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Abstract
Weinvestigate the application of ensemble transformapproaches toBayesian inference
of logistic regression problems. Our approach relies on appropriate extensions of the
popular ensemble Kalman filter and the feedback particle filter to the cross entropy
loss function and is based on a well-established homotopy approach to Bayesian
inference. The arising finite particle evolution equations as well as their mean-field
limits are affine-invariant. Furthermore, the proposed methods can be implemented
in a gradient-free manner in case of nonlinear logistic regression and the data can
be randomly subsampled similar to mini-batching of stochastic gradient descent. We
also propose a closely related SDE-based sampling method which again is affine-
invariant and can easily be made gradient-free. Numerical examples demonstrate the
appropriateness of the proposed methodologies.

Keywords Logistic regression · Bayesian inference · Interacting particle systems ·
Affine invariance · Ensemble Kalman filter · Langevin dynamics

Mathematics Subject Classification 62J02 · 65C05 · 62F15

Communicated by Teresa Krick and Hans Munthe-Kaas.

Invited paper based on the FoCM 2021 Online Seminar lecture Statistical inverse problems and
affine-invariant gradient flow structures in the space of probability measures presented by Sebastian
Reich in June 2021.
SR has been partially funded by Deutsche Forschungsgemeinschaft (DFG) - Project-ID 318763901 -
SFB1294..

B Sebastian Reich
sebastian.reich@uni-potsdam.de

Jakiw Pidstrigach
pidstrigach@uni-potsdam.de

1 Institut für Mathematik, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-022-09550-2&domain=pdf


676 Foundations of Computational Mathematics (2023) 23:675–708

1 Introduction

Statistical inference for logistic regression and classification problems is a well studied
problem from both parameter optimisation and Bayesian inference perspectives [5].
While many classical optimisation and Markov chain Monte Carlo (MCMC) methods
are applicable, an efficient inference in the context of semi-parametric models still
poses computational challenges. With this paper, we address this challenge by investi-
gating the extension of coupling-of-measures and ensemble transform methodologies
[29] from the squared error loss function to the cross entropy loss function typically
used for logistic regression and classification.

More specifically, previous work on ensemble methods for Bayesian inference,
such as the ensemble Kalman filter (EnKF) [8] and the feedback particle filter (FPF)
[35,38,39], have almost exclusively focused on the squared error loss function of the
form

Ψdata(θ) = 1

2
(g(θ) − t)TΓ −1(g(θ) − t), (1)

with g : R
D → R

N a forward map, t ∈ R
N the data, Γ ∈ R

N×N the measure-
ment error covariance matrix, and θ ∈ R

D the parameters to be estimated. Notable
exceptions include the application of ensemble Kalman inversion (EKI) [17] and the
modified EnKF formulation of [13] to the training of neural networks with a cross
entropy loss function. While these methods seek to minimise a regularised cross
entropy loss function, the more recent work [14] has also investigated ensemble-based
samplingmethods for Bayesian inference in the context of logistic regression and clas-
sification. This work relies on the time-stepping of appropriate stochastic differential
equations (SDEs) and is in line with several other ensemble-based sampling methods
such as the ensemble preconditioned MCMC methods of [19], the ensemble Kalman
sampler (EKS) [9], and affine invariant Langevin dynamics (ALDI) [10]. Contrary
to such invariance-of-measures based SDE methodologies, the approach taken in this
paper is instead founded on the homotopy approach to Bayesian inference, as first
formulated in a time-continuous framework in [6,26], and which is close in spirit to
the iterative application of the EnKF [31] and parameter estimation methods based on
sequential Monte Carlo (SMC) methods [4].

In addition to expanding the homotopy-based approach to logistic regression, we
address two further important concepts, namely affine-invariance of the proposed
methods [10,11,19] and sub-sampling of data points, as widely used in stochastic
gradient descent [20]. Both concepts are used to improve the computational efficiency
of optimisation and samplingmethods. Take, for example, a two dimensional Gaussian
random variable with mean zero and covariance matrix

Σ =
(

ε2 0
0 1

)
.

A random walk Metropolis–Hastings algorithm will sample inefficiently whenever
ε2 is vastly different from one. An affine-invariant modification, on the other hand,
will sample this problem as efficiently as if ε were set to ε = 1 [11]. Sub-sampling
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replaces the exact gradient of a cost functional by a cheaper to evaluate stochastic
approximation, which agrees with the exact gradient in expectation.

We also discuss the possibility for derivative-free implementations [8–10,17], local-
isation [8,29] via dropouts [32], and efficient linearly implicit time-stepping methods
[2].

Our main contributions with regard to Bayesian homotopy methods for logistic
regression are:

– an extension of affine-invariant ensemble transform approaches, such as the EnKF,
to logistic regression,

– an affine-invariant generalisation of the FPF and its application to logistic regres-
sion,

– an extension of data sub-sampling (mini-batches) to Bayesian homotopy methods.

In a further step, we combine these homotopy approaches with SDE-based sampling
methods in order to derive

– a derivative-free and affine-invariant SDE-based sampling methods for logistic
regression.

We demonstrate the appropriateness of the proposed methods by means of a set of
numerical experiments. Extensions to nonlinear and multi-class logistic regression [5]
are also discussed. We also briefly discuss the application to sigmoidal Cox processes
[1].

The layout of this paper is as follows. The required mathematical background
material on both logistic regression is collected in Sect. 2. The homotopy approach to
Bayesian inference is summarised in Sect. 3. There we also present an affine-invariant
formulation of the homotopy approach and discuss and analyse data sub-sampling in
the spirit of [20]. Section 4 develops three different algorithmic approaches for the
implementation of homotopy-based Bayesian inference for logistic regression. More
specifically, we propose an affine-invariant modification of the FPF and two extensions
of the EnKF to logistic regression. We also discuss robust numerical implementations
combining dropouts [32] with localisation [8,29] and linearly implicit time-stepping
methods [2]. Section 5 combines SDE-based sampling methods with a homotopy-
based drift term in order to derive a gradient-free and affine-invariant algorithm for
Bayesian inference.While the proposedmethod is only exact for Gaussianmeasures, it
can be used for faster equilibration and approximate inference provided the posterior
distribution is close to Gaussian. Numerical results are presented and evaluated in
Sect. 6 and provide a proof-of-concept while a more detailed exploration is left to
follow-up work. Several possible extensions of the proposed methods, namely multi-
class classification, nonlinear logistic regression, and sigmoidal Cox processes, are
discussed in Sect. 7 followed by a summary statement in Sect. 8.

2 Mathematical Problem Formulation

This paper is motivated by the classical logistic regression problem arising from clas-
sification into L > 1 classes, denoted by Cl , over an input space x ∈ R

J [5]. In
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order to simplify the exposition, we start with the binary classification problem, that
is, L = 2 and focus on the linear case. The extension to nonlinear and multi-class
logistic regression is discussed in Sect. 7.

The posterior distribution for class C1 is defined as a logistic sigmoid

σ(a) = 1

1 + exp(−a)

acting on a linear combination of x-dependent and vector-valued features φx ∈ R
D

so that
π(C1|φx ) = σ

(
θTφx

)
. (2)

Themodel has D adjustable parameters θ ∈ R
D . The probability of the complimentary

class C2 is given by π(C2|φx ) = 1 − π(C1|φx ). Given a data set {(xn, tn)}Nn=1 with
labels tn ∈ {0, 1}, the negative log-likelihood function is given by the cross-entropy
function

Ψdata(θ) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} , (3)

where yn := yxn (θ) with

yx (θ) := σ
(
θTφx

)
. (4)

Here tn = 1 for samples xn which are assigned to class C1 and tn = 0 for samples
from the complementary class C2.

We introduce the further shorthand

φn = φxn

and, using

d

da
σ(a) = σ(a)(1 − σ(a)),

obtain the gradient of the cross-entropy function

∇θΨdata(θ) =
N∑

n=1

(yn − tn)φn . (5)

We rewrite this gradient more compactly as as

∇θΨdata(θ) = Φ (y(θ) − t)

using

y(θ) = (y1, . . . , yn)
T ∈ R

N , t = (t1, . . . , tN )T ∈ R
N ,
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and

Φ = (φ1, . . . , φN ) ∈ R
D×N .

