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Abstract This manuscript deals with a Timoshenko system with damping and source. The existence and
stability of the solution are analyzed taking into account the competition of the internal damping versus the
logarithmic source. We use the potential well theory. For initial data in the stability set created by the Nehari
surface, the existence of global solutions is proved using Faedo–Galerkin’s approximation. The exponential
decay is given by the Nakao theorem. A numerical approach is presented to illustrate the results obtained.

Mathematics Subject Classification 35B40 · 35L70 · 35A01

1 Introduction

The Timoshenko system is a model widely studied in the scientific community for vibrations of elastic beams.
Its mathematical formulation is given by a system of two partial differential equations

ρAϕt t = [S(x, t)]x + N1(x, t),

ρ Iψt t = [M(x, t)]x − S(x, t) + N2(x, t),

where the functions ϕ and ψ depending upon (x, t) ∈ (0, L) × (0, T ) model the transverse displacement of a
beam with reference configuration (0, L) ⊂ R are transverse displacement and the rotations in the transverse
sections, respectively. The functions M and S represent, respectively, the bending moment and the shear stress
and satisfies

S(x, t) = k AG (ϕx + ψ) ,

M(x, t) = E Iψx ,
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N1(x, t) = μ1ϕ ln |ϕ|2
R
,

N2(x, t) = μ2ψ ln |ψ |2
R
,

where μ j > 0, j = 1, 2 and | · |R denote the absolute value of a real number.
The constants, ρ is the mass density, A the cross-sectional area, and I the moment of inertia. To simplify

the notation, let us denote by ρ1 = ρA, ρ2 = ρ I, κ = k AG and b = E I . Under these conditions, we consider
the initial-boundary problem for the following logarithmic Timoshenko System:

ρ1ϕt t − κ (ϕx + ψ)x + γ1ϕt = μ1ϕ ln |ϕ|2 in (0, L) × (0,∞), (1)

ρ2ψt t − bψxx + κ (ϕx + ψ) + γ2ψt = μ2ψ ln |ψ |2 in (0, L) × (0,∞), (2)

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x), x ∈ (0, L), (3)

ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x), x ∈ (0, L), (4)

ϕ(0, t) = ϕ(L , t) = ψ(0, t) = ψ(L , t) = 0, t ≥ 0, (5)

where γi > 0, i = 1, 2. Shear deformation effects were first introduced by Rankine [24] in 1858. Rotary
inertia effects were apparently discovered independently by Bresse [6] in 1859 and Rayleigh [25] in 1945. One
contributor to developing the theory that takes into account both effects was Paul Ehrenfest, who was cited
by Timoshenko [27] in the footnote of his book, in Russian, Course in Elasticity (second volume) in 1916.
Nowadays, this celebrated theory is often knowledge by Timoshenko’s paper [28] of 1921. For more detailed
historic context, see [10–12] with references therein.

The internal damping is associated with an oscillating system and produces a loss of energy to overcome
external sources that act in the mechanical resistance of the material. Logarithmic non-linearity is a class
of nonlinearities distinguished by several interesting physical properties, see [7]. It appears, for instance, in
dynamics of Q-ball in theoretical physics [14], theories of quantum gravity [31], inflationary models [4], and
quantum mechanics [5].

There are several studies on this competition, that is, stability analysis of the global solution taking account
the effect provoked by the presence of both, stabilizing mechanism and source term. Below, we cite a few. [9]
studied the existence and exponential stability of the global solution to a Klein–Gordon equation of Kirchhoff–
Carrier type with strong damping and logarithmic source term. An extensible beam equation of Kirchhoff type
with internal damping and source termwas investigated in [22].Kirchhoff plate equationswith internal damping
and logarithmic non-linearity were considered in [23]. General decay result for a plate equation with non-linear
damping and a logarithmic source term was established in [2]. For global solution and blow-up of logarithmic
Klein–Gordon equation, see [29].

Motivated by the above studies, in this paper, we prove the global existence for the problem (1)–(5) by
applying the potential well theory introduced by Payne and Sattinger [20] and Sattinger [26]. Furthermore, we
obtain the exponential decay of solution for this problem.

This paper is organized as follows: In the next section, we are going to give some preliminaries. Section 3
deals with potential well theory. We introduce the stability set. In Sect. 4, we prove the existence of global
solution. In Sect. 5, we study the exponential decay. Finally, Sect. 6 is devoted to the numerical approach.

2 Preliminaries

We denote L2(0, L) the Hilbert’s space of square-integrable function on the interval (0, L), with the inner
product

(u, v) =
∫ L

0
uv dx, ∀u, v ∈ L2(0, L)

and norm

|u|2 = (u, u) ∀u ∈ L2(0, L).

