±0.12 2.99±0.45 2.55±0.09 2.76±0.07 2.83±0.14 2.64±0.02
42732 0.59±0.0 0.36±0.0 0.36±0.0 0.36±0.0 0.36±0.0 0.36±0.0
42733 2.53±0.14 0.44±0.01 0.43±0.01 0.44±0.01 0.48±0.11 0.45±0.01
42734 0.67±0.02 0.62±0.02 0.6±0.01 0.61±0.02 0.62±0.05 0.6±0.01

1155Machine Learning (2023) 112:1131–1170

1 3

Openmlid Classifier Data-pre-processor Feature-
pre-pro-
cessor

1487 1.00 1.00 1.00
1489 1.00 1.00 1.00
1494 1.00 1.00 1.00
1515 1.00 1.00 1.00
1590 1.00 1.00 1.00
4134 1.00 1.00 1.00
4135 1.00 1.00 1.00
4534 1.00 1.00 1.00
4538 1.00 1.00 1.00
4541 0.89 1.00 1.00
23512 1.00 1.00 1.00
23517 1.00 1.00 1.00
40498 1.00 1.00 1.00
40668 0.00 0.90 0.00
40670 1.00 1.00 1.00
40685 1.00 1.00 1.00
40701 1.00 1.00 1.00
40900 1.00 1.00 1.00
40975 1.00 1.00 1.00
40978 1.00 1.00 1.00
40981 1.00 1.00 1.00
40982 0.80 0.70 0.90
40983 1.00 1.00 1.00
40984 1.00 1.00 1.00
40996 0.00 0.14 0.14
41027 1.00 0.57 0.71
41142 1.00 1.00 1.00
41143 1.00 1.00 1.00
41144 1.00 1.00 1.00
41145 1.00 1.00 1.00
41146 1.00 1.00 1.00
41156 1.00 1.00 1.00
41157 0.30 0.10 0.80
41159 0.00 1.00 0.11
41161 0.00 1.00 0.00
41163 1.00 1.00 1.00
41164 1.00 1.00 1.00
41165 0.40 0.60 0.40
41166 1.00 1.00 1.00
41167 1.00 1.00 1.00
41169 0.00 0.67 0.56
42732 1.00 1.00 1.00
42733 0.00 1.00 0.00
42734 1.00 1.00 1.00

1156 Machine Learning (2023) 112:1131–1170

1 3

Appendix E: Performance plots over time

The figures in this section show the log-loss of the best pipeline an approach has identified
at any point of time. Since the Random Forest is sometimes substantially outperformed or
since substantial optimization occurs over times, it can be difficult to recognize details in late
parts of the curve. Therefore, the right plots show results without Random Forests and with a
scaling that only assures the visibility of all the observations occurring after 4h elapsed time.

101 102 103 104 105

Elapsed Time (s)

0.05

0.10

0.15

lo
g-
lo
ss

Results on 3 (kr-vs-kp)

101 102 103 104 105

Elapsed Time (s)

0.02

0.04

0.06

0.08

0.10

Results on 3 (kr-vs-kp) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.4

0.6

0.8

lo
g-
lo
ss

Results on 12 (mfeat-factors)

101 102 103 104 105

Elapsed Time (s)

0.12

0.14

0.16

0.18

0.20
Results on 12 (mfeat-factors) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1.0

1.2

1.4

1.6

1.8

lo
g-
lo
ss

Results on 23 (cmc)

101 102 103 104 105

Elapsed Time (s)

0.90

0.92

0.94

0.96

0.98

Results on 23 (cmc) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.50

0.52

0.54

0.56

0.58

lo
g-
lo
ss

Results on 31 (credit-g)

101 102 103 104 105

Elapsed Time (s)

0.50

0.52

0.54

0.56

0.58

Results on 31 (credit-g) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.40

0.45

0.50

0.55

0.60

lo
g-
lo
ss

Results on 54 (vehicle)

101 102 103 104 105

Elapsed Time (s)

0.375

0.400

0.425

0.450

Results on 54 (vehicle) without rf
rf random auto-sklearn GAMA naive quasi-naive

1157Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

1.2

1.4

lo
g-
lo
ss

Results on 181 (yeast)

101 102 103 104 105

Elapsed Time (s)

1.025

1.050

1.075

1.100

Results on 181 (yeast) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.200

0.225

0.250

0.275

lo
g-
lo
ss

Results on 1049 (pc4)

101 102 103 104 105

Elapsed Time (s)

