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Abstract
We present and analyse numerical quadrature rules for evaluating regular and singu-
lar integrals on self-similar fractal sets. The integration domain Γ ⊂ ℝ

n is assumed 
to be the compact attractor of an iterated function system of contracting similari-
ties satisfying the open set condition. Integration is with respect to any “invariant” 
(also known as “balanced” or “self-similar”) measure supported on Γ , including in 
particular the Hausdorff measure Hd restricted to Γ , where d is the Hausdorff dimen-
sion of Γ . Both single and double integrals are considered. Our focus is on compos-
ite quadrature rules in which integrals over Γ are decomposed into sums of integrals 
over suitable partitions of Γ into self-similar subsets. For certain singular integrands 
of logarithmic or algebraic type, we show how in the context of such a partition-
ing the invariance property of the measure can be exploited to express the singu-
lar integral exactly in terms of regular integrals. For the evaluation of these regular 
integrals, we adopt a composite barycentre rule, which for sufficiently regular inte-
grands exhibits second-order convergence with respect to the maximum diameter of 
the subsets. As an application we show how this approach, combined with a singu-
larity-subtraction technique, can be used to accurately evaluate the singular double 
integrals that arise in Hausdorff-measure Galerkin boundary element methods for 
acoustic wave scattering by fractal screens.
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1 Introduction

In this paper, we study numerical quadrature rules for the evaluation of integrals of 
the form

and

where Γ and Γ� are compact fractal subsets of ℝn—more precisely, the attrac-
tors of iterated function systems (IFSs) satisfying the open set condition 
(OSC) (see Section  2.2)—and � and �′ are “invariant” (also known as “bal-
anced” or “self-similar”) measures on Γ and Γ� respectively (see Section 2.5). 
A special case is where � = H

d|
Γ
 and ��

= H
d� |

Γ� , where Hd and Hd′ are 
Hausdorff measures, with d and d′ denoting the Hausdorff dimensions of Γ 
and Γ� (see Section  2.1), and |

Γ
 denotes the restriction to Γ in the sense that 

H
d|

Γ
(A) ∶= H

d
(Γ ∩ A) for A ⊂ ℝ

n . Our particular interest is in singular inte-
grals, where, in the case of (1), f is singular at some point � ∈ Γ , and, in the 
case of (2), f is singular on x = y.

One context in which such integrals arise is in the discretization of certain 
boundary integral equation and volume integral equation formulations of bound-
ary value problems for elliptic PDEs (such as the Laplace or Helmholtz equa-
tion) posed on domains with fractal boundary, for instance in the scattering of 
electromagnetic and acoustic waves by fractal obstacles [11, 12], applications of 
which include antenna design in electrical engineering [35, 38] and the quanti-
fication of the scattering effect of atmospheric ice crystals in climate modelling 
[37]. Our main motivating example is the “Hausdorff boundary element method 
(BEM)” introduced in [9] for the solution of time-harmonic acoustic scattering 
in ℝn+1 ( n = 1, 2 ) by a sound-soft fractal screen Γscreen ⊂ ℝ

n
× {0} , assumed to 

be the attractor of an IFS satisfying the OSC. The BEM proposed in [9] discre-
tizes the associated single-layer boundary integral equation on Γscreen using an 
approximation space consisting of products of the relevant Hausdorff measure 
with piecewise-constant functions on a “mesh” of Γscreen comprising self-similar 
fractal “elements”, which are subsets of Γscreen obtained as scaled, rotated and 
translated copies of Γscreen via the IFS structure. The entries of the right-hand 
side vector in the Galerkin BEM system then involve integrals of the form (1) 
(with � = H

d|
Γ
 ), where Γ is an element of the mesh and f(x) depends on the inci-

dent wave. The Galerkin BEM system matrix entries involve integrals of the form 
(2) (with � = H

d|
Γ
 and ��

= H
d� |

Γ� ), where Γ and Γ� are elements of the mesh 
and f (x, y) = Φ(x, y) , where Φ(x, y) is the fundamental solution of the Helmholtz 
equation in ℝn+1 , viz.

(1)∫
Γ

f (x) d�(x),

(2)∫
Γ
∫
Γ�

f (x, y) d��
(y)d�(x),
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where k > 0 is the wavenumber and H(1)
�

 denotes the Hankel function of the first 
kind of order � . This choice of f(x, y) makes (2) singular when Γ = Γ

� . Although 
not studied in [9], one could also consider a collocation (as opposed to Galerkin) 
method for the same integral equation and approximation space, in which case the 
collocation matrix entries would involve integrals of the form (1) (with � = H

d|
Γ
 ), 

where Γ is an element of the mesh and f (x) = Φ(x, �) , with � denoting a colloca-
tion point, giving a singular integral when � ∈ Γ . A key goal of the current paper is 
to present a detailed derivation and rigorous error analysis of the quadrature rules 
used in the implementation of the Hausdorff BEM in [9]. But we expect that the 
techniques we present will be of wider interest, since they apply to general invariant 
measures, to general regular integrands, and to a quite general class of singular inte-
grands with logarithmic or algebraic singularities.

Our quadrature rules for (1) and (2) are based on decomposing integrals over Γ 
into sums of integrals over suitable partitions of Γ into self-similar subsets, gen-
erated using the IFS structure, in the same way that the Hausdorff BEM meshes 
are constructed in [9]. After reviewing some preliminaries in Section 2, we start 
in Section 3 by considering regular integrands. Applying a one-point quadrature 
rule on each subset leads to a composite quadrature rule, which, when the quad-
rature nodes are chosen as the barycentres (with respect to � or �′ ) of the subsets, 
can achieve second-order convergence with respect to the maximum diameter of 
the subsets (Theorems 3.6 and 3.7). In Section 4, we then consider a special class 
of singular integrands, indexed by t ≥ 0 , namely f (x) = Φt(x, �) (in the case of 
(1)), and f (x, y) = Φt(x, y) with Γ�

= Γ (in the case of (2)), where

For these particular choices of f (and for a particular choice of � in the case of (1)), 
we use the fact (as noted in e.g. [7] for the case of Cantor sets) that the invariance 
property of � and the homogeneity property of Φt can be exploited to express the 
singular integral exactly in terms of regular integrals (Theorems 4.6 and 4.7), which 
can be evaluated using our composite barycentre rule, again with second-order accu-
racy (Corollaries 4.4 and 4.7). The results on Φt are directly relevant to Hausdorff-
BEM formulations of Laplace problems analogous to the Helmholtz ones described 
above. In Section  5, we combine this approach to integrating Φt with a singular-
ity-subtraction technique (cf. [2, 3, 21, 36]) to propose and analyse a second-order 
accurate quadrature rule for the motivating example from [9] discussed above, 
exploiting the fact that the singular behaviour of Φ(x, y) matches that of Φt(x, y) for 
t = n − 1 , n = 1, 2 . Here the main result is Theorem 5.7. In Section 6, we present 
some numerical results illustrating our theory. In the Appendix, we collect some 

(3)Φ(x, y) =

⎧
⎪⎨⎪⎩

i

4
H

(1)

0
(k�x − y�), n = 1,

eik�x−y�
4��x − y� , n = 2,

x ≠ y,

(4)Φt(x, y) ∶=

{
log |x − y|, t = 0,

|x − y|−t, t > 0.
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results concerning the integrability of singular functions with respect to invariant 
measures on IFS attractors.

For ease of reference, we list the quadrature rules that we propose:

• The barycentre rule Q
Γ
[f ] (25) for single regular integrals;

• The barycentre rule Q
Γ,Γ� [f ] (32) for double regular integrals;

• The rule Qh
Γ,t,m

 (43) for single integrals of the singular integrand Φt;
• The rule Qh

Γ,Γ,t
 (48) for double integrals of the singular integral Φt;

• The singularity-subtraction rule Qh
Γ,Γ,Φ

 (61) for double integrals of the singular 
Helmholtz fundamental solution Φ ; this rule reduces to (60) for small wavenum-
bers.

A link to our open-source implementation of these rules, and a pointer to an interac-
tive notebook showing example usage, is provided in Section 6.

To put our results in the context of related work, we note that in the case n = 1 , 
i.e. when Γ ⊂ ℝ , Gauss quadrature rules can be derived for (1) (and applied to (2) 
iteratively), as discussed e.g. in [27, 28]. For sufficiently regular integrands, these 
rules offer superior convergence rates when compared to our composite barycentre 
rules. However, one advantage of our low-order composite approach is that it is also 
generically applicable for Γ ⊂ ℝ

n , n > 1 . In contrast, stable Gauss rules are not in 
general available for the case n > 1 (except when Γ is a subset of a line, in which 
case the n = 1 results apply). Moreover, the case n > 1 cannot in general be treated 
by taking Cartesian products of Gauss rules, since IFS attractors in ℝn , n > 1 , are 
not in general the Cartesian product of IFS attractors in ℝ . Furthermore, even when 
Γ ⊂ ℝ

n has such a Cartesian product structure, as is the case for the Cantor dust in 
Fig. 1(I), the corresponding invariant measure is not the tensor-product measure of 
the respective lower-dimensional invariant measures (see e.g. [18, Proposition 7.1]). 
We stress, however, that if a stable Gauss rule (or any other quadrature rule for regu-
lar integrals) is available, it can be used in place of our composite barycentre rule 
within the context of our singularity-subtraction and invariance techniques for sin-
gular integrals, with corresponding analogues of the convergence results in Corol-
laries 4.4 and 4.7 and Theorem 5.7.

We also note that other quadrature rules for regular integrals on IFS attractors 
have been investigated in the abstract framework of uniform distributions and dis-
crepancies in [13, 23], and in the context of so-called chaos games (i.e. Monte-
Carlo-type algorithms) in e.g. [19]. In both settings, convergence is typically proved 
for general continuous integrands, but convergence rates for smoother integrands are 
not provided. We present a numerical comparison between our quadrature rules and 
a simple chaos game approach in Section 6.

We end this introduction with a comment relating to the practical evaluation 
of the quadrature rules presented in this paper. All our rules require knowl-
edge of �(Γ) , since this quantity appears as a multiplicative factor in the for-
mula (27) for the weights in the barycentre rule on which all our other quadra-
ture rules are based. Somewhat surprisingly, even in the special case � = H

d|
Γ
 

2074



Numerical Algorithms (2023) 92:2071–2124

1 3

the exact value of Hd
(Γ) is known only for a small number of IFS attractors, 

including the middle third Cantor set in ℝ but not including the middle third 
Cantor dust in ℝ2—we provide a more detailed commentary on the current 
state of knowledge regarding Hd

(Γ) in Remark 3.4. This means that, in prac-
tice, it is in general not possible to compute (1) and (2) even for f = 1 ! How-
ever, this does not compromise the utility of our quadrature rules for the main 
motivating application of this paper, namely the implementation of the Galer-
kin Hausdorff BEM for acoustic scattering by a fractal screen Γscreen in [9], and 
for similar possible applications to other differential and integral equations. 

Fig. 1  Four IFS attractors in ℝ2 with different degrees of “disjointness”. The formulas of all contrac-
tions are in Table 1. Homogeneity, disjointness and hull-disjointness were defined in Section 2.3. (I) Top 
left: a homogeneous hull-disjoint IFS (a Cantor dust with � = 1∕3 ). (II) Top right: a homogeneous dis-
joint IFS that is not hull-disjoint and such that �m ∉ Hull(Γm� ) for all m ≠ m′ (recall that �m is the fixed 
point of sm ). The fixed points are the three vertices and the centre of Hull(Γ) . This condition on the fixed 
points is relevant e.g. in Corollary 4.7. (III) Bottom left: a non-homogeneous disjoint IFS that is not hull-
disjoint and such that �m ∈ Hull(Γm� ) for some m′ ≠ m . (In particular, s5(Γ) ⊂ Hull(s3(Γ)) .) (IV) Bottom 
right: a homogeneous IFS attractor that is not disjoint (the Vicsek fractal). All these examples satisfy the 
OSC (9): (I) and (IV) for the open square O = (0, 1)2 , (II) and (III) (and (I) again) for a neighbourhood 
O = Γ + B

�
(0) with sufficiently small �
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This is because when one uses a BEM to solve a wave scattering problem, 
the physically relevant quantities such as the scattered wave field and its 
far-field pattern are unaffected by the choice of normalisation of the surface 
measure used in the BEM calculations. Working with the normalised meas-
ure Hd

⋆
(⋅) ∶= H

d
(⋅)∕H

d
(Γscreen) in the BEM application leads to integrals of the 

form (1) and (2) with Hd replaced by Hd
⋆
 . Our quadrature rules apply mutatis 

mutandis to such integrals, requiring the value of Hd
⋆
(Γ) , but this can be com-

puted for any subcomponent Γ of Γscreen using the IFS structure because Hd
⋆
 has 

the same self-similarity scaling properties as Hd on subcomponents of Γscreen 
(cf. (18) below), and Hd

⋆
(Γscreen) is known ( Hd

⋆
(Γscreen) = 1 by the definition of 

H
d
⋆
 ). For details see [9].

2  Preliminaries

We begin by reviewing a number of basic results about IFS attractors and integra-
tion on them, and introduce the notation and terminology we will use throughout the 
paper.

2.1  Hausdorff measure and dimension

For E ⊂ ℝ
n and � ≥ 0 , we recall (e.g. [18, Section 3]) the definition of the Hausdorff 

�-measure of E,

where the infimum is over all countable covers of E by sets Ui ⊂ ℝ
n with 

diam (Ui) ≤ � for i ∈ ℕ . The Hausdorff dimension of E is then defined to be

H
�
(E) = lim

�→0

(
inf

∞∑
i=1

(
diam (Ui)

)
�

)
∈ [0,∞) ∪ {∞},

Table 1  The contractions corresponding to the IFS attractors in Fig. 1

M Contractions s
m

d = dimH(Γ)

(I) 4 s1(x) = �x + (0, 1 − �) , s2(x) = �x + (1 − �, 1 − �), log 4

log 3
≈ 1.26

s3(x) = �x , s4(x) = �x + (1 − �, 0) with � = 1∕3.
(II) 4 s1(x) = �x , s2(x) = �x + (1 − �, 0), log 4

log
1

0.41

≈ 1.55

s3(x) = �x +
�
1

2
(1 − �),

√
3

2
(1 − �)

�
,

s4(x) = �x +
�
1

2
(1 − �),

1

2
√
3
(1 − �)

�
 , with � = 0.41.

(III) 5
s1,… , s4 as in (I) and s5(x) =

1

27
x +

(
4

27
,

4

27

)
.

log z

log 3
≈ 1.28,

z
3
− 4z2 − 1 = 0

(IV) 5 s1,… , s4 as in (I) and s5(x) = �x + (�, �). log 5

log 3
≈ 1.46
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where the supremum of the empty set is taken to be 0. Given 0 < d ≤ n , we call a 
non-empty closed set Γ ⊂ ℝ

n a d-set if there exist c2 > c1 > 0 such that

where Br(x) denotes the closed ball of radius r centred at x. This definition is 
equivalent to the definitions given in [25, Subsubsection II.1.1] and [40, Subsec-
tion 3.1], by [40, Subsection 3.4]. Condition (5) implies not only that dimH(Γ) = d 
[40, Cor  3.6], but moreover that Γ is uniformly d-dimensional in the sense that 
dimH(Γ ∩ Br(x)) = d for every x ∈ Γ and r > 0 . If Γ is compact then condition (5) 
also gives that 0 < H

d
(Γ) < ∞ . and there exist c̃2 > c̃1 > 0 , depending only on c1, c2 

and diam (Γ) , such that

2.2  Iterated function systems

Throughout the paper, we assume that Γ is the attractor of an iterated function sys-
tem (IFS) of contracting similarities (see e.g. [18, 22]), by which we mean a col-
lection {s1, s2,… , sM} , for some M ∈ ℕ , M ≥ 2 , where, for each m = 1,… ,M , 
sm ∶ ℝ

n → ℝ
n satisfies, for some �m ∈ (0, 1),

Explicitly, for each m = 1,… ,M we can write

for some orthogonal matrix Am ∈ ℝ
n×n and some translation �m ∈ ℝ

n . We denote 
by �m ∶= (I − �mAm)

−1
�m (I being the n × n identity matrix) the fixed point of the 

contracting similarity sm , i.e. the unique point �m ∈ ℝ
n such that sm(�m) = �m . Say-

ing that Γ is the attractor of the IFS means that Γ is the unique non-empty compact 
set satisfying

where

We shall also assume throughout that the open set condition (OSC) [22, Section 5.2] 
holds, meaning that there exists a non-empty bounded open set O ⊂ ℝ

n such that

dimHE = sup
{
� ∈ ℝ

+
∶ H

�
(E) = ∞

}
= inf

{
� ∈ ℝ

+
∶ H

�
(E) = 0

}
∈ [0, n],

(5)c1r
d ≤ H

d
(
Γ ∩ Br(x)

) ≤ c2r
d, x ∈ Γ, 0 < r ≤ 1,

(6)c̃1r
d ≤ H

d
(
Γ ∩ Br(x)

) ≤ c̃2r
d, x ∈ Γ, 0 < r ≤ diam (Γ).

|sm(x) − sm(y)| = �m|x − y|, for x, y ∈ ℝ
n.