We use Sobolev space notation and properties as in [1]. We denote

H1(0, L) = {u | u ∈ L2(0, L), ux ∈ L2(0, L)}
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and

H1
0 (0, L) = {

u ∈ H1(0, L) | u(0) = u(L) = 0
}
.

In this section, we present some results needed for the proof of our results. We start defining the energy
functional associated with the problem (1)–(5)

E(t) = 1

2

(
ρ1|ϕt (t)|2 + ρ2|ψt (t)|2 + κ|ϕx (t) + ψ(t)|2 + b|ψx (t)|2 + μ1|ϕ(t)|2 + μ2|ψ(t)|2

−μ1

∫ L

0
ϕ2(t) ln |ϕ(t)|2

R
dx − μ2

∫ L

0
ψ2(t) ln |ψ(t)|2

R
dx

)
. (6)

Direct differentiation of (6) gives us

d

dt
E(t) = −γ1|ϕt (t)|2 − γ2 |ψt (t)|2 . (7)

Now, consider the following lemmas:

Lemma 2.1 (Sobolev–Poincaré Inequality) Let p be a number with in 2 < p < ∞ if n = 1, 2 or 2 ≤ p ≤
2n

n − 2
if n ≥ 3, then there exist a constant C > 0, such that

||u||p ≤ C |ux |, ∀ u ∈ H1
0 (0, L). (8)

Lemma 2.2 (Aubin–Lions compactness Theorem [16], Theorem 5.1) Let T > 0, 1 < p0, p1 < ∞. Consider
B0 ⊂ B ⊂ B1 Banach spaces, B0, B1 reflexives, B0 with compact embedding in B. Define W = {u | u ∈
L p0(0, T ; B0) , ut ∈ L p1(0, T ; B1)} equipped with the norm ||u||W = ||u||L p0 (0,T ;B0) + ||ut ||L p1 (0,T ;B1).
Then, W has compact embedding in L p0(0, T ; B).

Lemma 2.3 (Lions [16], Lemma 1.3 ) Let Q = Ω × (0, T ), T > 0 a bounded open set of Rn × R and
gm, g : Q → R functions of L p(0, T ; L p(Ω)) = L p(Q), 1 < p < ∞, such that ||gm ||L p(Q) ≤ C, gm →
g a.e. in Q. Then, gm ⇀ g in L p(Q) as m → ∞.

Lemma 2.4 (Nakao’s Lemma) [18] Suppose that φ(t) is a bounded nonnegative function on R+, satisfying
sup ess
t≤s≤t+1

φ(s) ≤ C0 [φ(t) − φ(t + 1)] ,

for any t ≥ 0, where C0 is a positive constant. Then

φ(t) ≤ Ce−αt , ∀ t ≥ 0,

where C and α are positive constants.

3 The potential well

In this section, we present the potential well corresponding to the Eqs. (1)–(2). We define the operator J :(
H1
0 (0, L)

)2

→ R by

J (ϕ, ψ)
def= 1

2

[
κ|ϕx + ψ |2 + b|ψx |2 + μ1|ϕ|2 + μ2|ψ |2 − μ1

∫ L

0
ϕ2 ln |ϕ|2

R
dx − μ2

∫ L

0
ψ2 ln |ψ |2

R
dx

]
.

For (ϕ, ψ) ∈
(
H1
0 (0, L)

)2

and λ > 0, we have

J (λϕ, λψ)
def= λ2

2

[
κ|ϕx + ψ |2 + b|ψx |2 + μ1|ϕ|2 + μ2|ψ |2 − 2μ1 ln λ

∫ L

0
ϕ2 dx

−μ1

∫ L

0
ϕ2 ln |ϕ|2

R
dx − 2μ1 ln λ

∫ L

0
ψ2 dx − μ2

∫ L

0
ψ2 ln |ψ |2

R
dx

]
.

Associated with J , we have the well-known Nehari Manifold
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N de f=
{(

ϕ, ψ
) ∈ (H1

0 (0, L)
)2

/{0};
[
d

dλ
J (λϕ, λψ)

]
λ=1

= 0

}
.

Equivalently

N =
{(

ϕ, ψ
) ∈ (H1

0 (0, L)
)2 ; κ|ϕx + ψ |2 + b|ψx |2 = μ1

∫ L

0
ϕ2 ln |ϕ|2

R
dx + μ2

∫ L

0
ψ2 ln |ψ |2

R
dx

}
.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [3]

d
def= inf(

ϕ,ψ
)
∈
(
H1
0 (0,L)

)2
/{0}

sup
λ>0

J (λu).

