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Abstract
The quad-cube is a special case of the metacube that itself is derivable from the 
hypercube. It is amenable to an application as a network topology, especially when 
the node size exceeds several million. This paper presents the following welcome 
properties of the graph, relating to its structure: (1) vertex transitivity that facilitates 
the working of an algorithm meant for a “local” context in the global context as 
well, and (2) an exact formula for the distance metric, which leads to a precise result 
on the distance-wise vertex distribution of the graph and an exact formula for the 
average vertex distance. Remarkably, the vertex distribution of the quad-cube resem-
bles, to a large extent, the vertex distribution of the twin copies of a hypercube. In a 
parallel study, the author recently reported similar results with respect to the dual-
cube (Jha in J Supercomput 78:17758–17775, 2022)

Keywords Quad-cube · Metacube · Hypercube · Interconnection network · Network 
topology · Vertex transitivity · Shortest distance

1 Introduction

The quad-cube is a network topology that is a special case of the metacube [9] that 
itself is obtainable from the hypercube. The objective behind its introduction has 
been to mitigate the problem of the rapid increase in the degree of the hypercube 
when the node size exceeds several million. With the same node degree n, the quad-
cube has 23n−6 as many nodes as the hypercube, where n ≥ 3 , and with the same 
number of nodes, the quad-cube has about 75% fewer edges than the hypercube, yet 
its diameter is practically equal to that of the latter.

This paper presents results relating to the vertex transitivity, distance metric 
and distance-wise node distribution of the quad-cube that significantly enhance its 
importance from both theoretical point of view and the engineering point of view. 
Interestingly, the node distribution of CQm parallels, to a large extent, the node 
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distribution of 2Q4m+1 , i.e., a set of twin copies of Q4m+1 . Meanwhile, CQm admits a 
1-perfect code under a certain condition [5]. (The formal definitions appear below.)

In a parallel study, the author [6] recently presented analogous results relating to 
the dual-cube that is another (relatively simpler) derivative of the hypercube.

1.1  Definitions and preliminaries

A graph connotes a finite, simple, undirected and connected graph. Let G be a graph, 
and let dist(u, v) denote the (shortest) distance between vertices u and v in G [12]. 
Further, let dia(G) denote the diameter of G.

For n-bit binary strings x and y, let H(x, y) denote the Hamming distance between 
the two. The n-dimensional hypercube Qn (also called the n-cube) is the graph on the 
vertex set {0, 1}n , where nodes x and y are adjacent iff H (x, y) = 1.

Let xy denote the concatenation of the strings x and y, and let a ∶= 1 − a , where 
a ∈ {0, 1}.

Definition 1.1 For an n-bit integer x = bn−1 … b0 (so 0 ≤ x ≤ 2n − 1 in deci-
mal), let x(a) be the n-bit integer obtainable from x by replacing ba by ba , where 
0 ≤ a ≤ n − 1 .   ◻

It is easy to see that x(a) = x ⊻ 2a , where ⊻ is the XOR operation. (See Definition 
1.4.)

Definition 1.2 For m ≥ 1 , the quad-cube CQm is a spanning subgraph of Q4m+2 . Its 
edge set is given by E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 , where 

1. E0 = {{ux00, ux(0)00},… , {ux00, ux(m−1)00} | u ∈ {0, 1}3m and x ∈ {0, 1}m}

2. E1 = {{uvx01, uv(0)x01},… , {uvx01, uv(m−1)x01} | u ∈ {0, 1}2m  a n d 
v, x ∈ {0, 1}m}

3. E2 = {{uvx10, uv(0)x10},… , {uvx10, uv(m−1)x10} | u, v ∈ {0, 1}m and x ∈ {0, 1}2m}

4. E3 = {{ux11, u(0)x11},… , {ux11, u(m−1)x11} | u ∈ {0, 1}m and x ∈ {0, 1}3m} , and
5. E4 = {{u00, u01}, {u00, u10}, {u01, u11}, {u10, u11} | u ∈ {0, 1}4m} .   ◻

Let e ∈ E(CQm) . Call e an edge of Type i if e ∈ Ei , 0 ≤ i ≤ 3 , and call e a cross 
edge if e ∈ E4 . See Fig. 1 for a depiction of the five edge types. Meanwhile, a node 
of the hypercube/quad-cube is viewable both as a binary string, say, x and as the cor-
responding nonnegative integer denoted by x.

It is easy to see that CQm is a regular graph of degree m + 2 . Accordingly, 
|V(CQm)| = 24m+2 and |E(CQm)| = (m + 2)24m+1.

