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Abstract
Awide range of signs are acquired from the human body called biomedical signs or biosignals, and they can be at the cell level,
organ level, or sub-atomic level. Electroencephalogram is the electrical activity from the cerebrum, the electrocardiogram
is the electrical activity from the heart, electrical action from the muscle sound signals referred to as electromyogram, the
electroretinogram from the eye, and so on. Studying these signals can be so helpful for doctors, and it can help them examine
and predict and cure many diseases.
However, these signals are often affected by various types of noise. It is important to denoise the signals to get accurate
information from them. The denoising process is solved by proposing an entirely novel family of flexible score functions for
blind source separation, based on a family of generalized Gamma densities. To blindly extract the independent source signals,
we resort to the popular fast independent component analysis (FastICA) approach; to adaptively estimate the parameters
of such score functions, we use an efficient method based on maximum likelihood. The results obtained using generalized
Gamma densities in our technique are better than those obtained by other distribution functions.

Keywords Biomedical signals denoise · Generalized Gamma distribution · Maximum likelihood · Electroencephalogram ·
Electrocardiogram · Source separation · Independent component analysis · Fast independent component analysis

1 Introduction

Blind source separation (BSS) is a high-level image/signal
processing technique and has numerous applications such
as sound signals, communication, images, and biomedicine
[1–4]. BSS aims to retrieve the source (images/signals) from
a noised source with little known information. Various BSS
algorithms have been discussed from various points of view,
including non-Gaussianity [5], mutual information mini-
mization [6], maximum likelihood [7], tensors [8], principle
component analysis (PCA) [9], and neural networks [10–12].
RegardingBSS, denoising andoptimizationmethods play the
most important roles. The noise separation step measures the
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separability, and the optimization step is used to get the opti-
mum solution for the objective function which we get from
the denoising mechanism. Generalized distributions usually
give good results of blind denoising due to the variant prop-
erties of their sub-models.

In the independent component analysis (ICA) framework,
accurately estimating the statistical model of the sources is
still an open and challenging problem [2]. Practical BSS
scenarios employ difficult source distributions and even
situations where numerous sources with variant probabil-
ity density functions (pdf) are mixed together. Toward this
direction, many parametric density models have been made
available in recent literature. Such models are the general-
ized Gaussian density [13], the generalized Gamma density
[14], and even combinations and generalizations such as the
super andgeneralizedGaussianmixturemodel [15], the Pear-
son family of distributions [16], the generalized alpha–beta
distribution (AB divergences) [17], and even the so-called
extended generalized lambda distribution [18] which is an
extended parameterization of the aforementioned general-
ized lambda distribution and generalized beta distribution
models [19].
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Although FastICA has some disadvantages, as it often
leads to local minimum solutions due to the difficulty of opti-
mizing the log-likelihood function, which means the suitable
source signals are not isolated, and also the order of the inde-
pendent components (ICs) is difficult to be determined, but
FastICA still is one of the most powerful techniques and usu-
ally drives very good results.

However, studying medical signals became very impor-
tant and essential; it is very difficult to get useful information
from these signals directly in the time domain just by observ-
ing them. They are basically nonlinear and nonstationary in
nature. Biomedical signals are usually affected by various
types of noise, which is considered a challenging problem,
for example, one of the challenges of electroencephalogram
(EEG) technology is that electrical activity generated by the
brain is minuscule, the order of a millionth of a volt. Conse-
quently, scalp-recorded electrical activity consists of amix of
genuine brain signals combined with lots of noise—termed
artifact—generated by other parts of the body, such as heart
activity, eye movements, blinks, other facial muscle move-
ments, which produce electrical signals about 100 times
greater than those produced by the brain. Also, the general
background noise comes from outside the brain.

Hence, in the need of extracting important information
from the signals, noise has to be removed. To achieve that,
numerous advanced signal processing techniques have been
developed. In this paper, we present the generalized Gamma
distribution (G�D) with ICA to remove noise from biomed-
ical signals.