The term y(θ) − t is often called the innovation in the Kalman filter literature. The
Hessian matrix of second-order derivative is given by

D2
θΨdata(θ) =

N∑
n=1

φn yn(1 − yn)φ
T
n = ΦR(θ)ΦT,

where R(θ) ∈ R
N×N denotes the diagonal matrix with entries rnn = yn(1 − yn).

Let us denote aminimiser ofΨdata(θ)by θMLE.Wenote that themaximum likelihood
estimators (MLEs) are not uniquely determined in the over-parametrised setting, that
is, when D � N . For that reason and in order to avoid overfitting when D ≈ N , we
introduce a Gaussian prior probability density function (PDF) over the parameters via

πprior(θ) ∝ exp(−Ψprior(θ))

with

Ψprior(θ) := 1

2
(θ − mprior)

TΣ−1
prior(θ − mprior),

that is, the posterior parameter distribution πpost is given by

πpost(θ) ∝ exp(−Ψpost(θ)), Ψpost(θ) := Ψdata(θ) + Ψprior(θ). (6)

Here the prior mean mprior ∈ R
D and covariance matrix Σprior ∈ R

D×D need to be
chosen appropriately.

It is known that Ψpost is a strongly convex function since D2
θΨdata(θ) ≥ 0 and,

hence, the MAP estimator, that is,

θMAP = arg min
θ∈RD

Ψpost(θ),

is uniquely defined. Furthermore, assuming the availability of sufficiently many data
points, that is N � 1, the posterior is well approximated by a Gaussian with mean
θMAP and covariance matrix

ΣMAP =
(
D2

θΨpost(θMAP)
)−1

,

where

D2
θΨpost(θ) = ΦR(θ)ΦT + Σ−1

prior ∈ R
D×D

denotes the Hessian matrix of second-order derivatives. This is an implication of the
Bernstein–von Mises theorem [33].
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3 The Homotopy Approach to Bayesian Inference

While there are many Monte Carlo methods available for sampling from the posterior
πpost, we focus in this paper on ensemble transform methods based on the homotopy
approach [6,26]

πτ (θ) ∝ exp(−τΨdata(θ)) πprior(θ) (7)

with τ ∈ [0, 1], that is, π0 = πprior and πpost = π1. The PDFs πτ satisfy the evolution
equation

∂τπτ = −(Ψdata − [Ψdata]) πτ , (8)

where πτ [ f ] denotes the expectation value of a function f : RD → R under the PDF
πτ .

In order to derive the associated evolution equations for random variables θτ ∼ πτ ,
we introduce potentials Vτ : R

D → R, which are defined by the elliptic partial
differential equation (PDE)

∇θ · (πτΣτ∇θVτ ) = −(Ψdata − πτ [Ψdata]) πτ , (9)

where Στ denotes the covariance matrix of πτ , that is,

Στ = πτ

[
(θ − πτ [θ ])(θ − πτ [θ ])T

]
.

Hence the evolution equations are given by

d

dτ
θτ = −Στ∇τVτ (θτ ), θ0 ∼ πprior, (10)

such that
θ1 ∼ πpost. (11)

See [26] for further details.

Remark 1 If different modelsMi , i = 1, . . . , IM , need to be compared via their Bayes
factors P[Mi ] [16], then the homotopy approach (8) can also be used and gives rise
to the evolution equation

d

dτ
Pτ = −πτ [Ψdata] ,

τ ∈ [0, 1], which is to be solved for each model Mi with P0 its prior probability,
πτ its transformed parameter PDFs, as defined by (8), and Ψdata the model’s negative
log-likelihood function. It then holds that P[Mi ] = P1.

Remark 2 It is, of course, feasible to use a stopping time different from τ = 1 in
the homotopy approach (10). This has already been hinted at in in the context of
optimisation and Tikhonov regularisations in [26]; while subsequently being fully
explored by the EKI methodology. See [15,17] for a detailed description in the context
of machine learning as well as for an extensive literature survey.
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3.1 Affine-Invariance

Note that any vector field Fτ (θ), which satisfies

∇θ · (πτ Fτ ) = −(Ψdata − πτ [Ψdata]) πτ ,

will lead to an associated evolution equation

d

dτ
θτ = −Fτ (θτ ), θ0 ∼ πprior (12)

such that (11) holds. The specific choice Fτ = Στ∇Vτ in (9) is motivated by the
concept of affine-invariance [10,11], which we explain next.

Let
θ = Aθ + b (13)

denote an invertible affine transformation between two variables θ ∈ R
D and θ ∈ R

D .
Furthermore, the Bayesian inference problem for the variable θ is defined by Ψdata
and Ψprior and the corresponding problem for the transformed variable θ by

Ψ data(θ) := Ψdata(Aθ + b), Ψ prior(θ) := Ψprior(Aθ + b).

Hence the PDFs πτ for θ satisfy

πτ (θ) = πτ (Aθ + b) |A|, τ ∈ [0, 1].

Definition 1 A homotopy formulation (12) is called affine-invariant if the associated
vector fields Fτ and Fτ satisfy

Fτ (Aθ + b) = AFτ (θ) (14)

for any suitable choice of A ∈ R
D×D and b ∈ R

D , which implies θτ = Aθτ + b for
all τ > 0 if it holds at τ = 0.

Lemma 1 The choice
Fτ (θ) = Στ∇θVτ (θ) (15)

leads to an affine-invariant homotopy formulation and the transformed vector field is
given by

Fτ (θ) = Στ∇θV τ (θ)

with the potential V τ satisfying the elliptic PDE

∇θ · (πτΣτ∇θV τ ) = −πτ (Ψ data − πτ

[
Ψ data

]
). (16)
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Proof Since the covariance matrices satisfy

Στ = AΣτ A
T,

the PDE (9) transforms into the PDE (16) under the affine transformation (13). Hence
we have

V τ (θ) = Vτ (Aθ + b)

and obtain

Στ∇θVτ (θ) = AΣτ A
T∇θVτ (Aθ + b)

= AΣτ∇θVτ (Aθ + b)

= AΣτ∇θV τ (θ),

which verifies (14). 
�
We note that the affine invariance of (10) is maintained under the forward Euler time
discretisation

θτk+1 = θτk − ΔτΣτk∇θVτk (θτk )

with step-size Δτ > 0 and τk = kΔτ , k = 0, . . . , K − 1 such that KΔτ = 1. This
immediately follows from property (14).

Remark 3 The choice of the vector field Fτ (θ) in (15) is not unique. It is, for example,
possible to add any drift term Στ∇θUτ (θ) with the potential Uτ chosen such that

∇θ · (πτΣτ∇θUτ ) = 0. (17)

A possible choice is

Uτ (θ) = logπτ + τΨdata(θ) − logπprior(θ)

and the associated operator on the left hand side of (17) corresponds to the nonlinear
Fokker–Planck equation arising from the EKS/ALDI mean-field evolution equations
[9,10] for sampling from the PDF πτ . Because of (7), Uτ (θ) = const. and (17)
follows trivially. Upon formally replacing the drift termΣτ∇θUτ (θ) by its EKS/ALDI
stochastic mean-field representation, (10) turns into the affine-invariant stochastic
evolution equation

dθτ = −Στ∇θ

{
Vτ (θ) + τ∇θΨdata(θ) − logπprior(θ)

}
dt + Σ1/2

τ dWτ , (18)

whereWτ denotes standard D-dimensionalBrownianmotion. The associatedmarginal
PDF πτ still satisfies (8) provided π0 = πprior at initial time τ = 0.
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3.2 Data Sub-sampling

If the data sets are large, then it makes sense to randomly sub-sample the data and
to only use these subsets in the computation of the gradient (5). More precisely, let
Δ denote a randomly selected subset of {1, . . . , N } without replacement of cardi-
nality N ′ ≤ N . Given such a mini-batch Δ, the full gradient (5) is replaced by its
approximation

∇θΨdata(θ) ≈ N

N ′
∑
n∈Δ

(yn − tn)φn .

