
Mathematische Annalen (2023) 385:1323–1378
https://doi.org/10.1007/s00208-022-02369-w Mathematische Annalen

Improved Sobolev regularity for linear nonlocal equations
with VMO coefficients

Simon Nowak1

Received: 12 September 2021 / Accepted: 25 January 2022 / Published online: 21 February 2022
© The Author(s) 2022

Abstract
This work is concerned with both higher integrability and differentiability for linear
nonlocal equations with possibly very irregular coefficients of VMO-type or even
coefficients that are merely small in BMO. In particular, such coefficients might be
discontinuous.While for corresponding local elliptic equationswithVMOcoefficients
such a gain of Sobolev regularity along the differentiability scale is unattainable, it
was already observed in previous works that gaining differentiability in our nonlocal
setting is possible under less restrictive assumptions than in the local setting. In this
paper, we follow this direction and show that under assumptions on the right-hand
side that allow for an arbitrarily small gain of integrability, weak solutions u ∈ Ws,2

in fact belong to Wt,p
loc for any s ≤ t < min{2s, 1}, where p > 2 reflects the amount

of integrability gained. In other words, our gain of differentiability does not depend
on the amount of integrability we are able to gain. This extends numerous results in
previous works, where either continuity of the coefficient was required or only an in
general smaller gain of differentiability was proved.
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1 Introduction

1.1 Nonlocal equations

We study the Sobolev regularity of weak solutions to linear nonlocal integro-
differential equations of the form1

L Au = f in � ⊂ R
n, (1.1)

where � ⊂ R
n is a domain (= open set) and A : Rn × R

n → R is a coefficient. In
addition, for some fixed parameter s ∈ (0, 1) the nonlocal operator LA is formally
given by

LAu(x):=p.v.

∫
Rn

A(x, y)

|x − y|n+2s (u(x) − u(y))dy, x ∈ �. (1.2)

Throughout the paper, for the sake of simplicity we assume that n > 2s. Furthermore,
we require that the coefficient A is measurable and that there exists some constant
� ≥ 1 such that

�−1 ≤ A(x, y) ≤ � for almost all x, y ∈ R
n . (1.3)

Moreover, we assume that A is symmetric, that is,

A(x, y) = A(y, x) for almost all x, y ∈ R
n . (1.4)

We define L0(�) as the class of all such measurable coefficients A that satisfy (1.3)
and (1.4).

Building on the results and techniques from our previous work [43], the aim of
this paper is to show that under appropriate regularity assumptions on A and f , weak
solutions to (1.1), which are initially assumed to belong to the fractional Sobolev space
Ws,2(Rn), in fact belong to higher-order spaces Wt,p

loc (�) for some p > 2 and any
s ≤ t < min{2s, 1}. For the relevant definitions of these spaces, we refer to Sect. 2.

Concerning our precise notion of weak solutions, denoting by Ws,2
c (�) the set of

all functions that belong to Ws,2(Rn) and are compactly supported in �, we have the
following definition.

Definition Given f ∈ L
2n

n+2s
loc (�), we say that u ∈ Ws,2(Rn) is a weak solution of the

equation LAu = f in �, if

∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s (u(x) − u(y))(ϕ(x) − ϕ(y))dydx =
∫

�

f ϕdx ∀ϕ ∈ Ws,2
c (�). (1.5)

1 Supported by SFB 1283 of the German Research Foundation.

123



Improved Sobolev regularity for nonlocal equations with… 1325

1.2 VMO coefficients

Before stating our main results, we need to recall our notion of coefficients with
vanishing mean oscillation which was introduced in [43].

Definition Let δ > 0 and A ∈ L0(�). We say that A is δ-vanishing in a ball B ⊂ R
n ,

if for any r > 0 and all x0, y0 ∈ B with Br (x0) ⊂ B and Br (y0) ⊂ B, we have

−
∫
Br (x0)

−
∫
Br (y0)

|A(x, y) − Ar ,x0,y0 |dydx ≤ δ,

where Ar ,x0,y0 :=−
∫
Br (x0)

−
∫
Br (y0)

A(x, y)dydx .
Moreover, we say that A is (δ, R)-BMO in a domain � ⊂ R

n and for some R > 0,
if for any z ∈ � and any 0 < r ≤ R with Br (z) � �, A is δ-vanishing in Br (z).

Finally, we say that A is VMO in �, if for any δ > 0, there exists some R > 0 such
that A is (δ, R)-BMO in �.

Let us briefly put the above definition into a more classical context. In case A belongs
to the classical space of functionswith vanishingmean oscillationVMO(R2n) (see e.g.
[34, Section 2.1.1], [19] or [46]), then A is also VMO inRn . However, our assumption
that A is VMO in � is more general, in the sense that we essentially only assume
A to be of vanishing mean oscillation in some arbitrarily small open neighbourhood
of the diagonal in � × �, while away from the diagonal in � × � and outside of
�×� A is not required to possess any regularity at all. In particular, any coefficient A
that is continuous in an open neighbourhood of the diagonal in � × � is VMO in �.
Nevertheless, continuity close to the diagonal is not essential in order for a coefficient
to be VMO.

Indeed, the class of discontinuous VMO functions is actually rather rich. For
instance, assuming that � contains the origin, if for some α ∈ (0, 1) we have

A(x, y) =
{
sin (|log(|x | + |y|)|α) + 2 if x �= 0 or y �= 0

0 if x = y = 0
(1.6)

or

A(x, y) =
{
sin (log|log(|x | + |y|)|) + 2 if x �= 0 or y �= 0

0 if x = y = 0
(1.7)

in an open neighbourhood of diag(� × �), then A is VMO in �. However, in both
cases A is discontinuous at x = y = 0.

1.3 Main results

We are now in the position to state our main results.
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Theorem 1.1 Let � ⊂ R
n be a domain, s ∈ (0, 1) and � ≥ 1. If A ∈ L0(�) is VMO

in �, then for any weak solution u ∈ Ws,2(Rn) of the equation

L Au = f in �,

any p ∈ (2,∞) and any s ≤ t < min{2s, 1}, we have the implication

f ∈ L
np

n+(2s−t)p
loc (�) 
⇒ u ∈ Wt,p

loc (�).

If we are only interested in arriving at the conclusion that u ∈ Wt,p
loc (�) for some fixed

t and some fixed p, then it suffices for A to be small in BMO, as our second main
result indicates, in which we also state an explicit estimate on the solution.

Theorem 1.2 Let � ⊂ R
n be a domain, s ∈ (0, 1), � ≥ 1 and R > 0. Moreover, fix

some p ∈ (2,∞) and some s < t < min{2s, 1}. Then there exists some small enough
δ = δ(p, n, s, t,�) > 0, such that if A ∈ L0(�) is (δ, R)-BMO in �, then for any
weak solution u ∈ Ws,2(Rn) of the equation

L Au = f in �,

we have the implication

f ∈ L
np

n+(2s−t)p
loc (�) 
⇒ u ∈ Wt,p

loc (�).

In addition, for all relatively compact bounded open sets �′ � �′′ � �, we have the
estimate

[u]Wt,p(�′) ≤ C

(
[u]Ws,2(Rn) + || f ||

L
np

n+(2s−t)p (�′′)

)
, (1.8)

where C = C(n, s, t,�, R, p,�′,�′′) > 0.

We stated Theorems 1.1 and 1.2 in terms of the higher integrability exponent p
at which we arrive. Since in some circumstances it might be more natural to instead
prescribe the integrability of the source function f , we also state the following refor-
mulation of Theorem 1.1.

Theorem 1.3 Let � ⊂ R
n be a domain, s ∈ (0, 1), � ≥ 1, fix some s ≤ t <

min{2s, 1} and let f ∈ Lq
loc(�) for some q ∈

(
2n

n+2(2s−t) ,∞
)
. In addition, assume

that A ∈ L0(�) is VMO in �. Then for any weak solution u ∈ Ws,2(Rn) of the
equation L Au = f in �, we have

u ∈
{
W

t, nq
n−(2s−t)q

loc (�), if q < n
2s−t

W t,p
loc (�) for any p ∈ (1,∞), if q ≥ n

2s−t .
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Since for any s < t < min{2s, 1}we have 2n
n+2(2s−t) < 2, Theorem 1.3 in particular

implies the following higher differentiability result for nonlocal equations with right-
hand side in L2.

Theorem 1.4 Let � ⊂ R
n be a domain, s ∈ (0, 1), � ≥ 1 and f ∈ L2

loc(�).
In addition, assume that A ∈ L0(�) is VMO in �. Then for any weak solution
u ∈ Ws,2(Rn) of the equation L Au = f in �, we have u ∈ Wt,2

loc (�) for any s < t <

min{2s, 1}.
Remark 1.5 Actually, the conclusions of Theorems 1.1, 1.3 and 1.4 also remain valid
for a class of coefficients A that in general might not be VMO, including in particular
irregular coefficients that are translation invariant inside of �.

More precisely, our approach is flexible enough in order to include the case when
A ∈ L0(�) satisfies A(x, y) = a(x−y) for all x, y ∈ � and somemeasurable function
a : Rn → R, but is not required to satisfy any additional regularity assumption. For
a more elaborate discussion regarding this extension of our main results, we refer to
Remark 8.1.

1.4 Local elliptic equations with VMO coefficients

From the point of view of the regularity theory for local elliptic equations, our main
results can be considered to be somewhat surprising. In order to illustrate this at first
glance surprising nature of our main results, let us briefly consider local second-order
elliptic equations in divergence form of the type

div(B∇u) = f in �, (1.9)

where the matrix of coefficients B = {bi j }ni, j=1 is assumed to be uniformly elliptic
and bounded. As it is for instance rigorously established in [25], the Eq. (1.9) can be
thought of as a local analogue of the nonlocal equation (1.1) corresponding to the limit
case s = 1. Therefore, it might be intuitive to guess that the regularity properties of
solutions to the nonlocal equation (1.1) should in some sense correspond to the ones
of the Eq. (1.9). However, it turns out that in the context of higher regularity, this is
not true at all.

A classical fact (see e.g. [39, 49]) is that if the coefficients bi j are continuous in �

and if f ∈ L
np
n+p
loc (�) for some p > 2, thenweak solutions u ∈ W 1,2

loc (�) of the Eq. (1.9)

belong to W 1,p
loc (�). While for equations with general measurable coefficients such a

gain of regularity is not achievable, it was nevertheless realized later (see [19]) that the
above assertion remains true if the continuity assumption on the coefficients is relaxed
to assuming that the coefficients belong to the space of functions with vanishing mean
oscillation VMO(�) (see also e.g. [2, 4, 21, 30] for somemore general developments).
In addition, if one is only interested in obtaining W 1,p

loc regularity for some fixed p,
then similar to our Theorem 1.2, in more recent years it was observed that it suffices
for B to be small in BMO, see [8, 9]. However, in contrast to our main results, the
results mentioned above do not yield any differentiability gain.
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And indeed, in order to gain any amount of differentiability along the Sobolev scale
in the setting of local equations, a corresponding amount of differentiability has to be
imposed on the coefficients, which can already be observed in one-dimensional exam-
ples (see e.g. [32, section 1]). Thus, in the setting of local elliptic equations with VMO
or even continuous coefficients in general no differentiability gain at all is attainable.
In contrast, our main results show that in the setting of nonlocal equations with VMO
coefficients, the differentiability of weak solutions improves quite significantly. Let
us give some further illustrations of these improved regularizing effects of nonlocal
equations contained in our main results.

In fact, in the casewhen s ≤ 1/2,we are able to almostmatch the optimal Calderón–
Zygmund-type Sobolev regularity for the fractional Laplacian, which corresponds to
the case when the coefficient A is constant. Namely, it is known that for the weak
solution of the Dirichlet problem

{
(−�)su = f in �

u = 0 a.e. in Rn \ �,

we have u ∈ W 2s,p
loc (�) whenever f ∈ L p(�) for some p ∈ [2,∞) (see [5]), while

our main results show that despite the presence of a general VMO coefficient A in
(1.1), for s ≤ 1/2 weak solutions of (1.1) still belong to Wt,p

loc (�) for any t < 2s
whenever f ∈ L p

loc(�). This is in sharp contrast to the setting of local second-order

equations, since weak solutions u ∈ W 1,2
loc (�) to the Poisson equation �u = f in �

belong to W 2,p
loc (�) whenever f ∈ L p

loc(�), gaining a full weak derivative, while as
mentioned above, in the presence of VMO coefficients in (1.9) in general not even a
gain of fractional differentiability can be expected.

In the case when s > 1/2, our main results only yield differentiability for any
t < 1, so that in this case we are no longer able to almost match the optimal Sobolev
regularity for the fractional Laplacian. However, this seems natural to us, since we
do not expect that the differentiability of solutions to local second-order equations
can be exceeded by solutions to corresponding nonlocal equations of lower order.
Nevertheless, for s ≥ 1/2 our main results in particular show that weak solutions to
nonlocal equations with VMO coefficients of the type (1.1) almost share the amount
differentiability that weak solutions to local equations with VMO coefficients of the
type (1.9) possess, despite the fact that the order of such nonlocal equations is lower.

1.5 Previous related results

By now, there is a substantial amount of works concerning the regularity theory for
weak solutions to nonlocal equations of the type (1.1).

This is especially true concerning regularity results of purely nonlocal type, in
the sense that the obtained results do not have analogues in the regularity theory of
local elliptic equations. This line of results was started in the papers [32] and [47],
where it was demonstrated that in the case of general bounded measurable coefficients
A ∈ L0(�), weak solutions to nonlocal equations of the type (1.1) are slightly higher
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differentiable and higher integrable, provided the right-hand side satisfies f ∈ Lq
loc

for some q > 2n
n+2s . Our main results show that under the additional assumption that

A is VMO, the conclusions of the results in [32, 47] can be improved to gaining larger
amounts of differentiability and integrability.

Concerning results on higher Sobolev regularity for nonlocal equations of the type
(1.1), in [36]Mengesha, Schikorra andYeepo proved results similar to ourTheorem1.1
in the case when � = R

n and under the assumption that the mapping x �→ A(x, y)
is globally Hölder continuous for some arbitrarily small Hölder exponent. Since this
Hölder continuity assumption on A in particular does not include discontinuous coef-
ficients of VMO-type like (1.6) and (1.7), in [36, p. 10] the authors raised the question
if the regularity gain they obtained remains valid for coefficients that merely belong
to VMO. Therefore, one of the main achievements of the present paper is that our
main results confirm this conjecture to be true, even establishing the desired regularity
in the slightly more general case when the coefficient is merely assumed to be small
in BMO. Moreover, in contrast to [36] we are also able to include translation invari-
ant coefficients that do not satisfy any smoothness assumption, see Remark 8.1. In
addition, we argue on a completely different set of techniques in comparison to the
ones applied in [36]. Namely, while the key ingredient in [36] is given by commutator
estimates, our approach is based on a delicate interplay between comparison estimates
and so-called dual pairs (see Sect. 1.7).

Furthermore, in [43] we proved weaker versions of the main results in the present
paper, in the sense that the differentiability gain obtained in [43] depends on n, s and
in particular the amount of integrability that we are able to gain, while in our main
results stated in Sect. 1.3 an arbitrarily small gain of integrability suffices in order to
gain differentiability in the full range s < t < min{2s, 1}. For this reason, the amount
of differentiability gained in [43] only matches the one in this paper in the case when
a very large amount of integrability is prescribed on the right-hand side f , while in
general the differentiability gain in this work exceeds the one obtained in [43] by a
very substantial amount.