0.200

0.225

0.250

0.275
Results on 1049 (pc4) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

0.7

lo
g-
lo
ss

Results on 1067 (kc1)

101 102 103 104 105

Elapsed Time (s)

0.325

0.350

0.375

0.400

Results on 1067 (kc1) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 1457 (amazon-commerce-revi)

101 102 103 104 105

Elapsed Time (s)

1.0

1.2

1.4

1.6

1.8

Results on 1457 (amazon-commerce-revi) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.5

1.0

1.5

2.0

lo
g-
lo
ss

Results on 1461 (bank-marketing)

101 102 103 104 105

Elapsed Time (s)

0.30

0.32

0.34

0.36

0.38

Results on 1461 (bank-marketing) without rf
rf random auto-sklearn GAMA naive quasi-naive

1158 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

0.6

0.8

1.0

1.2

lo
g-
lo
ss

Results on 1464 (blood-transfusion-se)

101 102 103 104 105

Elapsed Time (s)

0.48

0.50

0.52

0.54

0.56

Results on 1464 (blood-transfusion-se) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.4

0.6

0.8

lo
g-
lo
ss

Results on 1468 (cnae-9)

101 102 103 104 105

Elapsed Time (s)

0.16

0.18

0.20

0.22

0.24

Results on 1468 (cnae-9) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

3

lo
g-
lo
ss

Results on 1475 (first-order-theorem-)

101 102 103 104 105

Elapsed Time (s)

1.100

1.125

1.150

1.175

Results on 1475 (first-order-theorem-) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

lo
g-
lo
ss

Results on 1485 (madelon)

101 102 103 104 105

Elapsed Time (s)

0.350

0.375

0.400

0.425

Results on 1485 (madelon) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.4

0.6

0.8

1.0

lo
g-
lo
ss

Results on 1486 (nomao)

101 102 103 104 105

Elapsed Time (s)

0.14

0.16

0.18

0.20

0.22

Results on 1486 (nomao) without rf
rf random auto-sklearn GAMA naive quasi-naive

1159Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

0.16

0.18

0.20

0.22

0.24

lo
g-
lo
ss

Results on 1487 (ozone-level-8hr)

101 102 103 104 105

Elapsed Time (s)

0.16

0.18

0.20

0.22

0.24
Results on 1487 (ozone-level-8hr) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.25

0.30

0.35

0.40

lo
g-
lo
ss

Results on 1489 (phoneme)

101 102 103 104 105

Elapsed Time (s)

0.24

0.26

0.28

0.30

0.32
Results on 1489 (phoneme) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.30

0.35

0.40

lo
g-
lo
ss

Results on 1494 (qsar-biodeg)

101 102 103 104 105

Elapsed Time (s)

0.300

0.325

0.350

0.375

Results on 1494 (qsar-biodeg) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1

2

3

lo
g-
lo
ss

Results on 1515 (micro-mass)

101 102 103 104 105

Elapsed Time (s)

0.375

0.400

0.425

0.450

Results on 1515 (micro-mass) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.50

0.75

1.00

1.25

lo
g-
lo
ss

Results on 1590 (adult)

101 102 103 104 105

Elapsed Time (s)

0.350

0.375

0.400

0.425

Results on 1590 (adult) without rf
rf random auto-sklearn GAMA naive quasi-naive

1160 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

2

4

lo
g-
lo
ss

Results on 4134 (Bioresponse)

101 102 103 104 105

Elapsed Time (s)

0.450

0.475

0.500

0.525

Results on 4134 (Bioresponse) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.4

0.6

0.8

1.0

lo
g-
lo
ss

Results on 4135 (Amazon employee ac)

101 102 103 104 105

Elapsed Time (s)

0.175

0.200

0.225

0.250

Results on 4135 (Amazon employee ac) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.4

0.6

lo
g-
lo
ss

Results on 4534 (PhishingWebsites)

101 102 103 104 105

Elapsed Time (s)

0.08

0.10

0.12

0.14

0.16

Results on 4534 (PhishingWebsites) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1.0

1.2

1.4

lo
g-
lo
ss

Results on 4538 (GesturePhaseSegmenta)

101 102 103 104 105

Elapsed Time (s)

0.88

0.90

0.92

0.94

0.96
Results on 4538 (GesturePhaseSegmenta) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 4541 (Diabetes130US)

101 102 103 104 105

Elapsed Time (s)

0.90

0.92

0.94

0.96

0.98

Results on 4541 (Diabetes130US) without rf
rf random auto-sklearn GAMA naive quasi-naive

