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Abstract
We show that the compact quotient Γ�G of a seven-dimensional simply connected Lie 
group G by a co-compact discrete subgroup Γ ⊂ G does not admit any exact G

2
-structure 

which is induced by a left-invariant one on G.
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Mathematics Subject Classification  53C10 · 53C30

1  Introduction

A G2-structure on a 7-manifold M is a reduction of the structure group of its frame bundle 
from the linear group GL(7,ℝ) to the compact exceptional Lie group G2.

The existence of a G2-structure on M is characterized by the existence of a 3-form 
� ∈ Ω3(M) satisfying a certain nondegeneracy condition. This 3-form induces a Riemann-
ian metric g� and an orientation on the manifold, and thus a Hodge star operator ∗�.

When � is closed and co-closed, namely d� = 0 and d ∗� � = 0 , the intrinsic tor-
sion of the G2-structure vanishes identically, the Riemannian metric g� is Ricci-flat, and 
Hol(g𝜑) ⊆ G2 , see [3, 11]. In this case, the G2-structure is said to be torsion-free. A G2

-structure defined by a 3-form � satisfying the weaker condition d� = 0 is said to be 
closed. A closed G2-structure is called exact if [�] = 0 ∈ H3

dR
(M) , namely if � = d� for 

some � ∈ Ω2(M).
Currently, many examples of compact manifolds admitting closed G2-structures are 

available, see [6, 16, 17, 19, 20] for examples admitting holonomy G2 metrics, Fernández 
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et al. [9] for an example obtained resolving the singularities of an orbifold, and [1, 4, 5, 7, 
8, 12, 18] for examples on compact quotients of Lie groups. However, it is still not known 
whether exact G2-structures may occur on compact 7-manifolds. A negative answer to this 
problem was given in [10, 13] in some special cases. In [10], M. Fernández and the first 
and third named author of this paper proved that there are no compact examples of the 
form (Γ�G,�) , where G is a simply connected solvable Lie group with (2, 3)-trivial Lie 
algebra � , namely b2(�) = 0 = b3(�) , Γ ⊂ G is a cocompact discrete subgroup (lattice), and 
� is an invariant exact G2-structure on Γ�G , namely it is induced by a left-invariant exact 
G2-structure on G . In [13], Freibert and Salamon showed that the same conclusion holds, 
more generally, when the Lie algebra of G admits a codimension-one nilpotent ideal.

Motivated by these results, in this article we investigate the existence of invariant exact 
G 2-structures on compact quotients of Lie groups, without considering any extra assump-
tion on the properties of the group. In particular, we prove the following result.

Theorem 1.1  A potential compact 7-manifold M with an exact G2-structure � cannot be of 
the form M = Γ�G , where G is a seven-dimensional simply connected Lie group, Γ ⊂ G is 
a cocompact discrete subgroup, and the exact G2-structure � on M is invariant.

The proof of this theorem will be divided into two parts: in Sect.  2 we focus on the case 
when G is non-solvable, while we investigate the solvable case in Sect. 3. We shall deal 
only with Lie groups that are unimodular, as this is a necessary condition for the existence 
of lattices [21].

There is a one-to-one correspondence between left-invariant exact G2-structures on G 
and G2-structures on the Lie algebra � = Lie(G) that are exact with respect to the Cheval-
ley–Eilenberg differential. This allows us to investigate the existence of exact G2-structures 
at the Lie algebra level. We recall that a 3-form � on � defines a G2-structure if and only if 
the symmetric bilinear map

satisfies the condition det(b�)1∕9 ≠ 0 ∈ Λ7�∗ and the symmetric bilinear form

is positive definite, see e.g. [15]. In particular, for any choice of orientation on � , the map 
b� ∶ � × � → Λ7�∗ ≅ ℝ has to be positive or negative definite.

By [12], there are 4 non-solvable unimodular Lie algebras admitting closed G2-struc-
tures, up to isomorphism. Three of these Lie algebras are decomposable, and a direct com-
putation with the aid of the software Maple 21 shows that b� is never definite for every 
exact 3-form � = d� on each one of them (see Proposition 2.1). The remaining Lie algebra 
is indecomposable, and we show that the corresponding simply connected Lie group does 
not admit any lattice (see Proposition 2.1). These results prove Theorem 1.1 in the case 
when G is non-solvable.

We then focus on the solvable case. Here, there is a further constraint that has to be 
taken into account. Indeed, a solvable Lie group admits lattices only if it is strongly uni-
modular [14] (see Sect. 3 for the definition). The proof of Theorem 1.1 when G is solv-
able follows then from Theorem  3.2, where we show that a seven-dimensional strongly 
unimodular solvable Lie algebra � does not admit any exact G2-structure. To achieve this 
result, we first observe that every such Lie algebra is a semidirect product � ≅ �⋊D ℝ , for 

(1.1)b� ∶ � × � → Λ7�∗, b�(v,w) =
1

6
�v� ∧ �w� ∧ �,

g� ∶= det(b�)
−1∕9 b� ∶ � × � → ℝ
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some codimension-one unimodular ideal � of � , which must be solvable and non-nilpotent 
by [13], and some derivation D ∈ Der (�) . The strongly unimodular condition on � is then 
encoded into the derivation D, while the existence of an exact G 2-structure on � implies 
the existence of a certain type of SU(3)-structure on � . Using these constraints together 
with the classification of six-dimensional unimodular solvable non-nilpotent Lie algebras, 
we show that none of these Lie algebras can occur as an ideal of a strongly unimodular 
solvable Lie algebra admitting exact G2-structures. As in the proof of Proposition 2.1, the 
computations are done with the aid of the software Maple 21.

1.1 � Notation

Given an n-dimensional Lie algebra � , its structure equations with respect to a basis 
B
∗ = (e1,… , en) of �∗ are specified by the n-tuple (de1,… , den) , where d denotes the 

Chevalley–Eilenberg differential of � . The basis of � with dual basis B∗ is denoted by 
(e1,… , en).

The shortening eijk⋯ for the wedge product of covectors ei ∧ ej ∧ ek ∧⋯ is used through-
out the paper.

2 � The non‑solvable case

In this section, we deal with the case when the simply connected unimodular Lie group 
G is non-solvable. We claim that, in such a case, there are no compact 7-manifolds of the 
form Γ�G admitting invariant exact G2-structures.

By [12], we know that G admits left-invariant closed G2-structures if and only if its Lie 
algebra � is isomorphic to one of the following

The first three Lie algebras appearing in the previous list decompose as � ≅ ��(2,ℝ)⊕ � , 
where � is a four-dimensional unimodular centerless solvable Lie algebra, while the Lie 
algebra �4 is indecomposable.

The proof of our claim follows from the next two propositions.

Proposition 2.1  A seven-dimensional unimodular non-solvable Lie algebra � does not 
admit any exact G2-structure if it is decomposable.

�1 =
(
−e23,−2 e12, 2 e13, 0,−e45,

1

2
e46 − e47,

1

2
e47

)
;

�2 =
(
−e23,−2 e12, 2 e13, 0,−e45,−𝜇 e46, (1 + 𝜇) e47

)
, −1 < 𝜇 ≤ −

1

2
;

�3 =
(
−e23,−2 e12, 2 e13, 0,−𝜇 e45,

𝜇

2
e46 − e47, e46 +

𝜇

2
e47

)
, 𝜇 > 0;

�4 =
(
−e23,−2 e12, 2 e13,−e14 − e25 − e47, e15 − e34 − e57, 2 e67, 0

)
.
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Proof  By [12], � is isomorphic to one of �1, �2, �3 . For each one of these Lie algebras, 

we consider the generic 2-form 𝛼 =
∑

1≤i<j≤7 aije
ij , where aij ∈ ℝ , and we use the struc-

ture equations to compute the expression of the generic exact 3-form � = d� . In detail, we 
obtain

•	 Lie algebra �1

•	 Lie algebra �2

•	 Lie algebra �3

Now, a direct computation with the aid of the software Maple 21 shows that in each case 
the bilinear map b� defined in (1.1) satisfies b�(ei, ei) = 0 , for i = 5, 6, 7 . Consequently, 
� = d� does not define a G2-structure on �k , for k = 1, 2, 3 . 	�  ◻

Proposition 2.2  Let Q4 be the simply connected Lie group with Lie algebra �4 . Then, Q4 
does not admit any lattice.