This is probably illustrated best in the setting of our Theorem 1.4: For f ∈ L2
loc(�),

[43, Theorem 1.3] only implies that u ∈ Wt,2
loc (�) for any t in the restricted range

s < t < tn,s :=
{

ns+4s2
n+2s , if s ≤ 1/2
ns+4s−4s2
n+2−2s , if s > 1/2.

In particular, e.g. for n = 2 and s = 1/2, [43, Theorem 1.3] yields differentiability
for any t < 2/3, while in this case our Theorem 1.4 yields differentiability for any
t < 1. In higher dimensions, the improvement in differentiability gain becomes even
more visible. In fact, for any s ∈ (0, 1) and any fixed ε > 0, there exists some large
enough n = n(s, ε) such that tn,s < s + ε, so that the gain of differentiability in [43]
is in general very small in the case when f merely belongs to L2

loc(�). On the other

hand, for f ∈ L2
loc(�) our Theorem 1.4 implies that u ∈ Wt,2

loc (�) in the whole range
s < t < min{2s, 1}, independently of n.
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Moreover, in [42] for p ∈ (2,∞) it was proved that weak solutions u to (1.1)

belong to Ws,p
loc (�) whenever f ∈ L

np
n+sp
loc (�) and A is continuous in � × �, which

corresponds to the case of no differentiability gain as in the setting of local equations.
Also, in the case when f ∈ L2

loc(�) and A ∈ Cs(� × �), by using difference

quotients, in [16] it was shown that weak solutions to (1.1) belong toWt,2
loc (�) for any

t < 2s, which also follows from our Theorem 1.4 in the case when s ≤ 1/2. In other
words, in this case we not only do not need Cs regularity of the coefficient A, but not
even continuity of A in order to achieve this higher differentiability result. In fact, it
is sufficient for A to be VMO in �.

More results regarding Sobolev regularity for nonlocal equations are for example
proved in [3, 6, 22, 26, 28, 29, 35, 37, 40], while various results on Hölder regularity
are proved in [7, 11–15, 17, 18, 23, 24, 27, 33, 41, 44, 45, 48]. Furthermore, for some
regularity results concerning nonlocal equations similar to (1.1) in the case when the
right-hand side is merely a measure, we refer to [31].

1.6 Some remaining open questions and possible extensions

First of all, while as we discussed in Sect. 1.5 the differentiability gain in [43] is in
general substantially smaller than the gain we achieve in our main results, the main
results in [43] hold also for certain nonlinear generalizations of the Eq. (1.1), while
in this paper and also in [36] only linear equations are considered. Thus, a natural
question is if the improved differentiability gain in the present paper remains valid for
nonlinear equations.

In addition, in [36] the lower bound we imposed on A in (1.3) is only assumed to
hold at the diagonal, so that another naturally arising question is if the lower bound on
A can be relaxed to hold only at the diagonal also in the case when A is merely VMO.

Furthermore, in [1], in the case of the fractional Laplacian, that is, in the special
case when A is constant, a global regularity result corresponding to our Theorem 1.3
was proved under the additional restriction that q < 1

t−s , which is sharp when dealing
with regularity up to the boundary. In view of this global regularity result, another
interesting question is to what extent the conclusions of our main results, which deal
with local regularity, remain valid up to the boundary.

Moreover, we believe that our approach is flexible enough in order to generalize
our main results to include so-called local weak solutions as considered e.g. in [6], [7]
or [41], essentially only assuming that u ∈ Ws,2

loc (�) and the finiteness of the nonlocal
tails of u. However, since including this slightly more general notion of solutions
would require a revision of the previous work [43] and most notably [32], we decided
not to insist on this point.

Finally, another feature of our approach is that it also enables us to prove localWt,p

estimates in the case when the right-hand side f in (1.1) is replaced by the fractional
Laplacian or even by sums of more general nonlocal operators, see Theorem 7.7 and
Remark 7.8.
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1.7 Approach

Before commencing with the technical part of the paper, in this section we give a
heuristic summary of our approach, in particular since we believe that the techniques
displayed in this work have the potential to be useful in a large variety of situations
involving nonlocal equations.

As mentioned, in the previous paper [43], we proved weaker versions of the main
results in the present paper, gaining only a restricted amount of differentiability that
depends on the amount of integrability we are able to gain. This was achieved by
introducing ideas that on the one hand allow to prove suitable comparison estimates in
our nonlocal setting, and on the other hand allow to combine various highly nontrivial
covering techniques introduced in the papers [10, 32]. Our approach in this paper
essentially combines the techniques implemented in [43] with some novel insights
that enable us to gain differentiability independently of the integrability gain. Since an
in-depth heuristic description of the philosophy of the approach from [43] was already
given in [43, Section 1.5], here we focus on emphasizing the main novelties of the
approach used in this work compared to the one applied in [43].

The objects at the heart of the approach from [43] are certain fractional gradients
given by so-called dual pairs. Namely, for some fixed θ ∈ (0, 1

2

)
, we define a Borel

measure μ on R
2n as follows. For any function u : Rn → R and (x, y) ∈ R

2n with
x �= y, we define the function

U (x, y):=|u(x) − u(y)|
|x − y|s+θ

. (1.10)

In addition, for any measurable set E ⊂ R
2n , set

μ(E):=
∫
E

dxdy

|x − y|n−2θ . (1.11)

For any domain � ⊂ R
n , we then clearly have u ∈ Ws,2(�) if and only if u ∈ L2(�)

and U ∈ L2(� × �,μ), so that in some sense the function U and the measure μ are
in duality. Regarding larger exponents, by a simple computation, for any p > 2 and

s̃:=s + θ
(
1 − 2

p

)
> s we have

u ∈ Ws̃,p(�) if and only if u ∈ L p(�) and U ∈ L p(� × �,μ). (1.12)

Therefore, a key feature of this approach to fractional-type gradients is that by proving
higher integrability of the gradient-type functionU with respect to the measure μ, we
do not only gain regularity along the integrability scale of fractional Sobolev spaces,
but also a substantial amount of higher differentiability! In [43], this property of such
dual pairs of the type (U , μ) was then exploited by proving that in the restricted
range 0 < θ < min{s, 1 − s}, we have U ∈ L p

loc(� × �,μ), which in turn then
also gives some higher differentiability as indicated above. However, the amount of
differentiability gained in this fashion is in general strictly smaller than the amount
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we gain in our main results, since a small amount of integrability gain also only yields
a small gain along the differentiability scale. In the present paper, we overcome this
issue by considering also fractional gradients and dual pairs of higher order. More
precisely, the key idea is to iteratively replace the function U by fractional gradient-
type functions of the type

Uα(x, y):=|u(x) − u(y)|
|x − y|α+θα

(1.13)

and the above measure μ by measures of the form

μα(E):=
∫
E

dxdy

|x − y|n−2θα
, (1.14)

where s ≤ α < min{2s, 1} and θα:=s + θ − α. In a similar way as above, for any

p > 2 and α̃:=α + θ
(
1 − 2

p

)
> α, we have

u ∈ W α̃,p(�) if and only if u ∈ L p(�) and Uα ∈ L p(� × �,μα). (1.15)

With these notions in place, let us now briefly sketch the further approach and in
particular the iteration argument that leads to achieving Wt,p

loc regularity for any s <

t < min{2s, 1}.
First, we observe that instead of directly proving the desired regularity for nonlocal

equations of the type LAu = f , for technical reasons it is more appropriate for us
to first focus on proving regularity for equations of the type LAu = (−�)sg, where
(−�)s denotes the fractional Laplacian. This is because once we are able to transfer a
sufficient amount of regularity from g to u, in view of the known H2s,p estimates for
the fractional Laplacian, we can then first transfer regularity from f to some solution
g of (−�)sg = f and then from g to weak solutions u of (1.1). Thus, we focus on
proving that for weak solutions to LAu = (−�)sg, for any s < t < min{2s, 1} we
have the implication

g ∈ Wt,p
loc 
⇒ u ∈ Wt,p

loc . (1.16)

Instead of proving this implication directly, roughly speaking we focus on proving
implications of the type

Gα ∈ L p
loc(� × �,μα) 
⇒ Uα ∈ L p

loc(� × �,μα) (1.17)

for anyα ∈ [s,min{2s, 1}), whereGα is defined in the sameway asUα with u replaced
by g. Since θα decreases as α increases, this exactly leads to the implication (1.16) for
any s < t < min{2s, 1}.

In order to prove the implication (1.17), we make use of a covering argument
implemented in detail in [43]. The main idea is to cover the level sets

{M(U 2
α) > λ2

}
of the maximal function of Uα by dyadic cubes in order to show that these level sets
decay sufficiently fast with respect toμα , which in view of standard measure-theoretic
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arguments then implies the desired implication (1.17). However, since the above level
sets are subsets ofR2n instead ofRn , in our setup we have to run an exit time argument
in R2n instead of Rn in order to cover the level set ofU by Calderón–Zygmund cubes
in R

2n , which leads to rather severe technical difficulties. In particular, since close to
the diagonal the information given by the equation can be used much more efficiently,
an additional cover of the diagonal in terms of balls is constructed. However, since a
large part of this technical covering argument works almost in exactly the same way
as the one applied in [43], as indicated before, in this paper we primarily focus on
the nontrivial modifications necessary in order to prove the implication (1.17) in the
higher-order case when α > s.

Namely, probably the most crucial complication in contrast to [43] arises in the
arguments applied in order to control the measures of the balls in the mentioned
additional diagonal cover. In [43], the central tool in order to achieve this is given by a
comparison estimate. More precisely, in [43] the functionU was locally approximated
in L2(μ) by a corresponding function V , which is given as in (1.10) with u replaced by
a weak solution v of the corresponding homogeneous equation LA0v = 0 with locally
"frozen" coefficient A0. Equivalently, it was proved that the difference w:=u − v

is small in Ws,2 whenever g is small in Ws,2, which can be shown by testing the
equation with w itself. The mentioned covering argument then essentially allows to
transfer regularity from v to u. More precisely, in [41] it was shown that such weak
solutions v to homogeneous equations with locally constant coefficients belong to Cβ

for any 0 < β < min{2s, 1}, which suffices in order to transfer enough regularity
from v to u in order to obtain the desired result.

In contrast, proving such a comparison estimate for higher-order fractional gradients
is more involved, since in this case the order of the gradient-type function no longer
matches the order of the equation already in L2. We resolve this issue as follows. In
order to show thatUα is close to Vα in L2(μα) or equivalently, thatw = u−v is small
in Wα,2 whenever g is small in Wα,2, roughly speaking we additionally assume that
w satisfies an estimate of the form

[w]Wα,2 � [w]Ws,2 + [g]Wα,m + tail terms (1.18)

for somem > 2. This additional estimate then essentially allows to reduce the problem
of proving the smallness of w in Wα,2 to showing the smallness of w in Ws,2, which
was already done in [43]. In addition, while in [43] it was necessary to locally freeze
the coefficient A, since in view of the Sobolev embedding the main results in [43]
already imply aCβ estimate for any 0 < β < min{2s, 1} in the case when A is merely
VMO, in our situation freezing the coefficient is no longer necessary. However, in
order to arrive at our main results, it then still remains to remove the assumption that
the estimate (1.18) holds.

We achieve this as follows. Since in the case when α = s the estimate (1.18) holds
trivially, in this case (which corresponds to [43]) we already achieve some higher
differentiability or more precisely, we obtain that the implication (1.16) holds for
some small enough t1 > s. But since due to the linearity of the equation, w = u − v

also satisfies the equation L Aw = (−�)sg, the estimate (1.18) is therefore also
satisfied for α = t1. Thus, through the procedure we sketched above, we obtain that
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u and w satisfy the implication (1.17) for α = t1, leading to the estimate (1.16) for
some t2 > t1, exceeding the amount of differentiability obtained in [43]. Iterating this
procedure finitely many times then indeed leads to the estimate (1.16) in the full range
s < t < min{2s, 1}.

1.8 Brief outline of the paper

The paper is organized as follows. In Sect. 2, we define the fractional Sobolev spaces
Ws,p andmention some of their properties that we use throughout the paper. In Sect. 3,
we then further discuss the notion of fractional gradients given by dual pairs introduced
in the previous Sect. 1.7.

The rest of the paper is then devoted to the proof of our main results. In Sect. 4
we implement the approximation argument for higher-order fractional gradients men-
tioned in Sect. 1.7. In Sect. 5, we turn to proving certain good-λ inequalities, both at
the diagonal and far away from the diagonal. These good-λ inequalities then allow to
carry out an adaptation of the covering argument from [43, Section 7] for higher-order
fractional gradients. Since the covering argument needed in our setting follows very
closely the steps in [43, Section 7], in Sect. 6 we only explain the required adaptations
in order to arrive at the desired level set estimate. In Sect. 7, this level set estimate is
then used along with some delicate iteration arguments in order to prove a priori esti-
mates for weak solutions. Finally, in Sect. 8 these a priori estimates are then combined
with smoothing techniques in order to arrive at our main results.

1.9 Some notation

For convenience, let us fix some notation which we use throughout the paper. By
C, c and Ci , ci , i ∈ N0, we always denote positive constants, while dependences on
parameters of the constants will be shown in parentheses. As usual, by

Br (x0):={x ∈ R
n | |x − x0| < r}

we denote the open euclidean ball with center x0 ∈ R
n and radius r > 0. We also set

Br :=Br (0). In addition, by

Qr (x0):={x ∈ R
n | |x − x0|∞ < r/2}

we denote the open cube with center x0 ∈ R
n and sidelength r > 0. Moreover, if

E ⊂ R
n is measurable, then by |E | we denote the n-dimensional Lebesgue-measure

of E . If 0 < |E | < ∞, then for any u ∈ L1(E) we define

uE :=−
∫
E
u(x)dx := 1

|E |
∫
E
u(x)dx .

As indicated in Sect. 1.7, throughout this paper, we often consider integrals and func-
tions on R2n = R

n ×R
n . Instead of dealing with the usual euclidean balls in R2n , for
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this purpose it is more convenient for us to use the balls generated by the norm

||(x0, y0)||:=max{|x0|, |y0|}, (x0, y0) ∈ R
2n .

These balls with center (x0, y0) ∈ R
2n and radius r > 0 are denoted by Br (x0, y0)

and are of the form

Br (x0, y0) = Br (x0) × Br (y0).

In the case when x0 = y0 we also write Br (x0):=Br (x0, x0), we call such balls
diagonal balls. We also set Br :=Br (0). Similarly, for x0, y0 ∈ R

n and r > 0 we define
Qr (x0, y0):=Qr (x0) × Qr (y0) and Qr (x0):=Qr (x0, x0) and also Qr :=Qr (0).

2 Fractional Sobolev spaces

Definition Let � ⊂ R
n be a domain. For p ∈ [1,∞) and s ∈ (0, 1), we define the

fractional Sobolev space

Ws,p(�):=
{
u ∈ L p(�)

∣∣∣
∫

�

∫
�

|u(x) − u(y)|p
|x − y|n+sp

dydx < ∞
}

with norm

||u||Ws,p(�):=
(
||u||pL p(�) + [u]pWs,p(�)

)1/p
,

where

[u]Ws,p(�):=
(∫

�

∫
�

|u(x) − u(y)|p
|x − y|n+sp

dydx

)1/p

.