1161Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

0.60

0.65

lo
g-
lo
ss

Results on 23512 (higgs)

101 102 103 104 105

Elapsed Time (s)

0.56

0.58

0.60

0.62

0.64

Results on 23512 (higgs) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.75

1.00

1.25

1.50

1.75

lo
g-
lo
ss

Results on 23517 (numerai28.6)

101 102 103 104 105

Elapsed Time (s)

0.70

0.72

0.74

0.76

0.78

Results on 23517 (numerai28.6) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.8

0.9

1.0

1.1

lo
g-
lo
ss

Results on 40498 (wine-quality-white)

101 102 103 104 105

Elapsed Time (s)

0.80

0.85

0.90

Results on 40498 (wine-quality-white) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.4

0.6

0.8

1.0

1.2

lo
g-
lo
ss

Results on 40668 (connect-4)

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

Results on 40668 (connect-4) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.3

0.4

lo
g-
lo
ss

Results on 40670 (dna)

101 102 103 104 105

Elapsed Time (s)

0.12

0.14

0.16

0.18

0.20

Results on 40670 (dna) without rf
rf random auto-sklearn GAMA naive quasi-naive

1162 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

0.5

1.0

1.5

lo
g-
lo
ss

Results on 40685 (shuttle)

101 102 103 104 105

Elapsed Time (s)

0.02

0.04

0.06

0.08

0.10
Results on 40685 (shuttle) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.20

0.25

0.30

0.35

lo
g-
lo
ss

Results on 40701 (churn)

101 102 103 104 105

Elapsed Time (s)

0.175

0.200

0.225

0.250

Results on 40701 (churn) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.02

0.04

0.06

0.08

0.10

lo
g-
lo
ss

Results on 40900 (Satellite)

101 102 103 104 105

Elapsed Time (s)

0.02

0.04

0.06

0.08

0.10

Results on 40900 (Satellite) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.05

0.10

0.15

lo
g-
lo
ss

Results on 40975 (car)

101 102 103 104 105

Elapsed Time (s)

0.02

0.04

0.06

0.08

0.10
Results on 40975 (car) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.5

1.0

1.5

lo
g-
lo
ss

Results on 40978 (Internet-Advertiseme)

101 102 103 104 105

Elapsed Time (s)

0.12

0.14

0.16

0.18

0.20
Results on 40978 (Internet-Advertiseme) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.35

0.40

lo
g-
lo
ss

Results on 40981 (Australian)

101 102 103 104 105

Elapsed Time (s)

0.32

0.34

0.36

0.38

0.40

Results on 40981 (Australian) without rf
rf random auto-sklearn GAMA naive quasi-naive

1163Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

0.6

0.8

1.0

1.2

lo
g-
lo
ss

Results on 40982 (steel-plates-fault)

101 102 103 104 105

Elapsed Time (s)

0.54

0.56

0.58

0.60

0.62

Results on 40982 (steel-plates-fault) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.04

0.06

0.08

0.10

0.12

lo
g-
lo
ss

Results on 40983 (wilt)

101 102 103 104 105

Elapsed Time (s)

0.04

0.06

0.08

0.10

0.12

Results on 40983 (wilt) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.20

0.25

0.30

0.35

lo
g-
lo
ss

Results on 40984 (segment)

101 102 103 104 105

Elapsed Time (s)

0.18

0.20

0.22

0.24

0.26

Results on 40984 (segment) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 40996 (Fashion-MNIST)

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

Results on 40996 (Fashion-MNIST) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

lo
g-
lo
ss

Results on 41027 (jungle chess 2pcs ra)

101 102 103 104 105

Elapsed Time (s)

0.25

0.30

Results on 41027 (jungle chess 2pcs ra) without rf
rf random auto-sklearn GAMA naive quasi-naive

1164 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

2

4

6

lo
g-
lo
ss

Results on 41142 (christine)

101 102 103 104 105

Elapsed Time (s)

0.52

0.54

0.56

0.58

0.60

Results on 41142 (christine) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.425

0.450

0.475

0.500

lo
g-
lo
ss

Results on 41143 (jasmine)

101 102 103 104 105

Elapsed Time (s)

0.42

0.44

0.46

0.48

0.50
Results on 41143 (jasmine) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.3

0.4

0.5

0.6

lo
g-
lo
ss

Results on 41144 (madeline)

101 102 103 104 105

Elapsed Time (s)

0.300

0.325

0.350

0.375

0.400
Results on 41144 (madeline) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1

2

3

4

lo
g-
lo
ss

Results on 41145 (philippine)

