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Abstract
This paper deals with the analysis of the time-fractional diffusion-wave equation as
one-dimensional problem in a large plane wall, long cylinder, and sphere. The result
of the analysis is the proposal of one general mathematical model that describes
various geometries and different processes. Finite difference method for solving
the time-fractional diffusion-wave equation using Grünwald-Letnikov definition for
homogeneous or inhomogeneous material and for homogeneous or inhomogeneous
boundary conditions is described. Dirichlet, Neumann and Robin boundary condi-
tions are considered. Implementation of numerical methods for explicit, implicit, and
Crank-Nicolson scheme were realised in MATLAB. Finally, illustrative examples of
simulations using the developed toolbox are presented.

Keywords Fractional calculus (primary) · Time-fractional diffusion-wave equation ·
Finite difference method · Grünwald-Letnikov derivative · MATLAB toolbox

Mathematics Subject Classification 26A33 (primary) · 35R11 · 80M20

1 Introduction

The fundamental phenomena, such as diffusion and wave propagation, are described
by the following partial differential equations [4], i.e.

– diffusion equation:
∂u(r, t)

∂t
= D∇2u(r, t),
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– wave equation:
∂2u(r, t)

∂t2
= c2∇2u(r, t).

Generalising the above partial differential equations by replacing the integer-order
time derivatives with derivatives of fractional order α ∈ (0; 2] the following time-
fractional diffusion-wave equation is obtained:

∂αu(r, t)
∂tα

= k2∇2u(r, t).

The standard (integer-order) diffusion or wave equation used for the description of
many materials such as visco-elastic materials, granular and porous materials, com-
posite materials, etc., is often not sufficiently adequate. In such cases, the description
requires the development of more suitable models using fractional-order derivatives
[13, 22, 28, 29, 44]. The causes are mainly roughness or porosity of the material [21–
23], fractality and chaotic behavior of systems [3, 16, 24, 42], and memory of the
systems and ongoing processes [25, 26, 35, 36, 41].

The time-fractional diffusion-wave equation as an adequate model requires the
creation of new methods and tools for its solution. This topic is currently relevant and
many important authors have contributed to its development, such as Fourier, Abel,
Leibniz, Grünwald, Letnikov, Liouville, and Riemann [18, 22, 34].

Nowadays there is a number of numerical methods for solution of time-fractional
diffusion-wave equation. These methods are based on the finite difference method
(FDM) [37, 39, 46], the finite element method [5, 6, 33], the random walk models [8,
14, 15], Monte Carlo simulation [7, 17, 30], the method of Adomian decomposition
[10, 19], numerical quadrature [2, 12, 43], and matrix approach [9, 27–29]. FDM is
an extended method, where explicit, implicit and Crank-Nicolson schemes are used
[44]. In the case of different geometries, we know the solutions for a planar wall, a
cylinder and a sphere [1, 11, 20, 31, 32, 38, 45], but for the general geometry this is
not reported yet.

Therefore, the present work aims at the design, numerical solution and MAT-
LAB implementation of the general one-dimensional model of the time-fractional
diffusion-wave equation applied to the time-fractional heat conduction problem in
various geometries. This is presented in Fig. 1, which can be considered as an outline
and a graphical abstract.

2 Time-fractional heat conductionmodels

The one-dimensional time-fractional heat conduction model in different geometries
can be expressed as follows:

– in a large plane wall

�cp
∂αT (r , t)

∂tα
= ∂

∂r

(
λ

∂T (r , t)

∂r

)
,
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Fig. 1 Graphical abstract of the present paper

– in a long cylinder

�cp
∂αT (r , t)

∂tα
= 1

r

∂

∂r

(
rλ

∂T (r , t)

∂r

)
,

– and in a sphere

�cp
∂αT (r , t)

∂tα
= 1

r2
∂

∂r

(
r2λ

∂T (r , t)

∂r

)
.

The examination of the one-dimensional time-fractional heat conduction model in
large plane wall, long cylinder, and sphere reveals, that all three equations can be
expressed in a compact form as a general model

�cp
∂αT (r , t)

∂tα
= 1

rγ

∂

∂r

(
rγ λ

∂T (r , t)

∂r

)
. (2.1)

In the case of a constant value of the thermal conductivity λ, the general model has
the form

∂αT (r , t)

∂tα
= k2

1

rγ

∂

∂r

(
rγ ∂T (r , t)

∂r

)
, (2.2)
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(a) (b)

Fig. 2 Boundary conditions for (a) hollow body and (b) full symmetrical body

where γ is a geometric factor (large plane wall γ = 0, long cylinder γ = 1, sphere
γ = 2), k2 = λ/(�cp) is the thermal diffusivity, � is density, and cp is specific heat
capacity.

