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Abstract
We study a general version of the Cheeger inequality by considering the shape functional 
Fp,q(Ω) = �

1∕p
p (Ω)∕�

1∕q
q (Ω) . The infimum and the supremum of Fp,q are studied in the class 

of all domains Ω of ℝd and in the subclass of convex domains. In the latter case the issue 
concerning the existence of an optimal domain for Fp,q is discussed.
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1 Introduction

The starting point of this research is the celebrated Cheeger inequality:

here �(Ω) denotes the first eigenvalue of the Laplace operator −Δ on the open set Ω , with 
Dirichlet boundary conditions, and h(Ω) denotes the Cheeger constant

(1.1)
�(Ω)

h2(Ω)
≥ 1

4
,

(1.2)h(Ω) = inf

{
P(E)

|E| ∶ E ⋐ Ω, |E| > 0

}
,
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where the symbol E ⋐ Ω indicates that the closure of E is contained in Ω . Here P(E) 
denotes the perimeter of E in the De Giorgi sense, and |E| the Lebesgue measure of E. 
Equivalently h(Ω) can be defined through the expression

With some additional regularity assumption on Ω , in (1.2) the infimum can be equivalently 
evaluated on the whole class of subsets E ⊂ Ω . For instance, it is enough to require that Ω 
coincides with its essential interior; we refer the reader to [16] and [19] for a survey on the 
Cheeger constant. We recall that if Ω is a ball of radius r in ℝd we have h(Ω) = d∕r.

In this paper we consider, for every 1 < p < +∞ , the p-Laplace operator

and the corresponding principal eigenvalue

Any minimizer of (1.3) solves, in the weak sense, the Dirichlet problem:

The following properties are well-known:

• the monotonicity property with respect to the sets’ inclusion, namely 

• the scaling property

• the asymptotics

 where �(Ω) denotes the so-called inradius of Ω , corresponding to the maximal radius 
of a ball contained in Ω (see [13] and [15]). Equivalently, �(Ω) can be defined as 

 where dΩ is the distance function from �Ω

Taking into account (1.6) we define

h(Ω) = inf

{∫
Ω
|∇u| dx

∫
Ω
|u| dx ∶ u ∈ C∞

c
(Ω)⧵{0}

}
.

−Δpu = −div
(|∇u|p−2∇u)

(1.3)�p(Ω) = inf

{∫
Ω
|∇u|p dx

∫
Ω
|u|p dx ∶ u ∈ C∞

c
(Ω)⧵{0}

}
.

{
−Δpu = �|u|p−2u in Ω,

u ∈ W
1,p

0
(Ω);

(1.4)𝜆p(Ω) ≤ 𝜆p(Ω
�), h(Ω) ≤ h(Ω�), if Ω� ⊂ Ω;

(1.5)𝜆p(tΩ) = t−p𝜆p(Ω), h(tΩ) = t−1h(Ω), for all t > 0;

(1.6)lim
p→+∞

�1∕p
p

(Ω) = �−1(Ω), lim
p→1+

�p(Ω) = h(Ω),

�(Ω) = ‖dΩ‖L∞(Ω),

dΩ(x) = inf
{|x − y| ∶ y ∈ �Ω

}
.
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Inequality (1.1) can be then seen as a particular case of the more general inequality

that can be also rephrased as a monotonicity property:

Although this result is already known for 1 < q ≤ p < +∞ (see [17]), for the sake of com-
pleteness we recall its proof in Proposition 2.2.

Our goal is to study from the shape optimization point of view the functionals

From the properties listed above Fp,q is scaling free, that is,

We consider the minimization/maximization problem of Fp,q in the classes

For the sake of brevity we denote by md(p, q),Md(p, q) the quantities

Similarly, for the convex case, we use the notation

The study of the functionals Fp,q has been proposed in [20], where the author focused on 
the case p = 2 , q = 1 . Recently some developments have been made in [9], again in the 
case p = 2 , q = 1.

The paper is organized as follows. In Section 2 we discuss the optimization problem in 
the class Ad . In particular we prove that (1.8) becomes sharp when d → +∞ (Theorem 2.6) 
and we characterize the behavior of Md(p, q) in varying p, q, showing that it remains finite 
if and only if q > d (Theorem  2.9). The optimization problems in the class Ad

c
 are dis-

cussed in Section 3. After recalling some known estimates we prove that Md(p, q) is always 
finite (Proposition 3.2) and that, in some cases, the minimization problems for Fp,q among 
planar convex open sets, admits a solution (Theorem 3.8). In Section 4, we collect some 
open problems that in our opinion can be interesting for future researches. At last, we con-
clude the paper with a small appendix, where we give self contained proofs of some known 
facts in shape optimization, which are useful for our purpose.

(1.7)�1∕p
p

(Ω) =

{
h(Ω) if p = 1;

�(Ω)−1 if p = +∞.

(1.8)
�
1∕p
p (Ω)

�
1∕q
q (Ω)

≥ q

p
for every 1 ≤ q ≤ p ≤ +∞,

the map p ↦ p�1∕p
p

(Ω) is monotonically nondecreasing.

Fp,q(Ω) =
�
1∕p
p (Ω)

�
1∕q
q (Ω)

.

Fp,q(tΩ) = Fp,q(Ω) for all t > 0.

A
d = {Ω ⊂ ℝ

d ∶ Ω open, 0 < |Ω| < +∞},

A
d
c
= {Ω ∈ A

d ∶ Ω convex}.

md(p, q) = inf
Ω∈Ad

Fp,q(Ω), Md(p, q) = sup
Ω∈Ad

Fp,q(Ω).

md(p, q) = inf
Ω∈Ad

c

Fp,q(Ω), Md(p, q) = sup
Ω∈Ad

c

Fp,q(Ω).
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2  Optimization in Ad

As it often happens in shape optimization, the one-dimensional case is simpler. Indeed 
in this case the functional Fp,q turns out to be constant. Hereinafter we denote by �p the 
Poincaré–Sobolev constant

Explicit computations, see for instance [14], show that, when 1 < p < +∞ , it holds

which implies, in particular, �2 = � ; moreover (1.7) gives �1 = �∞ = 2.