According to Willem [30], Theorem 4.2, the depth of the well d is a strictly positive constant given by

0 < d = inf
ϕ,ψ ∈N

J (λu).

Now, we introduce

W =
{(

ϕ, ψ
) ∈ (H1

0 (0, L
)2; J (ϕ, ψ) < d

}
∪ {0},

and partition it into two sets as follows:

W1 =
{(

ϕ, ψ
) ∈ W ; κ|ϕx + ψ |2 + b|ψx |2 > μ1

∫ l

0
ϕ2 ln |ϕ|2

R
+ μ2

∫ l

0
ψ2 ln |ψ |2

R

}
∪ {0}

and

W2 =
{(

ϕ, ψ
) ∈ W ; κ|ϕx + ψ |2 + b|ψx |2 < μ1

∫ l

0
ϕ2 ln |ϕ|2

R
+ μ2

∫ l

0
ψ2 ln |ψ |2

R

}
.

Therefore, we define by W1 the set of stability for the problem (1)–(5).

Proposition 3.1 Let
(
ϕ0, ψ0

) ∈ W1 and
(
ϕ1, ψ1

) ∈ (L2(0, L)
)2
. If E(0) < d, then (ϕ, ψ) ∈ W1.

Proof We introduce the functional I (ϕ, ψ) given by

I (ϕ, ψ)
def= 1

2

[
κ|ϕx + ψ |2 + b|ψx |2 − μ1

∫
Ω

ϕ2 ln |ϕ|2
R
dx − μ2

∫
Ω

ψ2 ln |ψ |2
R
dx

]
.

Let T > 0. From (7), we get

E(t) ≤ E(0) < d, for all t ∈ [0, T ),

and then

1

2

[|ϕt (t)|2 + |ψt (t)|2
]+ J (ϕ(t), ψ(t)) < d, for all t ∈ [0, T ). (9)

Note that in W1, we have I (ϕ(t), ψ(t)) > 0 for all t ∈ (0, T ). Arguing by contradiction, we suppose that
there exists a first t0 ∈ (0, T ), such that I (ϕ(t0), ψ(t0)) = 0 and I (ϕ(t), ψ(t)) > 0 for all 0 ≤ t < t0, that is

1

2

[|ϕt (t0)|2 + |ψt (t0)|2
]+ J (u(t0), v(t0)) = 0.

From the definition of N , we have that (ϕ(t0), ψ(t0)) ∈ N , which leads to

J (ϕ(t0), ψ(t0)) ≥ inf
(ϕ(t),ψ(t))∈N

J (u(t), v(t)) = d.

We deduce

1

2

[|ϕt (t0)|2 + |ψt (t0)|2
]+ J (ϕ(t0), ψ(t0)) ≥ d,

which contradicts with (9). Then, (ϕ(t), ψ(t)) ∈ W1 for all t ∈ [0, T ). 
�
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4 Existence of global weak solution

In this section, we prove the existence of global weak solutions.

Theorem 4.1 Let
(
ϕ0, ψ0

) ∈ W1, E(0) < d and
(
ϕ1, ψ1

) ∈ (L2(0, L)
)2
. Then, the problem (1)–(5) admits

a weak solution
(
ϕ, ψ

)
in the class

(
ϕ, ψ

) ∈ (L∞
loc

(
0, ∞; H1

0 (0, L)
))2

(10)(
ϕt , ψt

) ∈ (L∞
loc

(
0,∞; L2(0, L)

))2
(11)

satisfying w, z ∈ H1
0 (0, L)

d

dt

(
ρ1ϕt (t), w

)+ (
κ(ϕx + ψ)(t), wx ) + (

γ1ϕt (t), w
)− (

μ1ϕ(t) ln |ϕ(t)|2
R
, w
) = 0, (12)

d

dt

(
ρ2ψt (t), z

)+ (
bψx (t), zx

)+ (
κ(ϕx + ψ)(t), z

)+ (
γ2ψt (t), z

)− (
μ2ψ(t) ln |ψ(t)|2

R
, z
) = 0, (13)

(
ϕ, ψ

)
(x, 0) = (

ϕ0, ψ0
)
, (14)(

ϕt , ψt
)
(x, 0) = (

ϕ1, ψ1
)
, (15)

in D′(0, T ).

Proof We use the Faedo–Galerkin’s method. The proof of the global existence of solutions will be made in
three steps: approximated problem, a priori estimates, and passage to the limit. 
�

4.1 Approximated problem

Let (wν)ν∈N be a basis of H1
0 (0, L) from the eigenvectors of the operator −Δ, and

Vm = span {w1, w2, . . . , wm} .