3 Initial and boundary conditions

The general time-fractional heat conduction model (2.2) requires two boundary con-
ditions, as well as one initial condition. The initial condition specifies the temperature
distribution in the material at the begin of the time, that is,

T (r , 0) = f0(r).

The boundary conditions specify the temperature or the heat flux at the boundaries of
the region. The following boundary conditions (Fig. 2) are considered:

1. Dirichlet boundary conditions

T (r , t)|r=a = Ta and T (r , t)|r=b = Tb,

where Ta, Tb are temperatures (K) at the boundary surface.
2. Neumann boundary conditions

−λ(r)
∂T (r , t)

∂r

∣∣∣∣
r=a

= ia and −λ(r)
∂T (r , t)

∂r

∣∣∣∣
r=b

= ib

in the special case, i.e. thermal symmetry or full body (Fig. 2b)

∂T (r , t)

∂r

∣∣∣∣
r=0

= 0,

where ia, ib stand for heat flux (W·m−2) at the boundary surface.
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Fig. 3 Time discretisation

3. Robin boundary conditions

−λ(r)
∂T (r , t)

∂r

∣∣∣∣
r=a

= ha (T |r=a − Tsa)

and

−λ(r)
∂T (r , t)

∂r

∣∣∣∣
r=b

= hb (T |r=b − Tsb) ,

where ha, hb are heat transfer coefficients (W·m−2·K−1); Tsa, Tsb are the surrounding
medium temperatures (K) at the boundary surface.

4 Numerical solution

The fractional derivative according to time in the general time-fractional heat
conduction model (2.2) is discretised by the backward Euler method and the
Grünwald-Letnikov definition

∂αT (r , t)

∂tα

∣∣∣∣
tp

∼=
∑N f

j=0 c j T
p− j
i

Δtα
= T p

i + ∑N f
j=1 c j T

p− j
i

Δtα

by using the principle of “short memory” (Fig. 3) [26], where tL is the memory length,
Δt is the time step and the value of N f shall be determined by the following relation

N f = min

{[
t0
Δt

]
,

[
tL
Δt

]}
·

For the calculation of the binomial coefficients c j the following relation can be used

c0 = 1, c j =
(
1 − 1 + α

j

)
c j−1, for j ≥ 1.

The derivative according to the spatial coordinate (Fig. 4) is discretised as follows

∂T (r , t)

∂r

∣∣∣∣
r
i− 1

2

∼= T p
i − T p

i−1

Δr
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Fig. 4 Space discretisation

∂T (r , t)

∂r

∣∣∣∣
r
i+ 1

2

∼= T p
i+1 − T p

i

Δr

1

rγ

∂

∂r

(
rγ k2

∂T (r , t)

∂r

)∣∣∣∣
ri

∼= 1

rγ

i

rγ

i+ 1
2
k2i

∂T (r ,t)
∂r

∣∣∣∣
r
i+ 1

2

− rγ

i− 1
2
k2i−1

∂T (r ,t)
∂r

∣∣∣∣
r
i− 1

2

Δr

= k2i ξi T
p
i+1 − (

k2i ξi + k2i−1ζi
)
T p
i + k2i−1ζi T

p
i−1

Δr2
,

where

ξi =
(
1 + Δr

2ri

)γ

and ζi =
(
1 − Δr

2ri

)γ

.

The values ξi or ζi represent the coefficients for calculation of the area Ai+ 1
2
or Ai− 1

2
for the selected geometry as follows

Ai+ 1
2

= Aiξi and Ai− 1
2

= Aiζi .

Similarly, we can express the relation between area and volume as

Vi+ 1
2

= Ai
Δr

2

1

μi
and Vi− 1

2
= Ai

Δr

2

1

νi
,

where

μi = (γ + 1) Δr
2ri(

1 + Δr
2ri

)γ+1 − 1
and νi = (γ + 1) Δr

2ri

1 −
(
1 − Δr

2ri

)γ+1 .

