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Abstract
The Cauchy problem of the Laplace equation is investigated for both exact and
perturbed data on a doubly connected domain, i.e., the numerical reconstruction of
the function value and the normal derivative value on a part of the boundary from
the knowledge of exact or noisy Cauchy data on the remaining and accessible
boundary, which is completely different from the Cauchy problem on a simply
connected bounded region. We first establish the existence of a solution through the
potential theory. By expressing the solution as a sum of single-layer potentials using
boundary value condition, we get the integral equation systems about the density
function on the boundary, and by applying local regularization scheme to the
obtained integral equation systems, we get the regularization solution of the original
problem. Some numerical results are presented to validate the applicability and
effectiveness of the proposed method.
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1 Introduction
The Laplace equation arises in many areas of science and engineering, especially in practi-
cal physical applications such as electrical, magnetic, and gravitational potentials, steady-
state temperatures, and so on. The direct problems for the Laplace equation, i.e., the
Laplace equation with Dirichlet [1, 2], Neumann [3], oblique derivative [4], generalized
impedance [5], or transmission boundary conditions [6] specified on the whole boundary
of the solution domain, have been studied extensively in the past century. Unfortunately,
in some practical engineering problems, the boundary data on the whole boundary can-
not be obtained. We only have the noisy data on a part of the boundary or at some interior
points of the concerned domain, which will lead to some inverse problems.

In this paper, we consider the inverse problem of reconstructing the stationary radiation
field from a pair of measured data given on the accessible part boundary of a bounded do-
main. The mathematical model is described by a Cauchy problem for the Laplace equation.
It is well known that the Cauchy problem for the Laplace equation is severely ill-posed in
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Figure 1 Double connected domain D with boundary �1 and �2

the sense that the solution, if it exists, does not depend continuously on the given Cauchy
data. That is, a small perturbation in the given Cauchy data may cause large change to the
solution, see [7]. To overcome such difficulties, some special skills, such as the regulariza-
tion scheme, are needed.

In the past years, some numerical methods, such as the iterative boundary element
method [8], the Tikhonov regularization approach [9], including the alternating iterative
method [10–12], the conjugate gradient method [13], energy regularization method [14],
some other regularization method [15], have been proposed to deal with the Cauchy prob-
lem for the Laplace equation [8, 16]. Although many regularization methods have been
applied to solve the Cauchy problem for the Laplace equation in annulus domain [14, 16],
we note that there are much fewer works devoted to the Cauchy problem of the Laplace
equation in a general doubly connected planar domain [10, 17, 18] instead of an annular
domain between concentric circles, but such a problem has important physical applica-
tions in the engineering field.

In this paper, we propose a local regularization method to solve the Cauchy problem
for the Laplace equation in a doubly connected planar domain. Compared with the whole
regularization method used in [9, 10], the primary benefits of this method are that it can
greatly reduce the amount of calculation and obtain more reliable numerical results with
lower computational cost, which is particularly important for the Cauchy problem of the
second-order elliptic equations with variable coefficients.

To precisely describe the topic considered in this paper, let D2 ⊂ R
2 be a simply con-

nected sufficiently smooth bounded domain with boundary �2, and let D1 be a simply con-
nected (smooth) bounded domain with boundary �1 such that D1 ⊂ D2 and �1 ∩ �2 = ∅
(see Fig. 1). We define D := D2\D1, we shall denote by ν1 the unit normal to �1 directed
into the interior of D and by ν2 the unit normal to �2 directed into the exterior of D.

Given the sufficiently smooth continuous functions f2 ∈ H1/2(�2) and g2 ∈ H–1/2(�2) on
�2, we consider the following Cauchy problem of finding a function u ∈ C2(D) ∩ C1(D)
that satisfies the Laplace equation

�u = 0 in D (1.1)

with the boundary conditions

u = f2 and
∂u
∂ν2

= g2 on �2. (1.2)

To ensure that the above Cauchy problem is uniquely solvable, we always require that
the boundary data f2 and g2 are compatible, which means that this pair (f2, g2) is indeed
the trace of a single harmonic function in D, such an attempt seems reasonable.
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The plan of the paper is as follows. In Sect. 2, the existence of a solution to the Cauchy
problem is established by adopting potential theory. Then, in Sect. 3, we propose a lo-
cal regularization scheme for solving the resulting ill-posed integral equation systems. In
Sect. 4, numerical results are carried out to test the feasibility of the proposed method. In
the final section, conclusions are given.

