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Abstract
Zero-shot learning (ZSL) aims at recognizing classes for which no visual sample is avail-
able at training time. To address this issue, one can rely on a semantic description of each
class. A typical ZSL model learns a mapping between the visual samples of seen classes
and the corresponding semantic descriptions, in order to do the same on unseen classes at
test time. State of the art approaches rely on generative models that synthesize visual fea-
tures from the prototype of a class, such that a classifier can then be learned in a supervised
manner. However, these approaches are usually biased towards seen classes whose visual
instances are the only one that can be matched to a given class prototype. We propose a reg-
ularization method that can be applied to any conditional generative-based ZSL method, by
leveraging only the semantic class prototypes. It learns to synthesize discriminative features
for possible semantic description that are not available at training time, that is the unseen
ones. The approach is evaluated for ZSL and GZSL on four datasets commonly used in the
literature, either in inductive or transductive settings, with results on-par or above state of
the art approaches. The code is available at https://github.com/hanouticelina/lsa-zsl.

Keywords Zero-shot learning · Generative latent space · Semantic ambiguity

1 Introduction

Being able to classify, detect or segment objects into images with as less annotated data as
possible is one of the most important problem addressed to implement practical application
in computer vision. A radical framework is proposed by the zero-shot learning (ZSL), in
which not a single visual example is used during learning, but where it is possible to rely
on external data from another modality. Typically, the latter are semantic attributes or tex-
tual descriptions that can be represented by vectors. Hence, the task consists in learning a
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mapping between the image space and the semantic space using images from seen classes,
available at training time only. In the original form of ZSL, the images of the test set belong
to unseen classes, for which no sample is available at training time. A more realistic “gener-
alized” setting (GZSL) [30] proposes nevertheless to recognize both seen and unseen classes
at test time. Another classical distinction is made between the inductive and the transduc-
tive setting, the latter allowing to use test images (without their annotation) at training time,
similarly to semi-supervised learning.

Recent approaches to ZSL use generative models to produce visual samples from unseen
classes based on their semantic descriptions [3, 4, 27, 29]. With such synthetic samples,
we thus have a classical supervised learning setting for the unseen classes as well. One of
the most performing approaches in this vein is f-VAEGAN-D2 [31] that shares the weights
of the decoder of a variational autoencoder (VAE) with those of the generator of a gen-
erative adversarial network (GAN). Since it is trained in combination with a conditional
encoder (and either a conditional or a non-conditional discriminator), it is able to bene-
fit from unlabeled unseen visual samples (transductive setting) to synthesize discriminative
image features of unseen classes. It also obtains very good performance in inductive setting
as well. Narayan et al. [16] proposed TF-VAEGAN that add a decoder which reconstructs
the semantic prototypes and a feedback loop from this module to the GAN generator to
refine the generated features during both the training and feature synthesis stages. The moti-
vation to add a decoder is that it can provide a complementary information along with the
generator, since the latter maps a single prototype to many possible visual instance while
the decoder does the opposite. Both pieces of information can be used at test time to create
features that are used to learn ZSL and GZSL classifiers.

Beyond the usefulness of the feedback loop, one can see TF-VAEGAN as similar to
f-VAEGAN-D2 with an additional loss that regularizes the generator. However, this loss
essentially addresses a reconstruction task, while ZSL consists first and foremost in dis-
criminating classes. We thus argue that a loss that regularizes in a way that favor class
disambiguation would be more relevant. The loss we propose (Section 3) can be inte-
grated to any generative model for ZSL. The idea is to train the generator to learn some
ambiguous semantic prototypes built by mixing real available ones, and recognize the cor-
responding ambiguous classes. This idea may seem similar to the one proposed by [6] who
applied mixup [33] to the ZSL task, but it has a crucial difference. In fact, when they apply
mixup, Chou et al. matches the virtual prototype to a corresponding virtual visual feature.
Our approach focuses on recognizing a virtual class, thus its label only. Hence, the reg-
ularization forces the generator to synthesize discriminative features from unknown class
prototypes, some of them being potentially close to some prototypes of the unseen classes
(see Section 4.4.2 for a detailed discussion and evaluation with regards to the availability
of the seen/unseen prototypes during training). The generator nevertheless learns without
visual samples from seen classes and is thus not constrained by particular images that are
not relevant. Indeed, mixing two particular images does not usually result into a meaningful
image, while mixing semantic description or attributes may make sense (Fig. 1). Therefore,
restricting mixup to the semantic space corresponds better to what is expected in the (G)ZSL
task. Our approach is computationally less expensive and leads to better results than Chou
et al. in practice (Section 4). Last, the loss they defined is mainly useful in an inductive
setting, while the approach we propose can be even more useful in a transductive one.

