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Abstract
Image processing is a very broad field containing various areas, including image super-resolution (ISR) which re-represents

a low-resolution image as a high-resolution one through a certain means of image transformation. The problem with most

of the existing ISR methods is that they are devised for the condition in which sufficient training data is expected to be

available. This article proposes a new approach for sparse data-based (rather than sufficient training data-based) ISR, by the

use of an ANFIS (Adaptive Network-based Fuzzy Inference System) interpolation technique. Particularly, a set of given

image training data is split into various subsets of sufficient and sparse training data subsets. Typical ANFIS training

process is applied for those subsets involving sufficient data, and ANFIS interpolation is employed for the rest that contains

sparse data only. Inadequate work is available in the current literature for the sparse data-based ISR. Consequently, the

implementations of the proposed sparse data-based approach, for both training and testing processes, are compared with the

state-of-the-art sufficient data-based ISR methods. This is of course very challenging, but the results of experimental

evaluation demonstrate positively about the efficacy of the work presented herein.
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1 Introduction

The image processing techniques by which a low-resolu-

tion (LR) image is transformed into a high resolution (HR)

are known as image super-resolution (ISR). The reasons for

the existence of LR images in the real world are multi-fold,

including: lack of sufficient budget (and hence, unavail-

ability of HR equipment but use of ordinary cameras) and

limitation of image transmission channels (e.g., satellite to

ground station). It is obvious that ISR is beneficial for the

common users of the otherwise LR images. Therefore,

there are different ISR techniques [1–9] in the literature,

designed to convert LR images into respective HR images.

Amongst them, the learning-based approaches are one

family of the most popular, especially as they have been

developed along together with the contemporary Machine

Learning (ML) techniques.

By using a substantial amount of training data, the

existing learning-based SR techniques can produce a

mapping relationship between the corresponding LR and

HR images during the training process. More particularly,

to simulate the underlying relationship between LR and HR

images linear mappings are firstly tried and used [5]. Such

techniques are quite simple to implement but at the cost of

accuracy, which is not desirable and may be counter-pro-

ductive to the original purpose of conducting ISR. Conse-

quently, other techniques which involve nonlinear

mappings are created in an effort to improve accuracy.

Contemporary deep learning (DL) techniques such as deep

convolutional neural network (CNN) has been employed to

realise the nonlinear mappings between the LR and HR

images [2]. Unfortunately, such superior performance is
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obtained at the cost of requiring a huge amount of training

data (and hardware resources as well). Besides, despite

promising accuracy results, the resulting learned mapping

relationship is not easy for interpretation and explanation.

Fuzzy rule-based approaches [3], however, are generally

interpretable. Such approaches utilise a set of fuzzy rules to

generate an interpretable nonlinear mapping between the

LR and HR images, during their training process.

This has led to an inspiring motivation to employ

ANFIS [10] to produce promising accuracy results based

on the learned fuzzy rules [11]. However, it is still relying

upon the strong presumption that there ought to be suffi-

cient training data. Nevertheless, that is not always possible

for many real-world applications as there are certain ima-

ges or regions of images which are not available or certain

information is not visible or lost. As such, situations where

insufficient training data are available create a significant

challenge for ISR through data-driven learning. Based on

this observation, ANFIS interpolation techniques have

been developed to provide a potentially credible solution to

learning with limited data overall. This type of approach

works by training one ANFIS with sparse data through

interpolating two adjacent ANFIS models that have been

trained with sufficient data, reading to a desirable, and

interpretable, non-linear mapping for the problem area

where no sufficient training data are available [12]. Note

that the interpolation here is carried out at the fuzzy rule

level, not at the raw data level.

Following the ideas of such an approach, this paper

presents an innovative implementation of sparse data-based

ISR technique with the support of ANFIS interpolation.

More specifically, the implementation process divides the

given image training data sets into several data subsets.

After that, the divided data subsets are categorised into two

major subcategories, containing sufficient and sparse data

subsets, respectively. Conventional ANFIS learning is

utilised for the former subcategory of the data subsets to

learn corresponding mappings, whilst ANFIS interpolation

is exploited for the latter subcategory of the data subsets to

interpolate the corresponding mappings. Overall, the main

contributions of this paper are as follows:

– A novel image super-resolution approach that works on

sparse data, motivated by an extensive review of image

super-resolution methods and facilitated by the most

recent ANFIS interpolation technique.

– A complete description of the computational mecha-

nism that implements the proposed approach, supported

with an analysis of algorithm complexity.

– An implemented system that demonstrates the efficacy

of the introduced computational mechanism, applied to

various natural images.