4.1 Steady-state

The general time-fractional heat conduction model (2.1) for inhomogeneous material
and under steady-state conditions (∂T /∂t = 0) takes the form

1

rγ

∂

∂r

(
rγ λ

∂T (r , t)

∂r

)∣∣∣∣
ri

= 0,
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Fig. 5 Scheme for the formulation of boundary conditions

1

rγ

i

rγ

i+ 1
2
λi

∂T (r ,τ )
∂r

∣∣∣∣
r
i+ 1

2

− rγ

i− 1
2
λi−1

∂T (r ,τ )
∂r

∣∣∣∣
r
i− 1

2

Δr
= 0,

λi−1ζi Ti−1 − (λi−1ζi + λiξi ) Ti + λiξi Ti+1 = 0,

and the matrix form is as follows
A · T = b

or ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1 z1 0 0 0 0
x2 y2 z2 0 0 0
0 x3 y3 z3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 xn−1 yn−1 zn−1
0 0 0 0 xn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1
T2
T3
...

Tn−1
Tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
w3
...

wn−1
wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the coefficients are

xi = λi−1ζi ,

yi = − (λi−1ζi + λiξi ) ,

zi = λiξi ,

wi = 0, for i = 2, 3, . . . , n − 1.

The specified temperatures of the boundary conditions are incorporated by simple
assigning the given surface temperatures to the boundary nodes and therefore for the
Dirichlet boundary conditions the coefficients are

y1 = 1, z1 = 0, w1 = Ta,

yn = 1, xn = 0, wn = Tb.

When other boundary conditions such as the heat flux or convection are specified at
the boundary, the finite difference equation for the node at that boundary is obtained
by writing an energy balance of the elementary volume at that boundary (Fig. 5). The
energy balance is expressed as

0 = I1,2 + Ia
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or

0 = A1+ 1
2

λ1

Δr
(T2 − T1) + A1ia,

and therefore
ξ1T1 − ξ1T2 = Raia .

For the Neumann boundary conditions the coefficients are

y1 = ξ1, z1 = −ξ1, w1 = Raia,

yn = ζn, xn = −ζn, wn = Rbib,

where Ra, Rb are internal thermal resistances (m2·K·W−1).
In the case of Robin boundary conditions the energy balance is expressed as

0 = A1+ 1
2

λ1

Δr
(T2 − T1) + A1ha (Tsa − T1)

or
(ξ1 + βa) T1 − ξ1T2 = βaTsa .

For the Robin boundary conditions the coefficients are

y1 = ξ1 + βa, z1 = −ξ1, w1 = βaTsa,

yn = ζn + βb, xn = −ζn, wn = βbTsb,

where βa, βb are Biot numbers or ratios of internal and external thermal resistances
at the boundary surface.

4.2 Unsteady-state

According to the type of differential expression finite difference methods can be
divided into explicit, implicit and Crank-Nicolson schemes.

4.2.1 Explicit scheme

The explicit scheme for the general time-fractional heat conduction model (2.2) has
the form

T p
i + ∑N f

j=1 c j T
p− j
i

Δtα
= k2i ξi T

p−1
i+1 − (k2i ξi + k2i−1ζi )T

p−1
i + k2i−1ζi T

p−1
i−1

Δr2

or

T p
i = τi−1ζi T

p−1
i−1 − (τi−1ζi + τiξi ) T

p−1
i + τiξi T

p−1
i+1 −

N f∑
j=1

c j T
p− j
i , (4.1)
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where module τi is determined by the relation

τi =
(

ki
Δr

)2

Δtα,

while the value of τi with respect to the stability of the solution must have values less
or equal to 0.5.

The matrix form of equation (4.1) is as follows

Tp = A · Tp−1 + b

or ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T p
1

T p
2

T p
3
...

T p
n−1
T p
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1 z1 0 0 0 0
x2 y2 z2 0 0 0
0 x3 y3 z3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 xn−1 yn−1 zn−1
0 0 0 0 xn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T p−1
1

T p−1
2

T p−1
3
...

T p−1
n−1

T p−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
w3
...

wn−1
wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the coefficients are

xi = τi−1ζi ,

yi = − (τi−1ζi + τiξi ) ,

zi = τiξi ,

wi = −
N f∑
j=1

c j T
p− j
i , for i = 2, 3, . . . , n − 1.

