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Abstract
Following E. Wigner’s original vision, we prove that sampling the eigenvalue gaps
within the bulk spectrum of a fixed (deformed) Wigner matrix H yields the celebrated
Wigner-Dyson-Mehta universal statistics with high probability. Similarly, we prove
universality for a monoparametric family of deformed Wigner matrices H + x A with
a deterministic Hermitian matrix A and a fixed Wigner matrix H , just using the ran-
domness of a single scalar real random variable x . Both results constitute quenched
versions of bulk universality that has so far only been proven in annealed sense with
respect to the probability space of the matrix ensemble.

Keywords Global Law · Local Law · Random Matrices · Dyson Brownian motion

Mathematics Subject Classification 60B20 · 15B52

1 Introduction

Random matrix theory in physics was originally envisioned by E. Wigner to predict
statistics of gaps between the energy levels of heavy atomic nuclei. The underlying
physical systems have no inherent disorder and the statistical ensemble in Wigner’s
description was generated by randomly (uniformly) sampling from the experimentally
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Fig. 1 The two types of universality: The first histogram shows the normalised gaps of the two middle
eigenvalues in the spectrum of 5000 complex Wigner matrices of size 100 × 100. The second histogram
shows the empirical normalised bulk eigenvalue gaps of a single complexWignermatrix of size 5000×5000.
Both distributions asymptotically approach the Gaudin-Mehta distribution p2 drawn as solid lines, see
Sect. 2.3

measured gaps of a fixed nucleus within a large energy range. Themodel ensemble, the
space of Hermitian random matrices with independent, identically distributed entries
(Wigner ensemble), is however inherently random. Accepting the replacement of the
original physical Hamiltonian with a Hermitian random matrix, one may ask whether
uniform sampling within the spectrum of a fixed, typical realisation of a Wigner
matrix also gives rise to the celebrated Wigner-Dyson-Mehta (WDM) universality. In
this paper we affirmatively answer this question, in the sense that for any fixed typical
Wigner matrix the empirical gap statistic is close to the Wigner surmise, see Fig. 1.
We thus prove a stronger version of WDM universality and confirm the applicability
of Wigner’s theory even in the quenched sense. All previous universality proofs, see
e.g. [8, 10, 16, 18–20, 26, 29–32, 36, 37] (see also [3, 6, 7, 14, 34, 35] for invariant
ensembles), were valid in the annealed sense, i.e. where the eigenvalue statistics were
directly generated by the randomness of the matrix ensemble.

More generally, we consider random matrices of the form Hx := H + x A, where
H is a large N × N Wigner matrix, A is a fixed nontrivial Hermitian deterministic
matrix, and x is a real random variable (in fact we can even consider more general
deformed Wigner matrices H ). We show that for a typical but fixed (quenched) H
the randomness of x alone is sufficient to generate WDM universality in the bulk of
the limiting spectrum of Hx , i.e. we prove that the local statistics of H + x A are
universal for all fixed H in a high probability set. The special case A = I and x
being uniformly distributed on some small interval yields Wigner’s spectral sampling
model. Another special case covered by our general result is when A itself is chosen
from a Wigner ensemble. The corresponding H + x A model for the Gaussian case
was introduced by H. Gharibyan, C. Pattison, S. Shenker1 and K. Wells who coined
it as the monoparametric ensemble [23].

The basic guiding principle for establishing quenched universality of Hx is to show
that near a fixed energy E the eigenvalues of Hx and Hx ′

are essentially uncorrelated

1 Private communication via Stephen Shenker and Sourav Chatterjee in June 2020.
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Quenched universality for deformed Wigner matrices 1185

whenever x and x ′ are not too close. This provides the sufficient (asymptotic) inde-
pendence along the sampling in the space of x . Following a similar idea in [11] for
a different setup, the independence of eigenvalues is proven by running the Dyson
Brownian motion (DBM) for the matrix H . The corresponding stochastic differential
equations for the eigenvalues of Hx and Hx ′

have almost independent stochastic dif-
ferentials if the corresponding eigenvectors are asymptotically orthogonal. Therefore,
independence of eigenvalues can be achieved by running theDBMalready after a short
time, provided we can understand eigenvector overlaps. The small Gaussian compo-
nent added along the DBM flow can later be removed by fairly standard perturbation
argument (Green function comparison theorem).

Thus the main task is to show that eigenvectors of Hx become asymptotically
orthogonal for different, sufficiently distant values of x . This orthogonality can be
triggered by two quite different mechanisms that we now explain.

The first mechanism is present when A is not too close to a diagonal matrix, in
other words if Å := A − 〈A〉 is nontrivial in the sense that 〈 Å2〉 ≥ c with some N -
independent constant c > 0. Here 〈A〉 := 1

N Tr A denotes the normalized trace. In this
case the entire eigenbasis of Hx is rotated, i.e. it becomes essentially orthogonal to that
of Hx ′

whenever x and x ′ are not too close. As a consequence, the entire spectra of Hx

and Hx ′
are essentially uncorrelated. To establish this effect of eigenbasis rotation, we

use amulti-resolvent local law for the resolvents of Hx and Hx ′
; this method currently

requires |x − x ′| ≥ N−ε for typical choices of x, x ′. To ensure this, we assume that
x = N−aχ where χ is an N -independent real random variable with some regularity
and a ∈ [0, ε].

The second mechanism is the most transparent when A = I and x = N−aχ where
χ is uniformly distributed on some small fixed interval; we call this mechanism the
sampling in the spectrum. In this case the eigenbasis of Hx actually does not depend
on x . However, the eigenvectors corresponding to eigenvalues close to a fixed energy
are algebraically orthogonal for sufficiently distant x, x ′. We also prove that distant
eigenvalue gaps of H , and hence the local spectral data of Hx , Hx ′

are essentially
uncorrelated.

By the rigidity property of the eigenvalues, already a small change in x triggers
this effect, so it works in the entire range of scales a ∈ [0, 1− ε]. Moreover, the proof
can easily be extended to more complicated random matrix ensembles well beyond
the Wigner case. No multi-resolvent local law is needed in the proof.

A combination of these two mechanisms can be used in the situation when A �= I ,
but A is still close to 〈A〉 times the identity in the sense that |〈A〉| ≥ C〈 Å2〉1/2 for
some large C . This extension complements the main condition 〈 Å2〉 ≥ c needed in
the first mechanism thus proving the result unconditionally for any A.