(7)sm(x) = �mAmx + �m,

Γ = s(Γ),

(8)s(E) ∶=

M⋃
m=1

sm(E), E ⊂ ℝ
n.

(9)s(O) ⊂ O and sm(O) ∩ sm� (O) = �, m ≠ m�
∈ {1,… ,M}.
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Then Γ is a d-set (e.g. [40, Thm. 4.7]), where d ∈ (0, n] is the unique solution of

Furthermore, Hd
(sm(Γ)) ∩ sm� (Γ)) = 0 for m ≠ m′ , a property known as self-similar-

ity [22, 5.1(4)(ii)].
The best-known example of an IFS attractor is the Cantor set Γ ⊂ ℝ , defined by

for some � ∈ (0, 1∕2) , the choice � = 1∕3 corresponding to the classical “middle 
third” case.

2.3  Further assumptions on the IFS

We say that the IFS is homogeneous (as in, e.g. [15]) if �m = � ∈ (0, 1) for 
m = 1,… ,M . In this case (10) becomes

We say that the IFS is disjoint (as in, e.g., [5, Defn 7.1]) if

which holds if and only if the open set O in the OSC can be taken such that Γ ⊂ O 
(e.g. [9]).

We say that the IFS is hull-disjoint if

where Hull(E) denotes the convex hull of a set E ⊂ ℝ
n . Clearly R

Γ,Hull ≤ R
Γ
 , so hull-

disjointness implies disjointness. But the converse is not true—see (II) and (III) in 
Fig. 1 for counterexamples.

2.4  Vector index notation

Our quadrature rules will be based on partitioning Γ into self-similar subsets, via the 
IFS structure. To describe these subsets, we adopt the vector index notation used in 
[24] (cf. also [22, Section 2.1]). For � ∈ ℕ let I

�
∶= {1,… ,M}

� . Then for E ⊂ ℝ
n 

let E0 ∶= E , and, for m = (m1,… ,m
�
) ∈ I

�
 , let

(10)
M∑

m=1

(�m)
d
= 1.

(11)n = 1, M = 2, s1(x) = �x, s2(x) = (1 − �) + �x,

(12)M�
d
= 1, equivalently, d = log(M)∕ log(1∕�).

(13)R
Γ
∶= min

m≠m�

{
dist

(
sm(Γ), sm� (Γ)

)}
> 0,

(14)R
Γ,Hull ∶= min

m≠m�

{
dist

(
sm
(
Hull(Γ)

)
, sm�

(
Hull(Γ)

))}
> 0,

E
m
∶= s

m
(E), s

m
∶= sm1

◦… ◦sm
𝓁
.
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For an illustration of this notation in the case of the middle-third Cantor dust, see 
Fig. 2.

For m ∈ I
�
 , Γ

m
 is itself the attractor of an IFS, namely {s

m
◦sm◦(sm)

−1
}
M
m=1

 , and

This implies that the “elements” of the “Hausdorff-BEM” proposed in [9] are them-
selves IFS attractors, so the quadrature rules developed here can be used in the 
implementation of that method.

When considering singular integrands, it will be important to estimate the dis-
tance between subsets of Γ . To that end, given m ≠ n ∈ ∪

�∈ℕ
I
�
 , we define (cf. the 

partial ordering in [22, Section 2.1])

diam (Γ
m
) =

( �∏
i=1

�mi

)
diam (Γ).

Fig. 2  Illustration of the vector index notation of Section 2.4, in the case where Γ ⊂ ℝ
2 is the middle-

third Cantor dust (example (I) in Fig. 1 and Table 1). The subsets Γ1 , Γ2 , Γ3 , Γ4 , Γ(2,1) , Γ(2,3) and Γ
(1,1,1) are 

circled
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and note the following obvious result, concerning how many indices share a com-
mon value of �

∗
.

Lemma 2.1 Let � ∈ ℕ . Given m ∈ I
�
 and � ∈ {1,… ,�} , there are M�−�

(M − 1) 
indices n ∈ I

�
 such that �

∗
(m,n) = �.

We shall also use the fact that if Γ is hull-disjoint (in the sense of (14)) then for 
m ≠ n ∈ ∪

�∈ℕ
I
�

2.5  Invariant measures and scaling properties

Integrals over IFS attractors have certain scaling properties that will be central to 
our analysis. In the case of the Hausdorff measure � = H

d|
Γ
 , by e.g. [24, (3.3)] we 

note that for � ∈ ℕ , m = (m1,… ,m
�
) ∈ I

�
 , and for any Hd|

Γ
-measurable function f,

In particular, taking f ≡ 1 gives

The measure Hd|
Γ
 is just one member of a general class of finite measures on Γ 

for which similar scaling results apply. Given a collection (p1,… , pM) of positive 
weights (or “probabilities”) satisfying

there exists (see, e.g., [22, Sections 4 & 5]) a Borel regular finite measure � sup-
ported on Γ , unique up to normalisation, called an “invariant” [22] (also known 
as “balanced” [6] or “self-similar” [34]) measure associated to Γ and (p1,… , pM) , 
such that �(A) =

∑M

m=1
pm�(s

−1
m
(A)) for every measurable set A ⊂ ℝ

n . By [34, 

(15)�
∗
(m, n) ∶= min

{
� ∈ {1,… , min

(
dim(m), dim(n)

)
} ∶ m

�
≠ n

�

}
∈ ℕ,

(16)dist
(
Hull(Γ

m
), Hull(Γ

n
)
) ≥ R

Γ,Hull

�
∗
(m,n)−1∏
i=1

�mi
.

(17)
∫
Γ
m

f (x) dHd
(x) =

(
diamΓ

m

diamΓ

)d

∫
Γ

f
(
s
m
(x�)

)
dHd

(x�)

=

( �∏
i=1

�
d
mi

)
∫
Γ

f
(
s
m
(x�)

)
dHd

(x�).

(18)H
d
(Γ

m
) =

(
diamΓ

m

diamΓ

)d

H
d
(Γ) =

(
�∏
i=1

�
d
mi

)
H

d
(Γ).

(19)0 < pm < 1, m = 1,… ,M, and

M∑
m=1

pm = 1,
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Thm. 2.1] the OSC implies that �(sm(Γ) ∩ sm� (Γ)) = 0 for each m ≠ m′ , and as a 
consequence we find that for � ∈ ℕ , m = (m1,… ,m

�
) ∈ I

�
 , and any �-measurable 

function f,

and

We shall assume henceforth that � is an invariant measure on Γ in this sense, for 
some collection of associated weights (p1,… , pM) . The case � = H

d|
Γ
 corresponds 

to choosing pm = �
d
m
 for m = 1,… ,M , with (19) holding by (10).

2.6  Partitioning Γ

To define our composite quadrature rules, we need to specify an index set 
I ⊂ ∪

�∈ℕ
I
�
 such that

One approach is to choose subsets with a fixed level of refinement, i.e. to take I = I
�
 

for some fixed � ∈ ℕ . However, in the case of a non-homogeneous IFS, subsets cho-
sen in this way may differ significantly in size. An alternative approach is to choose 
subsets with approximately equal diameter, taking I = Lh(Γ) for some fixed h > 0 , 
where

with Γ
(m1,.…,m

�−1)
 replaced by Γ when � = 1 and Lh(Γ) ∶= {0} when h ≥ diam (Γ) 

(recall our convention that Γ0 = Γ ). See Figs. 3 and 4 for illustrations of the decom-
position Lh(Γ) for the Koch snowflake and a non-homogeneous Cantor set. If Γ is 
homogeneous then for 0 < h ≤ diam (Γ) we have Lh(Γ) = I

�
 , where

(20)∫
Γ
m

f (x) d�(x) =

( �∏
i=1

pmi

)
∫
Γ

f
(
s
m
(x�)

)
d�(x�)

(21)�(Γ
m
) =

( �∏
i=1

pmi

)
�(Γ).

(22)

Γ =

⋃
m∈I

Γ
m

and �(Γ
m
∩ Γ

m
� ) = 0 for m ≠ m

�
∈ I,

so that
∑
m∈I

�(Γ
m
) = �(Γ).

(23)
Lh(Γ) ∶=

{
m = (m1,… ,m

�
) ∈ ∪

��∈ℕ
I
�� ∶

diam (Γ
m
) ≤ h and diam (Γ

(m1,…,m
�−1)

) > h
}
,

(24)𝜌
� diam (Γ) ≤ h < 𝜌

�−1 diam (Γ), i.e. � =

⌈
log(h∕ diam (Γ))

log 𝜌

⌉
.
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3  Barycentre rule for regular integrals

We now present our composite barycentre rules for the evaluation of regular inte-
grals of the form (1) and (2).

3.1  Single integrals

We first consider the single integral (1). Given a partitioning (22) of Γ into self-
similar subsets, our quadrature nodes are the barycentres of the subsets (for an 

Fig. 3  Examples of the partitioning (22) corresponding to the index set I = Lh(Γ) defined by (23) in the 
case where Γ ⊂ ℝ

2 is the Koch snowflake. The barycentres (defined by (26)) of the self-similar subsets in 
the partitioning are indicated with red crosses. The Koch snowflake can be written as a non-homogene-
ous IFS attractor with M = 7 , sm(x, y) =

1

3
(x, y) +

2

3
(cos �m, sin �m) with �m =

(2m−1)�

6
 for m = 1,… , 6 , 

and s7(x, y) = (
1

2
x −

1

2
√
3
y,

1

2
√
3
x +

1

2
y) (so that �7 = 1∕

√
3 ). It satisfies the OSC (9) with O equal to the 

interior of Γ

Fig. 4  A depiction of the index set Lh(Γ) and of ΓHull,h for the non-homogeneous Cantor set Γ ⊂ ℝ with 
s1(x) =

1

2
x , s2(x) =

1

4
x +

3

4
 . Each segment represents the convex hull of some Γ

m
 . Given h ∈ [1∕16, 1∕8) , 

the multi-indices m ∈ Lh(Γ) are those corresponding to the red segments: these are the segments of 
length ≤ h whose parent segment has length > h.The set ΓHull,h is the union of the red segments
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illustration in the case of the Koch snowflake see Fig. 3), computed with respect to 
the measure � , and the weights are the measures of the subsets.

Definition 3.1 (Barycentre rule for single integrals) Let Γ and � be as in Sections 2.2 
and 2.5, let I ⊂ ∪

�∈ℕ
I
�
 be an index set satisfying (22), and let f ∶ Γ → ℂ be con-

tinuous. Then for the approximation of the integral

we define the barycentre rule

where, for m= (m1,… ,ml) ∈ I ,

and

The number of weights and nodes in this approximation is |I|.

Remark 3.2 While it always holds that x
m
∈ Hull(Γ

m
) (by the supporting hyperplane 

theorem), it does not in general hold that x
m
∈ Γ

m
 (the middle-third Cantor set pro-

vides a counterexample).

The weights w
m

 in (27) can be computed using (21) as

While the barycentres x
m

 are defined a priori in terms of integrals with respect to � , 
the following result shows how they can be computed using only information about 
the similarities (s1,… , sM) . This result coincides with the first step in the recursive 
procedure described in [26, 2.5.2] and [27, Section 2] for the calculation of moments 
of invariant measures.

Proposition 3.3 The barycentres x
m

 defined by (26) can be evaluated as

where x
Γ
∶=

∫
Γ
x d�(x)

∫
Γ
d�(x)

= ∫
Γ
x d�(x) is the barycentre of Γ , which can be evaluated as

I
Γ
[f ] ∶= ∫

Γ

f (x) d�(x)

(25)Q
Γ
[f ] ∶=

∑
m∈I

w
m
f (x

m
),

(26)x
m
∶=

∫
Γ
m

x d�(x)

∫
Γ
m

d�(x)
=

∫
Γ
m

x d�(x)

�(Γ
m
)

(27)w
m
∶= �(Γ

m
).

(28)w
m
=

(
�∏
i=1

pmi

)
�(Γ).

(29)x
m
= s

m
(x

Γ
), m ∈ I,
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where I is the n × n identity matrix and �m , Am and �m , m = 1,… ,M , are as in (7).

Proof To prove (29), we first consider the case where s
m
= sm for some 

m ∈ {1,… ,M} , for which by (7), (20) and (21) we have

The general result follows by induction on the length of the vector index m.

To prove (30) we note that, by (26) and (21),

Using (31), this can be written as

from which (30) follows by matrix inversion. The invertibility of the matrix �
I −

∑M

m=1
pm�mAm

�
 follows from the fact that ‖Am‖2 = 1 and 0 < 𝜌m < 1 for each 

m = 1,… ,M , so that, recalling (19),

  ◻

Remark 3.4 Evaluation of the quadrature weights w
m
 defined in (27) requires knowl-

edge of �(Γ) . If �(Γ) is unknown then the quadrature rule (25) can only be evaluated 
up to the unknown factor �(Γ) . As mentioned in Section 1, even in the special case 
� = H

d|
Γ
 , the exact value of Hd

(Γ) is known only in certain special cases, and, to our 
knowledge, only for examples where d ≤ 1 . In the Hausdorff BEM application that 
motivates this paper, this is unproblematic as one can simply work with an appropriately 
normalised measure (see the discussion in Section 1 and [9]). However, for complete-
ness, we comment briefly on the current state of knowledge regarding Hd

(Γ) . The best-
studied examples are Cantor-type sets in ℝ ( n = 1 ). Important early work in this area 
includes that of Marion [30, 31] and Falconer [17], where it was proved that Hd

(Γ) = 1 
for a large class of Cantor-type sets including the classical Cantor sets defined by 
(11) [17, Thm. 1.14–1.15]; for more recent related results, see e.g. [4] and [43]. For 
n > 1 , it appears that the exact value of the Hausdorff measure of even the simplest IFS 

(30)x
Γ
=

(
I −

M∑
m=1

pm�mAm

)−1( M∑
m=1

pm�m

)
,

(31)
xm ∶=

∫
Γm

x d�(x)

∫
Γm

d�(x)
=

pm ∫
Γ
sm(x) d�(x)

pm ∫
Γ
d�(x)

=

�mAm ∫
Γ
x d�(x)

∫
Γ
d�(x)

+

�m ∫
Γ
d�(x)

∫
Γ
d�(x)

=�mAmxΓ + �m = sm(xΓ).

x
Γ
=

∑M

m=1
∫
Γm

x d�(x)

�(Γ)
=

M�
m=1

�(Γm)xm

�(Γ)
=

M�
m=1

pmxm =

M�
m=1

pmsm(xΓ).

(
I −

M∑
m=1

pm�mAm

)
x
Γ
=

M∑
m=1

pm�m,

������

M�
m=1

pm𝜌mAm

������2
≤

M�
m=1

pm𝜌m‖Am‖2 =
M�

m=1

pm𝜌m <

M�
m=1

pm = 1.
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attractors is known only for d ≤ 1 (see e.g. [41], where it is proved that for the Cantor 
dust defined in Example (I) of Table 1, Hd

(Γ) = 2d∕2 for 0 < 𝜌 ≤ 1∕4 ( 0 < d ≤ 1 ) [41, 
Cor. 1]; see also the earlier paper [42] where the case � = 1∕4 was considered). For 
n > 1 and d > 1 , it appears that only approximate results are available. For instance, 
when Γ ⊂ ℝ

2 is the Sierpiński triangle, it is known that 0.77 ≤ H
d
(Γ) ≤ 0.81794 [33]. 