101 102 103 104 105

Elapsed Time (s)

0.425

0.450

0.475

0.500
Results on 41145 (philippine) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.15

0.20

0.25

0.30

0.35

lo
g-
lo
ss

Results on 41146 (sylvine)

101 102 103 104 105

Elapsed Time (s)

0.14

0.16

0.18

0.20

0.22

Results on 41146 (sylvine) without rf
rf random auto-sklearn GAMA naive quasi-naive

1165Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

1

2

lo
g-
lo
ss

Results on 41150 (MiniBooNE)

101 102 103 104 105

Elapsed Time (s)

0.14

0.16

0.18

0.20

0.22

Results on 41150 (MiniBooNE) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.35

0.40

0.45

lo
g-
lo
ss

Results on 41156 (ada)

101 102 103 104 105

Elapsed Time (s)

0.325

0.350

0.375

0.400
Results on 41156 (ada) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.4

0.6

0.8

lo
g-
lo
ss

Results on 41157 (arcene)

101 102 103 104 105

Elapsed Time (s)

0.35

0.40

0.45

Results on 41157 (arcene t rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.2

0.3

0.4

0.5

0.6

lo
g-
lo
ss

Results on 41158 (gina)

101 102 103 104 105

Elapsed Time (s)

0.14

0.16

0.18

0.20

0.22

Results on 41158 (gina) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

lo
g-
lo
ss

Results on 41159 (guillermo)

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

Results on 41159 (guillermo) without rf
rf random auto-sklearn GAMA naive quasi-naive

1166 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 41161 (riccardo)

101 102 103 104 105

Elapsed Time (s)

0.05

0.10

0.15

0.20

0.25
Results on 41161 (riccardo) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

lo
g-
lo
ss

Results on 41163 (dilbert)

101 102 103 104 105

Elapsed Time (s)

0.04

0.06

0.08

0.10

0.12

Results on 41163 (dilbert) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

lo
g-
lo
ss

Results on 41164 (fabert)

101 102 103 104 105

Elapsed Time (s)

0.825

0.850

0.875

0.900

Results on 41164 (fabert) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 41165 (robert)

101 102 103 104 105

Elapsed Time (s)

1.8

1.9

Results on 41165 (robert) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1

2

3

4

5

lo
g-
lo
ss

Results on 41166 (volkert)

101 102 103 104 105

Elapsed Time (s)

1.0

1.1

Results on 41166 (volkert) without rf
rf random auto-sklearn GAMA naive quasi-naive

1167Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

2

4

6

8

lo
g-
lo
ss

Results on 41167 (dionis)

101 102 103 104 105

Elapsed Time (s)

2.0

2.5

Results on 41167 (dionis) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1

2

3

4

lo
g-
lo
ss

Results on 41168 (jannis)

101 102 103 104 105

Elapsed Time (s)

0.70

0.72

0.74

0.76

0.78

Results on 41168 (jannis t rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

3

4

5

6

lo
g-
lo
ss

Results on 41169 (helena)

101 102 103 104 105

Elapsed Time (s)

2.7

2.8

2.9

3.0

3.1
Results on 41169 (helena) without rf

rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

0.4

0.5

0.6

lo
g-
lo
ss

Results on 42732 (sf-police-incidents)

101 102 103 104 105

Elapsed Time (s)

0.40

0.45

0.50

0.55

Results on 42732 (sf-police-incidents) without rf
rf random auto-sklearn GAMA naive quasi-naive

101 102 103 104 105

Elapsed Time (s)

1

2

3

4

lo
g-
lo
ss

Results on 42733 (Click prediction sma)

101 102 103 104 105

Elapsed Time (s)

0.45

0.50

0.55

Results on 42733 (Click prediction sma) without rf
rf random auto-sklearn GAMA naive quasi-naive

1168 Machine Learning (2023) 112:1131–1170

1 3

101 102 103 104 105

Elapsed Time (s)

1

2

3

lo
g-
lo
ss

Results on 42734 (okcupid-stem)

101 102 103 104 105

Elapsed Time (s)

0.62

0.64

0.66

0.68

0.70
Results on 42734 (okcupid-stem) without rf

rf random auto-sklearn GAMA naive quasi-naive

Acknowledgements We thank Matthias Feurer and Pieter Gijsbers for their remarkable support in adjusting
auto-sklearn and GAMA for our evaluations. We also thank the anonymous reviewers who considerably
helped us improve this manuscript and its contribution. Finally, the authors gratefully acknowledge support
of this project by the Paderborn Center for Parallel Computing (PC2), which provided the computational
resources and computing time to run our experiments. This work was supported by the CAPSAB Research
Group at Universidad de La Sabana and the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901).