The rest of this paper is organised as follows. Section 2

presents the problem statement of ISR. Section 3 intro-

duces an overview of the recently developed ANFIS

interpolation techniques. Section 4 details the implemen-

tation of the training and testing process of the proposed

ISR approach via ANFIS interpolation. Experimental

evaluation is included and discussed in Sect. 5, demon-

strating the efficacy of this work. Finally, Sect. 6 concludes

the paper and discusses identified further research.

2 Problem statement

The basic task of ISR is to create an HR image from the

provided LR image. LR images contain a lower number of

pixels and hence a lower level or amount of detailed

information, whilst HR images contain a higher number of

pixels (i.e., higher pixel density) and hence more detailed

information. Applications of ISR are wide-reaching,

including: security surveillance [13], medical diagno-

sis [14, 15], face recognition [16] and reconstruction [17],

remote sensing for earth observation [18], astronomical

observation [19], bio-metric information identifica-

tion [13], etc. Such vast applications of ISR illustrate its

importance and enormous attraction in the general fields of

image processing and computer vision [19].

To obtain high-quality images, there is no need to

always improve the quality of hardware devices or to

purchase expensive devices, because ISR techniques can

help to materialise this from software perspective.

According to different input LR information, ISR tech-

niques can be subdivided into two main groups, namely

single frame and multi frame [20–23]. If there are multiple

images with subpixel alignment or multiple observations

(as the LR input) for the same scene of interest, then the

technique to create an HR image from the multiple LR

images is known as multi-frame ISR. In other cases, where

only limited LR data are available without multiple images

of the same scene, the technique to create an HR image

from such a single LR is known as single-frame ISR.

Nearly two decades ago, the focus of ISR research was

focused on the frequency domain. By using the Fourier

transform or wavelet transform, an LR image is trans-

formed into the corresponding HR image (in the frequency

domain). Yet, such a straightforward process does not take

into account of either prior information or degradation

process of the image [19]. They are of rather restrictive

potential to cope with complex situations. The underlying

drawbacks of the approaches established in the frequency

domain have been addressed by the spatial domain-based

ISR techniques, and the contemporary spatial domain

techniques are subdivided into learning-based and recon-

struction-based ISR. The learning-based approaches work
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by borrowing ideas from data-driven machine learning

research. For instance, in relevance to the problems tackled

in this work, there exist ISR techniques using fuzzy rules-

based approaches. In such work, a fuzzy rule-based algo-

rithm is exploited, through the manipulation of learned

fuzzy rules to derive the nonlinear relationship mappings

between the LR and corresponding HR images [24]. On the

contrary, reconstruction-based ISR utilises appropriately

designed priors (edges) within an image reconstruction

process to recover the missed details [25].

Note that fuzzy models are constructed using either

human expertise (which is directly provided by domain

experts, typically represented in if-then production rules) or

rules that are induced computationally from given data

acquired from the problem domain, or a mixture of both.

Data-driven models in general, and deep learning algo-

rithms in particular are constructed from the data. A key

difference between these two types of model is their

inherent interpretability (or in fact, non-interpretability for

DL models). DL models are often referred to as black-box

as their reasoning is not explainable, unlike fuzzy rule-

based models, despite their usually superior modelling

accuracy. Besides, the computational derivation of a DL

requires a huge amount of data. The particular modelling

scheme employed herein is based on ANFIS, which offers

a bridge between pure data-driven and pure rule-based

approaches, capable of working on sparse data.

Considering the fundamental start point for the present

ISR problem, that is, there lacks sufficient training data

overall, the research reported herein aims to deal with

learning-based single-frame ISR. For this type of problem,

the key challenge is lack of multiple LR observations. In

other words, training data that may be used to perform the

learning of the nonlinear mapper (or ANFIS) are limited

overall. Of course, this does not mean that such limitation

in data is universal throughout the entire problem space;

otherwise, no data-driven methods may work in the first

place.

3 ANFIS interpolation

ANFIS interpolation [12, 26] is designed to resolve the

problem of sparse data in a target domain (where an

unknown image region is to be identified in terms of its

underlying physical nature), providing an effective target

ANFIS model through rule interpolation, with the support

of its two adjacent source ANFIS models (about regions of

an understood nature). In general, a target domain can be

represented as At, whilst the two source domain ANFISs

can be represented as As1 and As2, respectively. The

ANFIS interpolation mechanism is derived from the clas-

sical approach to Fuzzy Rule Interpolation (FRI) [27–29].

An overview of the ANFIS Interpolation approach is given

in Fig. 1. To be complete, the common process of ANFIS

interpolation is outlined in three key steps, as discussed in

the following subsections.

3.1 Rule dictionary construction

The purpose of the first step, named rule dictionary, is to

memorise all the antecedent and consequent parts of the

fuzzy rules extracted from the two source ANFISs As1 and

As2. These two models or their underlying equivalent fuzzy

rules are learned through conventional ANFIS training

process. The memorised information will be utilised in the

interpolation process of the target domain At.