One complication in the case n > 1 is that even if Γ is a Cartesian product of lower-
dimensional IFS attractors, as is the case for the Cantor dust in Example (I) of Table 1, 
the measure of Γ cannot be computed as the product of lower-dimensional measures, 
since for sets Γ1 and Γ2 of dimension d1 and d2 respectively, in general we do not have 
H

d1 (Γ1) ×H
d2 (Γ2) = H

d1+d2 (Γ1 × Γ2) [18, Proposition 7.1].

3.2  Double integrals

Double integrals of the form (2) can be treated by iterating the barycentre rule in the 
obvious way.

Definition 3.5 (Barycentre rule for double integrals) Let Γ ⊂ ℝ
n and Γ�

⊂ ℝ
n� be as 

in Section 2.2 (possibly with different Hausdorff dimensions), and let � and �′ be 
invariant measures on Γ and Γ� respectively, as in Section 2.5. Let I  and I′ be index 
sets satisfying (22) for (Γ,�) and (Γ�,��

) respectively, and let f ∶ Γ × Γ
� → ℂ be 

continuous. Then for the approximation of the iterated integral

we define the iterated barycentre rule

where, for m ∈ I  , x
m

 and w
m

 are defined by (26) and (27), and, for m�
∈ I

� , x′
m

′
 and 

w′

m
 are defined by the analogous formulas involving Γ� and �′.

3.3  Error estimates

When the integrands are sufficiently smooth, error estimates for the quadrature rules 
in Definitions 3.1 and 3.5 can be derived by standard Taylor series arguments. The 
result for single integrals (Definition 3.1) is presented in Theorem 3.6 below. Before 
stating the theorem, we introduce some notation. Given a set E ⊂ ℝ

n and a function 
f ∶ E → ℂ , we define

I
Γ,Γ� [f ] ∶= ∫

Γ
∫
Γ�

f (x, y) d��
(y) d�(x)

(32)Q
Γ,Γ� [f ] ∶=

∑
m∈I

∑
m

�∈I
�

w
m
w�

m
� f (xm, x

�

m
� ),

L0,E[f ] ∶= sup
x≠y∈E

|f (x) − f (y)|
|x − y| .
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If f is differentiable in an open set Ω ⊃ E , we denote its gradient by ∇f ∶ Ω → ℂ
n , 

and define

Note that we are allowing the possibility that L0,E[f ] and L1,E[f ] are infinite. If f is twice 
differentiable in Ω , we denote its Hessian by Hf ∶ Ω → ℂ

n×n . For � ∈ ℕ
n
0
 , D� denotes 

standard multi-index notation for partial derivatives. Finally, given h > 0 we define

Theorem 3.6 Let Γ and � be as in Sections 2.2 and 2.5. Let h > 0 , and let ΓHull,h be 
as in (33). Suppose that f ∶ ΓHull,h → ℂ , and let Qh

Γ
 denote the barycentre rule of 

Definition 3.1 with I = Lh(Γ) . Then, with E denoting |I
Γ
[f ] − Qh

Γ
[f ]| , 

 (i) E ≤ h�(Γ)max
m∈Lh(Γ)

L0,Hull(Γ
m
)
[f ].

 (ii) If f is differentiable in an open set Ω ⊃ ΓHull,h then 

 and 

 (iii) If f is twice differentiable in an open set Ω ⊃ ΓHull,h then 

Proof (i) Elementary estimation, combined with (22), gives

L1,E[f ] ∶= sup
x≠y∈E

|∇f (x) − ∇f (y)|
|x − y| .

(33)ΓHull,h ∶=

⋃
m∈Lh(Γ)

Hull(Γ
m
).

E ≤h�(Γ) sup
x∈ΓHull,h

�∇f (x)�

≤√nh�(Γ) sup
x∈ΓHull,h

max
�∈ℕ

n
0

���=1
�D�f (x)�

E ≤ h2�(Γ) max
m∈Lh(Γ)

L1,Hull(Γ
m
)
[f ].

E ≤h2

2
�(Γ) sup

x∈ΓHull,h

‖Hf (x)‖2

≤nh2

2
�(Γ) sup

x∈ΓHull,h

max
�∈ℕ

n
0

���=2
�D�f (x)�.

|I
Γ
[f ] − Qh

Γ
[f ]| ≤ ∑

m∈Lh(Γ)
�
Γ
m

|f (x) − f (x
m
)| d�(x)

≤ ∑
m∈Lh(Γ)

�(Γ
m
)L0,Hull(Γ

m
)
[f ] diam (Γ

m
)

≤h�(Γ) max
m∈Lh(Γ)

L0,Hull(Γ
m
)
[f ].
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(ii) The first bound follows from part (i) and the fact that, by the mean value theorem, 
L0,Hull(Γ

m
)
[f ] ≤ supx∈Hull(Γ

m
)
|∇f (x)| . For the second bound, we also apply the mean 

value theorem, noting for each m ∈ Lh(Γ) and x ∈ Γm there exists a point �
m
(x) on the 

segment between x and x
m

 such that f (x) − f (x
m
) = ∇f (�

m
(x))T (x − x

m
) . Hence

The first integral on the right-hand side vanishes by the definition of x
m

 , with the 
result that, again using (22),

(iii) By Taylor’s theorem, for each m ∈ Lh(Γ) and x ∈ Γm there exists a point �
m
(x) 

on the segment between x and x
m

 such that f (x) − f (x
m
) = ∇f (x

m
)
T
(x − x

m
)+

1

2
(x − x

m
)
T
Hf (�

m
(x))(x − x

m
) . Again, the linear term integrates to 0, so

and the result follows, by bounding diam (Γ
m
) ≤ h , summing over m and using (22). 

 ◻

We now consider the double integral case (Definition 3.5). Higher order iter-
ated integrals over the product of arbitrarily many IFS attractors can be analysed 
similarly, but are not considered here.

Theorem  3.7 Let Γ ⊂ ℝ
n and Γ�

⊂ ℝ
n� be as in Section  2.2, and let � and �′ be 

invariant measures on Γ and Γ� respectively, as in Section 2.5. Let h > 0 , and let 
ΓHull,h be as in (33) and Γ�

Hull,h
 be as in (33) with Γ replaced by Γ� . Suppose that 

f ∶ ΓHull,h × Γ
�

Hull,h
→ ℂ , and let Qh

Γ,Γ�
 denote the barycentre rule of Definition 3.5 

with I = Lh(Γ) and I� = Lh(Γ
�
) . Then, with E denoting |I

Γ,Γ� [f ] − Qh
Γ,Γ�

[f ]| : 

 (i) E ≤ √
2 h�(Γ)��

(Γ
�
)max

(m,m�)∈Lh(Γ)×Lh(Γ
�)
L0,Hull(Γ

m
)×Hull(Γ�

m
�
)
[f ].

 (ii) If f is differentiable in an open set Ω ⊃ ΓHull,h × Γ
�

Hull,h
 then 

∫
Γ
m

f (x) − f (x
m
) d�(x) =∫

Γ
m

∇f (x
m
)
T
(x − x

m
) d�(x)

+ ∫
Γ
m

(
∇f (�

m
(x)) − ∇f (x

m
)
)T
(x − x

m
) d�(x).

|I
Γ
[f ] − Qh

Γ
[f ]| ≤ ∑

m∈Lh(Γ)

�(Γ
m
)L1,Hull(Γ

m
)
[f ] diam (Γ

m
)
2

≤h2�(Γ) max
m∈Lh(Γ)

L1,Hull(Γ
m
)
[f ].

������Γ
m

f (x) − f (x
m
) d�(x)

�����
≤ 1

2
�(Γ

m
) sup
x∈Hull(Γ

m
)

‖Hf (x)‖2 diam (Γ
m
)
2,

E ≤√2 h�(Γ)��
(Γ

�
) sup
(x,x�)∈ΓHull,h×Γ

�

Hull,h

�∇f (x, x�)�

≤√2
√
n + n� h�(Γ)��

(Γ
�
) sup
(x,x�)∈ΓHull,h×Γ

�

Hull,h

max
�∈ℕ

n+n�

0

���=1

�D�f (x, x�)�
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 and 

 (iii) If f is twice differentiable in an open set Ω ⊃ ΓHull,h × Γ
�

Hull,h
 then 

Proof Follows similar arguments to those used to prove Theorem  3.6, 
in the setting of ℝ

n+n� . The extra factors of 
√
2 and 2 arise because 

diam (E × E�
) ≤ √

diam (E)2 + diam (E�)2 for E ⊂ ℝ
n and E′

⊂ ℝ
n′.

  ◻

Remark 3.8 The fact that x
m

 is the barycentre of Γ
m

 only enters in the proof of the 
O(h2) estimates in Theorems 3.6 and 3.7. The O(h) estimates remain true if the bar-
ycentre x

m
 is replaced by any other point of Hull(Γ

m
).

Remark 3.9 The error bounds in Theorem 3.6 are written in terms of the discretization 
parameter h, which measures the diameter of the portion of Γ on which the integrand is 
approximated by a constant value. In practice it is useful to estimate the error in terms of 
the computational effort of the quadrature rule, writing the error bounds in terms of the 
number of quadrature points (and thus of the evaluations of the integrand) N ∶= |Lh(Γ)|.

We shall do this in the special case where Γ is homogeneous. Then Lh(Γ) = I
�
 for 

� ∈ ℕ as in (24), so that N = M� , and from (24) and (10), which gives �d = 1∕M , 
we have

We can substitute either of the last two expressions in place of h in the right-hand 
sides of the error bounds in Theorem 3.6, obtaining O(N−1∕d

) and O(N−2∕d
) conver-

gence rates, with respect to increasing N. We observe that the lower the Hausdorff 
dimension d of Γ , the faster the convergence of the quadrature rule with respect to 
increasing N, all other factors being equal.

In the double-integral case, we can substitute either of the expressions

E ≤2h2�(Γ)��
(Γ

�
) max
(m,m�)∈Lh(Γ)×Lh(Γ

�)

L1,Hull(Γ
m
)×Hull(Γ�

m
�
)
[f ].

E ≤h2�(Γ)��
(Γ

�
) sup
(x,x�)∈ΓHull,h×Γ

�

Hull,h

‖Hf (x, x�)‖2
≤(n + n�)h2 sup

(x,x�)∈ΓHull,h×Γ
�

Hull,h

max
�∈ℕ

n+n�

0

���=2

�D�f (x, x�)�.

(34)

h < 𝜌
�−1 diam (Γ) =

diam (Γ)

𝜌

1

M�∕d
=

diam (Γ)

𝜌

N−1∕d
= diam (Γ)

(
N

M

)−1∕d

.

min

{
diam (Γ)

�

N−1∕d,
diam (Γ

�
)

��
(N�

)
−1∕d�

}

=min

{
diam (Γ)

(
N

M

)−1∕d

, diam (Γ)

(
N�

M�

)−1∕d�}
,
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where N�
∶= |Lh(Γ�

)| , in place of h in the error estimates of Theorem 3.7. In this case, the 
computational cost, measured as the number of integrand evaluations, is the product NN′.

The barycentre rule (25) depends on the choice of the index set I  . The choice 
I = Lh(Γ) stipulated in Section 3.3, with Lh(Γ) as in (23), allocates the quadrature 
nodes x

m
 only according to the diameter of the associated subsets Γ

m
⊂ Γ , and is 

motivated by the use of a Taylor-polynomial technique to bound the quadrature 
error. This choice is most effective for homogeneous IFSs and Hausdorff measures, 
where the fraction of the measure associated to each quadrature node is the same. 
For general IFSs and invariant measures, we expect that more sophisticated choices 
of the index set I  , taking into account the measure of the subsets in the induced 
partition as well as their diameter, may be more efficient. However, we leave further 
discussion of this issue to future work.

4  Evaluation of singular integrals

We now turn to the case where the integrands in (1) and (2) are singular. In this 
section, we show how two classes of singular integrals involving the function Φt 
(defined in (4)) can be expressed in terms of regular integrals, using the scaling 
properties from Section  2.5 and certain homogeneity properties of Φt . This will 
allow us to derive and analyse quadrature rules for the singular integrals based on 
the barycentre rule described in the previous section.

4.1  Homogeneity and bounds on derivatives of Φt

Key to our analysis will be the fact that, for any x ≠ y ∈ ℝ
n and 𝜌 > 0,

We note also that Φt(x, y) is smooth as a function of both x and y, away from the 
diagonal x = y , on which it is singular. More precisely, we shall need the follow-
ing result concerning derivatives of Φt . Here the assumption that the multi-index 
� ∈ ℕ

2n
0

 means that � could correspond to differentiation with respect to the compo-
nents of either x or y, and

Lemma 4.1 Let � ∈ ℕ
2n
0

 be a multi-index with |�| = 2 . Then for x ≠ y

(35)Φt(𝜌x, 𝜌y) =

{
log 𝜌 + Φt(x, y), t = 0,

𝜌
−t
Φt(x, y), t > 0.

at ∶=

{
2, t = 0,

t(t + 2), t > 0.

||D�
Φt(x, y)

|| ≤ at

|x − y|t+2 .
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Proof Let � = � + � for some multi-indices �, � ∈ ℕ
2n
0

 with |�| = |�| = 1 . With 
r(x, y) ∶= |x − y| for x, y ∈ ℝ

n , for any twice differentiable F ∶ ℝ
+
→ ℂ we have 

that for x ≠ y

From |xi − yi| ≤ r(x, y) and the values of the following partial derivatives for 
i, j = 1,… , n:

we obtain

Inserting these in (36) gives, for all �, � ∈ ℕ
2n
0

 with |�| = 1 and |�| = 2,

Now recall that Φt(x, y) = Φ̃t(r(x, y)) , where

Elementary computations show that

Inserting these results into (37) (with F = Φ̃t ) gives the claimed result.
  ◻

(36)

D�
(
F(r(x, y))

)
=F�

(
r(x, y)

)(
D�r(x, y)

)
,

D�
(
F(r(x, y))

)
=F��

(
r(x, y)

)(
D�r(x, y)

)(
D�r(x, y)

)
+ F�

(
r(x, y)

)(
D�r(x, y)

)
.

�r(x, y)

�xi
= −

�r(x, y)

�yi
=

(xi − yi)

r(x, y)
,

�
2r(x, y)

�xi�xj
= −

�
2r(x, y)

�xi�yj
=

−(xi − yi)(xj − yj)

r(x, y)3
, i ≠ j,

�
2r(x, y)

�x2
i

= −
�
2r(x, y)

�xi�yi
=

1

r(x, y)
−

(xi − yi)
2

r(x, y)3
,

|D�r(x, y)| ≤ 1, |D�r(x, y)| ≤ 1, |D�r(x, y)| ≤ 1

r(x, y)
.

(37)

||D�
(
F(r(x, y))

)|| ≤||F�
(
r(x, y)

)||,
||D�

(
F(r(x, y))

)|| ≤||F��
(
r(x, y)

)|| +
||F�

(
r(x, y)

)||
r(x, y)

.

Φ̃t(r) =

{
log r, t = 0,
1

rt
, t > 0.

(38)Φ̃
�

t
(r) =

⎧⎪⎨⎪⎩

1

r
, t = 0,

−
t

rt+1
, t > 0,

and Φ̃
��

t
(r) =

⎧⎪⎨⎪⎩

−
1

r2
, t = 0,

t(t + 1)

rt+2
, t > 0.
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4.2  Single integrals

We consider first the evaluation of the single integral

for � ∈ ℝ
n . When � ∉ Γ the integral is regular, and combining Theorem 3.6(iii) and 

Lemma 4.1 gives the following error estimate for the barycentre rule.

Proposition 4.2 Let Γ and � be as in Sections 2.2 and 2.5. Let h > 0 and let ΓHull,h be 
as in (33). Let � ∈ ℝ

n ⧵ ΓHull,h . Then

When � ∈ Γ the integral is singular, but convergent for sufficiently small t. In 
the case � = H

d|
Γ
 we have convergence for 0 ≤ t < d ≤ n , for any � ∈ Γ (see Cor-

ollary A.2). For a general invariant measure, the situation is more complicated 
and the integrability threshold depends on � (see the discussion in Section 1). In 
the special case where � is the fixed point of one of the contracting similarities sm 
defining Γ , we have convergence for 0 ≤ t < tm (see Lemma A.3), where

Furthermore, in this case the singular integral can be written in terms of regular 
integrals, as the following result shows. We remind the reader that if � = H

d|
Γ
 then 

pm = �
d
m
 and tm = d.