Notations and conventions

We introduce some notations we use throughout the paper. For integers k ∈ N we use
the notation [k] := {1, . . . , k}. For positive quantities f , g we write f � g and f ∼ g
if f ≤ Cg or cg ≤ f ≤ Cg, respectively, for some constants c,C > 0 which depend
only on the model parameters appearing in our base Assumptions 2–1. For any two
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1186 G. Cipolloni et al.

positive real numbers ω∗, ω∗ ∈ R+ by ω∗ � ω∗ we denote that ω∗ ≤ cω∗ for some
small constant 0 < c < 1/100. We denote vectors by bold-faced lower case Roman
letters x, y ∈ Ck , for some k ∈ N. Vector and matrix norms, ‖x‖ and ‖A‖, indicate
the usual Euclidean norm and the corresponding induced matrix norm. For vectors
x, y ∈ Ck we define

〈x, y〉 :=
∑

i

x i yi

and for any N × N matrix A we use the notation 〈A〉 := N−1 Tr A to denote the
normalized trace of A.Wewill use the concept of “with very high probability”meaning
that for any fixed D > 0 the probability of an N -dependent event is bigger than
1 − N−D if N ≥ N0(D). Moreover, we use the convention that ξ > 0 denotes an
arbitrary small constant which is independent of N .

2 Main results

In this paper we consider real and complex Wigner matrices, i.e. Hermitian N × N
random matrices H = H∗ with independent identically distributed (i.i.d.) entries (up
to Hermitian symmetry)

hab
d= N−1/2

{
χod, a < b,

χd, a = b,
hba := hab (2.1)

having finite moments of all orders, i.e. E|χod|p + E|χd|p ≤ Cp. The entries are
normalised such that E|χod|2 = 1, and additionally Eχ2

od = 0 in the complex case.
The normalisation guarantees that the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN of H asymp-
totically follow Wigner’s semicircular distribution ρsc(x) := √

(4 − x2)+/(2π). In
the bulk regime, i.e. where ρsc ≥ c for some c > 0, the eigenvalue gaps are of order;
λi+1 − λi ∼ 1/N .

TheWigner-Dyson-Mehta conjecture for the bulk ofWignermatrices H asserts that
for any i ∈ [εN , (1 − ε)N ] the distribution of the rescaled eigenvalue gap converges

lim
N→∞P

(
Nρsc(λi )[λi+1 − λi ] ≤ y

)
=

∫ y

0
pβ(t) dt (2.2)

to a universal distribution with density p1 (for real symmetric Wigner matrices) or p2
(for complex Hermitian Wigner matrices) which can be computed explicitly from the
integrable Gaussian GOE/GUE ensembles, see Sect. 2.3 later. This WDM conjecture
was resolved in [20] while similar results with a small averaging in the index i were
proven earlier [18, 37].

As a corollary to ourmain result Theorem 2.5 below on themonoparametric ensem-
ble we prove a considerable strengthening of (2.2), namely that with high probability
the sampling of eigenvalues within a single fixed Wigner matrix generates WDM
universality.
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Quenched universality for deformed Wigner matrices 1187

Corollary 2.1 (to Theorem 2.5) Let H be a Wigner matrix and I ⊂ (−2 + ε, 2 − ε)

be an interval in the bulk of H of length |I | ≥ N−1+ξ for some ε, ξ > 0. Then
there exist small κ, α > 0 and an event �I in the probability space PH of H with
PH (�c

I ) ≤ N−κ , such that for all H ∈ �I it holds that

sup
y≥0

∣∣∣∣
1

N
∫
I ρsc

# {i |Nρsc(λi )[λi+1 − λi ] ≤ y, λi ∈ I } −
∫ y

0
pβ(t) dt

∣∣∣∣ = O(N−α),

(2.3)
where the implicit constant in (2.3) and κ, α depend on ε, ξ .

Ourmain results are on thequenched (bulk) universality ofmonoparametric random
matrices

Hx := H + x A (2.4)

for general deterministic Hermitian matrices A of the same symmetry class2 as H ,
and independent scalar random variables x , just using the randomness of x for any
fixed Wigner matrix H from a high probability set. For A = I the monoparametric
universality of Hx implies the spectral sampling universality as stated in Corollary 2.1,
see Sect. 3.3. Our results extend beyond Wigner matrices, we also allow for arbitrary
additive deformations (certain results even extend to Wigner matrices with correlated
entries), and cover general sufficiently regularly distributed scalar random variables
x .

Assumption 1 (Deformed Wigner matrix) We consider deformed Wigner matrices
of the form H = W + B, where W is a Wigner matrix as in (2.1), and B = B∗
is an arbitrary deterministic matrix of bounded norm, i.e. ‖B‖ ≤ C0 for some N -
independent constant C0.

Assumption 2 Assume that x = N−aχ with a ∈ [0, 1), where χ is an N -independent
compactly supported real random variable such that for any small b1 > 0 there exists
b2 > 0 such that for any interval I ⊂ R with |I | ∼ N−b1 it holds P(χ ∈ I ) ≤ |I |b2 .

To state the result, we now introduce the self-consistent density of states of Hx =
W + B + x A. It has been proven in [1, Theorem 2.7] that the resolvent Gx (z) =
(Hx − z)−1 of Hx at a spectral parameter z ∈ C \ R can be well approximated by
the unique deterministic matrix M = Mx (z), solving the Matrix Dyson Equation
(MDE) [2] (see also [24])

− M−1 = z − B − x A + 〈M〉, �M(z)�z > 0. (2.5)

We define the self consistent density of states (scDos) [2, Section 4.1] of Hx as

ρx (E) := lim
η→0+

1

π
〈�Mx (E + iη)〉, (2.6)

2 This restriction apparently excludes the case when A is complex Hermitian but H is real symmetric. With
a slight modification of our proof (similar to the modification required in [13, Section 7] compared to [11,
Section 7]), however, we can handle this case as well, but for brevity we refrain from presenting it.
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1188 G. Cipolloni et al.

and, in particular, the scDos of H by ρ := ρ0. It is well known that ρx is a probability
density which is compactly supported and real analytic inside its support [2, Propo-
sition 2.3]. For the special case E H = B = 0 the scDos of H is the standard Wigner
semicircle law, i.e. ρ = ρsc.

We say that an energy E ∈ R lies in the bulk of the spectrum of Hx if ρx (E) ≥ c
for some N -independent constant c > 0. For E in the bulk, the solution Mx (z) can
be continuously extended to the real line, Mx (E) := limη→0+ Mx (E + iη), and
Mx (E + iη) for E in the bulk is uniformly bounded, cf. [2, Proposition 3.5]. Finally,
we define the classical eigenvalue locations to be the quantiles of ρx , i.e. we define
γ x
i by

∫ γ x
i

−∞
ρx (τ ) dτ = i

N
, i ∈ [N ]. (2.7)

For clarity, in this section we only present single-gap versions of both mechanisms
explained in the introduction that yield quenched universality. Subsequently we will
present the multi-gap analogues in Sect. 6.