More abstractly, data sub-sampling in terms of mini-batches gives rise to random
negative log-likelihood functions Ψ

γ
data, where γ characterises the chosen mini-batch

Δγ and is the realisation of an appropriate random variable Γ such that

EΓ [Ψ γ
data(θ)] = Ψdata(θ) (19)

for all parameter values θ ∈ R
D . See [20] for a detailed investigation of data sub-

sampling in the context of stochastic gradient descent and related methods. If Ψ
γ
data is

now being used in (9) instead of Ψdata, then we denote the resulting potential by V γ
τ ,

which is also unbiased, that is,

EΓ [∇θV
γ
τ (θ)] = ∇θVτ (θ)

due to (19). Let us now time-step the implied mean-field ODEs (10) by the forward
Euler method, that is,

θτk+1 = θτk − ΔτΣτk∇θV
γk
τk

(θτk ), (20)

where the γk’s are independent realisations of the random variable Γ . A formal appli-
cation of the modified equation analysis of [20] leads to the stochastic differential
equation (SDE)

dθτ = −Στ

{
∇θVτ (θτ ) dτ − (ΔτΩτ (θτ ))

1/2dWτ

}
, (21)

where Wτ denotes standard D-dimensional Brownian motion and

Ωτ(θ) := covΓ

[∇θV
γ
τ (θ)

]
.

Here covΓ [ f γ ] denotes the covariance matrix of a vector-valued random function
f γ ∈ R

D with respect to the random variable Γ . We conclude from (21) that the
approximation error inflicted on the posterior distribution at τ = 1 can be made
arbitrarily small by reducing the time-stepΔτ of the forward Eulermethod (20).While
a rigorous mathematical analysis is left to future work, we discuss an application to
Cox point processes in Sect. 7.3 below and analyse a Gaussian approximation in the
Appendix in more detail.
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4 Ensemble Transform Algorithms

We now discuss several Monte Carlo implementations of the proposed affine-invariant
homotopy approach to Bayesian inference for logistic regression. All methods start
with a set of M samples θ

(i)
0 , i = 1, . . . , M , from the prior distribution π0 = πprior.

The three methods considered here differ in the evolution equations for the ensemble
{θ(i)

τ }. We introduce the empirical mean

m̂τ = 1

M

M∑
i=1

θ(i)
τ

and the empirical covariance matrix

Σ̂τ = 1

M − 1

M∑
i=1

(θ(i)
τ − m̂τ )(θ

(i)
τ − m̂τ )

T

for τ ≥ 0. We also introduce the matrix Θτ ∈ R
D×M of ensemble deviations

Θτ =
(
θ(1)
τ − m̂τ , θ

(2)
τ − m̂τ , . . . , θ

(M)
τ − m̂τ

)
, (22)

which leads to the compact representation

Σ̂τ = 1

M − 1
ΘτΘ

T
τ

of the empirical covariance matrix. The empirical measure associated with the ensem-
ble {θ(i)

τ } at time τ is denoted by π̂τ implying, for example,

m̂τ = π̂τ [θ ].

More generally,

π̂τ [ f ] = 1

M

M∑
i=1

f (θ(i)
τ )

for an observable f (θ). We describe an affine-invariant extension of the FPF next. The
key building stone is a diffusion map approximation to the PDE (9).

4.1 DiffusionMaps and the FPF

The right-hand side of the elliptic PDE (9) leads to the elliptic operator

Δπφ := 1

π
∇θ · (πΣ∇θφ)
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with covariance matrix

Σ = π
[
(θ − π [θ ])(θ − π [θ ])T

]

and (9) can be rewritten as

−Δπτ Vτ = Ψdata − πτ [Ψdata] .

Following the FPF methodology, as carefully described in [34], we regularise the
elliptic PDE problem (9) through the fixed-point equation

Ṽτ = Pε Ṽτ + ε(Ψdata − πτ [Ψdata])

with regularisation parameter ε > 0 and semigroup Pε = eεΔπτ . One then replaces
Vτ by Ṽτ in the evolution Eq. (10).

We note that Pε is the semi-group associated with the mean-field SDE

dSε = Στ∇θ logπτ (Sε) dε + √
2Σ1/2

τ dWε, (23)

whereWε , ε ≥ 0, is standard Brownianmotion inRD . The SDE (23) is affine invariant
and is closely related to the EKS/ALDI mean-field equations [9,10].

The diffusion map approximation Tε of Pε is defined as follows:

Tε f (θ) = 1

nε(θ)

∫
RD

kε(θ, θ ′) f (θ ′)πτ (θ
′)dθ ′,

where nε(θ) := ∫
kε(θ, θ ′)πτ (θ

′)dθ ′ is the normalisation constant,

kε(θ, θ ′) := gε(θ, θ ′)√∫
gε(θ, θ ′′)πτ (θ ′′)dθ ′′

√∫
gε(θ ′, θ ′′)πτ (θ ′′)dθ ′′

and

gε(θ, θ ′) := exp

(
− 1

4ε
(θ − θ ′)TΣ−1

τ (θ − θ ′)
)

(24)

is the Gaussian kernel associated with the pure diffusion in (23).
The next step is to replace πτ by the ensemble-induced empirical measure π̂τ ,

which results in the empirical approximation

T (M)
ε f (θ) := 1

n(M)
ε (θ)

M∑
i=1

k(M)
ε (θ, θ(i)

τ ) f (θ(i)
τ ),
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where n(M)
ε (θ) := ∑

i k
(M)
ε (θ, θ

(i)
τ ) is the normalisation constant, and

k(M)
ε (θ, θ ′) := g(M)

ε (θ, θ ′)√∑
i g

(M)
ε (θ, θ

(i)
τ )

√∑
i g

(M)
ε (θ ′, θ(i)

τ )

.

Here g(M)
ε denotes the Gaussian kernel (24) with the covariance matrix Στ replaced

by its empirical estimate Σ̂τ . One finally introduces the M×M Markov matrix T with
entries

Ti j = 1

n(M)
ε (θ

(i)
τ )

k(M)
ε (θ(i)

τ , θ ( j)
τ ) (25)

and the finite-dimensional fixed-point equation

Ṽ = TṼ + ε ΔΨdata

with

ΔΨdata :=
(
Ψdata(θ

(1)
τ ) − π̂τ [Ψdata], . . . , Ψdata(θ

(M)
τ ) − π̂τ [Ψdata]

)T
.

Given the solution vector Ṽ ∈ R
M with entries Ṽ( j), j = 1, . . . , M , the approximation

to the drift term in the ODE (10) is now provided as follows [34]:

Σ̂τ∇θ Ṽτ (θ) := Σ̂τ∇θ

⎧⎨
⎩

1

n(M)
ε (θ)

M∑
j=1

k(M)
ε (θ, θ( j)

τ )
(
Ṽ( j) + ε ΔΨ

( j)
data

)⎫⎬
⎭ .

Lemma 2 The affine-invariant FPF drift term for the ensemble members θ
(i)
τ , i =

1, . . . , M, is given by

Σ̂τ∇θ Ṽτ (θ
(i)
τ ) =

M∑
j=1

si jθ
( j)
τ (26)

with coefficients

si j = 1

2ε
Ti j

(
r j −

M∑
k=1

Tikrk

)
, r j := Ṽ( j) + ε ΔΨ

( j)
data.

Proof The calculations leading to (26) are identical to those for the standard FPF [34]
taking note that the covariance matrix Σ̂τ cancels out. 
�
The resulting interacting particle system can be propagated in time using the forward
Euler method with step size Δτ = 1/K , that is,

θ(i)
τk+1

= θ(i)
τk

− ΔτΣ̂τk∇θ Ṽτk (θ
(i)
τk

), i = 1, . . . , M, (27)
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k = 0, . . . , K − 1, with the right-hand side defined by (26). Also note that M → ∞
leads formally to the mean-field forward Euler method (20).

Remark 4 Wenote that theMarkovmatrixT, definedby (25), is non-reversible contrary
to the underlying stochastic process (23). This problem can be addressed by a bi-
stochastic approximation, which also leads to improved convergence rates. See [37]
for more details.

While the FPF leads to a consistent approximation in the limit M → ∞ and ε → 0,
its application is limited to low-dimensional problems. We next describe two approx-
imations that extend to high-dimensional inference problems.

4.2 Second-Order Methods

One can derive evolution equations for the mean mτ and the covariance matrix Στ

of πτ from Eq. (8). Furthermore, if one assumes that πτ is well approximated by
a Gaussian PDF with mean mτ and covariance matrix Στ , the following evolution
equations for the mean and the covariance matrix arise.

Lemma 3 If the temporal PDF πt in (9) is Gaussian with mean mτ and covariance
matrix Στ , then their evolution equations are given by

d

dτ
mτ = −Στ πτ [∇θΨdata] = −ΣτΦ(πτ [y] − t),

and

d

dτ
Στ = −Στ πτ [D2

θΨdata]Στ = −ΣτΦ πτ [R]ΦT Στ ,

respectively.

