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Abstract
We organize the modified trace theory with the use of the Nakayama functor of finite abelian
categories. For a linear right exact functor Σ on a finite abelian category M, we introduce
the notion of a Σ-twisted trace on the class Proj(M) of projective objects of M. In our
framework, there is a one-to-one correspondence between the set of Σ-twisted traces on
Proj(M) and the set of natural transformations from Σ to the Nakayama functor of M.
Non-degeneracy and compatibility with the module structure (when M is a module cate-
gory over a finite tensor category) of a Σ-twisted trace can be written down in terms of the
corresponding natural transformation. As an application of this principal, we give existence
and uniqueness criteria for modified traces. In particular, a unimodular pivotal finite tensor
category admits a non-zero two-sided modified trace if and only if it is spherical. Also, a
ribbon finite tensor category admits such a trace if and only if it is unimodular.

Keywords Finite tensor category · Modified trace · Nakayama functor · Hopf algebra ·
Comodule algebra

Mathematics Subject Classification (2010) 18D10 · 16T05

1 Introduction

The linear algebraic notion of the trace was extended to pivotal tensor categories and have
been used in some constructions of topological invariants in low-dimensional topology.
Recently, to explore finer invariants from non-semisimple categories, modified traces are
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introduced and investigated in, e.g., [2, 11, 13–15, 17–19]. They are not defined all of
endomorphisms in a tensor category, but only for a morphisms in a specified tensor ideal.

In this paper, we initiate a new approach to the modified trace theory. We restrict our-
selves to the case of finite abelian categories, i.e., k-linear categories that are equivalent to
the category A-mod of finite-dimensional modules over a finite-dimensional algebra A. We
establish our framework by using the (right exact) Nakayama functor introduced by Fuchs,
Schaumann and Schweigert [12]. For a finite abelian category M, it is defined by

NM : M → M, M �→
∫ X∈C

HomM(M,X)∗ ⊗ X (M ∈ M). (1.1)

First of all, we explain where our main idea comes from. For full generality, we rather
consider twisted traces. Let M be a finite abelian category over a field k, and let Σ be a k-
linear right exact endofunctor on M. By a Σ-twisted trace on a full subcategory P ⊂ M,
we mean a family of k-linear maps

t• = {tP : HomM(P,Σ(P )) → k}P∈P
satisfying the Σ-cyclicity condition:

tP (gf ) = tQ(Σ(f )g) (f : P → Q,g : Q → Σ(P ), P,Q ∈ P).

A Σ-twisted trace t• on P is said to be non-degenerate if the pairing

HomM(M, Σ(P )) × HomM(P,M) → k, (f, g) �→ tP (fg)

is non-degenerate for all objects M ∈ M and P ∈ P .
Now we consider the case where M = A-mod for some finite-dimensional algebra A

and P is the full subcategory of projective objects of A-mod. Then, by the Eilenberg-Watts
equivalence, we may view Σ as a finite-dimensional A-bimodule. With the use of the idea
of universal traces [2, Section 2.4.6], we find that the class of Σ-twisted traces on P is in
bijection with the space

HH0(Σ)∗ := {λ ∈ Homk(Σ,k) | λ(sa) = λ(as) for all a ∈ A and s ∈ Σ}. (1.2)

The point is that HH0(Σ)∗ is naturally identified with the space of A-bimodule homomor-
phisms from Σ to A∗ (see Section 3.4). Since NA-mod ∼= A∗ ⊗A (−) [12], this result is
interpreted category-theoretically as follows: For a finite abelian category M and a k-linear
right exact endofunctor Σ on M, there is a bijection

Nat(Σ,NM) ∼= {Σ-twisted traces on Proj(M)}, (1.3)

where Proj(M) is the full subcategory of projective objects of M.
This observation suggests that a property of a Σ-twisted trace on Proj(M) can be

described by properties of the corresponding natural transformation. For instance, we
show that a Σ-twisted trace is non-degenerate if and only if the corresponding natural
transformation is invertible (Theorem 3.7).

Modified traces are required to be compatible with the tensor product or the action of
a tensor category. In our theory, such a compatibility of a trace can be described in terms
of the corresponding natural transformation (Theorem 5.8). Unlike the existing theory of
modified traces, we work in the non-pivotal setting. Let C be a rigid monoidal category
(which is not necessarily pivotal), and let M be a finite abelian category on which C acts
linearly from the right (see Section 5 for the precise setting). Suppose that Σ : M → M
is a k-linear right exact functor equipped with a structure

Ψ Σ
M,X : Σ(M) � X∗∗ → Σ(M � X) (M ∈ M, X ∈ C)
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of a ‘twisted’ right C-module functor (which is defined in a similar way as an ordinary
module functor). We say that a Σ-twisted trace t• on Proj(M) is compatible with the right
C-module structure if the equation

tP (clP,Σ(P )|X(f )) = tP�X(Ψ Σ
P,X ◦ f )

holds for all P ∈ Proj(M), X ∈ C and f ∈ HomM(P � X,Σ(P ) � X∗∗), where

clM,N |X : HomM(M � X,N � X∗∗) → HomM(M,N) (M,N ∈ M, X ∈ C)

is the operator defined by ‘closing’ the X-strand in string diagrams. An important fact we
shall recall here is that the Nakayama functor NM also has a structure of a twisted right C-
module functor [12]. Now we can characterize the module compatibility of a twisted trace
in terms of the corresponding natural transformation as follows:

Theorem 1.1 (cf. Theorem 5.8) Suppose that a Σ-twisted modified trace t• corresponds to
a natural transformation ξ : Σ → NM via the bijection (1.3). Then t• is compatible with
the right C-module structure if and only if ξ is a morphism of twisted C-module functors.

Now we suppose that C has a pivotal structure. Then we can regard idM as a twisted
right C-module functor through the pivotal structure. By a right modified trace on Proj(M),
we mean a Σ-twisted trace on Proj(M) with Σ = idM that is compatible with the right C-
module structure (this definition agrees with those considered in [2, 14, 15, 18] in the case
where M = C). By this theorem and known results on the Nakayama functor, we obtain
some existence and uniqueness results on right modified traces. In particular, we have:

Theorem 1.2 (cf. Theorem 6.8) For a pivotal finite tensor category C, a non-zero right mod-
ified trace on Proj(C) exists if and only if C is unimodular in the sense of [9]. Furthermore,
such a trace is unique up to scalar multiple if it exists.

The ‘if’ part of this theorem follows from [13, Corollary 5.6].
One can define a left modified trace and a two-sided modified trace for a left C-module

category and a C-bimodule category, respectively, in an analogous way as right modified
traces. The relation between the Nakayama functor and the categorical Radford S4-formula
[9, 12] yields:

Theorem 1.3 For a pivotal finite tensor category C, a non-zero two-sided modified trace
on Proj(C) exists if and only if the pivotal structure of C is spherical in the sense of [7].

By [30, Lemma 5.9], a ribbon finite tensor category is spherical if and only if it is
unimodular. For applications in topological field theories, the following result could be
important:

Theorem 1.4 For a ribbon finite tensor category C, a non-zero two-sided modified trace on
Proj(C) exists if and only if C is unimodular.

We have mainly considered the case where M = C in the above. In this paper, we
also examine the case where C = H -mod and M = A-mod for some finite-dimensional
Hopf algebra H and finite-dimensional right H -comodule algebra A. In this case, every
module-compatible modified trace on Proj(A-mod) comes from a grouplike-cointegral on
A recently introduced in [23] and investigated in [23, 32]. This correspondence extends a
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relation between modified traces on H -proj and cointegrals on H established in [2]. We also
exhibit some concrete examples.

Remark 1.5 Schweigert and Woike give a result similar to our main theorem and establish
some applications of modified traces in the context of topological field theories in [28].

1.1 Organization of the Paper

Section 2 fixes our convention and provides some basic materials on finite abelian
categories. The Nakayama functor will also be introduced.

In Section 3, after introducing fundamental notions in this paper, we consider the case
where M = A-mod for some finite-dimensional algebra A. Let Σ be a k-linear right
exact endofunctor on A-mod and regard it as an A-bimodule through the Eilenberg-Watts
equivalence. By the way of [2, Section 2.4.6], we construct a family of k-linear maps

T• = {TP : HomA(P,Σ(P )) → HH0(Σ)}P∈Proj(A-mod)

that generalizes the Hattori-Stallings trace. Here, HH0(Σ) is the 0-th Hochschild homology
of the bimodule Σ . It is shown that T• has a certain universal property (Theorem 3.5).
This gives a bijection between the class of Σ-twisted traces on Proj(A-mod) and the dual
space of HH0(Σ), which may be identified with the right-hand side of (1.2) (Corollary 3.6).
We show that a Σ-twisted trace t• on Proj(A-mod) is non-degenerate if and only if the
corresponding linear form λ on HH0(Σ) is non-degenerate in a certain sense (Theorem 3.7).

By the discussion of Section 3, we see that there is a bijection (1.3) for every finite
abelian category M. The aim of Section 4 is to reformulate this bijection in purely category-
theoretical terms for the use of later sections. According to [12], the Nakayama functor NM
for M = A-mod is isomorphic to the functor A∗ ⊗A (−). This means that A∗ ⊗A M for
M ∈ A-mod has a universal property as a coend as in (1.1). To accomplish the aim of this
section, we first write down the universal dinatural transformation for A∗ ⊗A M explicitly.
We also introduce the canonical Nakayama-twisted trace t̃• by using the universal property
of the Nakayama functor. It turns out that the bijection (1.3) is written in terms of t̃•. The
inverse of the bijection (1.3) is also described without referencing an algebra A such that
M ≈ A-mod.

In Section 5, we consider the case where M is a finite abelian category on which a rigid
monoidal category C acts linearly from the right. Suppose that Σ : M → M is a k-linear
right exact right C-module functor from M to MD, where (−)D means the twist of the
action by the double dual functor D = (−)∗∗. Then, as in the above, the compatibility of a
Σ-twisted trace with the right C-module structure is defined. The main result of this section
is that a Σ-twisted trace is module-compatible if and only if the corresponding natural
transformation Σ → NM is a morphism of right C-module functors from M to MD

(Theorem 5.8). By the computation using the universal property of the Nakayama functor,
we see that the canonical Nakayama-twisted trace is module-compatible. The general case
follows from this result.

In Section 6, we apply our results to finite tensor categories and their modules (in this
section, the base field k is assumed to be algebraically closed for technical reasons). Let
C be a finite tensor category, and let M be a finite right C-module category. An easy, but
important observation is that if M is indecomposable, then the Nakayama functor NM
is a simple object of the category RexC(M,MD) of k-linear right exact right C-module
functors from M to MD. Most of ‘uniqueness’ results follow from this observation and
Schur’s lemma. According to [12], the Nakayama functor of C is given by NC(X) = αC ⊗
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X∗∗ (X ∈ C), where αC is the dual of the distinguished invertible object [9]. This fact
relates the existence of a non-zero modified trace on Proj(C) and the condition that αC ∼= 1
(unimodularity). Based on these observations, we obtain some results on modified traces as
summarized into Theorems 1.1-1.4 in the above.

In Section 7, we examine the case where C = H -mod and M = A-mod for some finite-
dimensional Hopf algebra H and finite-dimensional right H -comodule algebra A. If this
is the case, the category RexC(M,MD), to which NM belongs, can be identified with
the category of finite-dimensional H -equivariant A(S2)-A-bimodules in the sense of [1],
where A(S2) is the H -comodule algebra obtained from A by twisting its coaction by the
square of the antipode of H (Lemma 7.2). Under this identification, the Nakayama functor
corresponds to the A-bimodule A∗ with the right H -comodule structure given as in [5]
(Theorem 7.3). From this result, it turns out that twisted module-compatible traces (and in
particular modified traces) are given in terms of linear forms on A satisfying an equation
similar to the axiom for cointegrals on Hopf algebras (Theorems 7.4 and 7.5). Finally, as
concrete examples, we check the existence of non-zero modified traces for some comodule
algebras discussed in Mombelli [27].

2 Preliminaries

2.1 Monoidal Categories

A monoidal category [26, VII.1] is a category C equipped with a functor ⊗ : C × C → C
(called the tensor product), an object 1 ∈ C (called the unit object) and natural isomor-
phisms (X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z) and 1 ⊗ X ∼= X ∼= X ⊗ 1 (X, Y,Z ∈ C) satisfying
the pentagon and the triangle axioms. By the Mac Lane coherence theorem, we may, and
do, assume that every monoidal category is strict.

Let C and D be monoidal categories. A monoidal functor [26, XI.2] from C to D is
a triple (F, ϕ, ψ) consisting of a functor F : C → D, a natural transformation ϕX,Y :
F(X) ⊗ F(Y ) → F(X ⊗ Y ) (X, Y ∈ C) and a morphism ψ : 1 → F(1) subject to
certain axioms. A monoidal functor (F, ϕ,ψ) is said to strong (resp. strict) if ϕ and ψ are
isomorphisms (resp. identities).

A left dual object of an object X of a monoidal category C is a triple (L, ε, η) consisting
of an object L ∈ C and morphisms ε : L ⊗ X → 1 and η : 1 → X ⊗ L in C such that the
equations (ε ⊗ idL)(idL ⊗ η) = idL and (idX ⊗ ε)(η ⊗ idX) = idX hold (cf. [8]). A right
dual object of X is a triple (R, ε, η) such that (X, ε, η) is a left dual object of R.

A monoidal category is said to be rigid if every its object has a left dual and a right dual
object. Now suppose that C is a rigid monoidal category. Given an object X ∈ C, we usually
denote by

(X∗, evX : X∗ ⊗ X → 1, coevX : 1 → X ⊗ X∗)

a (fixed) left dual object of X. The assignment X �→ X∗ extends to a strong monoidal
functor from Cop to Crev, which we call the left duality functor. Here, Crev is the category C
equipped with the reversed tensor product X ⊗rev Y = Y ⊗ X.