Definition 1.3 The nodes of CQm are distinguishable into four types, as follows:

• Type 0: those that are of the form u00 (binary) or 4i + 0 (decimal)
• Type 1: those that are of the form u01 (binary) or 4i + 1 (decimal)
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• Type 2: those that are of the form u10 (binary) or 4i + 2 (decimal) and
• Type 3: those that are of the form u11 (binary) or 4i + 3 (decimal).   ◻

A node z of CQm (in binary) is of the form , where 
|u| = |v| = |w| = |x| = m , and a, b ∈ {0, 1}.

See Fig. 2 that presents three drawings of CQ1 . Among other things, it shows 
that the graph admits (a) a vertex partition into sixteen copies of the four cycles, 
(b) an embedding on the torus without any edge crossing and (c) an edge decom-
position into a Hamiltonian cycle and a perfect matching. Meanwhile, Brouwer 
et al. ([1], p. 27) present the drawing in Fig. 2a to depict the graph as a vertex-
transitive induced subgraph of Q8.

Definition 1.4 For n-bit strings x and y, let x ⊻ y denote the n-bit string obtainable 
by the bitwise XOR operation between x and y.   ◻

It is easy to see that ⊻ is both commutative and associative.

Definition 1.5 A graph is said to be vertex-transitive if for every pair of vertices u 
and v, it admits an automorphism that sends u to v.

Fig. 1  Five edge types of CQm , vide Definition 1.2
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Let k ≥ 0 . For a set S of integers, let (S + k) denote the set {i + k | i ∈ S} , and 
for a graph G, let (G + k) be the graph on the vertex set {x + k | x ∈ V(G)} , where 
{x + k, y + k} ∈ E(G + k) iff {x, y} ∈ E(G) . Further, let

where 
(
n

k

)
 denotes the binomial coefficient. For any undefined term, see West [12].

1.2  Literature review

The concepts of vertex transitivity and distance metric are of prime importance in 
the design and working of a viable network topology.

Informally, a graph is vertex-transitive if every vertex in it has the same local 
environment, so no vertex is distinguishable from any other based on the vertices 

(1)C(n, k) =

⎧
⎪⎨⎪⎩

�
n

k

�
if n ≥ k ≥ 0

0 if k > nork < 0

Fig. 2  Three drawings of CQ
1
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and edges surrounding it. In that light, a vertex-transitive graph (that is necessar-
ily regular) offers a huge advantage, viz., “local” algorithms on it work globally 
as well, since all vertices hold equivalent roles in the global context. Another 
plus is that a vertex-transitive graph is more strongly connected than other regular 
graphs ([2], p. 33). Not surprisingly, most network topologies in use today (nota-
bly the hypercube, the torus and the circulants) are vertex-transitive. See Heyde-
mann [4] and the references therein for applications of these graphs in intercon-
nection networks.

The importance of the distance metric in a graph is well-understood and well 
documented in the literature [12]. In particular, given two nodes, say, u and v, a 
shortest u − v path has the least total cost among all u − v paths. Not surprisingly, 
several routing protocols base their decisions on a shortest path to a given destina-
tion. Examples include (i) RIP (Routing Information Protocol) that is widely used 
for routing traffic in the global internet and (ii) IGRP (Interior Gateway Routing 
Protocol) that is a Cisco standard routing protocol. In that light, the results of this 
paper are directly relevant to the construction of smart routing algorithms around 
the quad-cube.

See Saad and Schultz [11], and Hayes and Mudge [3] for certain similar 
results relating to the hypercube, and see Loh et al. [10] for those relating to the 
exchanged hypercube.

1.3  Quad‑cube vis‑à‑vis dual‑cube

Although the quad-cube and the dual-cube have the same lineage, the former is 
qualitatively more complex than the latter [9]. Therefore, results relating to the 
dual-cube do not automatically carry over to those relating to the quad-cube. In 
particular, the author [6] recently studied vertex transitivity and distance metric 
of the dual-cube. In each category, there are far fewer cases than those in the pre-
sent study. Indeed, the issues addressed here are lot more challenging.

Probably because of its relative simplicity, the dual-cube has been an object 
of study by many. See the references in [6]. The results in the present paper are 
likely to stimulate deeper studies around the quad-cube. Possible areas of investi-
gation include collective communications [8], effective fault tolerance, Hamilto-
nian decomposability and the design of efficient routing algorithms.