2.1 Monoparametric universality via eigenbasis rotation

The main universality result for the first mechanism (eigenbasis rotation) is the fol-
lowing quenched fixed-index universality result for themonoparametric ensemble.We
denote the probability measure and expectation of x by Px ,Ex in order to differentiate
it from the probability measure PH of H .

Theorem 2.2 (Quenched universality for monoparametric ensemble) Let H be a
deformed Wigner matrix satisfying Assumption 1, and let x = N−aχ be a scalar
real random variable satisfying Assumption 2 with a ∈ [0, a0], where a0 is a small
universal constant3. Fix any c0, c1 > 0 small constants and assume that 〈 Å2〉 ≥ c0,
with Å := A − 〈A〉. Suppose that i ∈ [N ] is a bulk index4 for Hx = H + x A, i.e. it
holds that

ρx (γ x
i ) ≥ c1 for Px -almost all x . (2.8)

Then there exist small α, κ > 0 and an event �i = �i,A with PH (�c
i ) ≤ N−κ , so

that for all H ∈ �i the statistics of the i-th rescaled gap of the eigenvalues λx
i of H x

is universal, i.e.
∣∣∣∣Ex f

(
Nρx (λx

i )[λx
i+1 − λx

i ]
)

−
∫ ∞

0
pβ(t) f (t) dt

∣∣∣∣ = O(N−α‖ f ‖C5) (2.9)

for any smooth, compactly supported function f where the implicit constant in (2.9)
depends on a0, c0, c1 and κ, α depend on a0.

Remark 2.3 We mention a few simple observations about Theorem 2.2.

(i) By the regularity of f , ρx and by rigidity of the bulk eigenvalues (see (3.14) later)
wemay replace the random scaling factor ρx (λx

i )with ρx (γ x
i ) at negligible error.

3 Following the explicit constants along the proof, one may choose a0 = 1/100.
4 To specify the c1-dependence, we often speak of c1-bulk index.
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Quenched universality for deformed Wigner matrices 1189

Fig. 2 Here we show the histogram of a (rescaled) single eigenvalue gap λN/2+1 − λN/2 in the middle
of the spectrum for N ∈ {2, 100, 1000} and for random matrices sampled from either the GUE or the
monoparametric ensemble. For the GUE ensemble the histogram has been generated by sampling 2000
independent GUE matrices H . For the monoparametric ensemble only two GUE matrices H , A have been
drawn at random, and the histogram has been generated by sampling 2000 standard Gaussian random
variables x and considering the gaps of Hx = H + x A. The solid black line represents the theoretical limit
p2(s) which matches the empirical distribution very closely already for N = 2. In Appendix B we present
numerical evidence for the speed of convergence, inspired by the observation on the slow convergence of
the spectral form factor made in [23]

(ii) For E H = 0 and a > 0 the condition (2.8) can simply be replaced by i ∈
[Nε′, N (1 − ε′)] for some ε′ > 0 and the argument of f in (2.9) simplifies to
f
(
Nρsc(λ

x
i )[λx

i+1 − λx
i ]

)
.

(iii) Empirically we find that the convergence towards the universal gap statistics
in (2.9) is much slower for the monoparametric ensemble compared to GUE,
cf. Fig. 2. While even for 2 × 2 GUE matrices the empirical gap distribution is
already very close to the Gaudin-Mehta distribution (see Sect. 2.3), we observe
the same effect only for large monoparametric matrices.

Remark 2.4 Wemention an interesting special case ofTheorem2.2when H is aWigner
matrix and A itself is chosen from a Wigner ensemble that is independent of H and
x . In this case Theorem 2.2 implies5 that for any fixed pair of Wigner matrices A, H
from a high probability set, the universality of the i-th gap statistics of H + x A for
i ∈ [Nε′, N (1 − ε′)] is solely generated by the single real random variable x , i.e.

PH ,A

(
i-th gap statistics of H + x A is universal

)
= 1 − O(N−ε). (2.10)

This mathematically rigorously answers to a question of Gharibyan, Pattison, Shenker
and Wells [23]. While their original question referred to a standard Gaussian x , which
is not compactly supported, a simple cut-off argument extends our proof to this case
as well.

5 The condition on 〈 Å2〉 is satisfied since 〈A2〉 = 1 + o(1) and 〈A〉 = o(1) with very high probability.

Moreover, the scDos ρx is very close to a rescaled semicircle law with radius 2
√
1 + x2 with very high

probability in the joint probability space of H and A, hence the condition (2.8) holds for all i ∈ [Nε′, N (1−
ε′)] for some ε′ > 0.
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2.2 Monoparametric universality via spectral sampling

The main universality result for the second mechanism (spectral sampling) is the
following quenchedfixed-energy universality result for themonoparametric ensemble.
We define i0 = i0(x, E) as the index such that γ x

i0
is the quantile of ρx closest to E ,

i.e.

i0(x, E) :=
⌈
N

∫ E

−∞
ρx (t) dt

⌉
∈ [N ] (2.11)

with �·� denoting rounding to the next largest integer.
For the special case A = I (formulated as Case 1) in Theorem 2.5 below) we

obtain quenched sampling universality for a much broader class of Hermitian random
matrices H with slow correlation decay6 defined in [17]. In the second situation, Case
2) in Theorem 2.5 below we consider deformed Wigner matrices H and general A
with a condition complementary to the condition 〈 Å2〉 ≥ c0 of Theorem 2.2.

Theorem 2.5 (Quenched monoparametric universality via spectral sampling mecha-
nism) There is a small universal constant a0 and for any small c1 > 0 there exists
a c0 > 0 such that the following hold. Let x = N−aχ be a scalar random variable
satisfying Assumption 2, and let H , A, a be such that either

Case 1) H is a correlated randommatrix6, A = I , and a ∈ [0, 1−a1] for an arbitrary
small a1,

Case 2) H is a deformed Wigner matrix (cf. Ass. 1), c0|〈A〉| ≥ 〈 Å2〉1/2, |〈A〉| ≥ c0,
and a ∈ [0, a0],

and fix an energy E with ρx (E) ≥ c1 > 0 for Px -almost all x. Then there exist small
α, κ > 0 and an event �E = �E,A with PH (�c

E ) ≤ N−κ such that for all H ∈ �E

the matrix Hx satisfies

∣∣∣∣Ex f
(
Nρx (E)[λx

i0(x,E)+1 − λx
i0(x,E)]

)
−

∫
pβ(t) f (t) dt

∣∣∣∣ = O (
N−α‖ f ‖C5

)
.