Proposition 2.1 Let 1 ≤ q ≤ p ≤ +∞ . Then, for every Ω ∈ A
1 we have

Proof It is enough to notice that if Ω ∈ A
1 is the disjoint union of a family of open inter-

vals (Ωi)i∈I , then, for every 1 ≤ p ≤ +∞ , we have

Indeed, when p = +∞ (2.2) is straightforward by (1.7), while, when 1 ≤ p < +∞ , we 
notice that for every u ∈ C∞

c
(Ω) it holds

which implies

By (1.4), the latter inequality easily leads to (2.2). Taking into account that, by (1.5) and 
(2.1), we have

we achieve the thesis.  ◻

From now on we always assume d ≥ 2 . The next proposition provides a lower bound 
to md(p, q) and generalizes inequality (1.1).

Proposition 2.2 Let Ω ∈ A
d . Then, the function p ↦ p�

1∕p
p (Ω) is nondecreasing in [1,+∞] . 

In particular we have

(2.1)�p = �1∕p
p

(0, 1).

�p = 2�
(p − 1)1∕p

p sin(�∕p)

Fp,q(Ω) =
�p

�q
.

(2.2)�1∕p
p

(Ω) = inf
i∈I

�1∕p
p

(Ωi),

�Ω

|∇u|pdx ≥ ∑
i∈I

�Ωi

|∇u|pdx ≥ ∑
i∈I

�p(Ωi)�Ωi

|u|pdx ≥ inf
i∈I

�p(Ωi)
∑
i∈I

�Ωi

|u|pdx,

�p(Ω) ≥ inf
i∈I

�p(Ωi).

inf
i∈I

�1∕p
p

(Ωi) = inf
i∈I

|Ωi|−1�p,

(2.3)md(p, q) ≥ q∕p.
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Proof By (1.6) it is enough to consider the case 1 < q < p < ∞ . Let u ∈ C∞
c
(Ω) and let 

v = up∕q . Then, by Hölder inequality, we get

Since u is arbitrary we obtain

as required.  ◻

In general, we do not expect the bound given in (2.3) to be sharp. For instance, as 
p → +∞ , the right-hand side in (2.3) tends to zero, while it is easy to prove that the 
minimum of F∞,q is strictly positive and attained at any ball. Indeed, since any Ω con-
tains a sequence of balls of radii  converging to �(Ω) , by (1.4), (1.5) and (1.7), we have

which clearly implies

here we denote by Bd
r
 the ball in ℝd of radius r centered at the origin, and we omit the 

dependence on d when there is no ambiguity.
Recently, by exploiting the fact that �2(Bd

1
) = jd∕2−1,1 , where jd∕2−1,1 denotes the first 

root of the d-th Bessel function of first kind, Ftouhi (see [9]) has noticed that

Our next goal is to generalize the limit (2.5) to every p, q. With this aim we introduce the 
quantity

and recall that, in terms of the Euler’s function Γ , we have

Lemma 2.3 Let Ω ∈ A
d and s ≥ 1 . Then,

�q(Ω) ≤ ∫
Ω
|∇v|qdx

∫
Ω
|v|qdx =

(
p

q

)q ∫
Ω
|∇u|q|u|p−qdx
∫
Ω
|u|pdx

≤
(
p

q

)q
(∫

Ω
|∇u|pdx)q∕p
∫
Ω
|u|pdx

(
�Ω

|u|pdx
)1−q∕p

=

(
p

q

)q
(∫

Ω
|∇u|pdx

∫
Ω
|u|pdx

)q∕p

.

q�1∕q
q

(Ω) ≤ p�1∕p
p

(Ω)

(2.4)�1∕q
q

(Ω) ≤ �−1(Ω)�1∕q
q

(B1) for every 1 ≤ q ≤ +∞,

md(∞, q) = F∞,q(B1), for every 1 ≤ q < +∞;

(2.5)lim
d→+∞

md(2, 1) = 1∕2.

B(s, t) = ∫
1

0

�s−1(1 − �)t−1d�

(2.6)B(s, t) =
Γ(s)Γ(t)

Γ(s + t)
.
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Proof Let s ≥ 1 and �(x) = (1 − |x|)s . Clearly � ∈ W
1,p

0
(B1) and

Similarly we have

Now, using � as a test function in (1.3), we obtain

Finally, (2.7) follows from (2.6).  ◻

Lemma 2.4 Let 1 ≤ p < +∞ , L > 0 , and � ∈ A
d−1
all

 . Denote by ΩL = � × (−L∕2, L∕2) . 
Then

In particular

Proof We denote by (x,y) the points in ℝd−1 ×ℝ . Let u ∈ C∞
c
(ΩL) , then for every 

(x, y) ∈ ΩL we have

If p ≥ 2 , using the super-additivity of the function t → tp∕2 and Fubini theorem, we have

where the last inequality follows by (2.1) and (1.5). Similarly, if p < 2 , using Fubini theo-
rem together with the reverse Minkowski inequality

we obtain

(2.7)�p(B1) ≤ sp
(
Γ(sp + d + 1)Γ(sp − p + 1)

Γ(sp + 1)Γ(sp + d − p + 1)

)
.

∫B1

|�(x)|pdx = d�d ∫
1

0

(1 − t)sptd−1dt = d�dB(d, sp + 1).

∫B1

|∇�(x)|pdx = d�ds
p ∫

1

0

(1 − t)(s−1)ptd−1dt = d�ds
pB(d, sp − p + 1).

�p(B1) ≤ sp
(
B(d, sp − p + 1)

B(d, sp + 1)

)
.

(2.8)

{
𝜆p(𝜔) + 𝜋

p
p∕L

p ≤ 𝜆p(ΩL) ≤ (
𝜆
2∕p
p (𝜔) + 𝜋2

p
∕L2

)p∕2
if p ≥ 2,(

𝜆
2∕p
p (𝜔) + 𝜋2

p
∕L2

)p∕2 ≤ 𝜆p(ΩL) ≤ 𝜆p(𝜔) + 𝜋
p
p∕L

p if p < 2.