For the present application to ISR, any fuzzy rules Ri

(i 2 f1; 2; . . .;Ng) are considered as of a very simple form

in the general TSK rule representation [30]. Particularly,

the ith extracted rule can be expressed as follows:

Ri : if x is Ai then zi ¼ pixþ ri ð1Þ

where x is an input variable, denoting the LR grey value at

a certain location within a given image, with its fuzzy set

value represented by Ai; and zi is the ith rule’s output

(namely, the HR grey value) computed as a linear combi-

nation of the fuzzy value of x modified with two parameters

pi and ri. As such, ISR is considered as a regression

problem with pi and ri being the regression coefficients,

performing the regression from an LR image to an HR

image.

Note that in general, an LR image may be first repre-

sented by its features extracted from it; therefore, the rule

antecedent part is to be depicted with multiple attributes,

each of which represents a certain image feature. An

extension from the above simple form of TSK rules to such

multi-antecedent rules is not difficult and the correspond-

ing interpolation methods also exist [12], but this is beyond

the scope of this paper.

From the fuzzy rules retracted from the given source

ANFISs, their antecedent parts and consequent parts can be

extracted, respectively. The resulting antecedent parts and

consequent parts are collated separately to generate a rule

dictionary (with any necessary reorganisation for easy

indexing) such that

D ¼ fDa;Dcg ð2Þ

where Da is the part of the rule dictionary containing all

antecedent parts of the fuzzy rules, expressed by

Da ¼ fA1 A2 � � � ANg ð3Þ

and Dc is the part of the rule dictionary containing all

consequent parts of the fuzzy rules, expressed as
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Dc ¼
p1 p2 � � � pN

r1 r2 � � � rN

� �
ð4Þ

where each column in Eq. 4 indicates the linear coefficients

in the consequent part of a certain rule. For instance, pN
and rN represent the linear coefficients of the consequent

part of the Nth TSK-type fuzzy rule, as per the general rule

expression given in Eqn. (1).

As far as the total number of the rules is concerned, it is

calculated by combining the number of all the rules from

both the source ANFISs, namely ANFIS1 (As1) and

ANFIS2 (As2). For instance, if the number of rules in As1

and As2 is n1 and n2, respectively. Then the total number of

rules in the rule dictionary will be N ¼ ðn1 þ n2Þ.

3.2 Intermediate ANFIS creation

Once the rule dictionary is constructed (in the previous

step), the next step is to create an intermediate ANFIS. To

do this, ANFIS interpolation is applied that works essen-

tially by interpolating a group of fuzzy rules. The starting

point is to divide the sparse training data into C clusters

using the popular K-Means algorithm, with C being a

domain-dependent number that may be specified empiri-

cally. However, a more advanced clustering method, e.g.,

one of those as described in [31, 32] may be used if pre-

ferred, particularly for situations where it is desirable to

minimise human intervention, so that the required clus-

tering process can be automated (whilst this is beyond the

scope of the present work).

Conceptually, let the set of training data (sparse or not) be

denoted as fðx; zÞg). The generated clusters in the first step

help to produce the fuzzy rules with each being interpolated

from the centre of a different cluster. From these interme-

diate rules, an intermediate ANFIS is constructed by simply

aggregating them together as per traditional interpretation of

a set of TSK rules as an ANFIS. In implementation, the

centre cðkÞ of each cluster Ck is first computed, where

k 2 f1; . . .;Cg. To create an intermediate ANFIS, choose L

closest rule antecedents fAi 2 Da; i ¼ 1; . . .; Lgwith respect
to cðkÞ. These rule antecedent parts are taken from Da of the

rule dictionary generated in the previous step. This is

accomplished by the use of a distance metric, say for

Fig. 1 Outline of ANFIS

interpolation (adapted from

[12])
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simplicity, di ¼ dðAi; c
ðkÞÞ ¼ jRepðAiÞ � cðkÞj, where

RepðAiÞ indicates the representative value of the fuzzy set

Ai [28]. Those L rule antecedents fAig whose distance di is

smallest are selected, where L stands for the index set. To

reduce computational complexity, the value of L is chosen to

be two [33], unless otherwise stated.

