
Knowledge and Information Systems
https://doi.org/10.1007/s10115-023-01844-3

REGULAR PAPER

A combined approach for improving humanoid robots
autonomous cognitive capabilities

Kurosh Madani1 · Antonio M. Rinaldi2 · Cristiano Russo2 · Cristian Tommasino2

Received: 29 January 2022 / Revised: 19 January 2023 / Accepted: 4 February 2023
© The Author(s) 2023

Abstract
Recent technologies advancements promise to changeour lives dramatically in the near future.
A new different living society is progressively emerging, witnessed from the conception of
novel digital ecosystems, where humans are expected to share their own spaces and habits
with machines. Humanoid robots are more and more being developed and provided with
enriched functionalities; however, they are still lacking in many ways. One important goal in
this sense is to enrich their cognitive capabilities, to make themmore “intelligent” in order to
better support humans in both daily and special activities. The goal of this research is to set a
step in bridging the gap between symbolic AI and connectionist approaches in the context of
knowledge acquisition and conceptualization. Hence, we present a combined approach based
on semantics and machine learning techniques for improving robots cognitive capabilities.
This is part of awider framework that covers several aspects of knowledgemanagement, from
representation and conceptualization, to acquisition, sharing and interaction with humans.
Our focus in this work is in particular on the development and implementation of techniques
for knowledge acquisition. Such techniques are discussed and validated through experiments,
carried out on a real robotic platform, showing the effectiveness of our approach. The results
obtained confirmed that the combination of the approaches gives superior performance with
respect to when they are considered individually.
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1 Introduction

Recently, autonomous robots have aroused deep interest in the scientific community for
their groundbreaking enormous potential. Today, machines are amazingly sophisticated and
cleverly engineered, however they still lack the high-level abilities required to advocate
for and interact with humans in many tasks. Moreover, the “intelligence” exhibited rarely
comes out from real autonomous decisions, that is the machine is not conscious of its own
knowledge. Although the cognitive capabilities of existing robots are quite distant from
those of humans, robots are expected to share their living space with humans (and vice versa)
in this century. Moreover, they will no longer be run by expert technicians. Such a future
perspective certainly promises to have a tremendous impact on thewaywe understand society
compared to how we see it today. Besides implications related to cultural changes, we have
to consider that this epochal transition is a very complex task to accomplish, requiring joint
efforts from multiple scientific communities operating in very different fields. Robots need
to be autonomous enough to accomplish tasks cooperatively with human users, who may not
have a-priori technical skills. To meet this requirement, future work in robotics should aim
at increasing the autonomy of robots. One of the best methods of contributing to this is to
investigate in the research field of machine cognition and, in relation to this, on autonomous
knowledge acquisition. This is also one of the aims of our proposed system, further discussed
in the rest of the paper.

Our interest is on the relationship between autonomous robotics, knowledge management
systems and artificial intelligence movements. In our vision, the dichotomy between sym-
bolic AI and connectionist AI is of particular attraction. In fact, regardless of specific intents,
a neat separation between these two “worlds” emerges. One of the objectives of this work
is to establish a stronger link between them to better exploit the advantages of both in the
tasks of knowledge acquisition and conceptualization. While often criticized in the past, the
use of approaches based on symbolic artificial intelligence, could provide particular advan-
tages to existing solutions in: i) the representation of knowledge by a robot to increase its
autonomy in the conceptualization process, ii) providing prior knowledge (it could be done
through Bayesian methods as well) to a robot contextualized to its operating environment, iii)
human–robot and robot-robot interactions actively handled by machines and not guided by a
human. In this view, thewaywe store and represent knowledge in an artificial system assumes
significant importance. Features, such as flexibility and interpretability, become necessary
to surmount these limitations and enhance human–machine and machine–machine interac-
tions. Such features may be provided by means of artificial neural networks inspired by
the human brain, i.e., by using networks designed to emulate some mental processes which
are the biological roots of human behaviors. The main contributions of this paper refer to
the design of individual modules for a general modular framework for knowledge manage-
ment in autonomous robotics. In particular, we discuss here the refined development of the
unsupervised low-level approach for constructing and conceptualizing the knowledge based
on perception, whose improved results are compared with the ones from previous work,
presented in [1] and briefly reported here; its combination with the supervised high-level
approach for constructing and conceptualizing the knowledge based on semantic [2] into a
unified approach through the use of merging operators and functions; the validation of the
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models on a real autonomous robotic platform. The paper has the following structure: in
Sect. 3, we introduce the framework for knowledge management along with a brief discus-
sion of its components, while we provide a literature overview of knowledge acquisition in
intelligent systems in Sect. 2. Section4 discusses the approaches used for knowledge acqui-
sition. In particular, for this work we focus on unsupervised and combined machine learning
techniques; Sects. 5 and 6 provide implementation details for the proposed approaches, while
Sect. 7 is left for conclusions and future works directions.