Our main contribution consists in a regularization loss, that can be applied to any con-
ditional generative-based ZSL model. Integrated to f-VAEGAN-D2 or TFVAEGAN, it
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Fig. 1 An image of tiger differs from a mix of an image of zebra and fox. At the opposite, learning to
discriminate a mix of semantic attributes (or description) of a fox and a zebra makes the proposed model able
to better identify a tiger at test time

improves significantly their performance on different benchmarks, either in inductive or
transductive setting.

2 State of the art

Early approaches in ZSL relied on attribute prediction [8], ridge regression [21] or triplet-
loss [7, 9, 10]. We refer to [12] for a more detailed overview of these approaches as we will
focus on generative approaches in the following.

In order to address the biased prediction towards seen classes, generative approaches
synthesize visual features of unseen classes from their semantic features with generative
models like Variational Autoencoders (VAEs) or Generative adversarial networks (GANs).
[29] combines a conditional Wasserstein GAN [2] with a categorization network to gen-
erate more discriminative features. Bucher et al. [4] proposed three different conditional
GANs to generate features, Generative Moment Matching Network (GMMN), AC-GAN,
and Denoising Auto-Encoder. Other works use conditional VAE. Arora et al. [3] integrates
an attribute regressor and a feedback mechanism into a VAE-based model to generate more
discriminative features and ensure that the generated features are semantically close to the
distribution of the real features. Schonfeld et al. [22] proposes to align the visual features
and the corresponding semantic embeddings in a shared latent space, using two Variational
Autoencoders (VAEs). Recent works take advantage of both GANs and VAEs by combin-
ing them with shared decoder and generator. Xian et al. [31] proposes a VAEGAN-based
model that leverages the unlabeled instances under the transductive setting via an additional
unconditional discriminator. Similar to the idea proposed by Arora et al. [16] augments
the f-VAEGAN-D2 method with a semantic embedding decoder and a feedback mecha-
nism to enforce a semantic consistency and improve feature synthesis. In this work, we
propose to enrich a conditional VAEGAN-based ZSL method with an auxiliary task as
well while focusing on another aspect, more related to the ability to discriminate classes,
namely reducing ambiguities among categories. Such a goal can be useful beyond zero-
shot learning, for tasks that aim at relating ambiguous visual and semantic information such
as multimodal entity linking [1] and retrieval [15, 34], cross-modal retrieval [5, 24, 25] or
classification [26].

To alleviate the domain shift problem, transductive ZSL methods are proposed to
leverage the unlabeled unseen-class data at training. Xian et al. [30] and Ye and Guo
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[32] proposed to use graph-based label propagation while [27] uses an Expectation-
Maximization (EM) strategy, where pseudo-labeled unseen class examples were used to
update the parameter estimates of unseen class distributions. Generative models were also
applied to transductive ZSL. Paul et al. [19] leverages Wasserstein GAN [2] to synthesize
the unseen domain distribution via minimizing the marginal difference between the true
latent space representation of the unlabeled samples of unseen classes and the synthesized
space. f-VAEGAN-D2 and TF-VAEGAN can also be applied to transductive settings.