The next step of intermediate ANFIS generation is to

identify the best reconstruction weights for the closest rules

which were selected in the previous step. Such a problem is

an optimisation problem which can be resolved by com-

puting the following:

wðkÞ ¼ min
wðkÞ

jjcðkÞ �
X
i2L

RepðAiÞwðkÞ
i jj2; s:t:

X
i2L

w
ðkÞ
i ¼ 1

ð5Þ

where w
ðkÞ
i implies the relative weighting of Ri. The con-

straint for such an optimisation problem is that the sum of

all weights is equal to one and it can be established that the

solution to this problem is:

wðkÞ ¼ G�11

1TG�11
ð6Þ

where 1 indicates a column vector of ones, G ¼ ðcðkÞ1T �
YÞTðcðkÞ1T � YÞ denotes the well-defined Gram matrix, and

the chosen rule antecedents are shown in the columns of Y,

which stands for a matrix containing values of the selected

neighbours of cðkÞ. To aggregate information embedded

within the kth cluster, weights wðkÞ are applied to both the

collated antecedent parts and the consequent parts. This

practice follows the traditional FRI approaches as dis-

cussed in [28, 34], with the result being represented as:

Rk : if x is Ak; then zk ¼ pkxþ rk ð7Þ

where k ¼ 1; 2; . . ., C with the following parameters in

describing the intermediate, interpolated ANFIS:

Ak ¼
X
i2L

w
ðkÞ
i Ai; pk ¼

X
i2L

w
ðkÞ
i pi; rk ¼

X
i2L

w
ðkÞ
i ri ð8Þ

with k ¼ 1; 2; . . .,C.

3.3 ANFIS fine-turning

The next and final step is to fine-tune the previously gen-

erated intermediate, interpolated ANFIS. That is, the

interpolated ANFIS is treated as an initial input to this

ANFIS fine-tuning process in order to obtain the final

ANFIS for the target domain. This fine-tuning process

makes direct use of the standard ANFIS training technique

as discussed in [10]. Importantly, the otherwise challenge

of fine-tuning an ANFIS with limited training data is

resolved. This is because the initial setup for the expected

network of fine-tuning is provided by the interpolated

intermediate ANFIS.

3.4 Algorithm summary

The process of ANFIS interpolation as outlined in the

above three steps can be summarised as given in Algorithm

1, for easy reference.

3.5 Complexity analysis

As shown in Algorithm 1, ANFIS interpolation is com-

prised of three phases, namely: (1) Rule dictionary con-

struction, (2) Intermediate AFIS creation, and (3) Fine-

tuning process. Note that computationally, the last phase

(fine-tuning) is the same for traditional ANFIS training.

Thus, for complexity analysis, only the first two steps are

explored. In the proposed implementation, triangular

membership functions defined by their respective three

characteristic points [35] are employed for fuzzy set rep-

resentation, owing to their popularity and simplicity in the

existing FRI literature.

The main job of the first step in ANFIS interpolation is

to extract rule antecedent parts (called premise parameters

in the literature) Da and rule consequent parts (parameters)

Dc of the fuzzy rules, from the well-trained two source

ANFISs, namely As1 and As2. In the present application for

ISR, ANFIS can be represented as a 5-layer network [6].

Algorithm 1: ANFIS Interpolation

Input:

1. Two source ANFISs: As1,As2

2. Sparse training data

1) Rule Dictionary Construction

1. Extract fuzzy rules {Ri} from As1 and As2;
2. Construct antecedent part Da by Eqn. (3);
3. Construct consequent part Dc by Eqn. (4);

2) Intermediate ANFIS Creation

1. Divide sparse training data into C clusters;
2. For each cluster centre c(k), interpolate rule Rk:

(a) Select L closest rules in Da;
(b) Compute weights w(k) for chosen atoms;
(c) Generate new rule Rk using weights w(k):

3. Integrate all interpolated rules.
3) ANFIS Fine-tuning

Output:

Interpolated ANFIS: At
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Thus, antecedent parts are obtained at the first layer, whilst

the consequent part of the rules are obtained at the fourth

layer. The antecedent parameters are essentially (triangu-

lar) fuzzy sets; hence, each contains three sub-parameters,

a0, a1, a2 for instance. The total number of antecedent

parameters is therefore 3N. The number of parameters for

the consequent part is obviously 2N. Hence, the time

complexity to extract one single rule from the source

ANFISs is O(5N). Similarly, the time complexity to com-

pute all rules of the rule dictionary from the source ANFISs

is N � Oð5NÞ ¼ Oð5N2Þ.
The second step in ANFIS interpolation is a bit more

complex, consisting of C times repetitive three sub-stages:

(a) computing Euclidean distance and sorting the results,

with a time complexity for the two operations being O(N)

and OðN2Þ, respectively; (b) computing the weights for

each possible rule to be chosen, hence its complexity is

O(L); and (c) computing weighted average for each rule

with the complexity of O(5N). Hence, the estimated time

complexity for the second step is C � ð½OðNÞ þ OðN2Þ þ
OðLÞþ Oð5NÞ� ¼ OðCn2ÞÞ.