2 Related works

In the 80s and 90s, researchers laid the foundations to try to understand what mechanisms
guided the human mind, resulting in intuition and intelligence. An interesting theory has
been outlined by [3] whose objective is to merge the various areas of knowledge belonging
to the many areas of research involved. From this we can see the need to consider knowledge
from both biological and machine point of view, while it is at least hazardous to propose
a universal definition of intelligence, since it can manifest in different ways depending on
the context. Albus theory also delineates the minimum requirements intelligence should
have: “intelligence requires the ability to sense the environment, to make decisions, and to
control action. Higher levels of intelligence may include the ability to recognize objects and
events, to represent knowledge in a world model, and to reason about and plan for the future.
In advanced forms, intelligence provides the capacity to perceive and understand, to choose
wisely, and to act successfully under a large variety of circumstances so as to survive, prosper,
and reproduce in a complex and often hostile environment”.

At the same time, Brooks [4–6] suggested a subsumption architecture for mobile robot
control. It shows a hierarchy of layers in which higher level layers have more expertise and
subsume the role of lower level layers. Following the considerations provided by Nonaka [7]
on the role of interaction in knowledge creation, an approach to knowledge acquisition in
artificial intelligent systems is the one investigated by the research field known as Human–
computer interaction (HCI), and with more specificity to the field of robotics, the human–
robot interaction (HRI).

The development of service robots with high cognitive skills, capable of friendly inter-
actions with humans, is currently being investigated by a number of works: in [8, 9], the
authors propose a method to create a spatial cognitive map. The goal is to establish friendly
interactions between the robot and humans. Changes in human approaching behavior while
having a conversation have been investigated in [10, 11] and validated on MiRob platform.
Specific features of HRI, such as safety and dependability have been studied in [12]. Rein-
forcement learning is used in [13] for the development of a synergy-based framework for
autonomous and intelligent robots. The use of robots as assistive technologies is one of the
most investigated application domain in robotics. The neuro-robotics paradigm [14] aims
to fuse competences and methods from neuroscience and robotics. Examples of intelligent
assistive robots are [15, 16], while the employment of robots for people rehabilitation is
witnessed in [17–19].

The field of human–robot collaboration is reviewed in detail in [20–22] Occupancy maps
are used in [23] to record human’s movement preference over time. This information is then
used as input for an optimization-based motion planner to keep a safe distance between the
human and the robot to improve the safety.
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Another common approach to knowledge acquisition in intelligent systems relies on
semantics-based techniques, such as production rules and ontologies. Ontologies have been
widely used as a tool for knowledge management of robots and related cognitive architec-
tures. Successful examples include the OpenRobots Ontology (ORO) [24, 25] and KnowRob
[26, 27]. Semantic maps for task planning were used in [28]. A reasoner based on the geom-
etry of the environment and the relations between humans and objects is presented in [29]
to generate relevant symbolic information. Despite the innumerable benefits that the use of
ontologies brings in the acquisition and sharing of knowledge, there are also serious disad-
vantages that have limited their spread over the years and therefore it is necessary to take
them into account. One of the major concerns regarding ontologies is that they reflect a
fundamentally monolithic view of knowledge [30], i.e., they are too rigid and cannot easily
manage exceptions and shades of knowledge. In other words, the use of ontologies might
be in contrast to the two major requirements of flexibility and interpretability used in the
approaches of knowledge construction. The same author affirms that ontologies are also con-
sidered to be inadequate as a tool for knowledge representation, since the human language
is used to manipulate concepts and to represent the world. Although such a claim can be
considered reasonably true and acceptable, no alternative solution is proposed in this study.
In contrast, ontologies are effectively used as a tool for knowledge integration in [31, 32].
Also, multimedia ontologies have been designed in [33, 34] to associate semantic concept
with their visual representation. This approach is used to exploit both semantics and visual
information in a combined manner.

3 Modular framework for knowledgemanagement

This section introduces the theoretical scheme of the developed framework for cognitive
systems briefly discussing its parts. The strategies advanced in this work are general enough
to be considered valid for any machine or artificial intelligent system being it a device, like
computers, smartphones, or a robotic platform. We restrict our application context to robots,
as the development of the cognitive autonomy of such machines is an important step toward
the next-generation of society. A logical view of the framework is provided in Fig. 1. It
gives an overview of the aspects of knowledge management covered by organizing them in
a unified framework, or logical architecture. The intended meaning is that of outlining its
general structure.

Indeed, as multiple independent lines of research are involved, they are presented here as
logical modules of a framework, in order to have a unified and more comprehensive view of
areas that are explored and investigated as well as they interconnect each other. The picture
aims to support the reader understanding the general workflow and to fix conceptual links
among the different parts that cover the investigated research areas, which are depicted in the
figure as squares with dashed borders. Before introducing all the framework components, it
could be useful to discuss a concrete example which is helpful to understand how the different
methodologies are integrated to make a machine (robot) able to acquire and conceptualize
knowledge from the surrounding environment. First, we need to define the context within
which to operate. One of the most interesting usages of humanoid robots for years to come
is that of personal robot, i.e., a service robot whose main task is to assist elderly or sick
people who are not able to move in autonomy or they need specific assistance in their
homes. This conception of robot as an assistant to human beings is also definitely in line
with the origin of the term robot itself. Therefore, a possible example would be to assist an
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Fig. 1 High-level architecture of the framework. Dashed lines identify research areas, while arrows show the
information flow and interconnections among the different fields