1.4  What follows

Section 2 establishes vertex transitivity of the quad-cube, while Sect.  3 derives 
a formula for the (shortest) distance between Node 0 and a given node z in the 
graph. (Vertex transitivity ensures an easy generalization of the formula.) Sec-
tion  4 makes an effective use of the distance formula to develop the distance-
wise node distribution of the graph that, in turn, leads to an exact formula for 
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the average node distance of the graph. The paper ends with certain concluding 
remarks in Sect. 5.

2  Vertex transitivity

Lemma 2.1 CQm admits an automorphism that carries a given node of Type 0 to 
Node 0.

Proof Let z = uvwx00 (binary) be an arbitrary but fixed node of Type 0, where 
|u| = |v| = |w| = |x| = m , and consider the mapping �z ∶ V(CQm) → V(CQm) given 
by pqrsab ↦ (p ⊻ u)(q ⊻ v)(r ⊻ w)(s ⊻ x)ab , where |p| = |q| = |r| = |s| = m and 
a, b ∈ {0, 1} . It is easy to see that �z is well defined. Further, it maps a node of a 
particular type to one of the same types, and �z(z) = 0 (decimal). Note next that 
�z(y1) = y2 iff �z(y2) = y1 , so the mapping is total and invertible, hence a bijection.

Consider a node pqrsab, and first assume that it is of Type 0, so a = b = 0 . 
Two of its neighbors are pqrs01 and pqrs10, while the remaining are 
pqr(s ⊻ 20)00, … , pqr(s ⊻ 2m−1)00 . It is easy to see that �z(pqrs00) is adjacent 
to each of �z(pqrs01) and �z(pqrs10) . Consider next pqr(s ⊻ 2j)00 , 0 ≤ j ≤ m − 1 . 
By virtue of the fact that H (p1, p2) = 1 iff H (p1 ⊻ t, p2 ⊻ t) = 1 (where p1, p2 and t 
are m-bit strings), it is easy to see that �z(pqrs00) is adjacent to �z(pqr(s ⊻ 2j)00) , 
0 ≤ j ≤ m − 1.

By an analogous argument, the foregoing conclusion is reachable with respect to 
nodes of Type 1 (resp. Type 2 and Type 3) as well. Finally, there exists a one-to-one 
correspondence between the m + 2 neighbors of pqrsab and those of �z(pqrsab) .  
 ◻

Figure 3 illustrates the proof of Lemma 2.1 where m = 1 and z = 4 and where the 
i-th node in a particular row to the left maps to the i-th node on the same row to 
the right. (See the dotted arcs.)

Corollary 2.2 The following holds with respect to the mapping �z in the proof of 
Lemma 2.1:

• Every quadrilateral tab – tab – tab – tab – tab maps to a (not necessarily dis-
tinct) quadrilateral induced by the corresponding nodes �z(tab) , �z(tab) , 
�z(tab) and �z(tab) , where t ∈ {0, 1}4m and a, b ∈ {0, 1} .   ◻

Lemma 2.3 There exists an automorphism �z on CQm that carries a given node z of 
Type t to the Node t, where t ∈ {1, 2, 3} .   ◻

Proof Similar to that of Lemma 2.1.   ◻
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Lemma 2.4 There exists an automorphism on CQm that carries Node i to Node 0, 
where i = 1, 2, 3.

Proof Let �1 , �2 and �3 be the mappings, each from V(CQm) to V(CQm) , whose defi-
nitions appear in Table 1. Figure 4 depicts the mappings themselves. It is easy to see 
that �i(y1) = y2 iff �i(y2) = y1 , i = 1, 2, 3 ; hence, each is a well-defined bijection.

Consider �1 first, and let z1 = u1v1w1x1a1b1 and z2 = u2v2w2x2a2b2 , so 
�1(z1) = v1u1x1w1a1b1 and �1(z2) = v2u2x2w2a2b2 . 

1. Let z1 and z2 be adjacent via a cross edge, so u1 = u2 , v1 = v2 , w1 = w2 , x1 = x2 and 
H (a1b1, a2b2) = 1 . That H (a1b1, a2b2) = 1 ensures that H (a1b1, a2b2) = 1 ; hence, 

Fig. 3  An automorphism on CQ
1
 , ( 4 ↔ 0 ), vide Lemma 2.1

Table 1  Mappings �
1
 , �

2
 and �

3
 , vide Lemma 2.4
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�1(z1) and �1(z2) are adjacent via a cross edge. Further, the converse is equally 
true.