Consider

ϕm(t) =
m∑
j=1

g jm(t)w j and ψm(t) =
m∑
j=1

h jm(t)w j

a solution of the approximated problem

(
ρ1ϕ

m
tt (t), w

)+ (
κ(ϕm

x (t) + ψm(t)), wx
)+ (γ1ϕ

m
t (t), w) − (

μ1ϕ
m(t) ln |ϕm(t)|2, w) = 0, (16)

(ρ2ψ
m
tt (t), z) + (

bψm
x (t), zx

)+ (
κ(ϕm

x (t) + ψm(t)), z
)+ (γ2ψ

m
t (t), z) − (

μ2ψ
m(t) ln |ψm(t)|2, z) = 0,

(17)(
ϕm(0), ψm(0)

) = (ϕ0m, ψ0m) −→ (ϕ0, ψ0) strongly in
(
H1
0 (0, l)

)2
, (18)(

ϕm
t (0), ψm

t (0)
) = (ϕ1m, ψ1m) −→ (ϕ1, ψ1) strongly in

(
L2(0, l)

)2
, (19)

∀ w, z ∈ Vm . By virtue of Carathéodory’s theorem, see [8], the system (16) has a local solution in [0, tm),
0 < tm ≤ T . The extension of the solution to the whole interval [0, T ] is a consequence of the following a
priori estimates.
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4.2 A priori estimates

Let w = ϕm
t (t) and z = ψm

t (t) in (16) and (17), respectively. Then, we have

1

2

d

d t

[
ρ1
∣∣ϕm

t (t)
∣∣2 + ρ2

∣∣ψm
t (t)

∣∣2 + κ
∣∣ϕm

x (t) + ψm(t)
∣∣2 + b

∣∣ψm
x (t)

∣∣2 + μ1
∣∣ϕm(t)

∣∣2 + μ2
∣∣ψm(t)

∣∣2

−μ1

∫ L

0
ϕm(t)2 ln

∣∣ϕm(t)
∣∣2
R

− μ2

∫ L

0
ψm(t)2 ln

∣∣ψm(t)
∣∣2
R

d x

]
+ γ1

∣∣ϕm
t (t)

∣∣2 + γ2
∣∣ψm

t (t)
∣∣2 = 0.

From (6), we have

d

d t
Em(t) + γ1

∣∣ϕm
t (t)

∣∣2 + γ2
∣∣ψm

t (t)
∣∣2 = 0, (20)

where Em(t) is the approximated energy of the problem (16). Now, integrating (20) from 0 to t , 0 ≤ t ≤ tm ,
we obtain

Em(t) + γ1

∫ t

0

∣∣ϕm
t (t)

∣∣2 ds + γ2

∫ t

0

∣∣ψm
t (s)

∣∣2 ds d s = Em(0). (21)

Thus

Em(t) + γ1

∫ t

0
|ϕm

t (s)|2 d s + γ2

∫ t

0

∣∣ψm
t (s)

∣∣2 d s = ρ1 |ϕ1m |2 + ρ2 |ψ1m |2 + κ |ϕ0mx + ψ0m |2

+b |ψ0mx |2 + γ1 |ϕ0m |2 + γ2 |ψ0m |2 − μ1

∫ L

0
ϕ2
0m ln |ϕ0m |2

R
− μ2

∫ L

0
ψ2
0m ln |ψ0m |2

R
dx,

which gives us the following estimate:

Em(t) + γ1

∫ t

0

∣∣ϕm
t (s)

∣∣2 d s + γ2

∫ t

0

∣∣ψm
t (s)

∣∣2 d s ≤ ρ1 |ϕ1m |2 + ρ2 |ψ1m |2 + J (ϕ0m, ψ0m) .

We have that J (ϕ0m, ψ0m) < d, and then, by (16), we get

Em(t) + μ1

∫ t

0

∣∣ϕm
t (s)

∣∣2 d s + μ2

∫ t

0

∣∣ψm
t (s)

∣∣2 d s ≤ C1, (22)

where C1 is a positive constant independent of m and t .
These estimates imply that the approximated solution (ϕm, ψm) exists globally in [0,∞). See [13]. Then,

by estimate (22), we have
(
ϕm) , (ψm) are bounded in L∞

loc

(
0, T ; H1

0 (0, L)
)

(23)(
ϕm
t

)
,
(
ψm
t

)
are bounded in L∞

loc

(
0, T ; L2(0, L)

)
. (24)

Now, by the logarithmic inequality
∣∣t2 ln t

∣∣ ≤ C
(
1 + |t |3) ,

we get

μ1

∫ L

0

∣∣∣ϕm(t) ln
∣∣ϕm(t)