individual in his/her own home to carry out ordinary, everyday tasks, such as searching for
objects, providing answers to general questions and so on. A common example is a robot
searching for food. The first step is focused on knowledge design and representation in the
framework. It consists in preparing the General Knowledge Base, described more in detail in
Sect. 3.1, with general concepts and multimedia representations (in our case WordNet [35]
and ImageNet [36]). According to the user specific needs, ontology matching and merging
can be optionally performed to add more specific concepts related to the domain of interest.
With regard to our example, this process would consist in looking for ontologies about food
and anchoring them to the General Knowledge Base. The robot is initially provided with
a basic amount of knowledge (few concepts) in its own Local Knowledge Base, since the
goal is to test its own ability to acquire new knowledge. The subsequent phase is related to
knowledge acquisition. Both semantics-based and perception-based techniques are used for
this purpose. This phase can also involve the interaction with humans, who can trigger new
requests and/or validate inferences made by the robot. Back to our example, the robot could
be asked by the human to search for some food, let us say chocolate. First, the robot tries
to pair the human utterance with a semantic concept and actions to be performed. Then, he
looks for it in his Local Knowledge Base. In case the concept is absent, the robot retrieves
it from the General Knowledge Base, he updates his own Local Knowledge Base and then
searches for the item or most similar ones by using one of the above-mentioned techniques.
Each element will be described in the following sections. We do not provide details about
the component parts which are out of scope for this work. Our focus is on the unsupervised
knowledge acquisition task which will be instead extensively described.

3.1 General knowledge base

One of the key-elements of the framework is the General Knowledge Base, alternatively
named GKB. It plays a central role since the other modules are built upon it, or they make
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use of it. A knowledge base provides a means for information to be collected, organized,
shared, searched and utilized. In the context of this work, the knowledge base is called general
since it has been implemented starting from a high-level ontological model proposed in [33]
acting as overarching ontology, in turn defined following the structure ofWordNet. This is the
methodology used here for knowledge conceptualization.WordNet is a dictionary containing
lexical-semantic connections between abstract concepts. The fundamental unit is a synset,
i.e., a set of terms having the same meaning. Each synset represents a concept in WordNet.
Synsets are interconnected each other by links that represent linguistic properties, in particular
lexical and semantic; lexical relations hold between word forms while semantic relations
hold between word meanings. Besides, visual features extracted from images contained in
ImageNet have been imported in the General Knowledge Base. In fact, such a solution has
advantages as well as drawbacks since its usage may not be ideal in certain situations and
invalidate the development of applications requiring the acquisition of specific skills and not
of general concepts. To address this issue and mitigate its effects, several countermeasures
have been taken. First, the ontological model has been provided with the ability of being
extensible through ontology matching and merging activities. This way, it is possible to
integrate new knowledge coming from other ontologies. Second, each artificial system is
provided with its own local knowledge base (LKB), which keeps the reference with the
general knowledge base, but it is free to evolve on its own by adding new unknown concepts.
Other techniques employable for the extension of knowledge acquisition process are based on
theSemanticWeb andLinkedOpenData (LOD)principles. The use ofLKBsbrings important
benefits. First, it allows to keep intact the structure of the general knowledge base, avoiding
the inclusion of possible errors deriving from the observation of a real environment during the
process of acquisition of new knowledge. Secondly, having a single centralized knowledge
base would adversely affect its performance, when querying and retrieving information when
the size of knowledge increases significantly. Third, with a view to sharing of knowledge,
assuming that each entity provided with LKB acquires new skills, it will be possible to equip
all the actors involved in the process with knowledge acquired individually. Moreover, since
the LKBs always start their evolving process by keeping a reference with the GKB, the
consistency of the whole system is guaranteed. This means that the knowledge that can be
acquired by an agent/machine is framed to the knowledge contained in the GKB, so it cannot
diverge possibly generating inconsistencies. In other words, it is very important to remark
that the scope of knowledge acquisition is somehow limited to the knowledge contained in
the GKB, i.e., when we talk about new knowledge we mostly refer to the acquisition from
reality of physical entities as instances of concepts already included in the GKB. However,
exceptions to violate such a constraint have been experimented for including knowledge from
outside the GKB, i.e., knowledge acquired from linked open data.

4 Approaches to knowledge construction

This section focuses on the approaches defined for constructing and acquiring the knowledge
based on how it has been conceptualized. By introducing different machine learning and
human–computer interaction techniques, the goal is to enable an artificial intelligent system
to autonomously or semi-autonomously learn and properly manage the knowledge contained
in the general knowledge base. The process of ingesting further knowledge in an autonomous
or quasi-autonomous way is challenging and may be achieved through different techniques
and approaches. In our vision, the class of bio-inspired approaches has proved [37–40] to be
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a good strategy in learning cognitive processes. Indeed, they are required to have satisfactory
and friendly interactions as well as knowledge acquisition skills, either with humans or
artificial systems. The rest of the section is arranged according to a classification of the
approaches based on the nature of the techniques used that inspired them. In detail, we
focus on approaches based on robots autonomous acquisition of knowledge. However, the
foundation of our approach is still valid with application domains different than robotics.

