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Abstract We consider the bond percolation problem on a transient weighted
graph induced by the excursion sets of the Gaussian free field on the corre-
sponding cable system. Owing to the continuity of this setup and the strong
Markov property of the field on the one hand, and the linkswith potential theory
for the associated diffusion on the other, we rigorously determine the behavior
of various key quantities related to the (near-)critical regime for this model.
In particular, our results apply in case the base graph is the three-dimensional
cubic lattice. They unveil the values of the associated critical exponents, which
are explicit but not mean-field and consistent with predictions from scaling
theory below the upper-critical dimension.
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1 Introduction

Critical phenomena represent a fascinating challenge for mathematicians and
physicists alike. An emblematic example is that of second-order phase transi-
tions, especially in models that are both non-planar and remain below a certain
upper-critical dimension (above which mean-field behavior is expected). In
such “intermediate” dimensions,which are physically very relevant, the regime
near the transition point remains largely uncharted territory.

The present article rigorously investigates this problem in a benchmark case.
Namely, given a weighted graph G, transient for the random walk on G, we
study the bond percolation model obtained by considering the clusters of G
induced by the excursion sets of the Gaussian free field ϕ on the continu-
ous graph (or cable system) ˜G ⊃ G associated to G, see (1.2)–(1.7) below
for definitions. On the lattice Z

d , d � 3, the study of the corresponding dis-
crete problem, i.e. the percolation of excursion sets of ϕ|G , was initiated in
[25] and more recently reinvigorated in [30]. The corresponding cable system
free field ϕ and its connections with Poissonian ensembles of (continuous)
loops and bi-infinite Brownian trajectories on ˜G have recently been studied
in [10,11,26,27,36,40]. Among these links, those relating ϕ to the model of
random interlacements, introduced in [32], stand out. For, as will turn out, the
interlacements essentially set a characteristic length scale ξ for the percolation
problem we study.

Our main results, Theorems 1.1 and 1.4 below and their consequences,
Corollaries 1.2, 1.3 and 1.5, describe the near-critical regime of the phase
transition for the above percolation model by rigorously deriving various asso-
ciated critical exponents. These exponents capture the behavior of the system
at and near the critical point; see e.g. Section 1 of [23] or Sections 9.1–9.2 in
[17] regarding the heuristic picture for independent (Bernoulli) percolation. In
essence, our results determine a unique set of exponents, listed inTable 1, along
with a related “capacity exponent” κ , see (1.42). In special cases, the numerical
values of some of these exponents are implicitly contained in [10,26].

The exponents we derive all turn out to be explicit rational functions of two
parameters alone: the first one, ν, cf. (Gν) and (1.2), describes the decay of the
Green’s function for the underlying random walk, and thus controls the decay
of correlations. The second parameter,α, is geometric and governs the volume-
growth of the base graph (see condition (Vα)). In particular, these conditions
do not depend on the local structure of the graph, which hints at the conjectured
universality of the critical exponents. In the parlance of renormalization group
theory [41,42], the set of exponents we infer for each pair (ν, α) characterizes
the “fixed point” corresponding to the “universality class” of this percolation
problem. Importantly, the resulting values satisfy all scaling and hyperscaling
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Critical exponents 231

relations, which are (heavily) over-determined by our findings, and approach
the corresponding mean-field values as ν ↑ 4 in case the walk is diffusive,
i.e. α = ν + 2. We defer a more thorough discussion of these matters to the
end of this section (cf. below (1.35)). The long-range dependence of themodel,
manifest through ν, presents the advantage of inducing a certain structure on
the field. This is in contrast to the much studied, but locally more amorphous
Bernoulli percolation model, for which celebrated results have been derived
on two-dimensional lattices, see [31] and references therein, or on Z

d for
sufficiently large d (in the mean-field regime), following [18], cf. [19] for an
extensive account; see also [8,14] for recent progress on Z

3, and [9] regarding
excursion sets of continuous Gaussian fields with rapid correlation decay.

We now describe our results. We consider G = (G, λ) a weighted graph,
where G is a countable infinite set, λx,y ∈ [0,∞), x, y ∈ G, are non-negative
weights with λx,y = λy,x � 0, λx,x = 0, and an edge connects x and y if and
only if λx,y > 0.We assume that G is connected, locally finite and transient for
the random walk on G, which is the continuous-time Markov chain generated
by

L f (x) = 1

λx

∑

y∈G
λx,y( f (y)− f (x)), (1.1)

for suitable f : G → R, where λx = ∑y∈G λx,y . We write ˜G for the metric
graph (or cable system) associated to G, obtained by replacing each edge by a
one-dimensional segment of length 1/2λx,y and gluing these segments through
their endpoints. We denote by Px the law of the Brownian motion on ˜G when
starting at x ∈ ˜G and by X · the corresponding canonical process. This diffu-
sion can be defined in terms of its Dirichlet form or directly constructed from
a corresponding discrete-timeMarkov chain by adding independent Brownian
excursions on the edges beginning at a vertex; we refer e.g. to Section 2.1
of [13] for details regarding the construction of the measure Px . We denote
by g(·, ·) the Green function associated to this Brownian motion, that is the
density of the local times of X · at infinity with respect to the natural Lebesgue
measure on ˜G, which attaches length 1/2λx,y to every cable. The correspond-
ing Gaussian free field ϕ = (ϕx )x∈˜G , with canonical law P, is the unique
continuous centered Gaussian field with covariance function

E[ϕxϕy] = g(x, y), x, y ∈ ˜G. (1.2)

In view of (1.2), the behavior of ϕ is deeply linked to that of the underlying
diffusion, and our findings greatly benefit from this interplay, as will soon
become clear (see for instance Theorem 1.1 below).
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232 A. Drewitz et al.

In order to discuss geometric properties we further endowG with a distance
function d(·, ·). For many cases of interest, one can afford to simply choose
d = dgr, the graph distance on G, i.e. dgr(x, y) = 1 if and only if λx,y > 0
(extended to a geodesic distance on G), but see (Gν) below and the discussion
following (1.17), which may require a different choice. We write B(x, r) =
{y ∈ G : d(x, y) � r}, x ∈ G, r > 0, for the discrete balls in the distance d
and tacitly assume throughout that the sets B(x, r) have finite cardinality for
all x ∈ G and r > 0. In the sequel, we define K ⊂ ˜G to be bounded if K ∩ G
is a bounded (or equivalently, finite) set.

We now consider

0, an arbitrary point in G, (1.3)

and introduce, for a ∈ R,

Ka def.= ˜Ka ∩ G, where

˜Ka def.= the connected component of 0 in {x ∈ ˜G : ϕx � a}
(1.4)

(with Ka = ˜Ka = ∅ if ϕ0 < a) and the percolation function

θ0(a)
def.= P(Ka is bounded) (= P(˜Ka is bounded)), a ∈ R. (1.5)

One can also give an alternative (purely discrete) description of the random
set Ka in (1.4) without reference to ˜G as follows. Conditionally on (ϕx )x∈G ,
the field ϕ (on ˜G) is obtained by adding independent Brownian bridges on
each edge {x, y} of length 1/2λx,y of a Brownian motion with variance 2 at
time 1, interpolating between the values of ϕ at the endpoints (see e.g. [12,
(2.5)–(2.8)] for the case of the Euclidean lattice; this discussion remains valid
in the present setup of transient weighted graphs). In light of this, Ka can be
viewed as the open cluster of 0 in the following bond percolation model on
G: given the discrete Gaussian free field (ϕx )x∈G , one opens each edge {x, y}
independently with conditional probability (see e.g. [6], Chap.IV, §26, p.67)

1− exp
{− 2λx,y(ϕx − a)+(ϕy − a)+

}

(with z+ = z ∨ 0, z ∈ R).

(1.6)

In view of (1.5), one defines the critical parameter associated to this perco-
lation model as

a∗ = a∗(G) = inf{a ∈ R : θ0(a) = 1}. (1.7)
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Critical exponents 233

The regime a > a∗ will be referred to as subcritical and (1.7) implies that
the probability for {ϕ � a} to contain an unbounded cluster (anywhere in
˜G) vanishes for such a. Correspondingly, this probability is strictly positive
when a < a∗, which constitutes the supercritical regime. By adapting a soft
indirect argument due to [7], one knows that a∗ � 0 for any transient G. We
will virtually always (except in (1.10)) assume that

θ0(a)
∣

∣

a=0 = 1. (1.8)

As shown in our companion article [13], see Theorem 1.1,1) and Lemma 3.4,2)
therein (see also Remark 3.2, 1) below), the condition (1.8) is generic in that
it is satisfied for a wide range of graphs G. For instance,

any vertex-transitive graph G (with unit weights) satisfies (1.8), (1.9)

see Corollary 1.2 in [13]; for examples of graphs not verifying (1.8), see Propo-
sition 8.1 in [28]. In combination with (1.12) below, (1.8) essentially settles
the continuity question for this phase transition, which includes in particular
all graphs in (1.9). Our first theorem concerns the observable cap(˜Ka), with
˜Ka as in (1.4) and where cap(·) denotes capacity, see (2.2) below, which plays
a prominent role in this context. In only assuming (1.8) (cf. also (1.9)), the
following result holds under very mild conditions on G.
Theorem 1.1 For all a ∈ R and u � 0,

E
[

e−ucap(˜Ka)1{∅ �= ˜Ka bounded}] = P
(

∅ �= ˜K
√
2u+a2 bounded

)

. (1.10)

In particular, if (1.8) holds, then

E
[

e−ucap(˜Ka)1{˜Ka bounded}]

= 	(a)+ 1−	(
√

2u + a2), for all a ∈ R, u � 0, (1.11)

where 	(a) = P(ϕ0 � a).

We refer to (3.6) below for the density corresponding to the Laplace trans-
form in (1.11). The emergence of the observable cap(˜Ka) is an instance of the
aforementioned interplay with potential theory for the underlying diffusion.
Theorem 1.1 has several important consequences, among which the following
two immediate corollaries.

Corollary 1.2 If (1.8) holds, then

θ0(a) = 2	(a ∧ 0), a ∈ R. (1.12)
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In particular, a∗ = 0, the function θ0 is continuous on R, and

lim
a→0−

1− θ0(a)

|a| =
√

2

πg
, (1.13)

where g = g(0, 0).

In the special case G = Z
d , d � 3 (with unit weights), the formula (1.12)

was shown in [10], albeit by different methods (see also [27] for a version of
this result on finite graphs). Along with the other findings of [10], cf. (1.23)
and Remark 4.4, (4) below, these all turn out to be immediate consequences
of Theorem 1.1. In view of (1.9), these results are in fact true in far greater
generality, and underlying them is the fundamental quantity cap(˜Ka), which
is integrable.

The Laplace functional (1.11) entails all the information about the capacity
of bounded clusters at any height, including at and near the critical point
a∗ = 0, as reflected by:

Corollary 1.3 If (1.8) holds and aN satisfies limN N 1/2aN = a∞ ∈
[−∞,∞], then

√
NP
(

cap(˜KaN ) � N , ˜KaN bounded
)

−→
N→∞

1

2π
√
g

∫ ∞

1
t−3/2 exp

(

−a2∞t

2

)

dt. (1.14)

Theorem 1.1 and its corollaries are proved in Sect. 3 using an approach
involving differential formulas developed in Sect. 2, see in particular Lemma
2.3 and Corollary 2.6. The derivation of these formulas relies on the strong
Markov property forϕ and a sweeping identity,whichmakes cap(˜Ka) naturally
appear, see for instance (2.17) or (2.23) and Remark 2.4.

The appeal of Theorem 1.1 and Corollaries 1.2 and 1.3 is in no small part
due to the level of generality in which they hold. We forewarn the perceptive
reader not to mistake (1.13) as an indication of perpetual mean-field behavior,
cf. also (1.36) below. Indeed, the results following below will show otherwise.
In order to gain further insights, we make an additional assumption on G,
namely that there exist an exponent ν > 0 and constants c, c′ ∈ (0,∞)

(possibly depending on ν) such that

c � g(x, x) � c′ and cd(x, y)−ν � g(x, y) � c′d(x, y)−ν (Gν)

for all x �= y ∈ G,
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where d(·, ·) refers to the distance introduced below (1.2). The condition
(Gν) actually implies (1.8), as follows by combining Corollary 3.3,1) and
Lemma 3.4,2) in [13].

We will also often require the graph to be α-Ahlfors regular, i.e. there exist
a positive exponent α and c, c′ ∈ (0,∞) (possibly depending on α) such that
the volume growth condition

crα � λ(B(x, r)) � c′rα for all x ∈ G and r � 1, (Vα)

is satisfied (recall that B(x, r) refers to the discrete ball of radius r around x ∈
G, cf. above (1.3)). Moreover, we will at times rely on two additional technical
assumptions (see also Remark 4.4, (5) regarding a possible weakening), which
we gather here for later reference:

λx,y/λx � c1 for all x ∼ y ∈ G (i.e. if λx,y > 0); (1.15)

there exists an infinite geodesic (0 = y0, y1, . . . ) for dgr
such that dgr(yk, yp) � c2d(yk, yp) for all k, p � 0.

(1.16)

Condition (1.15) is a standard ellipticity assumption in this context, which
together with (Gν) and (Vα) forms a natural set of requirements from the
perspective of the walk. Indeed, in case d = dgr the results of [16] imply that
(Gν), (Vα) and (1.15) are equivalent to upper and lower Gaussian (in case
β = α − ν = 2) or sub-Gaussian (in case β = α − ν > 2; note that β � 2
always holds, cf. (1.18) below) estimates on the heat kernel qt of the walk on
G of the form

ct−
α
β exp

⎧

⎨

⎩

−
(

d(x, y)β

c′t

) 1
β−1
⎫

⎬

⎭

� qt (x, y) � c̃t−
α
β exp

⎧

⎨

⎩

−
(

d(x, y)β

c̃′t

) 1
β−1
⎫

⎬

⎭

(1.17)

for all x, y ∈ G and t � 1 ∨ d(x, y). Condition (1.16), which always holds
in case d = dgr (see [37] regarding the existence of infinite geodesic “rays”
for dgr) is tailored to certain chaining arguments that will be used to build
long connections in {ϕ � a}. Its necessity is further explained in Remark 8.1,
(3). In fact, (1.15) can often be weakened and together with (1.16), the two
conditions are in a sense complementary, see Remark 4.4, (5) for more on this.

A canonical example satisfying all of (Gν), (Vα), (1.15) and (1.16) is the
Euclidean lattice G = Z

d , d � 3, with unit weights and for the choices
d(·, ·) = dgr(·, ·), ν = d − 2 and α = d. In particular, the emblematic case
G = Z

3 corresponds to ν = 1.More generally, this setup allows for disordered
(random) uniformly elliptic weights c � λx,y � c−1 (in fact, (Gν) and (1.15)
alone only require λx,y � c, and (Vα) implies λx,y � c′; see Lemma 2.3 in
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[11]). Our results then hold in a quenched sense, i.e. for almost all realizations
of λ.

Furthermore, all four conditions hold for instance for the examples discussed
in (1.4) of [11], which include Cayley graphs of suitable volume growth, as
well as various fractal graphs (possibly sub-diffusive). The flexibility in the
choice of the distance d takes into account that the heat flow on G may well
propagate differently in different “directions”, for instance if G has a product
structure, which typically requires choosing d �= dgr for (Gν) to hold; see
Proposition 3.5 in [11] for more on this, as well as [11] and references therein
for further examples. An instructive case in point is the graph G = Sierp× Z

considered in [33] (endowed with unit weights), where Sierp is the graphical
Sierpinski gasket, whose projection on Sierp is sub-diffusive, and which is a
canonical example of graph with ν < 1, see [3,22].

Note that, since G is assumed to be transient, once (Vα), (Gν) and (1.15) are
satisfied, combining Theorem 1 and Proposition 3(a) in [2] (see also (2.10) in
[11] for as to why our assumptions entail λx,y � c for x ∼ y, as required in
[2]), and Proposition 6.3 in [16] one necessarily has, in case d = dgr,

0 < ν � α − 2 (and in particular, α > 2). (1.18)

Moreover, combining Theorem 2 and Proposition 3(d) in [2], together with
Theorem 2.1 and (4.2) in [16], one knows that for any set of values α and
ν satisfying (1.18), there exists a graph satisfying (Gν), (Vα) and (1.15) (the
latter follows by inspection of [2], see p. 13 therein), as well as (1.16) since
d = dgr for these graphs. In the sequel, whenever we assume (Vα), (Gν) to
hold simultaneously (for some distance function d), we tacitly assume (1.18)
to be true.

Now, assuming only (Gν) to hold, we consider the quantity

ψ(a, r)
def.= P(r � rad(Ka) < ∞), for r > 0, a ∈ R (1.19)

(cf. (1.4) for the definition ofKa), where rad(A)
def.= sup{d(0, x) : x ∈ A}, for

A ⊂ G with 0 ∈ A, as well as the truncated two-point function

τ tra (0, x)
def.= P(x ∈ Ka, Ka bounded)

(= P(x ∈ ˜Ka, ˜Kabounded)), a ∈ R, x ∈ G. (1.20)

The quantity P(x ∈ ˜K0), x ∈ ˜G, admits an exact formula, first observed in
[26], which follows by combining Propositions 5.2 and 2.1 therein. Under
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(Gν) (and (Vα)) it yields that for all x ∈ G,

τ tr0 (0, x) = 2

π
arcsin

(

g(0,x)√
g(0,0)g(x,x)

)

� d(0, x)2−α−η

as d(0, x) →∞,with η = ν − α + 2, (1.21)

where f � g means that c f � g � c′ f for some constants c, c′ ∈ (0,∞)

(see the end of this introduction for our convention regarding constants). The
arguably cumbersome parametrisation in (1.21) follows standard convention.
It is arranged so that E[|Ka ∩ Br |] � r2−η, where Br = B(0, r), whence η

captures the discrepancy from mean-field behavior, cf. the discussion below.
With regards to ψ(0, ·), by comparison with the capacity functional,

i.e. using Corollary 1.3 in case aN ≡ 0, see Remark 4.2 below, it is a simple
consequence that for all r � 1,

cr−ν/2 � ψ(0, r) � c′r−ν/2, if ν < 1, (1.22)

cr−ν/2 � ψ(0, r) � c′(r/(log r)1{ν=1})−1/2, if ν � 1; (1.23)

see also [10] for (1.23) when G = Z
d , d � 3, derived therein together with

bounds on the critical window; see also Remark 4.4, (4) below regarding
improvements on the latter.

Our second main result gives precise estimates on ψ(a, r) (and similarly
for τ tra (0, x)), quantitative in a and r.

Theorem 1.4 (under (Gν) and (1.15)) With

ξ(a)
def.= |a|− 2

ν (with the convention ξ(0) = ∞), (1.24)

the following hold:

(i) If ν < 1, then for all a ∈ R and r � 1,

c3ψ(0, r) exp
{

− c4
( r

ξ(a)

)ν}

� ψ(a, r) � ψ(0, r) exp
{

− c5
( r

ξ(a)

)ν}

.

(1.25)

(ii) If ν � 1, then for all a ∈ R and r � 1,

ψ(a, r) � ψ(0, r)×
{

exp
{

− c5
(r/ξ(a))
log(r∨2)

}

, if ν = 1,

exp
{− c5ra2

}

, if ν > 1.
(1.26)
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Furthermore, if (Vα) and (1.16) are also satisfied, then for ν = 1 and all
|a| � c,

ψ(a, r) � c3ψ(0, r)× exp
{

− c4
(r/ξ(a))

log((r/ξ(a)) ∨ 2)

}

,

if r
ξ(a)

/∈ (1, (log ξ(a))c6), (1.27)

with c6 ∈ (0, 1). Further, if ψ(0, r) � r−1/2 (cf. (1.23)) then (1.27) holds
for all r � 1.

Moreover, the upper bounds in (1.25), (1.26) remain valid upon replacing

ψ(a, r) by τ tra (0, x) everywhere, with r
def.= d(0, x) � 1; furthermore, in case

(Vα) holds and d = dgr, the lower bounds in (1.25) remain valid for |a| � c,
as well as (1.27) for r � ξ(a)(log ξ(a))c6 .

The role of ξ above as a natural length scale for the percolation problem
(1.4) confirms a prediction of [38,39]. Indeed, for ν � 1, (1.25), (1.26) and
(1.27) exhibit ξ as the right correlation length in this model, with exponent
νc (not to be confused with the parameter ν from (Gν), whence the subscript)
defined as

νc
def.= − lim

a→0

log(ξ(a))

log(a)

(

= 2

ν

)

. (1.28)

In fact, [38,39] conjecture that νc = 2/ν is the correct correlation length expo-
nent for any long-range percolation model with correlation decay exponent ν.

We refer to (1.47)–(1.49) below and to Corollary 8.2 for a more careful treat-
ment of the correlation length, aswell as to the discussion around (1.31)–(1.35)
and to Theorem 5.1 and Corollary 5.2 below for further insight into the length
scale ξ = ξ(a) introduced in (1.24).

Regarding lower bounds for related quantities ˜ψ , τ̃ tra , cf. (1.45), which
include the regime ν > 1, we refer to the discussion around Theorem 1.7 at the
very end of this introduction and to the recent article [15] concerning results
related to (1.26) and (1.27) for the discrete problem on Z

3, which witness
ξ = ξ(a) in yielding the bounds cξ(a)−1 � − log(r)

r logψ(a, r) � c′ξ(a)−1
valid for all large enough r � R(a) but lack any quantitative control on R(a).

The version of (1.26) for τ tra including the sharp pre-factor as a → 0 will be
crucial for our purposes, see Corollary 1.5 below. Upper bounds for ψ(a, r)
akin to (1.26), but without the correct pre-factor ψ(0, r) were derived in [10].
In essence, all bounds for ψ in case ν < 1 in Theorem 1.4 as well as all
off-critical upper bounds (when r/ξ(a) � c) can straightorwardly be deduced
either by direct comparison between rad(Ka) and cap(˜Ka) in combination
with Corollary 1.3, or, in the case of (1.26), by means of a suitable differential
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inequality.We return to the lower bounds (1.27) onψ and τ tra (as well as (1.25)
in case of τ tra , for which comparison estimates with the capacity observable
already fail) shortly, which illuminate (1.24) and rely on different ideas.