(2.9)lim
L→+∞

�1∕p
p

(ΩL) = �1∕p
p

(�).

u(⋅, y) ∈ C∞
c
(�), u(x, ⋅) ∈ C∞

c
(−L∕2,L∕2).

�ΩL

|∇u|pdxdy = �
L∕2

−L∕2 ��

(|∇xu|2 + |�yu|2
)p∕2

dxdy

≥
(
�p(�) +

�
p
p

Lp

)
�ΩL

|u|pdxdy

‖f + g‖Lp∕2(ΩL)
≥ ‖g‖Lp∕2(ΩL)

+ ‖f‖Lp∕2(ΩL)
,
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In both cases, the arbitrariness of u proves the left hand side inequalities in (2.8).
The upper estimates in (2.8) can be proved with the same argument, once chosen a suit-

able test function. More precisely, when 1 < p < +∞ , we take u(x) and vL(y) optimal func-
tions, respectively, for �p(�) and �p(−L∕2, L∕2) , both with unitary Lp norm, that is, (taking 
also (1.5) into account) we require:

Now, the product function �(x, y) = u(x)vL(y) is admissible in the computation of �p(ΩL) 
and gives

If p ≤ 2 , by the sub-additivity of the function t → tp∕2 , (2.10) and Fubini theorem, we get

Similarly if p ≥ 2 , by (2.10), Fubini theorem and Minkowski inequality we have that

The case  p = 1 follows by using an approximation argument.  ◻

Remark 2.5 The limit (2.9) is clearly true also when p = +∞ , since in this case 
�(ΩL) = �(�) , as soon as L is large enough.

We may now prove the general form of limit (2.5).

Theorem 2.6 Let 1 ≤ q < p ≤ +∞ . Then the sequence d ↦ md(p, q) is nonincreasing and

In particular,

Proof The monotonicity of the sequence follows at once by (2.9), hence the limit above 
exists as well. By (2.3) we get the inequality

∫ΩL

|∇u|pdxdy = ∫

L∕2

−L∕2 ∫�

(

|∇xu|2 + |�yu|2
)p∕2dxdy

≥

{

(

∫ΩL

|∇xu|pdxdy
)2∕p

+
(

∫ΩL

|�yu|pdxdy
)2∕p

}p∕2

≥

(

�p(�)2∕p +
�2
p

L2

)p∕2

∫ΩL

|u|pdxdy.

(2.10)‖∇u‖p
Lp(�)

= �p(�), ‖v�
L
‖p
Lp(−L∕2,L∕2)

= �p
p
∕Lp.

�p(ΩL) ≤ �ΩL

|∇�(x, y)|pdxdy = �ΩL

(|∇xu(x)v(y)|2 + |u(x)v�(y)|2)p∕2dxdy.

�p(ΩL) ≤ �p(�) +
�
p
p

Lp
.

�p(ΩL) ≤
(
�2∕p
p

(�) +
�2
p

L2

)p∕2

.

(2.11)lim
d→+∞

md(p, q) = inf
d≥1md(p, q) = q∕p.

q

p
≤ md(p, q) ≤ m1(p, q) =

�p

�q
.
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In order to prove the opposite inequality, first we suppose q = 1 . By applying (2.7) with 
s =

√
d , we get

Moreover, using the fact that Γ(s + t) ≈ Γ(s)st as s → ∞ , we obtain that, as d → ∞,

Hence we obtain

To achieve the general case we notice that, for all Ω ⊂ ℝ
d , we have

where the last inequality follows again by (2.3). Then

as required. Finally, the last statement is an easy consequence of (1.8), of the monotonicity 
proved above and of Proposition 2.1.  ◻

We now turn our attention to the quantity Md(p, q) and we notice that limit (2.9) also 
implies that the sequence d ↦ Md(p, q) is nondecreasing and hence

Our next result deals with the upper bound for Md(p, q) . We recall that, for 1 < p < +∞ , 
the (relative) p-capacity of a set E ⊂ Ω is defined as

For a comprehensive introduction to p-capacity we refer the reader to [10] and [18]. A set 
E ⊂ ℝ

d is said to be of zero p-capacity if

in this case we simply write capp(E) = 0 . We recall that countable union of zero capacity 
sets has zero capacity. Moroever, given E a relatively closed subset of Ω , then

lim
d→+∞

md(p, q) = inf
d≥1md(p, q) ≥ q∕p.

Fp,1(B
d
1
) =

�
1∕p
p (Bd

1
)

d
≤ 1√

d
⋅

�
Γ(
√
dp + d + 1)Γ(

√
dp − p + 1)

Γ(
√
dp + 1)Γ(

√
dp + d − p + 1)

�1∕p

.

1√
d

�
Γ(
√
dp + d + 1)Γ(

√
dp − p + 1)

Γ(
√
dp + 1)Γ(

√
dp + d − p + 1)

�1∕p

≈
1√
d

�
1 +

√
d

p

�
.

lim
d→∞

md(p, 1) ≤ lim sup
d→∞

Fp,1(B
d
1
) ≤ 1∕p.

md(p, q) ≤ Fp,q(Ω) = Fp,1(Ω)F
−1
q,1
(Ω) ≤ qFp,1(Ω),

lim
d→∞

md(p, q) ≤ q lim
d→∞

md(p, 1) = q∕p

�p

�q
= M1(p, q) ≤ Md(p, q).

capp(E;Ω) = inf

{
�Ω

|∇u|pdx ∶ u ∈ W
1,p

0
(Ω), u ≥ 1 a.e. in a neighborhood of E

}
.

capp(E ∩ Ω;Ω) = 0 for all Ω ∈ A
d;

capp(E) = 0 ⟹ �p(Ω⧵E) = �p(Ω).
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Finally, a single point has zero p-capacity if and only if 1 < p ≤ d . This last property is 
employed in [21] to show the following result.