2 Boundary integral equation
We establish the existence of a solution to the Cauchy problem by adopting a potential ap-
proach to transform the original problem into a system of boundary integral equations. To
this end, we introduce the fundamental solutions for the two-dimensional Laplace equa-
tion by

�(x, y) :=
1

2π
ln

1
|x – y| , x �= y. (2.1)

For j, k = 1, 2, we define single- and double-layer operators Sjk , Kjk : C(�j) → C(�k),

(Sjkϕ)(x) := 2
∫

�j

�(x, y)ϕ(y) ds(y), x ∈ �k , (2.2)

and

(Kjkϕ)(x) := 2
∫

�j

∂�(x, y)
∂νj(y)

ϕ(y) ds(y), x ∈ �k , (2.3)

and the corresponding normal derivative operators K ′
jk : C(�j) → C(�k),

(
K ′

jkϕ
)
(x) := 2

∫
�j

∂�(x, y)
∂νk(x)

ϕ(y) ds(y), x ∈ �k . (2.4)

The operators Sjk , Kjk , and K ′
jk are compact since they represent integral operators with

weakly singular kernels for j = k and continuous kernels for j �= k.
To prove the solvability of the Cauchy problem, we represent the solution u of (1.1)–(1.2)

in the form of a sum of single-layer potentials

u(x) =
∫

�1

�(x, y)ϕ1(y) ds(y) +
∫

�2

�(x, y)ϕ2(y) ds(y), x ∈ D, (2.5)

with unknown densities ϕ1 ∈ C(�1) and ϕ2 ∈ C(�2).
Clearly, the function u in (2.5) satisfies the Laplace equation (1.1). Matching this repre-

sentation with the given Cauchy data in (1.2) using well-known properties for the restric-
tion of these single-layer potentials and their derivatives on the boundary of the domain
D, we get the following system of integral equations:

⎧⎨
⎩

∫
�1

�(x, y)ϕ1(y) ds(y) +
∫
�2

�(x, y)ϕ2(y) ds(y) = f2(x) on �2∫
�1

∂�(x,y)
∂ν2(x) ϕ1(y) ds(y) +

∫
�2

∂�(x,y)
∂ν2(x) ϕ2(y) ds(y) + 1

2ϕ2(x) = g2(x) on �2
(2.6)
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to be solved for the unknown densities ϕ1 and ϕ2, then we can rewrite (2.6) in the operator
form

⎧⎨
⎩

S12ϕ1 + S22ϕ2 = 2f2, (2.7a)

K ′
12ϕ1 + K ′

22ϕ2 + ϕ2 = 2g2. (2.7b)

Taking the trace on �1 of the solution represented by (2.5) and its normal derivative,
using jump relations of the layer potentials, gives

u(x) =
∫

�1

�(x, y)ϕ1(y) ds(y) +
∫

�2

�(x, y)ϕ2(y) ds(y) on �1 (2.8)

and

∂u
∂ν1

(x) =
∫

�1

∂�(x, y)
∂ν1(x)

ϕ1(y) ds(y) –
1
2
ϕ1(x) +

∫
�2

∂�(x, y)
∂ν1(x)

ϕ2(y) ds(y) on �1. (2.9)

Having found ϕ1 and ϕ2 from (2.7a) and (2.7b), using (2.8) and (2.9), we can get Cauchy
data on �1 for the sake of convenience. We rewrite it as the following operator form:

2u(x) = S11ϕ1 + S21ϕ2, (2.10)

2
∂u
∂ν1

(x) = K ′
11ϕ1 – ϕ1 + K ′

21ϕ2. (2.11)

Define the operator A : L2(�1) × L2(�2) → L2(�2) × L2(�2),

A =

(
S12 S22

K ′
12 I + K ′

22

)
. (2.12)

Let ϕ = (ϕ1,ϕ2)T , h = 2(f2, g2)T , we can write it as the following operator form:

Aϕ = h.

Theorem 2.1 The operator A defined in (2.12) is injective and has a dense range.

Proof From now on, without loss of generality, we assume that there exists a point xi ∈ Di,
(i = 1, 2). such that |x – xi| �= 1 for all x ∈ �i. Then Theorem 3.16 in [12] guarantees that the
corresponding single-layer boundary integral operator Siiϕi is injective.