For the Dirichlet boundary conditions the coefficients are

y1 = 0, z1 = 0, w1 = Ta,

yn = 0, xn = 0, wn = Tb.

In the case of Neumann boundary conditions the energy balance is expressed as

ΔQa

Δt
= I1,2 + Ia

or

�1cp1V1+ 1
2

T p
1 + ∑N f

j=1 c j T
p− j
1

Δt
= A1+ 1

2

λ1

Δr

(
T p−1
2 − T p−1

1

)
+ A1ia,

and therefore

T p
1 = −2τ1μ1ξ1T

p−1
1 + 2τ1μ1ξ1T

p−1
2 −

N f∑
j=1

c j T
p− j
1 + 2τ1μ1Raia .
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608 J. Terpak

For the Neumann boundary conditions the coefficients are

y1 = −2τ1μ1ξ1, z1 = 2τ1μ1ξ1,

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1Raia,

yn = −2τn−1νnζn, xn = 2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νn Rbib.

In the case of Robin boundary conditions the energy balance is expressed as

�1cp1V1+ 1
2

T p
1 + ∑N f

j=1 c j T
p− j
1

Δt
= A1+ 1

2

λ1

Δr

(
T p−1
2 − T p−1

1

)
+A1ha

(
Tsa − T p−1

1

)

or

T p
1 = −2τ1μ1 (ξ1 + βa) T

p−1
1 + 2τ1μ1ξ1T

p−1
2 −

N f∑
j=1

c j T
p− j
1 + 2τ1μ1βaTsa .

For the Robin boundary conditions the coefficients are

y1 = −2τ1μ1 (ξ1 + βa) , z1 = 2τ1μ1ξ1,

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1βaTsa,

yn = −2τn−1νn (ζn + βb) , xn = 2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νnβbTsb,

where Ra, Rb are internal thermal resistances (m2·K·W−1); βa, βb are Biot numbers
or ratios of internal and external thermal resistances at the boundary surface.

4.2.2 Implicit scheme

The implicit scheme for the general time-fractional heat conduction model (2.2) has
the form

T p
i + ∑N f

j=1 c j T
p− j
i

Δtα
= k2i ξi T

p
i+1 − (k2i ξi + k2i−1ζi )T

p
i + k2i−1ζi T

p
i−1

Δr2
,
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or

−τi−1ζi T
p
i−1 + (1 + τi−1ζi + τiξi ) T

p
i − τiξi T

p
i+1 = −

N f∑
j=1

c j T
p− j
i .

In matrix form this is
A · Tp = b

or ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1 z1 0 0 0 0
x2 y2 z2 0 0 0
0 x3 y3 z3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 xn−1 yn−1 zn−1
0 0 0 0 xn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T p
1

T p
2

T p
3
...

T p
n−1
T p
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
w3
...

wn−1
wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where the coefficients are

xi = −τi−1ζi ,

yi = 1 + τi−1ζi + τiξi ,

zi = −τiξi ,

wi = −
N f∑
j=1

c j T
p− j
i , for i = 2, 3, . . . , n − 1.

For the Dirichlet boundary conditions the coefficients are

y1 = 1, z1 = 0, w1 = Ta,

yn = 1, xn = 0, wn = Tb.

For the Neumann boundary conditions the coefficients are

y1 = 1 + 2τ1μ1ξ1, z1 = −2τ1μ1ξ1,

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1Raia,

yn = 1 + 2τn−1νnζn, xn = −2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νn Rbib.

For the Robin boundary conditions the coefficients are

y1 = 1 + 2τ1μ1 (ξ1 + βa) , z1 = −2τ1μ1ξ1,
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610 J. Terpak

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1βaTsa,

yn = 1 + 2τn−1νn (ζn + βb) , xn = −2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νnβbTsb.

4.2.3 Crank-Nicolson scheme

The Crank-Nicolson scheme for the general time-fractional heat conduction model
(2.2) has the form

T p
i + ∑N f

j=1 c j T
p− j
i

Δtα
= 1

2

(
k2i ξi T

p−1
i+1 − (k2i ξi + k2i−1ζi )T

p−1
i + k2i−1ζi T

p−1
i−1

Δr2

)

+ 1

2

(
k2i ξi T

p
i+1 − (k2i ξi + k2i−1ζi )T

p
i + k2i−1ζi T

p
i−1

Δr2

)

or

− τi−1ζi T
p
i−1 + (2 + τi−1ζi + τiξi ) T

p
i − τiξi T

p
i+1

= τi−1ζi T
p−1
i−1 − (τi−1ζi + τiξi ) T

p−1
i + τiξi T

p−1
i+1 − 2

N f∑
j=1

c j T
p− j
i .