Themain goal is to allow a robot to derive, envision and conceptualize the knowledge with
a dual process, combining perceptual and semantic knowledge. The perceptual knowledge
originates from the enclosing environment. It commonly includes all the information retrieved
from sensors, e.g., microphones for capturing audio signals such as human conversations,
movements, temperatures and vision for extracting images. Visual sensors are employed to
acquire images. The data collection process can be extended to gather information from other
sensors, such as a microphone for audio and infrared for distances. The semantic knowledge
is represented in our knowledge base. We validated the studied concepts on a humanoid
robotic platform through real use cases. The dual-process above-cited looks in two opposed
directions: the aim is to grasp the benefits of the two groups. The first one is more abstract,
and we name it top-down (TD), it contributes with semantics, and it is closer to human
comprehension. The Semantic Web technologies, ontologies, linked open data, production
rules systems fall into this category. Further details about the TD approach are provided in
[2].

The second one, discussed in this paper, is named bottom-up (BU). It is closer to machine-
understanding, and it is related to perception of the environment, e.g., raw information
extracted from sensors.

4.1 Bottom-up approach

The bottom-up approach aims to retrieve knowledge from the surrounding perceived ele-
ments. We say it is “guided by perception” in opposition with the top-down approach that is
semantics-driven. The BU approach seeks knowledge through a low-level of abstraction.

It does not have any a-priori knowledge for the visual information hence, unsupervised
learning represents a good strategy to pursue to find unknown patterns.

4.2 Self-organizingmaps

Unsupervised machine learning techniques are particularly interesting, and they are widely
used in a broad range of applications.

An interesting unsupervised neural network is the self-organizing map (SOM) [41]. Self-
organizing maps are also called Kohonen maps, from the scientist who described their
architectures in [41]. The basic idea follows the results of many neurobiological studies
[42, 43].

SOMs follow a sort of principle of locality of information, which is also referred to as the
principle of topographic map formation [44]: “The spatial location of an output neuron in a
topographic map corresponds to a particular domain or feature drawn from the input space”.
The aim is to preserve the neighborhood of neurons which treat similar information during
the processing.

The network is trained through competitive learning, where neurons are progressively
tuned based on input stimuli. The formula used by SOM for updating the vector of weights
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Wv(i) for a neuron v is:

Wv(i + 1) = Wv(i) + θ(u, v, i) · α(i) · (D(t) − Wv(i)) (1)

index i represents the iteration, t is the training sample, u is the index of the best matching
unit, α(i) is a monotonically decreasing learning coefficient; θ(u, v, i) is the neighborhood
function computing the distance between u and v at step i. The neighborhood function narrows
over time and can be of different forms. In the context of this research, self-organizing maps
have been employed for detecting semantic clusters starting from visual observation. A
transfer-learning mechanism has been used for features employed for such an approach. An
in-depth analysis of thewholemethod and how it has been implemented is provided in Sect. 5.

4.3 Growing hierarchical self-organizingmaps

Classical self-organizingmaps are a good strategy to pursue and they showgood experimental
results as it will be explained in Sect. 5. However, they have some drawbacks that limit their
applicability. In fact, among the desirable features for an intelligent system, one of the most
important, if not themost important, is the capability of evolving and enrich its ownknowledge
during time. Given their unsupervised nature, self-organizing maps provide in some ways
such characteristic, but with strong limitations due to the intrinsic constraints related to the
fixed size of the map and the flatness of the structure. As an example, the size parameter
is often determined by experiments and it is based on the available data. Therefore, having
a fixed size of the map forces the definition of clusters which could become at least not
appropriate, or even meaningless, when new knowledge is added. Similarly, the flatness of
themap does not allow to organize data hierarchically. This represents a strong limitation from
a knowledge acquisition point of view, given that semantic hierarchies are a keystone of some
cognitive processes as widely documented in Brooks’ studies on subsumption architectures
[4–6].

In order to overcome such limitations, a second unsupervised approach has been investi-
gated. It makes use of growing hierarchical self-organizing maps (GHSOM)which have been
first presented in [45, 46]. The GHSOM artificial neural-network model tackle the aforemen-
tioned issues with a hierarchical architecture of growing self-organizing maps. Moreover,
contrary to similar solutions, such as Growing grid [47], the GHSOM is able to provide a
global orientation to the independent maps facilitating the navigation across them.

An example of architecture for the GHSOM is shown in Fig. 2.
Stopping criteria are based on quantization error metrics (absolute error or mean error).

In particular, two parameters named τ1 and τ2 are used during the training process to handle
the growth of individual maps and the depth of the architecture.

The first parameter, τ1, is used in the stopping criterion for the growth of a single map in
the architecture. The formula for such criterion, assuming to use the absolute quantization
error metric, is given in Eq.2; qej is the quantization error of the father unit, that is the neuron
of the map in the upper layer from where the map i has been generated.

M QEmapi < τ1 · qej (2)

As an example, if τ1 = 0.1 it means that the mean quantization error of the map must be
less than one-tenth of the quantization error of father neuron in the upper layer.

The second parameter, τ2, is used to specify the minimum quality of data representation
of each unit as a fraction of the quantization error of the zero unit, that is the initial layer
of the map where all the data are mapped into a single neuron. It directly influences the
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Fig. 2 GHSOM architecture

vertical growth of the GHSOM. The formula for such criterion, assuming to use the absolute
quantization metric, is given in Eq.3;

qei < τ2 · qe0 (3)

Same considerations made about self-organizing maps applies here, since the approach is
basically the same but enhanced with more capabilities. Details are provided in Sect. 5.