Collectively, the entire time complexity of the proposed

ANIS interpolation including the third fine-tuning step is

estimated as Oð5N2Þ þ OðCn2Þ ¼ OðCn2Þ (since normally

C[ 5). In nutshell, due to the fact that both N and C are

not a large number, and the proposed implementation is

generally practical.

4 Implementation

This section describes the implementation of both the

training and the testing phases of the proposed sparse data-

based ISR algorithm. The overall flowchart is depicted in

Fig. 2.

4.1 Implementation of training phase

For a given application problem, a number of steps need to

be followed in order to construct a set of training images. If

the given problem is for the analysis of natural images (as

to be dealt with in part of the experimental investigation

later), then such steps are: (i) Collecting sharp natural

images with various types of image, including: animals,

people, plants, buildings, etc. as HR images (typically in

Bitmap format). (ii) Using a certain scale factor of s to

downsample the training HR images to form the corre-

sponding LR images. (iii) Running bi-cubic interpolation

with a predefined scale size to scale up the downsampled

version of LR images, such that the size of both LR and HR

images becomes the same, but the LR images are still of

the lower resolution.

The results from the above steps form the required

training data in terms of pixel pairs of LR-HR images.

Such data are partitioned into source and target domains,

with the source domain containing sufficient data and tar-

get domain having sparse data. In particular, the existing

data set is partitioned into several sub-datasets of sufficient

and sparse training data, again in terms of image pixel

pairs. Each subset of sufficient data is fed to the standard

ANFIS training process [10] (which is a simple procedure)

to derive the required a source domain ANFIS. For those

sparse sub-datasets (each of which lacks sufficient training

data), the same standard ANFIS learning process is not

feasible to produce any accurate network. Consequently, to

improve the performance of the sparse data-based training

process, ANFIS interpolation is employed to generate the

required ANFISs. In nutshell, standard ANFISs and inter-

polated ANFISs are learned for the image datasets with

sufficient and those with sparse data, respectively.

From those well trained ANFISs, two ANFISs which are

in the nearest neighbourhood of a given sparse data subset

are selected to act as the source ANFISs, in an effort to

interpolate the target ANFIS that will cover the sparse data

and the similar data points not experienced before. The

underlying neighbourhood relationship between data sets is

calculated on the basis of their topological locations of the

image pixels. To calculate the distance between the centres

of two subsets of data, Euclidean distance metric (or any

other if preferred) is employed. From this, the ANFIS in a

certain target domain can then be computed through the

process of ANFIS interpolation as previously discussed,

using the two nearest source ANFISs. That is, with respect

to the rule dictionary, two nearest antecedents from Da are

selected to perform ANFIS interpolation. Note that two

nearest neighbours are used here as with the common

practice in the literature, to minimise computational cost

(in addition to minimising the number of source ANFISs).

Mathematically, however, more neighbouring ANFISs may

be used to perform the interpolation in the exact same way.

To differentiate between sufficient and sparse data sets,

a naive way is to employ a manually set threshold: If the

cardinality of a subset is greater than the threshold, it is

then regarded as one that contains sufficient data. However,

this adversely affects the automation level of the approach

and also, makes it sensitive to such a manually defined

value. In this work, to increase the automation level, the

following approach is used instead to classify any data

subset as either a sufficient or sparse one. Let there be i

data subsets, compute the cardinality of the data points in

each subset ni. After that, calculate their average na. If the

cardinality of the data in the ith subset ni\ana, then this

subset is deemed to be a sparse data set and vice versa for a

sufficient data subset. Here, a is a pre-determined small

coefficient that may be empirically adjusted.
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4.2 Implementation of testing phase

ANFIS interpolation for ISR works on raw pixel values.

The range of the pixels in an LR image is fuzzified with

respect to a qualitative quantity space defined by a certain

number of fuzzy numbers [35] at the input of each ANFIS

network. In this work, for illustration of the underlying

ideas, the number of fuzzy values is specified by three.

That is, an LR image can be re-expressed using three

categorical pixel values: small, medium and large. Without

losing generality, the illustrative implementation is pre-

sented surrounding three trained ANFISs: two source net-

works ANFIS As1, ANFIS As2 and an interpolated target

ANFIS At. This is sufficient to explain the proposed ideas

since any other target ANFISs can be derived by following

the same approach.

As the illustration of the implementation that tests an

interpolated ANFIS, suppose that Small and large pixel

values are fed into the two source ANFISs As1 and As2,

respectively, whilst At is fed with those pixel values within

the medium range. From this, the interpolated ANFIS

learned from the other two networks, supported with the

sparse data subset of medium pixels, is set to take novel LR

medium pixel values as input and translates them into

respective HR pixel values. The results of this process are

then converted into conventional representation of an HR

image, supported with post-processing that is applied to

further reduce noise.