A right dual object of X ∈ C will be denoted by (∗X, ev′
X, coev′

X). The assignment
X �→ ∗X also extends to a strong monoidal functor from Cop to Crev, which we call the right
duality functor. By replacing C with an equivalent one, we may assume that the left and
the right duality are strict monoidal functors and mutually inverse to each other (see, e.g.,
[29, Lemma 5.4]). Thus we have (X ⊗ Y )∗ = Y ∗ ⊗ X∗, ∗(X∗) = X = (∗X)∗, etc.
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2.2 Module Categories

Let C be a monoidal category. A right C-module category [6, 8, 20] is a category M
equipped with a functor � : M × C → M, called the action, and natural transformations

(M � X) � Y ∼= M � (X ⊗ Y ) and M � 1 ∼= M (M ∈ M, X, Y ∈ C) (2.1)

satisfying certain axioms similar to those for a monoidal category. A right C-module cat-
egory is said to be strict if the natural isomorphisms (2.1) are the identity. A left module
category and a bimodule category are defined analogously. It is known that an analogue
of Mac Lane’s strictness theorem for monoidal categories holds for module categories (see
[20, Theorem 1.3.8]). Thus we may, and do, assume that all module categories are strict in
this paper.

Below, following [6], we introduce technical terms for action-preserving functors
between module categories. We only mention the case of right module categories; see [6]
for details. Given two right C-module categories M and N , a lax right C-module functor
from M to N is a functor F : M → N equipped with a natural transformation

Ψ F
M,X : F(M) � X → F(M � X) (M ∈ M, X ∈ C)

such that the equations

Ψ F
M,1 = idF(M) and Ψ F

M,X⊗Y = Ψ F
M�X,Y ◦ (Ψ F

M,X � idY ) (2.2)

hold for all objects M ∈ M and X, Y ∈ C. An oplax right C-module functor from M to N
is a functor F : M → N equipped with a natural transformation

F(M � X) → F(M) � X (M ∈ M, X ∈ C)

satisfying similar equations as (2.2). We omit the definition of morphisms of (op)lax C-
module functors.

A lax or oplax right C-module functor is said to be strong if its structure morphism is
invertible. In this paper, we only consider the case where C is rigid. If this is the case, then
every (op)lax right C-module functor is strong [6, Lemma 2.10] and hence we may call them
simply a right C-module functor. Nevertheless, the adjective ‘op(lax)’ is sometimes used to
specify the direction of the structure morphism.

2.3 Finite Abelian Categories

Throughout this paper, we work over a fixed field k (this field is arbitrary except in
Section 6). By an algebra, we mean an associative unital algebra over the field k. Given
algebras A and B, we denote by A-mod, mod-B and A-mod-B the category of finite-
dimensional left A-modules, the category of finite-dimensional right B-modules and the
category of finite-dimensional A-B-bimodules, respectively.

Given a vector space V over k, we denote by V ∗ := Homk(V ,k) the dual space of V .
An arbitrary element of V ∗ is often written like v∗ (this symbol does not mean an element
of V ∗ obtained from an element v by applying some operation ∗). If M and N are a left and
a right module over an algebra A, then M∗ and N∗ are a right and a left A-module by the
actions defined by

〈m∗ ↼ a, m〉 = 〈m∗, am〉 and 〈a ⇀ n∗, n〉 = 〈n∗, na〉, (2.3)

respectively, for m∗ ∈ M∗, m ∈ M , n∗ ∈ N∗, n ∈ N and a ∈ A. The assignments M �→ M∗
and N �→ N∗ extend to anti-equivalences between A-mod and mod-A.
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A finite abelian category [6, 8] is a k-linear category that is equivalent to A-mod for
some finite-dimensional algebra A. The class of finite abelian categories is closed under
taking the opposite category. Indeed, if M ≈ A-mod for some finite-dimensional algebra
A, then we have Mop ≈ mod-A ≈ Aop-mod.

Given two finite abelian categories M and N , we denote by Rex(M,N ) the category
of k-linear right exact functors from M to N . For finite-dimensional algebras A and B,
there is an equivalence

B-mod-A
≈−−−−→ Rex(A-mod, B-mod), M �→ M ⊗A (−) (2.4)

of k-linear categories, which we call the Eilenberg-Watts equivalence. By using this
equivalence, we see that Rex(M,N ) is also a finite abelian category.

For a ∈ A, we define ra : A → A by ra(b) = ba (b ∈ A). A quasi-inverse of the
equivalence (2.4) is given by F �→ F(A), where the right A-module structure of F(A) ∈
B-mod is given by m · a = F(ra)(m) for m ∈ F(A) and a ∈ A. This means that an object
F ∈ Rex(A-mod, B-mod) is determined by its restriction to the full subcategory {A} of
A-mod. Since A is a projective object of A-mod, we may say that F is determined by its
restriction to the full subcategory of projective objects of A-mod. For later use, we note this
consequence as the following lemma:

Lemma 2.1 For finite abelian categoriesM andN , the functor

Rex(M,N ) → Funk(Proj(M),N ), F �→ F |Proj(M)

is fully faithful. Here, Proj(M) is the full subcategory projective objects of M and
Funk(A,B) means the category of k-linear functors fromA to B.

The functor M ⊗A (−) for M ∈ B-mod-A has a right adjoint HomB(M,−). By the
Eilenberg-Watts equivalence (2.4), we see that a k-linear functor F : M → N has a
right adjoint if and only if F is right exact [6, Corollary 1.9]. By applying this result to
F op : Mop → N op, we also see that F has a left adjoint if and only if F is left exact.

2.4 Canonical Vect-Action

We denote by Vect := k-mod the category of finite-dimensional vector spaces over k. Let
M be a finite abelian category, and let M be an object of M. Since the functor yM :=
HomM(M,−) : M → Vect is k-linear and left exact, yM has a left adjoint. We denote the
left adjoint of yM by V �→ V ⊗ M (V ∈ Vect). In other words, V ⊗ M is defined so that
there is a natural isomorphism

HomM(V ⊗ M, N) ∼= Homk(V , HomM(M,N)) (2.5)

for V ∈ Vect and N ∈ M. The assignment (V ,M) �→ V ⊗ M extends to a functor
Vect × M → M in such a way that the isomorphism (2.5) is also natural in M ∈ M. We
call this functor the canonical action of Vect on M as it makes M a left module category
over Vect.

Let F : M → N be a k-linear functor between finite abelian categories M and N .
By the definition of a k-linear functor, for each pair (M,M ′) of objects of M, there is a
k-linear map

F |M,M ′ : HomM(M,M ′) → HomN (F (M), F (M ′)), f �→ F(f ).
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For V ∈ Vect and M ∈ M, we define the morphism

Ψ F
V,M : V ⊗ F(M) → F(V ⊗ M) (2.6)

in N to be the image of the identity morphism on V ⊗ M under

HomM(V ⊗ M,V ⊗ M)
(2.5)−−−−−−−−−−−−−→ Homk(V , HomM(M, V ⊗ M))

Homk(V ,F |M,V ⊗M)−−−−−−−−−−−−−→ Homk(V , HomN (F (M), F (V ⊗ M))

(2.5)−−−−−−−−−−−−−→ HomM(V ⊗ F(M), F (V ⊗ M)).

In this way, F becomes a left Vect-module functor by Ψ F = {Ψ F
V,M }. This construction is

functorial in the following sense:

Lemma 2.2 The above construction establishes a 2-functor from the 2-category of finite
abelian categories, k-linear functors and natural transformations to the 2-category of Vect-
module categories, Vect-module functors and their morphisms.

This lemma is only a part of the general result on the relation between categories enriched
over a bicategory and categories being acted by the bicategory [16, Section 3]. For our
applications, the above special case is enough.

Example 2.3 Let A be a finite-dimensional algebra. The canonical Vect-action on A-mod is
given by V ⊗M = V ⊗kM , a ·(v⊗km) = v⊗kam for v ∈ V ∈ Vect, m ∈ M ∈ A-mod and
a ∈ A. For P ∈ A-mod, the canonical Vect-module structure of HomA(P,−) : A-mod →
Vect is given by

V ⊗k HomA(P,M) → HomA(P, V ⊗ M), v ⊗ f �→
(
p �→ v ⊗ f (p)

)
. (2.7)

Example 2.4 Let A and B be finite-dimensional algebras. For M ∈ B-mod-A, the canonical
Vect-module structure of M ⊗A (−) : A-mod → B-mod is given by

V ⊗k (M ⊗A X) → M ⊗A (V ⊗k X), v ⊗k (m ⊗A x) �→ m ⊗A (v ⊗ x). (2.8)

2.5 The Nakayama Functor

We assume that the reader is familiar with dealing with ends and coends [26, IX]. For a
finite abelian category M, it can be shown that the coend

NM(M) :=
∫ X∈M

HomM(M,X)∗ ⊗ X (2.9)

exists for all objects M ∈ M. The Nakayama functor [12, Definition 3.14] of M is the
k-linear right exact endofunctor on M defined by M �→ NM(M).

Lemma 2.5 ([12, Lemma 3.15]) For a finite-dimensional algebra A, we have

NA-mod = A∗ ⊗A (−),

where A∗ is made into an A-bimodule by the actions ⇀ and ↼ defined by (2.3).

This lemma implies that there is a universal dinatural transformation

iX,M : HomA(M,X)∗ ⊗k X → A∗ ⊗A M (X,M ∈ A-mod)
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making A∗⊗AM into a coend of the form (2.9). In [12], the above lemma is proved rather an
indirect way and an explicit form of iX,M is not mentioned. We will discuss it in Section 4.1.

A Frobenius form on A is a linear map λ : A → k such that the associated pairing
〈a, b〉 := λ(ab) on A is non-degenerate. Now we suppose that a Frobenius form λ on A

is given. Then the Nakayama automorphism (associated to λ) is defined to be the unique
algebra automorphism ν such that 〈b, a〉 = 〈ν(a), b〉 for all a, b ∈ A. Given a left A-module
M , we denote by νM the left A-module obtained from M by twisting the action of A by ν.
There is an isomorphism θ : νA → A∗ of A-bimodules given by θ(a) = λ ↼ a (a ∈ A)
and thus we have natural isomorphisms

NA-mod(M) = A∗ ⊗A M ∼= νA ⊗A M ∼= νM

for M ∈ A-mod. This is the reason why the Nakayama functor is called by such a name.
A Frobenius form on A is said to be symmetric if the associated pairing is. It is

well-known that A admits a symmetric Frobenius form if and only if the Nakayama auto-
morphism of A is an inner automorphism. In terms of the Nakayama functor, this is also
equivalent to that NA-mod is isomorphic to the identity functor [12, Proposition 3.24].

The Nakayama functor will play a central role in this paper. An important fact we will
use is that the Nakayama functor between module categories has a structure of a ‘twisted’
module functor [12, Theorem 4.4]. This fact will be reviewed in Section 5.2 in detail.

3 Twisted Traces and the Hochschild Homology

3.1 Vector-Valued Twisted Traces

We first introduce the main subject of this paper:

Definition 3.1 Let M be a k-linear category, let P be a full subcategory of M, and let
Σ : M → M be a k-linear endofunctor. Given a vector space V over k, a V -valued
Σ-twisted trace on P is a family

t• = {tP : HomM(P,Σ(P )) → V }P∈P
of k-linear maps parametrized by the objects of P such that the following Σ-cyclicity
condition is satisfied:

Σ-cyclicity For all objects P,Q ∈ P and morphisms f : P → Q and g : Q → Σ(P )

in M, the following equation holds:

tP

(
P

f−→ Q
g−→ Σ(P )

)
= tQ

(
Q

g−→ Σ(P )
Σ(f )−−−−→ Σ(Q)

)
. (3.1)

If V = k, then a V -valued Σ-twisted trace on P is simply called a Σ-twisted trace on P .
We say that a Σ-twisted trace t• on P is non-degenerate if the pairing

HomM(M,Σ(P )) × HomM(P,M) → k, (f, g) �→ tP (fg)

is non-degenerate for all objects M ∈ M and P ∈ P .

Similar notions have been considered in, e.g., [3, 11]. Unlike these papers, we do not
require that Σ is an endofunctor on P . The reason is that the case where M is a finite
abelian category, P = Proj(M) and Σ = NM will be especially important in this paper.
In this case, the full subcategory P is not closed under Σ in general. Indeed, if M =
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A-mod for some finite-dimensional algebra A which is not self-injective, then A belongs to
Proj(M) but NM(A) ∼= A∗ does not.

We introduce the following notation:

Definition 3.2 Let M be a finite abelian category, and let Σ : M → M be a k-linear
endofunctor on M. For a vector space V , we denote by Tr(Σ, V ) the class of V -valued
Σ-twisted traces on Proj(M). For the case V = k, we write Tr(Σ) := Tr(Σ,k).

3.2 Dual Bases

Let A be a finite-dimensional algebra. We denote by A-proj := Proj(A-mod) the full sub-
category of projective objects of A-mod. The aim of this section is to classify Σ-twisted
traces on A-proj in the case where Σ = M ⊗A (−) for some M ∈ A-mod-A. For this
purpose, we first recall basic results on finite-dimensional projective modules.

For M ∈ A-mod, we set M† := HomA(M,A) and make it a right A-module by

(m† · a)(m) = m†(m)a (m† ∈ M†,m ∈ M,a ∈ A).

Lemma 3.3 (the dual basis lemma; see [25, §2B]) For every P ∈ A-proj, there are finite
number of elements p1, · · · , pn ∈ P and p1, · · · , pn ∈ P † such that the equation pi(p) ·
pi = p holds for all elements p ∈ P , where the Einstein convention is used to suppress the
sum over i.

We call such a system {pi, p
i} a pair of dual bases for P ∈ A-proj.