Theorem 4.3 Let Γ and � be as in Sections 2.2 and 2.5. Fix m ∈ {1,… ,M} and let 
�m denote the fixed point of the contracting similarity sm , i.e. the unique point �m ∈ Γ 
such that sm(�m) = �m . Suppose that �m ∉ Γm� for any m�

∈ {1,… ,M} , m′ ≠ m . 
(This holds, for instance if  Γ is disjoint in the sense of (13).) Then the singular inte-
gral (39) is finite for 0 ≤ t < tm , where tm is defined in (40), and it can be represented 
in terms of regular integrals, as:

(39)I
Γ
[Φt(⋅, �)] = ∫

Γ

Φt(x, �) d�(x),

|||IΓ[Φt(⋅, �)] − Qh
Γ
[Φt(⋅, �)]

||| ≤
nath

2
�(Γ)

2 dist (�,ΓHull,h)
t+2

.

(40)tm ∶=
log pm

log �m
.

I
Γ
[Φt(⋅, �m)] =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(1 − pm)
−1

�
pm�(Γ) log �m +

M�
m�=1
m�≠m

I
Γm�

[Φt(⋅, �m)]

�
, t = 0,

(1 − pm�
−t
m
)
−1

M�
m�=1
m�≠m

I
Γm�

[Φt(⋅, �m)], t ∈ (0, tm).
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Proof The integrability result is proved in Lemma A.3. To prove the claimed decom-
position, we first split the integral, writing

Focusing on the singular term, by (20) and the fact that sm(�m) = �m we can write

using the fact that Φt is translation and rotation invariant. Then, applying (35) gives

Substituting (42) into (41) and solving for I
Γ
[Φt(⋅, �m)] , we obtain the result.

  ◻

Theorem 4.3 can be combined with any quadrature rule capable of evaluating 
the regular integrals I

Γm�
[Φt(⋅, �m)] , m′ ≠ m , to produce a quadrature rule for eval-

uating the singular integral (39) when � = �m . In particular, given h > 0 , applying 
the barycentre rule of Definition 3.1 with Γ replaced by Γm� and I = Lh(Γm� ) , for 
each m′ ≠ m , produces the following quadrature rule:

This quadrature formula could be used for the implementation of a collocation-type 
discretisation of the integral equations in [9], with the collocation nodes chosen as 
fixed points of the self-similar subsets of the IFS attractor used as the BEM elements 
in [9]. This discretisation is not investigated in [9].

(41)I
Γ
[Φt(⋅, �m)] = I

Γm
[Φt(⋅, �m)]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

singular integral

+

M∑
m�≠m
m�=1

I
Γm�

[Φt(⋅, �m)]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

regular integral

.

I
Γm
[Φt(⋅, �m)] =∫

Γm

Φt(x, �m) d�(x)

=pm ∫
Γ

Φt(sm(x), �m) d�(x)

=pm ∫
Γ

Φt(sm(x), sm(�m)) d�(x)

=pm ∫
Γ

Φt(�mAmx + �m, �mAm�m + �m) d�(x)

=pm ∫
Γ

Φt(�mx, �m�m) d�(x),

(42)I
Γm
[Φt(⋅, �m)] =

{
pm

(
�(Γ) log �m + I

Γ
[Φt(⋅, �m)]

)
, t = 0,

pm�
−t
m
I
Γ
[Φt(⋅, �m)], t ∈ (0, tm).

(43)

Qh
Γ,t,m

∶=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(1 − pm)
−1

�
pm�(Γ) log(�m) +

M�
m�=1
m�≠m

Qh
Γm�

[Φt(⋅, �m)]

�
, t = 0,

(1 − pm�
−t
m
)
−1

M�
m�=1
m�≠m

Qh
Γm�

[Φt(⋅, �m)], t ∈ (0, tm).
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Corollary 4.4 Let Γ , m, �m and tm be as in Theorem 4.3. Let 0 < h < diam (Γ) , and 
suppose that �m ∉ Hull(Γ

m
� ) for each m�

∈ Lh(Γ) such that m′

1
≠ m . Then the quad-

rature rule defined by (43) for the integral (39) with � = �m satisfies the error estimate

where

Proof For 0 ≤ t < tm , we have from Theorem 4.3 and Eq. (43) that

and the result follows by applying Proposition 4.2 to each term in the sum, and 
recalling (22) to see that 

∑M

m�=1
m�≠m

�(Γm� ) ≤ �(Γ).

  ◻

The separation parameter Rm,h introduced in (44) is used only in the statement 
of Corollary 4.4, and is compared to other related parameters in Remark 4.8. The 
relative error and the behaviour of the bound in the limit (d − t) → 0 are analysed 
for the case of homogeneous IFSs with � = H

d|
Γ
 in Section 4.4.

4.3  Double integrals

We now consider the evaluation of the double integral

When Γ and Γ� are disjoint the integral is regular, and combining Theorem 3.7(iii) 
and Lemma 4.1 gives the following error estimate for the barycentre rule.

Proposition 4.5 Let Γ,Γ�
⊂ ℝ

n and �,�′ be as in Sections 2.2 and 2.5. Let h > 0 and 
let ΓHull,h be as in (33) and Γ�

Hull,h
 be as in (33) with Γ replaced by Γ� . Suppose that 

ΓHull,h ∩ Γ
�

Hull,h
= � . Then

|||IΓ[Φt(⋅, 𝜂m)] − Qh
Γ,t,m

||| ≤
nath

2
𝜇(Γ)

2(1 − pm𝜌
−t
m
)Rt+2

m,h

, 0 ≤ t < tm,

(44)
Rm,h ∶= min

m
�∈Lh(Γ)

m�

1
≠m

dist
(
𝜂m, Hull(Γm

� )
)
> 0.

|||IΓ[Φt(⋅, �m)] − Qh
Γ,t,m

|||
≤(1 − pm�

−t
m
)
−1

M∑
m�=1
m�≠m

|||IΓm�
[Φt(⋅, �m)] − Qh

Γm�
[Φt(⋅, �m)]

|||,

(45)I
Γ,Γ� [Φt] = ∫

Γ
∫
Γ�

Φt(x, y) d�
�
(y) d�(x).

|||IΓ,Γ� [Φt] − Qh
Γ,Γ� [Φt]

||| ≤
2nath

2
�(Γ)�

�
(Γ

�
)

dist (ΓHull,h,Γ
�

Hull,h
)t+2

.
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When Γ and Γ� are not disjoint (45) is a singular integral, which converges 
only for sufficiently small t. Suppose for simplicity that Γ�

= Γ . Then in the case 
� = �

�
= H

d|
Γ
 we have convergence for 0 ≤ t < d ≤ n (see Corollary A.2). For a 

more general pair of invariant measures � and �′ on Γ , with respective (possibly 
different) weights/probabilities (p1,… , pM) and (p�

1
,… , p�

M
) , if Γ is disjoint then the 

integral converges for 0 ≤ t < t
∗
 (see Lemma A.4), where t

∗
 is the unique positive 

solution of

In the disjoint case, the singular integral (when it converges) can be written purely in 
terms of regular integrals, as the following result shows. This was noted previously 
for the case of Cantor sets in e.g. [7]. We remind the reader that if � = �

�
= H

d|
Γ
 

then pm = p�
m
= �

d
m
 and t

∗
= d.

Theorem 4.6 Let Γ ⊂ ℝ
n be as in Section 2.2, and let �,�′ be as in Section 2.5. Sup-

pose that Γ is disjoint in the sense of (13). Then the singular double integral (45) 
with Γ�

= Γ converges for 0 ≤ t < t
∗
 , where t

∗
 is the unique positive solution of (46), 

and it can be represented in terms of regular integrals, as:

Proof The integrability result is proved in Lemma A.4. To prove the claimed decom-
position, as in the single integral case we begin by splitting the integral, writing

By applying (20) (for both � and �′ ), (35), and the fact that Φt is translation and rota-
tion invariant, the singular integrals in (47) can be written as

(46)
M∑

m=1

pmp
�

m
�
−t

∗

m
= 1.

I
Γ,Γ[Φt]

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
1 −

M�
m=1

pmp
�

m

�−1 M�
m=1

�
pmp

�

m
�(Γ)�

�
(Γ) log(�m) +

�
m�=1
m�≠m

I
Γm ,Γm�

[Φt]

�
, t = 0,

�
1 −

M�
m=1

pmp
�

m
�
−t
m

�−1 M�
m=1

M�
m�=1
m�≠m

I
Γm ,Γm�

[Φt], t ∈ (0, t
∗
).

(47)I
Γ,Γ[Φt] =

M∑
m=1

I
Γm,Γm

[Φt]

⏟⏞⏞⏟⏞⏞⏟

singular integral

+

M∑
m=1

M∑
m�=1
m�≠m

I
Γm,Γm�

[Φt]

⏟⏞⏞⏟⏞⏞⏟

regular integral

.
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Substituting this expression into (47) and solving for I
Γ,Γ[Φt] gives the claimed 

result.
  ◻

By combining Theorem 4.6 with a suitable quadrature rule for evaluating the 
regular integrals I

Γm,Γm�
[Φt] , m′ ≠ m , we can obtain a quadrature rule for evaluat-

ing the singular integral (45). In particular, given h > 0 , applying the barycen-
tre rule of Definition 3.5 with Γ,Γ� replaced by Γm,Γm� and with I = Lh(Γm) and 
I
�
= Lh(Γm� ) for each pair (m,m�

) such that m′ ≠ m produces the following quad-
rature rule:

Corollary 4.7 Let Γ , � , �′ and t be as in Theorem 4.6. Let 0 < h < diam (Γ) , and 
assume that Hull(Γ

m
) ∩ Hull(Γ

m
� ) = � for all m,m�

∈ Lh(Γ) such that m1 ≠ m′

1
 . 

Then the quadrature rule defined by (48) for the integral (45) satisfies the error 
estimate

where

I
Γm,Γm

[Φt] =∫
Γm

∫
Γm

Φt(x, y)d�
�
(y)d�(x)

=pmp
�

m ∫
Γ
∫
Γ

Φt

(
sm(x), sm(y)

)
d��

(y)d�(x)

=pmp
�

m ∫
Γ
∫
Γ

Φt

(
�mx, �my

)
d��

(y)d�(x)

=

{
pmp

�

m

(
�(Γ)�

�
(Γ) log(�m) + I

Γ,Γ[Φt]
)
, t = 0,

pmp
�

m
�
−t
m
I
Γ,Γ[Φt], t ∈ (0, t

∗
).

(48)

Qh
Γ,Γ,t

∶=

⎧
⎪⎪⎨⎪⎪⎩

�
1 −

M∑
m=1

pmp
�

m

�−1 M∑
m=1

�
pmp

�

m
�(Γ)�

�
(Γ) log(�m) +

∑
m�=1
m�≠m

Qh
Γm ,Γm�

[Φt]

�
, t = 0,

�
1 −

M�
m=1

pmp
�

m
�
−t
m

�−1 M�
m=1

M�
m�=1
m�≠m

Qh
Γm ,Γm�

[Φt], t ∈ (0, t
∗
).

|||IΓ,Γ[Φt] − Qh
Γ,Γ,t

||| ≤
2nath

2
�(Γ)�

�
(Γ)

(
1 −

M∑
m=1

pmp
�

m
�
−t
m

)
Rt+2
Γ,Hull,h

,
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Proof The proof is similar to that of Corollary 4.4. For 0 ≤ t < t
∗
 , we have

and the result follows by applying Proposition 4.5 to each term in the sum.
  ◻

Remark 4.8 So far, we have introduced four different parameters quantifying the dis-
tance between self-similar subsets of an IFS attractor Γ:

• R
Γ in (13), which measures the minimum distance between level-1 subsets,

• R
Γ,Hull in (14), which measures the minimum distance between the convex hulls 

of level-1 subsets,
• Rm,h in (44), which measures the minimum distance between a fixed point �m of 

sm and the convex hulls of subsets of Γ ⧵ Γm of diameter approximately h,
• R

Γ,Hull,h in (49), which measures the minimum distance between the convex hulls 
of pairs of subsets, taken from different level-1 subsets, of approximate diameter h.

Recall that Rm,h and R
Γ,Hull,h are defined only for 0 < h < diam (Γ) . They satisfy the 

inequalities

In particular, Corollaries  4.4 and 4.7 show how Rm,h and R
Γ,Hull,h quantify the 

expected deterioration of the quadrature accuracy due to the vicinity of the integrand 
singularity, for single and double integrals ( I

Γ
[Φt(⋅, �m)] and I

Γ,Γ[Φt] ), respectively.
Table 2 shows the values of these parameters for the four examples in Fig. 1. The 

values of Rm,h and R
Γ,Hull,h are valid for all sufficiently small h (e.g. R5,h = 0 for (III) 

and h ≥ √
2∕3).

We are not aware of any IFS attractor satisfying the open set condition with 
Rm,h = 0 for some m, i.e. with �m ∈ Hull(Γ

m
� ) for m�

∈ Lh(Γ) and m′

1
≠ m.

4.4  Relative errors and dependence on N for homogeneous IFSs and Hausdorff 
measure

In this section, we show how the error bounds we derived for the singular inte-
grals in Sections 4.2 and 4.3 can be written in terms of the quantity N ∶= |Lh(Γ)| , 

(49)
R
Γ,Hull,h ∶= min

m,m�
∈ Lh(Γ)

m1 ≠ m�

1

dist
(
Hull(Γ

m
), Hull(Γ

m
� )
) ≥ R

Γ,Hull.

|||IΓ,Γ[Φt] − Qh
Γ,Γ,t

||| =
(
1 −

M∑
m=1

pmp
�

m
�
−t
m

)−1 M∑
m=1

M∑
m�=1
m�≠m

|||IΓm,Γm�
[Φt] − Qh

Γm,Γm�
[Φt]

|||,

0 ≤ R
Γ,Hull ≤ R

Γ,Hull,h ≤ R
Γ
, R

Γ,Hull,h ≤ min
m=1,…,M

Rm,h.
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as was discussed for the regular integrals of Section 3.3 in Remark 3.9. As well 
as allowing us to determine the dependence of our error bounds on the compu-
tational cost of the quadrature rules, this also allows us to clarify the limiting 
behaviour of our bounds as (d − t) → 0 . To this purpose, we now consider relative 
errors, and restrict our attention in this section to homogeneous IFSs and the case 
� = �

�
= H

d|
Γ
.

For a homogeneous IFS, we have N = |I
�
| = M� for � as in (24). The num-

ber of evaluations of the integrand Φt required for the computation of the quadra-
ture formulas is (M − 1)M�−1

=
M−1

M
N for the single-integral formula (43) and 

(M − 1)M2�−1
=

M−1

M
N2 for the double-integral formula (48).

Let us consider first the case t > 0 . From (71) we have the lower bounds:

Recall that c̃1 > 0 , defined in (6), is an intrinsic parameter of the d-set Γ , independ-
ent of its characterization as an IFS attractor. Then, using that for a homogeneous 
IFS and the case � = �

�
= H

d|
Γ
 we have 

∑M

m=1
p2
m
�
−t
m

=
∑M

m=1
�
2d−t

= �
d−t from 

M�
d
= 1 in (12), Corollaries 4.4 and 4.7 imply the following relative error estimates:

where

To bound Et , we first note that, for 0 < z, 𝜌 < 1 , we have �z ≤ 1 − z(1 − �) (by com-
parison of an affine and a convex function of z that coincide for z = 0 and z = 1 ), so 
that

I
Γ
[Φt(⋅, 𝜂)] ≥ c̃1d

d − t

(
diam (Γ)

)d−t
,

I
Γ,Γ[Φt] ≥ c̃1d

d − t

(
diam (Γ)

)d−t
H

d
(Γ),

𝜂 ∈ Γ, 0 < t < d.

(50)
|||IΓ[Φt(⋅, �m)] − Qh

Γ,t,m

|||
||IΓ[Φt(⋅, �m)]

||
≤ Et

Rt+2
m,h

,

|||IΓ,Γ[Φt] − Qh
Γ,Γ,t

|||
||IΓ,Γ[Φt]

||
≤ 4 Et

Rt+2
Γ,Hull,h

,

Et ∶=
nath

2H
d
(Γ)(d − t)

2c̃1d
(
diam (Γ)

)d−t
(1 − 𝜌d−t)

.

(51)
d − t

1 − �d−t
≤ d − t

1 − 1 + (d − t)(1 − �)
=

1

1 − �

.