Since its advent, interpolation-based regularization has been shown to be a surprisingly
effective method to improve generalization and robustness on both supervised and semi-
supervised settings. Zhang et al. [33] proposed mixup, a data augmentation technique for
image classification consisting in creating virtual training examples constructed as the con-
vex combinations of pairs of visual data samples and their corresponding labels. This simple
approach has shown to be an effective model regularizer that favor linear behavior in-
between training examples. Recently, [6] applied mixup to zero-shot learning. Similarly to
our method, they interpolate both the visual samples and the semantic prototypes. However,
unlike our approach, they used mixup as a direct data augmentation approach, while we
apply the interpolation in the conditional space of a generative ZSL model and propose a
specific regularization loss in the semantic space. More specifically, we train a conditional
generative ZSL model to recognize virtual ambiguous classes. The generator synthesizes
features from the corresponding ambiguous class prototypes, which are then used to perform
the classification task. In practice, the difference between the linear interpolation we pro-
pose and the usual mixup setting used by [6] is reflected by the mixing proportion leading to
the best performances. Indeed, as an augmentation data approach, mixup usually have better
performances with a mixing proportion that must be either close to 0 or 1, making the new
virtual samples pretty close to the original ones. In contrast, we obtain the best performances
with a mixing proportion close to 0.5, making the new virtual classes completely distinct
from the real ones. These classes are different from the actual unseen classes used at test
time, but allow the generator to be regularized in some ‘empty’ parts of the semantic space.

3 Method

3.1 Problem setting and notation

Let us consider a set of images X = {x1, ..., xl, xl+1, ..., xt } encoded in the image feature
space X = R

d and two disjoint sets of class labels: a seen class label set Ys and the unseen
one Yu. The set of class prototypes is denoted as C = {c(y)‖y ∈ Ys ∪ Yu, c(y) ∈ C}.
Usually, c(y) is a vector of binary attributes, but may be word embeddings when one wants
to describe a large set of classes [7, 11, 13]. The first l samples xs , with s ≤ l, are labeled
samples from seen classes ys ∈ Ys and the remaining samples xu, with l + 1 ≤ u ≤ t ,
are unlabeled data from novel classes, yu ∈ Yu. In the inductive setting, the training set
contains only labeled seen classes examples, and the semantic information about both seen
and unseen classes. In the transductive setting, the training set contains both labeled (seen
classes) and unlabeled (unseen classes) data samples. In fact, there is an ambiguity in the
definition of the transductive setting in the literature, as there is more than one definition
of this setting. Indeed, [12] defines the class-transductive setting, in which class prototypes
of both seen and unseen classes are available during the training phase, and the instance-
transductive setting, where both prototypes and unlabeled images from unseen classes are
available. The class-transductive setting is sometimes referred as inductive, as the author
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considers that the unseen prototypes need to be available to generate the unseen visual
samples used to learn the classifiers. In this paper, we refer to “transductive” setting when
unseen prototypes are used for any other usage than generating unseen visual features.

In zero-shot learning, the goal is to predict the label of images that belong to unseen
classes, i.e. fzsl : X → Yu, while in the GZSL scenario, the task is to predict labels of
images that can belong to either seen or unseen classes, i.e. fgzsl : X → Ys ∪ Yu, with f

a compatibility function that computes the likelihood of an image to belong to a class.

3.2 Learning semantic ambiguities

We consider a generative approach to ZSL, for which a conditional model G(.) is trained to
minimize a loss L, using visual samples xs and prototypes c(ys) from seen classes ys . At
test time, it is able to generate visual samples xu from a prototype c(yu) for unseen classes
yu, which are used to train a classifier in a fully supervised fashion. Applying mixup to this
setting such as [6] consists in augmenting the training data with virtual pairs:

c̃ = λc(ys
i ) + (1 − λ)c(ys

j )

x̃ = λxs
i + (1 − λ)xs

j (1)

where λ is a hyperparameter to determine and ((xi, yi), (xj , yj )) is a couple of annotated
data from seen classes randomly selected. As explained above, we argue that using the
visual samples biases the generator towards seen classes. Such a bias was identified for the
former ZSL approaches by [30] and led to the definition of generalized zero-shot learning
(GZSL), that is the most common and challenging setting in the literature.