The implementation of the testing phase is to facilitate

the analysis and comparison of the proposed approach with

potential competitors. Given the extremely limited litera-

ture for FRI application to the problem of ISR, three

models are considered in this initial work: Model 1 is the

reference model that has been trained with sufficient data

using the standard ANFIS learning mechanism in the target

domain (note that this is of course for evaluation purpose,

in reality such domains do not have sufficient data for

learning the network); Model 2 is one that has been trained

Fig. 2 Flowchart for implementation of proposed ISR, reflecting both training and testing phases
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using just sparse data with the standard ANFIS learning

mechanism (where the otherwise available sufficiently

available training data is deliberately reduced to a rather

sparse dataset); and Model 3 is the one that implements the

proposed ANFIS interpolation-based approach for ISR,

namely, an ANFIS trained by interpolating two nearest

neighbouring well-trained ANFISs. These are summarised

as shown in Table 1.

Note that the aforementioned three models are given the

same information on both source domains (1 and 2) but

different information content on the target domain (which

is to be identified). Significant differences therefore exist in

the implementation of these models: Model 1 is the refer-

ence model, performing the LR to HR nonlinear mapping

with an ANFIS well trained using a sufficient amount of

data in the target domain without the need of any inter-

polation. Model 2 performs the mapping using an ANFIS

trained with the sparse data in the target domain, without

involving interpolation. Model 3 implements the proposed

approach, performing the nonlinear mapping from an LR

image to an HR image in the target domain that contains

only sparse data, using the ANFIS interpolated from two

neighbouring source ANFISs.

As described previously, during the training phase, a

given training dataset is partitioned into a certain number

of clusters along with the identified centre of each corre-

sponding cluster. Based on such a partition, an ANFIS is

either interpolated or trained (depending on whether the

data set is sparse or sufficient) per cluster (and its centre).

In the testing phase, these trained ANFISs act as the

mapper that translate an LR pixel representation into its

corresponding HR pixel value. That is, when a testing

image X is present, the learned ANFISs simply serve as a

nonlinear mapper, working through the following steps.

From the newly presented LR image, partition its pixels

with respect to the clustered subsets returned by the

training phase. This is implemented by computing the

topological distance (using Euclidean distance metric)

between an input LR pixel and the individual cluster cen-

tres. Then, the ANFIS whose corresponding cluster centre

has the smallest distance with the testing LR pixel value is

chosen. Each pixel value of the input image is therefore fed

through the chosen ANFIS, resulting in the outcome which

is regarded as the raw SR pixel value at the corresponding

topological location as that of the LR pixel being mapped.

Repeating this process for each of the input pixels of the

entire LR image will complete the nonlinear translation of

the LR image to the HR one, leading to a raw reconstructed

SR image. Such a raw image may contain additional noise

caused by the inference mechanism. Thus, a denoising

filter such as Non-Local Means (NLM) [36] can be

exploited to reduce the noise effects. To further refine the

SR image, a popular post-processing technique, named

Iterative Back Projection (IBP) [37], is employed. This

completes the required ISR process, obtaining a HR image

that is of higher resolution than the original LR image. The

entire process of the proposed implementation is sum-

marised in Algorithm 2.

Table 1 Three implemented models for evaluation

Models Target domain Interpolation

Model 1 (Reference) Sufficient Data No

Model 2 (Ablation) Sparse data No

Model 3 (Proposed) Sparse data Yes

Algorithm 2: ISR with Sparse Data

A. Training Phase

Input:

Training image data set {Z}
1. Extract LR-HR pixel pairs from {Z};
2. Divide pixel pairs into K subsets: {Pi|

∑
i i = K}

using K-Means clustering algorithm;
3. Compute centre of each cluster Ci for each subset P

4. For each subset Pi with sufficient data:
Train ANFIS Ai with standard learning method;

5. For each Pi with sparse data:
Choose 2 closest ANFISs as source ANFISs;
Interpolate ANFIS using ANFIS interpolation.

Output:

Multiple learned ANFIS models {Ai}
and associated cluster centres {Ci}

B. Testing Phase

Input:

Testing LR image X

Trained ANFIS {Ai} and cluster centres {Ci}
1. Extract pixels from X;
2. Divide pixels into Pi subsets with respect to each C

3. For each pixel xi ∈ Pi:
Choose relevant ANFIS model Ai;
Inference using Ai;

4. Integrate HR pixels to form HR image Y ;
5. Post-processing:

Suppress noise using NLM filter;
Refine resulting image using IBP.

Output:

HR image Y
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5 Experimental evaluation

This section provides the experimental results on the

evaluation of the proposed approach. Two common per-

formance criteria are considered for performance analysis.