For P, M ∈ A-mod, there is a natural transformation θ defined by

θP,M : P † ⊗A M → HomA(P,M), θP,M(p† ⊗A m)(p) = p†(p) · m (3.2)

for p† ∈ P , p ∈ P and m ∈ M . If P ∈ A-proj, the map θP,M is invertible with the inverse

HomA(P,M) → P † ⊗A M, ξ �→ pi ⊗A ξ(pi) (ξ ∈ HomA(P,M)), (3.3)

where {pi, p
i} is a pair of dual bases for P . The following lemma is well-known:

Lemma 3.4 Let P and Q be objects of A-proj, and let {pi, p
i} and {qj , q

j } be pairs of
dual bases for P and Q, respectively. For every morphism f : P → Q of left A-modules,
we have pi ⊗A f (pi) = (qj ◦ f ) ⊗A qj in P † ⊗A Q.

Proof The bijection θP,Q : P † ⊗A Q → HomA(P,Q) maps both sides to f .

3.3 Twisted Traces and the Hochschild Homology

Let A be a finite-dimensional algebra, and let Σ be a finite-dimensional A-bimodule. By
abuse of notation, we denote the endofunctor Σ ⊗A (−) on A-mod by the same symbol Σ .
Thus, Σ(M) = Σ ⊗A M and Σ(f ) = idΣ ⊗A f for an object M ∈ A-mod and a morphism
f in A-mod.

We define the category T (just for this subsection) as follows: An object of this category
is a pair (V ,t•) consisting of a vector space V and t• ∈ Tr(Σ, V ). A morphism f :
(V ,t•) → (V ′,t′•) in this category is a k-linear map f : V → V ′ such that the equation
f ◦ tP = t′

P holds for all objects P ∈ A-proj.
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For the classification of vector-valued Σ-twisted traces on A-proj, we construct an initial
object of the category T as follows: For an A-bimodule M , the 0-th Hochschild homology
of M is the vector space defined by

HH0(M) := M/spank{am − ma | a ∈ A,m ∈ M}. (3.4)

For M ∈ A-mod, there is a well-defined k-linear map

M† ⊗A Σ(M) = M† ⊗A Σ ⊗A M → HH0(Σ),

m† ⊗A s ⊗A m �→ [m†(m)s], (3.5)

where [x] for x ∈ Σ expresses the equivalence class of x in HH0(Σ). Now, for P ∈ A-proj,
we define the k-linear map TP to be the composition

TP =
(

HomA(P,Σ(P ))
θ−1
P,Σ(P )−−−−→ P † ⊗A Σ(P )

(3.5) with M = P−−−−−−−−−−→ HH0(Σ)
)

. (3.6)

Given a pair of dual bases {pi, p
i} for P , the map TP is expressed as

TP (f ) =
[
pi(fP (pi)) · fΣ(pi)

]
(f ∈ HomA(P,Σ(P ))), (3.7)

where f (p) ∈ Σ ⊗A P for p ∈ P is expressed symbolically as f (p) = fΣ(p) ⊗A fP (p),
although it may not be a single tensor in general. It follows from this formula and Lemma 3.4
that T• is an HH0(Σ)-valued Σ-twisted trace on A-proj.

The Σ-twisted trace T• specializes to the Hattori-Stallings trace [21, 33] if Σ = idM.
Therefore T• is called the twisted Hattori-Stallings trace in [3, Section 2.4.6]. A universal
property of T• mentioned in [3] is, in our notation, rephrased as follows:

Theorem 3.5 The pair H := (HH0(Σ),T•) is an initial object of the category T.

Proof We include a detailed proof since some parts of the proof will be used in later. We
first introduce the following two isomorphisms of vector spaces:

φ : Σ → HomA(A,Σ(A)), φ(s)(a) = as ⊗A 1 (s ∈ Σ, a ∈ A), (3.8)

φ′ : A → HomA(A,A), φ′(a)(b) = ba (a, b ∈ A). (3.9)

The following equations are easily verified:

φ(s) ◦ φ′(a) = φ(as), (idΣ ⊗A φ′(a)) ◦ φ(s) = φ(sa) (s ∈ Σ, a ∈ A). (3.10)

By (3.7) and that {1A, idA} is a pair of dual bases for A ∈ A-proj, we have TA(φ(s)) = [s]
for all s ∈ Σ . Thus, if f is a morphism from H to V = (V ,t•) in T, then we have
f ([s]) = f (TA(φ(s))) = tA(φ(s)) for all s ∈ Σ . This means that a morphism H → V in
T is unique if it exists.

To complete the proof, we show that there indeed exists a morphism H → V in T. In
view of the above discussion, we define the linear map λ̃ : Σ → V by λ̃(s) = tA(φ(s)) for
s ∈ Σ . Then we have

λ̃(as)
(3.10)= tA(φ(s) ◦ φ′(a))

(3.1)= tA(Σ(φ′(a)) ◦ φ(s))
(3.10)= λ̃(sa)

for s ∈ Σ and a ∈ A. This means that the linear map

λ : HH0(Σ) → V, λ([s]) = tA(φ(s)) (s ∈ Σ)
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is well-defined. Now let f : P → Σ(P ) be a morphism in A-mod with P ∈ A-proj, and
let {pi, p

i} be a pair of dual bases for P . For each i, we define

p̃i : A → P, p̃i(a) = api (a ∈ A). (3.11)

Then the equation idP = p̃i ◦ pi holds by the definition of a pair of dual bases (where the
Einstein convention is used). Putting f̃ := Σ(pi) ◦ f ◦ p̃i and s := φ−1(f̃ ), we compute

tP (f ) = tP (f ◦ p̃i ◦ pi)
(3.1)= tA(Σ(pi) ◦ f ◦ p̃i )

= tA(f̃ ) = tA(φ(s)) = λ([s]) (3.7)= λ(TP (f )).

This means that λ is a morphism H → V in T. The proof is done.

The initial object (HH0(Σ),T•) of Theorem 3.5 may be called the ‘universal’ vector-
valued Σ-twisted trace on A-proj. Indeed, we easily deduce from the theorem that for all
vector spaces V , the map

Homk(HH0(Σ), V ) → Tr(Σ, V ), f �→ f ◦ T• (3.12)

is bijective. Letting V = k, we have:

Corollary 3.6 There is a bijection between Tr(Σ) and HH0(Σ)∗.

3.4 Non-Degeneracy of Twisted Traces

Let A and Σ be as in the previous subsection. We discuss which an element of HH0(Σ)∗
corresponds to a non-degenerate Σ-twisted trace on A-proj under the bijection (3.12) with
V = k. By the definition of the 0-th Hochschild homology, we regard HH0(Σ)∗ as a
subspace of Σ∗ by

HH0(Σ)∗ = {λ ∈ Σ∗ | λ(sa) = λ(as) for all s ∈ Σ and a ∈ A}.
Given λ ∈ Σ∗, we define the k-linear map

λ� : Σ → A∗, 〈λ�(s), a〉 = 〈λ, as〉 (s ∈ Σ, a ∈ A). (3.13)

It is easy to verify that the map

HH0(Σ)∗ → HomA|A(Σ,A∗), λ �→ λ� (3.14)

is an isomorphism of vector spaces, where HomA|A is the Hom functor of A-mod-A.

Theorem 3.7 Given λ ∈ HH0(Σ)∗, we denote by tλ• the Σ-twisted trace on A-proj
corresponding to λ through the bijection given by Corollary 3.6. We also define

βλ
M,P : HomA(M,Σ(P )) × HomA(P,M) → k, (f, g) �→ tλ

P (fg)

for M ∈ A-mod and P ∈ A-proj. Then the following assertions are equivalent:

(1) The Σ-twisted trace tλ• on A-proj is non-degenerate.
(2) The pairing βλ

P,Q is non-degenerate for all P,Q ∈ A-proj.

(3) The map λ� : Σ → A∗ is an isomorphism.

Thus, in particular, a non-degenerate Σ-twisted trace on A-proj exists only if Σ is
isomorphic to A∗ as an A-bimodule.
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Proof Let φ and φ′ be the maps defined by (3.8) and (3.9), respectively
(2) ⇒ (3). Set β = βλ

A,A ◦ (φ ×φ′). Since {1A, idA} is a pair of dual bases of A, we have

β(s, a) = tλ
A(φ(s) ◦ φ′(a))

(3.10)= tλ
A(φ(as))

(3.7)= λ(as)
(3.13)= 〈λ�(s), a〉 (3.15)

for all s ∈ Σ and a ∈ A. Suppose that (2) holds. Then, in particular, the pairing βλ
A,A is

non-degenerate. Since φ and φ′ are isomorphisms, the pairing β : Σ × A → k is also
non-degenerate. By (3.15), the map λ� : Σ → A∗ is an isomorphism. Thus (3) holds.

(3) ⇒ (2). We suppose that (3) holds. Let P and Q be objects of A-proj, and let {pi, pi}
and {qj , q

j } be pairs of dual bases for P and Q, respectively. For each i, we define
p̃i ∈ HomA(A, P ) by (3.11). Then the equation p̃i ◦ pi = idP holds (with the Ein-
stein convention). We also define q̃j ∈ HomA(A,Q) in the same way so that the equation
q̃j ◦ qj = idQ holds.

We verify the left non-degeneracy of the pairing βλ
P,Q. Let f : P → Σ(Q) be a non-

zero morphism in A-mod. Then there are indices u and v such that Σ(qu) ◦ f ◦ p̃v �= 0,
since, otherwise, we have

f = Σ(idQ) ◦ f ◦ idP = Σ(q̃j ) ◦ Σ(qj ) ◦ f ◦ p̃i ◦ pi = 0,

a contradiction. We fix such indices u and v and set s := φ−1(Σ(qu)◦f ◦ p̃v). Since s �= 0,
and since λ� is assumed to be an isomorphism, there exists an element a ∈ A such that
λ(sa) �= 0. By using such a, we define g ∈ HomA(Q,P ) by g := p̃v ◦φ′(a) ◦ qu. Then we
have

βλ
P,Q(f, g) = tλ

Q(f ◦ p̃v ◦ φ′(a) ◦ qu)
(3.1)= tλ

A(Σ(qu) ◦ f ◦ p̃v ◦ φ′(a))

= tλ
A(φ(s) ◦ φ′(a))

(3.15)= λ(as) �= 0

and therefore conclude that βλ
P,Q is left non-degenerate.

The right non-degeneracy is proved in a similar way: Given a non-zero element g ∈
HomA(Q, P ), we choose indices u and v such that pu ◦ g ◦ q̃v �= 0 and set a := φ′−1(pu ◦
g ◦ q̃v). Since a �= 0, there is an element s ∈ Σ such that λ(as) �= 0 and set f :=
Σ(q̃v) ◦ φ(s) ◦ pu. Then we have

βλ
P,Q(f, g) = tλ

Q(Σ(q̃v) ◦ φ(s) ◦ pu ◦ g)
(3.1)= tλ

A(φ(s) ◦ pu ◦ g ◦ q̃v)

= tλ
A(φ(s) ◦ φ′(a))

(3.15)= λ(as) �= 0

and therefore conclude that βλ
P,Q is right non-degenerate. Thus (2) holds.

(1) ⇒ (2). This implication is trivial from the definition.
(2) ⇒ (1). To complete the proof, we show that (2) implies (1). We assume that (2) holds

(remark that this implies (3) as we have already proved in the above). We fix an object
P ∈ A-proj and consider the following two k-linear covariant functors:

h1, h2 : A-mod → Vectop, h1 := HomA(−, Σ(P )), h2 := HomA(P,−)∗.

As is well-known, by applying the functor HomA(−,Σ(P )) to a short exact sequence 0 →
X → Y → Z → 0 in A-mod, we obtain an exact sequence

0 → HomA(Z,Σ(P )) → HomA(Y,Σ(P )) → HomA(X,Σ(P ))

in Vect. This means that h1 : A-mod → Vectop is right exact (as the target category is the
opposite category of Vect). The functor h2 is also right exact as P is projective.

For M ∈ A-mod, we define the k-linear map αM : h1(M) → h2(M) by

〈αM(f ), g〉 = tλ
P (fg) (f ∈ HomA(M,Σ(P )), g ∈ HomA(P,M)).
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It is easy to see that α = {αM }M∈A-mod defines a natural transformation from h1 to h2. The
assertion (2) is equivalent to that α induces a natural isomorphism between h1|A-proj and
h2|A-proj. Thus, by Lemma 2.1, α : h1 → h2 is a natural isomorphism. This means that (3)
holds. The proof is done.

4 Category-Theoretical Reformulation

4.1 The Universal Property of the Nakayama Functor

Let M be a finite abelian category, and let Σ : M → M be a k-linear right exact endo-
functor. We aim to give a ‘canonical’ description of Tr(Σ) that, unlike Theorem 3.7, does
not reference a finite-dimensional algebra A such that M ≈ A-mod.

To state our result, the Nakayama functor N := NM is essential. We will, in fact,
establish a bijection between the space Tr(Σ) and the space Nat(Σ,NM) of natural trans-
formations from Σ to NM in terms of the universal property of the Nakayama functor as a
coend.

For a while, we consider the case where M = A-mod for some finite-dimensional
algebra A. In this case, the Nakayama functor is given by NA-mod = A∗⊗A(−). This means
that, by the definition of NM as a coend, there is a universal dinatural transformation

iX,M : HomA(M,X)∗ ⊗k X → A∗ ⊗A M (M,X ∈ A-mod). (4.1)

For later use, we give an explicit description of the universal dinatural transforma-
tion (4.1). We begin with the following observation: For each X ∈ A-mod, there is the
‘action’ map

ρX : A → Homk(X,X), ρX(a)(x) = ax (a ∈ A, x ∈ X). (4.2)

If we regard Homk(X,X) as an A-bimodule by

(a · ξ · b)(x) = aξ(bx) (a, b ∈ A, ξ ∈ Homk(X,X), x ∈ X), (4.3)

then ρX is a morphism of A-bimodules. It is easy to see that the family ρ = {ρX}X∈A-mod
of morphisms of A-bimodules makes A the end

A =
∫

X∈A-mod
Homk(X,X)

in A-mod-A.
Since the duality functor (−)∗ : A-mod-A → A-mod-A is an anti-equivalence of k-

linear categories, it turns an end into a coend and thus, in particular, we have

A∗ =
∫ X∈A-mod

Homk(X,X)∗

with the universal dinatural transformation ρ∗
X : Homk(X,X)∗ → A∗, the linear dual of

ρX . We pick M ∈ A-mod and apply the functor (−) ⊗A M : A-mod-A → A-mod to the
above equation. Since this functor has a right adjoint, it preserves colimits and therefore
A∗ ⊗A M is the coend

A∗ ⊗A M =
∫ X∈A-mod

Homk(X,X)∗ ⊗A M

in A-mod with the universal dinatural transformation ρ∗
X ⊗A idM . Now we discuss the

‘integrand’ of this formula. We first remark:

526



Modified Traces and the Nakayama Functor

Lemma 4.1 For X,M ∈ A-mod, there is an isomorphism

ϕX,M : X∗ ⊗A M → HomA(M,X)∗, x∗ ⊗A m �→
(
f �→ 〈x∗, f (m)〉

)
(4.4)

of vector spaces.