In addition, we define the corresponding local fractional Sobolev spaces by

Ws,p
loc (�):= {u ∈ L p

loc(�) | u ∈ Ws,p(�′) for any domain �′ � �
}
.

Also, we define the space

Ws,p
0 (�):=

{
u ∈ Ws,2(Rn) | u = 0 in Rn \ �

}
.

We use the following fractional Poincaré inequality, see [38, Section 4].
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Lemma 2.1 (fractional Poincaré inequality) Let s ∈ (0, 1), p ∈ [1,∞), r > 0 and
x0 ∈ R

n. For any u ∈ L p(Br (x0)), we have

∫
Br (x0)

∣∣u(x) − uBr (x0)
∣∣p dx ≤ Crsp

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+sp

dydx,

where C = C(s, p) > 0.

Proposition 2.2 Let � ⊂ R
n be a Lipschitz domain, s ∈ (0, 1) and p ∈ [1,∞).

• If sp < n, then we have the continuous embedding

Ws,p(�) ↪→ L
np

n−sp (�).

• If sp = n, then for any q ∈ [1,∞) we have the continuous embedding

Ws,p(�) ↪→ Lq(�).

• If sp > n, then we have the continuous embedding

Ws,p(�) ↪→ Cs− n
p (�).

In addition, if sp > n and � = Br (x0) for some r > 0 and some x0 ∈ R
n, then for

any u ∈ Ws,p(Br (x0)), we have

[u]
C
s− n

p (Br (x0))
≤ C[u]Ws,p(Br (x0)), (2.1)

where C = C(n, s, p) > 0.

Proof The above three embeddings follow from [20, Theorem 6.7, Theorem 6.10,
Theorem 8.2]. Let us now prove (2.1). Define ur (x):=u(r x + x0). Applying the third
of the above embeddings to ũr :=ur −(ur )B1 ∈ Ws,p(B1) and then using the fractional
Poincaré inequality (Lemma 2.1), along with changes of variables leads to

rs−
n
p [u]

C
s− n

p (Br (x0))
= [ur ]

C
s− n

p (B1)

= [̃ur ]
C
s− n

p (B1)

≤ C1

(∫
B1

∫
B1

|̃ur (x) − ũr (y)|p
|x − y|n+sp

dydx +
∫
B1

|̃ur (x)|pdx
) 1

p

≤ C

(∫
B1

∫
B1

|ur (x) − ur (y)|p
|x − y|n+sp

dydx

) 1
p

= Crs−
n
p

(∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+sp

dydx

) 1
p

,
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where C1 and C depend only on n, s and p. Since the factor rs−
n
p cancels out on both

sides, the proof is finished. ��
For the following Lemma, we refer to [43, Lemma 2.4].

Lemma 2.3 (fractional Sobolev–Poincaré inequality) Let s ∈ (0, 1), p ∈ [1,∞),
r > 0 and x0 ∈ R

n. In addition, let

q ∈
{[

1, np
n−sp

]
, if sp < n

[1,∞), if sp ≥ n.

Then for any u ∈ Ws,p(Br (x0)), we have

(
−
∫
Br (x0)

∣∣u(x) − uBr (x0)
∣∣q dx

) 1
q ≤ Crs

(
−
∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+sp

dydx

) 1
p

,

where C = C(n, s, p, q) > 0.

For p ∈ (1,∞) and s ∈ (0, 2), denote by Hs,p(�) the standard Bessel potential
spaces on �, see e.g. [43, Section 2]. The following embedding result follows from
[51, Theorem 2.5], where it is given in the more general context of Besov and Triebel–
Lizorkin spaces.

Proposition 2.4 Let 1 < p0 < p < p1 < ∞, s ∈ (0, 2), s0, s1 ∈ (0, 1) and assume
that � ⊂ R

n is a smooth domain. If s0 − n
p0

= s − n
p = s1 − n

p1
, then

Ws0,p0(�) ↪→ Hs,p(�) ↪→ Ws1,p1(�).

Unlike the first-order Sobolev spaces W 1,p(�) on a bounded domain � ⊂ R
n , the

fractional Sobolev spacesWs,p(�) are not contained in each other as the integrability
exponent p decreases. Nevertheless, the following result essentially shows that the
mentioned inclusions are almost true.

Proposition 2.5 Let 1 < p0 ≤ p < ∞, s ∈ (0, 1) and assume that � ⊂ R
n is a

smooth bounded domain. Then for any t ∈ (s, 1), we have

Wt,p(�) ↪→ Ws,p0(�).

In addition, if � = Br (x0) for some r > 0 and some x0 ∈ R
n, then for any u ∈

Wt,p(Br (x0)), we have

[u]Ws,p0 (Br (x0)) ≤ Cr
n
p0

− n
p +t−s[u]Wt,p(Br (x0)), (2.2)

where C = C(n, s, t, p, p0) > 0.
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Proof By [43, Proposition 2.6], for 0 < ε < min
{
t − s, 2n

p , 2n
(
1 − 1

p0

)}
, we

have Wt,p(�) ↪→ Wt−ε,p0(�). Since by [20, Proposition 2.1], we also have
Wt−ε,p0(�) ↪→ Ws,p0(�), we arrive at the embedding Wt,p(�) ↪→ Ws,p0(�).

In order to prove (2.2), set ur (x):=u(r x + x0). By using the above embedding with
respect to ũr :=ur − (ur )B1 and then the fractional Poincaré inequality (Lemma 2.1),
along with changing variables we conclude that

(∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p0
|x − y|n+sp0

dydx

) 1
p0

= r
n
p0

−s
(∫

B1

∫
B1

|̃ur (x) − ũr (y)|p0
|x − y|n+sp0

dydx

) 1
p0

≤ C1r
n
p0

−s
(∫

B1

∫
B1

|̃ur (x) − ũr (y)|p
|x − y|n+tp

dydx +
∫
B1

|̃ur (x)|pdx
) 1

p

≤ C2r
n
p0

−s
(∫

B1

∫
B1

|ur (x) − ur (y)|p
|x − y|n+tp

dydx

) 1
p

= C2r
n
p0

− n
p +t−s

(∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+tp

dydx

) 1
p

,

where C1 and C2 depend only on n, p, p0, s and t . This proves (2.2). ��

3 Fractional gradients onR
2n

3.1 Basic properties of dual pairs

Fix some t ∈ (0, 1) and some θ ∈ (0, 1
2

)
. We define a Borel measure μθ on R

2n as
follows. For any function u : Rn → R and (x, y) ∈ R

2n with x �= y, we define the
function

Ut,θ (x, y):=|u(x) − u(y)|
|x − y|t+θ

. (3.1)

For any measurable set E ⊂ R
2n , set

μθ(E):=
∫
E

dxdy

|x − y|n−2θ . (3.2)

The following Lemma follows by a straightforward computation, see [43, Lemma
3.1].
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Lemma 3.1 Let p ≥ 2 and set tθ :=t + θ
(
1 − 2

p

)
. Then we have

u ∈ Wtθ ,p(�) if and only if u ∈ L p(�) and Ut,θ ∈ L p(� × �,μθ)

and

||Ut,θ ||L p(�×�,μθ ) = [u]Wtθ ,p(�).

The next Proposition contains some further important properties of the measureμθ

which we use frequently throughout the paper, usually without explicit reference. For
a proof, we refer to [43, Proposition 3.2].

Proposition 3.2 (i) For all r > 0 and x0 ∈ R
n, we have

μθ(Br (x0)) = μθ(Br ) = crn+2θ ,

where c = c(n, θ) > 0.
(ii) (volume doubling property) For any (x0, y0) ∈ R

2n, any r > 0 and any M > 0,
we have

μθ(BMr (x0, y0)) = Mn+2θμθ (Br (x0, y0)).

We will also frequently use the following relation between fractional gradients of
different order.

Lemma 3.3 Let 0 < s ≤ t < 1, p ≥ 2, θ ∈ (0, 1
2

)
and set θt :=s + θ − t . Then for

any r > 0, any x0 ∈ R
n and any u ∈ Wt,p(Br (x0)), we have

−
∫
Br (x0)

U p
s,θdμθ ≤ C−

∫
Br (x0)

U p
t,θt

dμθt ,

where C = C(n, s, t, θ, p) > 0.

Proof Using that tp + θt (p − 2) − sp − θ(p − 2) = 2(t − s), we have

−
∫
Br (x0)

U p
s,θdμθ = C1r

−n−2θ
∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+sp+θ(p−2)

dydx

= C1r
−n−2θ

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+tp+θt (p−2)

|x − y|2(t−s)dydx

≤ C2r
−n−2θ+2(t−s)

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+tp+θt (p−2)

dydx

= C2r
−n−2θt

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|p
|x − y|n+tp+θt (p−2)

dydx

= C−
∫
Br (x0)

U p
t,θt

dμθt ,

where all constants depend only on n, s, t, θ and p. ��
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3.2 The Hardy–Littlewoodmaximal function

Another tool we use is the Hardy–Littlewood maximal function with respect to the
measure μθ .

Definition Let F ∈ L1
loc(R

2n, μθ ). We define the Hardy–Littlewood maximal func-
tion
MF : R2n → [0,∞] of F with respect to μθ by

M(F)(x, y):=Mμθ (F)(x, y):= sup
ρ>0

−
∫
Bρ(x,y)

|F |dμθ ,

where

−
∫
Bρ(x,y)

|F |dμθ := 1

μθ(Bρ(x, y))

∫
Bρ(x,y)

|F |dμθ .

Moreover, for any open set E ⊂ R
2n , we define

ME (F):=M (FχE ) ,

where χE is the characteristic function of E . In addition, for any r > 0 we define

M≥r (F)(x, y):= sup
ρ≥r

−
∫
Bρ(x,y)

|F |dμθ .

and

M≥r ,E (F):=M≥r (FχE ) .

The following result shows that the Hardy–Littlewood maximal function is well-
behaved in the context of L p spaces. Since in view of Proposition 3.2μθ is a doubling
measure with doubling constant 2n+2θ , the result follows directly from [50, Chapter
1, Section 3, Theorem 1].

Proposition 3.4 Let E be an open subset of R2n.

(i) (weak p-p estimates) If F ∈ L p(E, μθ ) for some p ≥ 1 and λ > 0, then

μθ ({x ∈ E | ME (F)(x) > λ}) ≤ C

λp

∫
E

|F |pdμθ ,

where C depends only on n, θ and p.
(ii) (strong p-p estimates) If F ∈ L p(E, μθ ) for some p ∈ (1,∞], then

||ME (F)||L p(E,μθ ) ≤ C ||F ||L p(E,μθ ),

where C depends only on n, θ and p.
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The following result is a direct consequence of theLebesgue differentiation theorem
with respect to μθ , see [43, Corollary 3.5].

Proposition 3.5 Let F ∈ L1
loc(R

2n, μθ ). Then for almost every (x, y) ∈ R
2n, we have

|F(x, y)| ≤ M(F)(x, y).

In addition, for any open set E ⊂ R
2n and any p ∈ [1,∞], we have

||F ||L p(E,μθ ) ≤ ||ME (F)||L p(E,μθ ).

4 An approximation argument

From now on, we fix some s ∈ (0, 1) and some parameter

θ ∈ (0,min{s, 1 − s}) (4.1)

to be chosen later. In addition, for the fractional gradients Us,θ , Vs,θ and Gs,θ of
functions u, v, g : Rn → R and the measure μθ , we are going to use the abbreviated
notation

U :=Us,θ , V :=Vs,θ , G:=Gs,θ , μ:=μθ .

Definition Given g ∈ Ws,2(Rn), we say that u ∈ Ws,2(Rn) is a weak solution of the
equation LAu = (−�)sg in �, if

∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s (u(x) − u(y))(ϕ(x) − ϕ(y))dydx

= Cn,s

∫
Rn

∫
Rn

g(x) − g(y)

|x − y|n+2s (ϕ(x) − ϕ(y))dydx ∀ϕ ∈ Ws,2
0 (�).

In addition, we also need the following definition.

Definition Let � be a domain and consider functions h ∈ Ws,2(Rn) and f ∈
L

2n
n+2s (�). We say that v ∈ Ws,2(Rn) is a weak solution of the Dirichlet problem

{
L Av = f in �

v = h a.e. in Rn \ �,

if we have v = h a.e. in Rn \ � and

∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s (u(x) − u(y))(ϕ(x) − ϕ(y))dydx =
∫

�

f ϕdx ∀ϕ ∈ Ws,2
0 (�).

The following comparison estimate follows from [43, Proposition 5.1] by taking
A = Ã and f = f̃ = 0.
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Proposition 4.1 Let x0 ∈ R
n, r > 0, g ∈ Ws,2(Rn) and A ∈ L0(�). Moreover, let

u ∈ Ws,2(Rn) be a weak solution of the equation

L Au = (−�)sg in B2r (x0), (4.2)

and let v ∈ Ws,2(Rn) be the unique weak solution of the Dirichlet problem

{
L Av = 0 in B2r (x0)

v = u a.e. in Rn \ B2r (x0).
(4.3)

Then the function w:=u − v ∈ Ws,2
0 (B2r (x0)) satisfies

∫
Rn

∫
Rn

(w(x) − w(y))2

|x − y|n+2s dydx

≤ Cμ(Br (x0))

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

G2dμ

) 1
2
⎞
⎠

2

,

where C = C(n, s, θ,�) > 0.

We continue by fixing some further notation and some assumptions which we will
use throughout the rest of this paper. From now on, we fix some � ≥ 1, some δ > 0
to be chosen small enough, some coefficient A ∈ L0(�) that is δ-vanishing in B5n
and some p ∈ (2,∞). Moreover, we fix another number q ∈ [2, p) and define

q�
α:=

{
nq

n−αq , if n > αq

2p, if n ≤ αq.
(4.4)

In addition, we fix a number m in the range

2 ≤ m < min

{
2(n − s)

n − 2s
, p

}
(4.5)

and define

q0:=max{m, q}. (4.6)

Furthermore, we fix some function g ∈ Ws,2(Rn) and a weak solution u ∈ Ws,2(Rn)

of the equation

L Au = (−�)sg in B5n (4.7)
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and set

λ0:=M0

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2dμ

) 1
2

+
(

−
∫
B5n

U 2
αdμα

) 1
2

+ δ−1
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2

+
(

−
∫
B5n

Gq0
α dμα

) 1
q0
)

,

(4.8)

where M0 ≥ 1 remains to be chosen large enough. From now on, we also fix some
number

α ∈ [s,min{2s, 1})

and assuming that θ > α − s, we define a corresponding parameter by

θα:=s + θ − α > 0 (4.9)

with associated gradient-type functions

Uα(x, y) := Uα,θα (x, y) = |u(x) − u(y)|
|x − y|α+θα

,

Gα(x, y) := Gα,θα (x, y) = |g(x) − g(y)|
|x − y|α+θα

and with associated measure

μα(E):=μθα (E) =
∫
E

dxdy

|x − y|n−2θα
, E ⊂ R

2n measurable.

In addition, from this point on we assume that for any x0 ∈ R
n , r > 0 such that

Br (x0) ⊂ B5n , and any weak solution u0 ∈ Ws,2(Rn) of L Au0 = (−�)sg in Br (x0),
we have a higher differentiability estimate of the form

(
1

μα(Br (x0))

∫
Br/2(x0)

∫
Br/2(x0)

(u0(x) − u0(y))2

|x − y|n+2α dydx

) 1
2

≤ C

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

U 2
0 dμ

) 1
2

+
(

−
∫
Br (x0)

Gm
α dμα

) 1
m

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

G2dμ

) 1
2 )

,

(4.10)
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where C = C(n, s, α, θ,�,m) > 0 and

U0(x, y):=|u0(x) − u0(y)|
|x − y|s+θ

.