We now discuss important consequences of Theorem 1.4 with regards to
volume observables. For this purpose, let |Ka| = |˜Ka ∩G| denote the volume
(cardinality) of Ka . The following result, which follows from Theorem 1.4,
relates a quantity γ governing the divergence of the expected volume of Ka

(when bounded) as a approaches 0 with the exponents νc from (1.28) and η

introduced in (1.21). Its meaning in the context of scaling theory is further
explained in the discussion at the end of this introduction.

Corollary 1.5 (Scaling relation) For ν � 1, if (Gν), (Vα), (1.15) hold and
d = dgr, the limit

γ
def.= − lim

a→0

log(E[|Ka|1{|Ka| < ∞}])
log |a| (1.29)

exists and

γ = νc(2− η)
(

= 2α

ν
− 2
)

. (1.30)

For ν < 1 one even has the stronger result E[|Ka|1{|Ka| < ∞}] � |a|− 2α
ν
+2

as a → 0 (recall below (1.21) for the definition of �).
We refer to Proposition 8.4 for the precise bounds on E[|Ka|1{|Ka| <

∞}] and to Remark 8.5, (1) for related results regarding a “renormalized”
volume observable. The “softer” conclusions of Corollary 1.5, which witness
the correct scaling factor ξ and integrability in r/ξ , will follow from the “hard”
estimates of Theorem 1.4. Namely, we use the versions for τ tra (a, x) of (1.25)
in case ν < 1 and of (1.26) and (1.27) in case ν = 1, while following the
heuristics behind the scaling equality (1.30), see for instance [17], Chap. 9, to
deduce Corollary 1.5. The fact that the exponent c6 appearing in (1.27) is less
than 1 is absolutely instrumental in obtaining (1.30) when ν = 1.

We now return to the lower bound(s) in (1.27) (and (1.46) below) and their
proofs, which are instructive. In both cases, we rely on a change-of-measure
argument, somewhat similar to the one used in [15], but quantitative (the
arguments in [15] operate at fixed level a as r → ∞); see also [5,35], for
arguments of this kind in various contexts involving ϕ. We modify P so as
to shift a given level a ∈ (0, 1] to −a, which is (slightly) supercritical, in
an appropriate region. This effectively translates the problem into building
the desired long connection to distance r at the new level −a with sizeable
probability. The intuitive renormalization picture is that this ought to happen
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by stacking boxes of side length roughly equal to ξ(−a) = ξ(a) as given by
(1.24), which “start to see a good chunk” of {ϕ � −a}.

The approach delineated above yields the bound (1.46) below for ˜ψ . The
bound (1.27) is more subtle and requires amendments to this strategy. In
essence (see also Fig. 1), we explore a piece of the cluster of Ka inside Bξ(a),
then apply the Markov property and perform the change of measure in the
complement of the explored region, without getting too close to its boundary.
On a suitable event, the explored part (as opposed to the single point 0) is
sufficiently “visible” for the gluing constructions performed below (for essen-
tially the same reasons as those explained around (1.35)). The explored part
thereby manifests itself precisely as multiplicative “critical cost” ψ(0, r) in
the lower bound (1.27). However, establishing this rigorously requires some
care since the (Dirichlet) boundary condition forced by the exploration acts
as a trap, which has the tendency to “kill” connections in the system Iu of
“highways” used below. An important role in this context will be played by
certain “bridge” trajectories, which emanate from the explored region and link
to the net of highways.

Our approach to building the highways is driven by two key estimates, sum-
marized in (1.33) and (1.34) below,which can be regarded as partial substitutes
for two essential ingredients that are usually available in planar settings at crit-
icality: (i) squares of arbitrary size are crossed with probability 1/2 (duality
symmetry), and (ii) rectangles are crossed with sizeable probability across all
scales (a “Russo-Seymour-Welsh”-type bound); see e.g. [17], Chap. 11, see
also [24] for latest developments in this direction.

Our replacements for (i) and (ii) harvest a powerful and profound link
between ϕ and the random interlacement sets (Iu)u>0 on ˜G, see e.g. Sec-
tion 2.5 in [13] for their precise definition in the present context. The random
sets Iu ⊂ ˜G, u > 0, can be jointly defined in such a way that Iu is increasing
in u and its law is characterized by the property that

P(Iu ∩ K = ∅) = e−ucap(K ), for compact K ⊂ ˜G (1.31)

(see the beginning of Sect. 2 below regarding compactness). In fact, Iu is
realized as the trace of a Poisson cloud of bi-infinite transient continuous tra-
jectorieswith intensitymeasured by u, and thus has only unbounded connected
components. We will only use the fact here that whenever (1.8) holds, there
exists a coupling Q of (Iu)u>0 and ϕ such that

Q-a.s., I a2
2 ⊂ {ϕ � −a}, for all a > 0 (1.32)

(this follows by adapting the result of [34] to the cable system ˜G and using

continuity as first noted in [26]). The inclusion (1.32) hints at I a2
2 typically
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forming the “backbone” of percolating clusters in {ϕ � −a}, see [36]. Corre-
spondingly, our key estimates at scale ξ = ξ(a), cf. (1.24), assert that, if (Gν),
(Vα) and (1.15) hold, one has (assuming ν � 1 to avoid unnecessary clutter)

inf
a∈(0,1]P(Br

�−a←→ ∂B4r )
∣

∣

r=ξ(a)
� c, (1.33)

inf
a∈(0,1]P(LocUniq(a, r))

∣

∣

r=ξ(a)
� c, (1.34)

and the infima in question converge to 1 in the limit λ → ∞ upon choosing
r = λξ(a) instead, see (5.5) below; here, roughly speaking, LocUniq(a, r) can
be characterized through its complement, the “absence of local uniqueness”

event LocUniq(a, r)c that there exist two points in I a2
2 ∩ B2r which are not

connected by a continuous path of I a2
2 within B4r (see (5.3) for the exact

definition). The bound (1.33) follows readily by combining (1.32), (1.31) and
the two-sided estimate cap(Br ) � rν for r � 1 (see (3.11) in [11]), and ξ(·)
given by (1.24) emerges naturally as

e−ucap(Br )|
u= a2

2 ,r=ξ(a)

(1.24)� 1. (1.35)

Our contribution is thus to obtain (1.34), which follows from a sharp bound
on P(LocUniq(a, r)c) “in terms of a2rν ,” for ν � 1 and more generally if
α > 2ν, cf. (1.18), with logarithmic corrections when α = 2ν. Estimates of
this flavor, albeit non-optimal in r and non-quantitative in u, were first derived
in [29]. The precise estimate we obtain, which is of independent interest, is
stated in Theorem 5.1 below.

One can then attempt to give a complete overview of the critical exponents
associated to the phase transition (1.4)–(1.7) on the basis of scaling theory, the
corresponding system of equations being now (over-)determined. We refer the
reader to Sections 9.1–9.2 of [17], or Section 1 in [23] regarding heuristics.
Corollary 1.2, see in particular (1.13), implies that in very broad generality—
namely assuming (1.8) only (see also (1.9)), which guarantees that a = 0(=
a∗) is critical, cf. [13] for a thorough investigation into the validity of this
assumption—one has

β = 1, (1.36)

where β is defined via

1− θ0(a − a∗) = 1− θ0(a) ∼ c|a|β, as a → 0−, (1.37)
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and ∼ means that the ratio of both sides tends to 1 in the given limit (often,
one more cautiously expects that log(1−θ0(a−a∗))

log |a| → β, see e.g. (1.3) and (1.8)
in [23]). Under the assumption (Gν), it further follows from (1.25) and (1.23)
that

ρ = 2

ν
, for ν � 1 and ρ ∈

[2

ν
, 2
]

for ν > 1, (1.38)

where ρ is the one-arm exponent at criticality, i.e.,

− logψ(0, ·)
log r

→ 1

ρ
as r →∞ (with ψ as in (1.19)). (1.39)

Next, with correlation length exponent νc given by (1.28), see also (1.24)
in Theorem 1.4, the results of Corollary 1.5 guarantee for ν � 1 the existence
of the volume exponent γ near criticality defined by (1.29) (in fact, one would
typically consider the limits a ↘ 0 and a ↗ 0 separately) and (1.30) is an
instance of a scaling relation relating the exponents γ , νc and η from (1.21).
Further to (1.30), scaling theory predicts the relations (in case of (1.41) at least
so long as α or ν remain below a certain upper-critical value)

� = δβ, 2− αc = β(δ + 1) = γ + 2β (scaling), (1.40)

ανc = 2− αc, αρ = δ + 1 (hyperscaling). (1.41)

Here, β, νc, η, ρ and γ have been introduced in (1.37), (1.48), (1.21), (1.39)
and in (1.29), respectively (see also (1.44) below regarding δ). We refer the
reader to (1.2) and (1.5) of [23] concerning the quantities supposedly described
by αc and � in the context of Bernoulli percolation (assuming �k = � for
all k � 2 in the notation of [23], see also (9.7) in [17]), and further to Chap. 9
of [17] for an explanation of the heuristics behind (1.40) and (1.41) on Z

d ,

d � 2. These readily generalize to any graph satisfying (Vα) except for the
informal derivation of the relation γ = νc(2− η), for which some control on
the size of the boundary of a ball is needed. The heuristic behind Corollary 1.5,
cf. the proof of Proposition 8.4, indicates that this scaling relation should also
hold for different percolation models on any graphs satisfying (Vα).

Assuming all of the relations (1.30), (1.40) and (1.41) to hold, the values of
any two exponents are typically sufficient in order to determine a unique set
of exponents. Feeding e.g. (1.36) and (1.38) into (1.30), (1.40), (1.41) yields
Table 1 below.

Some comments are in order. First of all, and crucially so, the values for
νc, η and γ thereby obtained are consistent with (1.49) (and (1.28)), (1.21)
and (1.30). It is further remarkable that the exponents in Table 1 are rational
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Table 1 critical exponents as a function of the parameters ν (� 1) and α in (Gν ), (Vα)

Exponent αc β γ δ � ρ νc η κ

Value 2− 2α
ν 1∗ 2α

ν − 2 2α
ν − 1 2α

ν − 1 2
ν

2
ν ν − α + 2∗ 1

2
∗

Values with an asterisk hold without restriction on ν > 0 (and even in much greater generality,
cf. (1.9))

functions of α and ν, and, in case the random walk is for instance diffusive—
that is if α = ν + 2, cf. (1.17)—which applies e.g. to Z

d , d � 3 (with unit
weights), all exponents can be expressed as functions of the sole parameter
ν > 0 that governs the Green’s function decay in (Gν). Moreover, in view of
Corollary 1.3, we may add a “capacity exponent” κ to the list, whence

P(cap(K0) � N ) � N−κ , as N →∞, with κ = 1/2, (1.42)

as soon as the base graph G satisfies (1.8) and (1.15). Indeed, (1.42) is obtained
from the corresponding asymptotics for the random variable cap(˜K0), implied

by (1.14) and valid under (1.8) only, using that cap(K0)

cap(˜K0)
∈ [c1, 1] (with c1 as

in (1.15)), which follows readily from (2.5) below with the choices K = K0,
K ′ = ˜K0 upon integrating over x ∈ ˜G.
We now list onemore consequence of the above results regarding the volume

ofKa at the critical point when ν � 1. Recall that |Ka| = |˜Ka ∩G|, cf. (1.4).
Corollary 1.6 (ν � 1). If (Gν), (Vα) and (1.15) hold, there exists c =
c(α, ν) ∈ (0,∞) such that, with c̃ = 1{ν = 1}/2, one has

P(|K0| � n) � cn−
ν

2α−ν log(n)c̃, for all n � 1. (1.43)

In particular, assuming the existence of a volume exponent δ at criticality given
by

− log(P(|K0| � n))

log n
→ 1/δ as n →∞, (1.44)

we deduce from (1.43) that δ � 2α
ν
− 1, for ν � 1 (if δ exists). In view of the

value for δ listed in Table 1, the upper bound in (1.43) is thus presumably sharp
up to logarithmic corrections. The bound (1.43) follows readily by combining
(1.23), (1.21) and a first-moment argument. The short proof, given at the end
of Sect. 5, is an adaptation of the argument giving Prop. 7.1 in [20]. We thank
T. Hutchcroft for pointing out this reference to us.

We now discuss extensions of (1.27) to the regime ν > 1. Rather than
workingwithψ defined in (1.19) directly (but see Proposition 6.1),we consider

123



244 A. Drewitz et al.

the function

˜ψ(a, r)
def.= P

({Bξ(a)
�a←→ ∂inBr } \ {Bξ(a)

�a←→∞}), (1.45)

(depending on ξ given by (1.24)), where Br = B(0, r) refers to the discrete
ball centered at 0 in the metric d, cf. above (1.3), ∂inBr = {x ∈ Br : ∃ y ∈
G\Br s.t. λx,y �= 0} and with hopefully obvious notation {A �a←→ B} is the
event that A and B are connected by a path of open edges in the description
given above (1.6), or equivalently by a (continuous) path in {ϕ � a}.
Theorem 1.7 If (Gν), (Vα), (1.15) and (1.16) hold, one has for all |a| � c
and r � 1,

˜ψ(a, r) �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c̃3 exp
{

− c̃4
( r

ξ(a)
)ν

(log( r
ξ(a)

∨2))1{ν=1}
}

, if ν � 1,

c̃3 exp
{− c̃4

r
ξ(a)

(log( r
ξ(a)

∨ 2))c7
}

, if 1 < ν < α
2 ,

c̃3 exp
{− c̃4

r
ξ(a)

(log( r
ξ(a)

∨ 2))c7 (log ξ)c8
}

, if ν = α
2 , r

ξ
� c(log ξ)

3
ν ,

(1.46)

with ξ(a) as in (1.24) and where c7 = (1 − 1/ν)(2ν + 1 + 1{α = 2ν}) and
c8 = 2(1 − 1

ν
). If d = dgr, (1.46) remains valid when replacing ˜ψ(a, r) by

τ̃ tra (0, x), see (8.7), with r
def.= d(0, x) � 1.

When 1 � ν < α/2, the bounds (1.46) remain valid for ψ in place of ˜ψ
(as well as τ tra ), with the correct prefactor, if one assumes the lower bound
in (1.23) to be sharp, see Proposition 6.1 below. Much as in (1.29), one can
consider a “renormalized” volume observable, which roughly speaking counts
the number of balls of radius ξ in an (approximate) tiling of ˜G visited by ˜Ka ,
see (8.19) below. This quantity is expectedly of order unity in case ξ is the
correct correlation length scale in the problem. The bounds (1.46) yield a
lower bound of constant order uniform in a as a → 0, for all 0 < ν < α

2 ,
see Remark 8.5, (1); see also Remark 8.5, (2) for corresponding lower bounds
on E[|Ka|1{|Ka| < ∞}] in the regime 1 < ν < α

2 , which depend on the true
behavior of ψ(0, r) in (1.23) and yield a potentially sharp estimate on γ in
case the lower bound in (1.23) is exact.

We now briefly return to matters regarding the correlation length for the
present model. In view of Theorems 1.4 and 1.7, one may expect off-critical
bounds of the following form: under sensible assumptions on G (including,
at the very least, (Gν)) and for some functions fν : [1,∞) → [0,∞) and
ξ ′ : [−1, 1]\{0} → (0,∞), one has, for all r � 1 and |a| � cwith r/ξ ′(a) � 1
(and even without the last restriction),

ψ(0, r) exp
{

− c fν
( r

ξ ′(a)

)}

� ψ(a, r) � ψ(0, r) exp
{

− c′ fν
( r

ξ ′(a)

)}

.

(1.47)
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The correlation length is perhaps most intuitively defined as the quantity ξ ′(·)
satisfying (1.47) (assuming such a bound to hold), or a similar two-sided
estimate for the truncated two-point function τ tra (0, x) from (1.20) instead of
ψ(a, r), with d(0, x) in place of r (or possibly a different distance function,
intrinsic to Ka). Associated to ξ ′ is a correlation length exponent, which we
define somewhat loosely to be such that

− log(ξ ′(a))

log(a)
→ νc as a → 0 (with ξ ′(·) such that (1.47) holds)

(1.48)

(if this limit exists). We refer to Corollary 8.2 belowwhich asserts that, assum-
ing (1.47) to hold, (1.48) is consistent with (1.28), i.e. ξ ′ � ξ for ν � 1, and
deduces from (1.26) and (1.46) that

νc ∈
[2

ν
, 2
]

for 1 < ν ≤ α/2. (1.49)

Finally, we note that the values in Table 1 converge towards those corre-
sponding to a mean-field regime as ν ↑ 4 and α ↑ 6, which corresponds on
Z
d to d ↑ 6. In fact, one knows by (1.21) above and (1.16) in [1], see also

Exercise 4.1 in [19], that the triangle condition holds if G = Z
d when d > 6.

In view of [1,4] or Theorem 4.1 in [19], this indicates that β = γ = 1 and
δ = 2 likely hold for such d, i.e. these exponents expectedly attain their mean-
field values, see also [40] for related results. Note that if a mean-field regime
is to appear for sufficiently large values of ν, it can only happen for ν � 4 by
(1.38).

We conclude by observing that knowing the values of ρ, β, νc, η as well as
(1.30) (roughly the status quo for ν � 1), the scaling relations (1.40) alone are
enough to obtain all remaining exponents αc, δ and �, and the hyperscaling
relations (1.41) are then automatically verified.

The remainder of this article is organized as follows. In Sect. 2, we derive
certain key differential formulas, see Lemma 2.3 and Corollary 2.6, which
are applied in Sect. 3 to deduce Theorem 1.1 and Corollaries 1.2 and 1.3.
Section4 concerns comparison estimates andupper bounds for the connectivity
functions considered in Theorem 1.4. The outstanding lower bounds, e.g. of
(1.27) (part of Theorem 1.4) are split over Sects. 6 and 7. They rely on a
sharp local uniqueness estimate (cf. the discussion around (1.34)), which is
derived separately in Sect. 5, see in particular Theorem 5.1 therein, which is
of independent interest. The various pieces are gathered in Sect. 8 to yield
the proof of Theorem 1.4. Its various consequences, including the proofs of
Corollary 1.5, and of Theorem 1.7, are presented at the end of Sect. 8.
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Throughout, c, c′, c̃, c̃′, . . . denote generic positive constants that change
from place to place and may depend implicitly on the parameters α and ν in
(Gν), (Vα), whenever these conditions are assumed to hold (they also implicitly
depend on the specific values of the constants c, c′ appearing in (Gν), (Vα),
whichweassumefixedonce and for all).Numbered constants c1, c2, c̃1, c̃2, . . .
are defined upon first appearance in the text and remain fixed until the end.

2 Differential formulas

In this section, we develop certain formulas involving derivatives with respect
to the parameter a of fairly generic random variables of the excursion set
{ϕ � a} for the free field ϕ on ˜G, cf. (1.2). We then specialize to functionals
of the cluster ˜Ka (recall (1.4)), see Lemma 2.3 and Corollary 2.6 below. These
results will play a central role in the sequel.

It will be convenient to introduce an auxiliary geodesic distance ˜d on ˜G
attaching length 1 to every cable of˜G (thus˜d interpolates dgr, the graph distance
on G). We refer to topological properties of subsets of ˜G below as relative to
the topology induced by ˜d and denote by ∂K the boundary of a set K ⊂ ˜G.
Note that ˜Ka is bounded in the sense defined above (1.3) if and only if it is
˜d-bounded.

We now briefly review a few selected elements of potential theory for the
diffusion X under Px that will be needed below. For U ⊂ ˜G open, we write
gU for the Green function of X · killed outsideU , whence g = g

˜G and the two
are related by

gU (x, y) = g(x, y)− Ex [g(XTU , y)1{TU < ∞}], x, y ∈ ˜G, (2.1)

where TU = inf{t � 0 : Xt /∈ U } denotes the exit time from U . The identity
(2.1) is an immediate consequence of the Markov property. For compact K ⊂
˜G, we write eK = eK ,˜G for the equilibrium measure of K relative to ˜G, which
is supported on a finite set included in ∂K (see for instance (2.16) in [13] for its
definition in the present context; we only add the subscript ˜G to our notation in
Sects. 5–8, in which ˜G and other cable systems are considered simultaneously,
cf. (5.1)). Its total mass

cap(K )
def.=
∫

deK (< ∞) (2.2)

is the capacity of K . We now introduce the equilibrium potential hK (x) =
Px (HK < ∞), for x ∈ ˜G, with HK = T

˜G\K = inf{t � 0 : Xt ∈ K } denoting
the entrance time of X · in K , and more generally, for suitable f : ˜G → R,
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h f
K (x)

def.= Ex
[

f (XHK )1{HK < ∞}], x ∈ ˜G (whence hK = h f=1
K ).

(2.3)

By suitable extension of (1.7) in [30], one obtains that

GeK = hK on ˜G; (2.4)

here Gμ(x) = ∫

g(x, y) dμ(y) is the potential of μ, for a measure μ with
compact support in ˜G. For later purposes, we also record the following sweep-
ing identity, see Section 2 of [13], valid for compact sets K , K ′ ⊂ ˜G with
K ⊂ K ′:

PeK ′ (XHK = x, HK < ∞) = eK (x) for all x ∈ ˜G, (2.5)

where Pμ = ∫

Px dμ(x). More generally, in view of (2.3), we obtain for
suitable f : ˜G → R,

〈eK ′, h f
K 〉 = 〈eK , f 〉, for compact K , K ′ with K ⊂ K ′, (2.6)

writing 〈μ, f 〉 = ∫ f dμ for the canonical dual pairing. We now introduce the
linear functional

MK
def.= 〈eK , ϕ〉, (2.7)

which will play a central role in the sequel. Note that MK is Gaussian with
mean E[MK ] = 0 and combining (1.2), (2.2) and (2.4), one finds that

E[M2
K ] = cap(K ). (2.8)

We are interested in derivatives (with respect to a real parameter a ∈ R) of
random variables

F (a)
K = F (a)

K (ϕ) with F (a)
K (ϕ) = F (0)

K (ϕ − a) for all a ∈ R

and ‖F (0)
K ‖∞ < ∞, F (0)

K (ϕ) ∈ σ(1{ϕx � 0}, x ∈ K ),
(2.9)

where, with hopefully obvious notation, ϕ−a refers to the field shifted by−a
in each coordinate, and K ⊂ ˜G is compact and connected (for ˜d). For such K ,
let h−a ≡ h f=−a

K , see (2.3) for notation, so that

h−a(x) = −ah(x), for a ∈ R, x ∈ ˜G
(with h(x) ≡ hK (x) = Px (HK < ∞)). (2.10)
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One checks using (2.7), (2.8) and applying the Cameron-Martin formula, see
e.g. [21], Theorem 14.1, that ϕ + h−a has the same law under P as ϕ under
Pa , where

dPa

dP
= exp

{

− aMK − a2

2
cap(K )

}

(2.11)

(to obtain this, one applies (14.6) in [21]with the choice ξ = −aMK (∈ L2(P)),
noting that : eξ : is precisely the right-hand side of (2.11), see also Theorem
3.33 in [21], and observing that, by means of (14.3) in [21] and (2.4), (2.10)
above, one can rewrite ρξ (ϕx ) = ϕx − aE[MKϕx ] = ϕx − a(GeK )(x) =
ϕx + h−a(x), x ∈ ˜G). From this, one readily infers the following

Lemma 2.1 (under (2.9))

d

da
E
[

F (a)
K

] = −E
[

MK · F (a)
K

]

, (2.12)

d2

da2
E
[

F (a)
K

] = CovP

(

M2
K , F (a)

K

)

. (2.13)

Proof Regarding the first derivative, by (2.9) and (2.10), one has that
F (a)
K (ϕ) = F (0)

K (ϕ − a) = F (0)
K (ϕ + h−a) since h−a = −a on K . Hence,

applying a change of measure and using (2.11) gives

d

da
E
[

F (a)
K

] = d

da
Ea
[

F (0)
K (ϕ)

]

= d

da
E

[

exp
{

− aMK − a2

2
cap(K )

}

F (0)
K (ϕ)

]

= E

[

(− MK − acap(K )
)

exp
{

− aMK − a2

2
cap(K )

}

F (0)
K (ϕ)

]

= Ea

[

(− 〈eK , ϕ − h−a〉)F (0)
K (ϕ)

]

= −E
[

MK · F (0)
K (ϕ + h−a)

] = −E
[

MK · F (a)
K

]

.