We listed some of previously used techniques and their
results to compare our method to them, which prove the effi-
ciency of our proposed technique.We evaluated the accuracy
of the proposed algorithm; the numerical results show that the
G�D gives very good results. We organized the rest of this
paper as follows: Sect. 2 presents the BSS model. Section 3
presents independent component analysis, In Sect. 4, we will
discuss the G�D. Finally, we present the computational effi-
cient performance of the proposed technique.

2 Blind source separation (BSS) model

Blind source separation (BSS) is a high-level image/signal
processing technique and has numerous applications such
as sound signals, communication, images, and biomedicine
[1–4]. BSS aims to retrieve the source (images/signals) from
a noised source with little known information.

Let S(t) � [s1(t), s2(t), ..., sN (t)]T (t � 1, 2, ..., l)
denotes an independent source signal vector that comes from
N signal sources, and then we can get the observed mixtures.

X(t) � [x1(t), x2(t), ..., xK (t)]T (N � K ) Under the
circumstances of the instantaneous linear mixture. This leads

us to the BSS model

X(t) � AS(t) (1)

where A is an N × N mixing matrix. The target of the BSS
algorithm is to recover the sources from mixtures x(t) by
using

U (t) � WX(t) (2)

where WisanN × N separation matrix and.
U (t) � [u1(t), u2(t), ..., uN (t)]T is the estimate of N

sources.
Usually, sources are assumed to be zero-mean and unit-

variance signals including at most one having a Gaussian
distribution. To solve the problem of source estimation, the
unmixing matrix W must be determined. Generally, the
majority of BSS approaches perform ICA, by essentially
optimizing the negative log-likelihood (objective) function
concerning the un-mixing matrix W such that

L(u, W ) �
N∑

l�1

E
[
log pul(ul)

] − log|det(W )| (3)

where E[.] represents the expectation operator and pu1(u1) is
the model for the marginal pdf of ul, for all l � 1, 2, . . . , N .
In effect, when correctly hypothesizing upon the distribution
of the sources, the maximum likelihood (ML) principle leads
to estimating functions, which in fact are the score functions
of the sources [15]

ϕl(ul) � − d

dul
log pul(ul) (4)

In principle, the separation criterion can be optimized by
any suitable ICA algorithm where contrasts are utilized (see;
e.g., [2]). The FastICA [3], based on

Wk+1 � Wk + D
(
E

[
ϕ(u)uT

]
− diag(E[ϕl(ul)ul ]

)
)Wk

(5)

where, as defined in [4]

D � diag

(
1

E[ϕl(ul)ul ]−E[ϕ
′
l (ul)]

)
(6)

where ϕ(t) � [ϕ1(u1), ϕ2(u2), . . . , ϕn(un)]T , valid for all
l � 1, 2, . . . , n.

In the following section, we propose G�D for signal mod-
elling.
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3 Independent component analysis (ICA)

3.1 Definition of ICA

“It is a method for finding underlying factors or components
from multivariate (multi-dimensional) statistical data. What
distinguishes ICA from other methods is that it looks for
components that are both statistically independent and non-
Gaussian.” [20]

Now, assume that we observe n linear mixtures x1, …, xn
of n independent components [20]

x j � a j1s1 + a j2s2 + ... + a jnsn , f orall j (7)

The time index t has been dropped; in the ICA model [20,
21], it is assumed that each mixture xj and each indepen-
dent component sk are a random variable, instead of a proper
time signal. The observed values xj(t), e.g., the microphone
signals, are then a sample of this random variable. As a pre-
process to simplify the calculation, we can assume that both
the mixture variables and the independent components have
zero mean: If not, then the observed variables xi can always
be centered by subtracting the sample mean, and this makes
the model zero mean. It would be convenient to use a vec-
tor–matrix notation instead of the sums like in the previous
equation. Let us denote by x the random vector whose ele-
ments are the mixtures x1,…, xn, and by s the random vector
with elements s1, …, sn, and by A the matrix with elements
aij. The above mixing model can be written as

x � As (8)

Also, the model can be written as

x �
n∑

i�1

aisi (9)

The statistical model in Eq. 6 is called the ICA model.
It is a generativemodel; it describes how the observed data

are generated by a process of mixing the components si.
The key idea for ICA is very simple; assume that the com-

ponents si are statistically independent. Also, they must have
non-Gaussian distributions.