Proof The desired isomorphism is obtained as the dual of the composition

(X∗ ⊗A M)∗ = Homk(X∗ ⊗A M,k) ∼= HomA(M, Homk(X∗,k)) ∼= HomA(M,X),

where the first isomorphism is the tensor-Hom adjunction and the second one is induced by
the canonical isomorphism X∗∗ ∼= X of left A-modules.

Lemma 4.2 For X, Y ∈ A-mod, there is an isomorphism

ϕ′
X,Y : Y ⊗k X∗ → Homk(Y,X)∗, y ⊗k x∗ �→

(
f �→ 〈x∗, f (y)〉

)
(4.5)

ofA-bimodules, where Homk(Y,X) is regarded as anA-bimodule by the same way as (4.3).

Proof The bijectivity of this map follows from the previous lemma applied to A = k. It is
straightforward to check that ϕ′

X,Y is a homomorphism of A-bimodules.

Thus we have a chain of natural isomorphisms

HomA(M,X)∗ ⊗k Y
4.4−−−→ (X∗ ⊗A M) ⊗k Y

∼=−−−→ (Y ⊗k X∗) ⊗A M
(4.5)−−−→ Homk(Y,X)∗ ⊗A M

for X, Y,M ∈ A-mod, where the second one just changes the order of tensorands. Now the
universal dinatural transformation (4.1) is obtained by composing ρ∗

X ⊗A idM and the above
chain of isomorphisms with X = Y . It seems to be difficult to write down the map iX,M

explicitly. Instead of doing so, we provide the following useful identity:

Lemma 4.3 For x∗ ∈ X∗, x ∈ X and m ∈ M , we have

iX,M(ϕX,M(x∗ ⊗A m) ⊗k x) = 〈x∗, ?x〉 ⊗A m, (4.6)

where 〈x∗, ?x〉 ∈ A∗ is the linear map defined by a �→ 〈x∗, ax〉.

Proof By the definition of iX,M , we have

iX,M(ϕX,M(x∗ ⊗A m) ⊗k x) = ρ∗
X(ϕ′

X,X(x ⊗k x∗)) ⊗A m = 〈x∗, ?x〉 ⊗A m.

4.2 The Canonical Nakayama-Twisted Trace

Let M be a finite abelian category, and let N := NM. We point out that there is a canonical
N-twisted trace on Proj(M), which is ‘universal’ in a different meaning as the universal
vector-valued twisted trace mentioned in Section 3.3.

We first recall from Section 2.4 that there is a canonical isomorphism

V ⊗ HomM(M,M ′)
∼=−−→ HomM(M, V ⊗ M ′) (V ∈ Vect,M,M ′ ∈ M) (4.7)
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as the functor HomM(M,−) is k-linear. Let iX,M : HomM(M,X)∗ ⊗ X → N(M)

(M, X ∈ M) be the universal dinatural transformation for the coend N(M). If P is a pro-
jective object of M, then the functor HomM(P,−) preserves colimits and, in particular,
we have

HomM(P,N(P )) =
∫ X∈M

HomM(P, HomM(P,X)∗ ⊗ X)

with the universal dinatural transformation HomM(P, iX,P ). Now we define

t̃• := {̃tP : HomM(P,N(P )) → k}P∈Proj(M),

where t̃P for P ∈ Proj(M) is the unique k-linear map such that the diagram

HomM(P,N(P )) HomM(P, HomM(P,X)∗ ⊗ X)

k HomM(P,X)∗ ⊗k HomM(P,X)

t̃P (4.7)

HomM(P, iX,P )

evaluation

(4.8)

commutes. By the naturality of (4.7) and the dinaturality of the evaluation map, we easily
verify that t̃• is a N-twisted trace on Proj(M).

Definition 4.4 We call t̃• the canonical Nakayama-twisted trace on Proj(M).

Let A be a finite-dimensional algebra. We consider the case where M = A-mod.

Lemma 4.5 For every P ∈ A-proj, we have

t̃P = εP ◦ θ−1
P,N(P ), (4.9)

where θ is the natural transformation given by (3.2) and εP is the k-linear map

εP : P † ⊗A A∗ ⊗A P → k, p† ⊗A a∗ ⊗A p �→ 〈a∗, p†(p)〉. (4.10)

Proof For P ∈ A-proj, we define t′
P to be the right-hand side of (4.9). By the defini-

tion (4.8) of the canonical Nakayama-twisted trace, this lemma is proved if we prove the
equation

t′P (iX,P ◦ �(ξ, f )) = 〈ξ, f 〉 (4.11)

for all P ∈ A-proj, X ∈ A-mod, ξ ∈ HomA(P,X)∗ and f ∈ HomA(P,X), where

�(ξ, f ) : P → HomA(P,X)∗ ⊗k X, p′ �→ ξ ⊗k f (p′) (p′ ∈ P).

Let ϕX,M : X∗ ⊗A M → HomA(M,X)∗ be the isomorphism given by (4.4). To prove
(4.11), it is enough to consider the case where ξ = ϕX,P (x∗ ⊗A p) and f = θP,X(p† ⊗A x)

for some x ∈ X, x∗ ∈ X∗, p ∈ P and p† ∈ P †. The right-hand side of (4.11) is then
computed as follows:

〈ξ, f 〉 (4.4)= 〈x∗, θP,X(p† ⊗A x)(p)〉 (3.2)= 〈x∗, p†(p)x〉.
We fix a pair {pi, p

i} of dual bases for P . Then the left-hand side of (4.11) is

t′P (iX,P ◦ �(ξ, f ))
(3.3)= εP (pi ⊗A iX,P (ξ ⊗k f (pi)))

(4.6)= εP (pi ⊗A 〈x∗, ?f (pi)〉 ⊗A p)

(4.10)= 〈x∗, pi(p)f (pi)〉 (3.2)= 〈x∗, pi(p) · p†(pi)x〉 = 〈x∗, p†(p)x〉,
where the summation over i is understood. Thus (4.11) is verified. The proof is done.
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We fix a finite-dimensional A-bimodule Σ and regard it as a k-linear right exact end-
ofunctor on A-mod as in Section 3.3. A bijection between Tr(Σ) and HH0(Σ)∗ has been
established there. By using the canonical Nakayama-twisted trace, the bijection is expressed
as follows:

Lemma 4.6 The Σ-twisted trace tλ• associated to λ ∈ HH0(Σ)∗ is given by

tλ
P (f ) = t̃P

(
P

f−−−−→ Σ ⊗A P
λ�⊗AidP−−−−−−−−→ A∗ ⊗A P

)
(4.12)

for P ∈ A-proj and f ∈ HomA(P,Σ(P )), where λ� : Σ → A∗ is given by (3.13).

Proof Given a morphism f : P → Σ(P ) in A-mod with P ∈ A-proj, we denote by t′
P (f )

the right-hand side of (4.12). We take a pair {pi, p
i} of dual bases for P and compute

t′
P (f ) = εP (θ−1

P,N(P )((λ
� ⊗A idP ) ◦ f ))

(3.3)= εP (pi ⊗A λ�(fΣ(pi)) ⊗A fP (pi))

(4.10)= 〈λ�(fΣ(pi)), p
i(fP (pi))〉 (3.13)= 〈λ, pi(fP (pi)) · fΣ(pi)〉 (3.7)= tλ

P (f ),

where f (p) is expressed as f (p) = fΣ(p) ⊗A fP (p) as in (3.7). The proof is done.

We define the linear map λ : A∗ → k by λ(a∗) = a∗(1A). It is easy to verify that λ is
the element of HH0(A

∗)∗ such that λ� = idA∗ . The above lemma shows that the canonical
Nakayama-twisted trace for A-mod is the N-twisted trace associated to λ under the bijection
given by Theorem 3.7. Since idA∗ is an isomorphism, we have the following consequence:

Lemma 4.7 The canonical Nakayama-twisted trace is non-degenerate.

Let M be a finite abelian category. The above lemma means that the pairing

β̃M,P : HomM(M,N(P )) × HomM(P,M) → k, (f, g) �→ t̃P (fg) (4.13)

is non-degenerate for all P ∈ Proj(M) and M ∈ M. For later use, we denote by

α̃M,P : HomM(M,N(P )) → HomM(P,M)∗, f �→ β̃M,P (f,−) (4.14)

the k-linear map induced by βM,P . By the N-cyclicity of t̃•, we see that α̃M,P is natural in
M and P . Furthermore, α̃M,P is an isomorphism since β̃M,P is non-degenerate.

4.3 Category-Theoretical Reformulation

Let M be a finite abelian category, and let Σ be a k-linear right exact endofunctor on M.
For simplicity, we write P = Proj(M). Given a natural transformation ξ : Σ → N, we
define

tξ
P : HomM(P,Σ(P )) → k, tξ

P (f ) := t̃P (ξP ◦ f ) (4.15)

for P ∈ P and f ∈ HomM(P,Σ(P )). By the fact that t̃• is an N-twisted trace, one can
easily verify that tξ• := {tξ

P } is a Σ-twisted trace on P . Thus we have the map

�1 : Nat(Σ,N) → Tr(Σ), �1(ξ) = tξ• . (4.16)

If M = A-mod for some finite-dimensional algebra A, then, by the Eilenberg-Watts
equivalence, we may assume that the functor Σ is given by tensoring a finite-dimensional
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A-bimodule. Abusing notation, we denote that bimodule by Σ (thus, as in Section 3.3, we
have Σ(M) = Σ ⊗A M). By Lemma 4.6, we see that the composition

HH0(Σ)∗ (3.14)−−−−→≈ HomA|A(Σ, A∗) (2.4)−−−→≈ Nat(Σ,N)
�1−−→ Tr(Σ) (4.17)

agrees with the bijection given in Theorem 3.7.
The map �1 is described without referencing an algebra A such that M ≈ A-mod.

Therefore the map �1 is a desired categorical interpretation of the bijection given in Theo-
rem 3.7. We also desire to describe the inverse of �1 in a categorical way. For this purpose,
we introduce two functors h∗,hΣ : Mop × P → Vect by

h∗(M,P ) = HomM(P,M)∗, hΣ(M,P ) = HomM(M,Σ(P ))

and define two maps �2 : Tr(Σ) → Nat(hΣ,h∗) and �3 : Nat(hΣ,h∗) → Nat(Σ,N) as
follows:

– Given t• ∈ Tr(Σ), M ∈ M and P ∈ P , we define αM,P : hΣ(M,P ) → h∗(M,P )

by

〈αM,P (f ), g〉 = tP (fg) (f ∈ hΣ(M,P ), g ∈ HomM(P,M)).

It follows from the Σ-cyclicity of t• that α = {αM,P }M∈M,P∈P is a natural
transformation from hΣ to h∗. We now define �2(t•) = α.

– Given α ∈ Nat(hΣ,h∗), we consider the natural transformation

(̃αM,P )−1 ◦ αM,P : HomM(M,Σ(P )) → HomM(M,N(P ))

for M ∈ M and P ∈ P . By the Yoneda lemma, there is a unique element ξ ∈
Nat(Σ |P ,N|P ) such that the following equation holds:

(̃αM,P )−1 ◦ αM,P = HomM(M, ξP ) (M ∈ M, P ∈ P).

By Lemma 2.1, ξ : Σ |P → N|P extends to a natural transformation from Σ to N,
which we denote by the same symbol ξ . We now define �3(α) = ξ .

Now we state the following main theorem of this section:

Theorem 4.8 The maps �1, �2 and �3 are bijections such that �3�2�1 is the identity
map. Furthermore, these bijections restrict to bijections between the following three sets:

– The set of non-degenerate Σ-twisted traces on Proj(M).
– The set of natural isomorphisms Σ → N.
– The set of natural isomorphisms hΣ → h∗.

Proof The bijectivity of �1 has been proved by showing that it reduces the bijection of
Theorem 3.7 in the case where M = A-mod for some finite-dimensional algebra A. To see
that �3 is bijective, we remark that there are bijections

Nat(hΣ,h∗) ∼= Nat(hΣ,hN) ∼= Nat(Σ |P ,N|P ) ∼= Nat(Σ,N)

by the Yoneda lemma and Lemma 2.1. One can check that the map �3 is actually the
composition of these bijections and, in particular, is bijective.

Now we show that �1�3�2 is the identity map. Given t• ∈ Tr(Σ), we set α = �2(t•),
ξ = �3(α) and t′• = �1(ξ). By the definition of the map �2, we have α̃M,P (ξP ◦ f ) =
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αM,P (f ) for all objects M ∈ M and P ∈ P and all morphisms f ∈ HomM(M,Σ(P )).
Hence we compute

t′
P (f ) = t̃P (ξP ◦ f ) = 〈̃αP,P (ξP ◦ f ), idP 〉 = 〈αP,P (f ), idP 〉 = tP (f )

for all morphisms f : P → Σ(P ) in M with P ∈ P . Thus t′• = t•. This means that
�1�3�2 is the identity map.