4.4 Combined approach

All the methods explored until now present different facets, but they eventually belong to
one of the two sides of the same coin. Given this premise, the further, most natural step is to
attempt to unify the results obtained from the aforementioned approaches in order to evaluate
if a novel combined approach gives optimal results exploiting the advantages of both. The
idea is to have a more robust final classification by a voting-based decision which takes into
account both supervised and unsupervised approaches results. This is a well-known practice
in machine learning and artificial intelligence field, which proved to be successful over the
years. A logical scheme for such a combination is given in Fig. 3.

To fuse the approaches together, it is necessary to definewhich operator to use, i.e., amath-
ematical function taking in input the output of individual algorithms and returning a novel
output given from their combination. Both TD and BU approaches are already designed to
output a list of concepts along with a probability, hence there is no need for a normalization
step. The probabilities also take into account the hierarchies of classifications. For the com-
bination function to take place, Ordered-Weighted averaging (OWA) operators have been
used [48].

Formally, an OWA operator of order n is a function F : Rn → R having a collection of
weights W = [w1, ..., wn], whose elements fall into the unit range such that:

∑n
i=1 wi = 1.

The function is defined as in Eq.4.
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Fig. 3 Logical architecture of combined approach

F(a1, ..., an) =
n∑

j=1

w j b j (4)

where b j is the j − th largest of the ai .
In the context of this research, their use is motivated by the fact that, since they pro-

vide a parameterized family of aggregation operators, it is possible to have more reliable
computations when dealing with decision analysis under uncertainty.

5 Bottom-up approach implementation

As discussed in Sect. 4.1, bottom-up approaches are based on unsupervised learning tech-
niques largely used in machine learning and artificial intelligence research field. In particular,
the approaches tested for this research make use of classical SOMs and the more advanced
GHSOMs. The implementation used for both algorithms is based on two libraries, written
in Python language. The first one is already packaged with the Python installation, while
the second one is a third-party1 implementation, which has been adapted to our needs. We
discuss several experiments we have performed to evaluate the BU approach. Our analysis
is focused in particular on the knowledge acquisition of a machine and its evolving ability;
hence, we discuss both qualitative and quantitative measures given the operating context.

5.1 Data preparation

At first, we manually selected 34 concepts (listed in Table 1) related to different semantic
domains from our knowledge base.

In particular, we defined 5 semantic classes. The first four are well defined, hence strongly
coherent from a semantic point of view, i.e., they share a strong semantic correlation. The
last one instead includes two semantically uncorrelated concepts. The number of images
per synset in the knowledge base is limited due to size constraints. Therefore, we collected
further images from the service google images by using an automated Python script. We
also manually checked inconsistencies in the retrieved images. By using this strategy, we

1 https://github.com/enry12/growing_hierarchical_som.
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Table 1 Concepts grouped by semantic domain

Semantic domain List of synsets

Animals Cat, giraffe, zebra, sheep, horse bird, dog, elephant, cow, bear

Food Pizza, sandwich, orange, broccoli, watermelon hotdog, banana, apple, pear, donut, cake

Vehicles Bus, truck, boat, motorcycle, bicycle, car, airplane, train

Dishes Cup, knife, spoon

Other Potted plant, person

Table 2 Example of dataset
statistics

Class No. of images

Banana 43

Horse 39

Broccoli 50

Bear 38

Boat 39

Truck 38

Hot dog 47

Spoon 44

Train 50

Bird 45

Cow 49

Apple 19

Cake 49

Person 37

Pear 38

Bicycle 49

Donut 46

Car 40

Cup 47

Sheep 47

Potted plant 45

eventually collected 1477 samples.Details about samples per concept are provided inTables 2
and 3.

Figure 4 shows examples of images collected for some selected synsets.
Each image was processed to extract global features (JCD, CEDD, etc.) and activation

features from the last pool layer of selected CNNs to be used as input in our experiments.
This is the same approach used for the Top-down approach.

5.2 Bottom-up approach evaluation

Similarly to what we have done for the classical SOMs in our previous research [1], experi-
ments have been carried out also for the approach based on GHSOMs. The same sets of data
and deep features have been used. Moreover, a genetic algorithm has been developed for the
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Table 3 Example of dataset
statistics (continuation)

Class No. of images

Motorcycle 49

Giraffe 47

Zebra 47

Orange 40

Pizza 48

Elephant 50

Bus 49

Cat 38

Knife 45

Airplane 37

Sandwich 47

Dog 37

Watermelon 45

Fig. 4 Example images for synsets airplane, bear, pizza, spoon

fine tuning of parameters τ1 and τ2 in the GHSOM architecture. Details about this algorithm
are provided in Sect. 5.3.