Proof  The Lie algebra �4 is isomorphic to a semi-direct product of the form ��(2,ℝ)⋉ � , 
where the semisimple part is spanned by e1, e2, e3 , and the four-dimensional radical 
� = ℝ⋉D ℝ

3 is almost abelian, with ℝ = ⟨e7⟩ , ℝ3 = ⟨e4, e5, e6⟩ and

� = −2a24 e
124 − 2a25 e

125 − 2a26 e
126 − 2a27 e

127 + 2a34 e
134 + 2a35 e

135 + 2a36 e
136

+ 2a37 e
137 + a15 e

145 −
1

2
a16 e

146 +
(
a16 −

1

2
a17

)
e147 − a14 e

234 − a15 e
235

− a16 e
236 − a17 e

237 + a25 e
245 −

1

2
a26 e

246 +
(
a26 −

1

2
a27

)
e247 + a35 e

345

−
1

2
a36 e

346 +
(
a36 −

1

2
a37

)
e347 −

1

2
a56 e

456 + a67 e
467 −

(
a56 +

1

2
a57

)
e457;

� = −2a24 e
124 − 2a25 e

125 − 2a26 e
126 − 2a27 e

127 + 2a34 e
134 + 2a35 e

135 + 2a36 e
136

+ 2a37 e
137 + a15 e

145 + a16� e146 − a17(1 + �) e147 − a14 e
234 − a15 e

235

− a16 e
236 − a17 e

237 + a25 e
245 + a26� e246 − a27(1 + �) e247 + a35 e

345

+ a36� e346 − a37(1 + �) e347 − a56(1 + �) e456 + a57� e457 + a67 e
467;

� = −2a24 e
124 − 2a25 e

125 − 2a26 e
126 − 2a27 e

127 + 2a34 e
134 + 2a35 e

135 + 2a36 e
136

+ 2a37 e
137 + a15� e145 −

(
1

2
a16� + a17

)
e146 −

(
1

2
a17� − a16

)
e147 − a14 e

234

− a15 e
235 − a16 e

236 − a17 e
237 + a25� e245 −

(
1

2
a26� + a27

)
e246 −

(
1

2
a27� − a26

)
e247

+ a35� e345 −
(
1

2
a36� + a37

)
e346 −

(
1

2
a37� − a36

)
e347 −

(
1

2
a56� − a57

)
e456

−
(
1

2
a57� + a56

)
e457 + a67� e467.

D ∶= ad e7
�
ℝ3 =

⎛⎜⎜⎝

−1 0 0

0 − 1 0

0 0 2

⎞⎟⎟⎠
.
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In particular, the radical of Q4 is the almost abelian Lie group ℝ⋉� ℝ
3 , where the one-

parameter group � ∶ ℝ → Aut (ℝ3) is defined by the condition d�(t) = exp(tD).
Now, by [23, Prop. 1.3], if Q4 has a lattice, then also its radical does. By [2], in such a 

case there must be some t� ∈ ℝ ∖ {0} such that

is conjugate to a matrix in SL(3,ℤ) . This is not possible by [2, Lemma B.4]. 	�  ◻

3 � The solvable case

We now assume that G is solvable. As shown in [14], a simply connected solvable Lie 
group admitting lattices must be strongly unimodular according to the following.

Definition 3.1  Let G be a simply connected solvable Lie group with Lie algebra � and 
nilradical � . For each positive integer i ≥ 1 , let �i ∶= [�,�i−1] denote the ith term in the 
descending central series of � , where �0 = � . The Lie algebra � is strongly unimodular if 
for all X ∈ � the restriction of ad

X
 to each space �i∕�i+1 is traceless. In this case, the Lie 

group G is said to be strongly unimodular.

As the name suggests, strongly unimodular Lie groups are unimodular, but the converse 
does not hold in general, see for instance [10].

The proof of Theorem 1.1 in the case when G is solvable follows from the next result.

Theorem  3.2  A seven-dimensional strongly unimodular solvable Lie algebra � does not 
admit any exact G2-structure.

Before describing the strategy of the proof, we discuss some preliminary results. Let � 
be a unimodular solvable Lie algebra endowed with a G2-structure � . Then, it has a codi-
mension-one unimodular ideal � , and we can consider the g�-orthogonal decomposition 
� = �⊕ℝ , where ℝ denotes the orthogonal complement of � . As a Lie algebra, � is then a 
semidirect product of the form � = �⋊D ℝ , for some derivation D of � . The G2-structure � 
on � can be written as follows

where 𝜂 ∶= z♭ is the metric dual of a unit vector z ∈ ℝ , and the pair (�,�) defines an 
SU(3)-structure on � . In detail (see also [15]): 

a)	 � ∈ Λ2�∗ is a non-degenerate 2-form, i.e., �3 = � ∧ � ∧ � ≠ 0;

exp(t�D) =

⎛
⎜⎜⎝

e−t
�

0 0

0 e−t
�

0

0 0 e2t
�

⎞
⎟⎟⎠

� = � ∧ � + � ,
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b)	 � ∈ Λ3�∗ is a negative stable 3-form, namely a stable 3-form whose associated quartic 
polynomial satisfies 𝜆(𝜓) < 0 . Here, �(�): = 1

6
tr(K2

� ) , where K� ∈ End (�) is defined 
as follows. Let A:Λ5�∗ → �⊗ Λ6�∗ be the isomorphism induced by the wedge prod-
uct ∧ ∶ Λ5�∗ ⊗ �∗ → Λ6�∗ , then K𝜓 (v)⊗𝜔3 = A(𝜄v𝜓 ∧ 𝜓) , for all v ∈ � . In particular, 
K2
�
= �(�)Id� , so that (�,�) determines an almost complex structure 

c)	 � is primitive with respect to � , i.e., � ∧ � = 0 . This is equivalent to � being of type 
(1, 1) with respect to J, namely �(J⋅, J⋅) = �;

d)	 the symmetric bilinear form g ∶= �(⋅, J⋅) is positive definite.

Remark 3.3  More generally, given a stable  3-form � on � , one can define the endomor-
phism K� by choosing any volume form Ω on � in place of �3 , and the sign of �(�) does 
not depend on this choice. Moreover, if 𝜆(𝜓) < 0 , the almost complex structure J depends 
only on � and on the orientation of � . Changing the orientation, one obtains the almost 
complex structure −J . Finally, we recall that � is a negative stable 3-form if and only if the 
contraction �v� has rank four for every non-zero vector v ∈ �.

Using the definition of the Chevalley–Eilenberg differential d of � , we also see that 
d� = 0 . Indeed, for every x, y ∈ � we have

since [x, y] ∈ 𝔰 = ⟨z⟩⟂g�.
Assume now that � is an exact G2-structure on � = �⋊D ℝ , namely 𝜑 = d𝛼̃ for some 

𝛼̃ ∈ Λ2�∗ . By [13], we know that if � is strongly unimodular, then the solvable ideal � is 
not nilpotent.

We can write 𝛼̃ = 𝛼 + 𝛽 ∧ 𝜂 , where � ∈ Λ2�∗ and � ∈ �∗ . Then,

where d̂ denotes the Chevalley–Eilenberg differential of � , and the action of D ∈ Der(�) on 
Λ2�∗ is defined as follows

for all x1, x2 ∈ � . From this, we see that � has an SU(3)-structure defined by the pair

In particular, � is an exact stable 3-form on �.
The previous discussion highlights some necessary conditions imposed by the exist-

ence of an exact G2-structure on a seven-dimensional (strongly) unimodular solvable Lie 
algebra � = �⋊D ℝ . To show Theorem 3.2, we can then proceed as follows. The ideal 
� is a six-dimensional unimodular solvable non-nilpotent Lie algebra. The Lie algebras 

(3.1)J ∶ � → �, J =
1√

−�(�)
K� ;

d�(x, y) = −�([x, y]) = −g�(z, [x, y]) = 0,

𝜑 = d̂𝛼 + D∗𝛼 ∧ 𝜂 + d̂𝛽 ∧ 𝜂 =
(
d̂𝛽 + D∗𝛼

)
∧ 𝜂 + d̂𝛼,

D∗�(x1, x2) = −�(Dx1, x2) − �(x1,Dx2),

(3.2)𝜔 ∶= d̂𝛽 + D∗𝛼, 𝜓 ∶= d̂𝛼.
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satisfying these properties are classified up to isomorphism, so we can investigate each 
case separately. First, we determine which of these Lie algebras do not admit any nega-
tive stable exact 3-form, and we rule them out. For each one of the remaining Lie alge-
bras, we consider the generic derivation D ∈ Der (�) and we determine the conditions 
guaranteeing that the extension � = �⋊D ℝ is strongly unimodular. Then, we investigate 
whether a generic pair (�,�) of the form (3.2) can define an SU(3)-structure on � . If 
this is not the case, then we rule � out. As we will see, none of the six-dimensional uni-
modular solvable non-nilpotent Lie algebras passes both tests. From this, the proof of 
Theorem 3.2 follows.

Remark 3.4  If the derivation D ∈ Der (�) is not nilpotent, then the nilradical of � = �⋊D ℝ 
coincides with the nilradical � of � . Otherwise, it is given by �⋊D ℝ.

The structure equations of all six-dimensional unimodular solvable non-nilpotent Lie 
algebras can be found in the literature. Here, we consider the list given in [2, Appendix A], 
where the classification results of various preceding works have been meticulously col-
lected. The structure equations of the decomposable unimodular Lie algebras can be deter-
mined from the tables A.1, A.3, A.4, A.5, A.6, A.7 in [2], and they are listed in Table 1 of 
Appendix A, where the unimodular Lie algebra �−2

4,2
 not appearing in Table A.1 of [2] is 

also included (see [22]). The structure equations of the unimodular indecomposable Lie 
algebras are given in the tables A.9–A.19 of [2], and we refer the reader to it for the list.