Since we have already proved that �1 and �3 are bijective, we obtain �2 = �−1
3 �−1

1 .
This implies the bijectivity of �2 and that �3�2�1 is the identity map.

For simplicity, we denote by X1, X2 and X3 the set of natural isomorphisms from Σ to
N, the set of non-degenerate Σ-twisted traces on P , and the set of natural isomorphisms
from hΣ to h∗, respectively. To complete the proof, we shall show that �1, �2 and �3
induce bijections between X1, X2 and X3. To achieve this, it suffices to show �1(X1) ⊂ X2,
�2(X2) ⊂ X3 and �3(X3) ⊂ X1. The first one follows from the non-degeneracy of the
canonical Nakayama-twisted trace, the second from the definition of non-degeneracy, and
the third from the Yoneda lemma. The proof is done.

5 Compatibility with theModule Structure

5.1 Closing Operator and theModule-Compatibility

Let M be a finite abelian category, and let C be a rigid monoidal category. We say that C
acts linearly on M from the right if M is equipped with a structure of a right C-module
category such that the functor M → M given by M �→ M � X is k-linear for all objects
X ∈ C. Given finite abelian categories M and N on which C acts linearly, we denote by
RexC(M,N ) the category of k-linear right exact right C-module functors from M to N .

Now let M be a finite abelian category on which C acts linearly from the right. Then, for
every object X ∈ C, the endofunctor (−) � X on M is k-linear and exact. The k-linearity
is a part of our assumption. The exactness follows from that (−) � X has a left and a right
adjoint. Indeed, as in the case of rigid monoidal categories, there are natural isomorphisms

(−)� : HomM(M � X, M ′) → HomM(M,M ′
� X∗), (5.1)

(−)� : HomM(M,M ′
� X) → HomM(M �

∗X,M ′) (5.2)

for M,M ′ ∈ M and X ∈ C defined by

f � = (f � idX∗) ◦ (idM � coevX), g� = (idM ′ � ev∗X) ◦ (g � id∗X).

We are interested in when the twisted trace is ‘compatible’ with the right action of C on
M. To give a rigorous formulation of the compatibility, we use the linear map

clM,N |X : HomM(M � X,N � X∗∗) → HomM(M,N) (M,N ∈ M, X ∈ C),

clM,N |X(f ) = (idN � evX∗) ◦ (f � idX∗) ◦ (idM � coevX).

The linear map clM,N |X is called the partial trace in literature (at least when M = C
and C is pivotal), however, we call it the closing operator to prevent the proliferation of
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trace-like terms. This terminology is justified by the following graphical expression of the
closing operator:

clM,N |X

⎛
⎜⎜⎜⎜⎜⎝

f

M X

N X∗∗

⎞
⎟⎟⎟⎟⎟⎠

= f

M

N

X∗ (f ∈ HomM(M � X,N � X∗∗)).

We denote by MD the category M equipped with the right C-action twisted by the
double left dual functor D(X) = X∗∗ (X ∈ C). Let Σ ∈ Rex(M,MD). In other words, Σ

is a k-linear right exact endofunctor on M equipped with a natural isomorphism

Ψ Σ
M,X : Σ(M) � X∗∗ → Σ(M � X) (M ∈ M, X ∈ C)

such that the equations Ψ Σ
M,1 = idΣ(M) and Ψ Σ

M,X⊗Y = Ψ Σ
M�X,Y ◦ (Ψ Σ

M,X � idY ∗∗) hold for
all objects M ∈ M and X, Y ∈ C. Now we clarify what ‘compatible’ means:

Definition 5.1 A Σ-twisted trace t• on Proj(M) is said to be compatible with the right
C-module structure (or module-compatible for short) if the equation

tP (clP,Σ(P )|X(f )) = tP�X(Ψ Σ
P,X ◦ f ) (5.3)

holds for all P ∈ Proj(M), X ∈ C and f ∈ HomM(P � X,Σ(P ) � X∗∗).

Graphically, (5.3) is expressed as follows:

tP

⎛
⎜⎜⎜⎜⎜⎝

f

P

Σ(P )

⎞
⎟⎟⎟⎟⎟⎠

= tP�X

⎛
⎜⎜⎜⎜⎜⎝

Ψ Σ
P,X ◦ f

P X

Σ(P � X)

⎞
⎟⎟⎟⎟⎟⎠

If P ∈ Proj(M) and X ∈ C, then the functor HomM(P � X,−) is exact since there
is a natural isomorphism HomM(P � X,M) ∼= HomM(P,M � X∗) for M ∈ M. Thus
P � X ∈ Proj(M). Thanks to this, the symbol tP�X in (5.3) makes sense.

Remark 5.2 A pivotal structure of C is an isomorphism p : idC → D of monoidal functors.
We suppose that a pivotal structure p of C is given. Then an object Σ ∈ RexC(M,MD)

is made into a right C-module endofunctor on M by replacing its structure morphism Ψ Σ

with

Σ(M) � X
idΣ(M)�pX−−−−−−−→ Σ(M) � X∗∗ Ψ Σ

M,X−−−−→ Σ(M � X),

and, in this way, one can identify RexC(M,MD) with RexC(M,M).
Now let Σ be an object of the category RexC(M,MD) ∼= RexC(M,M). If Proj(M)

is closed under the functor Σ , then our notion of a module-compatible Σ-twisted trace on
Proj(M) is precisely a right module trace on (Proj(M),Σ) in the sense of [11]. Note, in
general, an object of RexC(M,M) does not have a structure of a D-twisted module functor
in absence of a pivotal structure of C.

If M = C and Σ = idC , then our notion further specializes to modified traces as
mentioned in Introduction. Applications of results of this section to modified traces will be
given in the next section.

532



Modified Traces and the Nakayama Functor

5.2 The TwistedModule Structure of the Nakayama Functor

Let M and C be as in the previous subsection, and let Σ ∈ RexC(M,MD). Then there is
the bijection between Tr(Σ) and Nat(Σ,N) established in the previous section. We recall
that the Nakayama functor N := NM belongs to RexC(M,MD) [12, Theorem 4.4].
The goal of this section is to prove that the set of module-compatible Σ-twisted traces on
Proj(M) is in bijection with the set of morphisms of right C-module functors from Σ to N
(Theorem 5.8).

As a preparation, we recall from [12] how the structure morphism

Ψ N

M,X : NM(M) � X∗∗ → NM(M � X) (M ∈ M, X ∈ C) (5.4)

of the Nakayama functor is given. The following formula for coends is useful:

Lemma 5.3 ([4, Lemma 3.9]) Let A, B and V be categories, let F : A → B be a functor
admitting a right adjoint G, and let H : Bop × A → V be a functor. If either of coends

C1 =
∫ X∈A

H(F(X),X) or C2 =
∫ Y∈B

H(Y,G(Y ))

exists, then both exist and they are canonically isomorphic.

For reader’s convenience, we include how the isomorphism C1 ∼= C2 is constructed. Let
i and j be the universal dinatural transformation for the coend C1 and C2, respectively. We
define φ : C1 → C2 and φ : C2 → C1 to be the unique morphisms in V such that the
equations

φ ◦ iX = jF(X) ◦ H(F(X), ηX) and φ ◦ jX = iG(X) ◦ H(εY ,G(Y ))

hold for all objects X ∈ A and Y ∈ B, where η and ε are the unit and the counit for the
adjunction F � G, respectively. Then φ and φ are mutually inverse to each other.

Given a functor F , we denote its right adjoint by F r.a. (if it exists). Let F : M → M
be a k-linear right exact functor such that F r.a. is right exact and the double right adjoint
F r.r.a. := (F r.a.)r.a. is again right exact. We then have natural isomorphisms

F r.r.a.N(M) ∼=
∫ X∈M

F r.r.a.(HomM(M,X)∗ ⊗ X) (5.5)

∼=
∫ X∈M

HomM(M,X)∗ ⊗ F r.r.a.(X) (5.6)

∼=
∫ X∈M

HomM(M,F r.a.(X))∗ ⊗ X (5.7)

∼=
∫ X∈M

HomM(F (M),X)∗ ⊗ X = NF(M) (5.8)

for M ∈ M, where the first isomorphism is due to the assumption that F r.r.a. is right exact,
the second to the Vect-module structure of the k-linear functor F r.r.a., the third to Lemma 5.3
and the last to the adjunction F � F r.a.. In summary, we have an isomorphism

F r.r.a. ◦ N ∼= N ◦ F, (5.9)
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as stated in [12, Theorem 3.18]. If F = (−) � V for some V ∈ C, then we have
F r.a. = (−) � V ∗ and F r.r.a. = (−) � V ∗∗ in view of (5.1). Thus a natural isomorphism

N(M) � V ∗∗ = F r.r.a.(N(M))
(5.9)−−−→ N(F (M)) = N(M � V ) (M ∈ M) (5.10)

is induced. This makes N : M → MD a right C-module functor.
For later use, we remark the following relation between the right C-module structure of

N and the closing operator.

Lemma 5.4 For M,X ∈ M and V ∈ C, the following diagram commutes:

N(M) � V ∗∗ (HomM(M,X)∗ ⊗ X) � V ∗∗

HomM(M,X)∗ ⊗ (X � V ∗∗)

N(M � V ) HomM(M � V,X � V ∗∗)∗ ⊗ (X � V ∗∗)

Ψ N
M,V

(2.6) with F = (−) � V ∗∗

iX,M�idV ∗∗

(clM,X|V )∗⊗idX�V ∗∗

iX�V ∗∗,M�V

Proof We fix M,X ∈ M and V ∈ C and introduce the k-linear map

c : HomM(M,X � V ∗∗
� V ∗) → HomM(M,X), f �→ (idX � evV ∗) ◦ f .

By the definition (5.5)–(5.10) of the right C-module structure of the Nakayama functor, the
following diagram is commutative:

N(M) � V ∗∗ (HomM(M,X)∗ ⊗ X) � V ∗∗

HomM(M,X)∗ ⊗ (X � V ∗∗)

HomM(M,X � V ∗∗
� V ∗)∗ ⊗ (X � V ∗∗)

N(M � V ) HomM(M � V,X � V ∗∗)∗ ⊗ (X � V ∗∗)

Ψ N
M,V

(2.6) with F = (−) � V ∗∗

iX,M�idV ∗∗

c∗⊗idX�V ∗∗

(5.1)∗⊗idX�V ∗∗

iX�V ∗∗,M�V

One can verify that the composition

HomM(M � V, X � V ∗∗) (5.1)−−−→ HomM(M,X � V ∗∗
� V ∗) c−→ HomM(M,X)

is equal to clM,X|V . The proof is done.

5.3 Module-Compatibility of the Canonical Nakayama-Twisted Trace

As we have recalled, the Nakayama functor N = NM belongs to the category
RexC(M,MD). The canonical N-twisted trace t̃•, introduced in Section 4.2, has the
following important property:

Lemma 5.5 t̃• is module-compatible.
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Proof We write the Hom functor of M as [ , ] to save spaces in the proof of this lemma.
Let P ∈ Proj(M) and V ∈ C. Since P � V is projective, we have

[P � V,N(P ) � V ∗∗] =
∫ X∈M

[P � V, ([X, P ]∗ ⊗ X) � V ∗∗]
with the universal dinatural transformation jX := [P � V, iX,P � idV ∗∗ ]. Thus, to prove
this lemma, it suffices to show that the equation

t̃P�V ◦ [P � V, Ψ N

P,V ] ◦ jX = t̃P ◦ clP,N(P )|V ◦ jX (5.11)

holds for all objects X ∈ M.
We first verify that the diagram given as Fig. 1 is commutative. To see the commutativity

of the cell labeled (C1), we define three k-linear functors E : M → Vect, F : M → M
and G : M → Vect by

E(M) = [P � V, M], F (M) = M � V ∗∗, G(M) = [P, M]
for M ∈ M, respectively. Every k-linear functor between finite abelian categories has a
canonical structure of a Vect-module functor. Lemma 2.2 implies that the natural transfor-
mation clP,M|V : EF(M) → G(M) (M ∈ M) gives rise to a morphism of Vect-module
functors. Namely, the diagram

EF(W ⊗ M) E(W ⊗ F(M)) W ⊗ EF(M)

G(W ⊗ M) W ⊗ G(M)

clP,W⊗X|V

(2.6) (2.6)

idW ⊗clP,X|V
(4.7)

commutes for all M ∈ M and W ∈ Vect. Letting W = [P, X]∗ and M = X, we find
that the cell (C1) is commutative. The cells (C2), (C3) and (C4) are also commutative by
the naturality of (4.7), the definition of the dual map, and the commutative diagram (4.8)
defining t̃, respectively. Thus the diagram of Fig. 1 is commutative.

By Lemma 5.4, the left row of the diagram is equal to the map

[P � V,Ψ N

P,V (iX,P � idV ∗∗)] : [P � V, ([P,X]∗ ⊗ X) � V ∗∗] → [P � V,N(P � V )].
By (4.8), the right row is equal to t̃P ◦ [P, iX,P ] : [P, [P,X]∗ ⊗ X] → k. Hence, by the
commutativity of the diagram, we have

t̃P�V ◦ [P � V,Ψ N

P,V (iX,P � idV ∗∗)] = t̃P ◦ [P, iX,P ] ◦ clP,[P,X]∗⊗X|V .

Fig. 1 Proof of Lemma 5.5
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The left-hand side of this equation is equal to that of (5.11). The right-hand side is equal to
that of (5.11) by the naturality of clP,−|V . The proof is done.

5.4 Module-Compatibility of Twisted Traces (The General Case)

Let Σ be an object of the category RexC(M,MD). We note that the Nakayama functor
N := NM also belongs to this category.

Definition 5.6 A natural transformation ξ : Σ → N is said to be compatible with the right
C-module structure (or module-compatible for short) if it is a morphism in the category
RexC(M,MD).

We define k-linear functors h∗,hΣ : Mop × Proj(M) → Vect as in Section 4.3.