5.1 Performance criteria

Amongst typical performance metrics for ISR, peak-signal-

to-noise ratio (PSNR) and Structure SIMilarity (SSIM) are

the two most commonly adopted. Thus, these are used

herein also. Generally speaking, the larger the values of

both PSNR and SSIM the better the performance of the

reconstructed HR images.

5.1.1 Peak-signal-to-noise ratio (PSNR)

As the name of this metric indicates, it calculates the peak-

signal-to-noise ratio between a given pair of images. It is

based on the assessment of the conventional mean square

error (MSE). In fact, both PSNR and MSE can be used as

the performance metrics for ISR. In particular, MSE is the

cumulative squared error between the ground truth (origi-

nal) HR image Y and the reconstructed HR image Ŷ, which

is expressed as follows:

MSE ¼ k Y� Ŷ k2F
MN

ð9Þ

where k : kF denotes the Frobenius norm [38] of a matrix

with the length and width of an image being denoted by M

and N, respectively. It is evident from the nature of PSNR

that its values are wide-ranging; therefore, to achieve a

consistent range of values (for easy illustrating the relative

performance comparison), logarithmic decibel is employed

as follows:

PSNR ¼ 10 log10ð
V2
max

MSE
Þ ð10Þ

where Vmax denotes the maximal pixel value of any image.

In this work, it is taken as 255.

5.1.2 Structured SIMilarity (SSIM)

Again, as hinted by its name, SSIM is used to calculate the

similarities between the ground truth (original) HR image

Y and the reconstructed (estimated) HR image Ŷ, which is

expressed in the following:

SSIM ¼
4lYlŶrY;Ŷ

ðl2Y þ l2
Ŷ
Þðr2Y þ r2

Ŷ
Þ ð11Þ

where lY and lŶ are the mean values, and rY and rŶ are

the corresponding standard deviation values, of the pixel

values within images Y and Ŷ, respectively. Obviously, the

values of SSIM vary between 0 and 1.

5.2 Experimental results

To evaluate each compared ANFIS model, test images that

are commonly used in assessing the quality of an ISR

solution mechanism in the literature are employed here.

Particularly, the dataset used in running the experimental

studies consists of natural images involving different

objects such as human, animal, aeroplane, flowers, etc. The

images are publicly available and can be obtained

from [39]. Experimental results by employing both sparse

data-based as well as sufficient data-based models are

included in the experimental evaluation.

Recall that this research is aimed to produce a novel and

working algorithm for sparse data-based ISR. The experi-

mental analysis is therefore designed to consist of two sets

of distinct experiments on ISR. First set concerns with the

situation where full training data are available, and the

second is with sparse data. This helps reflect the potential

benefits of applying the sparse data-based ANFIS inter-

polation approach should there be no full data available. It

also supports the comparison between the competitive

performance of the proposed implementation with that of

the ISR algorithms in the literature. For this purpose, in the

experimental investigations, although full data sets are

given, a large portion of them are deliberately deleted in

order to generate sparse data subsets. In so doing, the

interpolated ANFISs will have best reference models pos-

sible to compare their performance against. In both (full

and sparse) experimental settings, the following are used as

the common parameters to ensure fair comparison: (i)

Original (ground truth) image size (Y) = 256� 256 each;

(ii) Scale factor = 2; and (iii) Number of subsets of pixel

pairs, K ¼ 3 (clustered using K-Means for easy

illustration).

5.2.1 Experiments with full data

This part of the experimental evaluation is designed for the

experiments that are involved in the situation where all

data subsets are covered by sufficient training data. In

particular, the standard ANFIS model trained with suffi-

cient data is compared with bicubic interpolation as well as

with two other existing ISR techniques, namely fuzzy rule-

based ISR [3] and sparse representation based ISR [4].

Such results form the best-case scenario and hence are

considered as an ideal (or reference) case study. Table 2

presents the quantitative results for this set of experiments,

where SD denotes Standard Deviation and those high-

lighted in bold represent the best outcomes obtained across
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the different methods employed per image. Qualitatively,

Fig. 3 illustrates the resulting images, with their respective

patches shown at the top right corner of each image.

As shown in Table 2, the average PSNR and SSIM

values of all ten test images for this implementation are

both better than those achievable by the other compared

methods. Particularly, the proposed ANFIS implementation

outperforms the others against individual images over more

than half of all tested images, in terms of both PSNR and

SSIM. Considering SSIM as an individual performance

metric alone, the ANFIS implementation performs the best

in eight out of the ten images, and there is just a minor

performance variation from the best for the remaining two

images (hat and butterfly). Moreover, the lower SD values

that the present approach leads to indicate the robustness of

the algorithm. Overall, it is significantly evident that the

proposed ANFIS implementation is of superior perfor-

mance for the challenging application of ISR than the

existing techniques, provided that the sufficient training

data set is available for training. Of course, this is not the

key contribution of this work, which is aimed to introduce

a working method for situations where only sparse data are

available overall. This is to be shown next.