Consider the following homogeneous problem:

⎧⎨
⎩

S12ϕ1 + S22ϕ2 = 0, (2.13a)

K ′
12ϕ1 + K ′

22ϕ2 + ϕ2 = 0, (2.13b)

where ϕ = (ϕ1,ϕ2) ∈ L2(�1) × L2(�2), we first note that from equation (2.13b), ϕ2 is con-
tinuous. We note the solution to the following definition:

u(x) =
∫

�1

�(x, y)ϕ1(y) ds(y) +
∫

�2

�(x, y)ϕ2(y) ds(y), x ∈ D. (2.14)
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The function u(x) also satisfies the harmonic equation �u = 0 in both region D1 and region
D+ := R

2 \ D2, u(x) defined by (2.14) satisfies u = 0, ∂u
∂ν

= 0 on �2. Holmgren’s uniqueness
theorem implies u = 0 in D. Since the single-layer potential defined by (2.14) with L2 den-
sity u(x) is continuous across �1, then u(x) = 0 on �1, and the solution u(x) defined by
(2.14) also satisfies the harmonic equation in the region D+, while the Cauchy data on �2

is zero. From the unique solvability of the exterior Dirichlet problem in D+, we know that
u(x) = 0 in D+. Take normal derivative on the boundary �2 for (2.14), let x tend to the
boundary �2 from both sides of �2. Combining with the jump relationship of the normal
derivative of the single-layer potential, we can see that ϕ2 = 0. Let x tend to the boundary
�1 in (2.14). Combining with the conclusions already obtained, we get S11ϕ1 = 0. From the
previous assumptions about the domain D1, we can see that ϕ1 = 0, so the operator A is
injective.

Next we want to show that A∗ is injective, which implies that A has a dense range. For a
solution to the homogeneous equation

⎧⎨
⎩

S21φ1 + K21φ2 = 0, (2.15a)

S22φ1 + K22φ2 + φ2 = 0, (2.15b)

we define

v(x) =
∫

�2

�(x, y)φ1(y) ds(y) +
∫

�2

∂�(x, y)
∂ν1(y)

φ2(y) ds(y). (2.16)

Then the second equation of (2.15b) implies that v(x) solves the exterior Dirichlet problem
in D+ with homogeneous boundary condition, and consequently v(x) = 0 in D+.

The first equation of (2.15a) implies that v(x) solves the interior Dirichlet problem in
the D1 with homogeneous boundary condition v(x) = 0 on �1, thus v(x) = 0 in D1 since
v(x) defined by (2.16) is smooth across �1. v(x) = 0 also in D by analytic continuation, thus
v(x) = 0 on the entire R

2. Let x tend to the boundary �2 from both sides of �2 in (2.16).
Combining with the jump relation, we have φ2 = 0. We get S22φ1 = 0 from (2.15b). From
the previous assumptions about the domain D2, we can see that φ1 = 0, so the operator A∗

is injective, thus A has a dense range. �

Due to the severe ill-posedness of the Cauchy problem itself, it is very dangerous to di-
rectly solve the systems. To restore stability, we need to adopt some regularization method,
so the author in [9] considers the solution of the following Tikhonov regularization form:

αϕ + A∗Aϕ = A∗h, (2.17)

where A∗ is the adjoint operator to A and α is a regularization parameter to be chosen
appropriately.

If you have written the program yourself, then you will notice that the numerical compu-
tation overhead of doing this is very large, so we propose the following local regularization
idea.

3 Local regularization scheme
Since the second equation in the above system (2.7a)–(2.7b) is already an integral equation
of the second type with respect to density ϕ2, we only implement regularization for the



Gong and Yang Boundary Value Problems         (2023) 2023:30 Page 6 of 12

first equation with respect to density ϕ1:

⎧⎨
⎩

αϕα
1 + S∗

12S12ϕ
α
1 + S∗

12S22ϕ
α
2 = 2S∗

12f2, (3.1a)

K ′
12ϕ

α
1 + K ′

22ϕ
α
2 + ϕα

2 = 2g2. (3.1b)

Here we use ϕα
i (i = 1, 2) to indicate that the density ϕi depends on the regularization

parameter α. In this way, (3.1a) is an integral equation of the second kind about the density
ϕ1, and (3.1b) is also of the second kind about the density ϕ2, and the whole is well posed.
Let ϕα = (ϕα

1 ,ϕα
2 )T , h = 2(S∗

12f2, g2)T ,

(
S∗

12S12 0
K ′

12 K ′
22

)(
ϕα

1

ϕα
2

)
+

(
αI S∗

12S22

0 I

)(
ϕα

1

ϕα
2

)
= 2

(
S∗

12f2

g2

)
, (3.2)

define the operator

B =

(
S∗

12S12 0
K ′

12 K ′
22

)
, E =

(
αI S∗

12S22

0 I

)
.