3.2 The FastICA algorithm

We introduced different measures of non-Gaussianity [20,
21], i.e., objective functions for ICA estimation. In practice,
also we need an algorithm for maximizing the contrast func-
tion, one of the most efficient algorithms of the ICA is the
FastICA algorithm, and this is what we will use in our new
proposed method.

4 Proposed algorithm

4.1 Generalized gamma distribution (G0D)

By employing the three parameters in general the two-sided
G�D model can be written as

px (x |a, β, γ ) � γβ−aγ

2�(a)
|x |aγ−1exp

[
−

( |x |
β

)γ ]
(10)

Valid for all nonzero values of the zero-mean sequence
xR. The positive real-valued parameters a > 0, γ >

0andβ > 0 collectively define the shape and scale of the
amplitude distribution, respectively, while �(.) denotes the
complete Gamma function

�(z) �
∞∫

0

xz−1e−xdx , z > 0 (11)

Special cases of the G�D include well-known two-
parameter distributions, namely the G�D aγ � 1 and the
Gamma density (γ � 1), as well as several other standard
single-parameter distributions, for example, the Laplacian
density a � 1, γ � 1 and the Gaussian (or normal)
distribution.a � 0.5, γ � 2.

4.2 Flexible score functions

When correctly hypothesizing upon the distribution of the
sources, the maximum likelihood (ML) principle leading to
estimating functions, which in fact are the score functions of
the sources, is;

ϕl(ul) � − d

dul
log pul(ul) (12)

An entirely novel family of parametric or flexible score
functions can be derived from the twice differentiable G�D
in (10). By substituting from (10) into (12) for the source
estimates ul , it quickly becomes obvious that our proposed
score function inherits a generalized parametric structure,
which in turn can be attributed to the highly flexible G�D
parent model. In this case, simple calculus the flexible BSS
score function

ϕl(ul |a, β, γ ) � sign(ul)

|ul |
(

γ

βγ
|ul |γ − aγ + 1

)
(13)

In the derivation of the function ϕl(ul |a, β, γ ), we have
also made use of the transformation sign(ul) � ul

/
|ul |,

f orul > 0

ϕl(ul |a, β, γ ) � ul
|ul |2

(
γ

βγ
|ul |γ − aγ + 1

)
(14)
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In principle, ϕl(ul |a, β, γ ) is capable of modeling a large
number of signals, such as speech or communication sig-
nals, as well as various other types of challenging heavy-
and light-tailed distributions. This is since its characteriza-
tion depends explicitly on all three parameters a, β, and γ .
Other commonly used score functions can be obtained sim-
ply by substituting appropriate values for parameters a, β,
andγ in (13). For instance, a scaled form of the G�D-based
score function constitutes such a special case of (13), when
aγ � 1, andβ � 1

ϕl(ul |γ ) � γ sign(ul)|ul |γ−1 (15)

We also should note that the same score function can be
also more straightforwardly deduced by direct differentia-
tion of the G�D. Another special case of (13) is the standard
threshold activation function ϕl(ul) � sign(ul), which in
fact is only suitable for sources exhibiting a Laplacian PDF.
As it can be seen, in some special cases, essentially those cor-
responding to heavy-tailed (or sparse) distributions defined
for aγ � 1, wi tha > 0, ϕl(ul |a, β, γ ) could become sin-
gular for ul � 0 in practice, to avoid such deficiency, the
denominator in (13) can be modified slightly to read

ϕl(ul |a, β, γ ) � sign(ul)

[|ul | + ε]

(
γ

βγ
|ul |γ − aγ + 1

)
(16)

where ε is a small positive parameter (typically around 10–4),
when put to use, the discontinuity of (13) for values in or
approaching the region ul � 0 is completely avoided. We
will also make use of the transformation

sign(ul) � ul
/
|ul |, f orul �� 0

ϕl(ul |a, β, γ ) � ul
|ul |[|ul | + ε]

(
γ

βγ
|ul |γ − aγ + 1

)
(17)

The proposed family of the G�D-based parametric scores
given in (17) is depicted in Fig. 1, plotted for several different
values of the shape parameters aandγ .