We thus adopt a different strategy: focusing on learning the ambiguities in the semantic
space only. Indeed, as illustrated in Fig. 1 mixing two particular images does not usually
make sense, because of strong inconsistencies at the pixel level. In contrast, mixing semantic
information may make sense. First, it is at the origin of a large bestiary in fantasy literature,
in science fiction and in heroic fantasy. A unicorn is described semantically as a horse
with a corn, and no picture of such creature has been taken up to date, although many
artist proposed some visual representation of it. However, we do not expect the generator
to produce features that would result into a plausible representation but rather features able
to emphasis the differences between classes, in order to better distinguish them. Hence, we
propose to regularize the model with such a constraint only, while being independent of any
particular existing visual representation. In practice, we create ambiguous classes as a linear
interpolation of real semantic prototype pairs and their labels:

c̃ = λc(yi) + (1 − λ)c(yj )

ỹ = λyi + (1 − λ)yj (2)

The hyperparameter λ can be a fixed value or more generally a random variable λ ∼ �.
During the learning phase, the generator G synthesizes feature x̂ ∈ X from a latent code
z ∼ N (0, 1) conditioned by the ambiguous class prototype c̃ ∈ C. This image is then used
as input to a classifier f , leading to the proposed regularization loss as:

LI = Ez,λ[l(f (x̂), ỹ)] (3)

where l is the cross-entropy between the input x̂ = G([z; c̃]) and the target ỹ. With
its generic formulation, the proposed regularization can be applied to a large number
of generative models. In the following, we integrate it to f-VAEGAN-D2 [31] as illus-
trated in Fig. 2 by adding LI to their losses. In that case, the total loss to minimize is
L = LBCE +γLs

WGAN +Lu
WGAN +LI with γ an hyperparameter (see Section 4.2). It can
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Fig. 2 Our contribution, highlighted by the red dashed rectangle, included to a model similar to f-VAEGAN-
D2 [31]. The encoder E takes the real seen features xs as input and outputs a latent code z, which is then input
together with embeddings c(ys) to the generator G that synthesizes features x̃s . The generator G synthesizes
features of unseen classes from the class prototypes c(yu) concatenated with random noise z. The two dis-
criminators D1 and D2 learn to distinguish between real and synthesized features. We introduce a novel task
to train the generator G : First, virtual ambiguous classes are constructed as convex combinations of real
classes, then, the generator G synthesizes a feature x̃ from the corresponding ambiguous class prototypes
concatenated with random noise. Further, the synthesized features x̃ are used to perform a classification task

nevertheless be added to any generative-based ZSL model, and we show how it performs
with TFVAEGAN in Section 4.5.

4 Experimental evaluation

4.1 Datasets andmetrics

We evaluate our method on four datasets that are commonly used in the ZSL literature,
namely Caltech UCSD Birds 200-2011 (CUB) [28], SUN Attribute dataset [18], Oxford
Flowers (FLO) [17] and Animals with Attributes (AWA2) [30]. Their main characteristics
are reported in Table 1

We applied the evaluation protocol of [30], relying on the “proposed splits” that insure
that none of the test classes appear in ImageNet, since it is used to pre-train the visual

Table 1 Main characteristics of the dataset used

Dataset Granularity # images #classes Attributes size

CUB [28] Fine 11,788 200 1024

SUN [18] Fine 14,340 717 102

FLO [17] Fine 8,189 102 1024

AwA2 [30] Coarse 37,322 50 85

The granularity stands for fine-grained or coarse-grained classification
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feature extractor. The performances are reported in terms of average per-class top-1 accu-
racy (T1) for ZSL settings, and with the harmonic mean (H) of the average per-class top-1
accuracy on seen (s) and unseen (u) classes for GZSL. Unless otherwise specified, we use
2048-dimension 101-ResNet features as visual embeddings for all the datasets. For class
semantic prototypes of CUB and FLO, we adopt the 1024-dim sentence embeddings of
character-based CNN-RNN model generated from fine-grained visual descriptions [20].
For AWA2, the binary attributes relate to e.g animal species (“fish, bird, plankton”), color
(“black, brown, blue”), behaviour (“hibernate, timid, slow”) and other features. For SUN,
they rather relate to function/affordances, materials, spatial envelope and surface properties.
We compare our method to TF-VAEGAN [16], f-VAEGAN-D2 [31], CLSWGAN [29] and
LisGAN [14].