In matrix form this is
Ap · Tp = Ap−1 · Tp−1 + b

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1 z1 0 0 0 0
x2 y2 z2 0 0 0
0 x3 y3 z3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 xn−1 yn−1 zn−1
0 0 0 0 xn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T p
1

T p
2

T p
3
...

T p
n−1
T p
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−x2 2 − y2 −z2 0 0 0
0 −x3 2 − y3 −z3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 −xn−1 2 − yn−1 −zn−1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T p−1
1

T p−1
2

T p−1
3
...

T p−1
n−1

T p−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
w3
...

wn−1
wn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the coefficients are

xi = −τi−1ζi ,

zi = −τiξi ,

yi = 2 + τi−1ζi + τiξi ,

wi = −2

N f∑
j=1

c j T
p− j
i , for i = 2, 3, . . . , n − 1.

For the Dirichlet boundary conditions the coefficients are

y1 = 1, z1 = 0, w1 = Ta,

yn = 1, xn = 0, wn = Tb.

For the Neumann boundary conditions the coefficients are

y1 = 1 + 2τ1μ1ξ1, z1 = −2τ1μ1ξ1,

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1Raia,

yn = 1 + 2τn−1νnζn, xn = −2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νn Rbib.

For the Robin boundary conditions the coefficients are

y1 = 1 + 2τ1μ1 (ξ1 + βa) , z1 = −2τ1μ1ξ1,

w1 = −
N f∑
j=1

c j T
p− j
1 + 2τ1μ1βaTsa,

yn = 1 + 2τn−1νn (ζn + βb) , xn = −2τn−1νnζn,

wn = −
N f∑
j=1

c j T
p− j
n + 2τn−1νnβbTsb.

5 Implementation

The implementation was realised in the programming environment MATLAB, in
which the functions for solution of the time-fractional diffusion-wave equation in
various geometries have been created. The MATLAB toolbox called Time-Fractional
Diffusion-Wave Eq. in Various Geometries (TFDWEg) consists of functions for solving
one-dimensional general model for various geometries with utilisation of the explicit,
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implicit, and Crank-Nicolson scheme, respectively. The functions implement the finite
differencemethod for homogeneous or inhomogeneousmaterial and for homogeneous
or inhomogeneous boundary conditions. The functions headers are as follows
function [R,T,MU] = TFDWEg_exp(Uin,alpha,Nf,k,dr,a,b,dt,ts,TBC,BC,g)

function [R,T,MU] = TFDWEg_imp(Uin,alpha,Nf,k,dr,a,b,dt,ts,TBC,BC,g)

function [R,T,MU] = TFDWEg_CN (Uin,alpha,Nf,k,dr,a,b,dt,ts,TBC,BC,g)

where the function inputs are: Uin is the vector of the initial conditions, alpha is
the order of the time derivative, Nf is the memory length, k is the process coefficients
vector, dr is the spatial step, a and b are the left, right side coordinates of the body,
respectively, dt is the time step, ts is the time of simulation, TBC is the vector of the
boundary conditions type, BC are the values of the boundary condition, and g is the
geometry type. The function outputs are: R is the vector of coordinates, T is the vector
of time, and MU is the output values matrix. The toolbox is published at MathWorks,
Inc., MATLAB Central File Exchange [40].

6 Simulations

Time-Fractional Diffusion-Wave Equation simulations in various geometries for
homogeneous or inhomogeneous material and for homogeneous or inhomogeneous
boundary conditions are realised using the script TFDWEg_test.m which is a part of
the toolbox TFDWEg [40]. In the following examples the behaviour of temperature in
space and time for various geometries is illustrated.