4.3 Generalized Gamma PDF estimation

The generalized Gamma PDF estimation can be estimated
by standard tools for statistical inference, such as moment
matching estimators (MMEs) and maximum likelihood esti-
mators (MLEs). MMEs are simple to deduce but are often
susceptible to large estimation errors, while MLEs are more
efficient, however less convenient to derive and calculate
from a set of real data. The inference technique we present
here.

combines elements from both approaches.
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Fig. 1 G�D-based flexible score functions from (17), plotted for differ-
ent values of the shape parameters aandγ . In all cases β � 2

4.3.1 Moment matching estimators (MMEs)

An initial guess for the parameters of the G�D model can
be estimated by resorting to the method of moments. The
q.th-order absolute central moment of the G�D function can
be defined as

E
[|X |q] �

∞∫

0

|x |q px (x |a, β, γ )dx (18)

Substituting from (10) into (18), the q.th-order central
moment transform of the two-sided G�D model is equal to

mq � E
[|X |q] �

∞∫

0

|x |q γβ−aγ

2�(a)
|x |aγ−1exp

[
−

( |x |
β

)γ ]
dx

(19)

mq � E
[|X |q] � γβ−aγ

2�(a)

∞∫

0

|x |aγ+q−1exp

[
−

( |x |
β

)γ ]
dx

(20)

Let y �
(|x |/

β

)γ

hence Eq. (19) will be

mq � E
[|X |q] � βq−1

2�(a)

∞∫

0

|y|a+ q
γ

−1exp[−y]dy∀q ≥ 0

(21)
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By using Eq. (11) in Eq. (20)

mq � E
[|X |q] � βq−1

2

⎛

⎝
�

(
a + q/

γ

)

�(a)

⎞

⎠∀q ≥ 0 (22)

Applying the formula above, the moment ratios arising
are

M1
(
â, γ̂

) � m2

m1
�

�
(
a + 2/

γ

)
�(a)

�2
(
a + 1/

γ

) (23)

M2
(
â, γ̂

) � m4

m3
�

�
(
a + 4/

γ

)
�(a)

�2
(
a + 2/

γ

) (24)

where the scale parameter β in (22) is eliminated in both
Eq. (23) and Eq. (24). In theory, by matching the sample
moments with those of the G�D, the simultaneous solution
of Eq. (23) andEq. (24) should yield initialmoment estimates
for.

parameters â, γ̂ .

4.3.2 Maximum likelihood estimators (MLEs)

To refine those further, we can resort toML. For a sequence of
mutually independent data X � (

x1, x2, . . . , xn
)
of sample

size n with density pxi (xi |a, β, γ ), the ML estimates are
uniquely defined by their log-likelihood function

L(X |a, β, γ ) � log
n∏

i�1

pxi (xi |a, β, γ )

� log
Nγβ−aγ

2�(a)
− 1

βγ

n∑

i�1

|xi | (25)

Normally, ML parameter estimates are obtained by first
differentiating the log-likelihood function in Eq. (25) con-
cerning the G�D parameters and then by equating those
derivatives to zero. Instead, here we choose to maximize the
ML equation in Eq. (25) by resorting to the Nelder–Mead
(NM) direct search method. The appeal of the NM opti-
mization technique works with the fact that it can minimize
the negative of the log-likelihood objective function given
in Eq. (25), essentially without relying on any derivative
information. Despite the danger of unreliable performance,
numerical experiments have shown that the NM method
can converge to an acceptably accurate solution with sub-
stantially fewer function evaluations than multi-directional
search or steepest descent methods. Good numerical per-
formance and a significant improvement in computational

complexity for our estimation method are also insured by
obtaining initial estimates from the method of moments. So,
optimization with the NM technique to produce the refined
ML shape estimates âand γ̂ can be deemed as computation-
ally efficient. Also, an estimate for the parameter β̂ can be
calculated for known âand γ̂ .