To compare the methods over several benchmarks and estimate their aggregated merit,
we adopt the median normalized relative gain (mNRG) [23]. Indeed, such a comparison can
be biased if one uses a simple average over different benchmarks. mNRG exhibits several
interesting features such as an independence to outlier scores, coherent aggregation or time
consistency. Its main drawback is that a reference method has to be chosen, from which the
performance of each method is measured, according to a unique aggregated score, possibly
negative if the method performs globally worse. In our case, we choose CLSWGAN [29]
in inductive setting as reference. For the comparison with fine-tuned features, we use f-
VAEGAN-D2 in inductive setting as reference. We compute the mNRG by aggregating the
accuracy for ZSL and the harmonic mean H of seen and unseen accuracy for GZSL. By
definition, the score of the reference is 0. If mNRG < 0 then the method performs globally
worse than the references over all datasets.

4.2 Implementation details

The generator G and discriminators D1 and D2 are implemented as two-layer fully con-
nected networks with 4096 hidden units. The generator is updated every 5 discriminator
iterations [2]. The function f used in equation (3) is implemented as a two-layers fully
connected network that takes an input synthesized feature of size d = 2048, has a hidden
layer of size 4096 and outputs a probability distribution with regards to all classes of inter-
est. We use LeakyReLU activation everywhere, except at the output of G, where a sigmoid
non-linearity is applied before the binary cross-entropy loss LBCE . ZSL and GZSL classi-
fiers are implemented as a single layer perceptron of size 2,048, trained for 20 epochs. We
use Adam optimizer with a learning rate of 0.0001. Our (PyTorch) code is based on the one
of [16] and is available at https://github.com/hanouticelina/lsa-zsl. We determined that the
hyperparameters γ = 10 and the gradient penalty of the WGAN loss λWGAN = 10 allowed
us to obtain similar performances as those reported in [16, 31], although they are sometimes
different to the hyperparameter values reported in these papers. Using the code of [16], it is
possible to reproduce their experiments and those of [31] for the inductive setting only. Our
code allows to reproduce the experiments under the transductive setting as well.

4.3 State-of-the-art comparison

Tables 2 and 3 show the comparison to the state-of-the-art. For inductive ZSL setting, our
model performs globally better than all other methods with the highest mNRG score. It also
achieves the best score on CUB and SUN. In the transductive ZSL setting, our approach
obtains a mNRG score of 22.8, establishing a new transductive ZSL state-of-the-art on CUB,
SUN and AWA2. The comparison to [6] is particular since they report results on three of

https://github.com/hanouticelina/lsa-zsl
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Table 2 State-of-the-art comparison accuracy for ZSL on the “proposed split” of [30], both inductive (IN)
and transductive (TR) results are shown

CUB T1 FLO T1 SUN T1 AWA2 T1 mNRG

Zero-shot Learning

IN CLSWGAN [29] 57.3 67.2 60.8 68.2 0 [ref]

LisGAN [14] 58.8 69.6 61.7 70.6 2.0

f-VAEGAN-D2 (*) [31] 61.0 67.7 64.7 71.1 3.3

TF-VAEGAN (*) [16] 63.2 70.4 64.3 73.2 4.2

Ours 70.7 69.2 64.7 71.9 3.8

TR ALE-trans [30] 54.5 48.3 55.7 70.7 -4.0

GFZSL [27] 50.0 85.4 64.0 78.6 6.8

DSRL [32] 48.7 57.7 56.8 72.8 -6.3

f-VAEGAN-D2 (*) [31] 74.2 89.1 70.1 89.8 19.3

TF-VAEGAN (*) [16] 77.2 92.6 70.1 92.1 21.9

Ours 80.6 89.3 71.7 92.8 22.7

ZSL with fine-tuned features

FT-IN f-VAEGAN-D2 (*) [31] 74.1 70.5 64.5 69.9 0 [ref]

TF-VAEGAN (*) [16] 72.5 70.6 64.1 68.5 -0.9

Ours 83.3 72.8 64.0 70.4 1.4

FT-TR f-VAEGAN-D2 (*) [31] 82.1 95.6 68.5 89.9 14.0

TF-VAEGAN (*) [16] 85.1 96.0 73.8 93.0 17.1

Ours 86.1 95.8 70.0 91.1 16.6

Avg is the average score over the four datasets. Models marked with * were partially re-implemented

the considered datasets only. Without fine-tuning, their results is far above other methods
on AWA2 but also far below on CUB and SUN.