Proof The evolution equations are derived using the following well-known identity
for Gaussian PDFs πτ (see, for example, [23]):

πτ [θ ( f (θ) − πτ [ f ])] = Στπτ [∇θ f ] (28)

as well as

πτ [(θ − πτ [θ ])(θ − πτ [θ ])T( f (θ) − πτ [ f ])] = Στπτ [D2
θ f ]Στ (29)

for any scalar-valued smooth function f : RD → R. 
�
In order to derive corresponding equations for the ensemble {θ(i)

τ }, we introduce

ŷτ := π̂τ [y] = 1

M

M∑
j=1

y( j)
τ , y( j)

τ := y
(
θ( j)
τ

)
∈ R

N ,
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as well as

R̂τ := π̂τ [R] = 1

M

M∑
j=1

R( j)
τ ,

where the R( j)
τ ∈ R

N×N are diagonal matrices with entries r ( j)
nn = y( j)

τ,n

(
1 − y( j)

τ,n

)
for

n = 1, . . . , N with

y( j)
τ,n = σ

(
(θ( j)

τ )Tφxn

)
∈ R.

We finally obtain the evolution equations

d

dτ
m̂τ = −Σ̂τΦ(ŷτ − t) (30)

for the ensemble mean and

d

dτ
Θτ = −1

2
Σ̂τΦ R̂τΦ

TΘτ (31)

for the ensemble deviations (22). Note that these equations can be used to propagate
the ensemble {θ(i)

τ } regardless of the Gaussian assumption made for their derivation.
In the following section, we will introduce further approximations which allow us to
introduce an affine-invariant gradient flow structure.

4.3 Ensemble Kalman–Bucy Filter

We now turn to a formulation with gradient flow structure in the spirit of the ensemble
Kalman–Bucy filter (EnKBF) for quadratic loss functions (1) [3,26,28]. Provided that

ŷτ = π̂τ [y] ≈ y(m̂τ ) = y(π̂τ [θ ])

and

y(i)
τ = y

(
θ(i)
τ

)
≈ ŷτ + R̂τΦ

T(θ(i)
τ − m̂τ ),

one formally obtains the approximation

d

dt
θ(i)
τ = −1

2
Σ̂τΦ (y(i)

τ + y(m̂τ ) − 2t). (32)

to the second-order Eqs. (30)–(31).
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Lemma 4 The EnKBF equations (32) are of affine-invariant gradient structure

d

dt
θ(i)
τ = −Σ̂τ∇θ(i)ΨKBF({θ( j)

τ }), (33)

with potential

ΨKBF({θ( j)}) = 1

2

M∑
j=1

Ψdata(θ
( j)) + M

2
Ψdata(m̂τ ).

Proof The lemma can be verified by direct calculation and taking note of

∇θ(i)Ψdata(m̂τ ) = 1

M
Φ (y(m̂τ ) − t)

in particular. 
�
The Eq. (33) also possesses an affine-invariant gradient-flow structure in the space of
probability measures in the mean-field limit M → ∞. See [9,10,28] for details.

Remark 5 The authors of [17] proposed a different modification of the EnKF for
classification problems. In our notation, it corresponds to

d

dt
θ(i)
τ = −

N∑
n=1

⎧⎨
⎩

1

M − 1

M∑
j=1

(
y( j)
τ,n − 1

M

M∑
l=1

y(l)
τ,n

)(
tn

y(i)
τ,n

− 1 − tn

1 − y(i)
τ,n

)
θ( j)
τ

⎫⎬
⎭ .

The modified EnKF formulation of [13] uses an implementation that is closer to ours
but does not actually propagate ensembles. Also recall that both methods are to be
used for reducing the loss functionΨdata(θ) via minimisation instead of sampling from
the posterior PDF (6), which is the subject of this paper.

Remark 6 In addition to the EnKBF formulation considered so far, there exists another
variant which is based on stochastic perturbations in the innovation [8,26]. We briefly
explain how to extend this alternative formulation to logistic regression. We recall that
the ensemble deviations Θτ satisfy the evolution Eq. (31). The same propagation of
the first and second-order moments is achieved by the stochastic equations

d(θτ − mτ ) = −ΣτΨ
{
πτ [R]Ψ T(θτ − mτ ) dτ + πτ [R]1/2dWτ

}

in themean-field limitM → ∞, whereWτ denotes standard N -dimensional Brownian
motion. This suggests to replace the finite ensemble size formulation (32) by the
interacting system of SDEs

dθ(i)
τ = −Σ̂τΨ

(
y(i)
τ dτ + R̂τ dW

(i)
τ − t dτ

)
.

Here W (i)
τ , i = 1, . . . , M , denote independent N -dimensional Brownian motions.
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Again, the forward Euler method (27) can be used to solve (32) or (33) in time.
However, the inherent stiffness of the equations of motion can lead to very small time-
steps [2]. This issue and the rank deficiency of Σ̂τ for M ≤ D are addressed in the
following subsection.

4.4 Dropout and Time-Stepping

We now discuss two numerical issue that are common to all ensemble-base methods
considered in this section.

First, we observe that whenever M ≤ D, then the empirical covariance matrix Σ̂τ

is rank-deficient and the ensemble {θ(i)
τ } is propagated in the subspace defined by the

ensemble at initial time. The concept of covariance localisation has been pioneered
in the geoscience community in order to lift this restriction [8,29]. In the context of
logistic regressionwe suggest to instead utilise the idea of dropout training as pioneered
in themachine learning community [32].We employ the concept of dropout as follows:
In each time step, a randomly chosen number of entries in θ

(i)
τ , i = 1, . . . , M , is set

to zero. The resulting modified matrix of ensemble deviations (22) is denoted by Θ̃τ .
The empirical covariance matrix is now defined by

Σ̂τ = 1

(1 − μ)(M − 1)
Θ̃τ Θ̃

T
τ , (34)

where μ ∈ (0, 1) denotes the fraction of entries randomly set to zero. All other
aspects of the previously considered algorithms remain unaltered. The estimator (34)
underestimates the cross-correlations. An unbiased estimator requires an additional
rescaling of the off-diagonal entries by 1/(1 − μ).

Remark 7 There are alternativemethods for breaking the sub-space property of ensem-
ble transform methods in case of M ≤ D. For example, the authors of [17] suggest to
randomly perturb the ensemble members after each time step of EKI. In our context,
this approach can be viewed as combining the EnKBF with diffusion at low tempera-
ture. However, it is not clear that diffusion is sufficient to effectively explore the full
parameter space in the context of the homotopy approach considered in this paper.

Second, we return to the issue of efficient time-stepping of the interacting particle
systems. We had previously considered the forward Euler method (27). However,
the method can encounter severe step-size restrictions due to its restricted domain
of stability. Following [2], we therefore consider the following tamed version of the
forward Euler discretisation (27) for the EnKBF formulation from Sect. 4.3. Starting
from (32) we employ

θ(i)
τk+1

= θ(i)
τk

− Δτ

2
Σ̂τkΦ

(
I + Δτ R̂τkΦ

TΣ̂τkΦ
)−1

(y(i)
τk

+ y(m̂τk ) − 2t) (35)

with step sizeΔτ > 0 for k = 0, . . . , K−1. If the necessarymatrix inversions become
too computationally expensive, one can diagonalise the inverse as proposed in [2]. The
same modification can be applied to the second-order formulation (30)–(31).
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5 Ensemble Transform Langevin Dynamics

While we have focused on the homotopy approach in the previous section, we now
combine the homotopy approach with overdamped Langevin dynamics in order to
sample from the desired target distribution (6) as τ → ∞. Let us therefore turn the
transport-based differential equation (10) into the McKean–Vlasov SDE

dθτ = −Στ

{
∇θVτ (θτ ) + 1

2
Σ−1

prior(θτ + mτ − 2mprior)

}
dτ + Σ1/2

τ dWτ (36)

by adding diffusion and a prior-related drift term to (10). This SDE is motivated by
the affine-invariant EKS [9] and ALDI [10] variants of standard Langevin dynamics.
Note that the crucial differences are that (i) EKS/ALDI uses the gradient ∇θΨprior of
the prior in the drift term while (36) contains

1

2
Σ−1

prior(θτ + mτ − 2mprior)

instead, and (ii) in a similar vain, the potential Ψdata(θ) is replaced in (36) by a time-
dependent potential Vτ which is defined as the solution of the elliptic PDE (9). We
will find that these modifications are motivated by the two facts that (i) one can find
efficient gradient-free time-stepping methods for the SDE (36) and (ii) that the SDE
(36) samples from the posterior PDF in the case of Gaussian distributions as we
demonstrate next.