β̂ � m1
�

(
â
)

�
(
â + 1/

γ̂

) (26)

5 Numerical and experimental results

We resolve to FastICA algorithm for (BSS). The algorithm
depends on the estimated parameters and an un-mixing
matrix W which is estimated by the FastICA algorithm.
Using real data set, we used a data sample of size (1000). By
substituting (10) into (4) for the source estimates ul, l � 1,
2, ..., n, it quickly becomes clear that the proposed score
function inherits a generalized parametric structure, which
can be attributed to the highly flexible G�D parent model.
So, a simple calculus yields the flexible BSS score function

ϕl(ul |a, β, γ ) � sign(ul)

|ul |
(

γ

βγ
|ul |γ − aγ + 1

)
(27)

In principle ϕl(ul |θ) is capable of modeling a large num-
ber of signals as well as various other types of challenging
heavy- and light-tailed distributions. Experiments were done
to investigate the performance of our method through two
applications (one in EEG signal denoising (using two differ-
ent EEG signals) and one in electrocardiogram (ECG) signal
denoising (using two different ECG signals)) when Gaussian
noise is presented.

In all experiments, the performance of our method is
compared with tanh, skew, pow3 [20], and Gauss [15]. Our
performance is measured by the mean squared error (MSE),
mean absolute error (MAE), signal-to-noise ratio (SNR),
peak signal-to-noise ratio (PSNR), and cross-correlation
(CC).

5.1 Example 1

Electroencephalogram (EEG) [22], electrical action from the
brain, one of the most vital signals from the human body,
studying and improving this field of research is very impor-
tant to physicians whose work is related to this branch of
medicine, monitoring and observing changes in these sig-
nals help them to cover, predict, and cure brain diseases, and
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Fig. 2 GGD and sparse GGD filters (EEG signal 1): A original signal,
B noised signal, C noised signal (original signal in blue and noise in
red), and D denoised signal (GGD)

Fig. 3 GGD and sparse GGD filters (EEG signal 2): A original signal,
B noised signal, C noised signal (original signal in blue and noise in
red), and D denoised signal (GGD)

still, the signals might be corrupted due to numerous nois-
ing interferences. In this example we applied the proposed
mechanisms for denoising two different EEG signals, and
the results are shown in Fig. 2 for EEG signal 1 and Fig. 3

Fig. 4 (EEGsignal 1):Aoriginal signal,Bnoised signal,Cnoised signal
(original signal in blue and noise in red), D denoised signal (Gauss
filter), E denoised signal (Pow3 filter), F denoised signal (skew filter),
and G denoised signal (Tanh filter)

Fig. 5 (EEGsignal 2):Aoriginal signal,Bnoised signal,Cnoised signal
(original signal in blue and noise in red), D denoised signal (Gauss
filter), E denoised signal (Pow3 filter), F denoised signal (skew filter),
and G denoised signal (Tanh filter)

for EEG signal 2. The results for EEG signal 1 for the Gauss
filter, Pow3 filter, Skew filter, and Tanh filter for EEG signal
1 are shown in Fig. 4, and in Fig. 5 for EEG signal 2, the
performance is evaluated for all denoising algorithms using:
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Table 1 The performance of the
proposed denoising algorithm for
EEG signals

Dist Signal (MSE) (MAE) (SNR) (PSNR) (CC) Time in seconds

Gauss EEG1 0.1620 0.4062 7.6872 19.2630 0.9965 0.9923

EEG2 0.1659 0.4123 7.5684 16.2613 0.9970 0.9987

Pow3 EEG1 0.1643 0.4094 7.6292 19.2050 0.9966 1.0235

EEG2 0.1630 0.4081 7.6415 16.3344 0.9968 1.1256

Skew EEG1 0.1609 0.4041 7.7140 19.2898 0.9962 0.9826

EEG2 0.1631 0.4066 7.6671 18.1044 0.9961 1.1235

Tanh EEG1 0.1647 0.4094 7.6186 19.1944 0.9963 1.2269

EEG2 0.1659 0.4123 7.5684 16.2613 0.9970 1.5960

G�D EEG1 0.1681 0.4007 7.7875 19.3633 0.9961 0.6747

EEG2 0.1688 0.4014 7.7491 16.4421 0.9964 0.6843

1. Cross-correlation (CC).

CC � n
(∑

xy
) − (∑

x
)(∑

y
)