Table 2 Quantitative results of full data experiments with scale factor being 2

Image Method

Bicubic interpolation

PSNR(dB)/SSIM

Sparse representation [4]

PSNR(dB)/SSIM

Fuzzy rule [3]

PSNR(dB)/SSIM

Proposed approach

PSNR(dB)/SSIM

Child 33.964/0.933 35.380/0.949 35.438/0.943 36.180/0.960

Butterfly 27.457/0.915 30.461/0.950 30.356/0.949 29.939/0.942

Hat 31.727/0.897 33.628/0.926 33.127/0.910 33.346/0.922

Couple 33.797/0.924 34.725/0.939 35.061/0.934 35.194/0.942

Plane 29.879/0.927 31.284/0.946 31.764/0.942 31.602/0.949

Girl 1 33.872/0.938 34.721/0.949 35.372/0.941 34.916/0.951

Baboon 26.984/0.751 27.516/0.804 27.441/0.774 27.727/0.810

Peppers 32.348/0.950 34.193/0.962 34.898/0.960 34.256/0.964

Girl 2 35.424/0.938 36.049/0.946 36.089/0.941 36.579/0.951

RS 28.355/0.855 29.821/0.898 29.654/0.881 30.095/0.902

Average PSNR

(dB)±SD

30.931 ± 2.8305 32.778 ± 2.8244 32.920 ± 2.9727 32.984 ± 2.9938

Average

SSIM±SD

0.903 ± 0.0598 0.927 ± 0.0466 0.918 ± 0.0552 0.930 ± 0.0457

Fig. 3 Qualitative results of full data experiments with scale factor being 2
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5.2.2 Experiments with sparse data

The main objective of this research is to cope up with

situations where for certain regions of the given LR images

only sparse training data are available. It is therefore time

to consider and contrast the three types of model as pre-

sented in Table 1. The results from the previous subsection

for the condition of sufficient data are for the reference

model, demonstrating that Model 1 offers promising

results against existing ISR techniques in the literature. To

continue the present experimental evaluation, the perfor-

mance of the proposed approach, Model 3, that is imple-

mented with sparse data-based ANFIS interpolation, is

compared with this reference model as well as with the

standard ANFIS model, Model 2, which is trained with

sparse data following the conventional ANFIS learning

mechanism, without involving rule interpolation.

Note that as indicated previously, for the easier illus-

tration, the number of data subsets K for each image con-

sidered is set to three, while presuming that the sufficient

training data are available for subsets 1 and 3 and only

sparse data are available for subset 2. Note also that, to

have a challenging situation for all models considered, a

large portion of about 98% from subset 2 of the original

sufficient data is purposefully and randomly removed. In

order to enhance the performance of ISR, post-processing

techniques generally play an important role and most of the

existing ISR techniques incorporate it in the algorithms. As

indicated previously, post-processing is also employed in

all experimental setups herein, equally applied to every

individual model.

Figure 4 shows the qualitative results with detailed

patches illustrated in the upper right corner of each image.

Table 3 lists the quantitative results from the experiments

regarding both PSNR and SSIM measures. Importantly, the

difference between the average values in terms of either

PSNR or SSIM is very minor concerning Model 2 (refer-

ence model) and Model 1 (proposed model). It can be

observed from the table that the proposed model greatly

outperforms the standard ANFIS model without interpo-

lation. These results demonstrate that for the problem of

ISR with sparse data, the proposed approach using ANFIS

interpolation offers a robust solution.

6 Conclusion

This paper has presented a novel approach for sparse data-

based single frame image super-resolution, by exploiting

ANFIS Interpolation techniques. Comparative experimen-

tal evaluation has been done against different existing ISR

methods. It demonstrates that for images involving sparse

training data, the results obtained from the proposed

approach are on par compared to the standard original

ANFIS that is trained with full data (which of course is not

necessarily available in a real-world setting).

Whilst the proposed approach is shown to offer signif-

icant potential in dealing with challenging ISR problems, it

is presently assumed to handle static images. For general

ISR problems, e.g., those involving video sequence, it is

highly desirable to develop a dynamic learned ANFIS

model. Work to address this issue is on-going, by learning

from the method reported in [40] where the underlying

fuzzy rule models are represented in conventional Mam-

dani form, instead of in TSK form (of which ANFIS may

be seen as a dialect). How other SR techniques, particularly

Fig. 4 Qualitative results of sparse data experiments with scale factor being 2
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those developed in the field of deep learning [41], may

benefit from adapting the present work to help reduce their

demand for a huge amount of training data remains an

active area of research.
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