Lemma 5 If the initial π0 is Gaussian and Ψdata is a potential of the form

Ψdata(θ) = 1

2
(Gθ − t)TΓ −1(Gθ − t),

then the marginal PDFs πτ of (36) remain Gaussian for all τ > 0, and the SDE (36)
has a stationary measure which is given by π∞(θ) ∝ exp(−Ψpost(θ)).

Proof Under the stated assumption, we have

− 1

πτ (θ)
∇θ · (πτ (θ)Στ∇θVτ (θ)) = (θ − mτ )

T∇θVτ (θ) − ∇θ · Στ∇θVτ (θ)

as well as

Ψdata(θ) − πτ [Ψdata] = 1

2
(Gθ − t)TΓ −1(Gθ − t)

−1

2
πτ [θTGTΓ −1Gθ ] + mT

τ G
TΓ −1t − 1

2
tTΓ −1t

= 1

2
(θ − mτ )

TGTΓ −1(Gθ + Gmτ − 2t)

−1

2
πτ [θTGTΓ −1Gθ ] + 1

2
mT

τ G
TΓ −1Gmτ .
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Equating both expressions leads us to

∇θVτ (θ) = 1

2
GTΓ −1(Gθ + Gmτ − 2t). (37)

The evolution equations arising from (36) for the mean mτ and the covariance matrix
Στ are therefore given by

d

dτ
mτ = −Στ

(
GTΓ −1(Gmτ − t) + Σ−1

prior(mτ − mprior)
)

= −ΣτΣ
−1
post(mτ − mpost)

and

d

dτ
Στ = −Στ

(
GTΓ −1G + Σ−1

prior

)
Στ + Στ

= −ΣτΣ
−1
postΣτ + Στ ,

respectively. The associated equilibrium solutions are

m∞ = mpost := mprior − ΣpostG
TΓ −1(Gmprior − t)

and

Σ∞ = Σpost :=
(
GTΓ −1G + Σ−1

prior

)−1
,

as desired. We also note that the linearity of the gradient (37) implies that the PDFs
πτ remain Gaussian. Finally, (37) is indeed the gradient of the potential

Vτ (θ) = 1

4
(Gθ − t)TΓ −1(Gθ − t) + 1

2
θTGTΓ −1(Gmτ − t),

which concludes the proof. 
�
Remark 8 Onecan replace theMcKean–VlasovSDE (36) by the following formulation

dθτ = −Στ∇θUτ (θτ ) dτ + Σ1/2
τ dWτ , (38)

where the potential Uτ now satisfies the elliptic PDE

∇θ · (πτΣτ∇θUτ ) = −πτ (Ψpost − πτ

[
Ψpost

]
)

instead of (9). Both formulations are equivalent for Gaussian PDFs πτ . While (36) is
closer to the homotopy approach of Sect. 4, formulation (38) has a closer resemblance
to overdamped Langevin dynamics.
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5.1 Asymptotic Behaviour

The case of a general negative log-likelihood functionΨdata is more delicate. However,
if the associated posterior (6) is non-Gaussian but is well approximated by a Gaussian,
and this also applies to all intermediate PDFs πτ , that is,

πτ (θ) ≈ π̃τ (θ) ∝ exp

(
−1

2
(θ − mτ )

TΣ−1
τ (θ − mτ )

)
, (39)

then following the arguments from Sect. 4.2, the first two moments satisfy

d

dτ
mτ = −Σt π̃τ [∇θΨpost] (40)

and
d

dt
Στ = −Σt π̃τ [D2

θΨpost]Σt + Σt . (41)

The equation for the covariance matrix is stable if π̃τ [D2
θΨpost] is positive-definite for

all τ ≥ 0. This is, for example, the case for logistic regression.
We now discuss the limiting τ → ∞ behavior of (36) in some more detail. Its

equilibrium distributions are characterised by the following lemma.

Lemma 6 Stationary measures π∞ of the mean-field equation (36) satisfy the PDE

1

2
∇θ ·

(
π∞Σ∞

{
∇θ logπ∞ + Σ−1

prior(θ + m∞ − 2mprior)
})

= π∞(Ψdata − π∞[Ψdata])

or, in terms of expectation values with respect to test functions φ,

1

2
π∞

[
∇θφ · Σ∞

{
∇θ logπ∞ + Σ−1

prior(θ + m∞ − 2mprior)
}]

= π∞ [φ (Ψdata − π∞ [Ψdata])] . (42)

Proof The lemma follows from the Fokker–Planck equation associated to (36) and the
PDE (9). 
�
Againmaking the Gaussian approximation (39), formally setting τ = ∞ and recalling
Remark 8, we first obtain from (42) the identity

1

2
π̃∞

[∇θφ · Σ∞∇θ log π̃∞
] = π̃∞

[
φ
(
Ψpost − π̃∞

[
Ψpost

])]
.

Then,
1

2
π̃∞[∇θ log π̃∞] = 0 = π̃∞[∇θΨpost] (43)
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for φ(θ) = θ − m∞, and

π̃∞[D2
θ log π̃∞] = Σ−1∞ = π̃∞[D2

θΨpost] (44)

for φ(θ) = (θ −m∞)(θ −m∞)T, which provide a self-consistent system of equations
for the mean m∞ and the covariance matrix Σ∞ of the Gaussian approximation (39).
Here we have again used (28) and (29), respectively.

Note that (43) and (44) are compatible with (40) and (41), respectively. However,
(43) and (44) only require Gaussianity (or a near-Gaussianity) for the equilibrium
distribution π∞.

5.2 Numerical Implementation

The most appealing aspect of our modified overdamped Langevin dynamics is the
possibility of implementing the SDEs (36) or (38), respectively, in a derivative-free
manner, that is, without explicit knowledge of the potential Vτ and its gradient.

We describe a suitable time-stepping method in detail for the formulation (36)
utilising methods from sequential data assimilation, which are well suited to deal with
the −Στ∇θVτ term in the SDE (36). In other words, we numerically solve the SDE
(36) with a step sizeΔτ by alternating in each time step between (i) a data assimilation
step (such as SMC or an ensemble transform filter [29]) with negative log-likelihood

l(θ) = ΔτΨdata(θ)

and (ii) the SDE

dθt = −1

2
ΣτΣ

−1
prior(θτ + mτ − 2mprior) dτ + Σ

1/2
t dWt (45)

over the same time-interval Δτ . More precisely, given θτk ∼ πτk we first find

θ̃τk+1 ∼ exp(−ΔτΨdata) πτk (46)

followed by solving (45) with initial θ̃τk+1 over the time-interval Δτ in order to obtain
θτk+1 ∼ πτk+1 for k = 0, . . . , K − 1. Note that (45) can be solved robustly by the
tamed forward Euler-Maruyama method

θτk+1 = θ̃τk+1 − Δτ

2
Σ̃τk+1

(
Σprior + ΔτΣ̃τk+1

)−1
(θ̃τk+1 + m̃τk+1 − 2mprior)

+√
ΔτΣ̃1/2

τk+1
Ξk+1

with Ξk+1 a D-dimensional standard Gaussian random variable. As for ALDI, the
Σ

1/2
τ multiplying the Brownian motion in (45) requires a correction term in order to

sample from the correct distribution for finite ensemble sizes M . See [10] for details.
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Our numerical implementations of (46) in terms of ensembles {θ(i)
τk } rely on ensem-

ble transform filters of the form [29]

θ̃ ( j)
τk+1

=
M∑
i=1

θ(i)
τk
si j (47)

for j = 1, . . . , M with appropriate coefficients si j , which satisfy

M∑
i=1

si j = 1. (48)

We collect the coefficients si j in the M × M matrix S.

Lemma 7 An ensemble transform filter is affine-invariant (compare Sect. 3.1) if the
associated coefficients si j for the filter in the transformed variable θ satisfy si j = si j
for all i, j = 1, . . . , M.