Lemma 4.2 Let M > 0, x0 ∈ B√
n
2
, r ∈

(
0,

√
n
2

)
and λ ≥ λ0. Then for any ε0 > 0,

there exists some small enough δ = δ(ε0, n, s, α, θ,�,m, M) ∈ (0, 1), such that
under the assumptions that

MB5n (U
2
α)(x0) ≤ Mλ2, MB5n (G

q0
α )(x0) ≤ Mλq0δq0 , (4.11)

for the unique weak solution v ∈ Ws,2(Rn) of the Dirichlet problem

{
L Av = 0 in B6r (x0)

v = u a.e. in Rn \ B6r (x0)
(4.12)

and the function

Wα(x, y):=|u(x) − v(x) − u(y) + v(y)|
|x − y|α+θα

, (x, y) ∈ R
2n, (4.13)

we have
∫
B2r (x0)

W 2
αdμα ≤ ε2λ2μα(Br (x0)). (4.14)

Moreover, the function

Vα(x, y):=|v(x) − v(y)|
|x − y|α+θα

, (x, y) ∈ R
2n

satisfies the estimate

||Vα||L∞(B2r (x0),dμα) ≤ N0λ (4.15)

for some constant N0 = N0(n, s, α, θ,�, M) > 0.

Remark 4.3 In the above Lemma and in the rest of this paper, the Hardy–Littlewood
maximal function is always considered with respect to the measure μα .

Proof Fix x0 ∈ B√
n
2
and r ∈

(
0,

√
n
2

)
. Let l ∈ N be determined by 2l−1r <

√
n ≤ 2lr ,

note that l ≥ 2. Then for any k < l, by (4.11) we have

−
∫
B2k4r (x0)

U 2
αdμα ≤ Mλ2, −

∫
B2k3r (x0)

Gq0
α dμα ≤ Mλq0δq0 . (4.16)
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On the other hand, in view of (4.8) and the inclusions

B2k
√
n(x0) ⊂ B2k+l−14r (x0) ⊂ B2k4

√
n(x0) ⊂ B2k5n,

we have

∞∑
k=l

2−k(s−θ)

(
−
∫
B2k 4r (x0)

U2dμ

) 1
2

= 2−(l−1)(s−θ)

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k+l−14r (x0)

U2dμ

) 1
2

≤
∞∑
k=1

2−k(s−θ)

⎛
⎝ μ(B2k5n)

μ
(
B2k

√
n

)−
∫
B2k 5n

U2dμ

⎞
⎠

1
2

= C1

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k 5n

U2dμ

) 1
2

≤ C1λ0,

(4.17)

where C1 = C1(n, θ) > 0. Moreover, by Lemma 3.3 for any k ≤ l − 1 we have

−
∫
B2k4r (x0)

U 2dμ ≤ C2−
∫
B2k4r (x0)

U 2
αdμα,

where C2 = C2(n, s, α, θ). Now combining the previous display with (4.17), (4.16)
and the facts that θ < s and λ ≥ λ0, we arrive at

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

≤
l−1∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

+
∞∑
k=l

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

≤ C
1
2
2

l−1∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2
αdμα

) 1
2

+
∞∑
k=l

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

≤ C
1
2
2 M

1
2 λ

∞∑
k=1

2−k(s−θ) + C1λ0 ≤ C3λ,

(4.18)

where C3 = C3(n, s, α, θ, M) > 0. In a similar way as in (4.17), we have

∞∑
k=l

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2

≤ C1

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2

≤ C1λ0δ.
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1346 S. Nowak et al.

Therefore, using Lemma 3.3 along with Hölder’s inequality, we obtain

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2

≤ C
1
2
2

l−1∑
k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2
αdμα

) 1
2

+
∞∑
k=l

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2

≤ C
1
2
2

l−1∑
k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

Gq0
α dμα

) 1
q0

+
∞∑
k=l

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2

≤ C
1
2
2 M

1
q0 λδ

∞∑
k=1

2−k(s−θ) + C1λ0δ ≤ C3λδ.

(4.19)

Since w:=u − v is a weak solution of LAw = (−�)sg in B6r (x0), w satisfies the
estimate (4.10), which combined with Proposition 4.1, Hölder’s inequality, (4.16) and
(4.19) yields

∫
B2r (x0)

W 2
αdμα ≤

∫
B3r

∫
B3r

(w(x) − w(y))2

|x − y|n+2α dydx

≤ C4
μα(Br (x0))

μ(Br (x0))

∫
Rn

∫
Rn

(w(x) − w(y))2

|x − y|n+2s dydx

+ C4μα(Br (x0))

(
−
∫
B6r (x0)

Gm
α dμα

) 2
m

+ C4μα(Br (x0))

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2
⎞
⎠

2

≤ C5μα(Br (x0))

(
−
∫
B6r (x0)

Gq0
α dμα

) 2
q0

+ C5μα(Br (x0))

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2
⎞
⎠

2

≤ C6μα(Br (x0))λ
2δ2 < ε2λ2μα(Br (x0)),

where all constants depend only on n, s, α, θ,�,m, M and the last inequality was
obtained by choosing δ sufficiently small. This proves (4.14).

Let us now proof the estimate (4.15). Define

θ0:=min{s, 1 − s} + θ

2
∈ (θ,min{s, 1 − s}), p0:=n + 2θ0

θ0 − θ
∈ (2,∞).
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Since A is δ-vanishing in B5n and therefore (δ, 5n)-BMO in B5n , by [43, Theorem
9.1], after choosing δ smaller if necessary, we have v ∈ Ws+θ0(1−2/p0),p0(B4r (x0))
and thus Vs,θ0 ∈ L p(B4r (x0), μθ0). Therefore, [43, Corollary 8.6] yields the estimate

(
−
∫
B2r (x0)

V p0
s,θ0

dμθ0

) 1
p0 ≤ C7

∞∑
k=1

2−k(s−θ0)

(
−
∫
B2k4r (x0)

V 2
s,θ0dμθ0

) 1
2

,

where C7 = C7(n, s, p0, θ0,�) > 0, and therefore

[v]Ws+θ0(1−2/p0),p0 (B2r (x0))
≤ C7μθ0(Br (x0))

1
p0

∞∑
k=1

2−k(s−θ0)

(
−
∫
B2k4r (x0)

V 2
s,θ0dμθ0

) 1
2

≤ C8r
n+2θ0
p0

−θ0+θ
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

V 2dμ

) 1
2

= C8

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

V 2dμ

) 1
2

,

where C8 = C8(n, s, p0, θ0,�) and we used that

n + 2θ0
p0

− θ0 + θ = 0.

Since s + θ0(1− 2/p0) − n
p0

= s + θ = α + θα , combining the previous display with
the fractional Sobolev embedding given by (2.1) yields

Cα+θα (B2r (x0)) ≤ C9[v]Ws+θ0(1−2/p0),p0 (B2r (x0))

≤ C10

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

V 2dμ

) 1
2

,
(4.20)

where C9 and C10 depend only on n, s, p0, θ0,�. Now in view of Proposition 4.1
along with (4.16), (4.19) and (4.18), we have

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

V 2dμ

) 1
2

≤
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

+ C11

(
1

μ(Br (x0)

∫
Rn

∫
Rn

(w(x) − w(y))2

|x − y|n+2s dydx

) 1
2
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1348 S. Nowak et al.

≤
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k4r (x0)

U 2dμ

) 1
2

+ C12

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k3r (x0)

G2dμ

) 1
2

≤ C13λ,

where all constants depend only on n, s, α, θ,�, M . Therefore, combining the last
display with (4.20) yields

||Vα||L∞(B2r (x0),dμα) ≤ [v]Cα+θα (B2r (x0)) ≤ N0λ,

for some N0 = N0(n, s, α, θ,�, M) > 0, which proves the estimate (4.15). This
finishes the proof. ��

5 Good-� inequalities

In this section, we prove some good-λ inequalities which serve as key ingredients in
the covering arguments from [43, Section 7]. Although the proofs of the results in
this section are similar to the ones of the corresponding good-λ inequalities in [43,
Section 6], since the presence of higher-order fractional gradients requires quite a few
adaptations, for the sake of coherence we nevertheless provide most of the details.

5.1 Diagonal good-� inequalities

We start by proving good-λ inequalities at the diagonal, which are somewhat akin to
corresponding ones in the local setting, see e.g. [8, 10].

Lemma 5.1 There is a constant Nd = Nd(n, s, α, θ,�) ≥ 1, such that the fol-
lowing holds. For any ε > 0 and any κ > 0 there exists some small enough

δ = δ(ε, κ, n, s, α, θ,�,m) ∈ (0, 1), such that for any λ ≥ λ0, any r ∈
(
0,

√
n
2

)
and any point x0 ∈ Q1 with

μα

({
(x, y) ∈ Br (x0) | MB5n (U

2
α)(x, y) > N 2

dλ2
})

≥ κεμα(Br (x0)), (5.1)

we have

Br (x0) ⊂
{
(x, y) ∈ Br (x0) | MB5n (U

2
α)(x, y) > λ2

}

∩ {(x, y) ∈ Br (x0) | MB5n

(
Gq0

α

)
(x, y) > λq0δq0

}
,

(5.2)

Proof Let ε0 > 0 and M > 0 to be chosen and consider the corresponding δ =
δ(ε0, n, s, θ,�,m, M) ∈ (0, 1) given by Lemma 4.2. Fix ε, κ > 0, r ∈

(
0,

√
n
2

)
,
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x0 ∈ Q1 and assume that (5.1) holds, but that (5.2) is false, so that there exists a point
(x ′, y′) ∈ Br (x0) such that

MB5n (U
2
α)(x ′, y′) ≤ λ2, MB5n

(
Gq0

α

)
(x ′, y′) ≤ λq0δq0 .

Thus, for any ρ > 0 we have

−
∫
Bρ(x ′,y′)

χB5nU
2
αdμα ≤ λ2, −

∫
Bρ(x ′,y′)

χB5nG
q0
α dμα ≤ λq0δq0 . (5.3)

Observe that for any ρ ≥ r , we have Bρ(x0) ⊂ B2ρ(x ′, y′) ⊂ B3ρ(x0). Together with
(5.3), we obtain

−
∫
Bρ(x0)

χB5nU
2
αdμα ≤ μα(B2ρ(x ′, y′))

μα(Bρ(x0))
−
∫
B2ρ(x ′,y′)

χB5nU
2
αdμα

≤ μα(B3ρ(x0))

μα(Bρ(x0))
−
∫
B2ρ(x ′,y′)

χB5nU
2
αdμα

≤ 3n+2θαλ2

and similarly

−
∫
Bρ(x0)

χB5nG
q0
α dμα ≤ μα(B2ρ(x ′, y′))

μα(Bρ(x0))

−
∫
B2ρ(x ′,y′)

χB5nG
q0
α dμα ≤ 3n+2θαλq0δq0 ,

so that Uα and Gα satisfy the condition (4.11) with M = 3n+2θα . Therefore, by
Lemma 4.2 the weak solution v ∈ Ws,2(Rn) of the Dirichlet problem

{
L Av = 0 in B6r (x0)

v = u a.e. in Rn \ B6r (x0)

satisfies

∫
B2r (x0)

W 2
αdμα ≤ ε20λ

2μα(Br (x0)), (5.4)

where Wα is given as in (4.13). In addition, also by Lemma 4.2 there exists a constant
N0 = N0(n, s, α, θ,�) > 0 such that

||Vα||2L∞(B2r (x0))
≤ N 2

0λ2. (5.5)
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1350 S. Nowak et al.

Next, we set Nd :=(max{4N 2
0 , 5n+2θα })1/2 > 1 and claim that

{
(x, y) ∈ Br (x0) | MB5n (U

2
α)(x, y) > N 2

dλ2
}

⊂
{
(x, y) ∈ Br (x0) | MB2r (x0)(W

2
α )(x, y) > N 2

0λ2
}

.
(5.6)

To see this, assume that

(x1, y1) ∈
{
x ∈ Br (x0) | MB2r (x0)(W

2
α )(x, y) ≤ N 2

0λ2
}

. (5.7)

For ρ < r , we have Bρ(x1, y1) ⊂ Br (x1, y1) ⊂ B2r (x0), so that together with (5.7)
and (5.5) we deduce

−
∫
Bρ(x1,y1)

U 2
αdμα ≤ 2−

∫
Bρ(x1,y1)

(
W 2

α + V 2
α

)
dμα

≤ 2−
∫
Bρ(x1,y1)

W 2
αdμα + 2||Vα||2L∞(Bρ(x1,y1))

≤ 2MB2r (x0)(W
2
α )(x1, y1) + 2||Vα||2L∞(B2r (x0))

≤ 4N 2
0λ2.

On the other hand, for ρ ≥ r we have Bρ(x1, y1) ⊂ B3ρ(x ′, y′) ⊂ B5ρ(x1, y1), so
that (5.3) implies

−
∫
Bρ(x1,y1)

χB5nU
2
αdμα

≤ μα(B3ρ(x ′, y′))
μα(Bρ(x1, y1))

−
∫
B3ρ(x ′,y′)

χB5nU
2
αdμα

≤ μα(B5ρ(x1, y1))

μα(Bρ(x1, y1))
−
∫
B3ρ(x ′,y′)

χB5nU
2
αdμα ≤ 5n+2θαλ2.

Thus, we have

(x1, y1) ∈
{
(x, y) ∈ Br (x0, y0) | MB5n (U

2
α)(x, y) ≤ N 2

dλ2
}

,

which implies (5.6). Now using (5.6), the weak 1-1 estimate from Proposition 3.4 and
(5.4), we conclude that there exists some constant C = C(n, θα) > 0 such that

μα

({
(x, y) ∈ Br (x0) | MB5n (U

2
α)(x, y) > N 2

dλ2
})

≤ μα

({
(x, y) ∈ Br (x0) | MB2r (x0)(W

2
α )(x, y) > N 2

0λ2
})

≤ C

N 2
0λ2

∫
B2r (x0)

W 2
αdμα
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≤ C

N 2
0

μα(Br (x0))ε
2
0 < εκμα(Br (x0)),

where the last inequality is obtained by choosing ε0 and thus also δ sufficiently small.
This contradicts (5.1) and thus finishes our proof. ��

5.2 Off-diagonal reverse Hölder inequalities

While in the setting of local elliptic equations of the form (1.9) proving analogues of
the above diagonal good-λ inequalities is sufficient in order to establish the desired
Sobolev regularity, in our nonlocal setting which involves fractional gradients defined
on R

2n , it is also necessary to prove an analogue of Lemma 5.1 on balls that are
far away from the diagonal. However, since far away from the diagonal the equation
cannot be used very efficiently, in this situation no useful comparison estimates are
available.

In order to bypass this loss of information, as in [43] we replace the comparison
estimates used in the diagonal setting by certain off-diagonal reverse Hölder inequali-
ties with diagonal correction terms, which in view of an iteration argument in the end
will still be sufficiently strong tools in order to deduce the desired regularity.