(2.12)
The exponents κ, α depend on a0, a1 while the implicit constant in (2.12) depends on
a0, a1, c0, c1.

6 These are N × N Hermitian matrices H with covariance operator S[R] := 1
N EWRW , where W :=√

N (H − E H) is a correlated centred random matrix. Note that this W is
√
N -times bigger than the

Wigner matrix W defined in Assumption 1. This notational inconsistency occurs only in this description
of the correlated ensemble where we follow the convention of [17]. We assume that ‖E H‖ ≤ C and that
W satisfies Assumptions (B)–(E) of [17]. We recall that Assumption (B) requires that all moments of the
matrix elements of W are finite, i.e. E |Wab|q ≤ Cq with some constant Cq for any q integer, uniformly in
the indices a, b ∈ [N ]2, while Assumption (E) requires that the covariance operator satisfies the so called
flatness condition

c〈R〉 ≤ S[R] ≤ C〈R〉
for any positive semi-definite matrix R, where c,C are some fixed positive constants. Finally, Assumptions
(C), (D) or their simplified version (CD) impose decay conditions on the cumulants of different entries of
W , we refer the reader to [17, Eqs. (2.5a)–(2.5b)] for the precise condition. The self-consistent density of
states ρ is defined analogously to (2.6), where M solves the MDE (2.5) with 〈M〉 replaced by S[M].
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We remark that the condition c0|〈A〉| ≥ 〈 Å2〉1/2 in Case 2) is not really necessary
for (2.12) to hold. Indeed, if 〈 Å2〉 ≥ c with any small positive constant, then we are
back to the setup of Theorem 2.2where the eigenbasis rotationmechanism is effective.
One can easily see that the proof of (2.9) implies (2.12) in this case (see Remark 3.5
below). However, we kept the condition c0|〈A〉| ≥ 〈 Å2〉1/2 with a sufficiently small
c0 in the formulation of Theorem 2.5 since it is necessary for the spectral sampling
mechanism to be effective which is the mechanism represented in Theorem 2.5.

Note that as long as Å �= 0, i.e. Case 1) is not applicable, the eigenbasis of Hx

changes with x and we have to rely on the multi-resolvent local lawmethod. However,
lacking an effective lower bound on 〈 Å2〉, the effective asymptotic orthogonality still
comes from the spectral sampling effect of 〈A〉, the nontrivial tracial part of A. So
along the proof of Case 2), technically we follow the eigenbasis rotation mechanism,
but morally the effect is similar to the spectral sampling mechanism as it still comes
from a shift in the spectrum triggered by x〈A〉, the leading part of x A in Hx = H+x A.
Finally, a simple perturbation argument shows that x Å has no sizeable effect on the
sampling, but its presence hinders the technically simpler orthogonality proof used
in Case 1).

2.3 Gaudin-Mehta distribution

For completeness we close this section by providing explicit formulas for the universal
Gaudin-Mehta gap distributions p1, p2 which can either be defined as the Fredholm
determinant of the sine kernel [33] or via the solution to the Painlevé V differential
equation [25]. Given the solution σ to the non-linear differential equation

(tσ ′′)2+4(tσ ′−σ)(tσ ′−σ +(σ ′)2) = 0, σ (t) ∼ − t

π
− t2

π2 (as t → 0), (2.13)

we have [22]

p2(s) = d2

ds2
exp

(∫ πs

0

σ(t)

t
dt

)
, p1(s) = d2

ds2
exp

(1
2

∫ πs

0

(σ(t)

t
−

√
− d

dt

σ(t)

t

)
dt

)
.

(2.14)
Remarkably, the Wigner surmise

pWigner
2 (s) := 32s2

π2 exp
(
−4s2

π

)
, pWigner

1 (s) := sπ

2
exp

(
−πs2

4

)
(2.15)

obtainedbyE.Wigner fromexplicitly computing the gapdistribution for 2×2matrices,
is very close to the large N limit p2(s), more precisely sups |p2(s) − pWigner

2 (s)| ≈
0.005 and sups |p1(s) − pWigner

1 (s)| ≈ 0.016.
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3 Quenched universality: Proof of Theorem 2.2 and Theorem 2.5

In Sect. 3.1 we prove Theorem 2.2 while in Sect. 3.2 we present the proof of Theo-
rem 2.5 which structurally is analogous to the argument in Sect. 3.1. For notational
simplicity we introduce the discrete difference operator δ, i.e. for a tuple λ we set

(δλ)i = δλi := λi+1 − λi (3.1)

in order to express eigenvalue differences (gaps) more compactly. We also introduce
the notation 〈 f 〉gap for the expectation of test functions f with respect to the density
pβ from (2.14), i.e.

〈 f 〉gap :=
∫

pβ(t) f (t) dt . (3.2)

3.1 Universality via eigenbasis rotationmechanism: Proof of Theorem 2.2

To prove Theorem 2.2wewill show that the gaps λ
x1
i+1−λ

x1
i , λx2

i+1−λ
x2
i for sufficiently

large |x1−x2| are asymptotically independent in the sense of the following proposition
whose proof will be presented in Sect. 4. In the following we will often denote the
covariance of two random variables X ,Y in the H -space by

CovH (X ,Y ) := EH XY − (EH X)(EH Y ).

Proposition 3.1 Under the conditions of Theorem 2.2 there exists a sufficiently small
c∗ > 0 (depending on c0, c1) and for any small ζ1 there exists ζ2 > 0 such that the
following holds. Pick real numbers x1, x2 with N−ζ1 ≤ |x1 − x2| ≤ c∗ and indices
j1, j2 with | j1 − j2| � N |x1 − x2|, such that the corresponding quantiles γ

xr
jr
, are in

the c1-bulk of the spectrum of Hxr for each r = 1, 2. Then the covarianceCovH (X ,Y )

satisfies

CovH
(
P1(Nδλ

x1
j1
), P2(Nδλ

x2
j2
)
)

= O (
N−ζ2‖P1‖C5‖P2‖C5

)
(3.3)

for any P1, P2 : R → R bounded smooth compactly supported test functions, and
where the implicit constant in O(·) may depend on c0, c1 at most polynomially.

Remark 3.2 We stated the asymptotic independence of a single gap in Proposition 3.1
and only for two x1, x2 for notation simplicity. Exactly the same proof as in Sect. 4
directly gives the result in (3.3) for test functions Pr : Rp → R of several gaps,
for some fixed p ∈ N. Additionally, by the same proof we can also conclude the
asymptotic independence of several gaps for several x1, . . . , xq . For the same reason
we also state Proposition 3.3 and Proposition 4.1 below only for two x1, x2 and test
functions Pr : R → R.