Author contributions Felix Mohr is the main author of both paper and implementation. Marcel Wever con-
tributed in the manuscript revision as well as the resolution of technical aspects of the evaluation.

Funding Open Access funding provided by Colombia Consortium. This work was supported by the
CAPSAB Research Group at Universidad de La Sabana and the German Research Foundation (DFG) within
the Collaborative Research Center “On-The-Fly Computing” (SFB 901)

Data availability https:// github. com/ fmohr/ naive automl

Declarations

Conflict of interest Eyke Hüllermeier

Ethics approval Not applicable.

Consent to participate Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Boyd, S. P., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1), 1–122.

https://github.com/fmohr/naiveautoml
http://creativecommons.org/licenses/by/4.0/

1169Machine Learning (2023) 112:1131–1170

1 3

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Cachada, M., Abdulrahman, S.M., & Brazdil, P. (2017) Combining feature and algorithm hyperparam-

eter selection using some metalearning methods. In Proceedings of the international workshop on
AutoML@PKDD/ECML 2017 (pp. 69–83)

Chen, B., Wu, H., Mo, W., Chattopadhyay, I., & Lipson, H. (2018). Autostacker: A compositional evolu-
tionary learning system. In Proceedings of the genetic and evolutionary computation conference (pp.
402–409)

Crisan, A., & Fiore-Gartland, B. (2021). Fits and starts: Enterprise use of automl and the role of humans in
the loop. CoRR abs/2101.04296.

de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V., & Pappa, G.L. (2017). RECIPE: a grammar-based framework
for automatically evolving classification pipelines. In European Conference on Genetic Programming
(pp. 246–261). Springer.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Drozdal, J., Weisz, J.D., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M.J., Ju, L., & Su, H. (2020).
Trust in AutoML: exploring information needs for establishing trust in automated machine learn-
ing systems. In IUI ’20: 25th International conference on intelligent user interfaces (pp. 297–307).
ACM

Engels, R. (1996). Planning tasks for knowledge discovery in databases; performing task-oriented user-
guidance. In Proceedings of the second international conference on knowledge discovery and data
mining (KDD-96) (pp 170–175). AAAI Press.

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., & Smola, A. J. (2020). AutoGluon-
Tabular: Robust and Accurate AutoML for Structured Data. CoRR abs/2003.06505.

Escalante, H. J., Montes-y-Gómez, M., & Sucar, L. E. (2009). Particle swarm model selection. Journal
of Machine Learning Research, 10, 405–440.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient and
robust automated machine learning. In Advances in Neural Information Processing Systems (pp.
2962–2970).

Fusi, N., Sheth, R., & Elibol, M. (2018). Probabilistic matrix factorization for automated machine learn-
ing. In: Advances in Neural Information Processing Systems (pp. 3352–3361).

Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., & Vanschoren, J. (2019). An open source
automl benchmark. CoRR abs/1907.00909.

Gijsbers, P., & Vanschoren, J. (2019). GAMA: genetic automated machine learning assistant. Journal of
Open Source Software, 4(33), 1132.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I.H. (2009). The WEKA data
mining software: an update. ACM SIGKDD Explorations 11

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general
algorithm configuration, 6683, 507–523.

Jamieson, K., & Talwalkar, A. (2016). Non-stochastic best arm identification and hyperparameter opti-
mization. In Artificial Intelligence and Statistics, AISTATS’16 (pp. 240–248).

Kandasamy, K., Vysyaraju, K. R., Neiswanger, W., Paria, B., Collins, C. R., Schneider, J., et al. (2020).
Tuning hyperparameters without grad students: Scalable and robust Bayesian optimisation with
dragonfly. Journal of Machine Learning Research, 21, 81:1-81:27.

Kietz, J., Serban, F., Bernstein, A., & Fischer, S. (2009). Towards cooperative planning of data mining
workflows. In Proceedings of the third generation data mining workshop at the 2009 European
conference on machine learning (pp. 1–12). Citeseer

Kietz, J.U., Serban, F., Bernstein, A., & Fischer, S. (2012). Designing KDD-workflows via HTN-planning
for intelligent discovery assistance. In: 5th planning to learn workshop WS28 at ECAI 2012 (p. 10).