For this reason, in addition to the assumption that u satisfies the estimate (4.10),
from now on we assume that for any r > 0, x0 ∈ R

n with Br (x0) ⊂ B5n , Uα satisfies
an estimate of the form

(
−
∫
Br/2(x0)

Uq
α dμα

) 1
q

≤ Cq

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

U 2dμ

) 1
2

+
(

−
∫
Br (x0)

Gq0
α dμα

) 1
q0 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

G2dμ

) 1
2 )

,

(5.8)

where Cq depends only on q, n, s, α, θ,m and �.

Proposition 5.2 Let r > 0, x0, y0 ∈ R
n and suppose that for some γ ∈ (0, 1] we have

dist(Br (x0), Br (y0)) ≥ γ r . Then we have

(
−
∫
Br (x0,y0)

U
q�
α

α dμα

) 1
q�
α

≤ Cnd

(
−
∫
Br (x0,y0)

U 2
αdμα

) 1
2

+ Cnd

(
r

dist(Br (x0), Br (y0))

)α+θα
( ∞∑

k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

U 2dμ

) 1
2

+
(

−
∫
B2r (x0)

Gq0
α dμα

) 1
q0 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

G2dμ

) 1
2 )
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+ Cnd

(
r

dist(Br (x0), Br (y0))

)α+θα
( ∞∑

k=1

2−k(s−θ)

(
−
∫
B2kr (y0)

U 2dμ

) 1
2

+
(

−
∫
B2r (y0)

Gq0
α dμα

) 1
q0 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (y0)

G2dμ

) 1
2 )

,

where Cnd = Cnd(n, s, α, θ,�, γ,m, q, p) ≥ 1 and q�
α is given by (4.4).

Proof Choose points x1 ∈ Br (x0) and y1 ∈ Br (y0) such that dist(Br (x0), Br (y0)) =
|x1 − y1|. For any (x, y) ∈ Br (x0, y0), we observe that

|x − y| ≤ |x1 − y1| + |x1 − x | + |y1 − y|
≤ dist(Br (x0), Br (y0)) + 2r ≤ 3dist(Br (x0), Br (y0))/γ.

Together with the definition of dist(Br (x0), Br (y0)), for any (x, y) ∈ Br (x0, y0) we
obtain

1 ≤ |x − y|
dist(Br (x0), Br (y0))

≤ 3/γ. (5.9)

Thus, by taking into account the definition of the measure μα , we conclude that

c1r2n

dist(Br (x0), Br (y0))n−2θα
≤ μα(Br (x0, y0)) ≤ C1r2n

dist(Br (x0), Br (y0))n−2θα
, (5.10)

where c1 = c1(n, γ, θα) ∈ (0, 1) and C1 = C1(n, θα) ≥ 1. By (5.10) and (5.9), we
have (

−
∫
Br (x0,y0)

U
q�
α

α dμα

) 1
q�
α

≤
(
dist(Br (x0), Br (y0))n−2θα

c1r2n

∫
Br (x0)

∫
Br (y0)

|u(x) − u(y)|q�
α

|x − y|n−2θα+q�
α(α+θα)

dydx

) 1
q�
α

≤ C2dist(Br (x0), Br (y0))
−(α+θα)

(
−
∫
Br (x0)

−
∫
Br (y0)

|u(x) − u(y)|q�
αdydx

) 1
q�
α

,

where C2 = C2(n, γ, θα) ≥ 1. In view of Minkowski’s inequality, we can further
estimate the integral on the right-hand side as follows

(
−
∫
Br (x0)

−
∫
Br (y0)

|u(x) − u(y)|q�
αdydx

) 1
q�
α ≤

(
−
∫
Br (x0)

|u(x) − uBr (x0)|q
�
αdydx

) 1
q�
α

︸ ︷︷ ︸
=:I1

+
(

−
∫
Br (y0)

|u(x) − uBr (y0)|q
�
αdydx

) 1
q�
α

︸ ︷︷ ︸
=:I2
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+ |uBr (x0) − uBr (y0)|︸ ︷︷ ︸
=:I3

.

By using the fractional Sobolev–Poincaré inequality (Lemma 2.3) and then the esti-
mate (5.8), for I1 we obtain

I1 ≤ C3r
α

(
1

rn

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|q
|x − y|n+αq

dydx

) 1
q

= C4r
α

(
r2θα

μα(Br (x0))

∫
Br (x0)

∫
Br (x0)

|u(x) − u(y)|q |x − y|(q−2)θα

|x − y|n−2θα+q(α+θα)
dydx

) 1
q

≤ C5r
α

(
rqθα−

∫
Br (x0)

|u(x) − u(y)|q
|x − y|q(α+θα)

dμα

) 1
q

= C5r
α+θα

(
−
∫
Br (x0)

Uq
α dμα

) 1
q

≤ CqC5r
α+θα

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

U 2dμ

) 1
2

+
(

−
∫
B2r (x0)

Gq0
α dμα

) 1
q0 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (x0)

G2dμ

) 1
2
⎞
⎠

where C3,C4 and C5 depend only on n, s, α, θ and θα . In the same way, for I2 we
deduce that

I2 ≤ CqC5r
α+θα

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2kr (y0)

U 2dμ

) 1
2

+
(

−
∫
B2r (y0)

Gq0
α dμα

) 1
q0 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (y0)

G2dμ

) 1
2
⎞
⎠ .

Finally, by the Cauchy–Schwarz inequality, (5.10) and (5.9), for I3 we have

I3 ≤ −
∫
Br (x0)

−
∫
Br (y0)

|u(x) − u(y)|dydx

≤
(

−
∫
Br (x0)

−
∫
Br (y0)

|u(x) − u(y)|2dydx
) 1

2

≤
(

C1

dist(Br (x0), Br (y0))n−2θαμα(Br (x0, y0))

∫
Br (x0)

∫
Br (y0)

|u(x) − u(y)|2dydx
) 1

2
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1354 S. Nowak et al.

≤ C6

(
−
∫
Br (x0,y0)

|u(x) − u(y)|2dμα

) 1
2

≤ C7dist(Br (x0), Br (y0))
α+θα

(
−
∫
Br (x0,y0)

U2
αdμα

) 1
2

,

where C6 = C6(n, γ, θα) ≥ 1 and C7 = C7(n, γ, θα) ≥ 1. The claim now follows by
combining the last five displays, so that the proof is finished. ��

5.3 Off-diagonal good-� inequalities

In what follows, we fix some ε ∈ (0, 1) to be chosen small enough and set

Nε,q :=CndCs,θCαNd1010n

ε1/q
�
α

, (5.11)

where Nd = Nd(n, s, α, θ,�) ≥ 1 is given by Lemma 5.1, Cnd = Cnd(n, s, α, θ,�,

γ,m, q, p) ≥ 1 is given by Proposition 5.2 with γ to be chosen and

1 ≤ Cs,θ :=
∞∑
k=1

2−k(s−θ) < ∞, (5.12)

while Cα = Cα(n, s, α, θ) > 0 is given by Lemma 3.3 with t = α. Moreover, for all

r ∈
(
0,

√
n
2

)
and all (x0, y0) ∈ Q1 we define

φ̃(r , x0, y0):= r

dist(Br
2
(x0), Br

2
(y0))

. (5.13)

Lemma 5.3 For any λ ≥ λ0, r ∈
(
0,

√
n
2

)
and any point (x0, y0) ∈ Q1 satisfying

|x0 − y0| ≥ (3
√
n + 1)r and

μα

({
(x, y) ∈ B√

n
2 r

(x0, y0) | MB5n (U
2
α)(x, y) > N 2

ε,qλ
2
})

≥ εμα(B r
2
(x0, y0)),

(5.14)

we have

B r
2
(x0, y0) ⊂

{
(x, y) ∈ B r

2
(x0, y0) | MB5n (U

2
α)(x, y) > λ2

}

∪
{
(x, y) ∈ B r

2
(x0, y0) | M≥r ,B5n (U

2
α)(x, x) > 3n+2θα N 2

d φ̃(r , x0, y0)
−2(α+θα)λ2

}

∪
{
(x, y) ∈ B r

2
(x0, y0) | M≥r ,B5n (U

2
α)(y, y) > 3n+2θα N 2

d φ̃(r , x0, y0)
−2(α+θα)λ2

}

∪
{
(x, y) ∈ B r

2
(x0, y0) | M≥r ,B5n (G

q0
α )(x, x) > 3n+2θα φ̃(r , x0, y0)

−q0(α+θα)λq0
}

∪
{
(x, y) ∈ B r

2
(x0, y0) | M≥r ,B5n (G

q0
α )(y, y) > 3n+2θα φ̃(r , x0, y0)

−q0(α+θα)λq0
}

.
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Proof Assume that (5.14) holds, but that the conclusion is false, so that there exists a
point (x ′, y′) ∈ B r

2
(x0, y0) such that

MB5n (U
2
α)(x ′, y′) ≤ λ2,

M≥r ,B5n (U
2
α)(x ′, x ′)

≤ 3n+2θα N 2
d φ̃(r , x0, y0)

−2(α+θα)λ2,

M≥r ,B5n (U
2
α)(y′, y′)

≤ 3n+2θα N 2
d φ̃(r , x0, y0)

−2(α+θα)λ2,

M≥r ,B5n (G
q0
α )(x ′, x ′)

≤ 3n+2θα φ̃(r , x0, y0)
−q0(α+θα)λq0 ,

M≥r ,B5n (G
q0
α )(y′, y′)

≤ 3n+2θα φ̃(r , x0, y0)
−q0(α+θα)λq0 .

Therefore, for any ρ ≥ r we have

−
∫
Bρ(x ′,y′)

χB5nU
2
αdμα ≤ λ2, (5.15)

−
∫
Bρ(x ′)

χB5nU
2
αdμα ≤ 3n+2θα N 2

d φ̃(r , x0, y0)
−2(α+θα)λ2,

−
∫
Bρ(y′)

χB5nU
2
αdμα ≤ 3n+2θα N 2

d φ̃(r , x0, y0)
−2(α+θα)λ2

(5.16)

and similarly

−
∫
Bρ(x ′)

χB5nG
q0
α dμα ≤ 3n+2θα φ̃(r , x0, y0)

−q0(α+θα)λq0 ,

−
∫
Bρ(y′)

χB5nG
q0
α dμα ≤ 3n+2θα φ̃(r , x0, y0)

−q0(α+θα)λq0 .

(5.17)

Since for any ρ ≥ r we have Bρ(x0, y0) ⊂ B2ρ(x ′, y′) ⊂ B3ρ(x0, y0), from (5.15)
we deduce

−
∫
Bρ(x0,y0)

χB5nU
2
αdμα ≤ μα(B2ρ(x ′, y′))

μα(Bρ(x0, y0))

−
∫
B2ρ(x ′)

χB5nU
2
αdμα ≤ 3n+2θαλ2. (5.18)

Since for any ρ ≥ r we have Bρ(x0) ⊂ B2ρ(x ′), together with (5.16) we observe that

−
∫
Bρ(x0)

χB5nU
2
αdμα ≤ μα(B2ρ(x ′))

μα(Bρ(x0))
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1356 S. Nowak et al.

−
∫
B2ρ(x ′)

χB5nU
2
αdμα ≤ 6n+2θα N 2

d φ̃(r , x0, y0)
−2(α+θα)λ2 (5.19)

and similarly by using (5.17) instead of (5.16), we obtain

−
∫
Bρ(x0)

χB5nG
q0
α dμα ≤ μα(B2ρ(x ′))

μα(Bρ(x0))

−
∫
B2ρ(x ′)

χB5nG
q0
α dμα ≤ 6n+2θα φ̃(r , x0, y0)

−q0(α+θα)λq0 .0 (5.20)

By the same reasoning, (5.19) and (5.20) hold also with x0 replaced by y0. Next, we
claim that

{
(x, y) ∈ B√

n
2 r

(x0, y0) | MB5n (U
2
α)(x, y) > N 2

ε,qλ
2
}

⊂
{
(x, y) ∈ B√

n
2 r

(x0, y0) | MB 3
√
n

2 r
(x0,y0)(U

2
α)(x, y) > N 2

ε,qλ
2
}

.

(5.21)

To see this, assume that

(x1, y1) ∈
{
x ∈ B√

n
2 r

(x0, y0) | MB 3
√
n

2 r
(x0,y0)(U

2
α)(x, y) ≤ N 2

ε,qλ
2
}

. (5.22)

For ρ <
√
nr , we have Bρ(x1, y1) ⊂ B√

nr (x1, y1) ⊂ B 3
√
n

2 r
(x0, y0), so that along

with (5.22) we deduce

−
∫
Bρ(x1,y1)

U 2
αdμα ≤ MB 3

√
n

2 r
(x0,y0)(U

2
α)(x1, y1) ≤ N 2

ε,qλ
2.

On the other hand, for ρ ≥ √
nr we have Bρ(x1, y1) ⊂ B3ρ(x ′, y′) ⊂ B5ρ(x1, y1), so

that (5.15) implies

−
∫
Bρ(x1,y1)

χB5nU
2
αdμα ≤ μα(B5ρ(x1, y1))

μα(Bρ(x1, y1))
−
∫
B3ρ(x ′,y′)

χB5nU
2
αdμα ≤ 5n+2θα λ2 ≤ N 2

ε,qλ
2.

Thus, we have

(x1, y1) ∈
{
(x, y) ∈ Br (x0, y0) | MB5n (U

2
α)(x, y) ≤ N 2

ε,qλ
2
}

,
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which implies (5.21). As in the proof of Lemma 4.2, let l ∈ N be determined by
2l−1r <

√
n ≤ 2lr , note that l ≥ 2. Then for any k < l, by (5.19) and (5.20) we have

−
∫
B
2k 3

√
n

2 r
(x0)

U 2
αdμα ≤ 6n+2θαλ2φ̃(r , x0, y0)

−2(α+θα),

−
∫
B
2k 3

√
n

2 r
(x0)

Gq0
α dμ ≤ 6n+2θαλq0δq0 φ̃(r , x0, y0)

−2(α+θα).

(5.23)

Moreover, in view of (4.8), the inclusions

B2k n
2
(x0) ⊂ B

2k+l−1 3
√
n

2 r
(x0) ⊂ B2k 3n

2
(x0) ⊂ B2k5n

and the fact that φ̃(r , x0, y0) ≤ 1, we have

∞∑
k=l

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

U2dμ

⎞
⎠

1
2

= 2−(l−1)(s−θ)
∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k+l−1 3

√
n

2 r
(x0)

U2dμ

⎞
⎠

1
2

≤
∞∑
k=1

2−k(s−θ)

⎛
⎝ μ(B2k5n)

μ
(
B2k n

2

)−
∫
B2k 5n

U2dμ

⎞
⎠

1
2

≤ 10
n
2 +θ λ0 ≤ 10

n
2 +θ λ0φ̃(r , x0, y0)

−(α+θα).

(5.24)

Together with (5.23) and the assumption that λ ≥ λ0, along with using Lemma 3.3,
we obtain

∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

U2dμ

⎞
⎠

1
2

≤ Cα

l−1∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

U2
αdμα

⎞
⎠

1
2

+
∞∑
k=l

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

U2dμ

⎞
⎠

1
2

≤ 6
n
2 +θαCs,θCαN

2
d φ̃(r , x0, y0)

−(α+θα)λ + 10
n
2 +θ φ̃(r , x0, y0)

−(α+θα)λ0

≤ 10nCs,θCαN
2
d φ̃(r , x0, y0)

−(α+θα)λ.