In what follows, the non-abelian Lie algebras are denoted as in [2], namely we use the 
symbol �n,k to denote the kth Lie algebra of dimension n appearing in the list of non-iso-
morphic n-dimensional solvable Lie algebras. Moreover, superscripts like �p,q,… denote 
the values of the real parameters on which a Lie algebra depends. Finally, we denote the 
n-dimensional abelian Lie algebra n�1 by ℝn.

We will investigate the decomposable and the indecomposable case separately.

3.1 � The decomposable case

We begin considering the Lie algebras listed in Table 1 of Appendix A. The next result 
shows that most of them cannot occur as an ideal of a unimodular solvable Lie algebra 
admitting exact G2-structures.

Proposition 3.5  A six-dimensional unimodular decomposable solvable non-nilpotent Lie 
algebra � admits negative stable exact 3-forms if and only if it is isomorphic to one of the 
following: �−1

3,4
⊕ �−1

3,4
 , �−4∕3

5,30
⊕ℝ , �−1,−1

5,33
⊕ℝ , �−2,0

5,35
⊕ℝ.

Proof  Let � be one of the Lie algebras appearing in Table  1, and let (e1,… , e6) be the 
basis of �∗ used to describe the structure equations. We consider a generic 2-form 
� =

∑

1≤i<j≤6 aijeij ∈ Λ2�∗ , where aij ∈ ℝ , and we compute its Chevalley–Eilenberg dif-

ferential d̂� using the structure equations. Then, we determine the quartic polynomial 

𝜆(d̂𝛼) as explained before. Notice that we are free to choose the 6-form e123456 in place of a 
generic non-zero element in Λ6�∗ representing �3 , since the sign of 𝜆(d̂𝛼) does not depend 
on the choice of orientation for � . The Lie algebras for which 𝜆(d̂𝛼) ≥ 0 are the following 
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As for the Lie algebras of Table 1 that are not isomorphic to any of the previous ones nor to 
one of �−1

3,4
⊕ �−1

3,4
 , �−4∕3

5,30
⊕ℝ , �−1,−1

5,33
⊕ℝ , �−2,0

5,35
⊕ℝ , we have 𝜆(d̂𝛼) = 0 . On the remaining 

Lie algebras, there exist exact 3-forms d̂𝛼 such that 𝜆(d̂𝛼) < 0 . The expression of 𝜆(d̂𝛼) for 
these Lie algebras will be given in the proofs of the next propositions. 	�  ◻

We are left with the decomposable Lie algebras �−1
3,4

⊕ �−1
3,4

 , �−4∕3
5,30

⊕ℝ , �−1,−1
5,33

⊕ℝ , 
�
−2,0

5,35
⊕ℝ . We divide the discussion into three propositions, as we use different strate-

gies to rule them out.

Proposition 3.6  The Lie algebras �−4∕3
5,30

⊕ℝ and �−2,0
5,35

⊕ℝ cannot occur as an ideal of a 
strongly unimodular solvable Lie algebra admitting exact G2-structures.

Proof  Let � = �
−4∕3

5,30
⊕ℝ , and consider the basis (e1,… , e6) of �∗ for which the structure 

equations are those given in Table 1, namely

Let B = (e1,… , e6) be the basis of � with dual basis (e1,… , e6) . The generic derivation 
D ∈ Der (�) has the following matrix representation with respect to the basis B

where a1,… , a8 ∈ ℝ.
The nilradical of � is � = ⟨e1, e2, e3, e4, e6⟩ , and it has the following descending central 

series

From this, we see that the Lie algebra � = �⋊D ℝ is strongly unimodular only when 
a1 = a5 = a8 = 0.

�−1
3,4

⊕ �
3,1

∶ 𝜆(d̂𝛼) = 4a2
14
a2
24
;

�−1
3,4

⊕ �0
3,5

∶ 𝜆(d̂𝛼) = 4
(
a2
14
+ a2

15

)(
a2
24
+ a2

25

)
;

�0
3,5

⊕ �
3,1

∶ 𝜆(d̂𝛼) =
(
a2
14
+ a2

24

)2
;

�0
3,5

⊕ �0
3,5

∶ 𝜆(d̂𝛼) =
(
(a

14
+ a

25
)2 + (a

15
− a

24
)2
)(
(a

14
− a

25
)2 + (a

15
+ a

24
)2
)
;

�
p,−2p−2

5,19
⊕ℝ ∶ 𝜆(d̂𝛼) = 4 (1 + p)2 a2

14
a2
16
;

�−4
5,23

⊕ℝ ∶ 𝜆(d̂𝛼) = 16 a2
14
a2
16
;

�
4,4p

5,25
⊕ℝ ∶ 𝜆(d̂𝛼) = 16 p2 a2

14
a2
16
;

�
−3∕2

5,28
⊕ℝ ∶ 𝜆(d̂𝛼) = a2

14
a2
16
.

�
−4∕3

5,30
⊕ℝ =

(
−e24 −

2

3
e15,−e34 +

1

3
e25,

4

3
e35,−e45, 0, 0

)
.

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 0 a3 a4 0

0 a5 a2 a6 −
1

3
a3 0

0 0 2a5 − a1 0 −
4

3
a6 0

0 0 0 a1 − a5 − a2 0

0 0 0 0 0 0

0 0 0 0 a7 a8

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�0 = �, �1 = ⟨e1, e2⟩, �2 = ⟨e1⟩, �k = {0}, k ≥ 3.
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We now consider a generic 2-form 𝛼 =
∑

1≤i<j≤6 𝛼ije
ij and a generic 1-form 

� =
∑6

i=1
�ke

k on � , and we compute the forms

Then, for the values of the parameters �ij and bk for which �3 ≠ 0 and

we determine the almost complex structure J using the formula (3.1). Notice that the sign 
of J depends on �3 being a positive or negative multiple of the volume form e123456 . Now, a 
direct computation shows that �(ei, Jei) = 0 , for i = 1, 2, 3 . Therefore, the pair (�,�) can-
not define an SU(3)-structure on �.

Similar computations for the Lie algebra

show that the derivation D must have the following matrix representation

and that whenever

we have

whence the thesis follows. 	�  ◻

Proposition 3.7  The Lie algebra �−1
3,4

⊕ �−1
3,4

 cannot occur as an ideal of a strongly unimod-
ular solvable Lie algebra admitting exact G2-structures.

Proof  Let � = �−1
3,4

⊕ �−1
3,4

 , and let B∗ = (e1,… , e6) be the basis of �∗ for which the structure 
equations are

Let B = (e1,… , e6) be the basis of � with dual basis B∗ . Then, the nilradical of � is the abe-
lian ideal � = ⟨e1, e2, e4, e5⟩ , and the generic derivation D ∈ Der (�) for which �⋊D ℝ is 
strongly unimodular has the following matrix representation with respect to B

𝜔 = d̂𝛽 + D∗𝛼, 𝜓 = d̂𝛼.

𝜆(d̂𝛼) =
4

9

(
4𝛼2

13
𝛼2
16
+ 2𝛼16𝛼26𝛼12𝛼13 − 10𝛼12𝛼

2
16
𝛼23 − 4𝛼2

12
𝛼16𝛼36 + 𝛼2

12
𝛼2
26

)
< 0,

�
−2,0

5,35
⊕ℝ =

(
2e14,−e24 − e35, e25 − e34, 0, 0, 0

)

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 a2 0 0

0 a3 a4 a5 a6 0

0 − a4 a3 a6 − a5 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 a7 a8 − a1 − 2a3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

𝜆(d̂𝛼) = 4
(
𝛼2
26
+ 𝛼2

36

)(
𝛼2
12
+ 𝛼2

13

)
+ 16 𝛼23𝛼16

(
𝛼12𝛼36 − 𝛼13𝛼26

)
< 0,

𝜔(e1, Je1)𝜔(e6, Je6) =
1

𝜆(d̂𝛼)
16 𝛼2

16

(
𝛼2
26
+ 𝛼2

36

)(
𝛼2
12
+ 𝛼2

13

)(
a1 + 2a3

)2
≤ 0,

�−1
3,4

⊕ �−1
3,4

=
(
−e13, e23, 0,−e46, e56, 0

)
.
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where ai ∈ ℝ.
We consider a generic 2-form � =

∑

1≤i<j≤6 �ijeij , a generic 1-form � =
∑6

i=1
�ke

k on � , 

and the forms 𝜔 = d̂𝛽 + D∗𝛼 and � = d̂� . We have

and

Choosing the volume form e123456 , we compute

Assuming that 𝜆(𝜓) < 0 , we determine the almost complex structure J induced by � and 
the chosen orientation. We now show that there exists a nonzero vector x ∈ � such that 
�(x, Jx) = 0 . From this, the thesis follows.

Let us consider the family of nilpotent derivations S ∈ Der (�) having the following 
matrix representation with respect to B:

where si ∈ ℝ , and let F ∶= exp(S) ∈ Aut(�) . From the pair (�,�) , we obtain the pair 
(F∗�,F∗�) with associated almost complex structure JF∗� = F−1

◦J◦F.