Theorem  2.7 Let d ∈ ℕ , d ≥ 1 and d < p < +∞ . There exists a positive constant Cp,d , 
depending on p and d, such that for every bounded open set Ω ⊂ ℝ

d it holds

Remark 2.8 Theorem  2.7 can be extended to the whole class Ad by means of a simple 
approximation argument. Indeed, it is sufficient to note that, if Ω ∈ A

d is unbounded, and 
we set Ωn ∶= Ω ∩ Bn , it holds

and, by Theorem (2.7),

Passing to the limit as n → +∞ in the inequality above gives the conclusion.

Theorem 2.9 Let 1 ≤ q < p ≤ ∞ . Then

where Cd,q is the constant given by Theorem 2.7.

Proof The case when d < q follows by combining Theorem 2.7 (applied to �q ) and inequal-
ity (2.4) (applied to �p).

The case 1 ≤ q ≤ d < p ≤ ∞ is a consequence of the fact that if 1 < q ≤ d then a single 
point has zero q-capacity. More precisely, let (xn) be a dense sequence in a ball B ⊂ ℝ

d and 
define

Since capq(
⋃n

i=1
{xi}) = 0 , we have �q(Ωn) = �q(B) for every n ∈ ℕ . Taking into account 

(1.6), we have also h(Ωn) = h(B) for every n ∈ ℕ . Moreover, since �(Ωn) → 0 , by Theo-
rem  2.7 or (1.7), we have that �1∕pp (Ωn) → +∞ . Therefore Fp,q(Ωn) → +∞ for every 
1 ≤ q < d < p.

The case when 1 ≤ q < p ≤ d is more delicate. Our argument is inspired by the exam-
ple exhibited in the Appendix A of [5]. Given 1 < p ≤ d we construct a sequence of open 
bounded sets Ωn ⊂ ℝ

d such that for every q < p

Let Q = (−1∕2, 1∕2)d . Being 1 < p ≤ d , it is well known that there exists a compact set 
Ep ⊂ [0, 1]d such that capp(Ep) > 0 and capq(Ep) = 0 when 1 < q < p (see Lemma 7.1 in 

�1∕p
p

(Ω) ≥ Cd,p�
−1(Ω).

lim
n→+∞

�(Ωn) = �(Ω), �p(Ω) = lim
n→+∞

�p(Ωn),

�p(Ωn) ≥ Cd,p�
−p(Ωn) for every n ∈ ℕ.

⎧⎪⎨⎪⎩
Md(p, q) ≤ 𝜆

1∕p
p (B1)

Cd,q

if d < q,

Md(p, q) = +∞ otherwise,

Ωn ∶= B⧵

n⋃
i=1

{xi}.

lim
n→∞

Fp,q(Ωn) = +∞.
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[17]; for instance, Ep can be constructed as a Cantor set). By translating and rescaling the 
compact set Ep , we can assume that Ep ⊂ [−1∕4, 1∕4]d . Then we consider the open sets

where ℤd
n
= ℤ

d ∩ [−n, n]d and

Being capp(Ep) > 0 , by Theorem 10.1.2 in [18], we have that

Now, since any function u ∈ C∞
c
(E) when restricted to Q + z , with z ∈ ℤ

d , vanishes on a 
translated copy of Ep , (2.12) readily implies

Then, by monotonicity we have

for every n ∈ ℕ . Moreover, for every q > 1 , being capq(Ep) = 0 , we have that

and hence

as well. This gives

for every q ≥ 1 . By combining (2.13) and (2.14) the thesis is easily achieved.  ◻

Remark 2.10 The case 1 ≤ q < p ≤ d in the previous theorem can be also proved by con-
structing a sequence Ωn satisfying:

To do this, one can consider the sequence Ωn obtained by removing from the unit ball a 
periodic array of spherical holes of size rn , where

Then classical results of shape optimization theory can be used to get (2.15) (see [7] and 
references therein). We devote Appendix to give a self-contained proof.

Ωn = (−(n + 1∕2), n + 1∕2)d⧵
⋃
z∈ℤd

n

(Ep + z),

E =
⋃
n∈ℕ

Ωn = ℝ
d⧵

⋃
z∈ℤd

(Ep + z).

(2.12)min

{∫
Q
|∇u|p dx

∫
Q
|u|p dx ∶ u ∈ W1,p(Q), u = 0 on Ep

}
= C(d, p,Ep) > 0.

�p(E) ≥ C(d, p,Ep).

(2.13)𝜆p(Ωn) ≥ 𝜆p(E) ≥ C(d, p,Ep) > 0,

�q(Ωn) = �q((−(n + 1∕2), n + 1∕2)d)

h(Ωn) = h((−(n + 1∕2), n + 1∕2)d)

(2.14)�1∕q
q

(Ωn) = (2n + 1)−1�1∕q
q

(Q) → 0 as n → +∞

(2.15)�q(Ωn) → �q(B1), �p(Ωn) → +∞.

{
nd∕(p−d) ≪ rn ≪ nd∕(q−d) if p < d;

e−n
d∕(d−1)

≪ rn ≪ nd∕(q−d) if p = d.
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3  Optimization in Ad

c

In this section, we consider the optimization problems in the class Ad
c
 . We remark that also 

in this case Lemma 2.4 provides the monotonicity properties:

To carry on our analysis we use two fundamental inequalities which hold for every 
1 < p < +∞ and for every Ω ∈ A

d
c
:

• the Hersch–Protter inequality: 

• the Buser inequality: 

Inequality (3.1) was first proved in [12] and [22] when p = 2 , and then extended to general 
case in [3], while inequality (3.2) is proved in [20] in the planar linear case, and in [4] in 
the general one. Both inequalities are sharp, as one can verify by taking a sequence of thin 
slab domains Ω

n
∶= (−n, n)d−1 × (0, 1) , see for instance [3] and [4]. As a consequence one 

has that

so that the following conjecture formulated by Parini in [20], is satisfied in the particular 
cases p = +∞ or q = 1.

Conjecture 3.1 Let 1 ≤ q < p ≤ +∞ . Then we have

and no maximizer set exists.

Although we are not able prove the conjecture we show the following estimates.