2. Let z1 and z2 be both of Type 0 and adjacent, so z1 = u1v1w1x100 and 
z2 = u1v1w1(x1 ⊻ 2j)00 , where 0 ≤ j ≤ m − 1 . In this case, �1(z1) = v1u1x1w101 
and �1(z2) = v1u1(x1 ⊻ 2j)w101 . It is clear that �1(z1) and �1(z2) are both of Type 
1, and they are adjacent by virtue of H (x1, (x1 ⊻ 2j)) being equal to one. Further, 
the converse is equally true.

The other cases, where z1 and z2 are adjacent, both of Type 1 (resp. Type 2 and 
Type 3), are similar. Finally, it is not difficult to check that the mappings �2 and 
�3 admit characteristics that are analogous to those of �1 .   ◻

Remark It is easy to compute the inverses of the automorphisms that appear in Lem-
mas 2.1, 2.3 and 2.4.

Theorem 2.5 CQm is a vertex-transitive graph.

Proof Recall that automorphisms are closed under composition and that the inverse 
of an automorphism is again such. In that light, let y, z ∈ V(CQm) , where y ≠ z . An 
automorphism that takes y to z is obtainable by using the constructions in Lemmas 
2.1, 2.3 and 2.4, as follows.

1. If y and z are both of the same type, say i, then use the construction in the proof 
of Lemma 2.1/2.3, and compose the automorphism that takes y to i with the one 
that takes i to z.

Fig. 4  Mappings �
1
 , �

2
 and �

3
 , 

vide Lemma 2.4
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2. If y and z are of types i and j, respectively, where i ≠ j , then build an automor-
phism that takes y to z as per the schematic that appears in Fig. 5.   ◻

Remark CQm is not edge-transitive. For example, observe from Fig.  3(i) that the 
edge {0, 1} of CQ1 lies on a four-cycle, whereas the edge {0, 4} does not lie on any 
four-cycle.

Fig. 5  Automorphisms that take 
a node of one type to one of 
another

Table 2  Distance between Node 0 and Node z in CQm

u, v, w, x ∈ {0, 1}m

|u|
1
 stands for the number of 1’s in the binary string u, etc.

Case Node z Type of z Predicate Dist(0, z)

1(a) 0m0m0mx00 0 – |x|1
1(b) 0m0mwx00 0 |w|1 > 0 |w|1+ |x|1 + 2

1(c) 0mv0mx00 0 |v|1 > 0 |v|1+ |x|1 + 2

1(d) 0mvwx00 0 |v|1 > 0 and |w|1 > 0 |v|1 + |w|1+|x|1 + 4

1(e) uvwx00 0 |u|1 > 0 |u|1+|v|1+|w|1+|x|1 + 4

2(a) 0m0mwx01 1 – |w|1+|x|1 + 1

2(b) 0mvwx01 1 |v|1 > 0 |v|1+|w|1+|x|1 + 3

2(c) uvwx01 1 |u|1 > 0 |u|1 + |v|1 + |w|1 + |x|1 + 3

3(a) 0mv0mx10 2 – |v|1 + |x|1 + 1

3(b) 0mvwx10 2 |w|1 > 0 |v|1 + |w|1 + |x|1 + 3

3(c) uvwx10 2 |u|1 > 0 |u|1 + |v|1 + |w|1 + |x|1 + 3

4(a) u0mwx11 3 – |u|1 + |w|1 + |x|1 + 2

4(b) uv0mx11 3 – |u|1 + |v|1 + |x|1 + 2

4(c) uvwx11 3 |v|1 > 0 and |w|1 > 0 |u|1 + |v|1 + |w|1 + |x|1 + 4
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3  Distance metric

Theorem 3.1 Table 2 presents the distance between Node 0 and Node z in CQm.

Proof A (shortest) path between the respective nodes appears below. Check to see 
that, in each case, any other path is at least as long. (As stated earlier, |u|1 stands for 
the number of 1’s in the binary string u.)

The remaining cases are similar.   ◻

Evidently, the parity of the distance between two nodes in the quad-cube is 
equal to that of the Hamming distance between the two. Meanwhile, it is easy to 
see from Table 2 that |z|1 ≤ dist(0, z) ≤ |z|1 + 4 . In that light, there are three pos-
sibilities: (i) dist(0, z) = |z|1 , (ii) dist(0, z) = |z|1 + 2 and (iii) dist(0, z) = |z|1 + 4 . 
Interestingly, it is possible to enumerate the nodes in each category. See Lemmas 
3.2, 3.3 and 3.4.