∣∣2
R

∣∣∣2 dx = 4μ1

∫ L

0

∣∣ϕm(t)
∣∣2
R

ln
∣∣ϕm(t)

∣∣2
R

dx

= 4μ1

∫
x∈(0,L); |ϕm |<1

∣∣ϕm(t)
∣∣2
R
ln
∣∣ϕm(t)

∣∣2 dx + 4μ1

∫
x∈(0,L); |ϕm |≥1

∣∣ϕm(t)
∣∣2
R

ln
∣∣ϕm(t)

∣∣2 dx

≤ 4μ1

∫ L

0

∣∣ϕm(t)
∣∣2
R

dx + 4μ1

∫ L

0

∣∣ϕm(t)
∣∣4
R

ln
∣∣ϕm(t)

∣∣2
R

dx ≤ 4μ1
∣∣ϕm(t)

∣∣2 + 4μ1C
∫ L

0

(
1 + ∣∣ϕm(t)

∣∣6
R

)
dx

= 4μ1
∣∣ϕm(t)

∣∣2 + 4μ1CL + C
∣∣ϕm(t)

∣∣6
2 ≤ μ1

∣∣ϕm(t)
∣∣2 + CL + C

∣∣ϕm(t)
∣∣6 ≤ C̃1. (25)
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Analogously, we have

μ2

∫ L

0
|ϕm(t) ln

∣∣ϕm(t)
∣∣2
R

|2 dx ≤ C̃2, (26)

where C̃1 and C̃2 are constant independent of m and t. From (25) and (26), we get

ϕm ln |ϕ|2
R

are bounded in L2
loc

(
0,∞; L2(0, L)

)
, (27)

ψm ln |ψ |2
R

are bounded in L2
loc

(
0,∞; L2(0, L)

)
. (28)

4.3 Passage to the limit

From estimates (23) and (24), there exists a subsequence of (ϕm), (ψm) also denoted by (ϕm), (ψm), such that

(ϕm), (ψm)
∗
⇀ ϕ, ψ weakly star in L∞

loc

(
0,∞; H1

0 (0, L)
)
, (29)

(ϕm
t ), (ψm

t )
∗
⇀ ϕt , ψt weakly in L∞

loc; L2(0, L)). (30)

Applying the Aubin–Lions compactness Theorem (Lemma 2.2), we get from (29) and (30)

(
ϕm) , (ψm) −→ ϕ, ψ strongly in L2

loc

(
0,∞; L2(0, L)

)
, (31)

and for all T > 0

(
ϕm) −→ ϕ a.e in (0, L) × (0, T ) (32)(
ψm) −→ ψ a.e in (0, L) × (0, T ). (33)

Now, since that f (s) = s ln|s|2 is continuous, we have the convergence

μ1ϕ
m ln

∣∣ϕm
∣∣2
R

−→ μ1ϕ ln |ϕ|2
R
a.e in (0, L) × (0, T ) (34)

and

μ2ψ
m ln

∣∣ψm
∣∣2
R

−→ μ2ψ ln |ψ |2
R
a.e in (0, L) × (0, T ). (35)

From (27), (28), (34), and (35) using the Lions’s Lemma (Lemma 2.3), we obtain

μ1ϕ
m ln

∣∣ϕm
∣∣2
R

⇀ μ1ϕ ln |ϕ|2
R
weakly in L2

loc

(
0, ∞; L2(0, L)

)
(36)

and

μ2ψ
m ln

∣∣ψm
∣∣2
R

⇀ μ2ψ ln |ψ |2
R
weakly in L2

loc

(
0, ∞; L2(0, L)

)
. (37)

By the convergences (23), (24), (34) and (35), we can pass to the limit in the approximate system (16) and (17)
and obtain for all w, z ∈ H1

0 (0, L)

d

dt
(ρ1ϕt (t), w) + (κ(ϕx + ψ)(t), wx ) + (γ1ϕt (t), w) − (

μ1ϕ(t) ln |ϕ(t)|2
R
, w
) = 0, (38)

d

dt

(
ρ2ψt (t), z

)+ (
bψx (t), zx

)+ (
κ(ϕx + ψ)(t), z

)+ (
γ2ψt (t), z

)− (
μ2ψ(t) ln |ψ(t)|2

R
, z
) = 0,

in D′(0, T ). (39)

The verification of the initial data is obtained in a standard way.
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5 Exponential decay

In this section, we provide the exponential decay of the energy associated with the system solution (1)–(5).