Proposition 3.2 Let 1 ≤ q < p ≤ +∞ . Then, for all Ω ∈ A
d
c
 we have

Proof We first notice that, being h(B1) = d , inequality (2.4) with p = 1 provides

Hence, by using (3.1) (with q) and (3.2) (with p), we obtain

d ↦ md(p, q) is nonincreasing and d ↦ Md(p, q) is nondecreasing.

(3.1)𝜌(Ω)𝜆1∕p
p

(Ω) >
𝜋p

2
;

(3.2)
𝜆
1∕p
p (Ω)

h(Ω)
<

𝜋p

2
.

Md(p, 1) =
�p

2
, Md(∞, q) =

2

�q
,

Md(p, q) =
�p

�q
,

max
{q

p
,
�p

d�q

} ≤ md(p, q) ≤ Md(p, q) ≤ �p min
{q

2
,
d

�q

}
.

h(Ω)�(Ω) ≤ d.
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By interchanging the role of p and q, we get

Inequalites (3.4) and (1.8) prove that

while, using (3.2) and (1.8), we have

which, together with (3.3), implies

as required.  ◻

In [20] it is proved that the functional F2,1 admits a minimizing set in the class of 
bounded convex planar domains. Recently in [9], the author discussed the existence 
of minimizers for F2,1 in Ad

c
 for d ≥ 3 , which, up to our knowledge, remains open. In 

Theorem 3.8 below we show the existence of a minimizer for Fp,q in the class A2
c
 when 

q ≤ 2 ≤ p . Before proving the theorem we need some preliminary results, that we state 
in the general case of dimension d.

Lemma 3.3 Let 1 ≤ p ≤ +∞ and Ω ∈ A
d
c
 . Let a = (0,… , 0) , b = (0,… , diam (Ω)) , and 

suppose a, b ∈ �Ω . Then there exists 0 < t < diam (Ω) such that

where in the right-hand side �p(Ω ∩ {xd = t}) is intended in the d − 1 dimensional sense.

Proof The case when p = +∞ is trivial and hence we can suppose 1 ≤ p < ∞ . We notice 
that there exists t ∈ (0, diam (Ω)) such that

Indeed the map

is continuous with respect to the Hausdorff distance, and thus, thanks to the well-known 
continuity properties for �p with respect to Hausdorff metrics on the class of bounded con-
vex sets (see [6] and [11], for details about this fact), the map

(3.3)Fp,q(Ω) =
�
1∕p
p (Ω)

�
1∕q
q (Ω)

≤ �p

�q
h(Ω)�(Ω) ≤ d�p

�q
.

(3.4)Fp,q(Ω) =
�
1∕p
p (Ω)

�
1∕q
q (Ω)

≥ �p

�q

1

h(Ω)�(Ω)
≥ �p

d�q
.

max
{q

p
,
�p

d�q

} ≤ md(p, q),

�1∕p
p

(Ω) ≤ �p

2
h(Ω) ≤ q

�p

2
�1∕q
q

(Ω),

Md(p, q) ≤ �p min
{q

2
,
d

�q

}

�1∕p
p

(Ω) ≥ �1∕p
p

(Ω ∩ {xd = t}),

�p(Ω ∩ {xd = t}) = inf
�∈(0, diam (Ω))

�p(Ω ∩ {xd = �}).

𝜏 ↦ {Ω ∩ {xd = 𝜏}} ⊂ ℝ
d,
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is continuous as well. Moreover both Ω ∩ {xd = 0} and Ω ∩ {xd = diam (Ω)} are empty, so 
that

Now, let 𝜀 > 0 and � ∈ C1
c
(Ω) be such that ‖�‖p = 1 and � + �p(Ω) ≥ ‖∇�‖pp . Then, by 

denoting x = (x�, �) ∈ ℝ
d−1 ×ℝ and using Fubini Theorem, we get

which, by the arbitrariness of � , implies the thesis.  ◻

Lemma 3.4 Let 1 ≤ p ≤ +∞ and (Ωn) ⊂ A
d
c
 with |Ωn| = 1 for every n ∈ ℕ . Suppose that

• (0,… , 0), (0,… , diam (Ωn)) ∈ �Ωn,

• infn∈ℕ diam (Ωn) > 0.

Then, there exists c > 0 such that

Proof For any n ∈ ℕ and any t ∈ (0, diam (Ωn)) , we denote

By (3.1) and by using an approximation argument, for every 1 ≤ p ≤ +∞ we have

Between the two right cones of basis �n(t) and vertexes the origin or bn = (0,… , diam(Ωn)) , 
we can select the one with the greatest height ln(t), so that ln(t) ≥ diam (Ωn)∕2 . By convex-
ity, such a cone is contained in Ωn and we have

� ↦ �p(Ω ∩ {xd = �}),

lim
t→0+

�p(Ω ∩ {xd = �}) = lim
�→ diam (Ω)−

�p(Ω ∩ {xd = �}) = +∞.

� + �p(Ω) ≥ �Ω

|∇�|pdx = �
diam (Ω)

0

(
�Ω∩{xd=�}

|∇�|pdx�
)
d�

≥ �
diam (Ω)

0

(
�Ω∩{xd=�}

|∇x��|pdx�
)
d�

≥ �
diam (Ω)

0

(
�p(Ω ∩ {xd = �})�Ω∩{xd=�}

|�|pdx�
)
d�

≥ �p(Ω ∩ {xd = t}),

inf
n∈ℕ

inf
�∈(0, diam (Ωn))

�1∕p
p

(Ωn ∩ {xd = �}) ≥ c.

�n(t) = Ωn ∩ {xd = t} ∈ A
d−1
c

.

�1∕p
p

(�n(t)) ≥ �p

2�(�n(t))
.