Table 3  Various cases relating to the proof of Lemma 3.2 ( |u| = |v| = |w| = |x| = m)

Relevant case, vide 
Table 2

Node z Predicate Number of nodes of that form

1(a) 0m0m0mx00 – 2m

2(a) 0m0mwx01 – 22m

3(a) 0mv0mx10 – 22m

4(a) and 4(b) uvwx11 |v|1 ⋅ |w|1 = 0 23m+1 − 22m

Total: 23m+1 + 22m + 2m
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Lemma 3.2 There are a total of 23m+1 + 22m + 2m nodes z for which dist(0, z) = |z|1.

Proof Refer to Table  3, and first note that Cases 1(a), 2(a) and 3(a) are easy. 
For Cases 4(a) and 4(b) together, there are 24m nodes of the form uvwx11, 
out of which 2m(2m − 1)(2m − 1)2m are such that |v|1 ⋅ |w|1 > 0 , so there are 
24m − 2m(2m − 1)(2m − 1)2m = 23m+1 − 22m nodes of that form. Finally, the four 
cases are mutually exclusive, hence the result.   ◻

Lemma 3.3 There are a total of 3 × 24m − 23m+1 + 22m − 2m+1 nodes z for which 
dist(0, z) = |z|1 + 2.

Proof See Table 4.   ◻

Lemma 3.4 There are a total of 24m − 22m+1 + 2m nodes z for which 
dist(0, z) = |z|1 + 4.

Proof See Table 5.   ◻

Table 4  Various cases relating to the proof of Lemma 3.3 ( |u| = |v| = |w| = |x| = m)

Relevant case, vide 
Table 2

Node z Predicate Number of nodes of that form

1(b) 0m0mwx00 |w|1 > 0 (2m − 1)2m

1(c) 0mv0mx00 |v|1 > 0 (2m − 1)2m

2(b) 0mvwx01 |v|1 > 0 (2m − 1)22m

2(c) uvwx01 |u|1 > 0 (2m − 1)23m

3(b) 0mvwx10 |w|1 > 0 (2m − 1)22m

3(c) uvwx10 |u|1 > 0 (2m − 1)23m

4(c) uvwx11 |v|1 ⋅ |w|1 > 0 2m(2m − 1)(2m − 1)2m

Total: 3 × 24m − 23m+1 + 22m − 2m+1

Table 5  Various cases relating to the proof of Lemma 3.4 ( |u| = |v| = |w| = |x| = m)

Relevant case, vide 
Table 2

Node z Predicate Number of nodes of that form

1(d) 0mvwx00 |v|1 ⋅ |w|1 > 0 (2m − 1)(2m − 1)2m

1(e) uvwx00 |u|1 > 0 (2m − 1)23m

Total: 24m − 22m+1 + 2m
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Remark All nodes z for which dist(0, z) = |z|1 + 4 are of Type 0.

4  Distance‑wise node distribution

Let nd denote the number of nodes at a distance of d from Node 0 in CQm . As 

stated earlier, C(n,  k) denotes the binomial coefficient 
(
n

k

)
 , if n ≥ k ≥ 0 , and 

C(n, k) = 0 , if k > n or k < 0.

Lemma 4.1 If m ≥ 2 and 0 ≤ d ≤ 4m + 4 , then nd is equal to

2C(4m + 1, d − 3)

+ 
(
2C(3m, d − 2) − 2C(3m, d − 4)

)

+ 
(
C(2m + 1, d − 1) − C(2m + 1, d − 3) + C(2m, d − 1) − C(2m, d − 3)

)

+ 
(
C(m, d) − 2C(m, d − 2) + C(m, d − 4)

)
.

Proof Refer to Table 2.   ◻

1. (a) Case 1(a) contributes C(m, d) nodes.
(b) Case 1(b) contributes C(2m, d − 2) − C(m, d − 2) nodes, where C(m, d − 2 

denotes the number of nodes of the form 0m0mwx00 with |w|1 = 0.
(c) Case 1(c) is identical to Case 1(b), so the answer in this case, too, is 

C(2m, d − 2) − C(m, d − 2).
(d) Case 1(d) contributes C(3m, d − 4) − 2C(2m, d − 4) + C(m, d − 4) nodes, 

where C(2m, d − 4) denotes the number of nodes of the form 0mvwx00 in 
which |v|1 = 0 (resp. |w|1 = 0 ), and C(m, d − 4) denotes the number of 
nodes of that form in which |v|1 and |w|1 are both zero.

(e) Case 1(e) contributes C(4m, d − 4) − C(3m, d − 4) nodes, where 
C(3m, d − 4) denotes the number of nodes of the form uvwx00 in which 
|u|1 = 0.

   It is easy to see that the foregoing cases are mutually exclusive.