Proof If

θ(i)
τk

= Aθ
(i)
τk

+ b

at τk , then

θ( j)
τk+1

=
M∑
i=1

θ(i)
τk
si j =

M∑
i=1

(Aθ
(i)
τk

+ b)si j = A
M∑
i=1

θ
(i)
τk
si j + b = Aθ

( j)
τk+1

+ b,

and we conclude that

θ(i)
τk+1

= Aθ
(i)
τk+1

+ b

at τk+1 for all i = 1, . . . , M . 
�
The EnKF and the nonlinear ensemble transform filter (NETF) of [36], for example,
are affine-invariant. More specifically, the NETF leads to the transformation matrix

S = wτk1
T
M + √

M
(
diag (wτk ) − wτkw

T
τk

)1/2

where wτk ∈ R
M is the vector of normalised importance weights with entries

w(i)
τk

= exp(−ΔτΨdata(θ
(i)
τk ))∑M

j=1 exp(−ΔτΨdata(θ
( j)
τk ))

,

1M ∈ R
M is the vector of ones, and diag (wτk ) ∈ R

M×M is the diagonal matrix
with diagonal entries wτk . The affine invariance follows from the invariance of the
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importanceweightswτk . The affine invariance of theEnKFhas beenpreviously demon-
strated, for example, in [22].

Remark 9 The ensemble transform particle filter (ETPF) of [27,29] can also be made
affine-invariant by using the cost function

V (S) = 1

2

M∑
i, j=1

si j (θ
(i)
τk

− θ( j)
τk

)TΣ̂−1
τk

(θ(i)
τk

− θ( j)
τk

) (49)

subject to the constraints si j ≥ 0, (48), and

1

M

M∑
j=1

si j = w(i)
τk

(50)

in the optimal transport definition of the coefficients si j in (47). Again, the affine
invariance follows from the affine invariance of both the cost function V (S) and the
importance weights wτk .

6 Numerical Example

In this section, we provide a couple of relatively simple numerical illustrations for
the methods proposed in this paper. We start with a low-dimensional toy problem for
which all proposed methods can easily be implemented and tested.

Example 1 We follow the example from [5] Section 4.2.1. Specifically, consider the
Gaussian likelihood functions

π(x |Ci ) ∝ exp

(
−1

2
(x − μi )

TB−1(x − μi )

)

for inputs x to belong to classes Ci , i = 1, 2. The implied posterior PDF π(C1|φx ) is
given by (2) with φx = (xT, 1)T, that is D = J + 1, and the true parameter value is

θ =
(

B−1(μ1 − μ2)

− 1
2μ

T
1 B

−1μ1 + 1
2μ

T
2 B

−1μ2 + ln π(C1)
π(C2)

)
. (51)

Furthermore, given data points (xn, tn), n = 1, . . . , N , the maximum likelihood esti-
mators for π(C1), μi , and B are given by

π̂(C1) = N1

N
, N1 =

N∑
n=1

tn,

μ̂1 = 1

N1

N∑
n=1

tnxn, μ̂2 = 1

N − N1

N∑
n=1

(1 − tn)xn,
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and

B̂ = 1

N

{
N∑

n=1

tn(xn − μ̂1)(xn − μ̂1)
T +

N∑
n=1

(1 − tn)(xn − μ̂2)(xn − μ̂2)
T

}
,

respectively. See Section 4.2.2 in [5] for details. In this example, we will however
directly estimate the true parameter value (51) using Bayesian inference.

We consider the special case J = 2 and use B = I, I the identity matrix, μ1 =
(−1,−1)T, μ2 = (2, 2)T, and π(C1) = π(C2) = 1/2 to generate N = 100 data
points. We note that the chosen values for μ1, μ2, and B lead to

θ =
⎛
⎝−3

−3
3

⎞
⎠ . (52)

We now test the proposed algorithms using (i) an informative Gaussian prior with
mean (52) and covariance matrix Σprior = I, and (ii) a less informative Gaussian prior
with mean mprior = 0 and covariance matrix Σprior = 4 I. We time step the affine-
invariant FPF, the second-order filter (30)–(31), and the EnKBF (32) with the forward
Euler method using a step sizeΔτ = 10−3. A further reduction of the step size did not
change the results in a statistically significant manner. TheMcKean–Vlasov SDE (36)
is also implemented with the NETF as the inner data assimilation step. Furthermore,
we implemented the ALDI method [10] for comparison since it is known to exactly
sample from the posterior PDF (6). Both ALDI and the McKean–Vlasov SDE (38)
were run up to time τ = 10 with step-size Δτ = 10−2 at which point the interacting
particle systems were considered to be in equilibrium.

The implementation of the FPF, as well as the SDE (36), explicitly involve the
evaluation of the negative log-likelihood function (3). We found that we needed to
replace (4) by

yn = 0.99 σ(θTφxn ) + 0.005

in order to avoid numerical instabilities due to exceedingly small values of ln yn . The
band-width, ε, in (24) has been set to ε = 0.1.

All experiments were repeated L = 1000 times in order to average out random
sampling effects. The numerically computed posterior means and spectral norm of
the posterior covariance matrices can be found in Tables 1 and 2, respectively, for
the informative prior, and in Tables 3 and 4, respectively, for the less informative
prior. Reference values from an ALDI simulation are provided in the captions. While
all methods reproduce those reference values very well in case of the informative
prior, this picture changes for the less informative prior, where one expects a stronger
nonlinear and non-Gaussian behavior of the associated Bayesian inference problem.
One finds that the performance of the FPF improves as the ensemble size increases
while the second-order method and the EnKBF suffer from a systematic bias. We also
find that the McKean–Vlasov SDE formulation (36) behaves rather well over the full
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Table 1 Informative prior: We display the ensemble mean averaged over L = 1000 repeated experiments
for the four proposed methods as a function of the ensemble size M

Ensemble size/method M = 50 M = 100 M = 200 M = 400

McKean–Vlasov SDE

⎛
⎝−3.34

−3.39
3.22

⎞
⎠

⎛
⎝−3.35

−3.39
3.21

⎞
⎠

⎛
⎝−3.35

−3.39
3.21

⎞
⎠

⎛
⎝−3.35

−3.39
3.22

⎞
⎠

FPF

⎛
⎝−3.31

−3.35
3.20

⎞
⎠

⎛
⎝−3.33

−3.37
3.21

⎞
⎠

⎛
⎝−3.33

−3.37
3.21

⎞
⎠

⎛
⎝−3.33

−3.37
3.21

⎞
⎠

Second-order

⎛
⎝−3.36

−3.40
3.22

⎞
⎠

⎛
⎝−3.36

−3.41
3.22

⎞
⎠

⎛
⎝−3.36

−3.41
3.22

⎞
⎠

⎛
⎝−3.36

−3.41
3.22

⎞
⎠

EnKBF

⎛
⎝−3.27

−3.31
3.20

⎞
⎠

⎛
⎝−3.27

−3.32
3.20

⎞
⎠

⎛
⎝−3.27

−2.31
3.19

⎞
⎠

⎛
⎝−3.27

−3.31
3.19

⎞
⎠

The reference value from anALDI simulation is (−3.32,−3.36, 3.20)T.We find that all methods reproduce
the reference solution provided by ALDI within small variations

Table 2 Informative prior:We display the spectral norm of the final ensemble covariance matrices averaged
over L = 1000 repeated experiments for the four proposed methods as a function of the ensemble size M

Ensemble size/method M = 50 M = 100 M = 200 M = 400

McKean–Vlasov SDE 0.89 0.83 0.80 0.78

FPF 0.98 0.90 0.86 0.83

Second-order 0.75 0.75 0.74 0.74

EnKBF 0.80 0.79 0.78 0.78

The ALDI reference value is 0.82. We find that the FPF slightly overestimates the variance for smaller
ensemble sizes, while both the EnKBF and the second-order formulation slightly underestimate it across
all ensemble sizes

range of ensemble sizes. We conclude that all tested methods are able to qualitatively
reproduce the exact parameter value (52) even in the case of the less informative prior.
The results also indicate that the posterior distribution is close to Gaussian, while the
intermittent PDFs πτ must deviate significantly from a Gaussian distribution.

In terms of computational cost, the EnKBF and the second-order method per-
form comparable and are the least expensive by far for all ensemble sizes. While the
McKean–Vlasov SDE is twice as expensive as the EnKBF at M = 50, this ratio goes
up to a factor of five at M = 400. The FPF, on the other hand, is ten times as expen-
sive as the EnKFB at M = 50 which increases steeply to a factor of one hundred at
M = 400.