Similarly, for the second derivative, one obtains from (2.12) and by change of
measure

− d2

da2
E
[

F (a)
K

]

= d

da
E

[

(MK + acap(K )) exp
{

− aMK − a2

2
cap(K )

}

F (0)
K (ϕ)

]

= E

[

(

cap(K )− (MK + acap(K ))2
)
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× exp
{

− aMK − a2

2
cap(K )

}

F (0)
K (ϕ)

]

= Ea

[

(− 〈eK , ϕ − h−a〉2 + cap(K )
)

F (0)
K (ϕ)

]

= E
[(− M2

K + cap(K )
)

F (a)
K (ϕ)

]

,

from which (2.13) follows on account of (2.8). ��
Remark 2.2 Analogues of the differential equalities (2.12) and (2.13) hold
for the (discrete) Gaussian free field on G. These can be obtained as direct
consequences of (2.12) and (2.13), by considering K an arbitrary finite subset
of G and noting that ϕ extends the discrete free field on G.

Whereas so far everything applies to G itself, the next calculation is specific
to ˜G. For compact, connected K ⊂ ˜G containing 0 (cf. (1.3)), write

EK [ · ] def.= E[(·)1{˜Ka ⊂ K̊ }] (2.14)

(cf. (1.4) for the definition of ˜Ka), where K̊ = K\∂K . Recall the strong
Markov property of ϕ (see e.g. [36, (1.19)] for details): for O ⊂ ˜G open, let
AO denote the σ -algebra σ(ϕx , x ∈ O). For compact K ⊂ ˜G we consider
A+K =

⋂

ε>0AK ε , where K ε is the open ε-ball around K for the distance ˜d.

We define a (random) set K to be compatible if K is a compact connected
subset of ˜G and {K ⊂ O} ∈ AO for any open set O ⊂ ˜G, and let

A+K
def.= {

A ∈ A
˜G : A ∩ {K ⊂ K } ∈ A+K for all compact connected K ⊂ ˜G

with K̊ �= ∅
}

. (2.15)

The Markov property then asserts that for any compatibleK, conditionally on
A+K,

(ϕx )x∈˜G is a Gaussian field with mean hϕ
K and covariance g

˜G\K, (2.16)

with hϕ
K as defined in (2.3) and g

˜G\K above (2.1). The following lemma is
key. A useful variant can be found in Remark 2.5, (2) below. With regards to
measurability below, recall that P in (1.2) refers to the canonical law of the
Gaussian free field on the space R

˜G , endowed with its canonical σ -algebra
generated by the canonical coordinate maps ϕx : R˜G → R, for x ∈ ˜G.

Lemma 2.3 (K ⊂ ˜G compact, connected, 0 ∈ K ) For all bounded F : 2˜G →
R such that F(∅) = 0 and ϕ �→ F(˜Ka(ϕ))1{˜Ka(ϕ) bounded} is measurable
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for all a ∈ R, one has

d

da
EK
[

F(˜Ka)
] = −aEK

[

cap(˜Ka)F(˜Ka)
]

. (2.17)

Remark 2.4 The formulas (2.17) and (2.21) below indicate the special role
played by the observable cap(˜Ka), as derivatives of generic functionals F(˜Ka)

under EK involve interaction terms between F(˜Ka) and the capacity func-
tional.

Proof Let

˜Ka
K = {x ∈ ˜G : 0↔ x in {ϕ � a} ∩ K }. (2.18)

We will use the fact that, for any measurable function f : R → R with
f (MK ) ∈ L1(P) (see (2.7) for notation), one obtains the following as a con-
sequence of the strong Markov property: for all a ∈ R, P-a.s. on the event
{ϕ0 � a},

E
[

f (MK )
∣

∣A+
˜Ka
K

] = E
[

f
(N (M

˜Ka
K
, cap(K )− cap(˜Ka

K ))
)]

, (2.19)

where, conditionally on ϕ, N (·, ·) is a Gaussian random variable with the
given mean and variance under E[ · ]. To deduce (2.19), one observes that, on
the respective event and conditionally onA+

˜Ka
K
, by (2.16) the random variable

MK is Gaussian with mean (see (2.3) for notation)

〈eK , hϕ
˜Ka
K
〉 (2.6)= 〈e

˜Ka
K
, ϕ〉 = M

˜Ka
K

and variance (using the notation (GUμ)(·) = ∫ gU (·, x) dμ(x))

〈

eK ,G
˜G\˜Ka

K
eK
〉 (2.1)= 〈

eK ,GeK
〉− 〈eK , EeK [g(·, XH

˜Ka
K
)1{H

˜Ka < ∞}]〉

(2.5)= 〈

eK ,GeK
〉− 〈eK ,Ge

˜Ka
K

〉

(2.4),(2.2)= cap(K )− cap(˜Ka
K ).

Moreover, since ϕ = a on the support of e
˜Ka (which is contained in ∂˜Ka), on

the event {˜Ka ⊂ K̊ , ϕ0 � a} we have that

M
˜Ka
K

˜Ka=˜Ka
K= 〈e

˜Ka , ϕ〉 ∅�=˜Ka= 〈e
˜Ka , a〉 (2.2)= acap(˜Ka). (2.20)
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With (2.19) and (2.20) at hand, one then obtains (2.17) by applying the formula
(2.12) with the choice F (a)

K = F(˜Ka)1{˜Ka ⊂ K̊ } = F(˜Ka)1{˜Ka ⊂ K̊ , ϕ0 �
a} (the last equality holds since F(∅) = 0 by assumption), which satisfies
(2.9), by conditioning on A+

˜Ka
K
, using (2.19) with f (x) = x and (2.20), and

noting that F (a)
K is A+

˜Ka
K
-measurable. ��

Remark 2.5 (1) Proceeding similarly as above, starting from (2.13) (for the
same choice of F (a)

K ), using (2.19) and (2.20), and observing that

CovP

(

M2
K , F (a)

K

)

(2.19),(2.20),(2.8)= E
[(

cap(K )− cap(˜Ka)+ a2cap(˜Ka)2
)

F (a)
K

]

−cap(K ) · E[F (a)
K ],

one deduces upon cancelling terms proportional to cap(K ), in view of
(2.14), that

d2

da2
EK
[

F(˜Ka)
] = EK

[

cap(˜Ka)
(

a2cap(˜Ka)− 1
)

F(˜Ka)
]

. (2.21)

(2) By slightly modifying the argument of Lemma 2.3, one further obtains the
following. Let K ⊂ ˜G be compact and connected, 0 ∈ K and ˜Ka

K be as

in (2.18). For all F : 2˜G → R+ measurable such that F(∅) = 0 and
F(˜Ka

K ) ∈ L1(P) for all a ∈ R, one has

− d

da
E
[

F(˜Ka
K )
]

� aE
[

cap(˜Ka
K )F(˜Ka

K )
]

and (2.17’)

d2

da2
E
[

F(˜Ka
K )
]

� EK
[

cap(˜Ka
K )
(

a2cap(˜Ka
K )− 1

)

F(˜Ka
K )
]

, if a > 0.

(2.21’)

To obtain (2.17’), (2.21’), one proceeds as in the proof of Lemma 2.3, but
in absence of the event {˜Ka ⊂ K̊ }, cf. (2.14), the conditional mean M

˜Ka
K

of MK given A+
˜Ka
K
on the event {ϕ0 � a}, see (2.19), verifies M

˜Ka
K
=

〈e
˜Ka
K
, ϕ〉 � acap(˜Ka

K ) since ϕ � a on the support of e
˜Ka
K
(part of ∂˜Ka

K ).

Next, we proceed to take the limit K ↗ ˜G under suitable assumptions. For
F satisfying the conditions of Lemma 2.3, we define

ψF (a) = E
[

F(˜Ka)1{˜Ka bounded}], a ∈ R. (2.22)
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where boundedness is relative to ˜d, see the beginning of this section. The
following result will a-posteriori (once Theorem 1.1 is proved) be strengthened
under suitable assumptions on G, see Corollary 3.3 in the next section.

Corollary 2.6 Let I ⊂ Rbea closed interval,λI denote theLebesguemeasure
on I and F : 2˜G → R be a function satisfying the assumptions of Lemma 2.3.
If

ZF ∈ L1(λI × P),

where ZF (a, ϕ)
def.= −acap(˜Ka(ϕ))F(˜Ka(ϕ))1{˜Ka(ϕ) bounded},

(2.23)

then for all a, b ∈ I , with ϕF (v) = E[ZF (v, ·)], one has

ψF (b)− ψF (a) =
∫ b

a
ϕF (v) dv. (2.24)

Proof Abbreviate ψ ≡ ψF , ϕ ≡ ϕF and let KN ⊂ ˜G with 0 ∈ KN ,
N � 0, be an increasing sequence of compact sets exhausting ˜G. For
each N , defining ψ(N )(a) = E

[

F(˜Ka)1{˜Ka ⊂ K̊N }
]

and ϕ(N )(a) =
−aE

[

F(˜Ka)cap(˜Ka)1{˜Ka ⊂ K̊N }
]

, one obtains for all a, b ∈ I , integrat-
ing (2.17) with K = KN ,

ψ(N )(b)− ψ(N )(a) =
∫ b

a
ϕ(N )(v) dv. (2.25)

Since ϕ �→ F(˜Ka)1{˜Ka bounded} ∈ L∞(P) for all a ∈ I, in view of (2.22)

one infers ψ(N )(a)
N−→ ψ(a) for all a ∈ I by bounded convergence. One

then uses that

∣

∣

∣

∫ b

a
(ϕ − ϕ(N ))(v) dv

∣

∣

∣

� E

[

∫ b

a
dv |v|F(˜Kv)cap(˜Kv)1

{

˜Kv bounded, ˜Kv ∩ (KN )c �= ∅
}

]

N−→ 0 (by (2.23) and dom. convergence)

in order to deduce (2.24) from (2.25) by passing to the limit. ��
Remark 2.7 One can formulate analogous conditions for (2.21) allowing to
take the limit K ↗ ˜G. The resulting formula ismore delicate tomanipulate, but
instructive. Indeed, the minus sign present in (2.21) (and in the corresponding
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limiting formula) may cause cancellations; see Remark 3.4, (2) in the next
paragraph for an example.

3 Cluster capacity and the function θ0

As a first application of the above differential formulas, we prove Theorem 1.1
and Corollaries 1.2 and 1.3. It is now clear that F(˜Ka) ≡ f (cap(˜Ka)) for
suitable f : R → R looks to be a promising choice since (2.17) or (2.24) yield
an autonomous system of differential equations in (a, cap(˜Ka)). Moreover, as
noted in Remark 2.4, the utility of formulas such as (2.17), (2.21) or (2.24) for
more general functionals F(·) largely rests on having access to information
about the capacity functional.

A key ingredient is the following result. We recall that g = g(0)(=
cap({0})−1) and denote by μa the law (on {0} ∪ (g−1,∞)) of the random
variable cap(˜Ka)1{∅ �= ˜Ka bounded} under P.

Lemma 3.1 For all a, b ∈ R,

dμa

dμb
(t) = exp

{

− (a2 − b2)t

2

}

, t ∈ (g−1,∞). (3.1)

Proof We assume that a, b � 0. The case a, b � 0 is treated similarly, and
the remaining cases follow by splitting the relevant interval at 0. Consider

F(˜Ka) = 1{cap(˜Ka) ∈ A}, a ∈ R, (3.2)

for A ⊂ R, bounded, measurable, such that P(cap(˜Ka) ∈ A) > 0 and
with 0 /∈ A. The latter implies that F(∅) = 0. Clearly, the map ϕ �→
F(˜Ka)1{˜Ka bounded} ∈ L∞(P) for all a ∈ R and |ZF | � a sup A, whence
(2.23) is satisfied for any bounded interval I . Thus, Corollary 2.6 applies, and
(2.24) yields that ψF (a) = P(cap(˜Ka) ∈ A, ˜Ka bounded) is differentiable
a.e. in a ∈ R, with derivative

d

da
P
(

cap(˜Ka) ∈ A, ˜Kabounded
)

= −aE
[

cap(˜Ka)1{cap(˜Ka) ∈ A, ˜Ka bounded}]. (3.3)

Specializing to the case A = (t − ε, t] for some t > g−1 and ε < t , (3.3)
implies that

− d

da
logμa

(

(t − ε, t])

= aE
[

cap(˜Ka)
∣

∣ t − ε < cap(˜Ka) � t, ˜Ka bounded}] ∈ (a(t − ε), at],
(3.4)
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from which we infer

μb
(

(t − ε, t]) = exp
(

∫ b

a

d logμv

(

(t − ε, t])
dv

dv
)

· μa
(

(t − ε, t]). (3.5)

Substituting the bounds (3.4) into (3.5) one obtains that, assumingwithout loss
of generality that b > a,

e−t
(b2−a2)

2 �
1
ε
μb
(

(t − ε, t])
1
ε
μa
(

(t − ε, t]) � e−(t−ε)
(b2−a2)

2 , for all t > g−1, ε < t,

from which (3.1) follows by letting ε → 0. ��
We now first give the

Proof of Theorem 1.1 For all a ∈ R and u � 0, changing levels from a to√
a2 + 2u, one obtains that

E
[

e−ucap(˜Ka)1{∅ �= ˜Ka bounded}]

=
∫ ∞

g−1
e−ut dμa(t)

(3.1)=
∫ ∞

g−1
dμ√a2+2u(t) = P

(

∅ �= ˜K
√
a2+2u bounded

)

,

which entails (1.10). The identity (1.11) is then an immediate consequence
of (1.10) since E[e−ucap(˜Ka)1{˜Ka = ∅}] = P(ϕ0 < a) = 	(a), (1.8)
implies that ˜K

√
2u+a2 is bounded P-a.s. and P(˜K

√
2u+a2 �= ∅) = P(ϕ0 �√

2u + a2) = 1−	(
√
2u + a2). ��

Proof of Corollary 1.3 One has the identity, valid for all u � 0, a ∈ R (see
Lemma 5.2 in [13] for a proof),

∫∞
0 ρa(t)e−ut dt = 1−	(

√
2u + a2), where

ρa(t) = 1

2π

1

t
√

g(t − g−1)
e−a2t/21{t > g−1}. (3.6)

In view of (1.11), one thus obtains from (3.6) that for all a ∈ R,

cap(˜Ka) has density ρa(·) under P(( · ), ∅ �= ˜Ka bounded). (3.7)

The tail estimate (1.14) then readily follows from (3.6). ��
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Remark 3.2 (1) By adapting the argument yielding Theorem 1.1 above, one
also obtains, without further assumption on G, that for all a � 0,

cap(˜Ka) < ∞, P-a.s., (3.8)

as impliedbyTheorem3.1 in [13]. In particular, togetherwithLemma3.4,2)
of [13], (3.8) readily yields that (1.8) holds on any vertex-transitive
graph. We now briefly explain how to deduce (3.8). Rather than apply-
ing (2.24) (which builds on (2.17)) with F(·) given by (3.2) as in the
proof of Theorem 1.1, one uses (2.17’) with F(·) = 1{cap(·) ∈ (s, t]} for
g−1 � s < t < ∞ (so that F(∅) = 0), to find instead of Lemma 3.1 that

P(s < cap(˜Kb
K ) � t) � P(s < cap(˜Ka

K ) � t)

× exp
{

− (b2 − a2)s

2

}

, for a < b, (3.9)

with ˜Ka
K as defined in (2.18). Letting first t → ∞, then K ↗ ˜G using

monotonicity of cap(·) and finally s → ∞ in (3.9) (say with a = 0)
yields (3.8) for a > 0. To treat the case a = 0, one uses (3.9) again with
s = g−1 and lets K ↗ ˜G, then t → ∞ and b ↓ 0. The left-hand side
of (3.9) thereby converges to P(ϕ0 � 0) = 1

2 and the right-hand side to
P(cap(˜K0) < ∞)− P(ϕ0 < 0). The claim (3.8) for a = 0 follows.

(2) We refer to our companion article [13], see in particular Theorem 3.9
therein, for an alternative approach to the above results by entirely different
means; namely, exploiting a certain isomorphism theorem, due to [36],
relating ϕ and random interlacements on ˜G, which is shown in Theorem
1.1,2) of [13] to hold under the sole assumption (1.8), and turns out to be
equivalent to (1.11).

(3) Note that, if (1.8) holds, then by (1.11)

E
[

e−ucap(˜Ka)
] = 	(a)+ 1−	(

√

2u + a2), for all a � 0, u � 0.

(3.10)

Assume on the contrary that (3.10) holds. By (1.10) (which always holds),
(3.10) can be equivalently recast as

E
[

e−ucap(˜Ka)1{˜Ka unbounded}] = P
(

˜K
√
2u+a2 unbounded

)

. (3.11)

One readily deduces from (3.11) with a = 0 and (3.8) that, if (1.8) does
not hold, then ˜K

√
2u is unbounded with positive probability for all u � 0,

thus recovering the dichotomy a∗ ∈ {0,∞} implied by Corollary 3.11 of
[13].
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We now proceed with the

Proof of Corollary 1.2 Choosing u = 0 in (1.11) and observing that 	(a) +
1−	(|a|) = 2	(a∧0), the claim (1.12) follows. The remaining conclusions
are immediate consequences of (1.12) and the fact that a∗ � 0, see above
(1.8). ��

Asa further consequence ofTheorem1.1 one obtains the following improve-
ment of Corollary 2.6 under (1.8).

Corollary 3.3 (Differential formula) If (1.8) holds and F satisfies the assump-
tions of Lemma 2.3, then (2.24) holds for all a, b ∈ R.

Proof Taking derivatives in u in (1.11) and setting u = 0, one finds that

E[cap(˜Ka)1{˜Ka bounded}] = 1

|a| f (a), for all a ∈ R \ {0}. (3.12)

where f (·) = 	′(·) denotes the density of ϕ0. Hence,

∫

R

E[|ZF (a, ·)|] da
(2.23)

� ‖F‖∞
∫

R

|a|E[cap(˜Ka)1{˜Ka bounded}] da
(3.12)= ‖F‖∞ < ∞,

i.e., ZF ∈ L1(R×P) (in spite of the divergence in (3.12) when a → 0). Thus,
condition (2.23) holds and the claim follows by applying Corollary 2.6. ��
Remark 3.4 (1) One can alternatively deduce Theorem 1.2 as an application

of Corollary 3.3. Consider

F(˜Ka) = 1{˜Ka �= ∅} (1.4)= 1{ϕ0 � a} (3.13)

(in particular F(∅) = 0), whence

θ0(a)
(1.5)= P(˜Ka is (˜d-)bounded, ϕ0 ≥ a)+ P(ϕ0 < a)

(2.22)= ψF (a)+	(a). (3.14)

By (2.23), (3.12) and (3.13), one finds that E[ZF (a, ·)] = − a
|a| f (a), for

all a �= 0, which extends to a piecewise continuous function of a ∈ R.
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Thus, applying Corollary 3.3, which applies to F in (3.13), it follows that
for all a ∈ R,

θ0(a)
(1.8)= 1+ θ0(a)− θ0(0)

(3.14)= 1+ ψF (a)− ψF (0)+	(a)−	(0)

(2.24)= 1+
∫ a

0

(− v

|v| f (v)
)

dv +	(a)−	(0)

= 1+ (1− sign(a)
)(

	(a)−	(0)
)

,

which is (1.12) (	(0) = 1
2 ).

(2) One could also obtain (1.12) with the help of (2.21) (but using more infor-
mation, i.e. the second moment E[cap(˜Ka)2], for a > 0). Indeed, one can
pass to the limit in (2.21) with F given by (3.13). One then obtains, in view
of (2.22) and (3.14), that for all a �= 0,

θ ′′0 (a) = ψ ′′F (a)+	′′(a)

= E[cap(˜Ka)(a2cap(˜Ka)− 1)1{˜Ka bounded}] +	′′(a).

(3.15)

By means of (1.11), one computes, for a �= 0, with g = g(0, 0),

E[cap(˜Ka)21{˜Ka bounded}] = d

du

(

− f
(

√

2u + a2
) · 1√

2u + a2

)∣

∣

∣

u=0

= f (a)
( 1

|a|3 +
1

g
· 1

|a|
)

.

From this and (3.12), one thus obtains in (3.15), noting that 	′′(a) =
f ′(a) = −a

g f (a), that

θ ′′0 (a) = f (a)
( a2

|a|3 +
1

g
· |a| − 1

|a|
)

+	′′(a) = 1

g
f (a)

(|a| − a
)

(3.16)

for all a �= 0, which readily gives (1.12); one notes the perfect cancellation
in (3.16).