B obviously is compact since all its components are compact, we get

(B + E)ϕα = h.

Clearly, E has a bounded inverse for α > 0. By the Riesz theory, it suffices to show that
(B + E) is injective to ensure that it has bounded inverse.

Theorem 3.1 For any α > 0, there exists a unique solution to (3.1a) and (3.1b).

Proof We only need to prove that the corresponding homogeneous equation has only the
trivial solution by the Fredholm alternative:

⎧⎨
⎩

αϕα
1 + S∗

12S12ϕ
α
1 + S∗

12S22ϕ
α
2 = 0, (3.3a)

K ′
12ϕ

α
1 + K ′

22ϕ
α
2 + ϕα

2 = 0. (3.3b)

The existence of the solution of equation (3.3a) and (3.3b) is obvious. Next, we prove its
uniqueness. It can be seen from equation (3.3b)

ϕα
2 = –

(
I + K ′

22
)–1K ′

12ϕ
α
1 . (3.4)

Substituting it into formula (3.3a), we get

αϕα
1 + S∗

12S12ϕ
α
1 – S∗

12S22
(
I + K ′

22
)–1K ′

12ϕ
α
1 = 0. (3.5)

We define the following minimization functional:

Jα(ϕ1) :=
∥∥S12ϕ1 – S22

(
I + K ′

22
)–1K ′

12ϕ1
∥∥2 + α‖ϕ1‖2. (3.6)
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We note that the Euler equation of the above minimization functional is (3.5). Obviously,
the functional defined by formula (3.6) has a unique minimal element ϕ1 = 0. �

It can be seen from equation (3.1a) that

ϕα
1 =

(
αI + S∗

12S12
)–1S∗

12
(
2f2 – S22ϕ

α
2
)
. (3.7)

Let Rα := (αI + S∗
12S12)–1S∗

12, thus ϕα
1 = Rα(2f2 – S22ϕ

α
2 ), take the norm on both sides and

use ‖Rα‖ ≤ 1
2
√

α
. Let α → ∞, we get ‖ϕα

1 ‖ ≤ 0. It can be seen from the continuity of ϕα
1 ,

we get ϕα
1 → 0 as α → ∞.

From (3.1b) we know

ϕα
2 =

(
I + K ′

22
)–1(2g2 – K ′

12ϕ
α
1
)
, (3.8)

when α → ∞, we can get the following result.

Lemma 3.1 When α → ∞ in (3.1a) and (3.1b), we get ϕα
1 → 0, ϕα

2 → 2(I + K ′
22)–1g2 for

accurate Cauchy data on �2.

For the regularization solution defined by

uα(x) =
∫

�1

�(x, y)ϕα
1 (y) ds(y) +

∫
�2

�(x, y)ϕα
2 (y) ds(y), x ∈ D, (3.9)

when α → ∞, which degenerates into an integral defined only on the boundary �2, inde-
pendent of the closed curve �1 contained in it. Let u∗(x) := limα→∞ uα(x),thus

u∗(x) = 2
∫

�2

�(x, y)
(
I + K ′

22
)–1g2(y) ds(y), x ∈ D2. (3.10)

When α → ∞, the above formula shows that the function uα(x) defined on the region D
only depends on the normal derivative value g2 on the outer boundary �2 and has nothing
to do with f2 in form.

Obviously, the function u∗(x) defined above satisfies the Laplace equation over the entire
region D2, namely, �u∗(x) = 0, and always satisfies the Neumann boundary condition on
�2. In other words,

∂u∗

∂ν2
(x) = 2

∫
�2

∂�(x, y)
∂ν2(x)

(
I + K ′

22
)–1g2(y) ds(y) +

(
I + K ′

22
)–1g2(x), on �2,

= K ′
22

(
I + K ′

22
)–1g2 +

(
I + K ′

22
)–1g2 ≡ g2, (3.11)

u∗(x) = 2
∫

�2

�(x, y)
(
I + K ′

22
)–1g2(y) ds(y) on �2.