We now consider a high-dimensional extension of the previous example, for which
we further investigate the performance of the EnKBF (33) in terms of the tamed time-
stepping method (35) for ensemble sizes M ≤ D, localisation via dropouts, and data
sub-sampling.
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Table 3 Less informative prior: We display the ensemble mean averaged over L = 1000 repeated experi-
ments for the four proposed methods as a function of the ensemble size M

Ensemble size/method M = 50 M = 100 M = 200 M = 400

McKean–Vlasov SDE

⎛
⎝−2.61

−2.65
2.15

⎞
⎠

⎛
⎝−2.60

−2.64
2.15

⎞
⎠

⎛
⎝−2.59

−2.62
2.15

⎞
⎠

⎛
⎝−2.59

−2.62
2.15

⎞
⎠

FPF

⎛
⎝−2.16

−2.15
1.64

⎞
⎠

⎛
⎝−2.28

−2.30
1.83

⎞
⎠

⎛
⎝−2.39

−2.41
1.95

⎞
⎠

⎛
⎝−2.44

−2.47
2.00

⎞
⎠

Second-order

⎛
⎝−2.29

−2.32
1.82

⎞
⎠

⎛
⎝−2.30

−2.32
1.83

⎞
⎠

⎛
⎝−2.31

−2.33
1.83

⎞
⎠

⎛
⎝−2.31

−3.34
1.84

⎞
⎠

EnKBF

⎛
⎝−2.14

−2.16
1.73

⎞
⎠

⎛
⎝−2.16

−2.18
1.74

⎞
⎠

⎛
⎝−2.17

−2.19
1.75

⎞
⎠

⎛
⎝−2.17

−2.19
1.76

⎞
⎠

We find that all methods qualitatively reproduce the reference value (−2.56,−2.59, 2.15)T provided by
ALDI. While the second-order method and the EnKBF suffer from a systematic bias, the FPF approaches
the reference solution as the ensemble size increases. The McKean–Vlasov SDE formulation yields good
approximations for all ensemble sizes

Table 4 Less informative prior: We display the spectral norm of the final ensemble covariance matrices
averaged over L = 1000 repeated experiments for the four proposed methods as a function of the ensemble
size M

Ensemble size/method M = 50 M = 100 M = 200 M = 400

McKean–Vlasov SDE 1.36 1.14 1.03 0.97

FPF 3.61 2.58 2.01 1.66

Second-order 0.46 0.45 0.45 0.45

EnKBF 0.60 0.59 0.59 0.59

The ALDI reference value is 1.18.We find that the FPF overestimates the variance, while both the EnKBF
and the second-order formulation underestimate it. While the FPF appears to approach the correct reference
value for increased ensemble sizes, both the EnKBF and the second-order filter appear to suffer from a
systematic bias. The McKean–Vlasov SDE approach leads to a slightly degraded performance in terms of
ensemble variations as the ensemble size increases

Example 2 We consider the simple feature map

φx = x,

that is J = D such that

yx (θ) = σ(θTx)

for D = 50. The data is generated by first drawing a θ = θref from the standard
normal distribution in R

D . Next, N = 1000 data points are generated by randomly
drawing xn , n = 1, . . . , N , again from a standard normal distribution in R

D . Those
points are assigned the label tn = 1 with probability yxn (θref), and tn = 0 otherwise.
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Table 5 We display the l2-difference between the posterior ensemble means and the true parameter value
averaged over L = 1000 repeated experiments and its standard deviation for three different implementations
of the EnKBF as a function of the ensemble size M

Ensemble size/method M = 20 M = 60 M = 100

EnKBF 6.26±0.75 2.67±0.68 1.69±0.48

EnKBF (with dropout) 1.29±0.29 1.28±0.30 1.39±0.46

EnKBF (with dropout & mini-batch) 2.14±0.46 1.42±0.25 1.35±0.21

The reference value providedbyALDI is 1.10.Wefind that localisationbydropout dramatically improves the
behavior of the EnKBF especially for small ensemble sizes. Using mini-batches reduces the approximation
quality slightly while providing significant computational savings

Table 6 Weprovide the spectral norm of the computed posterior covariancematrices in the setting described
in Table 5

Ensemble size/method M = 20 M = 60 M = 100

EnKBF 0.014±0.004 0.058±0.012 0.097±0.015

EnKBF (with dropout) 0.043±0.012 0.088±0.022 0.109±0.025

EnKBF (with dropout and mini-batch) 0.041±0.012 0.084±0.021 0.105±0.025

The reference value provided by ALDI is 0.22. We find that both all three EnKBF implementations under-
estimate the variance. However, dropout localisation increases the ensembles spread which in turn improves
the estimated ensemble means as displayed in Table 5

We use the EnKBF tamed time-stepping method (35) with step size Δτ = 1/200 for
parameter inference. The initial ensemble θ

(i)
0 , i = 1, . . . , M is drawn from the prior

Gaussian distribution with mean mprior = 0 and the covariance matrix Σprior equal to
the identity matrix. We vary the ensemble size M between M = 20 and M = 100
and use dropout localisation for the computation of the empirical covariance matrices
Σ̂τn following (34). More specifically, an entry of θ

(i)
τn is set to zero if η < 0.5 where

the η’s are i.i.d. uniform random variables from the interval [0, 1]. We report in Table
5 the l2-difference between θref and the ensemble mean m̂τ at final time τ = 1. We
also state the spectral norm of Σ̂τ at the final time in Table 6. In a second set of
experiments, we apply mini-batching to the localised EnKBF with random batches
of size N ′ = 100. We also compare the results to those from the standard EnKBF
formulation (32). Furthermore, ALDI is run for a sample size of M = 100 in order
to provide the numerical benchmark values listed in the captions of Tables 5 and
6. All results have been averaged over L = 1000 independent simulations. We also
report the standard deviations in addition to the averaged values. Our numerical results
indicate that localisation by dropout is effective for small ensemble sizes, and thatmini-
batching does not degrade performance while providing significant computational
savings. As for the previous example, the EnKBF is able to capture the posterior mean
quite well while the posterior variances are systematically underestimated. Ensemble
inflation, aswidely used for theEnKF [8,29], could help to further improve the variance
estimates. We found that our results are insensitive to the choice of the step size Δτ

in (35). However changing the threshold value μ = 0.5 in the dropout localisation
(34) affects the results significantly. Smaller values of μ lead in particular to reduced
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Table 7 Same results as displayed in Table 5 except that the dropout rate has been reduced from μ = 0.5
to μ = 0.2. While the estimation errors increase for the smallest ensemble sizes the reduced rate improves
the performance for larger ensemble sizes

ensemble size/method M = 20 M = 60 M = 100

EnKBF (with dropout) 3.30±1.01 1.26±0.23 1.12±0.36

EnKBF (with dropout and mini-batch) 3.39±0.86 1.38±0.25 1.19±0.27

l2-differences for larger ensemble sizes, M , while being less effective for smaller M .
See Table 7.

7 Generalisations and Extensions

In this section, we discuss possible extensions of the proposed methods to nonlin-
ear logistic regression including derivative-free implementations, multi-class logistic
regression, and sigmoidal Cox processes.

7.1 Nonlinear Logistic Regression

We generalise linear logistic regression from Sect. 2 to the more general logistic
regression problem with yx (θ) := σ( fx (θ)) for given functions fx : RD → R. Hence
the gradient ∇θ yx (θ) becomes

∇θ yx (θ) = φx (θ) (1 − yx (θ)) yx (θ),

where the previously considered feature maps φx now also depend on the parameters
θ , that is,

φx (θ) := ∇θ fx (θ).

The gradient of Ψdata is thus explicitly given by

∇θΨdata(θ) =
N∑

n=1

φxn (θ) (yxn (θ) − tn)

and the Hessian matrix of second-order derivatives becomes

D2
θΨdata(θ) =

N∑
n=1

{
φxn (θ) yxn (θ) (1 − yxn (θ)) φxn (θ)T

+ Dθφxn (θ) (yxn (θ) − tn)
}
.
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We now discuss a derivative-free implementation of the EnKBF (32) for nonlinear
logistic regression. The key difference to linear logistic regression is that the matrix
Φ ∈ R

D×N now depends on θ and is given by

Φ(θ) = (∇θ fx1(θ), . . . ,∇θ fxN (θ)).