Proof of Theorem 2.2 Wewill first prove that without loss of generality wemay assume
that the linear size of the support of x is bounded by c∗, where c∗ is from Proposi-
tion 3.1. This initial simplification will then allow us to use perturbation in x when
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proving Proposition 3.1. Suppose that Theorem 2.2 is already proved for random vari-
ables with such a small support with an error term N−α on sets of probability at least
1 − N−2κ and we are now given a random variable x with a larger support of size
bounded by some constant C . Then we define the random variables

xi := x · 1(x ∈ Ji )

Px (Ji )
,

where Ji ’s, for i = 1, 2, . . . ,C/c∗, are disjoint intervals of size c∗ such that supp(x) =⋃
i Ji . For any test function f we can then write

Ex f (Nρx (γ x
j )δλ

x
j ) =

C/c∗∑

i=1

Px (Ji )Exi f (Nρxi (γ
xi
j )δλ

xi
j )

= 〈 f 〉gap
C/c∗∑

i=1

Px (Ji ) + O(N−α) = 〈 f 〉gap + O (
N−α

)
,

(3.4)
on a set of probability at least 1−(C/c∗)N−2κ ≥ 1−N−κ , wherewe usedTheorem2.2
for the random variables xi in the last step and a union bound.

From now on we assume that the linear size of the support of x is bounded by c∗.
With ν(dx) denoting the measure of x we have

EH

∣∣∣Ex f
(
Nρx (γ x

j )δλ
x
j

)
− 〈 f 〉gap

∣∣∣
2

=
∫∫

|x1−x2|≥N−ε2
ν(dx1)ν(dx2)EH

[ 2∏

r=1

f
(
Nρxr (γ

xr
j )δλ

xr
j

) ]

− 〈 f 〉2gap + O
(
N−c(ε2)‖ f ‖2C5

)
, (3.5)

for some sufficiently small ε2 so that we can apply Proposition 3.1 with ζ1 = ε2.
In (3.5) we used that the regime |x1 − x2| ≤ N−ε2 can be removed at the price of a
negligible error by the regularity assumption on the distribution of x = N−aχ , with χ

satisfying Assumption 2. For the cross-term in (3.5) we used that by gap universality
for the deformed Wigner matrix Hx with a fixed x (see e.g. [1, Corollary 2.11]) it
follows that

EH f
(
Nρx (γ x

j )δλ
x
j

)
= 〈 f 〉gap + O (

N−ζ3‖ f ‖C5

)
(3.6)

for some small fixed ζ3 > 0 depending only on the model parameters and on the
constants a0, c1.

Applying Proposition 3.1 to the first term in (3.5) with Pr (t) := f (ρxr (γ
xr
j )t)

noting that ρxr is uniformly bounded, so that for N−ε2 ≤ |x1 − x2| ≤ c∗, we get

EH

[ 2∏

r=1

f
(
Nρxr (γ

xr
j )δλ

xr
j

)]
=

2∏

r=1

EH f
(
Nρxr (γ

xr
j )δλ

xr
j

)
+ O

(
N−ζ2‖ f ‖2C5

)
.

(3.7)
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By using (3.7) and (3.6) in (3.5) it follows that

EH

∣∣∣Ex f
(
Nρx (γ x

j )δλ
x
j

)
− 〈 f 〉gap

∣∣∣
2 ≤

(
N−c(ε2) + N−ζ2 + N−ζ3

)
‖ f ‖2C5 . (3.8)

From (3.8) and the Chebyshev inequality we obtain events � j, f on which (2.9) holds
with probability PH (�c

j, f ) ≤ N−κ for some suitably chosen κ, α > 0. ��

3.2 Universality via spectral samplingmechanism: Proof of Theorem 2.5

The mechanism behind the proof of Theorem 2.5 is quite different compared to The-
orem 2.2. In particular, in order to prove Theorem 2.5 we will first show that under
the assumptions of Theorem 2.2 the gaps δλx

i , δλx
j are asymptotically independent

for any fixed x in the probability space of H as long as |i − j | is sufficiently large.
This independence property for the A = I case has already been used as a heuristics
without proof, e.g. in [4, 5] (a related result for not too distant gaps for local log-gases
can be deduced from the De Giorgi-Nash-Moser Hölder regularity estimate, see [20,
Section 8.1]). More precisely, we have the following proposition:

Proposition 3.3 Under the conditions of Theorem 2.5 there exists a sufficiently small
c∗ > 0 (depending on c0, c1) and for any sufficiently small ζ1 > 0 there exists
ζ2 > 0 such that the following hold. Pick indices j1, j2 and real numbers x1, x2 such
that the corresponding quantiles γ

xr
jr

are in the c1-bulk of the spectrum of Hxr , i.e.

ρxr (γ
xr
jr

) ≥ c1, for r = 1, 2. In the two different cases listed in Theorem 2.5 we
additionally assume the following:

Case 1) | j1 − j2| ≥ N ζ1 ;
Case 2) N 1−ζ1 ≤ | j1 − j2| ≤ c∗N and N |x1 − x2| � | j1 − j2|.
Then in both cases it holds that

CovH
(
P1(Nδλ

x1
j1
), P2(Nδλ

x2
j2
)
)

= O
(
N−ζ2

2∏

r=1

‖Pr‖C5

)
(3.9)

for Pr : R → R bounded, smooth, compactly supported test functions. The implicit
constant in O(·) may depend on c0, c1 at most polynomially.

Proof of Theorem 2.5 Wepresent the proof only for themore involvedCase 2), theCase
1) ismuch easier and omitted. Similarly to (3.8) in the proof of Theorem2.2 it is enough
to consider the case when the linear size of the support of x is bounded by some c̃ > 0
(determined later) and prove that

EH
∣∣Ex f

(
Nρx (E)δλi0(x,E)

) − 〈 f 〉gap
∣∣2 ≤ N−2α−κ‖ f ‖2C5 , (3.10)

for some small α, κ > 0.
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Note that under the assumptions of Case 2) in Theorem 6.2 for any x1, x2 in the
support of the random variable x it holds

θ |i0(x1, E) − i0(x2, E)| ≤ N |x1 − x2| ≤ �|i0(x1, E) − i0(x2, E)| (3.11)

with some θ,� (depending on c0, c1) as long as |x1−x2| � N−1. The bound in (3.11)
is a direct consequence of the following Lemma 3.4 (assuming that c̃ ≤ c∗) whose
proof is postponed to Appendix A.