�d−1(�n(t))|Bd−1
1

|ln(t)
d

≤ |Ωn| = 1.
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In particular

Since infn∈ℕ diam (Ωn) > 0 , we obtain

and the thesis easily follows.  ◻

Proposition 3.5 Let 1 ≤ q < p ≤ +∞ and (Ωn) ⊂ A
d
c
 with |Ωn| = 1 for every n ∈ ℕ . If 

diam (Ωn) → +∞ , then

Proof Let an = (0,… , 0) and bn = (0,… , diam (Ωn)) . Being the functional Fp,q rotation 
and translation invariant we can suppose, without loss of generality, that an, bn ∈ �Ωn . By 
applying Lemma 3.3 there exists tn ∈ (0, diam (Ωn)) such that

where �n = Ωn ∩ {xd = tn} . Moreover, up to rotations, we can also suppose 
tn ≥ diam (Ωn)∕2 . Let � ∈ (0, 1) , and define Un

�
 to be the cylinder with basis ��n and height 

(1 − �)tn . More precisely we consider

Then, by the convexity of Ωn , we have Un
𝛼
⊂ Ωn so that

Since

by (3.6), (3.5) and (3.7), we obtain

and thus

Now, suppose that q ≤ 2 . By Lemma 2.4 we have

�(�n(t)) ≤
(

2d

|Bd−1
1

| diam (Ωn)

)1∕(d−1)

.

�(�n(t)) ≤
(

2d

|Bd−1
1

| infn diam (Ωn)

)1∕(d−1)

,

md−1(p, q) ≤ lim inf
n→+∞

Fp,q(Ωn) ≤ lim sup
n→+∞

Fp,q(Ωn) ≤ Md−1(p, q).

(3.5)�1∕p
p

(Ωn) ≥ �1∕p
p

(�n),

Un
�
∶=

{
(x, y) ∶ x ∈ ��n, y ∈ (�tn, tn)

}
.

(3.6)�q(U
n
�
) ≥ �q(Ωn).

(3.7)�q(U
n
�
) = �−q�q

(
�n ×

(
0,

(1 − �)

�
tn

))
,

Fp,q(Ωn) ≥ �
1∕p
p (Ωn)

�
1∕q
q (Un

�
)
≥ �

1∕p
p (�n)

�
1∕q
q (�n)

(
�q(�n)

�−q�q(�n × (0, 1 − �)�−1tn)

)1∕q

(3.8)Fp,q(Ωn) ≥ �md−1(p, q)

(
�q(�n)

�q(�n × (0, 1 − �)�−1tn)

)1∕q

.



671On a class of Cheeger inequalities  

1 3

Since diam (Ωn) → +∞ , we can assume infn diam (Ωn) > 0 ; by applying Lemma 3.4 we 
have that �1∕qq (�n) ≥ c for some constant c > 0 . Being tn ≥ diam (Ωn)∕2 , we get

By passing to the limit for n → +∞ in (3.8) and using (3.9) and (3.10), we infer that

Letting � → 1− , we conclude that

The case when q > 2 is similar. Indeed, (2.8) ensures that

and again Lemma 3.4 applies leading to the analog of the limit (3.10) .
Finally, if we choose �n to be such that �q(�n) ≤ �q(Ωn) , by using the fact that 

�
1∕p
p (Ωn) ≤ �

1∕p
p (Un

�
) and by applying (3.7) with p in the place of q, we obtain:

By the same argument as above (distinguishing the case p ≤ 2 and p > 2 , when we use 
Lemma 2.4), passing to the limit, as n → ∞ , we have

and, letting � → 1− , we conclude that

as required.  ◻

Theorem  3.6 Let 1 ≤ q < p ≤ +∞ . If md(p, q) < md−1(p, q) , then there exists Ωd
⋆
∈ A

d
c
 

such that

Proof Let (Ωn) be such that Fp,q(Ωn) → md(p, q) with |Ωn| = 1 for every n ∈ ℕ . Then, by 
Proposition 3.5, we have

(3.9)�q(�n × (0, 1 − �)�−1tn) ≤ �q(�n) +

(
��q

(1 − �)tn

)q

.

(3.10)
lim

n→+∞

�q(�n)

�q(�n) +
�q�

q
q

(1 − �)qt
q
n

= 1.

lim inf
n→+∞

Fp,q(Ωn) ≥ �md−1(p, q).

lim inf
n→+∞

Fp,q(Ωn) ≥ md−1(p, q).

�q(�n × (0, 1 − �)�−1tn) ≤ �q(�n)

(
1 +

�2�2
q

(1 − �)2�
2∕q
q (�n)t

2
n

)q∕2

,

Fp,q(Ωn) ≤ �
1∕p
p (Un

�
)

�
1∕q
q (Ωn)

≤ Md−1(p, q)

�

(
�p(�n × (0, �−1(1 − �)tn)

�p(�n)

)1∕p

.

lim sup
n→∞

Fp,q(Ωn) ≤ �−1Md−1(p, q),

lim sup
n→∞

Fp,q(Ωn) ≤ Md−1(p, q)

md(p, q) = Fp,q(Ω
d
⋆
).



672 L. Briani et al.

1 3

Hence, up to translations, the whole sequence (Ωn) is contained in a compact set. By apply-
ing Blaschke Selection Theorem (see [11]), we can extract a subsequence (Ωnk

) which con-
verges in the Hausdorff distance to some Ωd

⋆
 . Using the continuity properties for �p with 

respect to Hausdorff metrics on the class of bounded convex sets, we have

as required.  ◻

Lemma 3.7 Let 1 < p < ∞ , p ≠ 2 and let Q = (0, 1)d be the unitary cube of ℝd . Then

Proof By Lemma 2.4 (applied d times and with L = 1 ) we need only to prove the two strict 
inequalities. With this aim we define

We notice that �p(Q) = d�
p
p , with a minimizer given by

where u ∈ W1,p(0, 1) is a non negative function, optimal for (2.1), with unitary Lp norm. 
Now, the case when p > 2 follows by strict convexity of the map t → tp∕2 : indeed, being 
d ≥ 2 , integrating over Q the inequality

we obtain

Similarly, when p < 2 , we can consider �̃� to be the optimal positive function for �p(Q) , 
with unitary Lp norm. Then, being d ≥ 2 , the strict concavity of the map t → tp∕2 gives

which, integrated over Q, implies that

This concludes the proof of the lemma.  ◻

We are now in a position to prove the following existence result in the case d = 2.

sup
n

diam (Ωn) < +∞.

md(p, q) = lim
n→∞

Fp,q(Ωn) = Fp,q(Ω
d
⋆
)

d1∕p𝜋p ≤ 𝜆1∕p
p

(Q) < d1∕2𝜋p for every p > 2;

d1∕2𝜋p < 𝜆1∕p
p

(Q) ≤ d1∕p𝜋p for every p < 2.