Let us propose an example, where the initial conditions are been defined in the form
of the constant temperature (T (r , 0) = 0◦C) in the whole cross-section, considering
copper as the material (with density � = 8900 kg/m3, thermal conductivity λ = 400
W/m/K, specific heat capacity cp = 380 J/kg/K), left (a = 0.01 m) and right (b =
0.03 m) side coordinate. The material was divided into twenty parts in the space,
with time step (0.001s), total time simulation (2 s), and Dirichlet boundary conditions
with temperatures at the edges (Ta = 0◦C and Tb = 15◦C). The simulation results
using Crank-Nicolson scheme are shown in Fig. 6, where the left coloumn shows the
behaviour of temperature in time (where the parameter is the position in space), the
middle coloumn shows the behaviour of temperature in space (where the parameter
is time), and the right coloumn displays 3D plots of temperatures in space and time
for hollow body (Fig. 2a), i.e. large plane wall (Fig. 6a), long cylinder (Fig. 6b), and
sphere (Fig. 6c). In the case of setting the left coordinate to zero (a = 0.0 m), it is
possible to perform the same simulation but for a full symmetrical body (Fig. 2b), as
shown in figure Fig. 7.

The graphs in Fig. 8 show the evolution results solving the time-fractional heat
conduction using the fractional-order derivative α = 0.5, 1.0, and 1.5, respectively.
Comparing the graphs, one can observe that the derivative of order 0.5 exhibits fast
temperature rise in the beginning and slow temperature rise later. Moreover, it is
evident that the temperatures propagate and diffuse with time, which means that the
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(a)

(b)

(c)

Fig. 6 Hollow body – (a) large plane wall, (b) long cylinder, and (c) sphere

temperature continuously depends on the fractional derivative, therefore, when α =
1.5, both diffusion and wave response can be observed.

Let us use the previous settings to perform simulations demonstrating the use of dif-
ferent homogeneous boundary conditions for homogeneousmaterial. The behaviour of
the temperature for the Dirichlet, Neumann, and Robin boundary conditions is shown
in Fig. 9. In the case of the Dirichlet boundary conditions, the surface temperatures are
Ta = Tb = 15◦C; in the case of the Neumann boundary conditions, the thermal flux
and the internal thermal resistance are ia ·Ra = ib ·Rb = 0.75◦C, and in the case of the
Robin boundary conditions the surrounding media temperatures and the ratio of inter-
nal and external thermal resistances are Tsa = Tsb = 15◦C, βa = βb = 1. The graphs
in Fig. 10 show inhomogeneous boundary conditions for selected combinations, i.e.
Neumann-Dirichlet, Robin-Dirichlet, and Neumann-Robin, respectively.

The script TFDWEg_test.m also allows to simulate homogeneous as well as inhomo-
geneous material. For example, in the case of thermal diffusivity for twenty layers and
two materials (brass and copper) of the same thickness a twenty-component thermal
diffusivity vector is needed (ten components for brass and ten components for copper).
Results of the simulations are shown in Fig. 11a for homogeneous and in Fig. 11b for
inhomogeneous material, where in the first half of the specimen length there is a lower
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(a)

(b)

(c)

Fig. 7 Symmetrical body – (a) large plane wall, (b) long cylinder, and (c) sphere

Fig. 8 Large plane wall for α=0.5, 1.0, and 1.5

Fig. 9 Dirichlet, Neumann, and Robin homogeneous boundary conditions for large plane wall
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Fig. 10 Neumann-Dirichlet, Robin-Dirichlet, and Neumann-Robin inhomogeneous boundary conditions

Fig. 11 Large plane wall, long cylinder, and sphere for (a) homogeneous and (b) inhomogeneous material

temperature rise than in the other half. This is due to the fact that in the first half the
material there is copper whose thermal diffusivity is about three times larger than that
of brass.

7 Conclusion

The general one-dimensional model of the time-fractional diffusion-wave equation in
various geometries is designed and described in this contribution. The numerical solu-
tion using the Grünwald-Letnikov definition of fractional derivative according to time
for homogeneous and inhomogeneous boundary conditions and for homogeneous and
inhomogeneous material is presented. The numerical schemes were implemented in
MATLAB in the form of a library of functions. The possibilities of using this library
are illustrated by examples and simulations. Additionally, besides modeling heat con-
duction processes, the library allows to model other processes such as diffusion, wave
distribution, and so on. The library is a suitable tool for the implementation of sim-
ulations of a wide class of processes and also for the creation of complex models in
the MATLAB environment. Benefits of this work are the design, numerical solution
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and implementation of one general mathematical model that can be used for modeling
various different processes, in various geometries, materials and boundary conditions.
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