Table 2  The values of 
the separation parameters 
described in Remark 4.8 for 
the IFS attractors of Fig. 1, for 
sufficiently small h 

R
Γ

R
Γ,Hull min

m=1,…,M R
m,h R

Γ,Hull,h

(I) 1 − 2� 1 − 2� 1 − �(m = 1, 2, 3, 4) 1 − 2�

(II) ≥ 1−�−3�2

2
√
3

0
√

1

3
− � + �2 − �3 + �4 (m = 4) ≥ 1−�−3�2

2
√
3

(III)
√
2∕27 0 5

√
2∕117(m = 5)

√
2∕27

(IV) 0 0 1∕(3
√
2)(m = 5) 0
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Moreover, from | log �| = log
1

�
≤ 1

�
− 1 =

1−�

�
 we have | log �|( 1

1 − �

− 1) =

| log �|( �

1−�
) ≤ 1 and hence

Then, using also d =
logM

| log �| , � = M−1∕d and h ≤ diam (Γ)

�N1∕d
 (see (34)), we can bound

Combined with (50), this reveals the dependence of the relative error on the com-
putational cost, through the parameter N; specifically, the errors are O(N−2∕d

) as 
N → ∞ . The above bound can also be written in terms of the refinement level � 
using N

M
= M�−1 , giving exponential convergence at the rate M−2�∕d as � → ∞.

While the bounds on the absolute errors in Corollaries 4.4 and 4.7 blow up in the 
limit t ↗ d (with N fixed), the bounds (50) and (53) show that the corresponding 
relative errors are bounded in this limit because the integrals being approximated 
also blow up at the same rate. Similarly, for a sequence of IFSs with d ↘ t > 0 (and 
with M constant, c̃1 and R

Γ,Hull uniformly bounded away from zero, and Hd
(Γ) and 

diam (Γ) uniformly bounded above), the absolute errors blow up while the relative 
errors are uniformly bounded. Furthermore, the same is true (again for fixed N) in 
the case where d ↘ 0 and t ↘ 0 with d > t , since the algebraic growth of the 1

d
 term 

in (53) is controlled by the exponential decay of the factor ( N
M
)
−2∕d (provided � ≥ 2).

In the case t = 0 , the logarithmic function Φ0 changes sign, so it is not in gen-
eral possible to bound its integrals from below. Thus, we assume that diam (Γ) ≤ 1 . 
Under this assumption, for all � ∈ Γ , (71) gives

(52)
| log �|
1 − �

≤ 1 + | log �|.

(53)

E
t

(51)≤ na
t
h
2 H

d
(Γ)| log 𝜌|

2c̃1 logM
(
diam (Γ)

)d−t
(1 − 𝜌)

(52)≤ na
t
h
2 H

d
(Γ)(1 + | log 𝜌|)

2c̃1 logM
(
diam (Γ)

)d−t

≤ na
t
H

d
(Γ)

(
diam (Γ)

)2−d+t
(1 + | log 𝜌|)

2c̃1(logM)𝜌2
N

−2∕d

=

na
t
H

d
(Γ)

(
diam (Γ)

)2−d+t
2c̃1 logM

(
1 +

logM

d

)(
N

M

)−2∕d

≤ na
t
H

d
(Γ)

(
diam (Γ)

)2−d+t
2c̃1 log 2

(
1 +

1

d

)(
N

M

)−2∕d

.

||IΓ[Φ0(⋅, 𝜂)]
|| = − I

Γ
[Φ0(⋅, 𝜂)]

≥c̃1d �
diam (Γ)

0

−rd−1 log r dr = c̃1
(
diam (Γ)

)d(1
d
− log diam (Γ)

)
,

||IΓ,Γ[Φ0]
|| = − I

Γ,Γ[Φ0] ≥ c̃1
(
diam (Γ)

)d(1
d
− log diam (Γ)

)
H

d
(Γ).
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Proceeding as above and using a0 = 2 , log diam (Γ) ≤ 0 , and 1

1−�d
=

M

M−1
≤ 2 , the 

bound (50) on the relative error extends to the case t = 0 with

which tends to 0 as d ↘ t = 0.
Regarding sequences of IFS attractors for which d ↘ 0 , one can show for 

example that for any 𝜖 > 0 the family of Cantor sets in ℝ defined by (11), for 
� ∈ (0, 1∕2 − �) , i.e. for d = log 2∕ log(1∕𝜌) ∈ (0, log 2∕ log(1∕(1∕2 − 𝜖))) ⊂ (0, 1) , 
have diam (Γ) = H

d
(Γ) = 1 and c̃1 and R

Γ,Hull uniformly bounded away from 0.

5  Application to Galerkin Hausdorff BEM for acoustic scattering

We now apply our previous results to derive and analyse quadrature rules for the 
evaluation of

where Γ,Γ�
⊂ ℝ

n are as in Section 2.2 and Φ(x, y) is the fundamental solution of 
the Helmholtz equation in ℝn+1 , defined in (3). As (54) suggests, our focus on this 
section is on the case � = H

d|
Γ
 , ��

= H
d� |

Γ
 . As explained in Section 1, integrals 

of the form (54) arise as the elements of the Galerkin matrix in the “Hausdorff 
BEM” described in [9], for acoustic scattering by fractal screens. We first consider 
(54) in the non-singular case where Γ and Γ� are disjoint, corresponding to the off-
diagonal matrix entries in [9]. Our quadrature rule in this case is the composite 
barycentre rule, and the main result is Proposition 5.2. We then consider (54) in 
the singular case where Γ = Γ

� , corresponding to the diagonal matrix entries in [9]. 
Our quadrature rule for this case is defined in (60) and (61), and the main result is 
Theorem 5.7.

Before proceeding with the analysis, we note the following regularity estimate 
on Φ . Here and henceforth, a ≲ b means a ≤ Cb for some constant C > 0 , inde-
pendent of Γ , Γ� , h and k, which may change from occurrence to occurrence.

Lemma 5.1 For all � ∈ ℕ
2n
0

 with |�| = 2 and all x ≠ y

E0 ∶=
na0h

2H
d
(Γ)

2(1 − 𝜌d) c̃1
(
diam (Γ)

)d
(
1

d
− log diam (Γ))

≤2nHd
(Γ)

(
diam (Γ)

)2−d
c̃1

d

(
N

M

)−2∕d

,

(54)I
Γ,Γ� [Φ] = ∫

Γ
∫
Γ�

Φ(x, y) dHd�
(y) dHd

(x),

|D𝛼
Φ(x, y)| ≲ (1 + (k|x − y|)n∕2+1)

|x − y|n+1 .
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Proof The proof is analogous to that of Lemma 4.1. We first note that 
Φ(x, y) = Φ̃(r(x, y)) , where

and by standard calculations (e.g. [1, 10.6.2–3]) we find that

Inserting these results into (37) (with F = Φ̃ ) gives the claimed result, after applica-
tion of the following standard bounds (which follow from results in [1, Section 10]):

  ◻

We now consider (54) in the non-singular case where Γ and Γ� are disjoint. The 
following result follows from Theorem 3.7(iii) and Lemma 5.1, and the fact that 
(1 + (kz)n∕2+1)∕zn+1 is a positive decreasing function on (0,∞) for n = 1, 2.

Proposition 5.2 Let Γ ⊂ ℝ
n and Γ�

⊂ ℝ
n be as in Section  2.2. Let h > 0 , and let 

ΓHull,h be as in (33) and Γ�

Hull,h
 be as in (33) with Γ replaced by Γ� . Suppose that 

ΓHull,h ∩ Γ
�

Hull,h
= � . Then

where � = dist (ΓHull,h,Γ
�

Hull,h
).

We now turn to the singular case where Γ = Γ
� and (54) becomes

For fixed k > 0 , we have (by [1, (10.8.2)] in the case n = 1 ) that

where

Φ̃(r) =

⎧
⎪⎨⎪⎩

i

4
H

(1)

0
(kr), n = 1,

eikr

4𝜋r
, n = 2,

(55)

Φ̃
�
(r) =

⎧⎪⎨⎪⎩

−
ik

4
H

(1)

1
(kr),

(ikr − 1)eikr

4𝜋r2
,

and Φ̃��
(r) =

⎧
⎪⎨⎪⎩

ik2

4

�
1

kr
H

(1)

1
(kr) − H

(1)

0
(kr)

�
, n = 1,

(2 − 2ikr − (kr)2)eikr

4𝜋r3
, n = 2.

(56)

|H(1)

0
(z)| ≲

{
(1 + | log z|), 0 < z ≤ 1,

z−1∕2, z > 1,
|H(1)

1
(z)| ≲

{
z−1, 0 < z ≤ 1,

z−1∕2, z > 1.

|||IΓ,Γ� [Φ] − Qh
Γ,Γ� [Φ]

||| ≲ h2Hd
(Γ)H

d�
(Γ

�
)

(
1 + (k𝛿)n∕2+1

)
𝛿n+1

, n = 1, 2,

(57)I
Γ,Γ[Φ] = ∫

Γ
∫
Γ

Φ(x, y) dHd
(y) dHd

(x).

(58)Φ(x, y) ∼ CnΦn−1(x, y), |x − y| → 0, n = 1, 2,

C1 = −1∕(2�) and C2 = 1∕(4�).
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Furthermore, the function

is continuous across x = y (in fact, Lipschitz continuous), with (see [1, 10.8.2] for 
the case n = 1)

This motivates a singularity-subtraction approach for evaluating (57), using the 
splitting

integrating Φn−1 using the quadrature rules from Section 4, and Φ
∗
 using the com-

posite barycentre rule. However, the application of (59) is complicated by the fact 
that while (59) is designed to deal efficiently with the singular behaviour (58), it is 
not well adapted to the oscillatory behaviour of Φ as k|x − y| → ∞ . To deal with 
this systematically, we introduce a parameter cosc > 0 , proportional to the maximum 
number of wavelengths there can be across Γ for us to consider the integral non-
oscillatory. We then define our quadrature rule for (57) differently depending on 
whether k diam (Γ) ≤ cosc or k diam (Γ) > cosc . Note that the non-oscillatory regime 
k diam (Γ) ≤ cosc is the one relevant for the BEM application in [9], since the diam-
eter of the BEM elements in [9] needs to be small compared to the wavelength in 
order to achieve acceptable approximation error.

Definition 5.3 (Singularity-subtraction quadrature rule Qh
Γ,Γ,Φ

 ) When 
k diam (Γ) ≤ cosc we apply (59) directly to (57), approximating

where Qh
Γ,Γ,n−1

 is defined as in (48).

When k diam (Γ) > cosc we first partition Γ into subsets of diameter at most 
h
∗
∶= cosc∕k before applying (59) only to the singular terms in the resulting decom-

position of (57), approximating

where Qh
Γ
m
,Γ

m
,n−1

 is defined as in (48) with Γ replaced by Γ
m

.

Φ
∗
∶= Φ − CnΦn−1

lim
x→y

Φ
∗
(x, y) =

⎧
⎪⎨⎪⎩

− log (k∕2) − �

2�
+

i

4
, n = 1,

ik

4�
, n = 2,

y ∈ ℝ
n.

(59)Φ = CnΦn−1 + Φ
∗
,

(60)I
Γ,Γ[Φ] ≈ Qh

Γ,Γ,Φ
∶= CnQ

h
Γ,Γ,n−1

+ Qh
Γ,Γ

[Φ
∗
],

(61)

I
Γ,Γ[Φ] ≈ Qh

Γ,Γ,Φ
∶=

∑
m∈Lh∗ (Γ)

(
CnQ

h
Γ
m
,Γ

m
,n−1

+ Qh
Γ
m
,Γ

m

[Φ
∗
]

)

+

∑
m∈Lh∗ (Γ)

∑
m

�∈Lh∗
m

�≠m
(Γ)

Qh
Γ
m
,Γ

m
�
[Φ],
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For the error analysis of (60), we recall that an error estimate for Qh
Γ,Γ,n−1

 was pre-
sented in Corollary 4.7, so it remains to derive an error estimate for Qh

Γ,Γ
[Φ

∗
] . Naively 

applying Theorem 3.6 would result in an O(h) estimate for Qh
Γ,Γ

[Φ
∗
] , because while Φ

∗
 

is Lipschitz continuous across x = y , its derivative is not Lipschitz. An O(h2) estimate 
(matching that for Qh

Γ,Γ,n−1
 provided by Corollary 4.7) can be obtained via a first-prin-

ciples analysis, which we present in Proposition 5.5. We then apply this result to give a 
full error analysis of both (60) and (61) in Theorem 5.7. Our analysis is restricted to the 
case of a homogeneous IFS, but we expect that with further non-trivial work a similar 
analysis could be carried out for the non- homogeneous case—see the discussion before 
Theorem 5.11, where a weaker O(h) estimate is proved for the non-homogeneous case.

Our arguments will make use of the following bounds on the second-order deriva-
tives of Φ

∗
.

Lemma 5.4 For all � ∈ ℕ
2n
0

 with |�| = 2 and all x ≠ y

Proof The proof is analogous to that of Lemmas 4.1 and 5.1. We first note that 
Φ

∗
(x, y) = Φ̃

∗
(r(x, y)) , where Φ̃

∗
∶= Φ̃ − CnΦ̃n−1 , so that combining (38) and (55) 

gives

and

Using the series expansions for the exponential and the Hankel functions (see [1, 
10.8.1]) and the bounds (56), one finds that

��D𝛼
Φ

∗
(x, y)�� ≲

⎧
⎪⎪⎨⎪⎪⎩

k2
�
1 + �� log(k�x − y�)��

�
, n = 1, 0 < k�x − y� ≤ 1,

k2

(k�x − y�)1∕2 , n = 1, �x − y� > 1,

k2

�x − y� , n = 2.

Φ̃
�

∗
(r) =

⎧⎪⎨⎪⎩

−
ik

4

�
H

(1)

1
(kr) +

2i

𝜋kr

�
, n = 1,

(ikr − 1)eikr + 1

4𝜋r2
, n = 2,

Φ̃
��

∗
(r) =

⎧⎪⎨⎪⎩

ik2

4

�
1

kr
H

(1)

1
(kr) − H

(1)

0
(kr) +

2i

𝜋(kr)2

�
, n = 1,

(2 − 2ikr − (kr)2)eikr − 2

4𝜋r3
, n = 2.

(62)

�Φ̃�

∗
(r)� ≲

⎧
⎪⎪⎨⎪⎪⎩

k2r(1 + � log kr�),
k

(kr)1∕2
,

k2

1 + kr
,

�Φ̃��

∗
(r)� ≲

⎧
⎪⎪⎨⎪⎪⎩

k2(1 + � log kr�), n = 1, 0 < kr ≤ 1,

k2

(kr)1∕2
, n = 1, kr > 1,

k3

1 + kr
, n = 2.
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Inserting these bounds into (37) (with F = Φ̃
∗
 ) gives the result.

  ◻

In what follows, we shall also make use of the fact that

and that, in the case � = H
d|

Γ
 , for m ∈ Lh(Γ) it follows from (18) that

We now consider the approximation of I
Γ,Γ[Φ∗

].

Proposition 5.5 Let Γ ⊂ ℝ
n be as in Section 2.2, with d = dimH(Γ) > n − 1 . Suppose 

that Γ is homogeneous in the sense of Section 2.3, with contraction factor � ∈ (0, 1) . 
Suppose also that Γ is hull-disjoint in the sense of (14). Let k > 0 and suppose that 
k diam (Γ) ≤ cosc . Let 0 < h ≤ diam (Γ) . Then

where the constant implied in ≲ depends only on cosc and

Proof We first note that

For the analysis of S1 we note that for m ∈ Lh(Γ)

(63)if 0 < x1 ≤ x2 ≤ x3 < ∞ then | log x2| ≤ | log x1| + | log x3|,

(64)H
d
(Γ

m
) ≤

(
h

diam (Γ)

)d

H
d
(Γ).

(65)

|||IΓ,Γ[Φ∗
] − Qh

Γ,Γ
[Φ

∗
]
||| ≲ ck2h2

(
H

d
(Γ)

)2 ≤ ck2
(
diam (Γ)H

d
(Γ)

)2(N

M

)−2∕d

,

c =

⎧⎪⎨⎪⎩

� log ��
logM

+ �� log(kRΓ,Hull)
�� = 1

d
+ �� log(kRΓ,Hull)

��, n = 1,

�M

R
Γ,Hull(�M − 1)

=
1

R
Γ,Hull(1 −M1∕d−1)

, n = 2.

|||IΓ,Γ[Φ∗
] − Qh

Γ,Γ
[Φ

∗
]
||| ≤

∑
m∈Lh(Γ)

|||IΓm
,Γ

m

[Φ
∗
] − Qh

Γ
m
,Γ

m

[Φ
∗
]
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶S1

+

∑
m∈Lh(Γ)

∑
m

�∈Lh
m

�≠m (Γ)

|||IΓm
,Γ

m
�
[Φ

∗
] − Qh

Γ
m
,Γ

m
�
[Φ

∗
]
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶S2

.