Lemma 3.4 For any c1 > 0, there exists a c∗ = c∗(c1) > 0 such that for x1, x2 with
|x1 − x2| ≤ c∗ it holds that

γ
x1
i = γ

x2
i + (x1 − x2)〈A〉 + O

(
|x1 − x2|〈 Å2〉1/2 + |x1 − x2|2

)
, (3.12)

where γ
xr
i are the quantiles of ρxr and i is in the c1-bulk, i.e. ρxr (γ

xr
i ) ≥ c1, for

r ∈ [2].

Indeed, (3.11) follows from |〈A〉| ≥ c0 and from the inequality

∣∣∣∣
i0(x1, E)

N
− i0(x2, E)

N

∣∣∣∣ =
∣∣∣∣∣

∫ γ
x1
i0(x1,E)

γ
x1
i0(x2,E)

ρx1(E) dE

∣∣∣∣∣ ≥ c1
∣∣∣γ x1

i0(x2,E) − γ
x1
i0(x1,E)

∣∣∣

≥ c1
2

∣∣∣γ x1
i0(x2,E) − γ

x2
i0(x2,E)

∣∣∣ + O(N−1) ≥ c1
4

|x1 − x2| |〈A〉|,

where to go from the first to the second linewe used that γ x2
i0(x2,E) = γ

x1
i0(x1,E)+O(N−1)

by the definition of i0(x, E) and that we are in the bulk. In the last inequality we
used (3.12) and that its error terms are negligible by c0|〈A〉| ≥ 〈 Å2〉1/2 and |x1−x2| ≤
c̃ assuming that c̃ ≤ c0/10. Then by a similar chain of inequalities, and using (3.12)
once more, we get the matching upper bound in (3.11).

To prove (3.10), we use the counterpart of (3.5) and that we can neglect the regime
|x1 − x2| ≤ N−ε2 for some sufficiently small ε2 > 0 so that we can apply Propo-
sition 3.3 with ζ1 = ε2. We remove this regime to ensure that on its complement
|i0(x1, E) − i0(x2, E)| is sufficiently large by (3.11). More precisely, for any x1, x2
with N−ε2 ≤ |x1 − x2| ≤ c̃, we have �−1N 1−ε2 ≤ |i0(x1, E) − i0(x2, E)| ≤ θ−1c̃N
from (3.11). Assuming c̃ ≤ c∗θ , we can apply Case 2) of Proposition 3.3 by choosing
j1 = i0(x1, E), j2 = i0(x2, E) and with exponent ζ2 to factorise the expectation in
the equivalent of (3.5). Using again the gap universality (3.6), similarly to (3.8) we
conclude (2.12) choosing α, κ > 0 appropriately. ��

Remark 3.5 The proof of (2.12) in the case 〈 Å2〉 ≥ c is analogous to the proof of The-
orem 2.2 above. We note that Proposition 3.1 allows to also conclude the asymptotic
independence of δλi0(x1,E) and δλi0(x2,E) since |i0(x1, E) − i0(x2, E)| � N |x1 − x2|
due to (3.11).
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3.3 Proof of Corollary 2.1

Picking E = 0 and the test function7 f (u) = 1(0 ≤ u ≤ y) in Case 1) of Theorem 2.5,
and choosing the random variable x such that−x has density proportional to ρ|I , with
ρ = ρsc, it follows that with very high probability in the space of H it holds that

Ex F(Nρx (0)δλx
i0(x,0))

= Ex F(Nρ(λi0(0,−x))δλi0(0,−x)) + O(N−1+ξ )

=
(∫

I
ρ
)−1 ∑

i

F(Nρ(λi )δλi )

∫

I∩(γi−1,γi ]
ρ(t) dt + O(N−1+ξ )

=
(
N

∫

I
ρ
)−1

#

{
i |λi+1 − λi ≤ y

Nρ(λi )
, λi ∈ I

}
+ O

(
N−1+ξ |I |−1

)
,

(3.13)

where in the first and third step we used rigidity (see e.g. [15, Lemma 7.1, Theorem
7.6] or [21, Section 5]), i.e. that for any small ξ > 0 we have

|λi − γi | ≤ N ξ

N
, (3.14)

for all γi in the bulk, with very high probability.

4 DBM analysis: Proof of Proposition 3.1 and Proposition 3.3

In this section we first present the proof of Proposition 3.1 in details and later in
Sect. 4.3 we explain the very minor changes that are required to prove Proposition 3.3.

4.1 Proof of Proposition 3.1

By standard Green function comparison (GFT) argument (see e.g. [19, Section 15]) it
is enough to prove Proposition 3.1 only formatrices with a small Gaussian component.
More precisely, consider the DBM flow

dĤt = d B̂t√
N

, Ĥ0 = H#, (4.1)

with B̂t being a real symmetric or complex Hermitian standard Brownian motion (see
e.g. [19, Section 12.1] for the precise definition) independent of the initial condition
Ĥ0 = H#, where H# is a deformed Wigner matrix specified later. Throughout this
section we fix T > 0 and analyse the DBM for times 0 ≤ t ≤ T .

7 While f does not literally satisfy the regularity condition, one can easily extend the validity of (2.12) to
interval characteristic functions f by a standard approximation argument.
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Wedenote the ordered collection of eigenvalues of Ĥt+x A byλx (t) = {λx
i (t)}i∈[N ].

The main result of this section is the asymptotic independence of λx1(t1), λx2(t1) for
|x1 − x2| ≥ N−ζ1 and t1 ≥ N−1+ω1 , for some ω1 > 0.

We note that in this entire section we do not use the randomness of x , in the state-
ment of Propositions 3.1 and 3.3 x1, x2 are fixed parameters. Hence all probabilistic
statements, such as covariances etc., are understood in the probability space of the
random matrices and the driving Brownian motions in (4.1).

Proposition 4.1 Let H# be a deformed Wigner matrix satisfying Assumption 1, let Ĥt

be the solution of (4.1), and let A be a deterministic matrix such that 〈 Å2〉 ≥ c0 and
‖A‖ � 1. Then there exists a small c∗ > 0 (depending on c0, c1) and for any small
ζ1, ω1 > 0 there exists some ζ2 > 0 such that the following hold. Fix x1, x2 with
N−ζ1 ≤ |x1 − x2| ≤ c∗ and indices j1, j2 such that | j1 − j2| � N |x1 − x2|, and the
corresponding quantiles γ

xr
jr

are in the bulk of the spectrum of H# + xr A for r = 1, 2.

Then for the eigenvalues of Ĥt + xr A it holds that

Cov
[
P

(
Nδλ

x1
j1
(t1)

)
, Q

(
Nδλ

x2
j2
(t1)

)]
= O (

N−ζ2‖P‖C1‖Q‖C1
)
, (4.2)

with t1 = N−1+ω1 for any P, Q : R → R bounded smooth compactly supported test
functions.