We claim that there exists a choice of the real numbers si for which F∗�(e3, e6) = 0 and 
JF∗� (e3) ∈ ⟨e3, e6⟩ . This implies that �(x, Jx) = 0 for x = Fe3 , as

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 a2 0 0 0

0 a3 a4 0 0 0

0 0 0 0 0 0

0 0 0 a5 0 a6
0 0 0 0 − a5 − a3 − a1 a8
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

� = − �12(a1 + a3)e
12 + (−a1�13 − a4�12 − �1)e

13 − �14(a1 + a5)e
14 + �15(a5 + a3)e

15

+ (−a1�16 − a6�14 − a8�15)e
16 + (a2�12 − a3�23 + �2)e

23 − �24(a5 + a3)e
24

+ �25(a1 + a5)e
25 + (−a3�26 − a6�24 − a8�25)e

26 + (−a2�14 − a4�24 − a5�34)e
34

+ (a1�35 − a2�15 + a3�35 − a4�25 + a5�35)e
35 + (−a2�16 − a4�26 − a6�34 − a8�35)e

36

+ �45(a1 + a3)e
45 + (−a5�46 − a8�45 − �4)e

46 + (a1�56 + a3�56 + a5�56 + a6�45 + �5)e
56,

� = − �14e
134 − �15e

135 − �16e
136 + �14e

146 − �15e
156 + �24e

234 + �25e
235

+ �26e
236 + �24e

246 − �25e
256 + �34e

346 − �35e
356.

�(�) = 16 �14 �15 �24 �25.

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 s1 0 0 0

0 0 s2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 s3
0 0 0 0 0 s4
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�(Fe3, JFe3) = F∗�(e3, JF∗�e3) = 0.
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Comparing

and

we see that the latter is zero if the coefficients of e136 , e236 , e346 , e356 in the expression of 
F∗� vanish, namely if the following linear system in s1, s2, s3, s4 is compatible

Under the assumption 𝜆(𝜓) = 16 𝛼14 𝛼15 𝛼24 𝛼25 < 0 , the system has a unique solution 
(s̄1, s̄2, s̄3, s̄4) . Let F̄ ∈ Aut(�) be the automorphism corresponding to the choice si = s̄i , for 
i = 1, 2, 3, 4 . Then,

and F̄∗𝜔(e3, e6) = 0 . A computation then shows that JF̄∗𝜓e3 ∈ ⟨e3, e6⟩ , and the claim fol-
lows. 	�  ◻

Proposition 3.8  The Lie algebra �−1,−1
5,33

⊕ℝ cannot occur as an ideal of a strongly uni-
modular solvable Lie algebra admitting exact G2-structures.

Proof  Let � = �
−1,−1

5,33
⊕ℝ and let B∗ = (e1,… , e6) be the basis of �∗ for which the structure 

equations are

Let B = (e1,… , e6) be the basis of � with dual basis B∗ . Then, the nilradical of � is the abe-
lian ideal � = ⟨e1, e2, e3, e6⟩ , and the generic derivation D ∈ Der (�) for which � = �⋊D ℝ 
is strongly unimodular must have the following matrix representation with respect to B

where ai ∈ ℝ.

F∗� = �25e
235 − �25e

256 + �24e
234 + �24e

246 − �15e
135 − �15e

156 − �14e
134 + �14e

146

− (�14s3 + �15s4 + �16)e
136 + (�24s3 + �25s4 + �26)e

236

+ (�14s1 + �24s2 + �34)e
346 − (�15s1 + �25s2 + �35)e

356,

F∗�(e3, e6) = − a1s1(�14s3 + �16) + a1s4(�25s2 + �35) + a3s4(�15s1 + �35) − a3s2(�24s3 + �26)

− (a5s3 + a6)(�14s1 + �24s2 + �34) + (a5s4 − a8)(�15s1 + �25s2 + �35)

− a2(�14s3 + �15s4 + �16) − a4(�24s3 + �25s4 + �26),

⎧⎪⎨⎪⎩

�14s3 + �15s4 = −�16,

�24s3 + �25s4 = −�26,

�14s1 + �24s2 = −�34,

�15s1 + �25s2 = −�35.

F̄∗𝜓 = 𝛼25e
235 − 𝛼25e

256 + 𝛼24e
234 + 𝛼24e

246 − 𝛼15e
135 − 𝛼15e

156 − 𝛼14e
134 + 𝛼14e

146,

(−e14,−e25, e34 + e35, 0, 0, 0).

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 a2 0 0

0 a3 0 0 a4 0

0 0 a5 a6 a6 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 a7 a8 − a5 − a3 − a1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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We consider a generic 2-form 𝛼 =
∑

1≤i<j≤6 𝛼ije
ij and a generic 1-form � =

∑6

i=1
�ke

k on 

� , and we let 𝜔 = d̂𝛽 + D∗𝛼 and 𝜓 = d̂𝛼 . Then

and

We will prove that there are no values of the parameters ar, �ij, �k for which the pair (�,�) 
defines an SU(3)-structure.

Let us assume that �3 ≠ 0 and

Up to changing the sign of � , we can assume that the corresponding orientation is e123456 . 
We can then determine the almost complex structure J induced by the pair (�,�) and con-
sider the bilinear form g = �(⋅, J⋅) . Let gij ∶= g(ei, ej) be the components of the matrix 
associated with g with respect to the basis B . We must have 

i)	 �12 �13 �16 �23 �26 �36 ≠ 0,

as otherwise gii = 0 , for at least one i ∈ {1, 2, 3, 6}.
We now focus on the compatibility condition � ∧ � = 0 , which is equivalent to a sys-

tem of five polynomial equations in the variables ar, �ij, �k . We compute

and we use the equalities

to conclude that every solution of the system must give 

ii)	 g(ei, ej) = 0 , for i, j ∈ {1, 2, 3, 6} with i ≠ j.

� = − �12
(
a1 + a3

)
e12 − �13

(
a1 + a5

)
e13 +

(
−�14a1 − �13a6 − �16a7 − �1

)
e14

+
(
−�15a1 − �12a4 − �13a6 − �16a8

)
e15 + �16

(
a3 + a5

)
e16 − �23

(
a3 + a5

)
e23

+
(
�12a2 − �24a3 − �23a6 − �26a7

)
e24 +

(
−�25a3 − �23a6 − �26a8 − �2

)
e25

+ �26
(
a1 + a5

)
e26 +

(
�13a2 − �34a5 − �36a7 + �3

)
e34 + �36

(
a1 + a3

)
e36

+
(
�23a4 − �35a5 − �36a8 + �3

)
e35 +

(
�46a1 − �16a2 + �46a3 + �46a5 − �36a6

)
e46

+
(
−�15a2 + �24a4 + �34a6 − �35a6 + �56a7 − �46a8

)
e45

+
(
�56a1 + �56a3 − �26a4 + �56a5 − �36a6

)
e56,

� = �12(e
125 + e124) − �13e

135 − �15e
145 − �16e

146 − �23e
234 + �24e

245 − �26e
256

+ (�35 − �34)e
345 + �36(e

346 + e356).

𝜆(𝜓) = 4
(
𝛼26𝛼36𝛼12𝛼13 − 𝛼23𝛼36𝛼12𝛼16 + 𝛼13𝛼16𝛼23𝛼26

)
< 0.

(� ∧ �)(e1, e2, e3, e4, e6) = 2(�16�23(a3 + a5) − �12�36(a1 + a3)) =∶ z1,

(� ∧ �)(e1, e2, e3, e5, e6) = −2(�13�26(a1 + a5) + �12�36(a1 + a3)) =∶ z2,

g12

�12
= −

g21

�12
=

g63

�36
= −

g36

�36
=
�
z1 − z2

�√
−�(�),

g13

�13
= −

g31

�13
=

g62

�26
= −

g26

�26
= −z1

√
−�(�),

g16

�16
= −

g61

�16
=

g32

�23
= −

g23

�23
= −z2.

√
−�(�),
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The three equations

determine a linear system in the variables �1, �2, �3 , which has a unique solution under the 
constraint (i). The remaining equations

do not contain the variables �k’s, and we can solve the system (3.3) in the following cases: 

(A)	 �12�13�26�36 + �12�16�23�36 + �13�16�23�26 ≠ 0 , namely (3.3) is a compatible linear 
system in the variables a1, a2, a5;

(B)	 �12�13�26�36 − �12�16�23�36 − �13�16�23�26 ≠ 0 , namely (3.3) is a compatible linear 
system in the variables a1, a2, a3.

Indeed, if the two polynomials above are both zero, then �12 �13 �26 �36 = 0 , which con-
tradicts the condition (i). In both cases (A) and (B), we can use the constraint to solve the 
system (3.3). Then, we have � ∧ � = 0 , and the bilinear form g = �(⋅, J⋅) is symmetric. 
We now show that g is never positive definite.

To simplify the computations, we can proceed as follows. Let us consider the derivation 
S ∈ Der (�) whose matrix with respect to the basis B is

where

Then, the automorphism F = exp(S) ∈ Aut (�) is such that

Notice that �(F∗�) = �(�) . Moreover, this choice of F guarantees that the condition (ii) 

is satisfied also by the bilinear form F∗g = F∗�(⋅, JF∗� ⋅) , where JF∗� = F−1
◦J◦F . In addi-

tion, the subspaces V1 = ⟨e1, e2, e3, e6⟩ and V2 = ⟨e4, e5⟩ are JF∗�-invariant.