Unsurprinsingly, in the GZSL setting, feature generating approaches obtain better results
than others. We also note that the accuracy on unseen classes (u) and the one on seen classes
(s) are better balanced. Our model outperforms the existing methods for both inductive and
transductive GZSL settings. In particular, in the inductive GZSL setting, our model obtains
67.2% on CUB, significantly improving those obtained previously (56.9%). By reducing
the bias towards seen classes, we globally achieve better performance on unseen classes.
However, the scores on seen classes may slightly decrease, in particular in inductive setting.
It is nevertheless compensated by the gain on the unseen classes.

We also conducted some experiments with fine-tuned features, with the same features as
those used in [16, 31]. To compute the global score mNRG for this experiment, we used
f-VAEGAN-D2 in transductive setting as a baseline. In the ZSL setting, the results of TF-
VAEGAN are globally better than ours in the transductive setting, both being significantly
above f-VAEGAN. However, in the inductive setting, the results of TF-VAEGAN are below
the baseline while ours are still slightly above.

In the GZSL settings, TF-VAEGAN still has a lower mNRG score than the baseline f-
VAEGAN-D2 in the inductive setting and quite comparable score in the transductive one.
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Our approach obtains performances in line with f-VAEGAN in the inductive but signifi-
cantly outperforms the two other approaches in the transductive setting when compared over
the four datasets.

4.4 Ablation study

4.4.1 Influence of the mixing proportion

In this section, we perform an ablation study on four ZSL datasets. We evaluate our model
with different values of the random mixing proportion λ (Results are shown in Table 4).
Note that when λ is sampled from a distribution, a new value is selected for each minibatch.

We found that the best performances accross all datasets were met when λ = 0.5 or λ ∼
N (0.5, 0.25), i.e. setting equal weights for the two terms of the convex combination. Other
settings for λ, such as λ = 0.2 or λ ∼ Unif orm(0, 1), deteriorates the performances (∼
1% worse for CUB, SUN and FLO and ∼ 4% worse for AWA2). Even poorer performances
were found when setting λ ∼ Beta(0.3, 0.3) (∼ 1% worse for CUB and SUN and ∼ 8%
worse for FLO and AWA2).

For image classification [33], the random mixing proportion is sampled from the Beta
distribution with a small value of α, as it assumes that the examples in the neighborhood
of each data sample share the same class. Indeed, given a small α = 0.3, beta distribution
samples more values closer to either 0 and 1, making the mixing result closer to either one
of the two examples. However, in our method, we construct ambiguous semantic prototypes
with the corresponding ambiguous classes being completely distinct from the real ones.
Therefore, sampling λ from a Beta distribution, with α < 1, is not a reasonable choice.

4.4.2 Influence of the subset to learn virtual prototypes

According to the nominal protocol of the proposed method, new “frontier prototypes” are
learned by combining prototypes of both seen and unseen categories in the transductive set-
ting. The usage of seen prototypes in (2) allows to regularize the conditional latent space,
such that further used unseen prototypes result in more discriminative features. If unseen
prototypes are used, the space is better regularized in their neighborhood. It is particularly
interesting if some unseen prototypes are not contained in the convex envelop of the seen
classes. Let nevertheless note that we conducted experiments with negative λ without getting
noticeable improvements. To evaluate the respective contribution of seen and unseen proto-
types in our model, we compared the performances on CUB, while using different subsets
of prototypes in (2). For fair comparison, the results reported in Table 5 were all obtained
with f-VAEGAN using unlabeled images at training time, such that the ‘s+u’ results are the
same as the transductive setting in Tables 2 and 3.

In the ZSL setting, we obtain the same results whether we use all prototypes or unseen
prototypes only, this makes sense since the test images are from the unseen classes only and
there is no point in modelling the ambiguities with seen classes. It is also interesting to note
that f-VAEGAN-D2 has a score of 74.2 in the transductive setting, while one can have have
a score of 79.1 with the regularization learned with seen prototypes only. It shows that most
of the improvement is due to the global regularization of the conditional latent space, rather
than to a local one in the neighborhood of the prototypes used at test time.