Theorem 5.1 Under the hypothesis of Theorem 4.1, the energy associated with problem (1)–(5) satisfies

E(t) ≤ C0 e
−αt , ∀ t ≥ 0,

where C0 and α are positive constants.

Proof Let w = ϕt (t) and z = ψt (t) in (38) and (39), respectively, and summing up the result, we obtain

1

2

d

dt

[
ρ1|ϕt (t)|2 + ρ2|ψ(t)|2 + κ|ϕx (t) + ψ(t)|2) + b|ψx (t)|2 + μ1|ϕ(t)|2 + μ2|ψ(t)|2

−μ1

∫ L

0
|ϕ(t)|2

R
ln |ϕ(t)|2

R
dx − μ2

∫ L

0
|ψ(t)|2

R
ln |ψ(t)|2

R
dx

]
+ γ1|ϕt (t)|2 + γ2|ψt (t)|2 = 0, (40)

that is

d

dt
E(t) + γ1|ϕt (t)|2 + γ2|ψt (t)|2 ≤ 0, (41)

where E(t) is define in (6). Integrating (40) from t to t + 1, we obtain
∫ t+1

t

[
γ1|ϕt (s)|2 + γ2|ψt (s)|2

]
ds ≤ E(t) − E(t + 1)

def:= F2(t); (42)

therefore, there exist t1 ∈
[
t, t + 1

4

]
and t2 ∈

[
t + 3

4
, t + 1

]
, such that

γ1 |ϕt (ti )|2 + γ2 |ψt (ti )|2 ≤ 4F(ti ), i = 1, 2. (43)

Let w = ϕ(t) and z = ψ(t) in (38) and (39), respectively. Summing the result, we get

b|ψx (t)|2 + κ|ϕx (t) + ψ(t)|2 − μ1

∫ L

0
(ϕ(t))2 ln |ϕ(t)|2

R
dx − μ2

∫ L

0
(ψ(t))2 ln |ψ(t)|2

R
dx

= − d

dt
ρ1 (ϕt (t), ϕ(t)) + ρ1|ϕt (t)|2 − d

dt
ρ2 (ψt (t), ψ(t)) + ρ2 |ψt (t)|2 − γ1 (ϕt (t), ϕ(t))

−γ2 (ψt (t), ψ(t)) . (44)

Integrating (44) from t1 to t2, and using (43), we obtain
∫ t2

t1

[
b |ψx (t)|2 + κ |ϕx (t) + ψ(t)|2 − μ1

∫ L

0
(ϕ(t))2 ln |ϕ(t)|2

R
dx − μ2

∫ L

0
(ψ(t))2 ln |ψ(t)|2

R
dx

]
ds

≤ ρ1 |ϕt (t1)| |ϕ(t1)| + ρ1 |ϕt (t2)| |ϕ(t2)| + ρ2 |ψt (t1)| |ψ(t1)| + ρ2 |ψt (t2)| |ψ(t2)|
+ρ1

∫ t2

t1
|ϕt (s)|2 ds + ρ2

∫ t2

t1
|ψt (s)|2 ds + γ1

∫ t2

t1
|ϕt (s)| |ϕ(s)| ds + γ2

∫ t2

t1
|ψt (s)| |ψ(s)| ds;

therefore
∫ t2

t1

[
b|ψx (t)|2 + κ |ϕx (t) + ψ(t)|2 − μ1

∫ L

0
(ϕ(t))2 ln |ϕ(t)|2

R
dx − μ2

∫ L

0
(ψ(t))2 ln |ψ(t)|2

R
dx

]
ds

≤ C1

[
F(t) sup ess

t≤s≤t+1
E1/2(s) + 1

4
sup ess
t≤s≤t+1

E(s) + F2(t)

]
def:= G2(t), (45)

where C1 = C1(ρ1, ρ2, γ1, γ2) > 0 is a constant. Now, from (42) and (45), we get
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∫ t2

t1

[
ρ1|ϕt (t)|2 + ρ2|ψ(t)|2 + b|ψx (t)|2 + κ|ϕx (t) + ψ(t)|2 − μ1

∫ L

0
(ϕ(t))2 ln |ϕ(t)|2

R
dx

−μ2

∫ L

0
(ψ(t))2 ln |ψ(t)|2

R
dx

]
ds ≤ 2

[
F2(t) + G2(t)

] ; (46)

thus, there exists t∗ ∈ [t1, t2], such that

ρ1
∣∣ϕt (t

∗)
∣∣2 + ρ2

∣∣ψ(t∗)
∣∣2 + b

∣∣ψx (t
∗)
∣∣2 + κ

∣∣ϕx (t
∗) + ψ(t∗)