√[
n
(∑

x2 − (∑
x
)2)][

n
(∑

y2 − (∑
y
)2)]

(28)

2. Mean squared error (MSE).

MSE �
∑(

yi − ŷi
)2

n
(29)

3. Signal-to-noise ratio (SNR).

SN R � Psignal
Pnoise

� μ

σ
(30)

4. Mean absolute error (MAE).

MAE � 1

n

n∑

i�1

∣∣yi − ŷi
∣∣ (31)

5. Peak signal-to-noise ratio (PSNR).

PSNR � 20 log10

(
255

MSE

)
(32)

shown in Table 1. The GGD has higher performance com-
pared to other algorithms.

5.2 Example 2

Electroencephalogram (ECG) [23], electrical activity from
the heart, usually infected with numerous types of noise just
like other types of biomedical signals. In this example we
used two mechanisms for denoising two different ECG sig-
nals, the GGD and the sparse GGD; the results are shown

Fig. 6 GGD and sparse GGD filters (ECG signal 1): A original signal,
B noised signal, C noised signal (original signal in blue and noise in
red), and D denoised signal (GGD).

Fig. 7 GGD and sparse GGD filters (ECG signal 2): A original signal,
B noised signal, C noised signal (original signal in blue and noise in
red), and D denoised signal (GGD)
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Fig. 8 (ECG signal 1): A original signal, B noised signal, C noised
signal (original signal in blue andnoise in red),Ddenoised signal (Gauss
filter), E denoised signal (Pow3 filter), F denoised signal (skew filter),
and G denoised signal (Tanh filter)

in Fig. 6 for ECG signal 1 and Fig. 7 for ECG signal 2. The
results for ECG signal 1 for theGauss filter, Pow3filter, Skew
filter, and Tanh filter for EEG signal 1 are shown in Fig. 8,
and in Fig. 9 for EEG signal 2, the performance is evaluated
for all denoising algorithms using:

1. Cross-correlation (CC).
2. Mean squared error (MSE).
3. Signal-to-noise ratio (SNR).
4. Mean absolute error (MAE).
5. Peak signal-to-noise ratio (PSNR).

shown in Table 2. The GGD has higher performance com-
pared to other algorithms.

Fig. 9 (ECG signal 1): A original signal, B noised signal, C noised
signal (original signal in blue andnoise in red),Ddenoised signal (Gauss
filter), E denoised signal (Pow3 filter), F denoised signal (skew filter),
and G denoised signal (Tanh filter)

6 Conclusion

In this paper, we introduced a technique for biomedical sig-
nals denoising and blind source separation based on the
generalized Gamma distribution. Our proposed technique
outperforms existing solutions in terms of denoising qual-
ity and computational cost.We applied our technique to EEG
and ECG signals, and the results were excellent, and the tech-
nique can be extended to be applied to all other biomedical
signals.
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Table 2 The performance of the
proposed denoising algorithm for
ECG signals

Dist Signal (MSE) (MAE) (SNR) (PSNR) (CC) Time in seconds

Gauss ECG1 0.1597 0.3906 21.0343 21.5798 0.9962 0.9892

ECG2 0.1666 0.3999 20.0667 21.9436 0.9965 0.9787

Pow3 ECG1 0.1653 0.3976 20.8868 21.4323 0.9963 1.1435

ECG2 0.1668 0.3988 20.0631 21.9399 0.9961 1.2356

Skew ECG1 88.1655 9.1746 − 6.3845 − 5.8390 0.9969 1.9976

ECG2 74.1626 8.3769 − 6.4173 − 4.5405 0.9965 1.4835

Tanh ECG1 0.1696 0.4036 20.7742 21.3196 0.9965 1.0169

ECG2 0.1522 0.3811 20.4605 22.3373 0.9965 1.3526

G�D ECG1 0.1563 0.3868 21.1302 21.6756 0.9967 0.6692

ECG2 0.1481 0.3755 21.3622 21.9077 0.9964 0.6842

In future work, we plan to use the algorithm to denoise
biomedical images and separate mixed natural images, and
also use deep learning methods for biomedical signals
denoising using neural networks.
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