In the GZSL setting, the results are better when the regularization is learned with unseen
prototypes only rather than seen ones, but the usage of both is still above. Looking at the
results on the seen and unseen classes specifically, one can see that the results are obviously
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Table 5 Performances on CUB according to the prototype training subset used to learn ambiguous prototypes
(s =seen, u=unseen)

ZSL GZSL

T1 u s H

s+u 80.6 74.2 70.5 72.3

s 79.1 69.4 70.9 70.1

u 80.7 72.6 70.0 71.2

For fair comparison, unlabeled images are used at training time in each case

better for the classes that are regularized with (3). The comparison to the results obtained
by f-VAEGAN-D2 without the regularization in Table 3 (u=65.6 s=68.1 H=66.8) shows that
the regularization is beneficial in any case.

4.5 Integration to TF-VAEGAN

Our contribution is generic and can be used in other conditional generative-based ZSL archi-
tectures. Therefore, we evaluate the generalization capabilities of our proposed method, by
integrating our contribution in the TF-VAEGAN [16] framework.

We first learn the model end-to-end, adding the proposed regularization. Table 6 shows
the comparison on CUB, between the original TF-VAEGAN model and the one learned with
the proposed regularization (3). Our contribution improves the performance of the vanilla
TF-VAEGAN for both ZSL and GZSL tasks, either in inductive or transductive settings, by
1.5 to 3 points. Interestingly, in GZSL, one can note that the improvement is mainly due to
an increase of the scores on unseen classes, while the ones on seen classes is almost similar
to the vanilla TF-VAEGAN. It thus tends to show that our approach reduces the bias towards
seen classes in the generalized context.

We conducted an additional experiment consisting in fine-tuning the generator learned by
TF-VAEGAN with our method. To prevent the generator from losing the previously learned
information, which is the marginal feature distribution, the discriminators D1 and D2 are
trained from scratch. We again observe an improvement of the performance for ZSL and
GZSL, both in inductive and transductive settings. The scores are nevertheless intermediate

Table 6 Comparison between the vanilla TF-VAEGAN and that augmented with our loss (3), on CUB dataset
for both inductive and transductive ZSL/GZSL settings, either when the model is learned from scratch or
fine-tuned (ft)

ZSL GZSL

T1 u s H

IN Vanilla 63.2 52.2 62.7 56.9

+ ours (scratch) 64.9 57.4 62.6 59.8

+ ours (ft) 64.3 54.1 62.7 58.0

TR Vanilla 77.2 69.1 75.1 72.0

+ ours (scratch) 79.0 72.3 75.3 73.7

+ ours (ft) 78.5 71.6 74.9 73.2
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between those obtained by the original model and those obtained previously by learning
from scratch. In both cases, the GZSL experiments show that most of the score improvement
is due to a better recognition of the unseen classes, while the performances on the seen
classes are similar to (or slightly below) the original model.

5 Conclusion

We propose a novel approach to train a conditional generative-based model for zero-shot
learning. The approach improves the discriminative capacity of the synthesized features by
training the generator to recognize virtual ambiguous classes. We construct the correspond-
ing ambiguous class prototypes as convex combinations of the real class prototypes and
then we train the generator to recognize these virtual classes. This simple procedure allows
the generator to learn the transitions between categories and thus, to better distinguish them.
Our approach can be integrated to any conditional generative model. Experiments on four
benchmark datasets show the effectiveness of our approach across zero-shot and generalized
zero-shot learning. In most cases, the improvement is due to a better recognition of unseen
classes, while the score on seen classes are maintained, which means that our approach
reduces the bias towards seen classes in GZSL. However, most of the time, the score on
seen classes remains higher than the one on unseen classes, showing the bias still remains
to some extent.

The method is limited to create ambiguous classes from a couple of real classes by a
linear interpolation. To push further our approach, one could explore non-linear interpo-
lation for constructing ambiguous classes, or considering more than two real classes to
construct an ambiguous one. Note that the experiment we conducted on (linear) extrapo-
lation did not bring interesting results. Beyond this contribution to zero-shot learning, our
approach can also be beneficial to other tasks that aims at relating ambiguous visual and
semantic information such as multimodal entity linking and retrieval, cross-modal retrieval
or classification and more generally those in which a latent space is used for learning data
features.
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