(66)

|||IΓm
,Γ

m

[Φ
∗
] − Qh

Γ
m
,Γ

m

[Φ
∗
]
|||

=

|||||�Γ
m

�
Γ
m

(
Φ

∗
(x, y) − Φ

∗
(x

m
, x

m
)
)
dHd

(y)dHd
(x)

|||||
≤�

Γ
m

�
Γ
m

||Φ̃∗
(r(x, y)) − Φ̃

∗
(0)|| dHd

(y)dHd
(x).
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By (62) we have that, when kr ≤ cosc,

Since both z2(1 + | log z|) and z are increasing functions of z ∈ (0,∞) , applying a 
uniform upper bound on the integrand in (66) (with r ≤ h ), then summing over m 
and using (22) and (64) gives

For the analysis of S2 , we note that if m ∈ Lh(Γ) then (Γ
m
)Hull,h = Hull(Γ

m
) , so that 

for m ≠ m
′ we have, by (16) and the assumption that Γ is hull-disjoint, that

where �
∗
(m,m�

) was defined in (15). Now, since Γ is homogeneous we have that 
Lh(Γ) = I

�
 , where � satisfies (24). Also, Hd

(Γ
m
) = M−�H

d
(Γ) for m ∈ Lh(Γ).

In the case n = 2 , given m ∈ Lh(Γ) = I
�
 , by Lemma 5.4, Theorem 3.7 (iii) and 

Lemma 2.1 we have

where we used the fact that M�
d
= 1 (by (10)) and d > n − 1 = 1 (an assumption 

of the theorem) to deduce that 𝜌M > 1 , which means we can take the summation 
limit to infinity in the geometric series. Finally, summing over m and bounding 
M − 1 ≤ M gives

|Φ̃
∗
(r) − Φ̃

∗
(0)| ≲

{
(kr)2(1 + | log kr|), n = 1,

k2r, n = 2.

S1 ≤|Φ̃∗
(h) − Φ̃

∗
(0)| ∑

m∈Lh(Γ)

H
d
(Γ

m
)
2

≤|Φ̃
∗
(h) − Φ̃

∗
(0)|

(
h

diam (Γ)

)d

H
d
(Γ)

∑
m∈Lh(Γ)

H
d
(Γ

m
)

=|Φ̃
∗
(h) − Φ̃

∗
(0)|

(
h

diam (Γ)

)d

H
d
(Γ)

2

≲k2
(

h

diam (Γ)

)d

H
d
(Γ)

2

{
h2(1 + | log kh|), n = 1,

h, n = 2.

dist
(
(Γ

m
)Hull,h, (Γm

� )Hull,h

)
= dist

(
Hull(Γ

m
), Hull(Γ

m
� )
) ≥ R

Γ,Hull�
�
∗
(m,m�

)−1,

∑
m

�∈Lh(Γ)

m
�≠m

|||IΓm
,Γ

m
�
[Φ

∗
] − Qh

Γ
m
,Γ

m
�
[Φ

∗
]
||| ≲

∑
m

�∈Lh(Γ)

m
�≠m

k2h2Hd
(Γ

m
)H

d
(Γ

m
� )

R
Γ,Hull𝜌

�
∗
(m,m�)−1

=
k2h2Hd

(Γ
m
)H

d
(Γ)M−�

R
Γ,Hull

�−1∑
�
∗
=1

M�−�
∗ (M − 1)

𝜌
�
∗
−1

=
k2h2Hd

(Γ
m
)H

d
(Γ)

R
Γ,Hull

(M − 1)𝜌

�−1∑
�
∗
=1

(𝜌M)
−�

∗

≤k2h2Hd
(Γ

m
)H

d
(Γ)

R
Γ,Hull

(M − 1)𝜌

(𝜌M − 1)
,
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In the case n = 1 , given m ∈ Lh(Γ) = I
�
 , by Lemma 5.4, Theorem  3.7 (iii) and 

Lemma 2.1 we have

and then summing over m , and noting that 1 ≤ 1∕d and that | log �|
M−1

≤ | log �|
logM

=
1

d
 by 

(12) and the fact that M − 1 > logM , gives

Combining the estimates for S1 and S2 then gives

The quantity in braces here is h-dependent, but can be bounded uniformly in h to 
give (65). For n = 1 , this is achieved by noting that zd| log z| ≤ 1∕(ed) for z ∈ (0, 1] , 
which, together with h ≤ diam (Γ) , implies that

S2 ≲
k2h2Hd

(Γ)
2

R
Γ,Hull

𝜌M

(𝜌M − 1)
, n = 2.

∑
m

�∈Lh(Γ)

m
�≠m

|||IΓm
,Γ

m
�
[Φ

∗
] − Qh

Γ
m
,Γ

m
�
[Φ

∗
]
|||

≲

∑
m

�∈Lh(Γ)

m
�≠m

k2h2Hd
(Γ

m
)H

d
(Γ

m
� )

(
1 +

|||log
(
kR

Γ,Hull𝜌
�
∗
(m,m�

)−1
)|||
)

=k2h2Hd
(Γ

m
)H

d
(Γ)M−�

�−1∑
�
∗
=1

M�−�
∗ (M − 1)

(
1 +

|||log
(
kR

Γ,Hull𝜌
�
∗
−1
)|||
)

≤k2h2Hd
(Γ

m
)H

d
(Γ)(M − 1)

�−1∑
�
∗
=1

M−�
∗

(
1 +

|||log
(
kR

Γ,Hull

)||| + (�
∗
− 1)| log 𝜌|

)

≤k2h2Hd
(Γ

m
)H

d
(Γ)

(
1 +

|||log
(
kR

Γ,Hull

)||| +
| log 𝜌|
M − 1

)
,

S2 ≲ k2h2
(
H

d
(Γ)

)2(1
d
+
|||log

(
kR

Γ,Hull

)|||
)
, n = 1.

���IΓ,Γ[Φ∗
] − Qh

Γ,Γ
[Φ

∗
]
���

≲k2h2
�
H

d
(Γ)

�2
⎧
⎪⎨⎪⎩

hd(1 + � log kh�)
diam (Γ)d

+
1

d
+
���log

�
kR

Γ,Hull

����, n = 1,

hd−1

diam (Γ)d
+

𝜌M

R
Γ,Hull(𝜌M − 1)

, n = 2.

hd(1 + | log kh|)
diam (Γ)d

≤( h

diam (Γ)

)d(
1 + || log

(
k diam (Γ)

)|| + ||| log
h

diam (Γ)

|||
)

≤1 + || log
(
k diam (Γ)

)|| + 1

ed

≲
1

d
+ || log

(
kR

Γ,Hull

)||,
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where the final inequality holds by (63) with x1 = kR
Γ,Hull , x2 = k diam (Γ) , and 

x3 = cosc , again noting that 1 ≤ 1∕d in this case. For n = 2 , since h ≤ diam (Γ) and 
d > 1 we can bound

and we can then obtain (65) by recalling that �d = 1∕M . Finally, in converting the O(h2) 
estimate to one involving N = |Lh(Γ)| , we recall that h ≤ diam (Γ)(N∕M)

−1∕d (see (34)).
  ◻

Remark 5.6 The error estimate of Proposition  5.5 for n = 2 blows up as � ↘
1

M
 , 

equivalently as d ↘ 1 , assuming Hd
(Γ) , diam (Γ) , M and N are fixed and R

Γ,Hull is 
bounded away from zero, because of the factor �M

�M−1
=

1

1−M1∕d−1
 . For example, for a 

family of Cantor dusts as in Fig. 1(I), parametrised by � and with M = 4 , this corre-
sponds to the limit � ↘

1

4
 . Differently from the setting in Section 4.4, the relative 

error is also predicted to blow up in this limit because the integral being approxi-
mated in this case is bounded, since Φ

∗
∈ L∞(Γ × Γ) . In contrast, for n = 1 the esti-

mate in Proposition 5.5 tends to 0 as d ↘ 0 because for N > M the algebraic growth 
of the 1/d term in c is beaten by the exponential decay of the (N∕M)

−2∕d factor.

Finally, we can state and prove our main result for the approximation of I
Γ,Γ[Φ].

Theorem  5.7 Let Γ ⊂ ℝ
n be as in Section  2.2, with d = dimH(Γ) > n − 1 . Sup-

pose that Γ is homogeneous in the sense of Section  2.3, with contraction factor 
� ∈ (0, 1) . Suppose also that Γ is hull-disjoint in the sense of (14). Let k > 0 . For 
the approximation of the integral (57) define the quadrature rule Qh

Γ,Γ,Φ
 by (60) (with 

h ≤ diam (Γ) ) if k diam (Γ) ≤ cosc and by (61) (with h ≤ cosc∕k ) if k diam (Γ) > cosc . 
Then

where the constant implied in ≲ depends only on cosc , and

hd−1

diam (Γ)d
=

(
h

diam (Γ)

)d−1
1

diam (Γ)
≤ 1

diam (Γ)
≤ 1

R
Γ,Hull

≤ �M

R
Γ,Hull(�M − 1)

,

|||IΓ,Γ[Φ] − Qh
Γ,Γ,Φ

||| ≲ c�h2
(
H

d
(Γ)

)2 ≤ c�
(
diam (Γ)H

d
(Γ)

)2(N

M

)−2∕d

,

c� =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
𝜌M

𝜌M−1

�n−1

𝜌n+1Rn+1
Γ,Hull

=
M(n+1)∕d

(1 −M1∕d−1)n−1Rn+1
Γ,Hull

, k diam (Γ) ≤ cosc,

�
1 +

�
𝜌M

𝜌M−1

�n−1

𝜌n+1
�
k diam (Γ)

�d
��

k diam (Γ)

R
Γ,Hull

�n+1

=

�
1 +

M(n+1)∕d

(1 −M1∕d−1)n−1
�
k diam (Γ)

�d
��

k diam (Γ)

R
Γ,Hull

�n+1

, k diam (Γ) > cosc.
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Proof By redefining h
∗
∶= min{cosc∕k, diam (Γ)} , (60) can be viewed as a special 

case of (61), since with h
∗
= diam (Γ) we have Lh

∗

(Γ) = {0} , in which case the first 
sum in (61) reduces to (60) and the second sum is absent. We therefore present the 
proof of (61) and specialise to (60) at the end.

By the triangle inequality and the splitting Φ = CnΦn−1 + Φ
∗
 , we have:

To bound T1 above, we first note that by Corollary 4.7 (with Γ replaced by Γ
m

 and 
with t = n − 1 for n = 1, 2 ) for any m ∈ Lh

∗

(Γ) we have

Let �(h
∗
) be given by (24) with h replaced by h

∗
 . Noting that 𝜌�(h∗) > 𝜌h

∗
∕ diam (Γ) 

we have that

Hence, using (22) with I = Lh
∗

(Γ) and (64) with h replaced by h
∗
,

For T2 , by Proposition 5.5 we have for any m ∈ Lh
∗

(Γ) that

|||IΓ,Γ[Φ] − Qh
Γ,Γ,Φ

||| ≤
∑

m∈Lh∗ (Γ)

Cn
|||IΓm

,Γ
m

[Φn−1] − Qh
Γ
m
,Γ

m
,n−1

|||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T1

+

∑
m∈Lh∗ (Γ)

|||IΓm
,Γ

m

[Φ
∗
] − Qh

Γ
m
,Γ

m

[Φ
∗
]
|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T2

+

∑
m∈Lh∗ (Γ)

∑
m

�∈Lh∗ (Γ)

m
�≠m

|||IΓm
,Γ

m
�
[Φ] − Qh

Γ
m
,Γ

m
�
[Φ]

|||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶T3

.

|||IΓm
,Γ

m

[Φn−1] − Qh
Γ
m
,Γ

m
,n−1

||| ≲h
2
(
H

d
(Γ

m
)
)2(

1 −M𝜌
2d+1−n

)−1 1

Rn+1
Γ
m
,Hull

=h2
(
H

d
(Γ

m
)
)2(

1 −M−1
𝜌
1−n

)−1 1

Rn+1
Γ
m
,Hull

.

(67)
𝜌h

∗

diam (Γ)
R
Γ,Hull < 𝜌

�(h
∗
)R

Γ,Hull = R
Γ
m
,Hull ≤ h

∗

diam (Γ)
R
Γ,Hull.

T1 ≲ h2
(
H

d
(Γ)

)2( h
∗

diam (Γ)

)d
M

M − 𝜌1−n

(
diam (Γ)

𝜌h
∗
R
Γ,Hull

)n+1

.
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Using (67), and for n = 1 the facts that | log 𝜌|
logM

≲ | log 𝜌| ≤ 1

𝜌
 , and that 

kR
Γ
m
,Hull ≤ k diamΓ

m
≤ kh

∗
≤ cosc , so that we can apply (63) with 

x1 = �kh
∗
R
Γ,Hull∕ diam (Γ

m
) , x2 = kR

Γ
m
,Hull and x3 = cosc , to find that

For T3 , by Proposition 5.2 we have for m,m�
∈ Lh

∗

(Γ) with m ≠ m
′ that

and by (16) and (67) it holds that

so that, since (1 + (kz)n∕2+1)∕zn+1 is positive and decreasing on (0,∞) , and 
kh

∗
R
Γ,Hull

diam (Γ)
≤ cosc,

Recalling our redefinition of h
∗
∶= min{cosc∕k, diam (Γ)} , the result for the case 

k diam (Γ) > cosc then follows by combining the estimates for T1 , T2 and T3 , and the 

���IΓm
,Γ

m

[Φ
∗
] − Qh

Γ
m
,Γ

m

[Φ
∗
]
���

≲k2h2
�
H

d
(Γ

m
)
�2
⎧
⎪⎨⎪⎩

� log 𝜌�
logM

+
��� log

�
kR

Γ
m
,Hull

����, n = 1,

𝜌M

R
Γ
m
,Hull(𝜌M − 1)

, n = 2.

T2 ≲ k2h2
�
H

d
(Γ)

�2� h
∗

diam (Γ)

�d

⎧
⎪⎪⎨⎪⎪⎩

1

𝜌

+

�����
log

�
𝜌kh

∗
R
Γ,Hull

diam (Γ)

������
, n = 1,

M diam (Γ)

h
∗
R
Γ
m
,Hull(𝜌M − 1)

, n = 2.

|||IΓm
,Γ

m
�
[Φ] − Qh

Γ
m
,Γ

m
�
[Φ]

|||

≲h2Hd
(Γ

m
)H

d
(Γ

m
� )

(
1 +

(
k dist ((Γ

m
)Hull,h, (Γm

� )Hull,h)
)n∕2+1)

dist
(
(Γ

m
)Hull,h, (Γm

� )Hull,h

)n+1 ,

dist
(
(Γ

m
)Hull,h, (Γm

� )Hull,h
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(
Hull(Γ

m
), Hull(Γ

m
� )
)

≥𝜌�(h∗)−1R
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>

h
∗

diam (Γ)
R
Γ,Hull,
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(
H

d
(Γ)

)2

(
1 +

(
kh
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R
Γ,Hull

diam (Γ)

)n∕2+1
)

(
h
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(Γ)
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h
∗
R
Γ,Hull

)n+1

.

2108



Numerical Algorithms (2023) 92:2071–2124

1 3

result for the case k diam (Γ) ≤ cosc follows by noting that in that case T3 is absent. 
We describe in more detail the four possible cases.

• For k diam (Γ) ≤ cosc (and thus h
∗
= diam (Γ) ) and n = 1 we have, since 

M∕(M − 1) ≤ 2 , 

 where the final bound follows from the fact that k ≤ cosc

diam (Γ)
≲

1

R
Γ,Hull

 , and 

because if �kR
Γ,Hull ≤ 1 then k2| log(�kR

Γ,Hull)| ≤ (�R
Γ,Hull)

−2 , since 

 and if 𝜌kR
Γ,Hull > 1 then k2| log(�kR

Γ,Hull)| ≤ k
2| log(k diam (Γ))| ≤ k

2| log(cosc)| ≲ k
2
≲ (𝜌R

Γ,Hull)
−2.