4 Connectivity upper bounds

In this short section, we derive the upper bounds (1.25), (1.26) on the truncated
radius and two-point functions ψ and τ tra , introduced in (1.19) and (1.20), and
even the full strength of (1.25) in case of ψ . This corresponds to a certain
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choice of F in (2.22), see for instance (4.9) below. In one way or another, all
the results of this section revolve around the idea of comparing with the cluster
capacity observable and thus rely on the information supplied by Theorem 1.1,
which was derived in the previous section.We also show how comparison with
cap(˜Ka) immediately yields the estimates (1.22), (1.23) on ψ at criticality,
together with bounds on the critical window, see Remarks 4.2 and 4.4, (4)
below.

We now introduce suitable balls on ˜G, which will be used throughout the
remainder of this article. Recalling the discrete balls B(x, r) ⊂ G (relative
to d, cf. above (1.3); note that these are not necessarily connected in nearest-
neighbor sense), we define ˜B(x, r) ⊂ ˜G for r � 0 and x ∈ G as consisting
of B(x, r) and all the cables joining any pair of neighbors in B(x, r) (i.e. any
x, y ∈ B(x, r) s.t. λx,y > 0). We abbreviate ˜Br = ˜B(0, r). Since B(x, r) is
finite by assumption, the sets B(x, r), ˜B(x, r), for x ∈ G, r � 0, are compact
in the sense of Sect. 2 (see the beginning of that section). Moreover, whenever
(Gν) and (1.15) hold, one knows by (2.8) of [11] that d(x, y) � c9dgr(x, y)
for x, y ∈ G hence Bdgr(x, r) ⊂ B(x, c9r) for any x ∈ G and r > 0 (here
Bdgr(x, r), x ∈ G, r � 0, refers to the discrete ball with respect to dgr instead
of d).

Throughout the remainder of this section, we assume that (Gν) and (1.15)
are in force. Let fν : R+ → R+ be defined as fν(r) = rν if ν < 1, fν(r) =

r
log(r∨2) if ν = 1 and fν(r) = r if ν > 1. One has the following inclusions.

Lemma 4.1 (under (Gν) and (1.15)) For all ν > 0, there exist c10, c11 ∈
(0,∞) depending on ν only such that for all a ∈ R and r � 1, with A(a, r) =
{r � rad(Ka) < ∞},

A(a, r) ⊃ {c10rν � cap(˜Ka) < ∞}, (4.1)

A(a, r) ⊂ {c11 fν(r) � cap(˜Ka) < ∞}. (4.2)

Proof Recalling the definition of rad(·) from below (1.19), if rad(Ka) < r ,
then ˜Ka is included in {z ∈ G : dgr(z, B(0, r)) � 1} union with all cables
between neighboring pairs of points in this set. Thus, if rad(Ka) < r , then
˜Ka ⊂ ˜Br+c9 (cf. above (2.1) regarding c9), hence by monotonicity of cap(·),

cap(˜Ka) � cap(˜B(1+c9)r ) � c10r
ν, for all r � 1, (4.3)

see for instance (3.11) in [11] and (2.16) in [13] regarding the last inequal-
ity, which relies solely on (Gν) and (1.15). In the opposite direction, when
rad(Ka) � r , one has

cap(˜Ka) � cap(Ka) � inf
A⊂G connected

rad(A)�r

cap(A) � c11 fν(r), (4.4)
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see for instance Lemma 3.2 in [11] regarding the last bound. Here, connect-
edness is meant with respect to dgr, and Ka is connected by definition, see
(1.4). Together, (4.3) and (4.4) also imply that rad(Ka) = ∞ if and only if
cap(˜Ka) = ∞, and (4.1), (4.2) follow. ��
Remark 4.2 As a first application of (4.1), (4.2) and Corollary 1.2, we deduce
the bounds (1.22) and (1.23). Using (1.14) with aN = 0, one first notes that
for all b > 0, s � 1,

P(bs � cap(˜K0) < ∞) �b

∫ ∞

bs
t−3/2 dt �b s

−1/2, (4.5)

where f �b g means that c f � g � c′ f for some constants c, c′ ∈ (0,∞)

depending only on b and ν. Together with (4.1) and (4.2), the asymptotics (4.5)
give ψ(0, r) � r−ν/2 when ν < 1 (recall the notation from (1.19)), which is
(1.22). Similarly (4.1), (4.2) and (4.5) yield (1.23) in case ν � 1.

Next, we give the

Proof of (1.25) and (1.26). For all a ∈ R, one has, for b > 0, r � 1 and
ν > 0, using (3.1), (3.6) and (3.7),

e−ba2rν

P(brν � cap(˜K0) < ∞) � P(brν � cap(˜Ka) < ∞)

� e−2ba2rν

∫ 2brν

brν

ρ0(t) dt

� c(b, ν)e−2ba2rν

P(brν � cap(˜K0) < ∞), (4.6)

where we also used (4.5) in the last step. From (4.1), (4.2) and (4.6), together
with (1.23) one readily deduces the lower bound in (1.25), and also the upper
bound if one allows for a constant c(> 1) in front of ψ(0, r). Such direct
comparisons fail to yield the right order for both upper and lower bound when
ν � 1, see Remark 4.4, (3) below.

We now give an argument which yields the desired upper bounds in (1.25)
and (1.26). For κ > 0, we consider the function (for arbitrary ν > 0)

τκ(a) = eκa2 fν(r)ψ(a, r), for a ∈ R (4.7)

(which implicitly depends on r > 0) with fν as defined above (4.1). We will
show the following simple result.

Lemma 4.3 (ν > 0). There exists κ1(ν) > 0 such that, if κ ∈ (0, κ1], with
τ ′κ = d

da τκ ,

sign(a)τ ′κ(a) � 0, for a.e. a ∈ R. (4.8)
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(In particular τκ is a.e. C1 on R).

By integrating the differential inequality (4.8) between 0 and a ∈ R, one
immediately deduces in view of (4.7) that ψ(a, r) � ψ(0, r)e−κ1a2 fν(r), from
which the upper bounds in (1.25) and (1.26) follow since a2rν = (r/ξ(a))ν .
It thus remains to give the

Proof of Lemma 4.3 We consider

F(˜Ka) = 1A(a,r), recalling that A(a, r) = {r � rad(Ka) < ∞},
for r > 0, a ∈ R, (4.9)

and study the corresponding observable ψF (a) = ψ(a, r) (see (1.19) and
(2.22) for notation).

One first observes, using (3.12), that the condition (2.23) is satisfied with
I = R for F given by (4.9). Moreover, since F is bounded and F(∅) = 0,
(2.24) applies and one deduces that for (almost) all a ∈ R \ {0},

d

da
ψ(a, r) = E[ZF (a, ·)] = −aE[cap(˜Ka)1{r � rad(Ka) < ∞}]. (4.10)

Hence, for all κ > 0 and a.e. a > 0,

τ ′κ(a) = a
(

2κ fν(r)ψ(a, r)− E[cap(˜Ka)1{r � rad(Ka) < ∞}])eκa2 fν(r)

� aλ
(

ψ(a, r)− P(cap(˜Ka) � λ, r � rad(Ka) < ∞)
)

eκa2 fν(r),

(4.11)

where λ = 2κ fν(r). But due to (4.2), one knows that rad(Ka) � r implies

cap(˜Ka) � λ whenever κ � κ1
def.= c11/2, whence (4.11) gives τ ′κ(a) � 0 for

almost all a > 0 and (4.8) follows by symmetry. ��
With Lemma 4.3 shown, the proof of (1.25) and (1.26) is complete. ��
Remark 4.4 (1) We briefly describe how to adapt the above arguments to yield

the versions of the upper bounds in (1.25) and (1.26) for τ tra . For any x ∈
G \ Br , defining ̂A(a, x) = {0 �a←→ x,Ka bounded} the inclusion (4.2)
still holds when replacing A(a, r) by ̂A(a, x) (indeed ̂A(a, x) ⊂ A(a, r)).
Hence, mimicking the proof of (4.8), but using ̂F = 1

̂A(a,x) instead of
F , cf. (4.9), one finds that sign(a)̂τ ′κ(a) � 0 for κ small enough, where

τ̂κ (a) = eκa2 fν(r)τ tra (a, x), and the analogues for τ tra (a, x) of (1.26) and of
the upper bound in (1.25) readily follow. Note that, as opposed to ψ , we
do not claim here the version for τ tra of the (off-critical) lower bounds in
(1.25) asserted as part of Theorem 1.4. These will be supplied, along with
the proofs of (1.27) and (1.46), by a separate argument in Sect. 8.
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(2) Proceeding similarly as in Lemma 4.3, but using (4.1) instead of (4.2), one
can easily prove that for all ν > 0 there exists κ2(ν) < ∞ such that for all
κ � κ2

sign(a)̃τ ′κ(a) � 0, for a.e. a ∈ R, (4.12)

where τ̃κ (a) = eκa2rν
ψ(a, r). This directly implies that ψ(a, r) and

ψ(0, r) are of the same order when r � tξ, for any choice of ν > 0
and t > 0. Indeed, for κ � κ2(ν),

ψ(0, r) � ψ(a, r) = τ̃κ (a)e−κa2rν � cτ̃κ (a)
(4.12)

� cτ̃κ (0) = cψ(0, r)

(4.13)

for all r � 1 and a ∈ R with r � tξ.

(3) When ν � 1, (4.1) and (4.6) yield the lower bound ψ(a, r) �
e−ca2rν

P(c′r � cap(˜K0) < ∞), which does not exhibit the desired leading
exponential order, cf. Corollary 8.2. Regarding the upper bound, one has,
for a �= 0, r > 0,

ψ(a, r)
(4.2)

� P(c11 fν(r) � cap(˜Ka) < ∞)

(3.6)

� e−c11a2 fν(r)P(c11 fν(r) � cap(˜K0) < ∞)

(4.1)

� e−c11a2 fν(r)ψ
(

0, c fν(r)
1
ν
)

(1.23)

� c(log(r ∨ 2))1ν=1r
1
2 (ν− 1

ν
)e−c11a2 fν(r)ψ(0, r),

which has the correct exponential order, cf. (1.26), but is only pertinent
sufficiently “far away” from criticality, i.e. in the regime of parameters
ca2 fν(r) � log log(r ∨ 2) when ν = 1 or ca2 fν(r) � log r if ν > 1
(rather than ca2 fν(r) � 1).

(4) (Critical window). Suppose (Gν) and (1.15) hold. If ν < 1 then (1.25)
implies in particular that

ψ(a, r)

ψ(0, r)
→ 0 if and only if |a|rν/2 →∞.

In case ν = 1 and a > 0, one can deduce good bounds on the critical
window as follows: ψ(a, r) � cψ(0, r)(� cr−1/2) if r � a−2 on account
of (4.13) and (1.23), and ψ(a, r)/ψ(0, r) → 0 as r/(ξ(a) log(r)) → ∞
on account of (1.26). In particular, in case G = Z

3 (with unit weights), this
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improves on the bounds (12) and (13) from Theorem 6 in [10]. Similarly,
in the supercritical regime a < 0 (cf. (14) and (15) in [10]), using that

P(0
�a←→ ∂Br ) � ψ(0, r)+ (1− θ0(a)), for all r > 0, one finds with the

help of (1.13) that

P(0
�a←→ ∂Br ) � ψ(0, r)+ ca

( (1.23)

� c′
( log r

r

)1/2
)

,

if
r

log(r)
� ξ(a), a ∈ [−1, 0],

and similarly since P(0
�a←→ ∂Br ) � 1 − θ0(a) that P(0

�a←→∂Br )

P(0
�0←→∂Br )

�
c|a|

ψ(0,r) → ∞ for a ∈ [−1, 0] as r/(ξ(a) log(r)) → ∞ using (1.13) and
(1.23).

(5) (The condition (1.15)). The only place (1.15) entered the proof of (1.25)
and (1.26) is through Lemma 4.1, specifically to obtain (4.3) and (4.4).
Inspecting the proofs of (3.11) and of Lemma 3.2 in [11] shows that (1.15)
is only used to deduce that (cf. (2.8) in [11])

d � cdgr, (4.14)

Thus, Lemma 4.1, as well as (1.25), (1.26) continue to hold upon replac-
ing (1.15) by (4.14). Condition (4.14) may be better suited to deal with
examples (G, λ) in which one tinkers more severely with the conductances
(indeed the requirements (Gν) and (1.15) imply a uniform lower ellipticity
bound λx,y � c, see (2.10) in [11]).

5 Local uniqueness at the critical scale

We now derive a suitable local uniqueness estimate at scale ξ , cf. (1.24),
which in particular will imply bounds like (1.34), see Corollary 5.2 below.
This estimate really concerns connections in the interlacement set Iu , u > 0,
from which useful results for ϕ can be gleaned by means of the coupling in
(1.32). Its general form (quantitative in the parameter u > 0 and a generic
length scale R � 1) is stated in Theorem 5.1. Weaker results of this kind have
been derived on Z

d , d � 3, in Proposition 1 of [29], see also Lemma 3.2 in

[12] for a quantitative bound in u valid in the regime R � u− 1
ε for ε ! 1, and

extended to any graph satisfying (Gν), (Vα) and (1.15) in Section 4 of [11].
All these bounds however, are too weak for our purpose, notably because they

do not cover the regime of scale R ≈ u− 1
ν when u ! 1, which corresponds

to R ≈ ξ in view of (1.32) and (1.24). The scale u− 1
ν forms a natural barrier,

123



Critical exponents 263

being the smallest radius for which balls become “visible” for an interlacement
trajectory in Iu , cf. (5.2) and (5.7) below.

In the sequel we tacitly assume that K ⊂ ˜G is a compact set. For such K ,
let

˜GK
def.= the unbounded connected component of ˜G \ K (5.1)

(see (6.5) below regarding its uniqueness). The following results, in particu-
lar Theorem 5.1 below, are of independent interest, already in case K = ∅

(whence ˜GK = ˜G). For the purposes we have in mind, the removal of K in
(5.1) should be thought of as corresponding to the exploration of part of the
cluster ˜Ka in (1.4). In view of the Markov property (2.16) for the free field, the
explored region K will effectively act as a Dirichlet boundary condition for X .
Accordingly, we consider P

˜GK
, the canonical law of the interlacement process

on ˜GK and Iu ⊂ ˜GK the interlacement set at level u > 0, whose distribution
is characterized by the property that

P
˜GK

(Iu ∩ C = ∅) = exp{−ucap
˜GK

(C)}, for all compact C ⊂ ˜GK (5.2)

(see the paragraph following Corollary 5.2 regarding cap
˜GK

(·), see also Sec-

tion 2.5 of [13] for the definition of P
˜GK

in this context). In particular, (5.2)
reduces to (1.31) when K = ∅.

Let̂Iu denote the set of edges of G traversed entirely by at least one of the
trajectories in the support of the interlacement point process at level u. For
z ∈ G and R > 0, let BE (z, R) refer to the set of edges of G whose endpoints
are both contained in B(z, R). For z ∈ G as well as u, R > 0 and λ > 1, we
introduce the event

LocUniqu,R,λ(z)
def.=

⋂

x,y∈Iu∩B(z,R)

{x ↔ y in̂Iu ∩ BE (z, λR)}. (5.3)

Note that the event in (5.3) implies a “local uniqueness” for interlacements both
on the discrete graph G and on the cable system, in that if {x ↔ y in̂Iu ∩
BE (z, λR)} occurs, then x and y are connected by both a discrete path in
Iu ∩ B(z, λR) and a continuous path in Iu ∩ ˜B(z, λR).

Theorem 5.1 (under (Gν), (Vα), (1.15)) There exist c12 ∈ (0, 1), c13, c14 ∈
(1,∞) such that for all u > 0, R � 1, compacts K ⊂ ˜B(0, R) and z ∈ G
with d(z, 0) � c14R · 1{K �= ∅},

P
˜GK

(

LocUniqu,R(z)c
)

� c exp

{

−
( c12(u ∧ 1)Rν

log(R)2·1{α=2ν}
) 1

2ν+1
}

, if α � 2ν,

(5.4)
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where LocUniqu,R(z) denotes the event in (5.3) with the choice λ = c13.

Werefer toRemark5.4below regarding anupper bound forP
˜GK

(LocUniqu,R
(z)c) in the regime α < 2ν and the discrepancy between the two cases. In par-
ticular, Theorem 5.1 yields the following instructive estimate with regards to
the definition of ξ(·) in (1.24), which follows immediately from (5.4) with
K = ∅.

Corollary 5.2 (under (Gν), (Vα), (1.15)) If α > 2ν, then for all u > 0, s > 1,
z ∈ G, one has

P
˜G
(

LocUniqu,su−1/ν (z)
c) � c exp(−c′s ν

2ν+1 ). (5.5)

We now prepare the ground for the proof of Theorem 5.1. Throughout the
remainder of this section, we tacitly assume (Gν), (Vα) and (1.15) to hold. We

write P
˜GK· for the canonical law of the Brownian motion X on ˜G killed when

exiting ˜GK , see (5.1), i.e. of the process X ·∧HK under P· (for convenience,
entering a cemetery state � /∈ ˜G upon being killed). In particular, P· = P˜G· .
Associated to this process is the capacity functional cap

˜GK
(·), defined similarly

as cap(·) = cap
˜G(·) in (2.2). Indeed, cap

˜GK
(·) is given by (2.19) in [13] if one

regards ˜GK as the cable system associated to the graph GK with vertex set
GK = (˜GK ∩ G) ∪ ∂K , killing measure κx = ∞ if x ∈ (GK ∩ ∂K ) and
0 otherwise, and weights λK

x,y , x, y ∈ GK , given by λK
x,y = λx,y whenever

x, y ∈ G and λK
x,y = 1

2ρ(x,y) if x ∈ G, y ∈ ∂K , where ρ(·, ·) denotes the
Euclidean distance on the cable of ˜G containing x and y (viewed as a line
segment of length 1/2λx,z with z ∈ G the corresponding other endpoint).

For later reference, we record the following estimates on ˜GK which mirror
(Gν) away from the boundary. Using that g

˜G
̂K
(x, y) � g

˜GK
(x, y) � g(x, y)

for all x, y ∈ ˜GK , where ̂K denotes the union of K and the closure of all
cables intersected by K (so in particular ∂ ̂K ⊂ G) and applying Lemma 3.1
in [11], it follows that there exists c15 � 1 such that if d(z, 0) � c15R and
K ⊂ ˜B(0, R),

c � g
˜GK

(x, x) � c′ and cd(x, y)−ν � g
˜GK

(x, y) � c′d(x, y)−ν,

for all x �= y ∈ B(z, R), (5.6)

where g
˜GK

denotes the Green function killed outside ˜GK , cf. (2.1). Proceeding
similarly as in the argument leading to (3.11) in [11], (5.6) (and (Gν) in case
K = ∅) then yields

cRν ≤ cap
˜GK

(B(z, R)) ≤ c′Rν, for all R � 1,

K ⊂ ˜B(0, R), d(z, 0) � c15R · 1{K �= ∅}. (5.7)
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For x ∈ G and R > 0, we define the set C(x, R) as consisting of the vertices
z ∈ B(x, R) visited by the diffusion X before the first time it exits B(x, R).

We begin with a lower bound on cap
˜GK

(C(x, R)), which for K = ∅ can be
viewed as refining Proposition 4.7 in [11].

Lemma 5.3 (K ⊂ ˜G compact) For x ∈ G, R, t � 1 with Rν � 2t and
B(x, R) ⊂ ˜GK ,

P
˜GK
x

(

cap
˜GK

(C(x, R)) � cRν

t log(R)1{α=2ν}
)

� c exp(−c′t 1ν ), if α � 2ν.

(5.8)

Proof Let Z = (Zn)n�0 denote the discrete-time skeleton of the trace process
on G of the diffusion X under Px = P˜Gx (cf. (2.4) and below in [13] for
the definition), which has the law of the discrete-time Markov chain with
transition probabilities induced by (1.1), and write Z[0,t] = {Zn : 0 � n � t},
t � 0. By Lemma 4.4 in [11] applied in the case N = 1 and since α � 2ν is
equivalent to α/β � 2, where β = α− ν, with equality if and only if α = 2ν,
there exist positive constants c and c16 such that P˜Gx

(

cap(Z[0,(Rν/t)β/ν ]) �
cRν/(t log(R)1{α=2ν})

)

� c16, for all 1 � t � 1
2 R

ν . Hence, by the Markov
property, we get that for all such t and all M > 0,

P
˜G
x

(

cap
˜G
(

Z[0,M(Rν/t)β/ν ]
)

� cRν/(t log(R)1{α=2ν})
)

� (1− c16)
cM .

(5.9)

Moreover, by (3.17) in [11],

P
˜G
x

(

Z[0,M(Rν/t)β/ν ] ∩ B(x, R)c �= ∅
)

� ce−c′(
tβ/ν

M )1/(β−1) ,

for all M � 1, 1 � t � Rν/2. (5.10)

Combining (5.9) and (5.10) with the choice M = t
1
ν , and noticing that

C(x, R) ⊃ Z[0,M(Rν/t)β/ν ] under the complement of the event appearing on
the left-hand side of (5.10), we obtain

P
˜G
x

(

cap
˜G(C(x, R)) � cRν

t log(R)1{α=2ν}
)

� c exp(−c′t 1ν ), if α � 2ν.

(5.11)

Since B(x, R) ⊂ ˜GK , the law of Z until the first exit time of B(x, R) is the

same under P˜Gx and P
˜GK
x , and so (5.11) still holds when replacing P˜Gx by P

˜GK
x .

As cap
˜GK

(A) � cap
˜G(A) for all A ⊂ ˜GK , (5.8) follows. ��
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We now define ̂Cu(x, R) under P
˜GK
x ⊗ P

˜GK
as the union of C(x, R) and the

vertices y ∈ B(x, R) connected to any vertex in C(x, R) by a path of edges in
̂Iu ∩ BE (x, R) (see above (5.3) for the definition of̂Iu). The attentive reader
will notice that the following proof of Theorem 5.1 could avoid the use of
̂Cu(x, R) and be reformulated in terms of C(x, R) only. The use of ̂Cu(x, R)

is justified by a possible extension to the case α < 2ν, see Remark 5.4 for
details, and it creates little extra difficulty in the proof of Theorem 5.1, which
still applies when α < 2ν.