(� ∧ �)(e2, e3, e4, e5, e6) = 0, (� ∧ �)(e1, e3, e4, e5, e6) = 0, (� ∧ �)(e1, e2, e4, e5, e6) = 0,

(3.3)

⎧
⎪⎨⎪⎩

(� ∧ �)(e1, e2, e3, e4, e5) = 0,

(� ∧ �)(e1, e2, e3, e4, e6) = 0,

(� ∧ �)(e1, e2, e3, e5, e6) = 0,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 s1 0 0

0 0 0 0 s2 0

0 0 0 s3 s3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

s
1
=

�
12
�
34
− �

12
�
35
+ �

13
�
24
− �

15
�
23

2�
12
�
13

,

s
2
= −

�
12
�
34
− �

12
�
35
− �

13
�
24
+ �

15
�
23

2�
12
�
13

,

s
3
=

�
12
�
34
− �

12
�
35
− �

13
�
24
− �

15
�
23

2�
12
�
13

.

F∗� = �12(e
124 + e125) − �13e

135 − �16e
146 − �23e

234 − �26e
256 + �36

(
e346 + e356

)
.
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Let Q be the matrix associated to F∗g with respect to the basis B . We will show that 
there are no values of the parameters ar, �ij, �k for which Q is symmetric and positive defi-
nite. If that was the case, then it would be possible to construct a F∗g-orthonormal basis 
(v1,… , v6) starting from B in such a way that

where hkk > 0 , for 1 ≤ k ≤ 6 . Consequently, there would exist an invertible 6 × 6 matrix 
P = (pij) , given by the inverse of H = (hij) , such that

and whose entries satisfy the following conditions

Moreover, the following quantities should all be positive

Let E ⊂ ℝ
6 be the (non-empty) open subset where all of the previous conditions hold. 

Notice that condition (i) is satisfied by every 6-tuple (�12, �13, �16, �23, �26, �36) ∈ E .
Since (JF∗� )

tQ = −QJF∗� , we determine all 6 × 6 invertible matrices P = (pij) whose 
entries satisfy the conditions (3.4) and for which

is the zero matrix. On E  , this boils down to solving a system of 17 equations in the 
unknowns pij under the constraints (3.4). The sub-system {Zij = 0 | i, j = 1, 2, 3, 6, i < j} 
has the following solution

for any choice of p66 > 0 . The positivity of the quantities in (3.5) together with conditions 
(3.4) ensure that the sub-system {Zi4 = 0 | i = 1, 2, 3, 6} can be solved with respect to the 
unknowns pi4 , for i = 1, 2, 3, 6 , and one has that the solution also solves the sub-system 
{Zi5 = 0 | i = 1, 2, 3, 6} . We are then left with the equations Z44 = 0, Z45 = 0, Z55 = 0 . 
The equation Z44 = 0 has the following solution

and by the positivity of the quantities in (3.5) we must have p45 > 0 . Finally, the equations 
Z45 = 0 = Z55 hold if and only if

and we thus obtain

vi = hii ei, i = 1, 2, 3, 6, v4 =

4∑
i=1

hi4ei + h64e6, v5 =

6∑
i=1

hi5ei,

Q = PtP,

(3.4)pkk > 0, p54 = 0, pki = 0, for 1 ≤ k ≤ 6 and i ≠ k in {1, 2, 3, 6}.

(3.5)
F∗g(e1, e1)

F∗g(e6, e6)
= −

�12�13

�26�36
,

F∗g(e2, e2)

F∗g(e6, e6)
=

�12�23

�16�36
,

F∗g(e3, e3)

F∗g(e6, e6)
= −

�13�23

�16�26
.

Z ∶= (JF∗� )
t(PtP) + (PtP)JF∗�

p11 = p66

√
−
�12�13

�26�36
, p22 = p66

√
�12�23

�16�36
, p33 = p66

√
−
�13�23

�16�26
,

p44 =

(
1 +

�16�23

�12�36

)
p45,

(
�12�36

)2
p2
55
+

�(F∗�)

4
p2
45

= 0,
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Summing up, when (�12, �13, �16, �23, �26, �36) ∈ E  , then all 6 × 6 matrices P satisfy-
ing the conditions (3.4) and (JF∗� )

t(PtP) + (PtP)JF∗� = 0 constitute a family P of 
matrices depending on two positive real parameters p66 and p45 , and on real parameters 
p15, p25, p35, p65.

Now, if Q was symmetric and positive definite, then there would exist a matrix P ∈ P 
such that Q = PtP . In particular, the following identity should hold

Assume that (�12, �13, �16, �23, �26, �36) ∈ E  is given. In the cases (A) and (B), which 
ensure that Q is symmetric, we consider the system of equations corresponding to the 
matrix identity (3.6), where P is any matrix in P . This consists in 15 equations in the 
unknowns �15 , �24 , �34 , �35 , �46 , �56 , a4 , a6 , a7 , a8 , and a3 , in case A), or a5 , in case (B). 
With the aid of a computer algebra system, it is possible to show that there are no values of 
the unknowns for which the system can be solved. This gives a contradiction.

For the reader’s convenience, we now describe the relevant steps leading to the con-
clusion. Let M ∶= QJF∗� − PtPJF∗� . In case (A), the entries Mij , for i, j ∈ {1, 2, 3, 6} with 
i < j , are all proportional to the same polynomial and one has Mij = 0 if and only if

We now consider the equations Mi4 = 0 and Mi5 = 0 , i ∈ {1, 2, 3, 6} , which can be seen as 
a linear system of eight equations in the unknowns a4 , a6 , a7 and a8 . This system admits a 
unique solution on E  . We are left with the equation M45 = 0 . On E  , M45 can be seen as a 
second degree polynomial in the unknowns �15 , �24 , �34 , �35 , �46 , �56 . We claim that M45 is 
always non-zero. Thinking of M45 as a polynomial in �15 , we first compute its discriminant 
Δ1 , which is a second degree polynomial in the remaining unknowns. To show the claim, 
we think of Δ1 as a second degree polynomial in �24 and we prove that it is always nega-
tive. First, we observe that the leading coefficient of Δ1 is negative on E  . Indeed, its sign is 
determined by

and the quantity inside the brackets has the same sign of �16�23 on E  . The discriminant Δ2 
of Δ1 can be seen as a quadratic form in p15 , p25 , p35 , p45 , p65 , which is negative definite on 
E  since p45 > 0 . Therefore, Δ1 < 0 . An analogous discussion shows the thesis also in case 
B).

	�  ◻

3.2 � The indecomposable case

We now consider six-dimensional indecomposable unimodular solvable non-nilpotent 
Lie algebras. Their structure equations with respect to a suitable basis (X1,… ,X6) can be 

p55 =

√
−�(F∗�)

2��12�36� p45,

(3.6)QJF∗� = PtPJF∗� .

a3 =
p2
66

�16�26�36

�12�13�26�36 + �12�16�23�36 + �13�16�23�26

�(F∗�)
.

−�16�23
(
�12�36 − �13�26 + �16�23

)
,
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found in the tables A.9–A.19 of [2], where the Lie algebras are gathered together accord-
ing to their nilradical. Notice that there are a few misprints in [2] that must be corrected as 
follows:

•	 Lie algebra �−4
6,55

 of Table A.12: [X3,X6] = 5X3 , [X5,X6] = −4X5;
•	 Lie algebra �0,l

6,83
 of Table A.15: [X2,X6] = lX2 + X3;

•	 Lie algebra �0,−4
6,135

 of Table A.19: [X3,X5] = X2.

In the following, we will keep on denoting the basis of a Lie algebra by (e1,… , e6) and the 
corresponding dual basis by (e1,… , e6).

The next general result rules out the Lie algebras listed in tables A.9, A.10, A.15 of [2].

Proposition 3.9  Let � be a six-dimensional unimodular solvable non-nilpotent Lie algebra, 
and denote by � its nilradical. Then, every exact 3-form d̂𝛼 ∈ Λ3�∗ is not stable, whenever 
� is isomorphic to one of the Lie algebras ℝ5 , �3,1 ⊕ℝ

2 , �5,4 , where �3,1 and �5,4 denote the 
three-dimensional and the five-dimensional Heisenberg Lie algebra, respectively.

Proof  We have � ≅ �⋊S ℝ , where S ∈ Der (�) is a derivation of the five-dimensional nil-
potent ideal � . We choose a basis (e1,… , e6) of � so that � = ⟨e1,… , e5⟩ and ℝ = ⟨e6⟩ . 
Then, we can write every 2-form � ∈ Λ2�∗ with respect to the dual basis (e1,… , e6) as 
follows

where �� ∈ Λ2�∗ and �� ∈ �∗ . We will prove that d̂𝛼 is never stable by showing the exist-
ence of a non-zero vector x ∈ � for which the 2-form 𝜄xd̂𝛼 has rank at most two.