(5.25)
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1358 S. Nowak et al.

By a similar reasoning as above, (5.24) holds also withU replaced by G, so that along
with Lemma 3.3 and Hölder’s inequality, we deduce

∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

G2dμ

⎞
⎠

1
2

≤ Cα

l−1∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

G2
αdμα

⎞
⎠

1
2

+
∞∑
k=l

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

G2dμ

⎞
⎠

1
2

≤ Cα

l−1∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

Gq0
α dμα

⎞
⎠

1
q0

+
∞∑
k=l

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

G2dμ

⎞
⎠

1
2

≤ 10nCs,θCαφ̃(r , x0, y0)
−(α+θα)λ.

(5.26)

Again, by the same arguments as above (5.25) and (5.26) also hold for x0 replaced

by y0. Therefore, together with the weak
q�
α

2 − q�
α

2 estimate for the Hardy–Littlewood
maximal function, Proposition 5.2 with γ = 1

3
√
n
, (5.18), (5.25), (5.20), (5.26) and

taking into account (5.11), we arrive at

μα

({
(x, y) ∈ B√

n
2 r

(x0, y0) | MB5n (U
2
α)(x, y) > N 2

ε,qλ
2
})

≤ μα

({
(x, y) ∈ B√

n
2 r

(x0, y0) | MB 3
√
n

2 r
(x0,y0)(U

2
α)(x, y) > N 2

ε,qλ
2
})

≤ N
−q�

α
ε,q λ−q�

α

∫
B 3

√
n

2 r
(x0,y0)

U
q�
α

α dμα

≤ N
−q�

α
ε,q λ−q�3q

�
αC

q�
α

ndμα

(
B 3

√
n

2 r
(x0, y0)

)
⎡
⎢⎢⎣
⎛
⎝−
∫
B 3

√
n

2 r
(x0,y0)

U2
αdμα

⎞
⎠

q�
α
2

+

⎛
⎜⎜⎝ 3

√
nr/2

dist

(
B 3

√
n

2 r
(x0), B 3

√
n

2 r
(y0)

)
⎞
⎟⎟⎠

q�
α(α+θα)⎛

⎜⎝
∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

U2dμ

⎞
⎠

1
2
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+
(

−
∫
B3

√
nr (x0)

Gq0
α dμα

) 1
q0

+
∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(x0)

G2dμ

⎞
⎠

1
2
⎞
⎟⎠

q�
α

+

⎛
⎜⎜⎝ 3

√
nr/2

dist

(
B 3

√
n

2 r
(x0), B 3

√
n

2 r
(y0)

)
⎞
⎟⎟⎠

q�
α(α+θα)⎛

⎜⎝
∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(y0)

U2dμ

⎞
⎠

1
2

+
(

−
∫
B3

√
nr (y0)

Gq0
α dμα

) 1
q0

+
∞∑
k=1

2−k(s−θ)

⎛
⎝−
∫
B
2k 3

√
n

2 r
(y0)

G2dμ

⎞
⎠

1
2
⎞
⎟⎠

q�
α
⎤
⎥⎥⎦

≤ N−q�
ε,q λ−q�3q

�
αC

q�
α

nd

(
3
√
n
)n+2θα

μα

(
B r

2
(x0, y0)

) (
3( n2 +θα)q�

α λq
�
α

+6q
�
α (9n)q

�
α(α+θα)φ̃(r , x0, y0)

q�
α(α+θα)10nq

�
αC

q�
α

s,θC
q�
α

α N
q�
α

d φ̃(r , x0, y0)
−q�

α(α+θα)λq
�
α

)

< εμα

(
B r

2
(x0, y0)

)
,

which contradicts (5.14) and thus finishes the proof. ��
Next, we restate the previous Lemma in terms of cubes instead of balls, which

is vital in order to make it applicable in the context of Calderón–Zygmund cube
decompositions as used in the covering argument in [43, Section 7]. In analogy to the

quantity φ̃(r , x0, y0) defined in (5.13), for any r ∈
(
0,

√
n
2

)
and all x0, y0 ∈ R

n with

|x0 − y0| >
√
nr , we define the quantity

φ(r , x0, y0):= r

dist(Qr (x0), Qr (y0))
. (5.27)

Since the proof of the following result works almost exactly like the one in [43,
Corollary 6.4] by using our Lemma 5.3 instead of [43, Lemma 6.3] and by replacing
in [43] the measure μ by μα , the function U by Uα and the parameters s and θ by α

and θα , respectively, we omit the proof and instead refer to [43, Corollary 6.4].

Corollary 5.4 For any λ ≥ λ0, r ∈
(
0,

√
n
2

)
and any point (x0, y0) ∈ Q1 satisfying

|x0 − y0| ≥ (3
√
n + 1)r and

μα

({
(x, y) ∈ Qr (x0, y0) | MB5n (U

2
α)(x, y) > N 2

ε,qλ
2
})

> εμα(Qr (x0, y0)),

(5.28)

we have

μα(Qr (x0, y0))

≤ (
√
n)n+2θα

(
μα

({
(x, y) ∈ Qr (x0, y0) | MB5n (U

2
α)(x, y) > λ2

})
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+ φ(r , x0, y0)
n−2θαμα

×
({

(x, y) ∈ Qr (x0) | MB5n (U
2
α)(x, y) > N 2

dφ(r , x0, y0)
−2(θα+α)λ2

})

+ φ(r , x0, y0)
n−2θαμα

×
({

(x, y) ∈ Qr (y0) | MB5n (U
2
α)(x, y) > N 2

dφ(r , x0, y0)
−2(θα+α)λ2

})

+ φ(r , x0, y0)
n−2θαμα

×
({

(x, y) ∈ Qr (x0) | MB5n (G
q0
α )(x, y) > φ(r , x0, y0)

−q0(θα+α)λq0
})

+ φ(r , x0, y0)
n−2θαμα

×
({

(x, y) ∈ Qr (y0) | MB5n (G
q0
α )(x, y) > φ(r , x0, y0)

−q0(θα+α)λq0
}))

.

6 Level set estimates

By combining the good-λ inequalities given by Lemma 5.1 and Corollary 5.4 with a
technically involved covering argument, it is possible to deduce a level set estimate
which will then imply the desired L p estimate for Uα with respect to μα . Since the
mentioned covering argument was already implemented in great detail in [43, Section
7] and up to some minor straightforward adjustments the argument needed in our
setting works exactly like the one in [43, Section 7], we omit most of the technical
details leading to this level set estimate.

More precisely, in the arguments of [43, Section 7], we need to replace the ball
B4n by B5n , the function U by Uα , the measure μ by μα and the parameters s and
θ by α and θα , respectively, while the good-λ inequalities given by [43, Lemma 6.1,
Corollary 6.4] need to be replaced by our corresponding good-λ inequatilities given
by Lemma 5.1 and Corollary 5.4. If in addition, we take into account our different
definition (4.8) of the number λ0 in comparison to [43, Formula (5.10)], we arrive at
the following level set estimate, which corresponds to [43, Corollary 7.8].

Proposition 6.1 Assume that the estimate (4.10) is satisfied in any ball contained in
B5n with respect to α and that the estimate (5.8) is satisfied in any ball contained
in B5n with respect to q. Then there exists some ε0 = ε0(n, θα) ∈ (0, 1), such that
the following is true. Let ε ∈ (0, ε0] and let δ = δ(ε, n, s, α, θ,�,m) > 0 be given
by Lemma 5.1. Then after choosing the number M0 = M0(n, θα) > 0 in (4.8) large
enough, for any λ ≥ λ0 we have

μα

({
(x, y) ∈ Q1 | MB5n (U

2
α)(x, y) > N 2

ε,qλ
2
})

≤ C

(
ε

λ2

∫
Q1∩

{
MB5n (U2

α )>λ2
}MB5n (U

2
α)dμα

+ 1

δq0λq0

∫
Q1∩

{
MB5n (G

q0
α )>δq0λq0

}MB5n (G
q0
α )dμα

)
,
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where C = C(n, α, θα) > 0.

We remark that the number ε0 arises from the restriction [43, Formula (7.26)] adapted
to our setting, that is, we have

ε0 = 1

4(
√
n)n+2θαc

for some c = c(n, θα) ≥ 1. In addition, the number M0 needs to be chosen large
enough in [43, Formula (7.7)] adapted to our setting. More precisely, in our setting
[43, Formula (7.7)] needs to be replaced by

μα

({
(x, y) ∈ Q1 | MB5n (U

2
α)(x, y) > N 2

dλ2
})

+ μα

({
(x, y) ∈ Q1 | MB5n

(
Gq0

α

)
(x, y) > λq0

})

≤ C1

N 2
dλ2

∫
B5n

U 2
αdμα + C1

λq0

∫
B5n

Gq0
α dμα

≤ C1

N 2
dλ20

∫
B5n

U 2
αdμα + C1

λ
q0
0

−
∫
B5n

Gq0
α dμα < κεμα(Q1),

where all constants depend only on n, s, α and θ and the last inequality is obtained by
choosing M0 large enough in (4.8) and taking account our definition (4.8) of λ0.

7 A priori estimates

In order to establish a priori estimates for weak solutions to the equation LAu =
(−�)sg, we need the following standard alternative characterization of the L p norm
which follows from Fubini’s theorem in a straightforward way.

Lemma 7.1 Let ν be a σ -finite measure on R
n and let h : � → [0,+∞] be a ν-

measurable function in a domain � ⊂ R
n. Then for any 0 < β < ∞, we have

∫
�

hβdν = β

∫ ∞

0
λβ−1ν ({x ∈ � | h(x) > λ}) dλ.

Proposition 7.2 Let q ∈ [2, p) and q̃ ∈ (q0, q�
α), where q0 is given by (4.6). Then there

exists some small enough δ = δ(n, s, α, θ,�,m, q, q̃) > 0 such that if A ∈ L0(�)

is δ-vanishing in B5n and g ∈ Ws,2(Rn) satisfies Gα ∈ Lq̃(B5n, μα), then for any
weak solution u ∈ Ws,2(Rn) of the equation L Au = (−�)sg in B5n that satisfies
Uα ∈ Lq̃(B5n, μα), the estimate (4.10) in any ball contained in B5n with respect to α

and (5.8) in any ball contained in B5n with respect to q, we have

(
−
∫
B1/2

Uq̃
α dμα

) 1
q̃

≤ C

⎛
⎝ ∞∑

k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2dμ

) 1
2
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+
(

−
∫
B5n

Gq̃
αdμα

) 1
q̃ +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2
⎞
⎠ ,

where C = C(n, s, α, θ,�,m, q, q̃, p) > 0.

Proof Let ε to be chosen small enough and consider the corresponding δ =
δ(ε, n, s, α, θ,�,m) > 0 given by Lemma 5.1. Then by using Lemma 7.1 mul-

tiple times, first with β = q̃ , h = MB5n (U
2
α)

1
2 and dν = dμα , then with

β = q̃ − 2, h = MB5n (U
2
α)

1
2 and dν = MB5n (U

2
α)dμα , and also with β = q̃ − q0,

h = MB5n (G
q0
α )

1
q0 and dν = MB5n (G

q0
α )dμα , a change of variables, Proposition 6.1

and the definition of Nε,q from (5.11), we obtain

∫
Q1

(
MB5n (U

2
α)
) q̃

2
dμα

= q̃
∫ ∞

0
λq̃−1μα

(
Q1 ∩

{
MB5n (U

2
α) > λ2

})
dλ

= q̃ N q̃
ε,q

∫ ∞

0
λq̃−1μα

(
Q1 ∩

{
MB5n (U

2
α) > N 2

ε,qλ
2
})

dλ

= q̃ N q̃
ε,q

∫ λ0

0
λq̃−1μα

(
Q1 ∩

{
MB5n (U

2
α) > N 2

ε,qλ
2
})

dλ

+ q̃ N q̃
ε,q

∫ ∞

λ0

λq̃−1μα

(
Q1 ∩

{
MB5n (U

2
α) > N 2

ε,qλ
2
})

dλ

≤ q̃ N q̃
ε,qμα(Q1)λ

q̃
0

+ C1q̃ N
q̃
ε,qε

∫ ∞

0
λq̃−3

∫
Q1∩

{
MB5n (U2

α)>λ2
}MB5n (U

2
α)dμαdλ

+ C1q̃ N
q̃
ε,qδ

−q0

∫ ∞

0
λq̃−q0−1

∫
Q1∩

{
MB5n (G

q0
α )>δq0λq0

}MB5n (G
q0
α )dμαdλ

= q̃ N q̃
ε,qμα(Q1)λ

q̃
0

+ C1q̃CndCs,θ Nd10
10nε1−q̃/q�

α

∫
Q1

(
MB5n (U

2
α)
) q̃

2
dμα

+ C1q̃ N
q̃
ε,qδ

−q0

∫
Q1

(MB5n (G
q0
α )
) q̃
q0 dμα,

where C1 = C1(n, s, α, θ) ≥ 1. Next, we set

ε:=min

{
ε0,
(
2C1q̃CndCs,θCαNd10

10n
)− q�

α
q�
α−q̃

}
,
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so that ε is a valid choice in Proposition 6.1 and moreover, we have

C1q̃CndCs,θCαNd10
10nε1−q̃/q�

α ≤ 1

2
.

Since in addition by assumption we have Uα ∈ Lq̃(B5n, μα), by Proposition 3.4 we
have

∫
Q1

(
MB5n (U

2
α)
) q̃

2
dμα < ∞,

so that we can reabsorb the second to last term on the right-hand side of the first display
of the proof in the the left-hand side, which yields

∫
Q1

(MB5n (U
2
α)
) q̃
2 dμα ≤2q̃ N q̃

ε,qμα(Q1)λ
q̃
0 + 2C1q̃ N

q̃
ε,qδ

−q0

∫
Q1

(MB5n (G
q0
α )
) q̃
q0 dμα.

Now in view of Propositions 3.5 and 3.4, taking into account the definition of λ0 from
(4.8) along with using the estimate (4.10) with u0 = u and Hölder’s inequality, we
obtain

−
∫
B1/2

Uq̃
α dμα ≤ 1

μα

(B1/2
)
∫
Q1

(
MB5n (U

2
α)
) q̃

2
dμα

≤ C2

(
λ
q̃
0 +

∫
Q1

(MB5n (G
q0
α )
) q̃
q0 dμα

)

≤ C3

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2dμ

) 1
2

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2

+
(

−
∫
B5n

U 2
αdμα

) 1
2

+
(

−
∫
B5n

Gq0
α dμα

) 1
q0
)q̃

+ C3

∫
B5n

Gq̃
αdμα

≤ C4

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2dμ

) 1
2

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2

+
(

−
∫
B5n

Gm
α dμα

) 1
m

+
(

−
∫
B5n

Gq0
α dμα

) 1
q0
)q̃

+ C4

∫
B5n

Gq̃
αdμα
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≤ C5

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2dμ

) 1
2

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2dμ

) 1
2 )q̃

+ C5−
∫
B5n

Gq̃
αdμα,

where we also used that m ≤ q0 ≤ q̃ and all constants depend only on
n, s, α, θ,�,m, q, q̃ and p. This proves the desired estimate with C = C1/q̃

5 . ��
Corollary 7.3 Consider some q ∈ [2, p) and some q̃ ∈ (q0, q�

α). Then there exists some
small enough δ = δ(n, s, α, θ,�,m, q, q̃) > 0 such that if A ∈ L0(�) is δ-vanishing
in B1 and g ∈ Ws,2(Rn) satisfies Gα ∈ Lq̃(B1, μα), then for any weak solution
u ∈ Ws,2(Rn) of the equation L Au = (−�)sg in B1 that satisfies Uα ∈ Lq̃(B1, μα),
the estimate (4.10) in any ball contained in B1 with respect to α and (5.8) in any ball
contained in B1 with respect to q, we have the estimate

(
−
∫
B1/2

Uq̃
α dμα

) 1
q̃

≤ C

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k

U 2dμ

) 1
2

+
(

−
∫
B1

Gq̃
αdμα

) 1
q̃ +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k

G2dμ

) 1
2 )

,

(7.1)

where C = C(n, s, α, θ,�,m, q, q̃, p) > 0.