2. (a) Relative to Case 2(a), |w|1 + |x|1 = d − 1 , so this case contributes 
C(2m, d − 1) nodes.

(b) Relative to Case 2(b), |v|1 + |w|1 + |x|1 = d − 3 , where |v|1 > 0 , so the 
answer in this case is C(3m, d − 3) − C(2m, d − 3).

(c) Check to see that Case 2(c) contributes C(4m, d − 3) − C(3m, d − 3) nodes.

3. (a) Case 3(a) is similar to Case 2(a), so the answer is C(2m, d − 1).
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(b) Case  3(b)  is  s imilar  to  Case  2(b) ,  so  the  answer  is 
C(3m, d − 3) − C(2m, d − 3).

(c) Case  3(c)  i s  s imi lar  to  Case  2(c) ,  so  the  answer  is 
C(4m, d − 3) − C(3m, d − 3).

4. (a) Case 4(a) and Case 4(b) are not entirely exclusive, since strings of 
the form u0m0mx belong to each. Accordingly, these two together contribute 
2C(3m, d − 2) − C(2m, d − 2) nodes.

(b) Relative to Case 4(c), |u|1 + |v|1 + |w|1 + |x|1 = d − 4 , where |v|1 ⋅ |w|1 > 0 , 
so the answer in this case is C(4m, d − 4) − 2C(3m, d − 4) + C(2m, d − 4) , 
where C(3m, d − 4) denotes the number of nodes in which |v|1 = 0 (resp. 
|w|1 = 0 ), and C(2m, d − 4) denotes the number of nodes in which |v|1 and 
|w|1 are both zero.

See Table 6 that summarizes the foregoing, and establishes the claim.   ◻

Corollary 4.2 Every vertex in CQm admits exactly two diametrical vertices, and the 
radius as well as the diameter of the graph is equal to 4m + 4.

Proof By Table 2, there are exactly two nodes, viz., 14m00 and 14m+2 (binary), arising 
out of Cases 1(e) and 4(c), that are at the distance of 4m + 4 from Node 0. Indeed, 

Table 6  Computing nd , 0 ≤ d ≤ 4m + 4 , vide Lemma 4.1, where m ≥ 2

Case 1(a) C(m, d)
Case 1(b) C(2m, d − 2) −C(m, d − 2)

Case 1(c) C(2m, d − 2) −C(m, d − 2)

Case 1(d) C(3m, d − 4) −2C(2m, d − 4) C(m, d − 4)

Case 1(e) C(4m, d − 4) −C(3m, d − 4)

Case 2(a) C(2m, d − 1)

Case 2(b) C(3m, d − 3) −C(2m, d − 3)

Case 2(c) C(4m, d − 3) −C(3m, d − 3)

Case 3(a) C(2m, d − 1)

Case 3(b) C(3m, d − 3) −C(2m, d − 3)

Case 3(c) C(4m, d − 3) −C(3m, d − 3)

Case 4(a) & 4(b) 2C(3m, d − 2) −C(2m, d − 2)

Case 4(c) C(4m, d − 4) −2C(3m, d − 4) C(2m, d − 4)

Algebraic sum = 2C(4m + 1, d − 3)

+ 2C(3m, d − 2) − 2C(3m, d − 4)

+ C(2m + 1, d − 1) − C(2m + 1, d − 3)

+ C(2m, d − 1) − C(2m, d − 3)

+ C(m, d) − 2C(m, d − 2) + C(m, d − 4)
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4m + 4 is the largest such integer. This fact and the vertex transitivity of the graph 
together lead to the claim.   ◻

Corollary 4.3 Let m ≥ 2 . 

1. If 3m + 5 ≤ d ≤ 4m + 4 , then nd = 2C(4m + 1, d − 3).
2. If m ≥ 3 and 2m + 5 ≤ d ≤ 3m + 4 , then nd = 2C(4m + 1, d − 3) − 2C(3m, d − 4) + 2C(3m, d − 2).
3. If m ≥ 3 and m + 5 ≤ d ≤ 2m + 4 , then nd = 2C(4m + 1, d − 3) − 2C(3m, d − 4) + 2C(3m, d − 2) 

+C(2m + 1, d − 1) − C(2m + 1, d − 3) + C(2m, d − 1) − C(2m, d − 3) .   ◻

4.1  CQm versus twin copies of Q
4m+1

Let 2Qn denote a set of disjoint twin copies of Qn , and assume that the two copies 
are laid out in the plane in parallel in such a way that Node 0 of each appears at the 
zeroth level, and the nodes at the distance of d from Node 0 appear at the d-th level, 
where 0 ≤ d ≤ n . It is easy to see that there are 2C(n, d) nodes at the d-th level of 
the graph. See Fig. 6 that depicts 2Q3.