Proof of Theorem 5.1 Let z ∈ G and abbreviate Bz = Bz(z, R) and forλ > 1,
Bz

λ = B(z, λR), Bz
E,λ = BE (z, λR), see above (5.3) for notation. Throughout

the proof, given u > 0 we tacitly assume that R is large enough so that
(u ∧ 1)Rν � 1. For u > 0, we decompose Iu = Iu/4

1 ∪ Iu/4
2 ∪ Iu/4

3 ∪ Iu/4
4 ,

where Iu/4
k , k ∈ {1, 2, 3, 4}, are independent interlacement sets at level u/4

each. Similarly, let̂Iu/4
k be obtained from Iu/4

k in the same manner aŝIu from

Iu , whence ̂Iu = ̂Iu/4
1 ∪̂Iu/4

2 ∪̂Iu/4
3 ∪̂Iu/4

4 . For k ∈ {1, 2, 3, 4}, we denote
by Zk

1, . . . , Z
k
Nk

the (equivalence classes of) trajectories in the Poisson point

process corresponding to Iu/4
k which hit Bz, and for each i ∈ {1, . . . , Nk},

we decompose Zk
i canonically into its (M

k
i many) excursions Zk

i,1, . . . , Z
k
i,Mk

i
,

each started when hitting Bz and ending when first exiting Bz
λ.

Combining (5.7) and the fact that Nk is Poisson(ucap˜GK
(Bz)/4)-distributed

it follows by a standard large deviation estimate for Poisson random variables
that

P
˜GK

(Nk � cuRν) � exp(−c′uRν), for all u > 0, R � 1 with d(z, 0) � c15R.

(5.12)

We now derive a suitable upper bound on the tails of Mk
i , k ∈ {1, 2, 3, 4},

i ∈ {1, . . . , Nk}. Using (2.4) on ˜GK , one finds that for all λ � c(� 1) and
R ≥ 1 with d(z, 0) � c15λR · 1{K �= ∅},

sup
x∈∂Bz

λ

P
˜GK
x (HBz < ∞)

(5.6)

� c((λ− 1)R)−νcap(Bz)
(5.7)

� c′

(λ− 1)ν
� 1

2
,

(5.13)

where eBz,˜GK
denotes the equilibrium measure of the set Bz in ˜GK . As a

consequence of (5.13), for λ � c, the random variables Mk
i , i ∈ {1, . . . , Nk},

are stochastically dominated by independent geometric random variables with
parameter 1/2 each. Therefore, using a union bound, a standard concentration
inequality entails that for such λ and all k, if d(z, 0) � c15λR · 1{K �= ∅},
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P
˜GK

(

Nk � cuRν, ∃ i � Nk, Mk
i � cuRν

)

� (cuRν)e−cuRν

. (5.14)

Henceforth, we simply fix a value of λ such that (5.14) holds. For each k ∈
{1, 2, 3, 4},we then denote by Au

R,k the event that Nk � cuRν andMk
i � cuRν

for all i ∈ {1, . . . , Nk}, and take Au
R = Au

R,1∩ Au
R,2 ∩ Au

R,3 ∩ Au
R,4. It follows

from (5.12) and (5.14) that for all R � 1

P
˜GK

((Au
R)c) � cuRνe−c′uRν

if d(z, 0) � c15λR · 1{K �= ∅}
(5.15)

(for all K ⊂ ˜B(0, R)). Let us define the sets ̂Cm,n
i, j as consisting of the vertices

z visited by Zm
i, j , as well as the vertices y ∈ Bz

λ connected to such z by a

path of edges in Bz
E,λ ∩ ̂Iu/4

n . In particular, if x ∈ Iu ∩ Bz , then x belongs

to ̂Cm,n
i, j for some m ∈ {1, 2, 3, 4}, i ∈ {1, . . . , Nm} and j ∈ {1, . . . Mm

i }, and
any n ∈ {1, 2, 3, 4}. For v � 1 we then infer that

⋃

x,y∈Iu∩Bz

{x � y in Iu ∩ Bz
E,vλ}

⊂
⋃

p,m∈{1,2,3,4}

Np
⋃

i1=1

Nm
⋃

i2=1

Mp
i1
⋃

j1=1

Mm
i2
⋃

j2=1

{

̂C p,n
i1, j1

� ̂Cm,n
i2, j2

in̂Iu/4
k ∩ Bz

E,vλ

}

,

where to each m, p ∈ {1, 2, 3, 4} we associate n the smallest element of
{1, 2, 3, 4}\{m, p} and k the smallest element of {1, 2, 3, 4} \ {m, p, n}. Next,
denote by A the σ -algebra generated by the point processes underlying
Iu/4
1 , Iu/4

2 and Iu/4
4 . In view of (5.3), returning to the previous display, apply-

ing first a union bound over p,m, then conditioning suitably and applying a
second union bound, one finds that for all v � 1,

P
˜GK

(

LocUniqu,R,λv(z)
c, Au

R

)

� 16(cuRν)4

× sup
m=1,4

E
˜GK
[

sup
i1,i2, j1, j2

P
˜GK

(

̂C1,2i1, j1
� ̂Cm,2

i2, j2
in̂Iu/4

3 ∩ Bz
E,vλ

∣

∣A )1Au
R,1∩Au

R,m

]

,

(5.16)

where i1 ranges over {1, . . . N1}, i2 over {1, . . . Nm}, j1 ∈ {1, . . . , Mi1
1 } and

j2 ∈ {1, . . . , Mi2
m }. We then choose v ∈ (1,∞) large enough such that, by an

adaptation of Lemma 4.3 in [11] to the current setup (using (5.6), (5.7) and
(5.14)), the following holds: on the event
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{

cap
˜GK

(̂C1,2i1, j1
) � cRν

t log(R)1{α=2ν}
}

∩
{

cap
˜GK

(̂Cm,2
i2, j2

) � cRν

t log(R)1{α=2ν}
}

,

(5.17)

if d(z, 0) � c15vλR · 1{K �= ∅}, we have

P
˜GK

(

̂C1,2i1, j1
� ̂Cm,2

i2, j2
in̂Iu/4

3 ∩ Bz
E,vλ

∣

∣A )

� exp
(− cuR−νcap

˜GK
(̂C1,2i1, j1

)cap
˜GK

(̂Cm,2
i2, j2

)
)

� exp
(

− cuRν

t2 log(R)2·1{α=2ν}
)

, (5.18)

using the bounds from (5.17) in the second line. Moreover for all k ∈ {1, 4},

P
˜GK

(

Au
R,k, ∃ i � Nk, j � Mi

k, cap
˜GK

(̂Ck,2i, j ) � cRν

t log(R)1{α=2ν}
)

� P
˜GK

(

∃i � (cuRν), j � (cuRν), cap
˜GK

(̂Ck,2i, j ) � cRν

t log(R)1{α=2ν}
)

,

(5.19)

where for every i � Nk and j > Mi , and every i > Nk and j � 1, we
define ̂Ck,2i, j = G. Since, conditionally on the starting point of the respective

excursion, the random set ̂Ck,2i, j stochastically dominates ̂Cu/4(x, (λ − 1)R)

(under Px ⊗P) for a certain vertex x ∈ G (cf. below Lemma 5.3 for notation),
and ̂Cu/4(x, (λ−1)R) ⊃ C(x, (λ−1)R), the probability of the event in (5.19)
can be estimated usingLemma5.3 and a union bound.Due to (5.15), (5.16) and
(5.18), the desired bound (5.4) thus follows from (5.8) by taking c13 = vλ,

c14 = c15vλ and t = c((u ∧ 1)Rν/ log(R)2·1{α=2ν})
ν

2ν+1 , with c such that
Rν ≥ 2t is satisfied for all R � 1, as required for Lemma 5.3 to apply. ��
Remark 5.4 (The regime α < 2ν) Proceeding similarly as above, one deduces
under the assumptions of Theorem 5.1 that, for all u ∈ (0, 1), R � 1 and
z ∈ G with d(z, 0) � c14R · 1{K �= ∅},

P
˜GK

(

LocUniqu,R,c13(z)
c) � c exp

{

−
( c13uRβ

log(R)c
′
)c
}

, if α < 2ν,

(5.20)

where β = α− ν. To obtain (5.20), one replaces Lemma 5.3 by the following
estimate, valid for all x ∈ G, u > 0 and R, t � 1 such that Rν � 2t and
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B(x, R) ⊂ ˜GK , with M = Rβ t−
β
ν ,

P
˜GK
x ⊗ P

˜GK

(

cap
˜GK

(̂Cu(x, R)) � cRν

t

)

� cuRν exp
{

− c′(t 1ν ∧ uM)

log(M)

}

, if α < 2ν. (5.8’)

Once (5.8’) is shown, the proof of (5.20) proceeds exactly as that of Theo-
rem 5.1 above, but using (5.8’) instead of (5.8), cf. below (5.18), which yields
the choice t = (uRβ log(R)c̃)c̃

′
, whereupon (5.20) follows using the inequal-

ity ν > β and noticing that log(M) � C log(R) when uRβ � 1. The proof
of (5.8’) is somewhat more technical and we omit it here. Thus, for α < 2ν,
our current methods do not provide us with a bound similar to (5.4) (even for
K = ∅), that is a decay of P

˜GK
(LocUniqu,R,λ(z)

c) to 0 as uRν increases to
∞; such a decay would in turn improve the bound (8.8) from Remark 8.1, (2)
below to a bound similar to (1.46).

In fact, we do not expect that uRν →∞ is sufficient for P
˜GK

(LocUniqu,R,λ

(z)c) as defined in (5.3) to decay to 0 in the regime α < 2ν, essentially because
the capacity of the range of one random walk in a box of linear size R grows
as Rβ , cf. for instance Lemma 4.6 in [11], and β < ν. As a consequence, one
may therefore seek alternative approaches in intermediate “dimensions” by
modifying the event LocUniqu,R,λ(z) in order to produce local connections
through Iu . Finding such a connection strategy remains an interesting question
in this regime.

6 Connectivity lower bounds

With Theorem 5.1 at our disposal, we now proceed to supply the proofs of the
lower bounds in (1.25) and (1.27), see Proposition 6.1 below. The arguments
presented here are quite flexible, and we will explain in Sect. 8 how to adapt
them to (i) obtain the outstanding lower bounds for ˜ψ(a, r) in (1.46) and
(ii) deduce all corresponding lower bounds for τ tra (0, x) in Theorem 1.4. The
assumption (6.1) below, which allows for a (possible) logarithmic correction
to the radius function at criticality when ν = 1, is known to hold with q(r) =
c(log r)1/2 for ν = 1 by (1.23) and with q(r) = c when ν < 1 by (1.23).
Recall ξ = ξ(a) from (1.24) and the constant c7 introduced in Theorem 1.7.

Proposition 6.1 (under (Gν), (Vα), (1.15) and (1.16)) If

there exists q : [1,∞) → [1,∞) s.t. ψ(0, r) � q(r)r−ν/2 for all r � 2,

(6.1)
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0

Bξ

˜Ka
ξ

Induced shift (in Bσξ)

Exploration

Iu,1
−+

xk

�
2

∂Br

Iu,2

Forced shift (in L′
�)

(� ≥ ξ)B√
σ′�

Bσ′�

Bσξ

L′
� (dotted region)

Fig. 1 Connecting 0 to ∂Br in three steps: (1) exploring the near-critical cluster ˜Ka
ξ at scale

ξ (red), with associated cost controlled by Lemma 6.2; (2) connecting ˜Ka
ξ when cap(˜Ka

ξ ) is
large enough to a multiple of that scale via a killed-surviving interlacement trajectory (green),
cf. Lemma 6.4 and its proof in Sect. 7; (3) bridging the remaining distance using optimal local
uniqueness by means of Theorem 5.1 (blue)

for some ν ∈ (0, α
2 ), then there exist positive constants c̃,˜c′ and ˜c′′ such that

with ξ = ξ(a),

ψ
(

a, r) � ψ(0, r) exp

{

−c̃q(ξ)− c̃(r/ξ)ν∧1

log(r/ξ)b

}

for all a ∈ [−c̃′, c̃′] and r � c̃′′ξ, (6.2)

where b = 0 if ν < 1, b = 1 if ν = 1 and b = −c7 if ν > 1.

Throughout the remainder of this section, we suppose that the assumptions
(Gν), (Vα), (1.15) and (1.16) of Proposition 6.1 are in force. Figure1 gives an
idea of how the relevant connection event for ψ

(

a, r) will be implemented.
The underlying construction will be gradually unveiled over the course of this
section and the next.

Our starting point is an estimate on the capacity of a piece of the cluster
˜Ka truncated at the critical scale ξ = ξ(a). For L � 1, we abbreviate ˜Ka

L =
˜Ka
˜B(0,L)

, see (2.18) for notation.
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Lemma 6.2 ((Near-)critical estimate, ν ∈ (0, α
2 )) If (6.1) holds, one has for

all 0 < a < c,

P
(

cap(˜K−aξ ) � c17ξ
ν
)

� ξ−
ν
2 q(ξ)−1, (6.3)

P
(

cap(˜Ka
ξ ) � c17ξ

ν
)

� P
(

cap(˜K−aξ ) � c17ξ
ν
)

exp{−cq(ξ)}. (6.4)

The proof of Lemma 6.2 is presented in Sect. 7. In case ν = 1 this lemma

applies with q(ξ) = (log ξ)
1
2 , thus yielding an effective regime in which the

second term in the exponential of (6.2) dominates when, say, r
ξ

� (log ξ)
1
2+ε

for some ε > 0. A weaker version of Lemma 6.2 can be obtained by sim-
pler means, and yields a bound with effective regime r

ξ
� (log ξ)1+ε, see

Remark 7.1 below. This is insufficient for later purposes, notably that of deduc-
ing Corollary 1.5.

Proof of Proposition 6.1 We first observe that under (Gν), (Vα), (1.15), there
exists c18 ∈ (1,∞) such that for all R � c,

there exists a connected component of Bc218R
\ BR which contains ∂inBc18R

(6.5)

(indeed this follows from the first conclusion in the proof of Lemma 6.5 in
[11]). Henceforth, we tacitly assume that 0 < a � c with c chosen small
enough so that (6.5) holds whenever R � ξ = ξ(a).

Let K ⊂ ˜Bξ (⊂ ˜G) be a compact set, soon to be chosen as K = ˜Ka
ξ , cf. also

the red region in Fig. 1. For such K , by (6.5) and in view of (5.1), with ˜BR as
defined at the beginning of Sect. 4, one has

˜G \ ˜Bc18ξ ⊂ ˜GK . (6.6)

Applying an argument akin to (5.13), involving (2.4), (Gν) and (5.7) (with
K = ∅), one finds σ � c18 suitably large such that for all compacts K ⊂ ˜Bξ ,

cξ−νcap(K ) � hK (x) � 1

2
for all x ∈ ∂inBσξ (see (2.3) for notation).

(6.7)

Now, recalling that ˜Ka
ξ = ˜Ka

˜Bξ
, see (2.18) for notation, writing P

˜GK for the

canonical law of the Gaussian free field ϕ on the cable system ˜GK associated
to the graph GK , (cf. below (5.5) for its definition), whence P

˜G = P as given
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by (1.2), it follows from the Markov property (2.16) that

(

ϕx − hϕ
˜Ka

ξ

(x)
)

x∈˜G
˜Ka

ξ

has the same law under P
˜G(· |A+

˜Ka
ξ

) as ϕ under P

˜G
˜Ka

ξ .

(6.8)

On the event {cap(˜Ka
ξ ) � c17ξν}, the shift hϕ

˜Ka
ξ

(x), see (2.3) for notation, can

be bounded from below uniformly in ˜Bσξ using (6.7) as

inf
x∈˜Bσξ

hϕ
˜Ka

ξ

(x) � a inf
x∈˜Bσξ

Px (H˜Ka
ξ

< ∞) � a inf
x∈∂inBσξ

Px (H˜Ka
ξ

< ∞) � ca
def.= 2ρa.

(6.9)

In words, (6.9) means that when its capacity is suitably large, the conditioning
on ˜Ka

ξ induces a shift hϕ
˜Ka

ξ

which is “felt” everywhere in ˜Bσξ , see Fig. 1. In

view of (6.8) and (6.9), we thus obtain

ψ(ρa, r) � E
[

1
{

cap(˜Ka
ξ ) � c17ξ

ν
}

P

˜G
˜Ka

ξ
(

A(˜Ka
ξ , a, r)

)]

, (6.10)

where for K ⊂ ˜Bξ we set

A(K , a, r) =
⎧

⎨

⎩

∃ a continuous path π in ˜Br from K to ∂inBr
with ϕx � −ρa for all x ∈ π ∩ (˜Bσξ \ K )

and ϕx � ρa for all x ∈ π ∩ (˜Br \ ˜Bσξ )

⎫

⎬

⎭

. (6.11)

In view of (6.10), we aim at finding a suitable lower bound on the probability
of A(K , a, r) under P

˜GK for all admissible choices of K ⊂ ˜Bξ with large
enough capacity. The desired result (6.2) will then quickly follow from this
bound and Lemma 6.2.

Consider a geodesic path γ = (0 = y0, y1, . . . ) from (1.16) with
dgr(yk, yp) � c2d(yk, yp) for all k, p and recall from the beginning of Sect. 4
that d(x, y) � c9dgr(x, y) for all x, y ∈ G. We now introduce a parameter σ ′
used in the definition of L′� in (6.13) below and a length scale � � 1 which
will play an important role in the construction that follows. From now on we
assume that (see Theorem 5.1 regarding c13)

σ ′ > 1, r � 100c9 and (4c9) ∨ (σξ) � � � r/(10c13 ∨ σ ′). (6.12)

In view of (6.2), (1.24) and since 0 < a < c � 1, the condition on r is no loss
of generality. For k such that 1 � k � 1 + $(2 + 4r/�)c9c2% =: N�,r , fix a
point xk ∈ γ ∩(Bgr(0, (k+1)�/(4c9))\Bgr(0, k�/(4c9))

)

(such xk necessarily
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exists by assumption on � and since γ is a graph distance geodesic) and define,
with x0 = 0,

L� =
⋃

0�k�N�,r

B(xk, c13�) and

L′� =
(

B(x0, σ
′�) ∪ L�

) \ B(x0, σ ξ). (6.13)

Wewrite ˜L�, ˜L′� for the corresponding sets obtained by replacing B(xk, ·)with
˜B(xk, ·) everywhere in (6.13) (see the beginning of Sect. 4 regarding continu-
ous balls ˜B(x, r)). Note that since σ � c18, see above (6.7), one has ˜L′� ⊂ ˜GK

for any K ⊂ ˜Bξ by (6.6). One easily checks, using that dgr(xk, xk+1) � �
2c9

for the first inclusion below and (1.16) for the second one, that

B(xk+1, �/2) ⊂ B(xk, �) for all k � N�,r − 1 and B(xN�,r , �/2) ⊂ (G \ B(0, r)).

(6.14)

The length scale � in (6.13) will be carefully chosen below (see (6.19)). In the
sequel, we always assume that K ⊂ ˜Bξ is compact but otherwise arbitrary.

We now introduce the measure P
˜GK
a,�, defined similarly as Pa′ in (2.11), but

when considering P
˜GK instead of P = P

˜G and with the choices a′ = −2ρa
and K = ˜L′� in (2.11). Thus, cf. below (2.10),

(ϕx )x∈˜L′� has the same law under P
˜GK
a,� as (ϕx + 2ρa)x∈˜L′� under P

˜GK .

(6.15)

Recall that cap
˜GK

(·) denotes the capacity on ˜GK , see the paragraph following
(5.5) regarding its definition. Since M

˜L′� (see (2.7) for notation) is centered

under P
˜GK , we have E

˜GK
a,�[M˜L′�] = 2ρacap

˜GK
(˜L′�). As a consequence, due to

(2.11), we get for all a > 0 that

E
˜GK
a,�

[

log
dP

˜GK
a,�

dP
˜GK

]

= 2ρaE
˜GK
a,� [M˜L′� ] − 2(ρa)2cap

˜GK
(˜L′�) = 2(ρa)2cap

˜GK
(˜L′�).

(6.16)

Using (6.16), a classical change-of-measure argument—see for instance below
(2.7) in [5]—yields that for all K ⊂ ˜Bξ compact, all 0 < a < c and r , �, σ ′
such that (6.12) holds,
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P
˜GK
(

A(K , a, r)
)

� P
˜GK
a,�

(

A(K , a, r)
)

exp

⎧

⎨

⎩

−2(ρa)2cap
˜GK

(˜L′�)+ 1/e

P
˜GK
a,�

(

A(K , a, r)
)

⎫

⎬

⎭

.

(6.17)

It thus remains to find suitable bounds on the various quantities appearing
on the right-hand side of (6.17). We collect these separately in two lemmas,
the proofs of which will be supplied in Sect. 7. The first lemma gives an upper
bound on the capacity ofL′�. Care is needed due to the presence of the “bound-
ary condition” arising from the removal of K in ˜GK , see (5.1). Let f (t) = t1−ν

if ν < 1, f (t) = log(t) if ν = 1 and f (t) = 1 if ν > 1.

Lemma 6.3 For all ν > 0 and r, �, σ ′ satisfying (6.12),

sup
K

cap
˜GK

(˜L′�) � c(σ ′)νr�ν−1

f (r/�)
,

(6.18)

where the supremum ranges over all compact sets K ⊂ ˜Bξ .

We now bound P
˜GK
a,�

(

AL(K , a, r)
)

suitably from below, which involves

choosing the scale �. Recall that ˜L′� implicitly depends on the parameter
σ ′ > 1, see (6.13). We refer to Remark 8.1, (1) with regards to extending
the following result to the case α = 2ν.