Definition 5.7 A natural transformation α : hΣ → h∗ is said to be compatible with the
right C-module structure (or module-compatible for short) if, for all objects M ∈ M, P ∈
Proj(M) and X ∈ C, the following diagram commutes:

HomM(M � X∗,Σ(P )) HomM(P,M � X∗)∗

HomM(M,Σ(P ) � X∗∗)

HomM(M,Σ(P � X)) HomM(P � X, M)∗

(5.1)

αM�X∗,P

(5.1)∗

HomM(M,Ψ Σ
P,X)

αM,P�X

The commutativity of the above diagram is equivalent to that the equation

〈αM,P�X(Ψ Σ
P,X ◦ f �), g〉 = 〈αM�X∗,P (f ), g�〉 (5.12)

holds for all f ∈ HomM(M � X∗,Σ(P )) and g ∈ HomM(P � X,M).
Now the main result of this section is stated as follows:

Theorem 5.8 The three bijections

Nat(Σ,N)
�1−−−−−→ Tr(Σ)

�2−−−−−→ Nat(hΣ,h∗) �3−−−−−→ Nat(Σ,N)

introduced in Section 4.3 restrict to bijections between the following three sets:

– The set of module-compatible Σ-twisted traces on Proj(M).
– The set of module-compatible natural transformations Σ → N.
– The set of module-compatible natural transformations hΣ → h∗.

Proof For simplicity, we denote by Yi (i = 1, 2, 3) the set of module-compatible elements
belonging to the source of the map �i . To prove this theorem, it suffices to show �i(Yi ) ⊂
Yi+1 for each i = 1, 2, 3, where Y4 = Y1.

(1) �1(Y1) ⊂ Y2. Let ξ : Σ → N be a natural transformation, and let tξ• be the Σ-
twisted trace corresponding to ξ . Suppose that ξ is module-compatible. Then, for all objects
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P ∈ Proj(M) and X ∈ C and all morphisms f : P � X → Σ(P ) � X∗∗ in M, we have

tξ
P�X(Ψ Σ

P,X ◦ f )
(4.15)= t̃P�X(ξP�X ◦ Ψ Σ

P,X ◦ f ) = t̃P�X(Ψ N

P,X ◦ (ξP � idX∗∗) ◦ f )

= t̃P(clP,N(P )|X((ξP �idX∗∗)◦f ))= t̃P (ξP ◦ clP,Σ(P )|X(f ))
(4.15)= tξ

P (clP,Σ(P )|X(f )).

Here, the second equality follows from the module-compatibility of ξ , the third from
Lemma 5.5, and the fourth from the naturality of the closing operator. Hence �1(Y1) ⊂ Y2
is proved.

(2) �2(Y2) ⊂ Y3. Let t• ∈ Tr(Σ) be a module-compatible Σ-twisted trace on
Proj(M), and set α = �2(t•). We fix objects M ∈ M, P ∈ Proj(M) and X ∈ C. For all
morphisms f : M � X∗ → Σ(P ) and g : P � X → M in M, we have

clP,Σ(P )|X(f � ◦ g) =
f

Σ(P )

g

M

P

X∗

f �

=
f

Σ(P )

g

M

P

= f ◦ g�. (5.13)

Now the (5.12) is verified as follows:

〈αM,P�X(Ψ Σ
P,X ◦ f �), g〉 = tP�X(Ψ Σ

P,X ◦ f � ◦ g)

(5.3)= tP (clP,Σ(P )|X(f � ◦ g))
(5.13)= tP (f ◦ g�) = 〈αM�X∗,P (f ), g�〉.

Hence �2(Y2) ⊂ Y3 is proved.
(3) �3(Y3) ⊂ Y1. Let α : hΣ → h∗ be a module-compatible natural transformation,

and let ξ = �3(α) be the corresponding natural transformation. For all objects M ∈ M,
P ∈ Proj(M) and X ∈ C, there is the commutative diagram given as Fig. 2. By the
definition of ξ and the naturality of (5.1), the composition along the left column is

HomM(M,Σ(P ) � X∗∗) → HomM(M,N(P ) � X∗∗), f �→ (ξP � idX∗∗) ◦ f .

Fig. 2 Proof of �3(Y3) ⊂ Y1
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By chasing the identity map idM ∈ HomM(M,Σ(P ) � X∗∗) with M = Σ(P ) � X∗∗
around the above diagram, we see that the equation

ξP�X ◦ Ψ Σ
P,X = Ψ N

P,X ◦ (ξP � idX∗∗) (5.14)

holds for all P ∈ Proj(M) and X ∈ C.
To show that ξ is module-compatible, we shall show that the (5.14) holds for all objects

P ∈ M and X ∈ C. We fix an object X ∈ C and introduce two k-linear functors

F, G : M → M, F (M) = Σ(M) � X∗∗, G(M) = N(M � X) (M ∈ M).

There is a natural transformation

zM : F(M) → G(M), zM = ξM�X ◦ Ψ Σ
M,X − Ψ N

M,X ◦ (ξM � idX∗∗).

(5.14) implies that the natural transformation z|Proj(M) : F |Proj(M) → G|Proj(M) is zero.
Since Σ and N are right exact, so are F and G. Thus, by Lemma 2.1, z = 0. This means
that (5.14) holds for all P ∈ M and X ∈ C. The proof is done.

Remark 5.9 (compatibility with left module structures) Let M be a finite abelian category,
and let C be a rigid monoidal category acting linearly on M from the left (that is, M is
equipped with structure of a left C-module category and the functor X � idM is k-linear for
all objects X ∈ C). This assumption is equivalent to that Crev acts linearly on M from the
right. Thus, by applying our results, we can know when twisted traces are compatible with
the left C-module structure.

A technical remark is that the double left dual functor of Crev is the double right dual
functor D = ∗∗(−) of C. Thus, in our framework, D-twisted left C-module functors are
considered. They are functors Σ equipped with structure morphism of the form ∗∗X �

Σ(M) → Σ(X � M).

6 Applications to Finite Tensor Categories

6.1 Twisted Traces for Finite Module Categories

In this section, we assume that the base field k is algebraically closed (since we will use
results of [10], where the base field is assumed to be algebraically closed). A finite tensor
category [8, 10] is a finite abelian category C equipped with a structure of a rigid monoidal
category such that the tensor product C × C → C is k-bilinear and the unit object 1 ∈ C is
a simple object. We give some applications of our results to finite tensor categories.

Let C be a finite tensor category. An exact right C-module category [8, 10] is a finite
abelian category M equipped with a structure of a right C-module category such that the
action � : M × C → M is k-bilinear and M � P is projective for all M ∈ M and
P ∈ Proj(C). An easy, but important observation is:

Lemma 6.1 Let C be a finite tensor category, and let M be an indecomposable exact
right C-module category. Then the Nakayama functor is a simple object in the finite abelian
category RexC(M,MD).
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Proof Since M is assumed be exact, any projective object of M is injective and vice versa
[10], and therefore the Nakayama functor NM is an equivalence [12, Proposition 3.24].
Hence the functor

RexC(M,M) → RexC(M,MD), F �→ NM ◦ F

is an equivalence. The category E := RexC(M,M) is known as the dual of C with respect
to M [8]. By the exactness and the indecomposability of M, E is in fact a finite tensor cate-
gory. The unit object of E , namely idM, is a simple object of E . Thus so is the corresponding
object NM.

As an application of our results, we prove:

Theorem 6.2 Let C be a finite tensor category, let M be an indecomposable exact right
C-module category, and let Σ : M → MD be a k-linear right exact right C-module
functor. Then there exists a non-degenerate module-compatibleΣ-twisted trace on Proj(M)

if and only if Σ ∼= NM as right C-module functors. If this is the case, a non-zero module-
compatible Σ-twisted trace on Proj(M) is unique up to scalar multiple and every such
trace is non-degenerate.

Proof The claim about the existence follows immediately from Theorems 3.7 and 5.8. Now
we suppose that there is an isomorphism ξ : Σ → NM of right C-module functors. Then
we have HomE (Σ,NM) ∼= HomE (NM,NM) ∼= k, where E := RexC(M,MD) and
the second isomorphism follows from Schur’s lemma. This implies that every non-zero
module-compatible Σ-twisted trace on Proj(M) is a scalar multiple of the Σ-twisted trace
associated to the isomorphism ξ . The proof is done.

Now we consider the case where M = C.

Definition 6.3 For a finite tensor category C, we set αC := NC(1). We say that C is
unimodular if the object αC is isomorphic to the unit object.

The distinguished invertible object of C is introduced in [9] as an analogue of the mod-
ular function on a finite-dimensional Hopf algebra (also called the distinguished grouplike
element). By the discussion of [12, Section 4.3], the object αC is isomorphic to the dual of
the distinguished invertible object of [9]. Thus the above definition of unimodularity agrees
with that of [9].

Theorem 6.4 We fix an object σ ∈ C, define Σ : C → C by Σ(X) = σ ⊗ X∗∗ for
X ∈ C, and make Σ an object of the category RexC(C, CD) in an obvious way. Then
the space of module-compatible Σ-twisted traces on Proj(C) can be identified with the
space HomC(σ, αC). Furthermore, a module-compatible Σ-twisted traces on Proj(C) is
non-degenerate if and only if the corresponding morphism σ → αC in C is an isomorphism.

Proof We write E := RexC(C,CD) for simplicity. By Theorem 5.8, the space of module-
compatible Σ-twisted traces on Proj(C) is identified with the space HomE (Σ,NC). Since
the functor E → C defined by F �→ F(1) is an equivalence, the space is isomor-
phic to HomC(σ, αC). Since an element of HomE (Σ,NC) is invertible if and only if
the corresponding element of HomC(σ, αC) is invertible, the proof is now completed by
Theorem 5.8.
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Corollary 6.5 below is just the case where σ = αC in the above theorem. We note that
αC is isomorphic to the dual of the socle of the projective cover of 1 [9, Theorem 6.1]. The
following corollary is closely related to [13, Corollary 5.6].

Corollary 6.5 We define Σ : C → C by Σ(X) = αC ⊗ X∗∗ for X ∈ C and make Σ an
object of the category RexC(C, CD) in an obvious way. Then a non-zero module-compatible
Σ-twisted trace on Proj(C) exists and is unique up to scalar multiple. Furthermore, every
such trace is non-degenerate.

The following corollary is also interesting:

Corollary 6.6 For a finite tensor category C, there is a natural isomorphism

HomC(P,M)∗ ∼= HomC(M, αC ⊗ P ∗∗) (M ∈ C, P ∈ Proj(C)).

6.2 Pivotal Case

Let C be a pivotal finite tensor category with pivotal structure p. As before, we denote by
D the double left dual functor. The double right dual functor will be denoted by D. The
identity functor on C is made into a D-twisted right C-module functor, as well as a D-twisted
left C-module functor, through the pivotal structure p (see Remarks 5.2 and 5.9).

Definition 6.7 A left (resp. right) modified trace on Proj(C) is an idC-twisted trace on
Proj(C) compatible with the left (resp. right) C-module structure. We denote by T (�)

C and

T (r)
C the spaces of left and right modified traces on Proj(C), respectively.

The above definition agrees with those considered in [2, 14, 15, 18]. Now we give some
applications of our results to modified traces. We first establish the following criterion for
the existence of non-zero modified traces:

Theorem 6.8 For a pivotal finite tensor category C, the following assertions are equivalent:
(1) C is unimodular, that is, there is an isomorphism αC ∼= 1 in C.
(2) There is a non-zero right modified trace on Proj(C).
(3) There is a non-zero left modified trace on Proj(C).

If these equivalent conditions are satisfied, then we have dimk T (r)
C = dimk T (�)

C = 1 and
every non-zero left or right modified trace on Proj(C) is non-degenerate.

This theorem has been proved in [13, Corollary 5.6] except the implications (2) ⇒ (1)
and (3) ⇒ (1). We give a proof of the whole part of this theorem based on our approach,
which is different to [13].

Proof (1) ⇒ (2). Suppose that C is unimodular. We fix an isomorphism f : 1 → αC in C
and then define the natural isomorphism ξ by

ξX =
(
X

f ⊗pX−−−−−−−→ αC ⊗ X∗∗ Ψ N
1,X−−−−−−→ NC(X)

)
(6.1)

for X ∈ C. It is easy to see that ξ = {ξX} is in fact an isomorphism of D-twisted right C-
module functors. Thus, by Theorem 6.2, there is a non-zero right modified trace on Proj(C).
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The uniqueness (up to scalar) and non-degeneracy of non-zero right modified trace on
Proj(C) also follow from that theorem.

(2) ⇒ (1). Suppose that there is a non-zero right modified trace on Proj(C). Then, again
by Theorem 6.2, the right D-twisted C-module functor idC is isomorphic to NC . In particular,
we have αC = NC(1) ∼= idC(1) = 1 and thus C is unimodular.

(1) ⇔ (3). Apply the proof of (1) ⇔ (2) to Crev.

6.3 Existence of Two-SidedModified Traces

Let C be a pivotal finite tensor category. A two-sided modified trace on Proj(C) is an element
of T (�r)

C := T (�)
C ∩ T (r)

C . Theorem 6.8 implies that a non-zero two-side modified trace
on Proj(C) exists only if C is unimodular. The converse does not hold in general. For the
existence of such a trace, we shall impose an extra condition for the pivotal structure.

Definition 6.9 Let C be a finite tensor category. We denote by

�N

X,Y : ∗∗X ⊗ N(Y ) → N(X ⊗ Y ) and Ψ N

X,Y : N(X) ⊗ Y ∗∗ → N(X ⊗ Y )

the left and the right twisted module structures of the Nakayama functor N = NC , respec-
tively. The Radford isomorphism (cf. [9] and [12, Corollary 4.12]) for C is defined to be the
composition

gX :=
(∗∗X ⊗ αC

�N
X,1−−−−−−→ N(X)

(Ψ N
1,X)−1

−−−−−−−−−→ αC ⊗ X∗∗)

for X ∈ C. Now we suppose that C is a pivotal finite tensor category with pivotal structure
p. We say that C is spherical [7, Definition 3.5.2] if C is unimodular and the diagram

∗∗X ⊗ 1 X 1 ⊗ X∗∗

∗∗X ⊗ αC αC ⊗ X∗∗
id∗∗X⊗f

gX pX

f ⊗idX∗∗
gX

(6.2)

commutes for all objects X ∈ C, where f : 1 → αC is an arbitrary isomorphism in C (since
1 ∈ C is a simple object, such an isomorphism f is unique up to scalar and therefore this
definition does not depend on the choice of f ).