• For k diam (Γ) ≤ cosc and n = 2 we have, again using that k ≲ 1∕R
Γ,Hull , 

• For k diam (Γ) > cosc (and thus h
∗
= cosc∕k ) and n = 1 , 

T1 + T2

h2
(
H

d
(Γ)

)2 ≲

( h
∗

diam (Γ)

)d
((

diam (Γ)

𝜌h
∗
R
Γ,Hull

)2

+
k2

𝜌

+ k2
|||||
log

(
𝜌kh

∗
R
Γ,Hull

diam (Γ)

)|||||

)

=
1

𝜌2R2
Γ,Hull

+
k2

𝜌

+ k2|| log(𝜌kRΓ,Hull)
||

≲
1

𝜌2R2
Γ,Hull

,

(68)| log 𝜖| < |𝜖−2|, 0 < 𝜖 ≤ 1,

T1 + T2

h2
(
H

d
(Γ)

)2 ≲

(
h
∗

diam (Γ)

)d(
M

𝜌2(𝜌M − 1)

(
diam (Γ)

h
∗
R
Γ,Hull

)3

+
k2M diam (Γ)

h
∗
R
Γ,Hull(𝜌M − 1)

)

≲
M

𝜌2(𝜌M − 1)R3
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+
k2M

R
Γ,Hull(𝜌M − 1)

≲
M

𝜌2(𝜌M − 1)R3
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.

T1 + T2 + T3
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(
H

d
(Γ)
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(
h
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+
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|||||
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(
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∗
R
Γ,Hull
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)|||||

]

+

(
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h
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)2

≲
1(
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)d

[(
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𝜌R
Γ,Hull
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+
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𝜌
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|||||
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(
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)|||||

]

+

(
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 using R
Γ,Hull < diam (Γ) and (68) with 𝜖 = 𝜌R

Γ,Hull

diam (Γ)
< 1.

• Finally, for k diam (Γ) > cosc and n = 2 , 

 and we obtain the assertion again using the fact that R
Γ,Hull < diam (Γ).

  ◻

Remark 5.8 (Number of function evaluations) For a homogeneous IFS, recall that 
N = |Lh(Γ)| = |I

�
| = M� for � as in (24). A priori, the quadrature rule (60) requires 

(M − 1)M2�−1
=

M−1

M
N2 evaluations of Φn−1 (see Section 4.4) and M2�

= N2 evalu-
ations of Φ

∗
 . If �

∗
 is defined by (24) with h replaced by h

∗
 , i.e. �

∗
 is the level of 

the partition whose elements have diameter approximately h
∗
= cosc∕k , then 

the quadrature rule (61) requires M�
∗
M−1

M
M2(�−�

∗
)
=

M−1

M
M2�−�

∗ =
M−1

M�∗+1
N2 

evaluations of Φn−1 , M�
∗M2(�−�

∗
)
= M2�−�

∗ =
1

M�∗
N2 evaluations of Φ

∗
 , and 

M�
∗ (M�

∗ − 1)M2(�−�
∗
)
= (M�

∗ − 1)M2�−�
∗ = (1 −

1

M�∗
)N2 evaluations of Φ . How-

ever, the number of function evaluations can be reduced (by a factor of a half in 
the limit h → 0 ) by exploiting the symmetry of Φ , Φ

∗
 , Φn−1 , all of which satisfy 

f (x, y) = f (y, x).

Remark 5.9 (Limit behaviour for d ↘ n − 1 ) We consider the behaviour of the esti-
mates of Theorem 5.7 as d ↘ n − 1 , assuming Hd

(Γ) , diam (Γ) , M and N are fixed, 
and R

Γ,Hull is bounded away from 0. This limit corresponds to � ↘ 0 for n = 1 and 
� ↘ 1∕M for n = 2 . For n = 1 , the absolute error tends to 0 like O((N∕M2

)
−2∕d

) as 
d ↘ 0 , provided N > M2 . Since in this limit the integral is dominated by the con-
tribution from the singular function Φ0 , the integral of which grows like 1/d as 
d ↘ 0 (as shown in Section 4.4), the relative error tends to 0 like O(d(N∕M2

)
−2∕d

) 
as d ↘ 0 . For n = 2 , the estimate for the absolute error grows as d ↘ 1 , being 
asymptotically proportional to 1∕(1 −M1∕d−1

) ∼ 1∕((d − 1) logM) as d ↘ 1 . How-
ever, the relative error is bounded in this limit because, again, the contribution of 
the singular function ( Φ1 in this case) grows in proportion to 1∕(d − 1) as d ↘ 1 
(as shown in Section 4.4). We validate these statements numerically in Section 6 
below.

Remark 5.10 (Behaviour for vanishing distance between subsets) The estimates of 
Theorem 5.7 also blow up in the limit R

Γ,Hull ↘ 0 , specifically like R−(n+1)

Γ,Hull
 . However, 

T1 + T2 + T3

h2
(
H

d
(Γ)

)2 ≲

(
h
∗

diam (Γ)

)d[
M

𝜌2(𝜌M − 1)

(
diam (Γ)

h
∗
R
Γ,Hull

)3

+
k2M diam (Γ)

h
∗
R
Γ,Hull(𝜌M − 1)

]

+

(
diam (Γ)

h
∗
R
Γ,Hull

)3

≲
1(

k diam (Γ)
)d

[
M

𝜌2(𝜌M − 1)

(
k diam (Γ)

R
Γ,Hull

)3

+
k3M diam (Γ)

R
Γ,Hull(𝜌M − 1)

]

+

(
k diam (Γ)

R
Γ,Hull

)3
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our numerical investigations in Section 6 suggest that, at least in certain cases, this is 
overly pessimistic.

Proposition 5.5 and Theorem 5.7 are stated only for the case of a homoge-
neous IFS. We expect that with non-trivial further work one should be able 
to extend the O(h2) estimates in these results to the non-homogeneous case, 
but we defer this to future studies. The main difficulty is obtaining sharp esti-
mates for the sum S2 in the proof of Proposition 5.5. While we cannot currently 
prove O(h2) estimates for the non-homogeneous case, we can at least prove 
weaker O(h) estimates. The following is the O(h) analogue of Theorem 5.7. The 
proof, which we do not provide here, essentially follows that of Theorem 5.7, 
but applies lower order estimates, and estimates the sum S2 in the proof of 
Proposition 5.5 more simply (but less sharply) using a uniform bound over all 
summands.

Theorem 5.11 Let Γ ⊂ ℝ
n satisfy the assumptions of Theorem 5.7, except that we no 

longer assume Γ is homogeneous in the sense of Section 2.3. Then

where the constant implied by ≲ depends only on cosc and

where �min = minm∈{1,…,M}
�m.

6  Numerical experiments

In this section, we present numerical results complementing our theoretical 
analysis. The code used for our numerical experiments is available at https:// 
github. com/ Andre wGibbs/ IFSin tegra ls, where we provide a Julia-based [8] 
implementation of all the quadrature rules presented in this paper. Within 
this repository, the interactive notebook QuadratureExample.jpynb 
provides an overview of the main steps in our algorithm and examples of 
usage. The pseudocode for a simple recursive implementation of the quadra-
ture rule Q

Γ
[f ] (25) for regular single integrals is shown in Algorithms 1–2 

below.
Estimation of diam (Γ) is a key step in Algorithm 1. In the numerical experi-

ments which follow, diam (Γ) can be derived analytically. But for more general 

|||IΓ,Γ[Φ] − Qh
Γ,Γ,Φ

||| ≲ c��h
(
H

d
(Γ)

)2
,

c�� =

⎧
⎪⎪⎨⎪⎪⎩

1

𝜌
n
min

(1 −
∑M

m=1
𝜌2d−n+1
m

)Rn
Γ,Hull

, k diam (Γ) ≤ cosc,

�
1 +

1

𝜌
n
min

�
k diam (Γ)

�d
(1 −

∑M

m=1
𝜌2d−n+1
m

)

��
k diam (Γ)

R
Γ,Hull

�n

, k diam (Γ) > cosc,
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cases where an analytic derivation is not possible, our implementation estimates 
diam (Γ) using an algorithm that follows from [14, Proposition 6].

We shall focus mainly on the validation of the quadrature rule Qh
Γ,Γ,Φ

 defined by (60) 
and (61) for the calculation of the singular double integral I

Γ,Γ[Φ] defined in (57), since 
this is the most challenging integral we consider in the paper, and since it is important 
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for the Hausdorff BEM application of [9]. However, our numerical results for Qh
Γ,Γ,Φ

 
also implicitly validate the quadrature rule Qh

Γ,Γ,t
 defined in (48) for the integration of 

the singular function Φt , and, more fundamentally, the barycentre rule of Definition 3.5 
for regular integrands.

The definition of Qh
Γ,Γ,Φ

 in Section 5 involves a parameter cosc > 0 , which governs 
whether the integral I

Γ,Γ[Φ] is treated as non-oscillatory ( k diam (Γ) ≤ cosc ), in which 
case (60) is applied, or oscillatory ( k diam (Γ) > cosc ), in which case (61) is used. If cosc 
is too small, accuracy will deteriorate because the singularity will not be properly cap-
tured, while if cosc is too large, accuracy will also deteriorate because the splitting (59) 
is being used outside of its range of applicability. Our experience, following a detailed 
numerical investigation, suggests that a value of cosc = 2� gives acceptable performance 
across all the examples we considered, and this is the value of cosc we use throughout 
this section. This means we classify the integral I

Γ,Γ[Φ] to be oscillatory (and use (61) 
rather than (60)) whenever the diameter of Γ is larger than one wavelength.

6.1  Cantor sets

We first consider the calculation of I
Γ,Γ[Φ] in the case where Γ ⊂ ℝ is a Cantor 

set, defined by (11) for some � ∈ (0, 1∕2) , and � = H
d|

Γ
 . In this case Γ is homo-

geneous, with d = log 2∕ log (1∕�) and Hd
(Γ) = 1 (see e.g. [18, p. 53]), and hull-

disjoint, with R
Γ,Hull,h = R

� ,Hull = R
Γ
= 1 − 2� , for 0 < h < diam (Γ) = 1 . In Fig. 5 

we plot absolute and relative errors for the quadrature rule Qh
Γ,Γ,Φ

 as a function of 
N = |Lh(Γ)| = 2� , for � = 2,… , 9 , k = 5 and � ∈ {1∕3, 0.1, 0.01, 0.001} . The ref-
erence solution Iref

Γ,Γ
[Φ] in each case is computed using the quadrature rule Qh

Γ,Γ,Φ
 

with N = 8192 ( � = 13 ). We also plot on the same axes the corresponding theo-
retical convergence rate N−2∕d (which differs for each value of � ) predicted by 
Theorem 5.7. For all choices of � , we see excellent agreement with the theory. 
Moreover, both the absolute and relative errors for a given N clearly decrease as 
� ↘ 0 (equivalently, d ↘ 0 ), in line with the observations of Remark 5.9.

6.2  Cantor dusts

Next we consider the case where Γ is a Cantor dust, defined as in the first line of 
Table  1 with � ∈ (0, 1∕2) , and � = H

d|
Γ
 . Again, Γ is homogeneous, now with 

d = log 4∕ log(1∕�) , and hull-disjoint, with R
Γ,Hull,h = R

� ,Hull = R
Γ
= 1 − 2� , for 

0 < h < diam (Γ) =

√
2 . In this case the Hausdorff measure Hd

(Γ) is not known 
exactly, so the double integral I

Γ,Γ[Φ] can only be computed up to the unknown fac-
tor Hd

(Γ)
2 . In Fig. 6 we present absolute (scaled by Hd

(Γ)
2 ) and relative errors for 

k = 5 and � ∈ {1∕3, 0.26, 0.251, 0.2501} , plotted against N = 4� , � = 3, 4, 5 , along 
with the corresponding theoretical convergence rate N−2∕d . The reference solution 
Iref
Γ,Γ

[Φ] in each case is computed using the quadrature rule Qh
Γ,Γ,Φ

 with N = 16384 
( � = 7 ). The behaviour as N → ∞ is clearly consistent with the theoretical con-
vergence rates. Moreover, as � ↘ 1∕4 (equivalently, as d ↘ 1 ), the absolute error 
grows, while the relative error remains bounded, as predicted in Remark 5.9.
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6.3  Vanishing separation limit

Next we consider the behaviour of our quadrature rules as the parameter R
Γ,Hull 

tends to 0. In Fig.  7a, we show absolute errors for Qh
Γ,Γ,Φ

 with with k = 5 at three 
values of N, for Γ ⊂ ℝ a Cantor set, defined by (11), with � = (1 − R

Γ
)∕2 , where 

R
Γ
= 1 − 2� ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001} , and � = H

d|
Γ
 . The reference 

solution is as for Fig. 5. In Remark 5.10, we observed that as R
Γ,Hull → 0 our theory 

predicts blow-up of the error like Rn+1
Γ,Hull

 , i.e. like R2
Γ
 in this case. However, the numeri-

cal results suggest that, at least in this case, the theoretical prediction is overly pes-
simistic, since the error appears to be bounded as R

Γ,Hull → 0 . In fact, the integral for 
the non-disjoint case � = 1∕2 (so Γ = [0, 1] , d = 1 and R

Γ
= 0 ) can be computed using 

our method, and the corresponding errors appear to follow the same N−2∕d behaviour 
(in this case, N−2∕d

= N−2 since d = 1 ) with respect to increasing N as for the case 
0 < 𝜌 < 1∕2 (see the dashed lines in the figure). To further investigate the non-disjoint 
case � = 1∕2 (with Γ = [0, 1] , d = 1 and R

Γ
= 0 ), in Fig. 7b we plot the absolute error 

in the quadrature rule Qh
Γ,Γ,0

≈ I
Γ,Γ[Φ0] for this case, for which we have the exact result

where we used the fact that H1 coincides with the Lebesgue measure on ℝ.

6.4  Non‑disjoint, non‑hull‑disjoint and non‑homogeneous examples

The results in Fig.  7 suggest that our assumption that Γ should be hull-disjoint, or 
even disjoint at all, may not be necessary in Theorem 5.7. To investigate this further, 
we compute Qh

Γ,Γ,Φ
 for two non-hull-disjoint examples and � = H

d|
Γ
 : example (II) in 

Table 1, which is disjoint but not hull-disjoint, and example (IV) in Table 1, which is 
not disjoint. Both attractors are shown in Fig. 1. Absolute errors (scaled by Hd

(Γ)
2 ) 

for these cases for k = 2 and a range of h values are presented in Fig. 8a, and for both 
examples it seems we obtain O(h2) convergence, even though our theoretical error 

(69)

I
Γ,Γ[Φ0] = ∫

1

0 ∫
1

0

log |x − y| dH1
(y) dH1

(y) = ∫
1

0 ∫
1

0

log |x − y| dy dx = −
3

2
,

Fig. 5  Convergence of Qh
Γ,Γ,Φ

 for a collection of Cantor sets with parameters � approaching 0
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analysis does not cover these cases. Results for the middle-third Cantor dust (example 
(I) in Table 1) are included in the same figure for reference.

In Fig. 8a, we also include results for a hull-disjoint but non-homogeneous IFS with 
M = 4 and

for the rotation matrix A =

(
0 − 1

1 0

)
 . The attractor Γ for this IFS is sketched in 

Fig.  8b and has Hausdorff dimension d = log((1 +
√
13)∕2)∕ log 2 ≈ 1.20 and 

(70)
s1(x) =

1

4
x, s2(x) =

1

4
Ax +

(
3∕4

0

)
, s3(x) =

1

4
Ax +

(
0

3∕4

)
,

s4(x) =
1

2
x +

(
1∕2

1∕2

)
,

Fig. 6  Convergence of Qh
Γ,Γ,Φ

 for a collection of Cantor dusts with parameters � approaching 1/4

Fig. 7  a Absolute error for Qh
Γ,Γ,Φ

 for a collection of Cantor sets with parameters � approaching 1/2, 
i.e. R

Γ
= R

Γ,Hull approaching 0, for three different values of N and k = 5 . The dashed lines indicate the 
value of Qh

Γ,Γ,Φ
 in the case � = 1∕2 ( R

Γ
= R

Γ,Hull = 0 ), in which case Γ = [0, 1] . b Absolute error for 
Qh

Γ,Γ,0
 for a Cantor set with � = 1∕2 ( R

Γ
= R

Γ,Hull = 0 ), i.e. Γ = [0, 1] . In this case we have an exact value 
I
Γ,Γ[Φ0] = −3∕2 with which to compute errors (see (69))
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diameter diam (Γ) =

√
2 . For such non-homogeneous hull-disjoint cases, our cur-

rent analysis only provides an O(h) convergence result (see Theorem 5.11). But the 
results in Fig. 8 for the IFS (70) suggest that, at least in this case, our analysis may 
not be sharp in this respect, since we seem to obtain O(h2) convergence in practice. 
We leave further investigation of this to future work.