Interestingly enough, the distance-wise node distribution of CQm closely paral-
lels that of 2Q4m+1 . To that end, let diff denote the difference between the number 
of nodes at the d-th level of CQm and the number of nodes at the (d − 3)-rd level of 
2Q4m+1 , where 3 ≤ d ≤ 4m + 4 . See Table 7, Fig. 7 and Fig. 8.

Here are important observations on diff. 

1. If 4m + 4 ≥ d ≥ 3m + 5 , then diff = 0, vide Corollary 4.3.
2. If 3m + 4 ≥ d ≥ 2m + 5 , then diff is equal to −2C(3m, d − 4) + 2C(3m, d − 2) that 

is negative in this range.
3. If 2m + 4 ≥ d ≥ m + 5 , then diff is equal to −2C(3m, d − 4) + 2C(3m, d − 2) − 

C(2m + 1, d − 3) + C(2m + 1, d − 1) − C(2m, d − 3) + C(2m, d − 1) . Notice that 
−2C(3m, d − 4) + 2C(3m, d − 2) ∶= D (say) constitutes the dominant term in the 
foregoing expression. 

(a) If m is even, and d =
3m

2
+ 3 , then D = 0.

Fig. 6  Twin copies of Q
3
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(b) If m is even, then D is positive at d =
3m

2
+ 3 − i , and it is negative at 

d =
3m

2
+ 3 + i , yet the absolute value is the same at each, where 

1 ≤ i ≤
m

2
+ 1.

(c) If m is odd, then D is positive at d =
3m+1

2
+ 2 − i , and it is negative at 

d =
3m+1

2
+ 3 + i , yet the absolute value is the same at each, where 

0 ≤ i ≤
m+1

2
.

Table 7  CQm versus 2Q
4m+1 , m = 5

Number of nodes in CQ
5
= Number of nodes in 2Q

21
= 222 = 4194304

d Number nd of nodes at 
level d of CQm

Number qd of nodes at 
level d − 3 of 2Q4m+1

Diff = nd − qd
Diff

qd
× 100

4m + 4 = 24 2 2 0 0.000
23 42 42 0 0.000
22 420 420 0 0.000
21 2660 2660 0 0.000
3m + 5 = 20 11,970 11,970 0 0.000
3m + 4 = 19 40,696 40,698 −2 −0.005

18 108,498 108,528 −30 −0.028

17 232,352 232,560 −208 −0.089

16 406,100 406,980 −880 −0.216

2m + 5 = 15 585,340 587,860 −2520 −0.429

2m + 4 = 14 700,335 705,432 −5097 −0.723

13 698,140 705,432 −7292 −1.033

12 580,932 587,860 −6928 −1.179

11 403,922 406,980 −3058 −0.751

m + 5 = 10 235,035 232,560 2475 1.064
m + 4 = 9 114,931 108,528 6403 5.900
8 47,719 40,698 7021 17.251
7 17,206 11,970 5236 43.743
6 5609 2660 2949 –
m = 5 1726 420 1306 –
4 500 42 458 –
3 130 2 128 –
2 31 – 31 –
1 7 – 7 –
0 1 – 1 –
– Total = 4,194,304 Total = 4,194,304 – –
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Fig. 7  Distance-wise node distribution of CQ
5

Fig. 8  Diff versus d for m = 5 , 3 ≤ d ≤ 4m + 4 , vide Table 7
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   For 2m + 4 ≥ d ≥ m + 2 , therefore, D is symmetric about the point d =
3m

2
+ 3 , 

and diff is practically equal to −2C(3m, d − 4) + 2C(3m, d − 2) whose absolute 
value is a small percentage of 2C(4m + 1, d − 3) in this range.

4. For m + 1 ≥ d ≥ 3 , diff remains positive, and its value progressively declines. 
At the same time, the value relative to 2C(4m + 1, d − 3) is no longer negligible, 
particularly for small values of m.

Table 8 presents nd for certain small values of d and certain large values of d. It 
relies on the results in Table 6.

4.2  Average node distance of CQm

Table  9 computes the average distance of CQm . It relies on the expres-
sion for nd developed in Table  6. The identities used are: 

∑n

i=0
C(n, i) = 2n and ∑n

i=0
i C(n, i) = n2n−1.