In order to avoid the computation of the gradients of fx , one replacesΣτΦ(θτ ) in (32)
by the empirical correlation matrix

Cτ := 1

M − 1

M∑
i=1

(θ(i)
τ − m̂τ )

(
fx1(θ

(i)
τ ), . . . , fxN (θ(i)

τ )
)

∈ R
D×N

between θτ and fxn (θτ ) for n = 1, . . . , N . See [8] for the basic idea in the context
of the EnKF and also [13,17] for the specific application of this idea in the context
of machine learning. See also the recent work [24,30] on tuneable derivative-free
approximations. We also note that this substitution becomes exact in the case of linear
functions fx (θ). Such a linear approximation is, for example, justified for functions
fx (θ) defined by sufficiently wide neural networks [18].

7.2 Multi-class Logistic Regression

The extension from two-class to multi-call classification is straightforward, see [5].
The posterior probabilities for L classes Cl , l = 1, . . . , L , are given by

π(Cl |φx ) = exp
(
ax,l

)
∑L

j=1 exp
(
ax, j

) ,

where the activation is given by

ax,l := θTl φx .

The adjustable parameters are now θ = (θT1 , . . . , θTL )T ∈ R
LD . The negative log-

likelihood function becomes

Ψdata(θ) = −
N∑

n=1

L∑
l=1

tnl ln ynl(θ)

with

ynl(θ) := exp
(
axn ,l

)
∑L

j=1 exp
(
axn , j

)
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and data (xn, {tnl}Ll=1), where tnl ∈ {0, 1} subject to∑L
l=1 tnl = 1 for all n = 1, . . . , N .

The gradients satisfy

∇θlΨdata(θ) =
N∑

n=1

(ynl − tnl)φn,

l = 1, . . . , L . The Hessianmatrix of second-order derivatives got D×D block entries

Dθl Dθ j Ψdata(θ) =
N∑

n=1

ynl(δl j − ynj )φnφ
T
n

with δl j = 1 if l = j and δl j = 0 otherwise. We conclude that these formulas
closely resemble the corresponding expressions for binary classification and, hence,
all previously considered algorithms easily generalise to multi-class regression.

7.3 Sigmoidal Cox Processes

We consider Cox processes (CPs) on a domain X ⊂ R
J . Following [1], the CP is

parametrised by an intensity function λx : X → R
+ which we represent using a

sigmoidal random feature model, that is,

λx (θ) = λ∗σ(θTφx ),

where λ∗ > 0 provides the upper threshold value for the intensity function. Note that
a Gaussian process is used by [1] while we rely here on the closely related random
featuremapsφx [21], which easier integrate into the homotopy approach and the EnKF
in particular [12].

See [7] for an efficient Bayesian inference for CPs using variable augmentation.
Here we suggest an alternative approach using an associated unbiased estimator of the
negative log-likelihood in the forward Euler time-stepping (20).

More specifically, given N events xn , n = 1, . . . , N , the negative log-likelihood
function is provided by

Ψdata(θ) =
∫
X

λx (θ)dx −
N∑

n=1

ln λxn (θ).

Following the notation of Sect. 3.2 and using I uniformly distributed samples x̂i ,
i = 1, . . . , I , on X , we obtain the random unbiased estimator

Ψ
γ
data(θ) = λ∗

I

I∑
i=1

yx̂i (θ) −
N∑

n=1

ln yxn (θ) − N ln λ∗ (53)

for this intractable likelihood Ψdata. Here we also used the previously introduced
notation (4), that is, λx (θ) = λ∗yx (θ).
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We now apply the homotopy approach (10) to the associated Bayesian inference
problem. Following the discussion in Sect. 3.2, the evolution converges to the correct
posterior if in each time step (20) one uses a different realisation γτk of the unbiased
estimator (53) instead of Ψdata in (9) and takes the limit Δτ → 0.

Example 3 Let us briefly discuss a related problem in a strictly Gaussian setting. We
start from the intractable negative log-likelihood function

Ψdata(θ) := 1

2

∫ 1

0

(
θTφx − t

)2
dx .

Its gradient is provided by

∇θΨdata(θ) =
∫ 1

0
φx

(
θTφx − t

)
dx

and the associated mean-field EnKBF becomes

d

dτ
θt = −1

2
Στ

∫ 1

0
φx

(
(θτ + mτ )

T φx − 2t
)
dx .

So far, everything is exact and no approximation has been made. We now replace the
integral by its Monte Carlo approximation using I randomly sampled x̂i,k ∼ U[0, 1],
i = 1, . . . , I , and introduce a time step Δτ leading to

θτk+1 = θτk − Δτ

2I
Στk

I∑
i=1

φx̂i,k

((
θτk + mτk

)T
φx̂i,k − 2t

)
,

where we re-sample the x̂i,k’s in each time-step τk , k = 0, . . . , K − 1. A theoretical
investigation now boils down to studying the limit Δτ → 0, which can be performed
along the modified equation analysis of [20]. We note that the approximation error
can be reduced by either increasing I or decreasing the step size Δτ .

8 Conclusions

We have presented affine-invariant extensions of the popular EnKF and related meth-
ods such as the FPF to logistic regression. In addition, we have proposed a novel
SDE-based affine-invariant and derivative-free sampling method which utilises the
robust ensemble transform approach for Bayesian inference as an inner time-stepping
method. We have also introduced a number of algorithmic choices such as localisa-
tion via dropout, linearly implicit time-stepping methods, and mini-batching the data,
which help to improve the efficiency of the proposed methods. While we have only
considered two simple numerical examples, future work will consider more challeng-
ing applications such as the training of the Sentence Gestaltmodel of natural language
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comprehension [25]. A numerical exploration of the affine-invariant stochastic homo-
topy formulation (18) would also be of practical and theoretical interest.

A number of theoretical questions also remain to be answered such as the conver-
gence of the ensemble methods to their mean-field limits, the impact of the various
approximations on the computed posterior representations, and the ergodicity and
convergence to equilibriumproperties of (36) and (38), respectively. Finally, an embed-
ding of the ensemble transform Langevin dynamics into a Markov chain Monte Carlo
framework would allow for an exact sampling from the posterior.
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Appendix

We provide an analysis of the SDE

dθτ = −Στ

{
∇θVτ (θτ ) dτ − (ΔτΩτ )

1/2dWτ

}
, (54)

which is obtained from the modified SDE (21) by setting Ωτ(θ) = Ωτ , that is, by
ignoring the state dependence of the diffusion term, and using the EnKBF drift term
from linear regression [3], that is,

∇θVτ (θ) = 1

2
GTΓ −1(Gθ + Gmτ − 2t).

Conditioned on Wτ , the evolution equation for the (conditional) mean becomes

dmτ = −Στ

{
GTΓ −1(Gmτ − t)dτ − (ΔτΩτ )

1/2dWτ

}
(55)

and that for the (conditional) covariance matrix

d

dτ
Στ = −ΣτG

TΓ −1GΣτ . (56)
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We can further decompose (55) into an equation for the mean, which we denote by
μτ , and the covariance Pτ . We obtain the two evolution equations

d

dτ
μτ = −ΣτG

TΓ −1(Gμτ − t) (57)

and
d

dτ
Pτ = −ΣτG

TΓ −1GPτ − PτG
TΓ −1GΣτ + ΔτΣτΩτΣτ , (58)

respectively. The initial conditions are μ0 = m0 and P0 = 0.
We note that (57) and (56) are equivalent to the equations arising from the standard

Kalman–Bucy filter with solutions

μτ = μ0 − Kτ (Gμ0 − t)

and

Στ = Σ0 − KτGΣ0,

respectively, where Kτ denotes the Kalman gain matrix

Kτ = τΣ0G
T(Γ + τGΣ0G

T)−1.

If we now consider the fully observed case, that isG = I , under small measurement
error covariance Γ = ε I , ε � 1, then we find that

μ1 ≈ θMLE = t, Σ1 ≈ Γ = ε I , P1 <
Δτ

2
Σ1Ω1Σ1 ≈ ε2

Δτ

2
Ω1.

If we define

Ωτ = πτ [Ωτ(θ)]

for simplicity, where πτ is the exact filtering distribution for the Kalman–Bucy filter,
then Ω0 = O(ε−2) while Ω1 = O(ε−1). Hence, the variance, Pτ , of the posterior
conditional mean, mτ , is much smaller than the posterior (as well as the frequentist)
variance, Στ , at τ = 1 provided the step-size Δτ in (54) is chosen small enough.
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