When � is almost abelian, namely � ≅ ℝ
5 , the Chevalley–Eilenberg differential of � is 

given by

Thus, for every non-zero vector x ∈ � we have 𝜄xd̂𝛼 = (𝜄xS
∗𝛼�) ∧ e6 . Consequently, 

𝜄xd̂𝛼 ∧ 𝜄xd̂𝛼 = 0 and the claim follows.
Let d� denote the Chevalley–Eilenberg differential of � . When � ≅ �3,1 ⊕ℝ

2 or � ≅ �5,4 , 

we can choose the basis (e1,… , e5) of �∗ in such a way that d�ek = 0 , for k = 2, 3, 4, 5 , and 

d�e
1 = e23 when � ≅ �3,1 ⊕ℝ

2 while d�e1 = e24 + e35 when � ≅ �5,4 . In both cases, we 
then obtain

and from this we see that 𝜄e1 d̂𝛼 has rank at most two. 	�  ◻

For every Lie algebra � not isomorphic to one of those considered in the previ-
ous proposition, we first have to compute the expression of the generic derivation 
D ∈ Der (�) , consider the extension � = �⋊D ℝ , and determine for which derivations 
D it is strongly unimodular. Then, we have to show that there are no pairs (�,�) of the 
form (3.2) defining an SU(3)-structure on � . We shall deal with this problem in the next 
propositions.

� = �� + �� ∧ e6,

d̂𝛼 = S∗𝛼� ∧ e6.

𝜄e1 d̂𝛼 =
(
𝜄e1S

∗𝛼�
)
∧ e6,
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Proposition 3.10  The indecomposable unimodular solvable non-nilpotent Lie algebras 
listed in [2, Table A.11 ] ( nilradical �4,1 ⊕ℝ) cannot occur as an ideal of a strongly uni-
modular solvable Lie algebra admitting exact G2-structures.

Proof  Let � denote one of the Lie algebras listed in Table A.11 of [2], and let (e1,… , e6) be 
the basis of � for which the structure equations are those given in that table. The nilradical 
of � is � = ⟨e1, e2, e3, e4, e5⟩ ≅ �4,1 ⊕ℝ , and its descending central series is

Let D be a generic derivation of � , and consider the extension � = �⋊D ℝ . Then, a com-
putation shows that � is strongly unimodular only when e2 ∈ kerD and the image of the 
restriction of D to the subspace ⟨e1, e3⟩ ⊂ � is ⟨e2⟩ . Now, we determine the expression of 
the almost complex structure J induced by a generic negative stable exact 3-form d̂𝛼 and 
the volume form e123456 , and we observe that Je2 ∈ ⟨e1, e2, e3⟩ . Since [e1, e2] = 0 = [e2, e3] , 
we see that

Since the previous discussion holds for every � ∈ Λ2�∗ and � ∈ �∗ such that �3 ≠ 0 and d̂𝛼 
is stable, the thesis follows. 	� ◻

Proposition 3.11  The six-dimensional indecomposable unimodular solvable non-nil-
potent Lie algebras listed in Table A.12 ( nilradical �5,1) , A.13 ( nilradical �5,2) , A.14 

( nilradical �5,3) , A.16 ( nilradical �5,5) , A.18 and A.19 ( nilradical �3,1 ⊕ℝ) of [2] can-
not occur as an ideal of a strongly unimodular solvable Lie algebra admitting exact G2

-structures.

Proof  Among the Lie algebras mentioned in the statement, �2+2l,l
6,54

 , �4p,p
6,70

 and �4l,l
6,65

 (all with 
nilradical �5,1 ) are the only ones depending on a real parameter. When � is one of these Lie 
algebras, then � = �⋊D ℝ is strongly unimodular only for a certain value of the parameter. 
As we will see, this fact will be relevant to rule out two of them, namely �2+2l,l

6,54
 and �4p,p

6,70
 . 

Thus, we begin assuming that � is any of the Lie algebras considered in the statement, with 
the exception of �2+2l,l

6,54
 and �4p,p

6,70
.

For each Lie algebra � , we consider the basis (e1,… , e6) for which the structure equa-
tions are those given in [2], and the generic derivation D ∈ Der (�) such that � = �⋊D ℝ is 
strongly unimodular. We fix the volume form e123456 , and we compute the almost complex 
structure J induced by the generic negative stable 3-form 𝜓 = d̂𝛼 . Then, arguing as in the 
proof of Proposition 3.10, we consider the generic non degenerate 2-form 𝜔 = d̂𝛽 + D∗𝛼 , 
and we observe that the properties of D and J allow us to single out (at least) one basis 
vector ei in the nilradical of � such that �(ei, Jei) = 0 . For the sake of clarity, we give the 
details in the case when � is isomorphic to the Lie algebra �−4

6,55
 . The discussion in the 

remaining cases is similar, but it depends both on the specific expressions of D and J one 
obtains and on the structure equations of the nilradical of �.

The nilradical of �−4
6,55

 is �5,1 , and we can choose a basis (e1,… , e5) of it in such a way 
that the only non-zero brackets are [e3, e5] = e1 and [e4, e5] = e2 . Now, a generic deriva-
tion D of � = �−4

6,55
 for which � = �⋊D ℝ is strongly unimodular satisfies De3 ∈ ⟨e1⟩ and 

⟨e1, e2⟩ ⊂ kerD . Moreover, the almost complex structure J induced by a generic negative 

�0 = �, �1 = ⟨e1, e2⟩, �2 = ⟨e2⟩, �i = {0}, i ≥ 3.

𝜔(e2, Je2) = (d̂𝛽 + D∗𝛼)(e2, Je2) = −𝛽([e2, Je2]) − 𝛼(De2, Je2) − 𝛼(e2,DJe2) = 0.
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stable exact 3-form d̂𝛼 and the volume form e123456 satisfies Je1 ∈ ⟨e1, e2, e3⟩ . Therefore, 
we have

and the claim follows.
We are then left with the Lie algebras �4p,p

6,70
 and �2+2l,l

6,54
 , where a different type of approach 

is needed in order to rule them out.
If � = �

4p,p

6,70
 , we consider the basis (e1,… , e6) of �∗ for which the structure equations are 

the following

The nilradical of � is � = ⟨e1, e2, e3, e4, e5⟩ ≅ �5,1 , and the only non-trivial terms in its 
descending central series are

Moreover, the generic derivation of � has the following matrix representation

In order to obtain a strongly unimodular extension � = �⋊D ℝ , we must have a1 = 0 = a8 
and 0 = tr ( ad e6

|�1 ) = 2p (notice that the nilradical of � coincides with � when 
a1 = 0 = a8 ). We can then conclude observing that the quartic polynomial associated with 
the generic exact 3-form d̂𝛼 on � is

and thus 𝜆(d̂𝛼) ≥ 0 when p = 0.
Finally, we consider � = �

2+2l,l

6,54
 , whose structure equations with respect to a basis 

(e1,… , e6) of �∗ are the following

As in the previous case, the nilradical of � is � = ⟨e1, e2, e3, e4, e5⟩ ≅ �5,1 . Let D ∈ Der (�) 
be a generic derivation and consider the extension � = �⋊D ℝ . Requiring � to be strongly 
unimodular gives

�(e1, Je1) = −�([e1, Je1]) − �(De1, Je1) − �(e1,DJe1) = 0,

(
e26 − p e16 − e35,−e16 − p e26 − e45, 3p e36 + e46, 3p e46 − e36,−4p e56, 0

)
, p ∈ ℝ.

�0 = �, �1 = ⟨e1, e2⟩.

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 0 a4 a5
−a2 a1 0 a3 a6 a7
0 0 a8 a2 0 − 3pa4 − a6
0 0 − a2 a8 0 − 3pa6 + a4
0 0 0 0 − a8 + a1 − 4pa3
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

𝜆(d̂𝛼) = 4 𝛼2
12

((
𝛼13 − 𝛼24

)2
+
(
𝛼14 + 𝛼23

)2)

− 16 𝛼2
12
p2
(
3𝛼12𝛼34 + 𝛼13𝛼24 − 𝛼2

14
+ 𝛼14𝛼23 − 𝛼2

23

)
,

(
−e16 − e35,−l e26 − e45, (1 + 2l)e36, (2 + l)e46,−(2 + 2l)e56, 0

)
, l ∈ ℝ.
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and 0 = tr ( ad e6
|�1 ) = l + 1 . We now compute the generic 2-form 𝜔 = d̂𝛽 − D∗𝛼 and the 

generic 3-form 𝜓 = d̂𝛼 , and we consider all possible values of the parameters ar , �ij , �k for 
which �3 ≠ 0 and

We then determine the almost complex structure J induced by (�,�) , and we conclude 
observing that �(ei, Jei) = 0 , for i = 1, 2, 3, 4 . Notice that, when l + 1 ≠ 0 , the Lie algebra � 
is not strongly unimodular and �(ei, Jei) is proportional to l + 1 , for i = 1, 2, 3, 4 . 	�  ◻

We still have to examine the indecomposable Lie algebras listed in [2, Table A.17], 
namely those with abelian nilradical ℝ4 . In the next result, we rule out all of them but 
�
a,b,−1−a,−1−b

6,101
 . This last Lie algebra will be considered in Proposition 3.13.