6.5  Comparison against chaos‑game quadrature

In this section, we compare the barycentre rule (25) with the “chaos game” rule 
described, e.g. in [19, eqn (3.22)–(3.23)] and [26, Section 6.3.1]. This consists of (i) 
choosing some x0 ∈ ℝ

n (we take x0 = x
Γ
 in the numerical example below), (ii) 

selecting a realisation of the sequence {mj}j∈ℕ of i.i.d. random variables taking val-
ues in {1,… ,M} with probabilities {p1,… , pM} , (iii) constructing the stochastic 
sequence xj = smj

(xj−1) for j ∈ ℕ , and (iv) approximating the integral of a continu-
ous function f as

We first consider the case where Γ ⊂ ℝ
2 is the Koch snowflake, the attractor of 

an non-homogeneous non-disjoint IFS with M = 7 whose parameters are given in 
Fig.  3. We consider integration of the (smooth) function f (x) = cos |x|∕(1 + |x|2) 

QCG
Γ

[f ] =
1

N

N∑
j=1

f (xj)
N→∞

���������������������→ ∫
Γ

f (x)d�(x).

Fig. 8  a Convergence of Qh
Γ,Γ,Φ

 with k = 2 for examples (I) (homogeneous and hull-disjoint), (II) (homo-
geneous and disjoint but not hull-disjoint) and (IV) (homogeneous and not disjoint) from Table  1, 
along with the attractor of (70) (hull-disjoint but non-homogeneous). The values of N correspond-
ing to (i) the largest h value shown, (ii) the smallest h value shown and (iii) the reference solution are 
(16, 4096, 65536) for (I), (16, 16384, 65536) for (II), (25, 15625, 78125) for (IV) and (19, 14209, 75316) 
for (70). b An approximation of the attractor defined by (70), produced by plotting s6(E) , with s defined 
by (8), with E a set of ten random points in [0, 1]2
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over Γ with respect to the non-Hausdorff invariant measure � with �(Γ) = 1 and the 
following randomly chosen weights/probabilities:

For this non-Hausdorff invariant measure it is instructive to compare how the two 
quadrature rules deal with the non-uniform way in which the mass of the measure 
is distributed across Γ . In Fig. 9, we plot the nodes and weights for the barycentre 
rule for the case h = 0.01 (which corresponds to N = 35, 839 ) alongside those for 
one realisation of the chaos game rule with the same N = 35, 839 . Each node is rep-
resented by a small dot, coloured according to the corresponding quadrature weight. 
For the chaos game, the weights are uniform, all being equal to 1/N, but the nodes 
are distributed non-uniformly, being concentrated in the regions where the meas-
ure has greatest mass. In contrast, the nodes for the barycentre rule are distributed 
approximately uniformly, but the weights vary according to the measure.

In Fig.  10, we plot the relative quadrature errors |Q
Γ
[f ] − Iref

Γ
[f ]|∕|Iref

Γ
[f ]| and 

|QCG
Γ

[f ] − Iref
Γ
[f ]|∕|Iref

Γ
[f ]| against the number N of point evaluations of f, for a 

range of values of N between 463 and 320,503. Here, the reference value Iref
Γ
[f ] was 

computed using the barycentre rule with N = 2, 876, 335 (which corresponds to 
h = 10−3 ). For the chaos game rule, the plots show both the individual errors for 
each of 1000 random realisations (thin blue lines) and the average of these individ-
ual errors (thick red line), which represents an approximation to the statistical expec-
tation of the error for the chaos game rule. The error for the barycentre rule clearly 
decays like h2 ∼ N−2∕d

= N−1 , consistently with Theorem 3.6(iii) and Remark 3.9, 
even if the latter does not directly apply to non-homogeneous IFSs,1 while the aver-
age error for the chaos game rule decays like N−1∕2 , as one expects from a Monte-
Carlo-type stochastic method. So for this problem the barycentre rule clearly out-
performs the chaos game rule. Comparing the convergence rates h2 ∼ N−2∕d (for the 
homogeneous case and the present one) and N−1∕2 , we expect that the advantage 
provided by the barycentre rule over the chaos game rule is even stronger for the 
lower-dimensional attractors considered in the previous numerical experiments.

For higher-dimensional problems, we might expect the stochastic approach to become 
more competitive. To investigate this, we consider the case where Γ is a high-dimen-
sional Cantor dust. Specifically, we take Γ = (Γ

𝜌
)
6
⊂ [0, 1]6 ⊂ ℝ

6 , a 6-fold Cartesian 
product of a homogeneous dyadic Cantor set Γ

𝜌
⊂ ℝ (with contractions s1(x) = �x and 

s2(x) = 1 − � + �x for some 0 < 𝜌 < 1∕2 ) with itself, so that Γ is the attractor of a 
homogeneous, disjoint IFS with M = 26 = 64 and 
d = dimH(Γ) = logM∕ log(1∕�) = 6 log 2∕ log(1∕�) . Figure  11 shows the relative 
quadrature errors for integration of the (smooth) integrand f (x) = cos |x|∕(1 + |x|2) 
with respect to the normalised Hausdorff measure � =

1

H
d
(Γ)
H

d|
Γ
 , for three different val-

ues of � , namely � ∈ {
1

4
,

1

2
√
2
,

1

26∕5
} , corresponding to d = dimH(Γ) ∈ {3, 4, 5} respec-

(p1, p2, p3, p4, p5, p6, p7) = (0.052, 0.214, 0.104, 0.038, 0.110, 0.194, 0.288).

1 We remark that, although this IFS is not homogeneous, we still have N = |L
h
(Γ)| ∼ h

−2 for the bar-
ycentre rule, since h∕3 < diam (Γ

m
) ≤ h and hence B

h∕(6
√
3)
(x

m
) ⊂ Γ

m
⊂ B

h∕2(xm) for all m ∈ L
h
(Γ) , and 

since 
∑

m∈L
h
(Γ)

�Γ
m
� = �Γ� ( | ⋅ | being the Lebesgue measure in ℝ2).
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tively. Both rules are applied with N ∈ {64, 642, 643} = {64, 4096, 262, 144} and the 
reference value is computed using the barycentre rule with N = 644 = 16, 777, 216.

For all three values of the dimension d, the barycentre rule converges like 
h2 ∼ N−2∕d , as predicted by Theorem 3.6(iii), while the average error for the chaos 

Fig. 9  Visual representation of barycentre rule (left) and chaos game quadrature (right) on the Koch 
snowflake, for a randomly chosen invariant measure. Each quadrature node is represented by a small dot, 
coloured according to the corresponding quadrature weight

Fig. 10  Convergence of the barycentre rule and the chaos game rule for integration of a smooth inte-
grand with respect to a non-Hausdorff invariant measure on the Koch snowflake. For the chaos game 
rule, we show both the individual errors for each of 1000 random realisations (thin blue lines) and the 
average of these individual errors (thick red line)
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game rule converges consistently like N−1∕2 . Hence for d = 3 the barycentre rule 
converges faster; for d = 4 the two methods converge at the same rate, and for d = 5 
the chaos game rule converges faster (although we note that in this particular experi-
ment the errors for the barycentre rule were smaller than the expected errors for the 
chaos game even for d = 5).

Appendix: Integrability of singular functions with respect 
to invariant measures

In this appendix, we collect some results concerning the integrability of singular 
functions with respect to invariant measures of the type defined in Section 2.5. In 
particular, we study for which t ≥ 0 the single integral I

Γ
[Φt(⋅, �)] (defined in (39)) 

and the double integral I
Γ,Γ[Φt] (defined in (45)) are finite.

1 The Hausdorff measure case � = H
d|

Γ

In the case where � = H
d|

Γ
 , everything we need is provided by the following 

lemma, which is adapted from [10, Lemma 2.13].

Lemma A.1 [10, Lemma 2.13] Let 0 < d ≤ n and let Γ be a compact d-set, satisfying 
(6) for some constants c̃2 > c̃1 > 0 . Let x ∈ Γ and let f ∶ (0,∞) → [0,∞) be non-
increasing and continuous. Then

(71)

c̃1d �
diam (Γ)

0

rd−1f (r) dr ≤ �
Γ

f (|x − y|) dHd
(y) ≤ c̃2d �

diam (Γ)

0

rd−1f (r) dr.

Fig. 11  Convergence of the barycentre rule and the chaos game rule for the approximation of a single 
smooth integral on three Cantor dusts Γ ⊂ ℝ

6 with d = dimH(Γ) = 3, 4, 5
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Corollary A.2 Let 0 < d ≤ n and let Γ be a compact d-set. Then, for � = H
d|

Γ
 , and 

for any � ∈ Γ , I
Γ
[Φt(⋅, �)] is finite if and only if t < d . For � = �

�
= H

d|
Γ
 , I

Γ,Γ[Φt] is 
finite if and only if t < d.

2 General invariant measures

For a more general invariant measure � , as defined in Section 2.5, the integrability 
criterion on t for the single integral I

Γ
[Φt(⋅, �)] depends on the point � . Given � ∈ Γ let

The integral I
Γ
[Φt(⋅, �)] and the threshold t

�
(�) are called “generalized electrostatic 

potential” (“t-potential” in [18, (4.12)]) and “electrostatic local dimension”, respec-
tively, in [29, Defns 3 and 5]. From [32, Chap. 8, p. 109], which holds for general 
Radon measures on ℝn , we have that for t > 0

From this it follows that if there exist C, t′ > 0 such that �(Br(�)) ≤ Crt
� for small r 

then I
Γ
[Φt(⋅, 𝜂)] < ∞ for all t < t′ , i.e. t

�
(�) ≥ t� . As in [18, Eqn (17.15)] we define 

the local dimension of � at � ∈ ℝ
n (when the limit exists) as

From the above observations, it follows that if dimloc �(�) exists then 
t
�
(�) = dimloc �(�) . By [20, Thm  2] we have that if Γ is disjoint (see also [39, 

Thm 7.4] for the general case) then

As a consequence, t
�
(�) = ta.e. , for �-a.e. � ∈ Γ . But t

�
(�) is not in general equal to 

ta.e. on the whole of Γ . By [18, Thm 17.4], if Γ is disjoint then for all points � ∈ Γ 
where the local dimension exists (which we know from the above is �-a.e.) we have:

The upper and the lower bounds coincide, i.e. log pm∕ log �m is the same for all 
m = 1,… ,M , if and only if pm = �

d
m
 , i.e. � = H

d|
Γ
 . Moreover, the extremal values 

are attained, as the following lemma shows.

Lemma A.3 Let Γ and � be as in Sections 2.2 and 2.5. Fix m ∈ {1,… ,M} and let �m 
denote the fixed point of the contracting similarity sm , i.e. the unique point �m ∈ Γ 

t
𝜇
(𝜂) ∶= sup{t ≥ 0, I

Γ
[Φt(⋅, 𝜂)] < ∞}.

I
Γ
[Φt(⋅, �)] = t ∫

∞

0

�(Br(�))

rt+1
dr.

dimloc �(�) ∶= lim
r→0

log�(Br(�))

log r
.

dimloc �(�) = ta.e. ∶=

∑M

m=1
pm log pm∑M

m=1
pm log �m

, �-a.e. � ∈ Γ.

min
m=1,…,M

log pm

log �m
≤ t

�
(�) = dimloc �(�) ≤ max

m=1,…,M

log pm

log �m
.
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such that sm(�m) = �m . Suppose that �m ∉ Γm� for any m�
∈ {1,… ,M} , m′ ≠ m . (This 

holds, for instance if Γ is disjoint in the sense of (13).) Then there exist C2 > C1 > 0 
such that, for all sufficiently small r > 0,

where

Hence t
�
(�m) = dimloc �(�) = tm.

Proof Using the fact that �m is the fixed point of sm , and the fact that 
Rm ∶= minm�≠m dist (𝜂m,Γm� ) > 0 , one can show that

so that

where jr = ⌊log r∕ log �m⌋ , j = 1 − ⌊log diam (Γ)∕ log �m⌋ and j� = −1−

⌊logR
m
∕ log �

m
⌋ , provided that r is small enough to ensure that jr + j� ≥ 0 , 

i.e. ⌊log r∕ log �m⌋ ≥ 1 + ⌊logRm∕ log �m⌋ . Since j and j′ are independent of 
r, the bound (72) follows upon applying � and recalling (21), which implies that 
�(s�

m
(Γ)) = p�

m
�(Γ) for � ∈ ℕ0.

From (72) it follows that dimloc �(�m) exists and equals tm , and hence (by our ear-
lier arguments) that t

�
(�m) takes the same value.

  ◻

We now consider the double integral

where, for maximum generality, � and �′ are invariant measures on Γ with (possibly 
different) weights/probabilities (p1,… , pM) and (p�

1
,… , p�

M
) respectively. Define

The integral I
Γ,Γ[Φt] and the threshold t

�,�′ are called “generalized electrostatic 
energy” (“t-energy” in [18, (4.13)]) and “electrostatic correlation dimension”, 
respectively, in [29, Defns 4 and 6].

Lemma A.4 Let Γ , � and �′ be as above, and suppose that Γ is disjoint. Then 
t
�,�� = t

∗
 , where t

∗
 is the unique positive solution of

(72)C1r
tm ≤ �(Br(�m) ∩ Γ) ≤ C2r

tm ,

tm ∶=
log pm

log �m
.

s�
m
(Γ) ⊂ B

𝜌�
m
diam (Γ)

(𝜂m) ∩ Γ and B
𝜌�
m
R(𝜂m) ∩ Γ ⊂ s�

m
(Γ) ∀� ∈ ℕ,∀R < Rm,

sjr+j
m

(Γ) ⊂ Br(𝜂m) ∩ Γ ⊂ sjr+j
�

m
(Γ),

I
Γ,Γ[Φt] = ∫

Γ
∫
Γ

Φt(x, y) d�
�
(y)d�(x),

t
𝜇,𝜇� ∶= sup{t ≥ 0, I

Γ,Γ[Φt] < ∞}.
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Proof To see that t
�,�� ≤ t

∗
 , we note that if 0 < t < t

𝜇,𝜇′ then I
Γ,Γ[Φt] < ∞ and, argu-

ing as in the proof of Theorem 4.6,

Since Φt(x, y) > 0 for x ≠ y the integrals I
Γm,Γm�

[Φt] are all positive, implying that the 
right-hand side is non-zero, so that the factor 1 −

∑M

m=1
pmp

�

m
�
−t
m

 cannot vanish, i.e. 
t ≠ t

∗
 . Since this holds for all 0 < t < t

𝜇,𝜇′ we must have t
�,�� ≤ t

∗
.

To prove that t
�,�� ≥ t

∗
 we adopt an argument suggested by K. Falconer [16]. Sup-

pose that 0 < t < t
∗
 . Then

and we can write, where I0 = {0} and (0,m) stands for m,

M∑
m=1

pmp
�

m
�
−t

∗

m
= 1.

(
1 −

M∑
m=1

pmp
�

m
�
−t
m

)
I
Γ,Γ[Φt] =

M∑
m=1

M∑
m�=1
m�≠m

I
Γm,Γm�

[Φt].

0 < 𝜆t ∶=

M∑
m=1

pmp
�

m
𝜌
−t
m

< 1,

I
Γ,Γ[Φt] =

∞∑
�=0

∑
m∈I

�

M∑
m=1

M∑
m�=1
m�≠m

�
Γ
(m,m)

�
Γ
(m,m�)

|x − y|−t d��
(y)d�(x)

≤
∞∑
�=0

∑
m∈I

�

M∑
m=1

M∑
m�=1
m�≠m

�(Γ
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which is finite since 0 < 𝜆t < 1 . Hence I
Γ,Γ[Φt] < ∞ for all 0 < t < t

∗
 , which implies 

that t
�,�� ≥ t

∗
.
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