Figures 5, 6 and 7 depict three maps (with winning neurons) belonging to the resulting
GHSOM architecture, got by running an experiment with the dataset 34-synsets and deep
features from VGG16 model. For what concerns the grouping of data in semantic clusters a
slight difference has been introduced. Since the cluster of dishes is made of just three classes,
it has been included in the cluster, named Others, which is used as a noise element. Hence,
the meaning for colors is now as follows: red color is for animals, blue color for vehicles,
yellow color for food, cyan color for others. Numbers on the right represents the labels for
classes in the dataset. More in detail, Fig. 5 shows the parent map, that is the map located at
the first level of the hierarchy. The map shows a strong coherence between semantic domains
and neurons. In other words, different classes with a strong semantic correlation are placed
in the same neuron or in adjacent neurons, allowing for a first discrimination power of the
system at domain-level. Such an ability is still more remarked if we look at the lower levels
of the hierarchy. For example, Fig. 6 refers to the map at the second level of the hierarchy
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Fig. 5 Graphical representation
of winning neurons in parent
GSOM. First level in the
GHSOM architecture

having its parent neuron in positions (0, 0). Most of the classes are depicted in yellow, which
means they belong to the food domain. Similarly, Fig. 7 refers to the map at the second level
of the hierarchy having its parent neuron in positions (1, 0). Most of the classes are depicted
in blue, which means they belong to the vehicle domain.

It is worthy to note the presence of some instances belonging to the “disturbing” semantic
domain, colored in cyan, for the illustrated maps in the second level. As it has been discussed,
such a cluster has been intentionally included as a noise element in the analysis to have amore
robust evaluation. Also, this behavior was expected, since classes belonging to this group do
not really have a semantic correlation, since they are taken in a scattered manner. Moreover,
with respect to the other semantic domains investigated, this one has a much lower instances
number; hence, it is much smaller and less representative.

An experiment for computing centers of gravity for classes has been carried out for the
GHSOM case. The technique is the same we used in [1] for the classical SOM architecture.
There are, however, some differences that need to be highlighted and further clarified. Given
that GHSOM has a hierarchical and dynamically growing structure, its final architecture is
composed of many maps with different sizes at different levels of granularity, instead of just
one with fixed size, as in SOM case. In particular, the whole GHSOM structure has a high
number of maps (for the settings used in our experiments more than fifty), each exploring
different portions of the dataset going down the hierarchy.
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Fig. 6 Graphical representation of winning neurons in second level GSOMhaving its parent neuron in position
(0,0)

The implication for this fact is that all themaps in theGHSOM,whose growth is controlled
by parameters τ1 and τ2, have very different and smaller sizes compared to the SOM, where
the size of the unique map is one of the parameters manually set for each experiment. To
make an example, the GHSOM map in the first level (after the zero unit), which is the one
receiving in input the whole dataset has a size after training of 3x2 neurons, while for the
SOM map analyzed with centers of gravity test the size is 30x30 neurons (because they are
all condensed in that unique map). The positions of centers of gravity for the map placed at
the first level of the hierarchy, which is a map with 3x2 neurons, are displayed on the grid in
Fig. 8.

In Table 4, we report the detailed results obtained for centers of gravity, winning neurons
and relative Euclidean distances related to the same map.

5.3 Optimizing parameters for controllingmaps growth

An optimization algorithm has been implemented for a correct definition of proper values of
the two parameters τ1 and τ2, responsible for the growth of the GHSOM architecture. The
goal of this process is to shove the formation of visual clusters toward a semantics-based inter-
pretation. The task has been accomplished by realizing a genetic algorithm used to fine-tune
the parameters. Other optimization algorithms could be used as well; however, evolutionary
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Fig. 7 Graphical representation of winning neurons in second level GSOMhaving its parent neuron in position
(1,0)

Fig. 8 Positions of centers of gravity with labels in the first-level map of GHSOM architecture
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Table 4 Center of gravity positions, winning neuron position for center of gravity vector, Euclidean distances
for first-level map in GHSOM architecture