Proposition 3.12  Let � be a Lie algebra that is isomorphic to one of those listed in Table 
A.17 of [2] but �a,b,−1−a,−1−b

6,101
 . Then, � cannot occur as an ideal of a strongly unimodular 

solvable Lie algebra admitting exact G2-structures.

Proof  Assume first that � is not isomorphic to one of �a,−1,−a∕2
6,114

 , �−1,b,c,−c
6,115

 , �0,b,−1
6,118

 . Let 
(e1,… , e6) be a basis of � for which the structure equations are those given in Table A.17 of 
[2], and consider the generic derivation D ∈ Der (�) such that � = �⋊D ℝ is strongly uni-
modular. Then, arguing as in the proof of Proposition 3.10, we obtain that for every non-
degenerate 2-form 𝜔 = d̂𝛽 + D∗𝛼 and every negative stable 3-form 𝜓 = d̂𝛼 there exists (at 
least) one basis vector ei in the nilradical ℝ4 of � such that �(ei, Jei) = 0 . As before, this 
depends on the expressions of D and J in each case under exam.

For the remaining Lie algebras of Table A.17 , we obtain different types of contradic-
tions. If � is one of �−1,b,c,−c

6,115
 , �0,b,−1

6,118
 , we can proceed as above and conclude observing that

Finally, if � = �
a,−1,−a∕2

6,114
 , we consider the basis (e1,… , e6) of �∗ for which the structure 

equations are

Then, we choose the volume form e123456 , and we compute the quartic polynomial 𝜆(d̂𝛼) , 
for a generic 𝛼 =

∑
1≤i<j≤6 𝛼ije

ij ∈ Λ2�∗ , obtaining

	�  ◻

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 a2 0 a3 a4
0 − a1 0 a2 a6 a7
0 0 a1 0 0 a3(−1 − 2l)

0 0 0 − a1 0 a6(−2 − l)

0 0 0 0 0 a2(−2 − 2l)

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

𝜆(𝜓) = 16𝛼2
12
𝛼24𝛼13 < 0.

�(e3, Je3)�(e4, Je4) ≤ 0.

�
a,−1,−a∕2

6,114
=
(
a e15 − e16, e26,−

a

2
e35 − e45, e35 +

a

2
e45, 0, 0

)
, a ≠ 0.

𝜆(d̂𝛼) =
(
a
(
𝛼13𝛼24 + 𝛼14𝛼23

)
− 2𝛼13𝛼23 − 2𝛼14𝛼24

)2
+ 4

(
−𝛼13𝛼24 + 𝛼14𝛼23

)2
≥ 0.
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Proposition 3.13  The indecomposable Lie algebra �a,b,−1−a,−1−b
6,101

 cannot occur as an ideal 
of a strongly unimodular solvable Lie algebra admitting exact G2-structures.

Proof  Let � = �
a,b,−1−a,−1−b

6,101
 , and consider the basis B∗ = (e1.… , e6) of �∗ for which the 

structure equations are

with ab ≠ 0 and (−a − 1)2 + (−b − 1)2 ≠ 0 . Let B = (e1,… , e6) be the basis of � with dual 
basis B∗ . We will study the cases a = −1 and a ≠ −1 separately.

Assume that a = −1 . Then, the nilradical of � is the abelian ideal � = ⟨e1, e2, e3, e4⟩ , and 
the generic derivation D ∈ Der (�) for which � = �⋊D ℝ is strongly unimodular has the 
following matrix representation with respect to B

where ai ∈ ℝ.
Let 𝛼 =

∑
1≤i<j≤6 𝛼ije

ij and � =
∑6

i=1
�ke

k be a generic 2-form and a generic 1-form on � , 

respectively. Then, the forms (�,�) given by (3.2) have the following expressions

and

Assume that 𝜆(𝜓) < 0 , and let J be the almost complex structure induced by � and the 
orientation e123456 . We will show that there exists a nonzero vector x ∈ � such that 
�(x, Jx) = 0 . To prove this, we consider the nilpotent derivation S ∈ Der (�) with associ-
ated matrix

(ae15 + be16,−(a + 1)e25 − (b + 1)e26, e36, e45, 0, 0),

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 a2 − a2 b

0 a3 0 0 0 a4
0 0 a5 0 0 a6
0 0 0 − a5 − a3 − a1 a8 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

� = − �12(a1 + a3)e
12 − �13(a1 + a5)e

13 + �14(a3 + a5)e
14 + (−a1�15 − a8�14 − �1)e

15

+ (b �1 − a1�16 − a4�12 − a6�13)e
16 − �23(a3 + a5)e

23 + �24(a1 + a5)e
24

+ (a2�12 − a3�25 − a8�24)e
25 + (−b a2�12 − b �2 − a3�26 − a6�23 − �2)e

26

+ �34(a1 + a3)e
34 + (a2�13 − a5�35 − a8�34)e

35

+ (−b a2�13 + a4�23 − a5�36 + �3)e
36 + (a1�45 + a2�14 + a3�45 + a5�45 + �4)e

45

+ (−ba2�15 − a2�16 + a4�25 + a6�35 − a8�46)e
56

+ (−b a2�14 + a1�46 + a3�46 + a4�24 + a5�46 + a6�34)e
46

� =�12(e
125 + e126) + �13(e

135 − (1 + b)e136) − �14be
146 + �24(−e

245 + (1 + b)e246)

+ �23be
236 − �34(e

345 + e346) + (−b�15 − �16)e
156 + �25(1 + b)e256 − �35e

356 + �46e
456.

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 s1 − b s1
0 0 0 0 0 s2
0 0 0 0 0 s3
0 0 0 0 s4 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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and the automorphism F = exp(S) . With similar computations as in the proof of Propo-
sition 3.7, we see that there exist certain si , 1 ≤ i ≤ 4 , such that F∗�(e5, e6) = 0 and 
JF∗� (e5) ∈ ⟨e5, e6⟩ , where JF∗� = F−1

◦J◦F . This follows comparing

with

and observing that F∗�(e5, e6) = 0 if the coefficients of e156 , e256 , e356 and e456 in the 
expression of F∗� vanish. This last condition gives the linear system

which has a unique solution (s̄1, s̄2, s̄3, s̄4) under the constraint 𝜆(𝜓) < 0 . The choice 
(s̄1, s̄2, s̄3, s̄4) gives

and F∗�(e5, e6) = 0 . From the expression of F∗� , we observe that JF∗�e5 ∈ ⟨e5, e6⟩ . In 
detail,

We then have that �(x, Jx) = 0 for x = Fe5.
Let us now focus on the case a ≠ −1 . The nilradical of � is still the abelian ideal 

� = ⟨e1, e2, e3, e4⟩ , and the generic derivation D ∈ Der (�) for which � = �⋊D ℝ is 
strongly unimodular must have the following matrix representation with respect to B

F∗� =�12(e
125 + e126) + �13(e

135 − (1 + b)e136) − b �14e
146 + b �23e

236

+�24(−e
245 + (1 + b)e246) − �34(e

345 + e346)

−(b �14s4 + b�15 + �12s2 + �13s3 + �16)e
156

+(1 + b)(−�12s1 + �24s4 + �25)e
256

+(�13s1 − �34s4 − �35)e
356 + (b �14s1 − �24s2 − �34s3 + �46)e

456,

F∗�(e5, e6) = −a1s1(b�15 + �12s2 + �13s3 + �16) + a1s4(�46 − �34s3 − �24s2)

+a3s2(−�12s1 + �25) + a3s4(b�14s1 − �34s3 + �46)

+a5s3(−�13s1 + �35) + a5s4(b�14s1 − �24s2 + �46)

−a2(b�14s4 + b�15 + �12s2 + �13s3 + b5) + a4(−�12s1 + �24s4 + �25)

+a6(−�13s1 + �34s4 + �35) + a8(−b�14s1 + �24s2 + �34s3 − �46),

⎧⎪⎨⎪⎩

b �14s4 + b�15 + �12s2 + �13s3 = −�16,

−�12s1 + �24s4 = −�25,

�13s1 − �34s4 = �35,

b�14s1 − �24s2 − �34s3 = −�46,

F∗� = �12(e
125 + e126) + �13(e

135 − (1 + b)e136) − �14be
146 + �23be

236

+ �24(−e
245 + (1 + b)e246) − �34(e

345 + e346),

1

2

√
−�(F∗�) JF∗�e5 = −((b + 1)�13�24 + �12�34) e5 + (�12�34 − �13�24) e6.
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where ai ∈ ℝ.
Let

We will study the cases t2 ≠ 0 and t2 = 0 separately.
If t2 ≠ 0 , we claim that there exists a nonzero vector x ∈ � such that �(x, Jx)=0. The 

discussion is similar to the previous case. Here, we consider the nilpotent derivation S with 
matrix representation

and the automorphism F = exp(S) . Requiring the coefficients of e156 , e256 , e356 , e456 in the 
expression of F∗� to be zero gives the following linear system in the variables si, 1 ≤ i ≤ 4,

This system has a unique solution (s̄1, s̄2, s̄3, s̄4) under the constraint t2 ≠ 0 . In such a case, 
we have F∗�(e5, e6) = 0 and JF∗�e5 ∈ ⟨e5, e6⟩ , whence the claim follows.