∣∣2 − μ1

∫
Ω

(
ϕ(t∗)

)2 ln
∣∣ϕ(t∗)

∣∣2
R

dx

−μ2

∫ L

0

(
ψ(t∗)

)2 ln |ψ(t∗)|2
R
dx ≤ C2

[
F2(t) + G2(t)

]
. (47)

We deduce
∣∣ϕ(t∗)

∣∣2 + ∣∣ψ(t∗)
∣∣2 ≤ C3

[∣∣ϕx (t
∗) + ψ(t∗)

∣∣2 + ∣∣ψx (t
∗)
∣∣2] . (48)

By (47) and (48), we have

E(t∗) ≤ C4
[
F2(t) + G2(t)

]
. (49)

Since that E(t) is increasing, by (42), (48), and (49), we obtain

sup ess
t≤s≤t+1

E(s) ≤ E(t∗) +
∫ t+1

t

[
γ1|ϕt (s)|2 + γ2|ψt (s)|2

]
ds

≤ C5
[
F2(t) + G2(t)

]

≤ C6

[
F(t) sup ess

t≤s≤t+1
E1/2(s) + F2(t) + 1

4
sup ess
t≤s≤t+1

E(s)

]

≤ C7F
2(t) + 1

2
sup ess
t≤s≤t+1

E(s).

Hence, by Nakao’s Lemma (Lemma 42)

sup ess
t≤s≤t+1

E(s) ≤ C8F
2(t) = C9[E(t) − E(t + 1)],

where Ci = 1, 2, . . . , 9 are positive constants. By Lemma (2.4), we conclude

E(t) ≤ C0e
−αt , ∀ t ≥ 0,

where C0 and α are positive constants. 
�

6 Numerical approach

6.1 Variational formulation

Here, we use a representation to the functions ϕ, ψ and logarithmic source terms by component vectorial

u = [ϕ, ψ]� and F(u) = [
μ1ϕ ln |ϕ|2

R
, μ2ψ ln |ψ |2

R

]�
.

Thus, from (1) to (5), we get the following variational problem:

(ut t (t), ũ) + a1(u(t), ũ) + a2(ut (t), ũ) = a3(F(u), ũ), (50)

where u satisfies the initial conditions

(u(0), ũ) = (u0, ũ), (ut (0), ũ) = (u1, ũ). (51)
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Here

(ut t (t), ũ) = ρ1 (ϕt , u1) + ρ2 (ψt , u2) ,

a (u(t), ũ) = κ
(
ϕx + ψ, u1,x + u2

)+ b
(
ψx , u2,x

)
,

(ut (t), ũ) = γ1 (ϕt , u1) + γ2 (ψt , u2) ,

(F(u), ũ) = μ1
(
ϕ ln |ϕ|2

R
, u1

)+ μ2
(
ψ ln |ψ |2

R
, u2

)
.

Here

a : U × U �→ R,

where

U = H1
0 (0, L) × H1

0 (0, L).

6.2 Algorithms

Here, we developed an algorithms to obtain the numerical solutions and verified the properties of the-
oretical results to the Timoshenko beam’s with Logarithms source. We adopt our approximated solution
by Finite-Element Method (FEM), in spatial variable and a finite difference method in the temporal vari-
able with iterative methods. First, we consider a partition Xh over the interval Ω = (0, L), that is,
Xh = {0 = x0 < x1 < · · · < xN = L} , Ω j+1 = (x j , x j+1), and,Ωi

⋂
Ω j = Ø, i �= j andΩ = ⋃Ne

e=1 Ωe
where Ne is the number of the elements obtained of partition. We consider the following finite-dimensional
subspaces:

Sh1 =
{
u ∈ C(0, L); u

∣∣∣
Ωe

∈ P1(Ωe)

}
,

Uh =
{
uh ∈ Sh1 ; uh(0) = uh(L) = 0

}
,

where P1 is the set linear polynomials defined over the element Ωe. We use a representation of the numerical
solution uh = [ϕh, ψh]� analogous like in [17], and then, we have uh(t, x) = ∑2N

i=1 di (t)φi (x) where 2N is
the number total of degrees of freedom of the finite-element approximation, and φi (x), i = 1, · · · , 2N , are
the global vector interpolation functions. Therefore, we obtain the following dynamical problem in R2N :

Md̈(t) + Cḋ(t) + Kd(t) = F(d(t)),

d(0) = d0,

ḋ(0) = ḋ1,

where M : the consistent mass matrix, C : the damping matrix, K : the vector of consistent nodal elastic
stiffness at time t , and F(d(t)) : the vector of consistent nodal to logarithmic source at time t, and d(t) : the
vector of displacement nodal generalized at time t. Furthermore, d0 and ḋ1 are displacement and velocities,
nodal initial, respectively.