Class Center of gravity position Winning neuron position Eucl. distance

Banana (0.07,0.95) (0,1) 0.08

Horse (1.66,1.0) (2,1) 0.33

Broccoli (0.0,0.9) (0,1) 0.1

Bear (1.95,1.0) (2,1) 0.05

Boat (1.13,0.05) (1,0) 0.14

Truck (1.97,0.05) (2,0) 0.06

Hot dog (0.0,0.0) (0,0) 0.0

Spoon (0.88,0.59) (1,1) 0.42

Train (1.86,0.06) (2,0) 0.15

Bird (0.93,1.0) (1,1) 0.07

Cow (1.71,1.0) (2,1) 0.29

Apple (0.0,0.95) (0,1) 0.05

Cake (0.0,0.37) (0,0) 0.37

Person (1.0,1.0) (1,1) 0.0

Pear (0.05,0.97) (0,1) 0.06

Bicycle (1.94,0.02) (2,0) 0.06

Donut (0.06,0.54) (0,1) 0.46

Car (1.89,0.0) (2,0) 0.1

Cup (0.77,0.96) (1,1) 0.24

Sheep (1.59,1.0) (2,1) 0.4

Potted plant (0.15,1.0) (0,1) 0.15

Motorcycle (1.96,0.0) (2,0) 0.04

Giraffe (1.04,1.0) (1,1) 0.04

Zebra (1.0,1.0) (1,1) 0.0

Orange (0.0,0.98) (0,1) 0.02

Pizza (0.0,0.06) (0,0) 0.06

Elephant (1.16,1.0) (1,1) 0.16

Bus (1.96,0.0) (2,0) 0.04

Cat (1.03,1.0) (1,1) 0.03

Knife (0.98,0.53) (1,1) 0.47

Airplane (1.03,0.08) (1,0) 0.09

Sandwich (0.0,0.17) (0,0) 0.17

Dog (1.92,1.0) (2,1) 0.08

Watermelon (0.0,0.87) (0,1) 0.13

properties of genetic algorithms are the most suitable in this context. The sets of experi-
ments on the dataset 34 synsets have proven that a relation exists among visual features and
semantics knowledge. Therefore, the idea is to exploit such information to minimize seman-
tics diversity in visual clusters. To accomplish this, the details of the genetic algorithm are
explained below. The parameters we want to optimize are the genes, while each combination
of them is defined as a chromosome, that is a potential solution for the optimization problem.
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Fig. 9 Evolution of the fitness function

A population instead is a set of solutions or chromosomes. The optimization problem has
been set as a minimization problem, since our goal is to reduce semantics heterogeneity in
clusters. Hence, a simple fitness function is used for the evolutionary process of the genetic
algorithm. The fitness is defined as the ratio between the sum of numbers of different seman-
tic labels encountered in each neuron and the total number of neurons. Such a function is
given in Eq.5 where K is the total number of neurons resulting from the growth process.

f i tness =
∑K

i=1 labelsi

K
(5)

Figure 9 shows the evolution of the fitness function (lower values correspond to a better
fitness). At each iteration, represented on the x axis of the chart, the algorithm evaluates
the current population and chooses the best solution, which is kept, while other solutions are
discarded and replaced by new chromosomes. The evolutionary process terminates according
to the stopping criterion, which is triggered when the fitness does not improve for three
consecutive iterations.

The best solution resulting after the algorithm execution has values 0.01 and 0.1 for
parameters τ1 and τ2, respectively.

The fitness function provided in Eq.5 just considers how many different classes are
detected inside each neurons.

A more complex fitness function, shown in Eq.6, has been realized to take into account
the semantic information at our disposal.

f i tness =
∑K

i=1 labelsi + ∑N
l=1,m=1(1 − wupl,m)

K
(6)

Such a function adds to the previous fitness function another term in its numerator corre-
sponding to the sum of all N 2 “semantic distances” between pair of samples (l, m) classified
at each neurons. Each “semantic distance” is computed as the inverse of the Wu-Palmer [49]
similarity (wupl,m), which is a measure already normalized in the range [0, 1]. Hence, the
inverse is calculated as 1 − Wu-Palmer.
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Fig. 10 Evolution of the fitness function with semantic similarity measure

Table 5 Combination schemes Combination schemes

Name Weight TD Weight BU

A 0,5 0,5

B 0,2 0,8

C 0,8 0,2

D 0,4 0,6

E 0,6 0,4

F 0,0 1,0

G 1,0 0,0

The experiment, reported in Fig. 10, shows an analogous behavior, in terms of best solu-
tions, to the one obtained with the first fitness function (see Fig. 9). This means that, for the
set of data used in the experiments, the first fitness function is as much effective as the second
one. The second fitness function proposed is preferable since it is expected to behave better
with larger data sets and above all, with more classes, given its grater discriminatory power
in term of semantics.

6 Combined approach implementation and evaluation

As explained in Sect. 4.4, the goal of combination is to use a function or operator for merging
the results of individual approaches together (see Fig. 3). Theweights used in the experiments
are reported in Table 5. Each combination scheme is identified by a letter. For example,
the scheme named A gives equal importance to top-down and bottom-up approaches. Other
schemes evaluate the performance for several different configurations of weights. Schemes F
andG refers to individual performances of bottom-up and top-down approaches, respectively.
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Table 6 Combination accuracy Combination accuracy

Name Accuracy top-1 (%) Accuracy top-5 (%)

A 97.2 99.6

B 89.19 99.6

C 86.49 99.6

D 97.2 99.6

E 94.6 99.6

F 83.7 99.6

G 86.49 86.49

The algorithm has been implemented in Python language and tested over a test-set
extracted from the dataset, 34-synsets. It receives in input two lists of predicted synsets
with corresponding probabilities. One list is the output of Top Down approach, i.e., the com-
bined chain of predictions from the “Semantic Multilevel classifier”; the second list is the
result of Bottom Up approach, i.e., the chain of predictions from the “GHSOM” architecture.
In particular, the algorithm considers the list of synsets from last level of predictions for
both. The combination merges the two lists together and computes the final score for all the
considered synsets, taking into account the weights given in Table 5. The final list is ranked
according to the final scores; both top-one accuracy and top-five accuracy are computed.