�p(Q) = inf
�∈C∞

c
(Q)⧵{0}

∫
Q

∑d

i=1

���
��

�xi

���
p

dx

∫
Q
���pdx .

(3.11)�(x1,… , xd) = u(x1)… u(xd),

|∇𝜙(x)|p < dp∕2−1
∑
i

||||
𝜕𝜙(x)

𝜕xi

||||
p

,

𝜆p(Q) < dp∕2−1𝜈p(Q) = dp∕2𝜋p
p
.

|∇�̃�(x)|p > dp∕2−1
∑
i

|||||
𝜕�̃�(x)

𝜕xi

|||||

p

,

𝜆p(Q) > dp∕2−1𝜈p(Q) = dp∕2𝜋p
p
.
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Theorem 3.8 Let 1 ≤ q < p ≤ +∞ . Suppose q ≤ 2 ≤ p , then there exists Ω⋆ ∈ A
2
c
 such that

Proof By Theorem 3.6 it is sufficient to show that

The cases when q = 1 or p = +∞ follow at once by inequalities (3.1) and (3.2). The 
remaining cases follow by combining the upper estimate for �p(Q) and the lower estimate 
for �q(Q) given by Lemma 3.7; notice that since p ≠ q , at least one of these two inequali-
ties is strict.  ◻

Remark 3.9 We notice that, by Proposition 3.5, one readily concludes that if there exists a 
maximizing sequence (Ωn) ⊂ A

d
c
 such that |Ωn| = 1 and satisfying diam (Ωn) → +∞ , then

In particular when d = 2 , this argument would prove Conjecture 3.1. On the other hand, 
if any maximizing sequence (Ωn) ⊂ A

d
c
 with |Ωn| = 1 is contained (up to translation) in 

a compact set, arguing as in Theorem 3.6 it is easy to conclude that a convex maximizer 
exists. This suggests a dichotomy between the equality Md(p, q) = �p∕�q , stated in Conjec-
ture 3.1, and the existence of a convex maximizer.

4  Further remarks and open problems

Several interesting problems and questions about the shape functionals Fp,q are still open; 
in this section we list some of them.

Problem 1 In Theorem 2.9 we have shown that Md(p, q) < +∞ when q > d ; it would be 
interesting to give a characterization of the quantity Md(p, q) in these cases. In addition, 
even if we believe that the value Md(p, q) is not a maximum, it would be interesting to 
describe the behavior of maximizing sequences (Ωn ). It is reasonable to expect that Ωn is 
made by a domain Ω where n points are removed; the locations of these points in Ω is an 
interesting issue: is it true that in the two-dimensional case they are the centers of an hex-
agonal tiling?

Problem 2 Proving or disproving the existence of a domain Ω minimizing the shape func-
tional Fp,q in the class Ad is another very interesting issue. The presence of small holes in 
a domain Ω does not seem to decrease the value of Fp,q(Ω) , which could be a point in favor 
of the existence of an optimal domain Ωp,q.

Problem  3 In the smaller class Ad
c
 we know that Md(p, q) is always finite. It would be 

interesting to prove (or disprove) Conjecture 3.1 (formulated by Parini in [20]), that is,

Fp,q(Ω
⋆) = min{Fp,q(Ω) ∶ Ω ∈ A

2
c
}.

m2(p, q) < m1(p, q) = 𝜋p∕𝜋q.

Md(p, q) = Md−1(p, q).

Md(p, q) = �p∕�q and no maximizer exists.
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In other words, maximizing sequences are made by thin slabs

At present the problem is open even in the case d = 2 , see also Remark 3.9.

Problem 4 Concerning the minimum md(p, q) of Fp,q in the class Ad
c
 , establishing if it is 

attained is an interesting issue. Theorem 3.8 gives an affirmative answer in the case d = 2 
and q ≤ 2 ≤ p ; in particular, this happens for d = 2 and q = 1 , p = 2 , which is the original 
Cheeger case and, according to some indications by E. Parini [20], the optimal domain 
could be in this case a square. This is not yet known.

We expect the existence of an optimal domain for every dimension d and every p, q 
and, as stated in Theorem 3.6, this would follow once the strict monotonicity of md(p, q) 
with respect to the dimension d is proved. At present however, a general proof of this 
strict monotonicity is missing.

Appendix

We devote this appendix to briefly describe the classical strategy of Cioranescu–Murat 
(see [7]) which can be used to prove Theorem 2.9, see Remark 2.10. These results are 
well known, but in the case p ≠ 2 it is not easy to find precise references, hence we add 
them for the sake of completeness and for the readers’ convenience. We limit ourselves 
to prove only what we need in the paper, pointing out that the following results can be 
obtained in a more general framework of �-convergence (see for instance the mono-
graphs [6, 11] and references therein).

Let 1 ≤ p ≤ d , Ω be a bounded connected smooth open set, and 𝜀 > 0 . We consider in 
ℝ

d ( d ≥ 2 ) the lattice of parallel cubes Pi
�
 of size 2� and we denote by x�

i
 their centers. In 

each cube we consider a tiny ball Br�
(x�

i
) of radius r� , where r𝜀 < 𝜀 . Finally we set

and

Our goal is to determine the behavior of �p(Ω�) as � → 0 . This depends on the size of r� , 
and more precisely on the following ratio:

Proposition A.1 (super-critical case) If a� → +∞ as � → 0 , then �p(Ω�) → +∞.

Proof Given R > r > 0 , we denote by �R,r the least eigenvalue of BR⧵Br with Dirichlet 
boundary condition on �Br and Neumann boundary condition on �BR , that is,

Ω� = A × (0, �) with � → 0 and A a smooth d − 1 dimensional domain.