Lemma 6.4 (ν ∈ (0, α
2 )) There exist σ ′ > 1 and M � σ(> 1) such that, with

ξ = ξ(a) and

� = Mξ
(

log
r

ξ

) 2ν+1
ν

, (6.19)

for all compacts K ⊂ ˜Bξ , all a ∈ (0, c) and r � c19ξ ,

P
˜GK
a,�

(

A(K , a, r)
)

� c̃
(

1− exp(−c̃′(ρa)2cap(K ))
)

. (6.20)

Let us now explain how to conclude assuming Lemmas 6.3 and 6.4 to hold.
Let ν ∈ (0, α

2 ). For 0 < a < c(� 1
2 ), returning to (6.10) and applying (6.3),

(6.4), one obtains with ξ = ξ(a) that

ψ(ρa, r) � ξ−
ν
2 q(ξ)−1 exp{−cq(ξ)} inf

K
P
˜GK
(

A(K , a, r)
)

, (6.21)
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where the infimum ranges over all compact subsets K of ˜Bξ satisfying
cap(K ) � c17ξν . In order to apply (6.17) and get a lower bound on the quan-
tity P

˜GK (A(K , a, r)) appearing on the right-hand side of (6.21), the conditions
(6.12)must bemet. Fixσ ′ > 1 (andM) such that the conclusions of Lemma6.4
hold and let � be given by (6.19). For 0 < a < c(� 1

2 ), recalling ξ = ξ(a)

from (1.24), we may assume that � � 4c9, as required by (6.12) (note that
the condition � � σξ is automatically satisfied as M � σ in (6.19)). Letting

u(x) = x/(log x)
(2ν+1)

ν and c20 = c19 ∨ inf{x > 0 : u(x) � M(10c13 ∨ σ ′)},
we then see that r satisfies all conditions in (6.12) whenever r � c20ξ , and
moreover (6.20) holds. For K with cap(K ) � c17ξν , the latter implies that

P
˜GK
a,�(A(K , a, r)) � c (recall that ρ ∈ (0, 1) is fixed, see (6.9)).
Thus, going back to (6.21), applying (6.17), which is in force, and substitut-

ing the uniform lower bound for P
˜GK
a,�(A(K , a, r)) yields that for all 0 < a < c

and r � c20ξ ,

ψ(ρa, r) � ξ−
ν
2 q(ξ)−1 exp

{

− cq(ξ)− c̃(r/ξ)ν∧1

log(r/ξ)b

}

; (6.22)

in obtaining (6.22), we also used (1.24) and applied the capacity bound (6.18)
with � as in (6.19) to deduce that cap

˜GK
(˜L′�) � crν when ν < 1, cap

˜GK
(˜L′�) �

cr
log(r/ξ)

when ν = 1 and cap
˜GK

(˜L′�) � cra−2
ξ

(log r
ξ
)c7 when ν > 1. Finally, to

get (6.2) for a > 0 from (6.22), one bounds

ξ−
ν
2 q(ξ)−1

(6.1)

� ψ(0, ξ)q(ξ)−2
r�ξ

� ψ(0, r)q(ξ)−2,

and notes that the factor q(ξ)−2 can be absorbed into exp{−cq(ξ)} in (6.22).
The corresponding estimate in (6.2) for −c < a < 0 follows by symmetry,
usingLemma4.3 in [13],which applies in the present setting (this again follows
fromTheorem1.1,2 in [13]) and Lemma 6.1 in [13], recalling that (Gν) implies
in particular that (1.8) holds). This completes the proof of Proposition 6.1,
subject to Lemmas 6.2, 6.3 and 6.4, which are proved in the next section. ��

7 Proofs of the three intermediate lemmas

We now supply the proofs of Lemmas 6.2, 6.3 and 6.4, which were assumed to
hold in the previous section, thereby completing the proof of Proposition 6.1.
For intuition, we refer the reader to Fig. 1. We begin with the

Proof of Lemma 6.2 Let 0 < a � 1/10 and ξ = ξ(a). We first show (6.3).
Let ˜K = ˜K0

ξ/2 and consider the event A = {cap(˜K) � sq(ξ)−2ξν} for s > 0.
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Combining (6.1) and the tail estimate (1.14) fromCorollary 1.3 in case aN = 0,
one sees upon choosing s ∈ (0, 1] small enough that

P(A) � P
(

cap(˜K0) � sq(ξ)−2ξν
)− P

(

˜K0 �⊂ ˜Bξ/2
)

� q(ξ)ξ−
ν
2 . (7.1)

Deducing (6.3) from (7.1) involves strengthening the capacity lower bound (in
a twice larger box and at level −a) to reach order ξν . This will be achieved
by forcing an interlacement trajectory onto ˜K and using a refinement of the
isomorphism theorem (1.32), as follows.Applying (Isom) on p.4 of [13],which
is in force under the present assumptions, one infers that

P
(

cap(˜K−aξ ) � s′ξν
)

� E
[

P
(

cap
(Ia2/2
˜K ∩ ˜Bξ

)

� s′ξν
)

1A
]; (7.2)

here,Ia2/2 refers to the interlacement set at levelu = a2
2 (with lawP = P

˜G) and

Ia2/2
˜K to the set obtained as the trace of all the trajectories hitting ˜K (governed

by the independent probability P), run from the time they first visit ˜K until
first exiting ˜Bξ . In particular, the event on the right-hand side of (7.2) implies

that Ia2/2 ∩ ˜K �= ∅.

We now derive a suitable lower bound on P(cap(Ia2/2
˜K ∩ ˜Bξ ) � s′ξν).

Conditioning on the number of trajectories visiting ˜K (with respect to which
the event {Ia2/2 ∩ ˜K �= ∅} is measurable) as well as their entrance points in
˜K and denoting the corresponding σ -algebra by F , the following holds. On
the event {Ia2/2 ∩ ˜K �= ∅}, writing x0(∈ ∂˜K) for the starting point of the
trajectory with (say) smallest label visiting ˜K, which is F-measurable, and
applying Lemma 5.3 with K = ∅, t = 1 and R = ξ , one sees that for s′ = c17
small enough,

P
(

cap
(Ia2/2
˜K ∩ ˜Bξ

)

� c17ξ
ν
∣

∣F) � Px0
(

cap(C(x0, ξ)) � c17ξ
ν
)

� c

(on the event {Ia2/2 ∩ ˜K �= ∅}). Returning to (7.2), it thus follows that

P
(

cap(˜K−aξ ) � c17ξ
ν
)

� cE
[

P
(Ia2/2 ∩ ˜K �= ∅

)

1A
] (1.31)= cE

[ (

1− e−
a2
2 cap(˜K)

)

1A
]

.

(7.3)

Now, inserting the lower bound cap(˜K) � sq(ξ)−2ξν valid on the event A,
recalling that ξν = a−2, using that 1−e−x � cx for x ∈ [0, 1] and (7.1), (7.3)
is readily seen to imply (6.3). The bound (6.4) follows by combining (6.3),
(1.24), (5.7) and Proposition A.1 for K = Bξ . ��
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Remark 7.1 Proceeding similarly as in (7.1) but at level a > 0 directly while
taking advantage of (3.6), (3.7) and (6.1), one obtains for small enough s ∈
(0, 1] that

P
(

cap
(

˜Ka
ξ

)

� sξνq(ξ)−2
)

� P
(

cap
(

˜Ka) � sξνq(ξ)−2
)− P

(

˜Ka �⊂ ˜Bξ

)

� q(ξ)ξ−ν/2.

In comparison with (6.4) (combined with (6.3)), the present lower bound is
easier to prove since it does not require the change-of-measure (A.1), and
gives a better estimate but for a weaker event. Crucially, when ν = 1, in which
case one can choose q(ξ) = √log(ξ) due to (1.23), the above argument only
produces cap

(

˜Ka
ξ

)

of order ξ(log ξ)−1 rather than ξ. This has rather dramatic
effects. Indeed, retracing the arguments in the proof of Proposition 6.1, one

arrives at the boundP
˜GK
a,�

(

A(K , a, r)
)

� c(log ξ)−1 obtained from (6.20) (with

K = ˜Ka
ξ ), which manifests itself unfavorably in the exponential (6.17).

We now turn to the proofs of Lemmas 6.3 and 6.4 which require some
further preparation due mainly to the presence of the Dirichlet boundary con-
dition on K inherent to ˜GK . In the sequel, let K ⊂ ˜G be compact. Recall P

˜GK
,

the canonical law of the interlacement process on ˜GK from (5.2). Its intensity
measure νK is defined on a space of continuous doubly-infinite trajectories
w∗ on ˜GK ∪ {�}, where � is a cemetery state. Denoting by π∗ the canonical
projection identifying equivalent trajectories up to time-shift reparametrisa-
tions, one may assume that w∗ = π∗(w) for some doubly-infinite trajectory
w = (w(t))t∈R with w(0) �= �, and both its forwards and backwards parts
(w(±t))t�0 can either be killed—that is reach � after a finite time, which
corresponds to exiting ˜GK through ∂K—or survive, i.e. escape to infinity (in
possibly finite time) without reaching K . Henceforth, we call a trajectory w

(and a fortiori w∗ = π∗(w)) killed-surviving if its backwards part is killed
(−) and its forwards part surviving (+). We denote by W ∗−+ the set of these
(equivalence classes of) trajectories. Similarly, W ∗−− consists of all trajecto-
ries whose backwards and forwards parts are both killed. We then define two
intensity measures

νK−+ = 1W ∗−+νK , νK− = (1W ∗−+ + 1W ∗−−)νK , (7.4)

which induce two processes on ˜GK (∪�) (under themeasureP
˜GK

) with respec-
tive intensities uνK−+ and uνK− , for u > 0. We refer to them as killed-surviving
and backwards-killed interlacement processes, respectively, andwriteIu−+ and
Iu− for the corresponding interlacement sets at level u (cf. also Section 2 in
[28] andCorollary 3.4 therein for an alternative description of these processes).
These processes will play a central role below.
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We begin with the following useful lemma, which in particular determines
the total intensity of the killed-surviving process; see the beginning of Sect. 2
for notation.

Lemma 7.2 (K ⊂ ˜G compact, ˜GK as in (5.1)) For all compacts L ⊂ ˜GK such
that every unbounded continuous path on ˜G starting in K intersects L (when
viewing ˜GK as a subset of ˜G),

cap
˜G(K ) = 〈eL,˜GK

− eL,˜G, 1− hK 〉 =
∫

dνK−+. (7.5)

Proof By Lemma 2.1 in [13], we can assume without loss of generality that
K ,L ⊂ G. As in the proof of Lemma 5.3, let (Zn)n�0 denote the discrete-

time skeleton of the trace of the diffusion X on G ∪ {�} under P˜Gx or P
˜GK
x ,

for x ∈ (˜GK ∩ G). We write HU (Z) = inf{n � 0 : Zn ∈ U } and ˜HU (Z) =
inf{n � 1 : Zn ∈ U } for the first hitting and return times of Z in U with the
convention inf ∅ = ∞. In view of (2.4) in [13], Z is a Markov chain which

jumps from y to z with probability λy,z/λy under P
˜G
x , and Z under P

˜GK
x has

the same law as Z killed at time HK (Z) under P˜Gx . Due to (2.6) and (2.16) in
[13], we thus have, for all x ∈ L,

λ−1x (eL,˜GK
− eL,˜G)(x)

= P
˜GK
x (˜HL(Z) = ∞)− P

˜G
x (˜HL(Z) = ∞) = P

˜G
x (HK (Z) � ˜HL(Z))− P

˜G
x (˜HL(Z) = ∞)

= P
˜G
x (HK (Z) < ∞, HK (Z) � ˜HL(Z)) = P

˜GK
x (˜HL(Z) = ∞, Z is killed)

where in the third equality we used the fact that HK (Z) = ˜HL(Z)(= ∞)when
˜HL(Z) = ∞ since every connected and unbounded paths starting in K hits
L, and in the last equality that the event HK (Z) < ∞ under P˜Gx corresponds

to the event that Z is killed, i.e. that H�(Z) < ∞, under P
˜GK
x . Hence,

〈eL,˜GK
− eL,˜G , 1− hK 〉 =

∑

x∈L
λx P

˜GK
x (Z survives)P

˜GK
x (˜HL(Z) = ∞, Z is killed)

=
∑

x∈L
eL,˜GK

(x)P
˜GK
x (Z survives)P

˜GK
x (Z is killed | ˜HL(Z) = ∞).

(7.6)

But by definition of the intensity measure νK , see for instance (2.9), (2.11)
and (3.9) in [28], the second line of (7.6) is precisely the measure of the set of
trajectories in W ∗−+ hitting L, that is all of W ∗−+ by assumption on L. Thus,
the second equality in (7.5) holds.
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Since νK is invariant under time reversal, see for instance Remark 3.3, (1)
in [28], (7.6) equals νK (W ∗+−), the intensity of trajectories whose backwards
parts survive and forwards parts are killed, which is equal to

∑

x∈L
eL,˜GK

(x)P
˜GK
x (Z is killed)P

˜GK
x (Z survives | ˜HL(Z) = ∞)

=
∑

x∈L
λx P

˜G
x (HK < ∞)P

˜G
x (˜HL(Z) = ∞)

= PeL,˜G (HK < ∞) = cap
˜G(K ),

where we used (2.5) in the last equality, and we conclude that (7.5) holds. ��
We now proceed to the

Proof of Lemma 6.3 By (6.13) and definition of the continuous balls ˜B(x, r) at
the beginning of Sect. 4, one knows that cap

˜GK
(˜L′�) = cap

˜GK
(L′�). Combining

(6.7) and (7.5) for the choice L = L′�, which satisfies the assumptions of
Lemma 7.2 since every unbounded path from K ⊂ ˜Bξ intersects ∂inBσξ ⊂ L
in view of (6.13) and since � � σξ, we obtain that

cap
˜GK

(L′�)− cap
˜G(L′�) = 〈eL′�,˜GK

− eL′�,˜G, 1〉
� 2〈eL′�,˜GK

− eL′�,˜G, 1− hK 〉 = 2cap
˜G(K ) � cξν,

(7.7)

where we used (5.7) in the last inequality. Moreover it follows from (5.7) and
(6.13) that

cap
˜G(L′�) � cap

˜G(L�)+ c(σ ′)ν�ν. (7.8)

Let us now bound cap
˜G(L�). Using (Gν), it follows that for all x ∈ L�,

assuming x ∈ B(xk0, c13�) and letting I consist of all indices k � 0 with
|k−k0| � 2+8c13c9c2 divisible by $2+8c13c9c2% (note that the corresponding
balls B(xk, c13�), k ∈ I , are disjoint, and that |I | � cr/�),

∑

y∈L�

g(x, y) �
∑

k∈I

∑

y∈B(xk ,c13�)

g(x, y) �
∑

k∈I
c�α inf

y∈B(xk ,c13�)
d(x, y)−ν.

Since d(x, y) � c�|k + 1− k0| for all y ∈ B(xk, c13�) and

∑

k∈I
|k + 1− k0|−ν �

∑

1�k�$2rc9c2/�%
k=0 mod $2+8c13c9c2%

(k + 1)−ν � c f (r/�), (7.9)
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we obtain that
∑

y∈L�

g(x, y) � c�α−ν f (r/�), for all x ∈ L�.

Clearly |L�| � c�α r
�

by (Vα), and so using the bound cap(L�) �
|L�|/ infx∈L�

∑

y∈L�
g(x, y), which follows by summing (2.4) for K = L�

over L� (note to this effect that, L� being a subset of G, eL�
coincides with

the equilibrium measure for the discrete chain generated by (1.1), see (2.16)
in [13]), we obtain

cap
˜G(L�) � cr�ν−1

f (r/�)
for all 4c9 � � � r/10c13. (7.10)

Noting that �ν � r�ν−1/ f (r/�) since � � r
10 , (6.18) follows from (7.7), (7.8)

and (7.10). ��
It remains to give the

Proof of Lemma 6.4 The following considerations hold for any r, � (and 0 <

a < c) satisfying the conditions appearing in (6.12), which we assume to
hold in the sequel. The specific choice of � in (6.4) will only be made at the
very end (see below (7.20)). Recall that K ⊂ ˜Bξ . Define ˜LK

� to be the union
of ˜B(0, σ ′�) ∩ ˜GK and ˜B(xk, c13�) ∩ ˜GK , 0 � k � N�,r , cf. (6.13). Under

P
˜GK
a,� as defined below (6.14) and due to (6.15), (ϕx )x∈˜LK

�
has the same law as

(ϕx + χ)x∈˜LK
�
under P

˜GK , where χ � 0 and χ = 2ρa on ˜LK
� \ ˜Bσξ , and thus

by (6.11),

P
˜GK
a,�(A(K , a, r)) � P

˜GK
(

K ↔ ∂inBr in {ϕ � −ρa} ∩ ˜LK
�

)

(7.11)

where K ↔ ∂inBr in A ⊂ ˜G means that there exists a continuous path π in A
from K to ∂inBr .

We now further delimit the region in which we will construct the path
achieving the connection in (7.11). To this end we first choose σ ′ � (1 +
c9c2c′14)2 large enough so that

there exists a connected component of

B(σ ′−c13−1)� \ B(c′14+1)� containing ∂inB√σ ′�,

(7.12)

where c′14 = c14 ∨ c15 ∨ (c13+ c18+ 1) (see Theorem 5.1 and (5.7) regarding
c13, c14 and c15), which exists using (6.5) with R = �

√
σ ′/c18 and taking
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σ ′ > 1 sufficiently large. The specific choice of c′14 and the explicit lower
bound on σ ′ will ensure that various sets, e.g. all the vertices pertaining to the
set S which we introduce next, are sufficiently distant from 0, as required in
(7.13) and (7.19) below. With σ ′ fixed, by Lemma 6.1 in [11], there exists a
set S with |S| � c for some constant c (independent of �) such that

B(σ ′−c13−1)� \ B(c′14+1)� ⊂
⋃

z∈S
B(z, �/4),

˜B(z, c13�) ⊂ ˜LK
� and d(z, 0) � c′14� for all z ∈ S

(7.13)

(this follows by considering {z ∈ �(�/4) : z ∈ B(σ ′−c13)�\Bc′14�}, where
�(�/4) is the set defined in Lemma 6.1 of [11]). Let S′ = {z ∈ S : B(z, �/4)∩
∂inB√σ ′� �= ∅}. There exists z0 ∈ S′ such that one can find some vertex
y ∈ B(z0, �/4) ∩ γ ∩ ∂inB√σ ′�, where γ is the geodesic from (1.16). By
definition of the vertices xk, k � N�,r , above (6.13) in terms of γ , and since
r � σ ′�, there exists also some j ≤ N�,r such that dgr(y, x j ) � �/(4c9), and
therefore d(z0, x j ) � �/2. Consequently, by (7.12) and (7.13), for all z ∈ S′
there exists a nearest-neighbor path π = (π0, . . . , πp) ⊂⋃w∈S B(w, �/4) of
vertices joining π0 ∈ B(z0, �/4) and πp ∈ B(z, �/4), and if we fix zi ∈ S so
that πi ∈ B(zi , �/4) for all i ∈ {1, . . . , p} (with z p = z) we have

B(z0, �/2) ⊂ B(xN�,r , �) and B(zi , �/2) ⊂ B(zi−1, �) for all 1 � i � p.

(7.14)

We proceed to define a suitable event implementing the desired connection
in (7.11) and refer to Fig. 1 for visualization. Let u = (ρa)2/4 and P =
S ∪ {xk, k ∈ {0, . . . , N�,r }}. By (1.32) applied to ˜GK , there exists a coupling
Q of ϕ under P

˜GK with I2u under P
˜GK

such that {ϕ � −ρa} ⊃ I2u, and I2u

splits into two independent interlacements Iu,1 and Iu,2 at level u such that
I2u = Iu,1 ∪ Iu,2. We denote by LocUniq(2)

u,�(x) the same event as in (5.3)
with the choice λ = c13, but for the interlacements Iu,2, and note that for every
x ∈ P, all the edges in ̂Iu,2 ∩ BEK (x, c13�) (where EK is the set of edges
associated with GK , cf. the paragraph following (5.5)) have their respective
cables included in I2u ∩ ˜LK

� by definition of ̂I2u, BEK (x, c13�), see above

(5.3), ˜LK
� and S, see (7.13). We then define Iu,1

− as the set of vertices hit by
any of the trajectories in the interlacements process associated to Iu,1 whose
backwards parts are killed on K , which has intensity uνK− , see (7.4), and Iu,1,�

−
as the set of vertices visited by any of the trajectories in Iu,1

− before their first
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exit time of B(0, σ ′�). Let us consider the (good) event

G =
{

Iu,1,�
− ∩ Iu,2 ∩

⋃

z∈S′
B(z, �/2) �= ∅

}

∩
⋂

x∈P

({

LocUniq(2)
u,�(x)

} ∩ {Iu,2 ∩ B(x, �/2) �= ∅}). (7.15)

By (7.15), the definition of the local uniqueness event in (5.3) and by the
construction of LK

� , S as well as S′, see in particular (6.13), (6.14), (7.13)
and (7.14), the occurrence of G entails that K is connected to ∂inBr by a
continuous path in I2u ∩ ˜LK

� , and hence the event on the right-hand side of
(7.11) occurs under Q. Defining for all s ∈ [0, 1] the event G ′s = {∃ z ∈ S′ :
cap

˜GK
(Iu,1,�
− ∩ B(z, �/2)) � s�ν}, we therefore have

P
˜GK
a,�(A(K , a, r))

(1.32)

� Q(G) � E
Q
[

Q(G | Iu,1)1G ′s
]

. (7.16)

Wewill boundQ(G ′s) for suitable s andQ(G | Iu,1) on the eventG ′s separately
from below.