Schemes F and G, show that individual algorithms have already good performances for
top-1 accuracy. Scheme G, which corresponds to the usage of top-down approach only, does
not show improvement in top-5 accuracy. In fact, the optimal results for top-5 accuracy are due
to the usage of the bottom-up approach. This means that, also in cases of misclassifications,
the real class is always present in the same cluster of predicted one. The results of other
combination schemes show the effectiveness of this technique: schemes B and C, which use
the two approaches in an 80–20 ratio, already show an improvement compared to the use of
the approaches used individually. Still better performances are achieved when the weights
of two approaches are more balanced; this is the case of schemes E, D and A. In particular,
schemes D and A were able to reach a 97.2% top-1 accuracy, i.e., a delta improvement of
11–14% with respect to individual algorithms. This gives still more significance to the usage
of combination since it is a sign that one approach is capable of correcting the other one
when it fails. In conclusion, the experiments suggest that the best option is scheme D, which
assigns weights of 0.6 and 0.4 to bottom-up approach and top-down approach, respectively.
In fact, giving slightly more importance to bottom-up approach allows us to exploit goodness
of both approaches and it could be helpful considering the advantage in top-5 accuracy of
bottom-up approach, resulting into better final overall performance, which was our initial
goal for the combination task. Same results, shaped as a chart, are reported in Fig. 11. Such
considerations reflect the results obtained from the experiments we carried on the datasets at
our disposal. Given their not very big size, further experimentation on wider datasets could
help increase the confidence of these insights.

6.1 Validation on a real robotic platform

As previously stated, we also tested the proposed combined approach on a real robot. The
platform used to test our work is the humanoid robot Pepper. It has 20 degrees of freedom.
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Fig. 11 Combination schemes accuracy

Fig. 12 Validation of combined approach on Pepper robot

It is designed to be fully interactive, as it can hold full conversations, and it is endowed
with a number of sensors and modules, that allow him to speak, to detect obstacles, to take
photos/videos, to move and so on. In the context of our research we have mainly used its 2D
camera, and movement sensors. Figure12 illustrates two frames of a demonstration which
aims to show the final combined approach. In this scenario, we use multi-layer semantic
classifier for the top-down approach, the GHSOM for the bottom-up approaches, combined
according to the best values for the weights previously shown in combination experiments,
that is 0.6 for the bottom-up approach and 0.4 for the top-down approach. The scenario is
that of a simple interaction between the robot and a human that needs some help. The human
asks for a pizza because he is hungry. In the environment, we have disseminated 3 objects
(a plant, a spoon and an apple) along the path of Pepper. The robot starts the exploration of
the environment and analyzes the objects he finds on his way. For each observation the robot
uses the combined approach and then, since he could not find exactly what asked, he suggests
the human for an apple which is the concept found “semantically” closest to the one asked.
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The use of a robotic platform can give rise to multiple problems. Here, we discuss possible
disadvantages related to the hardware with which the platform was equipped. Indeed, current
humanoid robots come with very limited hardware compared to the software requirements
of sophisticated machine learning algorithms. In addition, the sensors on board mainstream
platforms are often inaccurate and/or not of high quality. On the Pepper robot we tried to
overcome some of these limitations by communicating with the robot through its program-
ming interface in Python and by replacing the Speech Recognition engine, with a more
sophisticated one, by using a service for speech recognition, known as IBM Watson. In this
way, we were able to reduce the computational load on the robot and avoid many issues with
voice recognition when using the integrated microphone. In the real-world scenario tested,
the robot accomplished the object recognition task with satisfactory response times, as we
observed an average response time of about 4 s, resulting in a smooth interaction between
the human and the machine. We did not carry out a systematic time performance analysis
since response time strictly depends on the platform used for the communication with the
robot. Our experiments show that our approach is potentially applicable also in real-world
conditions, despite some the hindrances as previously discussed.

7 Conclusions and future works

In this paper, we have investigated several approaches as parts of a unified framework for
knowledge management, conceptualization and construction in artificial intelligent systems.
Such techniques shares the common goal of combining semantics-based and perception-
based information to be successfully transformed into knowledge.

They have been implemented and evaluated as modules of the system. The methodologies
explored are both based on supervised learning techniques and unsupervised learning tech-
niques, where the knowledge construction process is semantics-driven for the first class and
perception-driven for the second class. The paper was focused on the so called bottom-up
approach, while unaware of semantics during the learning phase it has shown the ability to
form meaningful semantic clusters from visual observations.

Given the same nature and the shared goal of the two kind of approaches, their results
have been used to define a new combined approach by weighting the individual models.
The approaches have been also validated via experimental setups using Aldebaran Pepper
social humanoid robot. The simulations and real-world experiments on the mobile robotic
platform (Aldebaran Pepper) show the ability of generalization as well as the emergence of
self-consciousness capabilities.

An interesting perspective would be that of translating the implementation for faster
compiler-based languages, such as C++, in order to speed up the whole performance in
real-word applications which have real-time execution constraints. Another point of techni-
cal improvement, more in long-termway, concerns the use ofmore powerful techniques, such
as instance-based segmentation deep neural network as an approach for knowledge construc-
tion. Since, both hardware and software are constantly evolving, the used approaches could
be easily replaced with better analogues in the future, like the one cited, to be embedded in
mobile CPUs of robots for better performances.

We are also investigating new techniques for improving the object recognition task by
introducing the recognition of more complex objects to be stored in our knowledge base
with the addition of spatiotemporal relationships for a more comprehensive representation of
knowledge.Given the continuous drop in prices of the robotmarket and the consequent spread
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of companion robots, it would likely be easier to pursue the idea of multi-agent distributed
knowledge system, where each agent provides its knowledge and share it to other agents.
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