Proof There exists some small enough r1 ∈ (0, 1) such that for any z ∈ B1/2, we have

B5nr1(z) � B1. (7.2)

Fix some z ∈ B1/2 and consider the scaled functions uz, gz ∈ Ws,2(Rn) given by

uz(x):=u(r1x + z), gz(x):=g(r1x + z)

and also

Az(x, y):=A(r1x + z, r1y + z).

Since A is δ-vanishing inB1, we see that Az clearly is δ-vanishing in B 1
5nr

(−z) ⊃ B5n .

Furthermore, in viewof (7.2),uz is aweak solutionof L Az uz = gz in B 1
5nr1

(−z) ⊃ B5n .

Now fix some r > 0 and some x0 ∈ R
n such that Br (x0) ⊂ B5n . Then again in view

of (7.2), we clearly have

Br1r (r1x0 + z) ⊂ B1,
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so that by the assumption that the estimate (5.8) holds for any ball contained in B1,
the estimate (5.8) holds with respect to the ball Br1r (r1x0 + z). Together with changes
of variables and taking into account (4.9), by straightforward computations similar to
[43, Formula (8.2)] it is now easy to verify that the functions

(Uα)z(x, y):=|uz(x) − uz(y)|
|x − y|α+θα

, (Gα)z(x, y):=|gz(x) − gz(y)|
|x − y|α+θα

,

Uz(x, y):=|uz(x) − uz(y)|
|x − y|s+θ

, Gz(x, y):=|gz(x) − gz(y)|
|x − y|s+θ

satisfy the estimate (4.10) in any ball contained in B5n with respect toα and the estimate
(5.8) in anyball contained in B5n with respect toq. Since in addition the assumption that

Uα ∈ Lq̃(B1, μα) clearly implies that (Uα)z ∈ Lq̃
(
B 1

5nr1
(−z), μα

)
⊂ Lq̃ (B5n, μα),

by Proposition 7.2 we obtain that

(
−
∫
B1/2

(Uα)
q̃
z dμα

) 1
q̃

≤ C4

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

U 2
z dμ

) 1
2

+
(

−
∫
B5n

(Gα)
q̃
z dμα

) 1
q̃ +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5n

G2
z dμ

) 1
2 )

,

where C4 = C4(n, s, α, θ,�,m, q, q̃, p) > 0. By combining the last display with
another straightforward computation involving changes of variables (cf. [43, Formula
(8.3)]), we obtain

(
−
∫
Br1/2

Uq̃
α dμα

) 1
q̃

≤ C5

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5nr1(z)

U 2dμ

) 1
2

+
(

−
∫
B5nr1(z)

Gq̃
αdμα

) 1
q̃

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2k5nr1(z)

G2dμ

) 1
2 )

,

where again C5 = C5(n, s, α, θ,�,m, q, q̃, p) > 0. Since
{
Br1/2(z)

}
z∈B1/2 is an

open covering of the compact set B1/2, there is a finite subcover
{
Br1/2(z j )

}N
j=1 of

B1/2. Thus, summing up the above estimates applied with z = z j over j = 1, . . . , N
in essentially the same way as in the last display in the proof of [43, Corollary 8.3]
yields the estimate (7.1), which finishes the proof. ��

In view of another straightforward scaling argument (cf. [43, Corollary 8.4]), we
also have the following scaled version of Corollary 7.3.
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Corollary 7.4 Let r > 0 and z ∈ R
n and consider some q ∈ [2, p) and some q̃ ∈

(q0, q�
α). Then there exists some small enough δ = δ(n, s, α, θ,�,m, q, q̃) > 0

such that if A ∈ L0(�) is δ-vanishing in Br (z) and g ∈ Ws,2(Rn) satisfies Gα ∈
Lq̃(Br (z), μα), then for any weak solution u ∈ Ws,2(Rn) of the equation L Au =
(−�)sg in Br (z) that satisfies Uα ∈ Lq̃(Br (z), μα), the estimate (4.10) in any ball
contained in Br (z) with respect to α and (5.8) in any ball contained in Br (z) with
respect to q, we have the estimate

(
−
∫
Br/2(z)

Uq̃
α dμα

) 1
q̃

≤ C

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr(z)

U 2dμ

) 1
2

+
(

−
∫
Br (z)

Gq̃
αdμα

) 1
q̃ +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (z)

G2dμ

) 1
2 )

,

where C = C(n, s, α, θ,�,m, q, q̃, p) > 0.

Next, we use an iteration argument in order to drop the assumption (5.8) and obtain
higher integrability all the way up to the exponent p.

Proposition 7.5 Let r > 0, z ∈ R
n, s ∈ (0, 1) and p ∈ (m,∞), where m satisfies

(4.5). Then there exists some small enough δ = δ(p, n, s, α, θ,�,m) > 0 such that
if A ∈ L0(�) is δ-vanishing in Br (z) and g ∈ Ws,2(Rn) satisfies G ∈ L p(Br (z), μ),
then for any weak solution u ∈ Ws,2(Rn) of the equation L Au = (−�)sg in Br (z)
that satisfies Uα ∈ L p(Br (z), μα) and the estimate (4.10) in any ball contained in
Br (z), we have

(
−
∫
Br/2(z)

U p
α dμα

) 1
p

≤ C

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (z)

U 2dμ

) 1
2

+
(

−
∫
Br (z)

Gp
αdμα

) 1
p +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (z)

G2dμ

) 1
2 )

,

(7.3)

where C = C(n, s, α, θ,�,m, p) > 0.

Proof Define iteratively a sequence {qi }∞i=1 of real numbers by

q1:=2, qi+1:=min{(qi + (qi )
�)/2, p},

where as in (4.4) we let

(qi )
� =

{
nqi

n−αqi
, if n > αqi

2p, if n ≤ αqi .
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Since for any i with n > αqi+1 we have

(
qi + nqi

n − αqi

)
/2 − qi = nqi

2(n − αqi )
− qi

2
≥ 4s

2(n − α)
> 0,

there clearly exists some i p ∈ N such that qip = p.
Since the estimate (5.8) is trivially satisfied for q = q1 = 2, and in view of

the additional assumption that Uα ∈ L p(Br (z), μα) we in particular have Uα ∈
Lq1(Br (z), μα), if we choose δ small enough such that Corollary 7.4 is applicable
with q = 2 and q̃ = q2, then all assumptions of Corollary 7.4 are satisfied with
respect to q = q1 = 2 and q̃ = q2 ∈ (min{m, q1}, (q1)�), so that we obtain
(

−
∫
Br/2(z)

Uq2
α dμα

) 1
q2

≤ C

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr(z)

U 2dμ

) 1
2

+
(

−
∫
Br (z)

Gq2
α dμα

) 1
q2 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (z)

G2dμ

) 1
2 )

,

(7.4)

where C1 = C1(n, s, α, θ,�,m, p) > 0. If i p = 2, then q2 = p and the proof
is finished. Otherwise, we observe that since r and z are arbitrary, the estimate
(7.4) holds also in any ball that is contained in Br (z), so that that the estimate
(5.8) is satisfied with respect to q = q2 in any ball contained in Br (z). Since also
Uα ∈ L p(Br (z), μα) ⊂ Lq2(Br (z), μα), if we choose δ smaller if necessary such that
Corollary 7.4 is applicable with q = q2 and q̃ = q3, then all assumptions of Corol-
lary 7.4 are satisfiedwith respect to q = q2 and q̃ = q3 = (q2+(q2)�)/2 ∈ (q2, (q2)�),
so that we obtain the estimate

(
−
∫
Br/2(z)

Uq3
α dμα

) 1
q3

≤ C2

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr(z)

U 2dμ

) 1
2

+
(

−
∫
Br (z)

Gq3
α dμα

) 1
q3 +

∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr (z)

G2dμ

) 1
2 )

,

where C2 = C2(n, s, α, θ,�,m, p) > 0. If i p = 3, then q3 = p and the proof is
finished. Otherwise, iterating this procedure i p − 1 times and using that qip = p also
leads to the estimate (7.3). ��
Finally, by another delicate iteration argument we also drop the assumption that the
estimate (4.10) holds, achieving an a priori higher differentiability estimate for any
s < t < min{2s, 1}.
Proposition 7.6 Let r > 0, z ∈ R

n, s ∈ (0, 1), s < t < min{2s, 1} and p ∈ (2,∞).
Then there exists some small enough δ = δ(p, n, s, t,�) > 0 such that if A ∈ L0(�)

is δ-vanishing in Br (z) and g belongs to Ws,2(Rn) ∩ Wt,p(Br (z)), then for any weak
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solution u ∈ Ws,2(Rn) ∩ Wt,p(Br (z)) of the equation L Au = (−�)sg in Br (z), we
have

[u]Wt,p(Br/2(z)) ≤ C
([u]Ws,2(Rn) + [g]Wt,p(Br (z)) + [g]Ws,2(Rn)

)
, (7.5)

where C = C(n, s, t,�, p, r) > 0.

Proof Fix some s < t < min{2s, 1} and some p ∈ (2,∞). All constants in this
proof will only depend on n, s, t,�, p and r . First of all, the assumption that u ∈
Wt,p(Br (z)) implies that Uα = Uα,θα ∈ L p(Br (z), μα) for any s ≤ α < min{2s, 1}
such that α +

(
1 − 2

p

)
θα ≤ t .

Let δ > 0 be to be chosen small enough, fix some 0 < γ < min{2s, 1} − t and
choose the parameter θ by θ :=min{s, 1 − s} − γ ∈ (0,min{s, 1 − s}), so that in
particular t < s+θ . In addition, define sequences of parameters {mk}k∈N and {εk}k∈N
by

mk := 1

k
min

{
2n − 3s

n − 2s
, 1 + p

2

}

+
(
1 − 1

k

)
min

{
2(n − s)

n − 2s
, p

}
∈
(
2,min

{
2(n − s)

n − 2s
, p

})

and

εk :=1 − 2

mk
∈ (0, 1).

In particular, note that as indicated above, for any k ∈ N the parameter mk belongs to
the range given by (4.5). Define inductively further sequences of parameters {tk}k∈N0

and {θtk }k∈N0 by t0:=s, θt0 :=θ and

tk :=tk−1 + εkθtk−1

2
, θtk :=s + θ − tk, k ≥ 1.

Let

ε�:= lim
k→∞ εk = 1 − 2/min

{
2(n − s)

n − 2s
, p

}
> 0.

Since the sequence {tk}k∈N0 is strictly increasing and bounded by s + θ , the limit
t�:= limk→∞ tk exists and satisfies t� = t� + ε�

2 (s+ θ − t�),which leads to t� = s+ θ .
Thus, since we have t < s + θ = t�, there exists a non-negative integer k̃ such that
t̃k < t but t̃k+1 ≥ t . Also, define

θt := t − t̃k
1 − 2/p

, θ̃ :=θt + t̃k − s
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and note that since p ≥ mk̃ , we have

θt ≤ t − t̃k+1 + ε̃kθt̃k

ε̃k
≤ θt̃k = s + θ − t̃k,

which implies that

0 < θ̃ ≤ θ < min{s, 1 − s}.

Thus, θ̃ also belongs to the range (4.1) and the relation (4.9) is satisfied for θα = θt ,
α = t̃k and with θ replaced by θ̃ , that is, we have θt = s + θ̃ − t̃k . In addition, observe
that

t̃k +
(
1 − 2

p

)
θt = t .

If k̃ = 0, then since for α = t0 = s, the estimate (4.10) is trivially satisfied with
m = 2, by Corollary 7.5 with θα = θt and with θ replaced by θ̃ , for δ small enough
we have

[u]Wt,p(Br/2(z)) = C1

(
−
∫
Br/2(z)

U p
s,θt

dμθt

) 1
p

≤ C2

( ∞∑
k=1

2−k(s−θ̃ )

(
−
∫
B2kr (z)

U 2
s,θ̃

dμθ̃

) 1
2

+
(

−
∫
Br (z)

Gp
s,θt

dμθt

) 1
p +

∞∑
k=1

2−k(s−θ̃ )

(
−
∫
B2kr (z)

G2
s,θ̃

dμθ̃

) 1
2 )

≤ C3
([u]Ws,2(Rn) + [g]Wt,p(Br (z)) + [g]Ws,2(Rn)

)
.

In the case when k̃ = 0, the proof is finished. If on the other hand k̃ > 0, then for
any x0 ∈ Br (z) and any r ′ > 0 such that Br ′(x0) ⊂ Br (z), using Proposition 2.5,
Corollary 7.5 with p replaced by m1 along with Lemma 3.3 yields

(
1

μθt1
(Br ′(x0))

∫
Br ′/2(x0)

∫
Br ′/2(x0)

(u(x) − u(y))2

|x − y|n+2t1
dydx

) 1
2

≤ C4(r
′)−θt1− n

m1
+ ε1θ

2

(∫
Br ′/2(x0)

∫
Br ′/2(x0)

|u(x) − u(y)|m1

|x − y|n+m1(t1+ε1θ/2)
dydx

) 1
m1

= C4(r
′)−

n
m1

− 2θ
m1

(∫
Br ′/2(x0)

∫
Br ′/2(x0)

|u(x) − u(y)|m1

|x − y|n+m1(s+ε1θ)
dydx

) 1
m1
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= C5

(
−
∫
Br ′/2(x0)

Um1
s,θ dμ

) 1
m1

≤ C6

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

U 2dμ

) 1
2

+
(

−
∫
Br ′ (x0)

Gm1
s,θdμ

) 1
m1

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

G2dμ

) 1
2 )

≤ C7

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

U 2dμ

) 1
2

+
(

−
∫
Br ′ (x0)

Gm1
t1,θt1

dμθt1

) 1
m1

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

G2dμ

) 1
2 )

for δ small enough and any weak solution u ∈ Ws,2(Rn) of L Au = (−�)sg in Br (z).
Thus, since in addition C7 does not depend on r and r ′, we conclude that the estimate
(4.10) is satisfied in any ball contained in Br (z) with respect to α = t1 and m = m1.
Therefore, in the case when k̃ = 1, once again by Corollary 7.5 with θα = θt (which
is applicable since m1 < p) and with θ replaced by θ̃ , we see that

[u]Wt,p(Br/2(z)) = C8

(
−
∫
Br/2(z)

U p
t1,θt

dμθt

) 1
p

≤ C9

( ∞∑
k=1

2−k(s−θ̃ )

(
−
∫
B2k r (z)

U2
s,θ̃

dμθ̃

) 1
2

+
(

−
∫
Br (z)

Gp
t1,θt

dμθt

) 1
p +

∞∑
k=1

2−k(s−θ̃ )

(
−
∫
B2k r (z)