So far we have come to the following conclusions:when α → ∞ in (3.1a) and (3.1b),
the Cauchy problem in the domain D := D2\D1 is replaced with the Neumann problem in
region D2 since (3.10) is only defined on the boundary �2, but the boundary �1 is contained
within the boundary �2 for any harmonic function v(x) on the domain D2. Of course,
the harmonic equation is also satisfied on the inner curve �1 of D2, but at this time, it
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is unknown whether it meets the requirements on the inner boundary �1 of the doubly
connected bounded domain D.

In addition, we know from the maximum and minimum principle (Theorem 6.9, [19]) of
the harmonic equation that for doubly connected bounded domain D, it can be achieved
on the inner boundary �1 and the outer boundary �2, but for region D2, it can be reached
on only �2. Therefore, we cannot infer the information on the doubly connected bounded
domain D from the information that satisfies the Laplace equation on the area D2.

For the selection of the regularization parameter α, if it is chosen too small, then the reg-
ularized solution remains unstable and, conversely, if too large, then the original Cauchy
problem will be replaced with the Neumann problem. So we must choose an appropri-
ate regularization parameter to obtain a more reasonable approximate solution. Generally
speaking, a reasonable selection of regularization parameters is not an easy task. Although
there are optimal choices for the regularization parameter (the discrepancy principle), it
is often simpler and faster to use a heuristic choice such as the L-curve rule [20]. For more
details on the choice of regularization parameters, refer to [21].

To solve equation (3.1a) and (3.1b) numerically efficiently, we need to parameterize it,
so below we describe how to parameterize it.

4 Numerical examples
We assume that the inner and outer boundary curves �1 and �2 have the following para-
metric forms:

�j =
{

zj(t) : t ∈ [0, 2π )
}

, j = 1, 2,

where zj : R → R
2 are 2π-periodic and twice continuously differentiable functions such

that the orientation of �j is counter-clockwise. Then the normal vectors are given by

νj(t) =
1

|z′
j(t)|

[
z′

j(t)
]⊥, t ∈ [0, 2π ).

Here, for any vector a = (a1, a2), the normal vector is defined by a⊥ = (a2, –a1), we obtain
for the single-layer operator

(Sjkϕ)(t) :=
1
π

∫ 2π

0
ln

1
|zk(t) – zj(τ )|

∣∣z′
j(τ )

∣∣ψ(τ ) dτ (4.1)

and its normal derivative

(
K ′

jkϕ
)
(t) :=

1
π

∫ 2π

0

[z′
k(t)]⊥ · [zj(τ ) – zk(t)]
|z′

k(t)||zk(t) – zj(τ )|2
∣∣z′

j(τ )
∣∣ψ(τ ) dτ , (4.2)

where ψ(τ ) := ϕ(x(τ )).
To handle the logarithmic singularity in the kernel of Sjj, we split it in the following form:

ln
1

|zj(t) – zj(τ )| = –
1
2

ln

(
4 sin2 t – τ

2

)
+ A(t, τ ),

where A(t, τ ) is a smooth function.
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For the numerical calculation of operators Sjk and K ′
jk , we use the Nyström method based

on trigonometric interpolation polynomial; for more details, we refer to [10, 22]. Here we
omit some repetitive work. For the related error and convergence analysis of the above
methods, we refer to [22]. If the region boundary is sufficiently smooth, then exponential
convergence rate can be obtained.

In the last part, we illustrate by numerical examples the robustness of the proposed
method based on integral equations and aimed at the reconstruction of the Cauchy data
on interior boundary �1 for both exact and noisy data. In the case of noisy data, random
pointwise errors are added to the values of the functions f2 and g2 on the outer boundary
with percentage, which are always generated by

f δ
2 (t) = f2(t)

(
1 + ε

(
2 ran() – 1

))
,

gδ
2(t) = g2(t)

(
1 + ε

(
2 ran() – 1

))
,

where ε denotes relative noise level, “rand( )” returns a pseudorandom number uniformly
distributed in the interval (0, 1).