Let us first derive a bound onQ(G ′s). To this end, fixing an arbitrary ordering
of S′ andwhenever

⋃

z∈S′ B(z, �/4)∩Iu,1,�
− is not empty, we denote by Zu,1 ∈

S′ the smallest vertex z ∈ S′ such that B(z, �/4) is hit by the trajectory in Iu,1,�
−

with smallest label, and by Xu,1 the first entrance point in B(Zu,1, �/4) of this
trajectory; otherwise, i.e. if

⋃

z∈S′ B(z, �/4) ∩ Iu,1,�
− = ∅ we set Xu,1 =

Zu,1 = 0. Recalling the definition of C(x, �/4) from above Lemma 5.3, we
have that, conditionally on Zu,1 and Xu,1 and on the event that (Zu,1, Xu,1) �=
(0, 0), the set Iu,1,�

− ∩ B(Zu,1, �/2) stochastically dominates C(Xu,1, �/4)

under P
˜GK
Xu,1 . Hence, by Lemma 5.3, which applies due to (7.13), (6.6) and by

choice of c′14 below (7.12), together implying that B(Xu,1, �/4) ⊂ ˜GK , we
obtain for all s small enough that

Q(G ′s) � E
Q
[

P
˜GK
Xu,1

(

cap
˜GK

(C(Xu,1, �/4)) � s�ν
)

1{∃ z ∈ S′ : B(z, �/4) ∩ Iu,1,�
− �= ∅}]

�
(

1− c exp(−c′s−1/ν))Q(∃ z ∈ S′ : B(z, �/4) ∩ Iu,1,�
− �= ∅

)

. (7.17)

Let Iu,1
−+ ⊂ Iu,1

− (⊂ Iu,1) refer to the killed-surviving interlacement set corre-
sponding to Iu,1, see below (7.4). By definition, Iu,1

−+ comprises the range of
all trajectories in a Poisson process of intensity uνK−+, and if Iu,1

−+ �= ∅, we

have that Iu,1,�
− ∩ ∂inB√σ ′� �= ∅. By definition of S′, see below (7.13), this

means in turn that there exists z ∈ S′ such that B(z, �/4) ∩ Iu,1,�
− �= ∅. Now,

Lemma 7.2 implies that the number of trajectories in the process underlying
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Iu,1
−+ is a Poisson variable with parameter ucap

˜G(K ). Thus, returning to (7.17),
we infer that for sufficiently small s0 ∈ (0, 1) (henceforth fixed),

Q(G ′s0) � 1

2
Q
(∃ z ∈ S′ : B(z, �/4) ∩ Iu,1,�

− �= ∅
)

� 1

2

(

1− exp
(− ((ρa)2/4)cap

˜G(K )
))

, (7.18)

where we used u = (ρa)2/4 in the last inequality.
We now boundQ(G | Iu,1) on the eventG ′s, cf. (7.16). By (1.16), our choice

of N�,r , see above (7.14), and of σ ′, see above (7.12), we have, for all k � N�,r ,

d(xk , 0) � 1

c2
dgr(xk , 0) � 1

c2
dgr(xN�,r , 0) � 1

c2c9
d(xN�,r , 0) �

√
σ ′ − 1

c2c9
� � c′14� � c14�.

(7.19)

In view of (7.19), (7.13) and since α > 2ν by assumption, Theorem 5.1 (with,
say, u0 = 1) applies with R = � and any z ∈ P (note also that K ⊂ ˜Bξ ⊂ ˜B�

for any � satisfying (6.12)). Thus, using (5.2) and the bound |P| � cr/�, for
any r , � satisfying (6.12) we obtain that

Q(Gc | Iu,1)1G ′s0

(5.4),(5.7)

� e−us0�ν + cr

�

(

e−(c12u�ν)
1

2ν+1 + e−cu�ν
)

.

(7.20)

Finally, choosing � as in (6.19), since u = ca2 and by (1.24), we find that for
all M � 1,

u�ν � cMν
(

log
r

ξ

)2ν+1
,

r

�
� 1

M

r

ξ
,

whence both terms on the right-hand side of (7.20) tend to 0 asM →∞. Hence
choosing M � σ ′ large enough, we can arrange for Q(Gc | Iu,1)1G ′s0 � 1

2 .
Combining this with (7.16), (7.18) and noting that the present choice of �

implies r � (10c13∨σ ′)�, as required by (6.12), under the condition r � c19ξ
and a < c, we obtain (6.20). ��

8 Denouement

Combining the upper and lower bounds derived in Sects. 4 and 6, respectively,
we now complete the proof of Theorem 1.4, and explain in particular how
to adapt the arguments from Sect. 6 which yield a lower bound for ψ , to
deduce similar bounds for ˜ψ and, importantly, τ tra , cf. (1.45) and (1.20) for
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their respective definitions. The proofs of Theorem 1.7 as well as those of
Corollaries 1.5 and 1.6 are presented at the end of this section.

Proof of Theorem 1.4 The proofs of (1.25) and (1.26) appear in Sect. 4 (fol-
lowing Remark 4.2). As we now explain, the lower bound (1.27) follows from
Proposition 6.1. First observe that the condition α > 2ν (with α from (Vα))
appearing in Proposition 6.1 always holds when ν = 1 due to (1.18). Now, in
view of (1.23), the proof of which is given in Remark 4.4. (1), the condition
(6.1) holds with q(r) = c(log r)1/2 when ν = 1 and thus the asserted lower
bound (1.27) follows from (6.2) when r � ξ(a)(log ξ(a))c6 and |a| < c, for
any choice of c6 ∈ (12 , 1). In the near-critical regime r � ξ , the lower bound
(1.27) follows from (4.13) with the choice t = 1 (see also Remark A.2, 1)
for an alternative approach). Finally, in case ψ(0, r) � r−1/2, Proposition
6.1 applies with q(r) = c (cf. (6.1)) and gives (1.27) for all r � cξ, which
is complemented in the near-critical regime by means of (4.13) with t = c
sufficiently large, thus yielding overall that (1.27) holds for all r � 1 and
|a| < c.

Note that Proposition 6.1 also provides an alternative proof of the lower
bound in (1.25) in the regime r/ξ � c. This is relevant for pending adaptations
of this proof to deduce the corresponding lower bounds for τ tra , for which the
easier arguments of Sect. 4 are not available, cf. Remark 4.4.1). We return to
duly discuss matters around τ tra further below.

We now turn to the bounds on the truncated two-point function τ tra asserted
as part of Theorem 1.4. The (analogues for τ tra of the) upper bounds in (1.25)
and (1.26) are detailed in Remark 4.4, (1). It remains to explain how to adapt
the arguments of Sects. 6 and 7 to obtain the desired lower bounds on τ tra . We
highlight the significant changes.

Assuming (Gν), (Vα), (1.15) and d = dgr—the latter renders (1.16)
superfluous—to hold, and for ν ∈ (0, α

2 ), we will argue how to deduce lower
bounds similar to the ones in (6.2) for τ tra under the assumption (6.1), from
which the analogues of (1.27) and of the lower bound in (1.25) for τ tra will then
be deduced. We focus on a > 0 as the remaining cases follow by symmetry.

Defining ˜Ka
ξ (x) similarly as in (2.18) to be the connected component of

x in {ϕ � a} ∩ ˜B(x, ξ), by the FKG-inequality and Lemma 6.2 we get for
0 < a < c that

P
(

cap(˜Ka
ξ ) � c17ξ

ν, cap(˜Ka
ξ (x)) � c17ξ

ν
)

� ξ−νq(ξ)−2 exp (−cq(ξ)) .

(8.1)

Let r = d(0, x). For all compacts K ⊂ ˜Bξ and K ′ ⊂ ˜B(x, ξ), consider
(cf. (6.11))
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A(K , K ′, a, r)

=
⎧

⎨

⎩

there exists a continuous path π in ˜B(0, r) from K to K ′
with ϕx � −ρa for all x ∈ π ∩ ((˜B(0, σ ξ) \ K ) ∪ (˜B(x, σ ξ) \ K ′))
and ϕx � ρa for all x ∈ π ∩ (˜B(0, r) \ (˜B(0, σ ξ) ∪ ˜B(x, σ ξ))).

⎫

⎬

⎭

.

One easily verifies that (6.10) still holdswhen adding {cap(˜Ka
ξ (x)) � c17ξν} in

the indicator function, replacingψ(ρa, r) by τ trρa(0, x), ˜G˜Ka
ξ
by ˜G

˜Ka
ξ∪˜Ka

ξ (x) and

A(˜Ka
ξ , a, r) by A(˜Ka

ξ ,
˜Ka

ξ (x), a, r).Next, one repeats the sausage construction
around (6.12)–(6.13) (in which the path π is eventually built) but replacing
the geodesic γ = (0 = y0, y1, . . . ) originating in (1.16) and considered
above (6.12) by a geodesic γ joining 0 and x . One then sets L′′� = (L′� ∪
B(x, σ ′�))\B(x, σ ξ).
With this setup, an analogue of (6.17) for A(K , K ′, a, r) holds when replac-

ing ˜L′� by ˜L′′� . One then proves an analogue of Lemma 6.3 for the quantity
supK ,K ′ cap˜GK∪K ′ (

˜L′′�)with the supremum ranging over compact sets K ⊂ ˜Bξ

and K ′ ⊂ ˜B(x, ξ), which yields the same upper bound as in (6.18). The proof
is similar and relies on Lemma 7.2, applied directly to K ∪ K ′ (instead of
K ). Note to this effect that ˜L′′� has the required “insulation” property, i.e. any
unbounded path starting in K ∪ K ′ intersects ˜L′′� .

Next, one shows under the assumptions of Lemma 6.4 that

P
˜GK∪K ′
a,�

(

A(K , K ′, a, r)
)

� c
(

1− exp(−c′(ρa)2cap(K ))
)(

1− exp(−c′(ρa)2cap(K ′))
)

,

(8.2)

for all compacts K ⊂ ˜B(0, ξ), K ′ ⊂ ˜B(x, ξ), which replaces (6.20). Here the

measure P
˜GK∪K ′
a,� refers to the free field on ˜GK∪K ′ , shifted by 2ρa in the region

˜L′′� and extended harmonically outside (with a Dirichlet boundary condition on
K ∪ K ′). We return to the proof of (8.2) shortly. Combining the above results,
following the line of argument leading up to (6.22), one deduces that if (6.1)
holds,

τ trρa(0, x) � ξ−νq(ξ)−2 exp
{

−c̃q(ξ)− c̃(r/ξ)ν∧1
log(r/ξ)b

}

for all a ∈ [−c̃′, c̃′] and r � c̃′′ξ, (8.3)

the only difference between (6.22) and (8.3) coming from the discrepancy
between the bounds (6.4) and (8.1). In view of (1.21), if r/ξ is large enough
then ξ−ν � τ tra (0, x), and (8.3) yields lower bounds for τ tra similar to
(6.2).
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This readily translates into lower bounds for τ tra akin to (1.25) when
ν < 1, a ∈ (0, c21) and r � c22ξ(a), and (1.26) when ν = 1 and r �
ξ(a)(log ξ(a))c6 . Moreover, when ν < 1, a ∈ (0, c21) and r0 < r < c22ξ(a),

where r0 = c22c
− 2

ν

21 , defining b � a such that r = c22ξ(b) one obtains for
r > r0 (whence b < c21) that

τ tra (0, x) � τ trb (0, x) � τ tr0 (0, x) exp(−c4(r/ξ(b))ν) � cτ tr0 (0, x) � cτ tr0 (0, x) exp(−c4(r/ξ(a))ν).

Finally, the analogue of (1.25) for τ tra (0, x) when r � r0 and a ∈ (0, c21) is
trivial.

Let us now go back and comment on the proof of (8.2).We proceed similarly
as in the proof of Lemma 6.4, but take u = (ρa)2/6 and split the interlace-
ments I3u on ˜GK∪K ′ into three independent interlacements Iu,1, Iu,2 and Iu,3

instead. We then define Sx and S′x similarly as around (7.13) but replacing all
the balls centered at 0 by balls centered at x, and let

Gτ = G ∩
{

Iu,3,�
− ∩ Iu,2 ∩

⋃

z∈S′x
B(z, �/2) �= ∅

}

,

with G given by (7.15) and where Iu,3,�
− is the set of of vertices hit before their

first exit time of B(x, σ ′�) by any trajectories in the interlacement process
associated to Iu,3 whose backwards parts are killed on K ′. Then under a
coupling Q operating on the cable system ˜GK∪K ′ , the event Gτ implies that
K ↔ K ′ in {ϕ � −ρa} ∩ (˜L� ∪ ˜B(0, σ ′�) ∪ ˜B(0, σ ′�)) ∩ ˜GK∪K ′, and so

its probability is a lower bound for P
˜GK∪K ′
a,�

(

A(K , K ′, a, r)
)

. To bound the
probability of Gτ , we then proceed as in (7.16)–(7.20), but now conditioning
on Iu,1 and Iu,3, and adding the event G ′s0(x) = {∃ z ∈ S′x : cap(Iu,3,�

− ∩
B(z, �/2)) � s0�ν}.Theprobability of the eventG ′s0(x) is bounded frombelow

as in (7.18) by a constant times the probability that Iu,3,�
− ∩⋃z∈S′x B(z, �/4) �=

∅.

It remains to argue that this term and the one corresponding to G ′s0 pro-
duce the two factors present in (8.2). Since d(x, y) � d(x, K ) for all
y ∈ ⋃z∈S′x B(z, �/4), Iu,3,�

− ∩ ⋃z∈S′x B(z, �/4) �= ∅ as soon as Iu,3 con-
tains a trajectory whose backwards part is killed on K ′ but forwards part is
not killed on K ′. In order to determine the average number of such trajectories
by means of (7.5), we introduce long one-dimensional chains on the boundary
edges of K . These chains absorb the effect of the Dirichlet boundary condition
on K and present the advantage of giving rise to an augmented graph which
is completely massless (and to which Lemma 7.2 applies).

Specifically, we define a discrete set K∞ as in Remark 2.1 in [28], see
also Remark 2.2 in [13], which contains for each cable touching K an infinite
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sequence of vertices converging to K .Adding K∞ to the vertex set GK defines

a new graph G′ def.= GK∞
K , see Lemma 2.1 in [13], so one can view GK as

a subset of G′ and the killing measure vanishes on G′. Since G′K ′ = GK∞
K∪K ′

(see below (5.5) for notation) one can then see GK∪K ′ as a subset of G′K ′, and
the trajectories on G′K ′ can only be killed on K ′ (and not K ). The number of
trajectories in Iu,3 whose backwards part are killed on K ′ and whose forwards
parts are not is then equal to the number of killed-surviving trajectories for
the interlacement on G′K ′ , which by (7.4) and Lemma 7.2 is a Poisson random
variable with parameter ucap

˜G′(K
′) = ucap

˜GK
(K ′), see (2.16) in [13]. Using

the inequality cap
˜GK

(K ′) � cap
˜G(K ′), we obtain that

Q(G ′s0(x)) � c
(

1− exp(−ucap
˜G(K ′)

)

.

A similar result holds for the event G ′s0, but replacing K ′ by K , and since G ′s0
and G ′s0(x) are independent (8.2) follows. ��

We now first prove Theorem 1.7, which also directly relies on the findings
of Sects. 5–7.

Proof of Theorem 1.7 Assume that ν ∈ (0, α/2] and recall the definition of
L� from (6.13). A change-of-measure similar to (6.17) but directly for the
unconditioned Gaussian free field on ˜G gives, for all 0 < a < c and r, �
satisfying (6.12) (with σ ′ = 1),

˜ψ(a, r) = P
˜G(
˜A(a, r)

)

� P
˜G
a,�

(

˜A(a, r)
)

exp

⎧

⎨

⎩

−2a2cap
˜G(L�)+ 1/e

P
˜G
a,�

(

˜A(a, r)
)

⎫

⎬

⎭

,

(8.4)

where ˜A(a, r) = {Bξ(a)
�a←→ ∂inBr } andP

˜G
a,� now corresponds to themeasure

from (2.11) with K
def.= ˜L� and−2a in place of a. Thus, in particular, (ϕx )x∈˜L�

under P
˜G
a,� has the same law as (ϕx + 2a)x∈˜L�

under P
˜G . One then estimates

cap
˜G(L�) andP

˜G
a,�

(

˜A(a, r)
)

separately. The relevant upper bound for cap
˜G(L�)

(which replaces Lemma 6.3) has been derived in (7.10). The analogue of
Lemma 6.4 in the present context is the claim that, with

� = Mξ
(

log
r

ξ

) 2ν+1
ν ·

[

(log ξ)2
(

log
r

ξ

)] 1
ν
·1{α=2ν}

, (8.5)

which extends the definition (6.19), for all 0 < a < c and r/ξ �
c(log ξ)

3
ν
·1{α=2ν},
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P
˜G
a,�

(

˜A(a, r)
)

� c. (8.6)

Assuming (8.6) to be true, (1.46) follows in a regime 0 < a < c23 and

r � c24ξ(log ξ)
3
ν
·1{α=2ν} using (8.4), the upper bound on cap

˜G(L�) (with � as
above) and (8.6) much in the same way as (6.2) is derived below Lemma 6.4,
with small modifications in case α = 2ν. In case α > 2ν, the regime where
(1.46) holds extends to all r � 1 by reducing the region of a to the interval

0 < a < c23c
− ν

2
24 . For such a, and ξ < r < c24ξ (the case r � ξ is trivial,

cf. (1.45)), one picks b > a such that r = c24ξ(b) (note that b = (c24r−1)
ν
2 �

c
ν
2
24a < c23) whence

˜ψ(a, r) � ˜ψ(b, r) � c̃ exp
(− c4(r/ξ(b)) log((r/ξ(b)) ∨ 2)c7

)

� c̃′,

as desired. Finally the case a < 0 in (1.46) follows by symmetry, as explained
at the end of the proof of Proposition 6.1.

It remains to explain how to adapt the proof of Lemma 6.4 to obtain (8.6).
We replace the event G from (7.15) by

˜G = {Bξ(a) ∩ Iu �= ∅}

∩
N�,r
⋂

k=0

({

LocUniqu,�(xk)
} ∩ {Iu ∩ B(xk, �/2) �= ∅}) for u = a2/2.

Then under the coupling Q from (1.32), the event ˜G implies that Bξ(a)

is connected to ∂inBr in K−a ∩ L�, and so its probability is smaller than
P
˜G
a,�

(

˜A(a, r)
)

. We thus only need to show that Q(˜G) � c in the relevant
regime of r/ξ . When α < 2ν, the bound Q(˜G) � c follows for r/ξ � c
by combining (1.31) and Theorem 5.1, which yield a similar bound on
Q(˜Gc) as the upper bound in (7.20), and noting that ucap(Bξ(a)) � c by
(1.24) and (5.7). When α = 2ν, the analogue of the first bound appearing
below (7.20) (which eventually guarantees that Q(˜Gc) � c < 1) becomes
u�ν(log �)−2 � c Mν

(logM)2
(log r

ξ
)2ν+1 due to the presence of the logarithm in

(5.4). The additional factor present in (6.19) in case α = 2ν compensates the
term (log �)−2. Then, (8.6) follows upon observing that the condition r � c�

with � as in (8.5) is met when α = 2ν and r � cξ(log ξ)
3
ν .

Finally, one can obtain lower bounds similar to (1.46) but for

τ̃ tra (0, x)
def.= P

({B(0, ξ(a))
�a←→ B(x, ξ(a))} \ {B(0, ξ(a))

�a←→∞}).
(8.7)
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by changing the event ˜A(a, r) appearing in (8.4) into {B(0, ξ(a))
�a←→

B(x, ξ(a))} and adapting the above arguments. We omit further details. ��
Remark 8.1 1) In case α = 2ν, the attentive reader will have noticed that

the condition r � cξ(log ξ)
3
ν
·1{α=2ν} appearing above (8.6) (as well as the

corresponding one in (1.46)) can in fact be replaced by the requirement

that r/ξ � c(log ξ)
2
ν (log log ξ)c, for large c. Along similar lines, the con-

clusions of Lemma 6.4 can also be extended to include the case α = 2ν
with the choice of � from (8.5), thus yielding (6.20) (and (8.2)) for the same
regime of r/ξ . However, the (best-possible, i.e. with q(r) = c) resulting
estimate in Proposition 6.1 is implied by (1.46). This is ultimately due to
the additional presence of the logarithm in Theorem 5.1 when α = 2ν.

2) When α < 2ν, one could proceed as in the above proof of Theorem 1.7 by

taking � = a−
2
β
(

log a
2
β r
)c| log a|c′ , for suitable choice of c, c′ (cf. (6.19)).

In view of (5.20), one can then show that the conclusions of Lemma 6.4
still hold for this choice of �, which leads to (note that Lemma 6.3 holds
for any value of ν > 0)

˜ψ(a, r) � exp
{− c4a

2(β−ν+1)
β r log(a2/βr)c| log a|c′}, (8.8)

if a > 0 and ra2/β/| log a|c′′ is large enough. Proceeding similarly as in
(1.49), the best result one could hope to obtain is thus νc ∈ [2(β−ν+1)

β
, 2]

when α < 2ν. This lower bound would however only be of interest when
β − ν + 1 > 0, that is α > 2ν − 1, and α < 2ν (which e.g. is never the
case of Z

d , d � 3; it would require d ∈ (4, 5)).
3) Let us explain why one needs to assume that (1.16) holds when ν � 1

to obtain lower bounds as in (1.46). Suppose that (Gν) and (Vα) hold for
some distance d and some ν < 1 and α > 2, and let db = db for some
b � 1. It is easy to check that db is a distance, and that (Gνb) and (Vαb)

hold for db with νb = ν/b and αb = α/b. Let us define ˜ψb as in (1.45),
but for the distance db. It then follows from (1.25) for the distance d and a
union bound that (note that ξ(1) = 1)

˜ψb(1, r) = ˜ψ(1, r1/b) � c exp
(− c′rνb

)

, r � 1.

In particular, (1.46) cannot hold for the distance db when b = ν, that is
νb = 1 nor when b < ν, that is νb > 1. The only hypothesis which is not
verified for the distance db is (1.16). Note that (1.25) is however equivalent
for the distance d and the distance db when b > ν, that is νb < 1.

With the full strength of Theorems 1.4 and 1.7 at our disposal, we proceed
to show their corollaries. We begin by comparing the results of Theorem 1.4
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with the expected two-sided estimate (1.47), thereby relating ξ from (1.24) to
the quantity ξ ′ defining (1.47). By (1.25), if (Gν) holds for some ν < 1 then so
does (1.47) with fν(t) � tν and ξ ′ � ξ , with ξ as in (1.24). Although (1.47) is
not fully determined for larger values of ν by Theorem 1.4, the upper bounds
onψ from (1.26) and the lower bounds on ˜ψ from (1.46) are already sufficient
to obtain rigorous information about ξ ′, in the following sense.

Corollary 8.2 If (Gν), (Vα), (1.15), (1.16) and (1.47) hold, then for all t � c′
and |a| � c,

fν(t) � t

log(t)
and ξ ′(a) � ξ(a), if ν = 1, (8.9)

fν(t) � t and
cξ(a)

(log ξ(a))c7+c8
� ξ ′(a) � c′a−2, if 1 < ν � α/2. (8.10)

with the convention c8 = 0 if ν < α/2 (cf. (1.46)).

Proof of Corollary 8.2 If ν = 1 and (1.47) is verified, then fixing a = c, it is
clear from (1.26) and (1.27) that fν=1(r) � r/ log(r) for r � c′. Now (still
assuming (1.47)) (1.26) implies that

ξ ′(a) � ca−2 log(r)

log(r)− log(ξ ′(a))
, |a| > 0, r � 2.

Taking the limit as r →∞, we obtain ξ ′(a) � ca−2. Finally, (1.27) directly
yields ξ ′(a) � c′a−2.