G2
s,θ̃

dμθ̃

) 1
2

≤ C10
([u]Ws,2(Rn) + [g]Wt,p(Br (z)) + [g]Ws,2(Rn)

)

for δ small enough, so that in this case the proof is finished. If k̃ > 1, then since
m2 > m1, for any x0 ∈ Br (z) and any r ′ > 0 such that Br ′(x0) ⊂ Br (z), by
Proposition 2.5, Corollary 7.5 with p replaced by m2 and Lemma 3.3, for any weak
solution u ∈ Ws,2(Rn) of L Au = (−�)sg in Br (z) and δ small enough we have

(
1

μθt2
(Br ′(x0))

∫
Br ′/2(x0)

∫
Br ′/2(x0)

(u(x) − u(y))2

|x − y|n+2t2
dydx

) 1
2

≤ C11(r
′)−θt2− n

m2
+ ε2θt1

2

(∫
Br ′/2(x0)

∫
Br ′/2(x0)

|u(x) − u(y)|m2

|x − y|n+m2(t2+ε2θt1/2)
dydx

) 1
m2

= C11(r
′)−

n
m2

− 2θ
m2

(∫
Br ′/2(x0)

∫
Br ′/2(x0)

|u(x) − u(y)|m2

|x − y|n+m2(t1+ε2θt1 )
dydx

) 1
m2
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= C12

(
−
∫
Br ′/2(x0)

Um2
t1,θt1

dμθt1

) 1
m2

≤ C13

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

U 2dμ

) 1
2

+
(

−
∫
Br ′ (x0)

Gm2
t1,θt1

dμθt1

) 1
m2

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

G2dμ

) 1
2 )

≤ C14

( ∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

U 2dμ

) 1
2

+
(

−
∫
Br ′ (x0)

Gm2
t2,θt2

dμθt2

) 1
m2

+
∞∑
k=1

2−k(s−θ)

(
−
∫
B2kr ′ (x0)

G2dμ

) 1
2 )

,

where C14 does not depend on r and r ′, so that (4.10) is satisfied in any ball contained
in Br (z) with respect to α = t2 and m = m2. Thus, if k̃ = 2, again by applying
Corollary 7.5 with respect to θα = θt and with θ replaced by θ̃ we see that the desired
estimate (7.5) holds, so that in this case the proof is finished. If k̃ > 2, then iterating
the above procedure k̃ times also leads to the estimate (7.5), which finishes the proof.

��
We are now able to prove an a priori Wt,p estimate for equations of the type

LAu = (−�)sg in the case when A is small in BMO.

Theorem 7.7 Let � ⊂ R
n be a domain, s ∈ (0, 1), � ≥ 1, s < t < min{2s, 1},

p ∈ (2,∞) and R > 0. Then there exists some small enough δ = δ(p, n, s, t,�) > 0
such that if A ∈ L0(�) is (δ, R)-BMO in � and g belongs to Ws,2(Rn) ∩ Wt,p(�),
then for any weak solution u ∈ Ws,2(Rn) ∩Wt,p(�) of the equation L Au = (−�)sg
in � and any relatively compact domain �′ � �, we have

[u]Wt,p(�′) ≤ C
([u]Ws,2(Rn) + [g]Wt,p(�) + [g]Ws,2(Rn)

)
, (7.6)

where C = C(n, s, t,�, R, p,�′,�) > 0.

Proof Fix a relatively compact bounded domain�′ � � and let δ = δ(p, n, s, t,�) >

0 be given by Proposition 7.6. There exists some r ∈ (0, R) such that for any z ∈ �′,
we have Br (z) � �. Since A is (δ, R)-BMO in �, for any z ∈ �′ we conclude that A
is δ-vanishing in Br (z). Also, since u ∈ Wt,p(�), we have u ∈ Wt,p(Br (z)) for any
z ∈ �′. Therefore, by Proposition 7.6, for any z ∈ �′ we obtain the estimate

[u]Wt,p(Br/2(z)) ≤ C1
([u]Ws,2(Rn) + [g]Wt,p(Br (z)) + [g]Ws,2(Rn)

)
, (7.7)

where C1 = C1(n, s, t,�, p, r).
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Since
{
Br/2(z)

}
z∈�′ is an open covering of �′ and �′ is compact, there exists a

finite subcover
{
Br/2(zi )

}N
i=1 of�

′ and hence of�′. Now summing over i = 1, . . . , N
and using the estimate (7.7) for z = zi (i = 1, . . . , N ) yields

Wt,p(�′) ≤
N∑
i=1

[u]Wt,p(Br/2(zi ))

≤
N∑
i=1

C2
([u]Ws,2(Rn) + [g]Wt,p(Br (z)) + [g]Ws,2(Rn)

)

≤ C2N
([u]Ws,2(Rn) + [g]Wt,p(�) + [g]Ws,2(Rn)

)
,

(7.8)

where C2 = C2(n, s, t,�, p, r) > 0. Since N depends only on �′ and �, while
r depends only on R,�′ and �, this proves the estimate (7.6), so that the proof is
finished. ��
Remark 7.8 Since itmight be useful in some applications, we remark that the statement
of Proposition 7.7 can be generalized to the setting of a right-hand side that is given by
a more general nonlocal operator or even by sums of more general nonlocal operators.
For some l ∈ N and i = 1, . . . , l, consider measurable functions Di : Rn × R

n → R

such that

l∑
i=1

|Di (x, y)| ≤ � for almost all x, y ∈ R
n . (7.9)

In addition, fix functions gi ∈ Ws,2(Rn)∩Wt,p(�) and let u ∈ Ws,2(Rn)∩Wt,p(�)

be a weak solution of the more general nonlocal equation LAu = ∑l
i=1 LDi gi in �,

that is, assume that

∫
Rn

∫
Rn

A(x, y)

|x − y|n+2s (u(x) − u(y))(ϕ(x) − ϕ(y))dydx

=
l∑

i=1

∫
Rn

∫
Rn

Di (x, y)

|x − y|n+2s (gi (x) − gi (y))(ϕ(x) − ϕ(y))dydx ∀ϕ ∈ Ws,2
0 (�).

Then the following is true. For s, t and p as in Theorem 7.7, there exists some small
enough δ = δ(p, n, s, t,�) > 0 such that if A ∈ L0(�) is (δ, R)-BMO in� for some
R > 0, then for any relatively compact domain �′ � �, we have the a priori estimate

[u]Wt,p(�′) ≤ C

(
[u]Ws,2(Rn) +

l∑
i=1

[gi ]Wt,p(�) +
l∑

i=1

[gi ]Ws,2(Rn)

)
, (7.10)

where C = C(n, s, t,�, R, p,�′,�) > 0.
This is true since the statement of our comparison estimate given by Proposition 4.1

remains valid for weak solutions u of such equations of the form LAu = ∑l
i=1 LDi gi ,
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which can be easily seen by using the bound (7.9) in the estimation of the appropriately
adapted integral I2 in [43, Proposition 5.1], while the adaptations required to account
for the summation over i = 1, . . . , l are straightforward and do not change the proofs
in any conceptually significant way.

8 Proofs of themain results

We are now in the position to prove our main results.

Proof of Theorem 1.2 Fix relatively compact bounded domains �′ � �0 � �′′ � �,
where we assume that �0 is a smooth domain. Let δ = δ(p, n, s, t,�) > 0 be given
by Theorem 7.7 and let {ψm}∞m=1 be a sequence of standard mollifiers in R

n with the
properties

ψm ∈ C∞
0 (B1/m), ψm ≥ 0,

∫
Rn

ψm(x)dx = 1 for all m ∈ N. (8.1)

For any m ∈ N and x ∈ �m := {x ∈ � | dist(x, ∂�) > 1/m}, we now define

fm(x):=
∫

�

f (y)ψm(x − y)dy.

Next, observe that there exists some large enough m0 ∈ N, such that �′′ ⊂ �m for all

m ≥ m0. Since f ∈ L
np

n+(2s−t)p
loc (�) and �′′ � �, by standard properties of mollifiers

we have

fm
m→∞−−−−→ f in L

np
n+(2s−t)p (�′′) (8.2)

and fm ∈ L∞(�′′) for any m ≥ m0. In addition, for any m ≥ m0, by [42, Proposition
4.1] there exists a unique weak solution um ∈ Ws,2(Rn) of the Dirichlet problem

{
L Aum = fm in �′′

um = u a.e. in Rn \ �′′.
(8.3)

Since wm :=u − um ∈ Ws,2
0 (�′′) is a weak solution of the equation LAwm = f − fm

in�′′, in view of usingwm itself as a test function in this equation, along with Hölder’s
inequality and the fractional Sobolev inequality (see [20, Theorem 6.5]), we obtain

2
Ws,2(Rn)

≤ �−1
∫
Rn

∫
Rn

A(x, y)
(wm(x) − wm(y))2

|x − y|n+2s dydx

= �−1
∫

�′′
( f − fm)wmdx

≤ �−1|| f − fm ||
L

2n
n+2s (�′′)

||wm ||
L

2n
n−2s (Rn)

≤ C1|| f − fm ||
L

np
n+(2s−t)p (�′′)

[wm]Ws,2(Rn),

(8.4)
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where C1 = C1(n, s, t, p,�,�′′) > 0, so that along with (8.2), we deduce that

[wm]Ws,2(Rn) ≤ C2|| f − fm ||
L

np
n+(2s−t)p (�′′)

k→∞−−−→ 0

and

lim
m→∞[um]Ws,2(Rn) = [u]Ws,2(Rn). (8.5)

Next, for any m ∈ N let gm ∈ Ws,2(Rn) be the unique weak solution of the Dirichlet
problem

{
(−�)sgm = fm in �′′

gm = 0 a.e. in Rn \ �′′.
(8.6)

Then by a similar reasoning as in (8.4), each function gm satisfies the estimate

[gm]Ws,2(Rn) ≤ C2|| fm ||
L

np
n+(2s−t)p (�′′)

, (8.7)

where C2 = C2(n, s, t, p,�′′) > 0. In addition, by the local H2s,p estimates for the
fractional Laplacian (see [43, Theorem 4.4]), we have the estimate

||gm ||
H

2s, np
n+(2s−t)p (�0)

≤ C3|| fm ||
L

np
n+(2s−t)p (�′′)

, (8.8)

where C3 = C3(n, s, t, p,�0,�
′′) > 0. Also, by Proposition 2.4, we have

[gm]Wt,p(�0) ≤ C4||gm ||
H

2s, np
n+(2s−t)p (�0)

, (8.9)

where C4 = C4(n, s, t, p,�0) > 0. In view of (8.3) and (8.6), um is a weak solution
of the equation

L Aum = (−�)sgm in �′′.

Since fm ∈ L∞(�′′), by [43, Theorem 1.4] we have um ∈ Cβ
loc(�0) for any β ∈

(0,min{2s, 1}) and thus um ∈ Wt,p(�0). Therefore, by Theorem 7.7, (8.7), (8.9) and
(8.8), we have

[um]Wt,p(�′) ≤ C5
([um]Ws,2(Rn) + [gm]Wt,p(�0) + [gm]Ws,2(Rn)

)

≤ C6

(
[um]Ws,2(Rn) + || fm ||

L
np

n+(2s−t)p (�′′)

)
,

where all constants depend only on n, s, t,�, p,�′,�′′ and �0. Combining the pre-
vious display with Fatou’s Lemma (which is applicable after passing to a subsequence
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if necessary), (8.5) and (8.2), we conclude that

Wt,p(�′) ≤ lim inf
m→∞ [um]Wt,p(�′)

≤ C7 lim
m→∞

(
[um]Ws,2(Rn) + || fm ||

L
np

n+(2s−t)p (�′′)

)

= C7

(
[u]Ws,2(Rn) + || f ||

L
np

n+(2s−t)p (�′′)

)
,

(8.10)

where C7 = C7(n, s, t,�, p,�′,�′′) > 0. This proves the estimate (1.8).
The assertion that u ∈ L p

loc(�) now follows by a simple iteration argument for
whichwe refer to theproof of [43,Theorem9.1], so thatweconclude thatu ∈ Wt,p

loc (�).
This finishes the proof. ��
Proof of Theorem 1.1 The case when t = s follows directly from [43, Theorem 1.1].
Next, fix some p > 2, some s < t < min{2s, 1} and consider the corresponding
δ = δ(p, n, s, t,�) > 0 given by Theorem 1.2. Since A is assumed to be VMO in �,
there exists some R > 0 such that A is (δ, R)-BMO in �. Thus, by Theorem 1.2 we

obtain that u ∈ Wt,p
loc (�) whenever f ∈ L

np
n+(2s−t)p
loc (�), which finishes the proof. ��

Proof of Theorem 1.3 Fix some t such that s ≤ t < min{2s, 1}, some q ∈(
2n

n+2(2s−t) ,∞
)
and some f ∈ Lq

loc(�). First, we assume that q < n
2s−t . Then

we have n > (2s − t)q and set p:= nq
n−(2s−t)q > 2, so that we have q = np

n+(2s−t)p

and thus f ∈ L
np

n+(2s−t)p
loc (�). Therefore, by Theorem 1.1 we obtain u ∈ Wt,p

loc (�) =
W

t, nq
n−(2s−t)q

loc (�).
If on the other hand q ≥ n

2s−t , then for any p ∈ (2,∞) we have np
n+(2s−t)p ≤ q

and thus f ∈ L
np

n+(2s−t)p
loc (�), so that again by Theorem 1.1 we obtain u ∈ Wt,p

loc (�). In
view of Proposition 2.5, the conclusion that u ∈ Wt,p

loc (�) for p ∈ (2,∞) and for any
t in the range s ≤ t < min{2s, 1} also implies that u ∈ Wt,p

loc (�) for any p ∈ (1,∞),
so that the proof is finished. ��
Proof of Theorem 1.4 Fix some s < t < min{2s, 1} and some t ′ such that t < t ′ <

min{2s, 1}. Since f ∈ L2
loc(�) and 2n

n+2(2s+t ′) < 2, Theorem 1.3 implies that u ∈
W

t ′, 2n
n−2(2s−t ′)

loc (�). Since 2s
n−2(2s−t ′) > 2, by Proposition 2.5 we arrive at u ∈ Wt,2

loc (�),
so that the proof is finished. ��
Remark 8.1 As already indicated in Remark 1.5, our main results remain valid for
another class of coefficients A that in general might not be VMO in �. Namely, the
conclusions of Theorems 1.1, 1.3 and 1.4 remain true if instead we assume that there
exists some small ε > 0 such that

lim
h→0

sup
x,y∈K

|x−y|≤ε

|A(x + h, y + h) − A(x, y)| = 0 for any compact set K ⊂ �.(8.11)
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In fact, in the present paper we only use the assumption that A is VMO in � in order
to ensure that the Hölder estimate for corresponding homogeneous equations given
by (4.20) holds, which in this case is guaranteed by the results from [43]. If instead A
satisfies the assumption (8.11), then this Hölder estimate actually follows from [41,
Theorem 1.1] combined with [43, Lemma 5.1], so that our proofs and main results
remain valid under the assumption (8.11).

As mentioned, the condition (8.11) is for example satisfied in the case when A ∈
L0(�) is translation invariant in �, that is, if we have A(x, y) = a(x − y) for all
x, y ∈ � and some measurable function a : R

n → R. Since in this case A is
otherwise not required to satisfy any additional smoothness assumption, A might not
be VMO in � but still satisfies (8.11).
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