Remark 6.10 Let C be a finite tensor category, and set D = α∗
C (this is the distinguished

invertible object of [9]). The left exact Nakayama functor of C is defined by

N�
C : C → C, V �→

∫
X∈C

HomC(X, V ) ⊗ X (V ∈ C)

[12, Definition 3.14]. A relationship between N�
C and a result of [9] has been pointed out in

[30]. Noting that N�
C is the inverse of the (right exact) Nakayama functor NC used in this

paper, we see from [30, Remark 4.11] that the natural isomorphism

X∗∗ coevD⊗idX∗∗−−−−−−−−→ D ⊗ D∗ ⊗ X∗∗ idD⊗g−1
X−−−−−−→ D ⊗ ∗∗X ⊗ D∗ (X ∈ C)

coincides with that given in [9, Theorem 3.3].
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Now we prove the following criterion for the existence of two-sided modified traces:

Corollary 6.11 Let C be a pivotal finite tensor category. Then there exists a non-zero two-
sided modified trace on Proj(C) if and only if C is spherical. If this is the case, a non-zero
two-sided modified trace on Proj(C) is unique up to scalar multiple and every such trace is
non-degenerate.

If C = H -mod for some finite-dimensional Hopf algebra H , then the Radford isomor-
phism corresponds to the distinguished grouplike element of H . Thus, in the case where H

is pivotal, H -mod is spherical if and only if H is unimodular and unibalanced in the sense
of [2]. This corollary can be thought of a generalization of [2, Theorem 1] to the setting of
finite tensor categories.

Proof We make Σ := idC a C-bimodule functor from C to DCD
by the structure morphisms

�Σ
X,Y : ∗∗X ⊗ Σ(Y)

p∗∗X⊗idY−−−−−−→ Σ(X ⊗ Y ),

Ψ Σ
X,Y : Σ(X) ⊗ Y ∗∗ idX⊗p−1

Y−−−−−−→ Σ(X ⊗ Y ).

We also define N(X) = αC ⊗ X∗∗ for X ∈ C. There is an isomorphism

N(X) = NC(1) ⊗ X∗∗ ΨN
1,X−−−−−−→ NC(X) (X ∈ C)

of right C-module functors from C to CD. We make N a C-bimodule functor from C to D C
D

in such a way that the above isomorphism N ∼= NC is in fact an isomorphism of C-bimodule
functors. By the definition of the Radford isomorphism, we see that the resulting structure
morphism of N as a twisted left C-module functor is given by

�N

X,Y : ∗∗X ⊗ N(Y )
gX⊗idY∗∗−−−−−−−−−→ N(X ⊗ Y )

for X, Y ∈ C.
We first prove the ‘if’ part. Suppose that C is spherical. Then, by the definition of the

sphericity, there is an isomorphism f : 1 → αC in C. For X ∈ C, we set ξX := f ⊗pX . Then
ξ = {ξX} is an isomorphism of right C-module functors from Σ to N. By the sphericity, we
have

ξX⊗Y ◦ �Σ
X,Y = (f ⊗ pX⊗Y ) ◦ (p∗∗X ⊗ idY ) = (f ⊗ pX ⊗ pY ) ◦ (p∗∗X ⊗ idY )

(6.2)= gX ⊗ f ⊗ pY = �N

X,Y ◦ (id∗∗X ⊗ ξY )

for all X, Y ∈ C. Thus ξ : Σ → N is also an isomorphism of left C-module functors.
Hence the Σ-twisted trace tξ• associated to ξ is a non-degenerate two-sided modified trace
on Proj(C). By Theorem 6.8, every non-zero two-sided modified trace on Proj(C) is a scalar
multiple of tξ• and thus non-degenerate.

We prove the converse. Suppose that there is a non-zero two-sided modified trace t• on
Proj(C). Then t• is non-degenerate by Theorem 6.8 and therefore there is an isomorphism
ξ : Σ → N of C-bimodule functors. Since, in particular, ξ is an isomorphism of right C-
module functors, f := ξ1 is an isomorphism in C and the equation ξX = f ⊗ pX holds for
all objects X ∈ C. Now the sphericity follows from that C is a morphism of left C-module
functors. The proof is done.
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6.4 Ribbon Finite Tensor Categories

We give some applications of our results to ribbon finite tensor categories. Let B be a
braided rigid monoidal category with braiding σ . The Drinfeld isomorphism (cf. [9, Section
5]) of B is the natural transformation u : idB → D defined by

uX = (evX ⊗ idX∗∗) ◦ (σX,X∗ ⊗ idX∗∗) ◦ (idX ⊗ coevX∗)

for X ∈ B. The map p �→ u−1 ◦ p gives a bijection between the set of pivotal structures of
B and the set of natural isomorphisms θ : idB → idB satisfying

θX⊗Y = σY,XσX,Y (θX ⊗ θY ) (X, Y ∈ B). (6.3)

A ribbon category [22] is a braided rigid monoidal category B equipped with a twist, that
is, a natural isomorphism θ : idB → idB satisfying (6.3) and

(θX)∗ = θX∗ (X ∈ B). (6.4)

Equivalently, a ribbon category is a braided pivotal monoidal category with pivotal structure
p such that the natural isomorphism θ := u−1 ◦ p satisfies (6.4). Such a pivotal structure is
called a ribbon pivotal structure in [30].

We are interested in when a ribbon finite tensor category admits a non-degenerate two-
sided modified trace. Suppose that B is a braided pivotal unimodular finite tensor category.
By [30, Lemma 5.9], B is a ribbon finite tensor category if and only if B is spherical. This
fact and the previous corollary yield the following consequence:

Corollary 6.12 Let C be a ribbon finite tensor category. Then there exists a non-degenerate
two-sided modified trace on Proj(C) if and only if C is unimodular.

Remark 6.13 To prove the above corollary, we have used the fact that a unimodular ribbon
finite tensor category is spherical [30, Lemma 5.9]. One can give an alternative proof of
this fact from the viewpoint of modified trace theory as follows: Let C be a unimodular
ribbon finite tensor category. Then a non-degenerate right modified trace t• on Proj(C)

exists by Theorem 6.8. One can prove that t• is two-sided by the graphical technique in
ribbon categories as demonstrated in [14, Theorem 3.3.1] (note, however, the definition of
an ambidextrous trace [14, Definition 3.2.3] is slightly different from that of our two-sided
modified trace). Thus, by Corollary 6.11, C is spherical.

A modular tensor category [24, 31] is a ribbon finite tensor category that is factorisable
in the sense of [8, Definition 8.6.2]. Gainutdinov and Runkel proved that a modular tensor
category admits a non-degenerate two-sided modified trace under a technical assumption
called Condition P [19, Corollary 4.7]. Slightly generalizing their result, we have:

Corollary 6.14 A modular tensor category admits a non-degenerate two-sided modified
trace.

Proof This follows Corollary 6.12 and the fact that a factorisable braided finite tensor
category is unimodular [8, Proposition 8.10.10].
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7 Hopf Algebras and Comodule Algebras

7.1 Module Categories and Comodule Algebras

Throughout this section, we work over a general field k. Let H be a finite-dimensional Hopf
algebra with comultiplication Δ, counit ε and antipode S. The Sweedler notation, such as
Δ(h) = h(1) ⊗h(2), will be used to express the comultiplication. Given a right H -comodule
M , we denote the coaction by δM : M → M ⊗k H and express it as δM(m) = m(0) ⊗ m(1).

A right H -comodule algebra is an algebra A equipped with a right H -comodule structure
δA such that the equations δA(1A) = 1A ⊗ 1H and δA(ab) = a(0)b(0) ⊗ a(1)b(1) hold for all
a, b ∈ A. If A is a right H -comodule algebra, then A-mod is a finite right module category
over the finite tensor category C := H -mod by M � X = M ⊗k X (M ∈ A-mod, X ∈ C),
where A acts on M � X from the left by

a · (m ⊗ x) = a(0)m ⊗ a(1)x (a ∈ A,m ∈ M,x ∈ X).

It is known that every finite right C-module category is equivalent to A-mod for some finite-
dimensional right H -comodule algebra A [1]. The aim of this section is to describe and
compute module-compatible twisted traces for such right C-module categories.

From now on, H -comodule algebras are always assumed to be finite-dimensional. Let A

be a right H -comodule algebra. We pick a finite-dimensional A-bimodule Σ and identify
it with a k-linear right exact endofunctor on A-mod. In our framework, the functor Σ is
required to be a ‘twisted’ right C-module functor in order that the module-compatibility of a
Σ-twisted trace makes sense. Thus we first discuss when the functor Σ has such a structure.

Let A and B be right H -comodule algebras. We define the category (B-mod-A)H of
finite-dimensional H -equivariant B-A-bimodules (cf. [1, Definition 1.22]) as follows: An
object of this category is a finite-dimensional B-A-bimodule M equipped with a right H -
coaction δM such that the equation

δM(bma) = b(0)m(0)a(0) ⊗ b(1)m(1)a(1) (7.1)

holds for all m ∈ M , a ∈ A and b ∈ B. A morphism of this category is a left B-linear, right
A-linear and right H -colinear map.

We recall that an object T ∈ B-mod-A defines a k-linear right exact functor T ⊗A (−)

from A-mod to B-mod. If T belongs to the category (B-mod-A)H , then the functor T ⊗A

(−) is an oplax right C-module functor by the structure map given by

T ⊗A (M � X) → (T ⊗A M) � X,

t ⊗A (m ⊗ x) �→ (t(0) ⊗A m) ⊗ t(1)x
(7.2)

for m ∈ M ∈ A-mod, x ∈ X ∈ C and t ∈ T . Since C is rigid, the oplax right C-module
structure (7.2) is invertible whose inverse is given by

(T ⊗A M) � X → T ⊗A (M � X),

(t ⊗A m) ⊗ x �→ t(0) ⊗A (m ⊗ S(t(1))x).
(7.3)

The Eilenberg-Watts equivalence (2.4) induces an equivalence

(B-mod-A)H → RexC(A-mod, B-mod), T �→ T ⊗A (−) (7.4)

of k-linear categories [1], which we call the equivariant Eilenberg-Watts equivalence.
What we actually want to know is the category RexC(A-mod, (A-mod)D). To describe

this category, we introduce the right H -comodule algebra A(S2) as follows: As an algebra,
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A(S2) = A. The right H -coaction is twisted by the square of the antipode, as δ
A(S2) =

(idA ⊗ S2) ◦ δA. Now we prove:

Lemma 7.1 The identity functor on A-mod induces an isomorphism A(S2)-mod ∼=
(A-mod)D of right C-module categories.

Proof Let F : A(S2)-mod → (A-mod)D be the identity functor. For a finite-dimensional
vector space V , we denote by φV : V → V ∗∗ the canonical isomorphism of vector spaces
defined by φV (v) = 〈−, v〉 for v ∈ V . If X ∈ C, then we have

h · φX(x) = φX(S2(h)x) (h ∈ H, x ∈ X) (7.5)

by the definition of a left dual H -module. Noting this equation, one can verify that F is a
right C-module functor by the structure morphism defined by

F(M) � X∗∗ → F(M � X), m ⊗ φX(x) �→ m ⊗ x

for m ∈ M ∈ A(S2)-mod and x ∈ X ∈ C. The proof is done.

By this lemma and the equivariant Eilenberg-Watts equivalence (7.4), we obtain:

Lemma 7.2 Rex(A-mod, (A-mod)D) ≈ (A(S2)-mod-A)H .

Spelling out, an object of the category (A(S2)-mod-A)H is a finite-dimensional A-
bimodule Σ equipped with a right H -comodule structure δΣ satisfying

δΣ(asa′) = a(0)s(0)a
′
(0) ⊗ S2(a(1))s(1)a

′
(2) (a, a′ ∈ A, s ∈ Σ). (7.6)

The equivalence of the lemma sends an object Σ ∈ (A(S2)-mod-A)H to the functor Σ ⊗A

(−), which is an oplax right C-module functor from A-mod to (A-mod)D by the structure
morphism given by

Σ ⊗A (M � X) → (Σ ⊗A M) � X∗∗,
s ⊗A (m ⊗ x) �→ (s(0) ⊗A m) ⊗ φX(s(1)x)

(7.7)

for m ∈ M ∈ A-mod, x ∈ X ∈ C and s ∈ Σ .

7.2 The Nakayama Functor as An Equivariant Bimodule

Let A be a right H -comodule algebra. Then the Nakayama functor N := NA-mod is
given by tensoring the bimodule A∗. Since N is a right C-module functor from A-mod to
(A-mod)D, the bimodule A∗ should have a right H -comodule structure making it an object
of (A(S2)-mod-A)H in view of the equivalence given by Lemma 7.2.

There is a right H -comodule structure of A∗ given as follows: Let {ai} be a basis of A

(as a vector space), and let {ai} be the basis of A∗ dual to {ai}. We define the linear map
δA∗ : A∗ → A∗ ⊗k H by

δA∗(a∗) = 〈a∗, ai(0)〉ai ⊗ S(ai(1)) (a∗ ∈ A∗), (7.8)

where the summation over i is understood. The element a∗
(0) ⊗ a∗

(1) = δA∗(a∗) is
characterized by

〈a∗
(0), a〉a∗

(1) = 〈a∗, a(0)〉S(a(1)) (a ∈ A). (7.9)
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One can verify that δA∗ makes the A-bimodule A∗ an object of (A(S2)-mod-A)H . This obser-
vation itself is not new as it has been remarked in [5]. The point not mentioned in existing
literature is that the H -comodule structure δA∗ originates from the twisted module structure
of the Nakayama functor. Namely, we have:

Theorem 7.3 The object A∗ ∈ (A(S2)-mod-A)H corresponds to the Nakayama functor of
A-mod under the equivalence of Lemma 7.2.