Let us now assume that ν ∈ (1, α/2] and (1.47) is verified. On account
of (1.16), one can lower bound ψ(1, r) by the probability that the cable cor-
responding to each edge along a path from 0 to ∂inB(0, r) of length at most
c2r for the graph distance is entirely included in {ϕ � a}, and so by the
FKG-inequality (and using e.g. (1.6)), it follows that ψ(1, r) � exp(−cr).
This implies directly that fν(r) � c′r. Moreover, (1.26) with a = 1 implies
that fν(r) � cr and ξ(a) � c′a−2. For the reverse inequality, combining the
FKG-inequality, (Vα), (Gν) (to obtain that c � E[ϕ2

x ] � c′ for all x ∈ G) and
(1.6), we have the (crude) bound

ψ(a, r) � P(˜Bξ(a) ⊂ ˜Ka)˜ψ(a, r) � (c25)
ca−2α/ν

˜ψ(a, r), (8.11)

valid for all 0 � |a| � 1. Therefore by (1.46) and (8.11) we have, for all
0 < |a| � c and r � ξ(a)(log ξ(a))3/ν (and even all r � 1 when ν < α/2),

ξ ′(a) �
[

cξ−1(a)(log r/ξ(a))c7(log ξ(a))c8 + c′ log(1/c25)a−2α/νr−1
]−1

,

(8.12)
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from which ξ ′(a) � cξ(a)/| log a|c7+c8 follows upon choosing r =
ca−2(α+1)/ν, which satisfies r � ξ(a)(log ξ(a))3/ν as required in order for
(1.46) to apply. ��
Remark 8.3 As implicit in the previous proof, some care is needed for large
values of a, i.e. when a reaches the size of typical fluctuations for the local
observable ϕ·, and this may affect the behavior of ξ ′(a) in (1.47) in this regime.
Indeed, refining slightly the lower bound above (8.12) by using the Gaussian
tail estimate P(X � x) � cx−1e−x2/2 valid for x � 2, where X is a standard
Gaussian variable, one obtains that ψ(a, r) � (ca−1e−c′a2)r whenever a >

2
√
ḡ and for all r � 1, where ḡ = supx∈G g(x, x), which is finite under (Gν).

Together with the upper bound from (1.26) this yields in case ν > 1 that

− r−1 logψ(a, r) � a2 as r →∞, whenever a > 2
√

ḡ. (8.13)

On the basis of Table 1 and the conjectured mean-field behavior for large
values of ν, one may expect these asymptotics to fail when a ! 1, and (8.13)
represents an obstacle in obtaining any improvement.

Next, we turn to Corollary 1.5, whichwill quickly follow from the following
result, the proof of which relies on the bounds for τ tra derived in Theorem 1.4.

Proposition 8.4 (ν � 1)

(i) If (Gν), (Vα) and (1.15) hold, then with c̃ = (α − ν)1{ν = 1},

E[|Ka|1{|Ka| < ∞}] � c|a|− 2α
ν
+2 log(|a|−1 ∨ 2)c̃, for all |a| � c.

(8.14)

(ii) If in addition d = dgr, then with c̃′ = c6 · 1{ν = 1} (� 1/2),

E[|Ka|1{|Ka| < ∞}] � c′|a|− 2α
ν
+2e−(log(|a|−1))c̃′ , for all |a| � c

(8.15)

(with the convention that the right-hand side is +∞ when a = 0).

In particular, if ψ(0, r) � r−ν/2, then (8.15) holds with c̃′ = 0, cf. below
(1.27).

Proof Let f (r, a) = exp(−c5(r/ξ(a))ν/ log(r ∨2)1{ν=1}) if ν � 1. It follows
from the versions of (1.25) and (1.26) for τ tra , (1.21) and (Gν) that for all a ∈ R,

E[|Ka|1{|Ka| < ∞}] =
∑

x∈G
τ tra (0, x) � c + c′

∑

x �=0
d(0, x)−ν f (d(0, x), a).
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Therefore, using (Vα) we obtain that

E[|Ka |1{|Ka | < ∞}] � c +
∞
∑

n=2
c2−nν f (2n , a)|B(0, 2n+1) \ B(0, 2n)|

� c +
∞
∑

n=2
c2n(α−ν) f (2n , a) � c +

∫ ∞
0

c2t (α−ν) f (2t , a) dt

(8.16)

where we used that 2n(α−ν) f (2n, a) � 2(t+1)(α−ν) f (2t , a) for all t ∈
(n − 1, n] in the last inequality. Substituting u = 2t/(ξ log(ξ ∨ 2)1{ν=1})
with ξ = ξ(a), the last integral in (8.16) is bounded from above by

c
(

ξ(a) log(ξ(a) ∨ 2)1{ν=1}
)α−ν

∫ ∞
0

uα−ν−1 exp
{

−c5uν
( log(ξ(a) ∨ 2)

log(cuξ(a)2 ∨ 2)

)1{ν=1}}
du.

(8.17)

Since log(ξ(a)∨2)/ log(cuξ(a)2∨2) � c′/ log(c′′u∨2) and α−ν−1 � 1 by
(1.18), the integral in (8.17) is upper-bounded by a finite constant uniformly
in a for all 0 < |a| � 1. Combining this with (8.16) and (1.24), (8.14) follows.

To deduce (8.15), one proceeds similarly as in (8.16), using instead the
lower bound from (1.25) (for τ tra ) when ν < 1 and (1.27) when ν = 1, along
with (1.21) and (Gν), to find that

E[|Ka|1{|Ka| < ∞}] � c
∫ ∞

0
2t (α−ν)

˜f (2t , a)

× 1{2t >c′ξ(1 ∨ (log ξ)c̃
′
)} dt, for all 0< |a|�c,

(8.18)

where ˜f (r, a) = exp(−c4(r/ξ(a))ν/ log((r/ξ(a)) ∨ 2)1{ν=1}) and c̃′ = c6 ·
1{ν = 1}. For a = 0 (8.18) holdswithout indicator function. Since ˜f (r, 0) = 1
and α > ν, (8.18) immediately yields E[|K0|1{|K0| < ∞}] = ∞. For 0 <

|a| � c, substituting u = 2t/ξ(a) in (8.18) and recalling (1.24), (8.15) readily
follows. ��
Proof of Corollary 1.5 The assertion (1.29) follows immediately from (8.14)
and (8.15). ��
Remark 8.5 (1) Further to |Ka|, one can consider a coarse-grained (renormal-

ized) volume observable |Ka|ren, which is instructive. Assume that (Gν),
(Vα), (1.15) and d = dgr hold, and let La & 0 be a lattice in G at scale
ξ = ξ(a) for a �= 0. That is,

⋃

x∈La
B(x, ξ) = G and d(x, y) � cξ for

any pair of points x �= y ∈ La (see Lemma 6.1 in [11] regarding their
existence). Then let

|Ka|ren def.=
∑

x∈La

1{B(0, ξ)
�a←→ B(x, ξ)}, a �= 0. (8.19)
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Inviewof (8.7), onehas thatE[|Ka|ren1{|Ka|ren < ∞}] =∑x∈La
τ̃ tra (0, x),

and following the arguments leading to the lower bound (8.15) but using
(1.46) in its form for τ̃ tra rather than (1.27), one finds when 0 < ν < α

2 that

E[|Ka|ren1{|Ka|ren < ∞}]�c
∫ ∞

1
vα−1e−c′v dv, for 0 < |a| � c (8.20)

(note that the integral is roughly �(α), where �(·) denotes the Euler–
Gamma function). Comparing with the derivation of (8.15), the constant
order lower bound (uniform in a!) in (8.20) may a-priori suffer from the
absence of a correct pre-factor corresponding to “τ̃ tr0 (0, x)” in (1.46). But
on account of (8.4), such a pre-factor is expectedly of order unity uniformly
in x , essentially because

lim inf
a↓0 inf

x∈G P
(

B(0, ξ(a))
�−a←→ B(x, ξ(a))

)

� c

by a similar argument as in (8.6). Overall, (8.20) is thus plausibly sharp,
and it intuitively signals that the length scale needed to correctly measure
|Ka| on the event {|Ka| < ∞} extends to (a few units of) scale ξ , but not
beyond. This is further confirmation of ξ(a) in (1.24) as a correct lower
bound for the correlation length in this problem. We refer to Remark A.2,
(2) for similar considerations in case α = 2ν.

(2) Assume (Gν), (Vα), (1.15) to hold for some ν > 1. Then proceeding
similarly as in the proof of Proposition 8.4(i) one can use the version of
(1.26) for τ tra (0, x) to prove that

E[|Ka|1{|Ka| < ∞}] � c|a|−2(α−ν), for all |a| � c and ν > 1.

This yields the upper bound γ � 2(α−ν), where γ (resp. γ ) is the limsup
(resp. liminf) of the right-hand side of (1.29) as a ↘ 0 or a ↗ 0.
Now assume additionally that d = dgr and ν ∈ (1, α/2). One can adapt
the proof of Proposition 6.1 as in the proof of Theorem 1.4 to obtain that,
under (6.1), with r = d(0, x),

τ tra (0, x) � cr−ν

q(ξ)2
exp

{−c̃(r/ξ) log(r/ξ(a))c7 − c′q(ξ)
}

for all a ∈ [−c̃′, c̃′] and r � c̃′′ξ(a).

Proceeding similarly as in the proof of Proposition 8.4(ii), one then readily
deduces that

E[|Ka |1{|Ka | < ∞}] � c|a|− 2α
ν +2 exp(−c′q(ξ)), for all |a| � c and ν ∈ (1, α/2).

123



294 A. Drewitz et al.

In particular, if (6.1) holds for some function q verifying q(r) = o(log(r)),
r →∞, this yields the lower bound γ � 2α

ν
− 2.

Finally, we present the

Proof of Corollary 1.6 We first note that

P(|K0| � n) � P(rad(K0) � n
2

2α−ν )+ P(|K0 ∩ B(0, n
2

2α−ν )| � n)

� cn−
ν

2α−ν log(n)
1{ν=1}

2 + 1

n
E[|K0 ∩ B(0, n

2
2α−ν )|], (8.21)

where in the second line we used (1.23), as well as Markov’s inequality. More-
over, by (1.21), (Gν) and (Vα), we have (recall that Br = B(0, r)),

E[|K0 ∩ B(0, n
2

2α−ν )|] �
'n2/(2α−ν)(
∑

k=0
ck−ν |Bk \ Bk−1|

� c

2
2α−ν

log2(n)
∑

k=1

2k
∑

p=2k−1
p−ν |Bp \ Bp−1| � c

2
2α−ν

log2(n)
∑

k=1
2−(k−1)ν2αk � cn

2(α−ν)
2α−ν .

Combining this with (8.21), we obtain (1.43). ��
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A Appendix: An enhanced change-of-measure formula

An essential tool in obtaining lower bounds on various probabilities for the
Gaussian free field has been a certain change-of-measure formula, see [5,15,
35] or (6.17) for instance. In this appendix, we present another version of this
formula when studying events only depending on the cluster ˜Ka from (1.4),
which is useful in the proof of Lemma 6.2. Recall the definition of ˜Ka

K for a
compact K from (2.18), and the definition g = g(0, 0) from below (1.13).
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Proposition A.1 (under (1.8)) Let K ⊂ ˜G be a compact set containing 0 and
B ⊂ 2K be such that the events {˜Ka

K (ϕ) ∈ B}, a ∈ R, are measurable. Then
for all a ∈ R and b > 0,

P
(

˜Ka+b
K ∈ B

)

� P
(

˜Ka
K ∈ B

)

exp

{

−b2

2
cap(K )− 2b

(

1+ (a ∧ 0)2cap(K )
)

√
2πgP

(

˜Ka
K ∈ B

)

}

.(A.1)

Proof Let A(h) = {˜Kh
K ∈ B} for all h ∈ R and P−b be the measure defined

in (2.11). By Jensen’s inequality, one has

log

(

P(A(a + b))

P−b(A(a + b))

)

= log

(

E−b

[

(

dP−b
dP

)−1 1{A(a + b)}
P−b(A(a + b))

])

� −E−b
[

log

(

dP−b
dP

)

1{A(a + b)}
P−b(A(a + b))

]

. (A.2)

Now sinceϕ+hb has the same law underP asϕ underP−b, one hasP−b(A(a+
b)) = P(A(a)) and hence, in view of (2.11),

E−b
[

log

(

dP−b
dP

)

1{A(a + b)}
]

= bE−b [MK 1{A(a + b)}]− b2

2
cap(K )P−b(A(a + b))

= bE [MK 1{A(a)}]+ b2

2
cap(K )P(A(a)).

(A.3)

We will now rewrite the expectation in the second line of (A.3), and we start
with the case a < 0. Using E[MK ] = 0 (cf. (2.7)), we infer that

E [MK 1{A(a)}] = −E
[

MK1{A(a)c, ϕ0 � a}]− E
[

MK 1{A(a)c, ϕ0 < a}] .

We now introduce a conditioning onA+
˜Ka
K
in the first expectation on the right-

hand side and notice that A(a)c ∩ {ϕ0 � a} ∈ A+
˜Ka
K
. Analogously, within the

second expectation we condition onA+{0} and observe that A(a)c∩{ϕ0 < a} ∈
A+{0}. As a consequence, by (2.19) and the equality E[MK |A+{0}] = M0, we
deduce using (2.16) that

E [MK 1{A(a)}] = −E
[

M
˜Ka
K
1{A(a)c, ϕ0 � a}]− E

[

M01{A(a)c, ϕ0 < a}].
(A.4)
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Since ϕ � a on the support of e
˜Ka
K
,we further infer that on the event {ϕ0 � a},

by (2.2) and (2.7) (cf. the derivation of (2.17’) for a similar argument),

E
[

M
˜Ka
K
1{A(a)c, ϕ0 � a}] � aE

[

cap(˜Ka
K )1{A(a)c, ϕ0 � a}]

� aE
[

cap(˜Ka
K )1{ϕ0 � a}], (A.5)

wherewe took advantage of the assumption a < 0 to deduce the last inequality.
It finally follows from (3.12) and (1.12) that

E
[

cap(˜Ka
K )1{ϕ0 � a}]

� E
[

cap(˜Ka)1{˜Ka is bounded, ϕ0 � a}]+ cap(K )P(˜Ka is unbounded)

= f (a)

−a + (1− 2	(a))cap(K ) � − 1√
2πg

(1

a
+ 2acap(K )

)

.

(A.6)

Combining (A.2) with (A.6) and the inequality E[M01{ϕ0 < a}] �
−(2πg)−1/2 (which follows by simple integration since M0 = ϕ0/g), we
obtain (A.1) when a < 0. Suppose now that a � 0. Repeating the arguments
leading to (A.4), since M

˜Ka
K

� 0 on the event {ϕ0 � a}, we have that

E [MK1{A(a)}] = E
[

M
˜Ka
K
1{A(a)}]

� E
[

M
˜Ka
K
1{ϕ0 � a}]+ E

[

M01{ϕ0 < a, A(a)}]

� E[MK 1{ϕ0 � a}] = E[M01{ϕ0 � a}] � 1√
2πg

,

(A.7)

where, in deducing the inequality in the second line of (A.7), we used the fact
that E[M01{ϕ0 < a, A(a)}] = E[M01{ϕ0 < a}] < 0 in case A(a) ⊃ {˜Ka

K =
∅}, and E[M01{ϕ0 < a, A(a)}] = 0 otherwise. Thus, (A.1) follows from
(A.2), (A.3) and (A.7) for a > 0. ��
Remark A.2 1) The identity (A.1) typically improves the usual change-of-

measure formula, see for instance below (2.7) in [5], cf. also (8.4) above,
when b and P(˜Ka

K ∈ B) are both small. For example, under (Gν) and
(1.15), assuming that a = 0, K = ˜Br , and considering the event B =
{r � rad(Kb)}, we infer using (A.1), (1.23) and (5.7) that under (Gν), for
all b > 0,

ψ(b, r) � ψ(0, r) exp
(

− cb2rν − c′b
ψ(0, r)

)

� ψ(0, r) exp(−cb2rν − c′brν/2)

� cψ(0, r) exp(−c′b2rν).
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This is a simple proof via the change-of-measure formula of the lower
bound in (1.25) when ν < 1, and of (4.13) when r � ξ(b).

2) Another application of the identity (A.1) is a bound akin to (1.46) when
α = 2ν, but for τ̃ tra instead, see (8.7), which is weaker but valid in the
whole regime r � ξ. Assume (Gν) and (1.15) hold and fix some a > 0
and x ∈ G with r = d(0, x) � 10ξ(a). Proceeding similarly as in the
proof of (8.2), we split I3u into three independent interlacements Iu,1,

Iu,2 and Iu,3, with u = a2/6, and denote by G ′s(0) the event that the set
of vertices Iu,1,r

− hit by any trajectories of Iu,1 between their first hitting
time of B(0, ξ(a)) and their subsequent first exit time from B(0, r) has
capacity at least srν/ log(r). We call G ′s(x) the same event but for the the
set of vertices Iu,3,r

− hit by any trajectories of Iu,3 between their first hitting
time of B(x, ξ(a)) and their suceeding first exit time from B(0, r). Under
the coupling (1.32) one knows that B(0, ξ(a)) is connected to B(x, ξ(a))

in {ϕ � −a} ∩ B(0, tr) whenever the intersection of the events G ′s(0),
G ′s(x) and {Iu,1,r

− ↔ Iu,3,r
− in Iu,2 ∩ B(0, tr)} occurs. Using the bound

ucap(Bξ(a)) � c, see (1.24) and (5.7) with K = ∅, (1.31) and Lemma 5.3,
one readily sees that there exists s > 0 such that the probabilities of G ′s(0)
and G ′s(x) are of constant order. Taking t > 0 large enough, it then follows
from Lemma 4.3 in [11] that

P
(

B(0, ξ(a)) ↔ B(x, ξ(a)) in {ϕ � −a} ∩ B(0, tr)
)

� c
(

1− exp(−c′a2r−ν(srν/ log r)2)
)

� c

(

1 ∧ a2rν

log(r)2

)

.

Hence, for all a ∈ (0, 1) and x ∈ G with r = d(0, x) � 10ξ(a), it
follows from (5.7) and (A.1) with K = B(0, tr), as well as the inequality
a � 1 ∧ (a2rν log(r)−2) that

τ̃a(0, x) � c

(

1 ∧ a2rν

log(r)2

)

exp(−ca2rν). (A.8)

The same bound for a < 0 also holds by symmetry. The bound (A.8) is
worse than (1.46) as r → ∞, but has the advantage to be of logarith-
mic order when r is of order ξ . Recalling the definition of |Ka|ren from
(8.19), similarly as in (8.20) it then follows from (A.8) and the inequality
a2rν/ log(r)2 � 1/ log(ξ)2 for all r � ξ, that when α = 2ν,

E[|Ka|ren1{|Ka|ren < ∞}]� c

log(ξ)2

∫ ∞

1
vα−1e−c′vν

dv, for 0 < |a|�c,
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assuming (Gν), (Vα) and (1.15) hold. This further confirms that ξ(a) in
(1.24) is a lower bound for the correlation lengthwhenα = 2ν (for instance
when G = Z

4), up to logarithmic corrections, as indicated in (8.10). A
similar approach when α < 2ν recovers (8.20) without the assumptions
d = dgr or (1.16).
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Stoch. Process. Appl. 61(1), 45–69 (1996)

23. Kesten, H.: Scaling relations for 2d-percolation. Commun. Math. Phys. 109(1), 109–156
(1987)

24. Köhler-Schindler, L., Tassion, V.: Crossing probabilities for planar percolation (preprint).
arXiv:2011.04618 (2020)

25. Lebowitz, J.L., Saleur, H.: Percolation in strongly correlated systems. Physica A 138(1),
194–205 (1986)

26. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab.
44(3), 2117–2146 (2016)

27. Lupu, T., Werner, W.: The random pseudo-metric on a graph defined via the zero-set of the
Gaussian free field on its metric graph. Probab. Theory Rel. Fields 171(3), 775–818 (2018)

28. Prévost, A.: Percolation for the Gaussian free field on the cable system: counterexamples
(preprint). arXiv:2102.07763 (2021)

29. Ráth, B., Sapozhnikov,A.: On the transience of random interlacements. Electron. Commun.
Probab. 16, 379–391 (2011)

30. Rodriguez, P.-F., Sznitman, A.-S.: Phase transition and level-set percolation for the Gaus-
sian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

31. Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res.
Lett. 8, 729–744 (2001)

32. Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. 171(3),
2039–2087 (2010)

33. Sznitman, A.-S.: Decoupling inequalities and interlacement percolation on G ×Z. Invent.
Math. 187(3), 645–706 (2012)

34. Sznitman, A.-S.: An isomorphism theorem for random interlacements. Electron. Commun.
Probab. 17(9), 9 (2012)

35. Sznitman, A.-S.: Disconnection and level-set percolation for the Gaussian free field. J.
Math. Soc. Jpn. 67(4), 1801–1843 (2015)

36. Sznitman, A.-S.: Coupling and an application to level-set percolation of the Gaussian free
field. Electron. J. Probab. 21, 26 (2016)

37. Watkins, M.E.: Infinite paths that contain only shortest paths. J. Combin. Theory Ser. B
41(3), 341–355 (1986)

38. Weinrib, A.: Long-range correlated percolation. Phys. Rev. B 29, 387–395 (1984)
39. Weinrib, A., Halperin, B.I.: Critical phenomena in systems with long-range-correlated

quenched disorder. Phys. Rev. B 27, 413–427 (1983)
40. Werner, W.: On clusters of Brownian loops in d dimensions. In: In and Out of Equilibrium

3. Celebrating Vladas Sidoravicius, Progress in Probability, vol. 77, Birkhäuser/Springer,
Cham, pp. 797–817 (2021)

41. Wilson, K.G.: Renormalization group and critical phenomena I. Renormalization group
and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)

42. Wilson, K.G.: Renormalization group and critical phenomena II. Phase-space cell analysis
of critical behavior. Phys. Rev. B 4, 3184–3205 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

http://arxiv.org/abs/2011.04618
http://arxiv.org/abs/2102.07763

	Critical exponents for a percolation model  on transient graphs
	Abstract
	1 Introduction
	2 Differential formulas
	3 Cluster capacity and the function theta0
	4 Connectivity upper bounds
	5 Local uniqueness at the critical scale
	6 Connectivity lower bounds
	7 Proofs of the three intermediate lemmas
	8 Denouement
	Acknowledgements
	A Appendix: An enhanced change-of-measure formula
	References