To solve this system above, we introduce a partition P of the time domain [0, T ] into M intervals of length
Δt , such that 0 = t0 < t1 < · · · < tM = T, with tn+1 − tn = Δt and we use the well-known Newmark’s
methods [19]. Since, in our work, we have a non-linear system we need to modify our scheme

Md̈n+1 + Cḋn+1 + Kdn+1 = F (dn+1)

dn+1 = dn + Δt ḋn + Δt2

2

[
(1 − 2β)d̈n + 2βd̈n+1

]

ḋn+1 = ḋn + Δt
[
(1 − γ )d̈n + γ d̈n+1

]
,

where β, γ and α are two parameters that govern the stability and accuracy of the methods. In this case

M =
N⋃

e=1

me, C =
N⋃

e=1

ce and K =
N⋃

e=1

(ke
b + ke

s);
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for instance, considering linear functions, we have

me =
⎡
⎢⎣

ρ1h/3 0 ρ1h/6 0
0 ρ2h/3 0 ρ2h/6

ρ1h/6 0 ρ1h/3 0
0 ρ2h/6 0 ρ2h/3

⎤
⎥⎦ , ce =

⎡
⎢⎣

γ1h/3 0 γ1h/6 0
0 γ2h/3 0 γ2h/6

γ1h/6 0 γ1h/3 0
0 γ2h/6 0 γ2h/3

⎤
⎥⎦

ke
b =

⎡
⎢⎣
0 0 0 0
0 b/h 0 −b/h
0 0 0 0
0 −b/h 0 b/h

⎤
⎥⎦ , kes =

⎡
⎢⎣

κ/h −κ/2 −κ/h −κ/2
−κ/2 κh/3 κ/2 κh/6
−κ/h κ/2 κ/h κ/2
−κ/2 κh/6 κ/2 κh/3

⎤
⎥⎦ .

Due to its non-linearity, we have a vector F(d(t)) with entries for each element of

Fe =
[∫

Ωe

μ1(uh(t)) ln |uh(t)|2φe
i dx,

∫
Ωe

μ2(uh(t)) ln |uh(t)|2φe
i dx

]�
.

These vectorial components are obtained by Gaussian Quadrature using two points.

Remark 6.1 We point out to numerical pathology which occurs in penalized systems the locking problem, in
particular, to Timoshenko system, it is the shear locking. It is characterized by the following over-estimation
about the coefficient b, given by:

b = E I

(
1 + κGAh2

12E I

)
.
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Fig. 1 Evolution of solutions: ϕh(x, t), ψh(x, t), respectively. Numerical energy at time 2.0 s and 5.0 s, respectively
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Fig. 2 Evolution of solutions: ϕh(x, t), ψh(x, t), respectively. Numerical Energy at time 2.0 s and 5.0 s, respectively

It is clear that the numerical alternatives to this problem were performed in the literature, and to more details,
we indicate the classical reference by Hughes et al. [15] and Prathap and Bhashyam [21].

Remark 6.2 To get computational results, we use the implemented code in Language C. The graphics were
developed using GNUplot.

In the sequel, we realize some numerical experiments to highlight our theoretical results.

6.3 Numerical experiments

In our performed numerical experiments to view the asymptotic properties, we consider an uniform mesh
h = 0.01 m, Δt = 10−5 s. The parameters Newmark’s rules algorithms are γ = 1

2 , β = 1
4 .

Experimento 1: (Conservative case: γ1 = γ2 = 0)
We consider a rectangular beam with L = 1.0 m, thickness 0.09 m, width 0.09 m, E = 69 · 107N/m2

ρ = 2700 Kg/m3, κ = 5/6, r = 0.33 (Poisson ratio). Furthermore, we have μ1 = μ2 = 1 and the following
initial conditions:

ϕ(x, 0) = 0, ϕt (x, 0) = sin 3πx, ψ(x, 0) = 0, and ψt (x, 0) = sin 5πx .
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Experimento 2: (Dissipative case: γ1 = 23, γ2 = 0.015)
We consider a rectangular beam with L = 1.0 m, thickness 0.09 m, width 0.09 m E = 69 · 107N/m2

ρ = 2700 Kg/m3, κ = 5/6, r = 0.33(Poisson ratio) and μ1 = 1.0, μ2 = 1.0. and the following initial
conditions:

ϕ(x, 0) = 0, ϕt (x, 0) = sin 3πx, ψ(x, 0) = 0, and ψt (x, 0) = sin 5πx .
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