If t2 = 0 , we claim that g = �(⋅, J⋅) cannot be definite. To prove this, suppose by contra-
diction that g is positive (or negative) definite, and consider g� ∶=

√
−�(�) g . Then,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 a2
a2 b

a

0 a3 0 0 a4
a4(1+b)

a+1

0 0 a5 0 0 a6
0 0 0 − a5 − a3 − a1 a8 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

t2 ∶= −
1

a(1+a)
(a2b2�2

13
�2
24
− 2a2b2�13�14�23�24 + a2b2�2

14
�2
23
− 2a2b�12�13�24�34

− 2a2b�12�14�23�34 + 2a2b�2
13
�2
24
− 2a2b�13�14�23�24 + 2ab2�12�13�24�34

+ 2ab2�12�14�23�34 − 2ab2�13�14�23�24 + 2ab2�2
14
�2
23
+ a2�2

12
�2
34

− 2a2�12�13�24�34 + a2�2
13
�2
24
− 2ab�2

12
�2
34
+ 2ab�12�13�24�34 − 2ab�12�14�23�34

− 2ab�13�14�23�24 + b2�2
12
�2
34
+ 2b2�12�14�23�34 + b2�2

14
�2
23
).

S =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 s1
bs1

a

0 0 0 0 s2
s2(1+b)

1+a

0 0 0 0 0 s3
0 0 0 0 s4 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎨⎪⎪⎩

�13as3 − �14bs4 −
1+b

1+a
�12s2 + �12s2 = −a �16 + b �15,

−�23s3a + �24s4b +
b

a
�12s1 − �12s1 − �23s3 + �24s4 = −(1 + b)�25 + (1 + a)�26,

1+b

1+a
a�23s2 − �23bs2 +

1+b

1+a
�23s2 + �13s1�34s4 = �35,

1+b

1+a
a�24s2 − �24s2b −

b

a
�14s1 − �24s2 − �34s3 = −�46.

g�
11

= 4�12�13�14((a1 + a3 + a5)a − ba5 + a1),

g�
33

= 4�13�23�34((a1 + a3 + a5)a − ba5 + a1),

g�
44

= −4�14�24�34((a1 + a3 + a5)a − ba5 + a1).
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Therefore, �12�13�14�23�24�34 ≠ 0 , and the polynomials p1 ∶= �12�34 , p2 ∶= �14�23 and 
p3 ∶= −�13�24 must have the same sign.

Since b(a + 1)�23 ≠ 0 , the condition t2 = 0 can be seen as a second order equation in the 
variable �14 . We can solve it provided that a(b + 1)�13�24(a − b)b1�34 ≥ 0 , obtaining the 
solutions:

A case by case analysis ensures that the condition a(b + 1)�13�24(a − b)b1�34 ≥ 0 
is not compatible with the constraint on p1, p2, p3 . To check this, assume that 
a(b + 1)�13�24(a − b)�12�34 ≥ 0 and that p1 and p3 have the same sign. Then, we can dis-
tinguish the four cases: 

(1)	 𝛼12𝛼34 > 0 , 𝛼13𝛼24 < 0 , a − b ≤ 0 , a(b + 1) ≥ 0,
(2)	 𝛼12𝛼34 > 0 , 𝛼13𝛼24 < 0 , a − b ≥ 0 , a(b + 1) ≤ 0,
(3)	 𝛼12𝛼34 < 0 , 𝛼13𝛼24 > 0 , a − b ≤ 0 , a(b + 1) ≥ 0,
(4)	 𝛼12𝛼34 < 0 , 𝛼13𝛼24 > 0 , a − b ≥ 0 , a(b + 1) ≤ 0.

Under the assumptions of case (1),

If in addition p1 and p2 have the same sign, then b(a + 1) < 0 . This condition is incompat-
ible with the inequalities a ≤ b and a(b + 1) ≥ 0 , since these conditions imply a ≤ b and 
−a ≤ ab < −b . In the remaining cases, we can proceed in a similar way. 	�  ◻

Appendix A.

In this appendix, we list the structure equations of all six-dimensional unimodular 
decomposable solvable non-nilpotent Lie algebras that exist up to isomorphism.

Remark A.1  As for the Lie algebras appearing in Table 1 and depending on some parameters, 
with the exception of �p,−2−p

5,9
 , all of the corresponding simply connected Lie groups admit a 

lattice for certain values of the parameters, see [2].

�±
14

=
1

�23b(a + 1)

�
a(b + 1)�13�24 + (a − b)�12�34 ± 2

√
(a(b + 1)�13�24(a − b)�12�34)

�
.

�±
14
�23 = −

1

b(a + 1)

�√
−a(b + 1)�13�24 ∓

√
−(a − b)�12�34

�2

.
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Table 1   Isomorphism classes of six-dimensional unimodular decomposable solvable non-nilpotent Lie 
algebras

� (de1, de2, de3, de4, de5, de6)

�−1
3,4

⊕ℝ
3 (−e13, e23, 0, 0, 0, 0)

�−1
3,4

⊕ �
3,1

(−e13, e23, 0,−e56, 0, 0)

�−1
3,4

⊕ �−1
3,4

(−e13, e23, 0,−e46, e56, 0)

�−1
3,4

⊕ �0
3,5

(−e13, e23, 0,−e56, e46, 0)

�0
3,5

⊕ℝ
3 (−e23, e13, 0, 0, 0, 0)

�0
3,5

⊕ �
3,1

(−e23, e13, 0,−e56, 0, 0)

�0
3,5

⊕ �0
3,5

(−e23, e13, 0,−e56, e46, 0)

�−2
4,2

⊕ℝ
2 (−2e14, e24 + e

34
, e

34
, 0, 0)

�
p,−p−1

4,5
⊕ℝ

2 (−e14,−pe24, (p + 1)e34, 0, 0, 0) , p ∈ [−
1

2
, 0)

�
−2p,p

4,6
⊕ℝ

2 (2pe14,−pe24 − e
34
, e

24 − pe
34
, 0, 0, 0) , p > 0

�−1
4,8

⊕ℝ
2 (−e23,−e24, e34, 0, 0, 0)

�0
4,9

⊕ℝ
2 (−e23,−e34, e24, 0, 0, 0))

�
p,q,r

5,7
⊕ℝ (−e15,−pe25,−qe35,−re45, 0, 0) , −1 ≤ r ≤ q ≤ p ≤ 1, pqr ≠ 0, p + q + r = −1

�−1
5,8

⊕ℝ (−e25, 0,−e35, e45, 0, 0, 0)

�
p,−2−p

5,9
⊕ℝ (−e15 − e

25
,−e25,−pe35, (2 + p)e45, 0, 0) , p ≥ −1

�−3
5,11

⊕ℝ (−e15 − e
25
,−e25 − e

35
,−e35, 3e45, 0, 0)

�
−1−2q,q,r

5,13
⊕ℝ (−e15, (1 + 2q)e25,−qe35 − re

45
, re

35 − qe
45
, 0, 0) , q ∈ [−1, 0], q ≠ −

1

2
, r ≠ 0

�0
5,14

⊕ℝ (−e25, 0,−e45, e35, 0, 0)

�−1
5,15

⊕ℝ (−e15 − e
25
,−e25, e35 − e

45
, e

45
, 0, 0)

�
−1,q

5,16
⊕ℝ (−e15 − e

25
,−e25, e35 − qe

45
, qe

35 + e
45
, 0, 0) , q ≠ 0

�
p,−p,r

5,17
⊕ℝ (−pe15 − e

25
, e

15 − pe
25
, pe

35 − re
45
, re

35 + pe
45
, 0, 0) , r ≠ 0

�0
5,18

⊕ℝ (−e25 − e
35
, e

15 − e
45
,−e45, e35, 0, 0)

�
p,−2p−2

5,19
⊕ℝ (−e23 − (1 + p)e15,−e25,−pe35, (2p + 2)e45, 0, 0) , p ≠ −1

�−1
5,20

⊕ℝ (−e23 − e
45
,−e25, e35, 0, 0, 0)

�−4
5,23

⊕ℝ (−e23 − 2e
15
,−e25,−e25 − e

35
, 4e

45
, 0, 0)

�
4,4p

5,25
⊕ℝ (−e23 − 2pe

15
,−pe25 + e

35
,−e25 − pe

35
, 4pe

45
, 0, 0) , p ≠ 0

�
0,𝜀

5,26
⊕ℝ (−e23 − �e45, e35,−e25, 0, 0, 0), � = ±1

�
−3∕2

5,28
⊕ℝ (−e23 +

1

2
e
15
,
3

2
e
25
,−e35,−e35 − e

45
, 0, 0)

�
−4∕3

5,30
⊕ℝ (−e24 −

2

3
e
15
,−e34 +

1

3
e
25
,
4

3
e
35
,−e45, 0, 0)

�
−1,−1

5,33
⊕ℝ (−e14,−e25, e34 + e

35
, 0, 0, 0)

�
−2,0

5,35
⊕ℝ (2e14,−e24 − e

35
, e

25 − e
34
, 0, 0, 0)
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