Using Proposition 4.1 as an input we readily conclude Proposition 3.1.

Proof of Proposition 3.1 Let H be the deformed Wigner matrix from Proposition 3.1,
and consider the Ornstein-Uhlenbeck flow

dHt = −1

2
(Ht − E H0) dt + dBt√

N
, H0 = H , (4.3)

with Bt being a real symmetric or complex Hermitian standard Brownian motion
independent of H0.

Let H#
t1 , with t1 from Proposition 4.1, be such that

Ht1
d= H#

t1 + √
c(t1)t1U , (4.4)

with U a GOE/GUE matrix independent of H#
t1 and c = c(t1) = 1 + O(t1) is an

appropriate constant very close to one. Then by (4.4) it follows that

Ĥct1
d= Ht1 , (4.5)

with Ĥct1 being the solution of (4.1) with initial condition Ĥ0 = H#
t1 .

Then, by a standard GFT argument [19, Section 15], we have that

Cov
(
P

(
Nδλ

x1
j1

)
, Q

(
Nδλ

x2
j2

))

= Cov
(
P

(
Nδλ

x1
j1
(ct1)

)
, Q

(
Nδλ

x2
j2
(ct1)

))
+ O (

N−ζ2‖P‖C5‖Q‖C5

)
.

(4.6)
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Finally, by (4.6) together with (4.5) and Proposition 4.1 applied to H# := H#
t1 we

conclude the proof of Proposition 3.1. ��

4.2 Proof of Proposition 4.1

This proof is an adaptation of the proof of [11, Proposition 7.2] (which itself is based
upon [28]) with two minor differences. First, the DBM in this paper is for eigenvalues
(see (4.7) below) while in [11, Eq. (7.15)] it was for singular values. Second, in [11,
Section 7] it was sufficient to consider singular values close to zero hence the base
points j1 and j2 were fixed to be 0; here they are arbitrary. Both changes are simple to
incorporate, so we present only the backbone of the proof that shows the differences,
skipping certain steps that remain unaffected.

The flow (4.1) induces the following flow on the eigenvalues of Ĥt + xl A:

dλxr
i (t) =

√
2

βN
dbxri (t) + 1

N

∑

j �=i

1

λ
xr
i (t) − λ

xr
j (t)

dt, (4.7)

with r ∈ [2] and β = 1, 2 in the real and complex case, respectively. Here (omitting
the time dependence) we used the notation

dbxri =
√

2

β

N∑

a,b=1

uxri (a) d B̂ab(t)u
xr
i (b), (4.8)

with uxri (t) being the orthonormal eigenvectors of Ĥt + xr A. The collection bxr :=
{bxri }i∈[N ], for fixed r , consists of i.i.d standard real Brownian motions. However, the
families bx1 , x2 are not independent for different r ’s, in fact their joint distribution is
not necessarily Gaussian. The quadratic covariation of these two processes is given by

d[bx1i (t), bx2j (t)] = ∣∣〈ux1i (t), ux2j (t)〉∣∣2 dt . (4.9)

We remark that in (4.9) we used a different notation for the quadratic covariation
compared to [11, Section 7.2.1].

4.2.1 Definition of the comparison processes for �xr

To make the notation cleaner we only consider the real case (β = 1). To prove the
asymptotic independence of the processes λx1 , λx2 , realized on the probability space
�b, we will compare them with two completely independent processes μ(r)(t) =
{μ(r)

i (t)}Ni=1 realized on a different probability space �β . The processes μ(r)(t) are
the unique strong solution of

dμ(r)
i (t) =

√
2

N
dβ(r)

i + 1

N

∑

j �=i

1

μ
(r)
i (t) − μ

(r)
j (t)

dt, μ
(r)
i (0) = μ

(r)
i , (4.10)
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with μ
(r)
i being the eigenvalues of two independent GOE matrices H (r), and β(r) =

{β(r)
i (t)}Ni=1 being independent vectors of standard i.i.d. Brownian motions.

We now define two intermediate processes λ̃
(r)

(t), μ̃(r)(t) so that for t � N−1 the
particles λ̃

(r)
i (t), μ̃(r)

i (t) will be close to λ
xr
i (t) and μ

xr
i (t), respectively, for indices i

close to jr , with very high probability (see Lemmas 4.2–4.3 below). Additionally, the

processes λ̃
(r)

(t), μ̃(r)(t), which will be realized on two different probability spaces,
will have the same joint distribution:

(
λ̃

(1)
(t), λ̃

(2)
(t)

)

0≤t≤T

d=
(
μ̃(1)(t), μ̃(2)(t)

)

0≤t≤T
. (4.11)

Fix any small ωA > 0 (later ωA will be chosen smaller than ωE from (4.27)) and

define the process λ̃
(r)

(t) to be the unique strong solution of

d̃λ(r)
i (t) = 1

N

∑

j �=i

1

λ̃
(r)
i (t) − λ̃

(r)
j (t)

dt +
⎧
⎨

⎩

√
2
N dbxri if |i − jr | ≤ NωA ,√
2
N db̃(r)

i if |i − jr | > NωA ,
(4.12)

with initial data λ̃
(r)

(0) being the eigenvalues of independent GOE matrices, which
are also independent of H# in (4.1). Here the Brownian motions

bin := (bx1j1−NωA , . . . , bx1j1+NωA , bx2j2−NωA , . . . , bx2j2+NωA ). (4.13)

for indices close to jr are exactly the ones in (4.7). For indices away from jr we define
the driving Brownian motions to be an independent family

bout :=
{
b̃(r)
i

∣∣∣|i − jr | > NωA , r ∈ [2]
}

. (4.14)

of standard real i.i.d. Brownian motions which are also independent of bin. The Brow-
nian motions bout are defined on the same probability space of bin, which we will still
denote by �b, with a slight abuse of notation.