Kishimoto, A., Bouneffouf, D., Marinescu, R., Ram, P., Rawat, A., Wistuba, M., Palmes, P.P., & Botea,
A. (2021). Bandit limited discrepancy search and application to machine learning pipeline optimi-
zation. In 8th ICML workshop on automated machine learning (AutoML)

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-weka 2.0: Auto-
matic model selection and hyperparameter optimization in weka. Journal of Machine Learning
Research, 18(1), 826–830.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18,
185:1-185:52.

1170 Machine Learning (2023) 112:1131–1170

1 3

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. (2019).
BOAH: A tool suite for multi-fidelity Bayesian optimization & analysis of hyperparameters. CoRR
abs/1908.06756.

Liu, S., Ram, P., Vijaykeerthy, D., Bouneffouf, D., Bramble, G., Samulowitz, H., et al. (2020). An
ADMM based framework for AutoML pipeline configuration. Proceedings of the AAAI Conference
on Artificial Intelligence, 34, 4892–4899.

Mohr, F., & Wever, M. (2021). Replacing the ex-def Baseline in AutoML by Naive AutoML. In: 8th
ICML workshop on automated machine learning (AutoML).

Mohr, F., Wever, M., & Hüllermeier, E. (2018). ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning, 107(8), 1495–1515.

Mohr, F., Wever, M., Tornede, A., & Hüllermeier, E. (2021). Predicting machine learning pipeline runt-
imes in the context of automated machine learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43, 1–1.

Nguyen, P., Hilario, M., & Kalousis, A. (2014). Using meta-mining to support data mining workflow
planning and optimization. Journal of Artificial Intelligence Research, 51, 605–644.

Nguyen, P., Kalousis, A., & Hilario, M. (2012). Experimental evaluation of the e-lico meta-miner. In:
5th planning to learn workshop WS28 at ECAI (pp. 18–19).

Olson, R.S., & Moore, J.H. (2019). TPOT: A tree-based pipeline optimization tool for automating machine
learning. In Automated machine learning: Methods, systems, challenges, The Springer series on chal-
lenges in machine learning (pp. 151–160). Springer

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12, 2825–2830.

Rakotoarison, H., Schoenauer, M., & Sebag, M. (2019). Automated machine learning with monte-carlo tree
search. In Proceedings of the twenty-eighth international joint conference on artificial intelligence (pp.
3296–3303). https:// www. ijcai. org/.

Statnikov, A. R., Tsamardinos, I., Dosbayev, Y., & Aliferis, C. F. (2005). GEMS: A system for automated
cancer diagnosis and biomarker discovery from microarray gene expression data. International Jour-
nal of Medical Informatics, 74(7–8), 491–503.

Thornton, C., Hutter, F., Hoos, H.H., & Leyton-Brown, K. (2013). Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. In The 19th ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 847–855).

Vanschoren, J. (2019). Meta-learning. In Automated machine learning - methods, systems, challenges, The
Springer series on challenges in machine learning (pp. 35–61). Springer.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). OpenML: Networked science in machine
learning. SIGKDD Explorations, 15(2), 49–60.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241–259.
Yang, C., Akimoto, Y., Kim, D.W., & Udell, M. (2019). OBOE: Collaborative filtering for AutoML model

selection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining (pp. 1173–1183).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://www.ijcai.org/

	Naive automated machine learning
	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	3.1 Basic pipeline optimization approaches
	3.2 Efficiency-enhancing technologies
	3.3 Simplifying approaches

	4 and
	4.1 Assumptions
	4.1.1 Naivety assumption
	4.1.2 Separate algorithm selection and algorithm configuration

	4.2 The optimizer
	4.3 The optimizer

	5 Evaluation
	5.1 Experiment setup
	5.1.1 Compared optimizers and search space definition
	5.1.2 Benchmark datasets
	5.1.3 Validation mechanism and performance metrics
	5.1.4 Resources and used hardware

	5.2 Results
	5.2.1 RQ 1: Do the naive approaches find better pipelines than state-of-the-art (SOTA) optimizers in the short run?
	5.2.2 RQ 2: By which margin can SOTA optimizers outperform the naive approaches in the long run and how long do they need to achieve such a performance?
	5.2.3 RQ 3: To which degree is the naivety assumption justified as far as algorithm selection is concerned?

	5.3 Discussion

	6 Conclusion
	Appendix A: Datasets
	Appendix B: Considered algorithms
	Appendix C: Final result table
	Appendix D: Slot analysis in detail
	Appendix E: Performance plots over time
	Acknowledgements
	References