C� =
{
x�
i
∶ Pi

�
⋐ Ω

}
.

Ω� = Ω⧵
⋃
x∈C�

Br�
(x).

(5.1)a𝜀 =

{
𝜀−dr

d−p
𝜀 if p < d,

𝜀−d(− ln(r𝜀))
1−d if p = d.
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where the condition v = 0 on �Br is intended in the usual trace sense. Notice that by 
exploiting the convexity property of the functional u ↦ ∫ |∇u1∕p|p (as done in [1, 2] and 
[8]), we can infer that there exists a unique positive minimizer v for (5.2) with unitary Lp 
norm. In particular, being the domain BR⧵Br radial, v is a radially symmetric function in 
W1,p(BR⧵Br).

We claim that there exist constants c ≥ 1 and 𝜉 > 0 (which do not depend on � ) such that

Assume (5.3) to be true, we obtain the thesis by proving that �c�,r�
→ +∞ as � → 0.

Indeed, taking for simplicity c = 1 and using coarea formula, we have that

where the infimum is computed among non negative functions u ∈ C∞(r�, �) vanishing on 
r� and satisfying

If u is admissible, by Hölder inequality,

moreover there exists t0 ∈ (r�, �) such that

since otherwise

would imply ∫ 𝜀

r𝜀
|u(t)|ptd−1dt < 1 , in contradiction with (5.4). Hence, using the fact that 

u(r�) = 0 , we have

Finally, the latter inequality combined with (5.5) implies

(5.2)�R,r = inf

{∫
BR⧵Br

|∇v|pdx
∫
BR⧵Br

|v|pdx ∶ v ∈ W1,p(BR⧵Br), v = 0 on �Br

}
,

(5.3)�p(Ω�) ≥ ��c�,r�
.

��,r�
= inf

{
∫

�

r�

|u�(t)|ptd−1dt
}
,

(5.4)∫
�

r�

|u(t)|ptd−1dt = 1.

(5.5)�
�

r�

|u�(t)|ptd−1dt ≥
(
�

�

r�

|u�(t)|dt
)p(

�
�

r�

1

t(d−1)∕(p−1)
dt

)1−p

;

|u(t0)| =
(
∫

�

r�

td−1dt

)−1∕p

,

0 ≤ u(t) <

(
�

𝜀

r𝜀

td−1dt

)−1∕p

for every t ∈ (r𝜀, 𝜀),

�
�

r�

|u�(t)|dt ≥ |||||�
t0

r�

u�(t)dt
|||||
≥
(
�

�

r�

td−1dt

)−1∕p

.

�
�

r�

|u�(t)|ptd−1dt ≥
(
�

�

r�

td−1dt

)−1(
�

�

r�

1

t(d−1)∕(p−1)
dt

)1−p

.
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In the case p < d (the case p = d being similar), computing the right-hand side in the pre-
vious inequality we obtain

Taking (5.1) into account, it is easy to verify that the right hand side of the previous ine-
quality tends to +∞ as � → 0.

To conclude let us prove (5.3). We notice that there exists c > 1 , which does not depend 
on � , such that for every � small enough the family of balls

covers Ω . Moreover there exists N ∈ ℕ , which again does not depend on � , such that we 
can split G� into N sub-families G�

1
,…G

�

N
 made up of disjoint balls. This latter assertion 

can be easily proved once noticed that any ball in G� can intersect only a bounded num-
ber of different balls in G� , and such a bound does not depend on � . Indeed suppose that 
Bc𝜀(x̄) ∈ G

𝜀 intersects Bc�(x1),… ,Bc�(xm) ∈ G
� , then we have also

in particular, taking the measures of both sets, we get m ≤ (3c)d . Therefore, it is sufficient 
to take N = [(3c)d] + 1.

Now, let u ∈ C∞
c
(Ω�) and extend u by zero outside Ω� . We have

Thus, by the arbitrariness of u we obtain (5.3) with � = N−1 .  ◻

Proposition A.2 (sub-critical case) If a� → 0 as � → 0 , then �p(Ω�) → �p(Ω).

Proof First we notice that by monotonicity we have

Hence it is enough to prove that

Let v� be a competitor for capp(Br�
;B�) chosen in such a way that:

We define V� in Ω to be

��,r�
≥ d

(
1

�d − rd
�

)(
d − p

p − 1

)p−1
(

1

r
(p−d)∕(p−1)
� − �(p−d)∕(p−1)

)p−1

.

G
� =

{
Bc�(x) ∶ x ∈ C�

}
,

m⋃
i=1

B𝜀(xi) ⋐ B3c𝜀(x̄),

N �Ω

|∇u|pdx ≥
N∑
i=1

∑
B∈G�

i

�B

|∇u|pdx ≥ �c�,r�

N∑
i=1

∑
B∈G�

i

�B

|u|pdx ≥ �c�,r� �Ω

|u|pdx.

�p(Ω�) ≥ �p(Ω).

(5.6)lim sup
�→0

�p(Ω�) ≤ �p(Ω).

v� ∈ C∞
c
(B�), 0 ≤ v� ≤ 1, v� = 1 on Br�

, ‖∇v�‖p ≤ capp(Br�
;B�) + o(�d).

V�(x) =

�
1 − v�(x − xi), in Bi

�
(xi) if xi ∈ C�

1, in Ω⧵
⋃

x∈C�
Bi
�
(x),
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and we denote by n(�) ∈ ℕ be the number of cubes Pi
�
 such that P�

i
⋐ Ω . We have

Since r� → 0 , the latter implies

(see Section 2.2.4 of [18] for the precise value of capp(Br�
;B�) ). This means that V� weakly 

converge in W1,p(Ω) to some constant c ∈ ℝ . Moreover, since V� = 1 on �Ω , we can infer 
that c = 1.

Now, let u ∈ C∞
c
(Ω) , and consider u� = V�u . We have u� ∈ W

1,p

0
(Ω�) and u� → u 

strongly in W1,p

0
(Ω) . In particular

Since u is arbitrary we get (5.6).  ◻
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