Proof We define the functor N : A-mod → A-mod by N(M) := A∗ ⊗A M (M ∈ A-mod)
and equip it with a structure of a (lax) right C-module functor from A-mod to (A-mod)D by
the inverse of (7.7). Explicitly, the structure morphism of N is given by

Ψ N

M,V : N(M) � V ∗∗ → N(M � V ),

(a∗ ⊗A m) ⊗ φV (v) �→ a∗
(0) ⊗A (m ⊗ S(a∗

(1))v)
(7.10)

for m ∈ M ∈ A-mod, v ∈ V ∈ C and a∗ ∈ A∗. As a functor, N is identical to N. We
prove this theorem by showing that the structure morphism of N is same as that of N. By
Lemma 5.4 and the universal property of N(M) as a coend, this is equivalent to that the
diagram

N(M) � V ∗∗ (HomA(M,X)∗ ⊗k X) � V ∗∗

N(M � V ) HomA(M � V ∗∗, X � V )∗ ⊗k (X � V ∗∗)

Ψ N
M,V

iX,M⊗idV ∗∗
(clM,X|V )∗⊗idX⊗idV ∗∗

iX�V,M�V ∗∗

commutes for all objects M,X ∈ A-mod and V ∈ C, where the associativity isomorphism
for Vect is treated as the identity map.

To prove the commutativity of the diagram, we require a technical identity (7.11) below.
Let {vj } be a basis of V , and let {vj } be the basis of V ∗ dual to {vj }. Then, as is well-known,
the equation hvj ⊗vj = vj ⊗ (vj ↼ h) in V ⊗k V ∗ holds for all h ∈ H , where the Einstein
convention is used to suppress the sum over j . This allows us to define the k-linear map

�M,X|V : X∗ ⊗A M → (X � V ∗∗)∗ ⊗A (M � V ),

x∗ ⊗A m �→ (x∗ ⊗ φV ∗(vj )) ⊗A (m ⊗ vj ),

where (X�V ∗∗)∗ is identified with X∗ ⊗V ∗∗∗ as a vector space. We note that the equation

(clM,X|V )∗ ◦ ϕX,M = ϕX�V ∗∗,M�V ◦ �M,X|V (7.11)

holds, where ϕ−,− is the natural isomorphism (4.4). Indeed, we have

〈(clM,X|V )∗ϕX,M(x∗ ⊗ m), f 〉 = 〈ϕX,M(x∗ ⊗ m),clM,X|V (f )〉 = 〈x∗,clM,X|V (f )(m)〉
= 〈x∗ ⊗ φV ∗(vj ), f (m ⊗ vj )〉 = 〈ϕX�V ∗∗,M�V �M,X|V (x∗ ⊗A m), f 〉

for x∗ ∈ X∗, m ∈ M and f ∈ HomA(M � V, X � V ∗∗).
Now we pick elements x∗ ∈ X∗, x ∈ X, m ∈ M and v ∈ V and chase the element

w := ϕX,M(x∗ ⊗A m) ⊗ x ⊗ φV (v) ∈ HomA(M,X)∗ ⊗k X � V ∗∗

around the diagram. For simplicity of notation, we write

F1 := Ψ N

M,V (iX,M ⊗ idV ∗∗) and F2 := iX�V ∗∗,M�V ((clM,X|V )∗ ⊗ idX ⊗ idV ∗∗).
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By (4.6), (7.8), (7.10) and (7.11), we compute

F1(w) = Ψ N

M,V ((〈x∗, ?x〉 ⊗A m) ⊗ φV (v))

= 〈x∗, ai(0)x〉ai ⊗A (m ⊗ S2(ai(1))v),

F2(w) = iX�V ∗∗,M�V (ϕX�V ∗∗,M�V �M,X|V (x∗ ⊗A m) ⊗ x ⊗ φV (v))

= iX�V ∗∗,M�V (ϕX�V ∗∗,M�V ((x∗ ⊗ φV ∗(vj )) ⊗A (m ⊗ vj )) ⊗ x ⊗ φV (v))

= 〈x∗ ⊗ φV ∗(vj ), ai(0)x ⊗ ai(1)φV (v))〉ai ⊗A (m ⊗ vj )

= 〈x∗ ⊗ φV ∗(vj ), ai(0)x ⊗ φV (S2(ai(1))v))〉ai ⊗A (m ⊗ vj )

= 〈x∗, ai(0)x〉〈vj , S2(ai(1))v)〉ai ⊗A (m ⊗ vj )

= 〈x∗, ai(0)x〉ai ⊗A (m ⊗ S2(ai(1))v).

Since ϕX,M is an isomorphism, F1 = F2. The proof is done.

7.3 Twisted Traces and Cointegrals

Let A be a right H -comodule algebra, and let Σ ∈ (A(S2)-mod-A)H . We regard Σ as a k-
linear right exact twisted C-module functor by Lemma 7.2. As we have proved in Section 3,
the space Tr(Σ) of Σ-twisted modified traces on A-proj is in bijection with HH0(Σ)∗.
From the viewpoint of this bijection, module-compatible Σ-twisted traces are described as
follows:

Theorem 7.4 The bijection Tr(Σ) ∼= HH0(Σ)∗ restricts to a bijection between the
following two sets:

1. The space of Σ-twisted module-compatible traces on A-proj.
2. The subspace of HH0(Σ)∗ consisting of all elements λ satisfying

λ(s(0))s(1) = λ(s)1H (s ∈ Σ). (7.12)

Proof For simplicity of notation, we denote by TrC(Σ) the space of Σ-twisted traces on
A-proj compatible with the right C-module structure. By our results, there are bijections

Tr(Σ)
(3.12)−−−−→∼=

HH0(Σ)∗ (3.14)−−−−→∼=
HomA|A(Σ, A∗) (2.4)−−−→∼=

Nat(Σ,NA-mod) (7.13)

and, under these bijections, the space TrC(Σ) corresponds to the space of module-
compatible natural transformations from Σ → NA-mod. Thus the space TrC(Σ) is in
bijection with the space

{λ ∈ HH0(Σ)∗ | The map λ� : Σ → A∗ is H -colinear},
where λ� for λ ∈ Σ∗ is given by (3.13). In conclusion, to complete the proof, it suffices to
show that λ ∈ HH0(Σ)∗ satisfies (7.12) if and only if λ� is H -colinear. This can be verified
directly. The proof is done.

7.4 Pivotal Case

A pivotal element of H is a grouplike element g ∈ H such that the equation S2(h) = ghg−1

holds for all h ∈ H . In this subsection, we assume that a pivotal element gpiv ∈ H is given.
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Thus C = H -mod is pivotal with the pivotal structure p defined by

pX : X → X∗∗, 〈pX(x), x∗〉 = 〈x∗, gpiv · x〉 (x ∈ X, x∗ ∈ X∗)
for X ∈ C.

Now let A be a right H -comodule algebra. As in Section 6.2, we make idA-mod a
D-twisted right C-module functor by the pivotal structure. By a right modified trace on
A-proj, we mean a module compatible Σ-twisted trace on A-proj with Σ = idA-mod (cf.
Section 6.2).

Theorem 7.5 For a right H -comodule algebra A, there is a bijection between the following
two spaces:

1. The space of right modified traces on A-proj.
2. The space of all linear maps λ : A → k satisfying

λ(ab) = λ(ba), λ(a(0))a(1) = λ(a)g−1
piv (a, b ∈ A). (7.14)

Proof The A-bimodule Σ := A becomes an object of (A(S2)-mod-A)H by the coaction

δΣ : Σ → Σ ⊗k H, a �→ a(0) ⊗ gpiva(1) (a ∈ Σ).

The object Σ corresponds, through the equivalence of Lemma 7.2, to the identity functor on
A-mod regarded as a D-twisted right C-module functor by the pivotal structure associated
to gpiv. Thus the proof is done by applying Theorem 7.4 to Σ .

Remark 7.6 For the case where A = H , a linear map λ satisfying (7.14) is precisely a
symmetrized right cointegral on H in the sense of [2] and therefore this theorem specializes
to the description of right modified traces on C given in [2].

Remark 7.7 Let g ∈ H be a grouplike element. A g-cointegral on A [23] is a linear map
λ : A → k satisfying λ(a(0))a(1) = λ(a)g for all elements a ∈ A (properties and examples
of such ‘grouplike-cointegrals’ are studied in [23, 32]). Theorem 7.5 implies that a modified
trace on A-mod exists only if there is a non-zero g−1

piv -cointegral on A, but the converse does
not hold as we will see in Example 7.9.

Remark 7.8 By Theorem 7.5, the algebra A is symmetric Frobenius if there is a
non-degenerate modified trace on A-proj. The converse does not hold in general; see
Example 7.10.

7.5 Examples

We close this paper by examining the existence of a non-zero right modified trace for some
concrete examples. We fix an integer N > 1 and assume that the base field k has a primitive
N -th root ω of unity.

Example 7.9 The Taft algebra Tω is generated by x and g subject to the relations gN = 1,
gx = ωxg and xN = 0. The Taft algebra H := Tω has the unique Hopf algebra structure
determined by Δ(g) = g ⊗ g and Δ(x) = x ⊗ g + 1 ⊗ x. The antipode is the anti-algebra
automorphism given by S(g) = g−1 and S(x) = −xg−1. The Hopf algebra H has a unique
pivotal element gpiv := g.
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Given a divisor d of N , we define A(d) to be the subalgebra of H generated by x and
gm, where m = N/d . It is easy to see that A(d) is a right coideal subalgebra of H and, in
particular, it is a right H -comodule algebra by the comultiplication of H .

The set {xigmj | i = 0, · · · , N − 1; j = 0, · · · , d − 1} is a basis of the vector space
A(d). With respect to this basis, we define the linear map λ : A(d) → k by λ(xigmj ) =
δi,N−1δj,0. By the same way as [23] and [32, Section 5.1], we see that λ is a g−1

piv -cointegral

on A(d) and every non-zero g−1
piv -cointegral on A is a scalar multiple of λ.

If d = 1, then the pairing on A(d) associated to λ is symmetric and non-degenerate.
Thus, by Theorem 7.5, there is a non-degenerate right modified trace on A(d)-proj. On the
other hand, if d > 1, then a = gm and b = xg−m does not satisfy λ(ab) = λ(ba). Thus, by
the theorem, we conclude that there are no non-zero right modified traces on A(d)-proj in
this case.

Example 7.10 We consider the Hopf algebra H defined as follows: As an algebra, it is
generated by x, y and g subject to the relations

gN = 1, gx = ωxg, gy = ω−1yg, yx = ωxy and xN = yN = 0.

The Hopf algebra structure of H is determined by

Δ(g) = g ⊗ g, Δ(x) = x ⊗ g + 1 ⊗ x, Δ(y) = y ⊗ g + 1 ⊗ y.

The antipode is given by S(g) = g−1, S(x) = −xg−1 and S(y) = −yg−1. It is easy to see
that gpiv := g is a unique pivotal element of H .

Given a divisor d of N and parameters ξ, μ ∈ k, we define A(d; ξ, μ) to be the right
H -comodule algebra generated, as an algebra, by G, X and Y subject to the relations

Gd = 1, XN = ξ1, YN = μ1,

GX = ωmXG, GY = ω−mYG, YX = ωXY .

The right H -comodule structure δ : A → A ⊗ H is determined by

δ(X) = X ⊗ g + 1 ⊗ x, δ(Y ) = Y ⊗ g + 1 ⊗ y, δ(G) = G ⊗ gm,

where m = N/d . This example is taken from [27, Section 8.3], where indecomposable
exact left comodule algebras over H are classified up to equivariant Morita equivalence
assuming that the base field is an algebraically closed field of characteristic zero.

For simplicity, we write A = A(d; ξ, μ). We determine when A-mod admits a right
non-zero modified trace. We first classify non-zero grouplike-cointegrals on A. The set
{XrY sGt | r, s = 0, · · · , N − 1; t = 0, · · · , d − 1} is a basis of A. For u ∈ Z/dZ, we
define the linear map λu : A → k by

λu(X
rY sGt ) = δr,N−1δs,N−1δt,u (r, s = 0, · · · , N − 1; t = 0, · · · , d − 1).

One can directly check that λu is a Frobenius form on A and the associated Nakayama
automorphism νu is given by νu(X) = ωmu−1X, νu(Y ) = ω−mu+1Y and νu(G) = G.

By the same way as [32, Section 5.2], we see that λu is a gmu−2-cointegral on A and every
grouplike-cointegral on A is a scalar multiple of λu for some u. We note that the equation
gmu−2 = g−1

piv holds if and only if mu ≡ 1 (mod N). Thus a non-zero g−1
piv -cointegral on A

exists if and only if mu ≡ 1 (mod N) for some u. Since m = N/d is a divisor of N , this
happens precisely if d = N .

The above discussion and Theorem 7.5 show that there is a non-zero right modified trace
on A-proj only if d = N . Now we suppose d = N . Then λ1 is a g−1

piv -cointegral on A.
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Furthermore, the pairing on A induced by λ1 is symmetric and non-degenerate. Thus, by
Theorem 7.5, there is a non-degenerate right modified trace on A-proj.

Finally, we mention the case where d < N and ξμ �= 0. The elements X and Y are
invertible in this case and νu is the inner automorphism implemented by GuXY . Hence, as
a functor, idA-mod is isomorphic to the Nakayama functor NA-mod. On the other hand, as we
have seen in the above, there are no non-zero right modified traces on A-proj. This implies
that idA-mod is not isomorphic to NA-mod as a D-twisted C-module functor.
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