We use the following Example 4.1 to test the correctness of our computer code. Taking
a function u(x) that satisfies the harmonic equation in the region D2, we calculate the
function value and normal derivative value on the outer boundary �2 as our input data
to solve Problem (1.1)–(1.2) and then compare the calculated data and exact value of u(x)
on �1.

Example 4.1 Consider a solution domain D whose outer boundary �2 (see Fig. 1) is a
rounded triangle

�2 :
{

z2(t) = ρ(t)(cos t, sin t), t ∈ [0, 2π )
}

with radial function ρ(t) = 2 + 0.3 cos 3t, and the interior boundary is a circle centered at
the origin of radius 1,

�1 :
{

z1(t) = (cos t, sin t), t ∈ [0, 2π )
}

.

We choose the exact solution of Laplace’s equation to generate the required input data
on �2, taking uex(x) = x3

1 + 3x2
1x2 – 3x2

2x1 – x3
2, thus f2 = uex(x) and g2 = ∂uex

∂ν2
(x), x ∈ �2. We

compute the approximate uapp(x) and ∂uapp
∂ν1

with different relative noise level and plot the
graph (Fig. 2). For the exact data, the Tikhonov parameters are α = 1E – 11, and for the
noisy case, α = ε is chosen.

It should be pointed out here that we mainly use Example 4.1 to test the correctness of
our computer code. Since the u(x) we take is a harmonic function on the entire R

2, the
corresponding Cauchy data is only the restriction of harmonic function to the boundary
of its domain. Therefore, the numerical performance is quite good. In fact, a bit more
noise can be added, but this does not mean that the anti-noise ability of our algorithm
is particularly excellent. From [7], we can see that the Cauchy problem is seriously ill-
posed; in other words, it is exponentially ill-posed. This means that the noise cannot be
added too much, so the following example can really reflect the serious ill-posedness of the
Cauchy problem. To illustrate the superiority of our proposed method, the same numerical
example as in [10] is taken to test.
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Figure 2 The exact and approximation solution with different relative noise level ε

Figure 3 The exact and regularized solution with different relative noise level ε

Example 4.2 We consider the case where the two boundary curves are described by the
parametrizations

�1 :
{

z1(t) =
(
0.5 cos t, 0.4 sin t – 0.3 sin2 t

)
, t ∈ [0, 2π )

}

and

�2 :
{

z2(t) = (1.3 cos t, sin t), t ∈ [0, 2π )
}

.

To generate compatible Cauchy data (f2, g2) on outer boundary �2, we first solve the
mixed boundary value problem as follows and then calculate the Dirichlet data on the
outer boundary �2 as f2 in the original Cauchy problem. For the sake of comparison, we
also calculate the normal derivative on the inner boundary �1

⎧⎪⎪⎨
⎪⎪⎩

�u = 0, in D,

u = f1 on �1,
∂u
∂ν2

= g2 on �2,

(4.3)

we take f1 = exp(–z11)z12 on �1 and g2 = z21 on �2. Figure 3 shows the comparisons of the
exact solution uex(x) and the approximation uapp(x) at the same points and for different
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noise levels ε. The parameter α = 1E – 11 is chosen for the noiseless case and α = 0.1ε for
the noisy case. For each figure, we can find that the smaller the ε is, the better the computed
approximation is. And the bigger the ε is, the worse the computed approximation is.

It is not difficult to see from Fig. 3 that our numerical results are better than those in [10].
It is well known that Tikhonov regularization has the disadvantage of over-smoothing. If
the whole regularization method is adopted, it not only smooths the boundary data in the
first equation, but also smooths the boundary data in the second equation, which leads to
over-smoothing. In the local regularization scheme proposed by us, to restore the stability
of the solution, only necessary regularization is carried out on the first equation, and the
second equation remains unchanged, thus half of the original boundary data is retained,
so our numerical performance is better.

The programs involved in this article are written by the author using Fortran 95 language
with the Mingw-w64 compiler on Windows 10 64bit platform. All images are drawn by
using Matlab 2009a.

5 Conclusions
In this paper, a Cauchy problem for the Laplace equation on a doubly connected do-
main has been investigated. Finally, we expect that similar results can be obtained for
Helmholtz-type equation, and the proposed method can be extended to second-order el-
liptic equations with variable coefficients. The detailed comparison with the other regu-
larization method available in the literature will be investigated in our future work.
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