Table 8  Computing nd for 1 ≤ d ≤ 4 and 4m ≤ d ≤ 4m + 4 , where m ≥ 2

d nd

0 C(m, 0) O(1)
1 C(2m + 1, 0) + C(2m, 0) + C(m, 1) O(m)

= m + 2

2 2C(3m, 0) + C(2m + 1, 1) + C(2m, 1) + C(m, 2) − 2C(m, 0) O(m2)

=
1

2!
(m2 + 7m + 2)

3 2C(4m + 1, 0) + 2C(3m, 1) + C(2m + 1, 2) − C(2m + 1, 0) O(m3)

+C(2m, 2) − C(2m, 0) + C(m, 3) − 2C(m, 1)

=
1

3!
m(m2 + 21m + 26)

4 2C(4m + 1, 1) + 2C(3m, 2) − 2C(3m, 0) + C(2m + 1, 3) O(m4)

−C(2m + 1, 1) + C(2m, 3) − C(2m, 1) + C(m, 4) − 2C(m, 2) + C(m, 0)

=
1

4!
m(m3 + 58m2 + 155m + 50)

4m 2C(4m + 1, 4m − 3) = 2C(4m + 1, 4) O(m4)

4m + 1 2C(4m + 1, 4m − 2) = 2C(4m + 1, 3) O(m3)

4m + 2 2C(4m + 1, 4m − 1) = 2C(4m + 1, 2) O(m2)

4m + 3 2C(4m + 1, 4m) = 2C(4m + 1, 1) O(m)
4m + 4 2C(4m + 1, 4m + 1) = 2C(4m + 1, 0) O(1)
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5  Concluding remarks

The quad-cube is a special case of a network topology called the metacube [9] that 
belongs to the family of networks derivable from the hypercube. It has emerged as a 
viable topology for a system in which the number of nodes exceeds several million. 
Among other things, it admits a 1-perfect code under a certain condition [5]. This 
paper presents results relating to its vertex transitivity, distance metric and distance-
wise node distribution that significantly enhance its importance from both theoreti-
cal point of view and the engineering point of view. Interestingly, the node distribu-
tion of CQm closely parallels that of 2Q4m+1 , i.e., a set of twin copies of Q4m+1.

Graph invariants like Wiener index and surface area [7] of the quad-cube are eas-
ily obtainable from the distance-wise node distribution of the graph that appears in 
Sect. 4.

Acknowledgements The author thanks the anonymous referee and the Editor-in-Chief Hamid Arabnia 
for their close attention and helpful comments.

Table 9  Computing the average distance

2
4m+4∑
d=3

(d ⋅ C(4m + 1, d − 3)) = 2
4m+1∑
i=0

((i + 3) ⋅ C(4m + 1, i)) = (4m + 7)24m+1

3m+2∑
d=2

(d ⋅ C(3m, d − 2)) = 2
3m∑
i=0

((i + 2) ⋅ C(3m, i)) = (3m + 4)23m

− 2
3m+4∑
d=4

(d ⋅ C(3m, d − 4)) = − 2
3m∑
i=0

((i + 4) ⋅ C(3m, i)) = − (3m + 8)23m

2m+2∑
d=1

(d ⋅ C(2m + 1, d − 1)) =
2m+1∑
i=0

((i + 1) ⋅ C(2m + 1, i)) = (2m + 3)22m

−
2m+4∑
d=3

(d ⋅ C(2m + 1, d − 3)) = −
2m+1∑
i=0

((i + 3) ⋅ C(2m + 1, i)) = −(2m + 7)22m

2m+1∑
d=1

(d ⋅ C(2m, d − 1)) =
2m∑
i=0

((i + 1) ⋅ C(2m, i)) = (m + 1)22m

−
2m+3∑
d=3

(d ⋅ C(2m, d − 3)) = −
2m∑
i=0

((i + 3) ⋅ C(2m, i)) = −(m + 3)22m

m∑
d=0

d ⋅ C(m, d) = m2m−1

−2
m+2∑
d=2

(d ⋅ C(m, d − 2)) = −2
m∑
i=0

((i + 2)C(m, i)) = −(m + 4)2m

m+4∑
d=4

(d ⋅ C(m, d − 4)) =
m∑
i=0

((i + 4) C(m, i)) = m2m−1 + 2m+2

Algebraic sum = (4m + 7) 24m+1 − 23m+2 − 3 ⋅ 22m+1

Average distance =
(4m + 7)24m+1 − 23m+2 − 3 ⋅ 22m+1

24m+2

=
4m + 7

2
−

1

2m
−

3

22m+1
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