For any i, j ∈ [4NωA + 2] we use the notation

i = (r − 1)NωA + i, j = (m − 1)NωA + j (4.15)

with r ,m ∈ [2] and i, j ∈ [2NωA + 1]. The covariance matrix C(t) of the increments
of bin, consisting of four blocks of size 2NωA + 1, is given by

Ci j (t) dt := d[bini , binj ] = �
xr ,xm
ij (t) dt, (4.16)

where
�

xr ,xm
ij (t) := ∣∣〈uxri+ jr−NωA−1(t), u

xm
j+ jm−NωA−1(t)〉

∣∣2 (4.17)

and {uxri (t)}Ni=1 are the orthonormal eigenvectors of Ĥt + xr A. Note that {uxri (t)}Ni=1
are not well-defined if Ĥt + xr A has multiple eigenvectors, however, without loss
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of generality, we can assume that almost surely Ĥt + xl A does not have multiple
eigenvectors for any r ∈ [2] for almost all t ∈ [0, T ] by [9, Proposition 2.3] together
with Fubini’s theorem. By Doob’s martingale representation theorem [27, Theorem
18.12] there exists a real standard Brownian motion θ(t) ∈ R4NωA+2 such that

dbin = √
C dθ . (4.18)

Similarly, on the probability space �β we define the comparison process μ̃(r)(t) to
be the solution of

dμ̃(r)
i (t) = 1

N

∑

j �=i

1

μ̃
(r)
i (t) − μ̃

(r)
j (t)

dt +
⎧
⎨

⎩

√
2
N dζ (r)

i if |i − jr | ≤ NωA ,√
2
N dζ̃ (r)

i if |i − jr | > NωA ,
(4.19)

with initial data μ̃(r)(0) being the eigenvalues of independent GOE matrices defined
on the probability space �β , which are also independent of H (r). We now construct
the driving Brownian motions in (4.19) so that (4.11) is satisfied. For indices away
from jr the standard real Brownian motions

ζ out :=
{
ζ̃

(r)
i

∣∣∣|i − jr | > NwA , r ∈ [2]
}

(4.20)

are i.i.d. and they are independent of β(1), β(2) in (4.10). For indices |i − jr | ≤ NωA

the collections

ζ in := (ζ
(1)
j1−NωA , . . . , ζ

(1)
j1+NωA , ζ

(2)
j2−NωA , . . . , ζ

(2)
j2+NωA ) (4.21)

will be constructed from the independent families8

β in := (β
(1)
j1−NωA , . . . , β

(1)
j1+NωA , β

(2)
j2−NωA , . . . , β

(2)
j2+NωA ), (4.22)

as follows.
Since the original process λxr (t) and the comparison processes μ(r)(t) are real-

ized on two different probability spaces, we construct a matrix valued process C#(t)
and a vector-valued Brownian motion β in on the probability space �β such that

(C#(t),β in(t)) have the same joint distribution as (C(t), θ(t)) with C, θ from (4.18).

This β in is the driving Brownian motion of the μ(r)(t) process in (4.10). Define the
process

ζ in(t) :=
∫ t

0

√
C#(s) dβ in(s) (4.23)

on the probability space �β . By construction we see that the processes bin and ζ in

have the same distribution, and that the two collections bout and ζ out are independent

of bin, β in and among each other. Hence we conclude that

8 The families βin, bin were denoted by β and b, respectively, in [11, Eqs. (7.22)-(7.23)].
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(
bin(t), bout(t)

)
0≤t≤T

d= (
ζ in(t), ζ out(t)

)
0≤t≤T . (4.24)

Finally, by the definitions in (4.12), (4.19) and by (4.24), we conclude that the

processes λ̃
(r)

(t), μ̃(r)(t) have the same joint distribution (see (4.11)), since their
initial conditions and their driving processes (4.24) agree in distribution.

4.2.2 Proof of the asymptotic independence of the eigenvalues

In this section we use that the processes λxr (t), λ̃
(r)

(t) and μ̃(r)(t), μ(r)(t) are close
pathwise at time t1 = N−1+ω1 as stated below in Lemma 4.2 and Lemma 4.3,
respectively, to conclude the proof of Proposition 4.1. The proof of these lemmas
is completely analogous to the proof in [11, Lemmas 7.6–7.7], [28, Eq. (3.7), The-
orem 3.1], hence we will only explain the very minor differences required in this

paper. First, we compare the processes λxr (t), λ̃
(r)

(t), in particular this lemma shows
that for i far away from j1, j2 the Brownian motions bx1i , bx2i can be replaced by the
independent Brownian motions from bout at a negligible error.

Lemma 4.2 Let λxr (t), λ̃
(r)

(t), with r ∈ [2], be the processes defined in (4.7)
and (4.12), respectively. For any small ω1 > 0 there exists ω > 0, with ω � ω1,
such that it holds

∣∣∣ρxr (γ
xr
jr

)δλ
xr
jr
(t1) − ρsc(γ jr )δ̃λ

(r)
jr

(t1)
∣∣∣ ≤ N−1−ω, (4.25)

for any jr in the c1-bulk, with very high probability on the probability space�b, where
t1 := N−1+ω1 . Here by γ jr we denoted the jr -quantile of the semicircular law.

Second, we compare the processes μ̃(r)(t),μ(r)(t), i.e. we control the errormade by
replacing the weakly correlated Brownian motions ζ in by the independent Brownian

motions β in.

Lemma 4.3 Let μ(r)(t), μ̃(r)(t), with r ∈ [2], be the processes defined in (4.10)
and (4.19), respectively. For any small ω1, ζ1 > 0 there exists ω > 0, with ω � ω1,
such that for any N−ζ1 ≤ |x1 − x2| ≤ c∗ it holds

∣∣∣δμ(r)
jr

(t1) − δμ̃
(r)
jr

(t1)
∣∣∣ ≤ N−1−ω, (4.26)

with very high probability on the probability space �β , where t1 := N−1+ω1 .

The key ingredient for the proof of Lemma 4.3 is the following fundamental bound
on the eigenvector overlaps in (4.27) proven in Sect. 5, which ensures that the corre-
lation �

xr ,xm
ij in (4.17) is small.

Proposition 4.4 Given c0, c1 as in Proposition 3.1, assume 〈 Å2〉 ≥ c0, ‖A‖ � 1.
There exists c∗ depending on c0, c1 such that the following holds for any small ζ1 > 0.
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1202 G. Cipolloni et al.

Pick x1, x2 such that N−ζ1 ≤ |x1 − x2| ≤ c∗, and let {uxri }i∈[N ], for r ∈ [2], be the
orthonormal eigenbasis of the matrices H + xr A. Then there exists ωE > 0 such that

|〈ux1j1 , u
x2
j2
〉| ≤ N−ωE (4.27)

with very high probability for any j1, j2 in the c1-bulk with | j1 − j2| � N |x1 − x2|.
Using Lemmas 4.2–4.3 as an input we conclude Proposition 4.1.

Proof of Proposition 4.1 By Lemma 4.2 we readily conclude that

E
[
P

(
Nδλ

x1
j1
(t1)

)
Q

(
Nδλ

x2
j2
(t1)

)]
= E

[
P

(
Nρ1δ̃λ

(1)
j1

(t1)
)
Q

(
Nρ2δ̃λ

(2)
j2

(t1)
)]

+ O (
N−ω‖P‖C1‖Q‖C1

)
,

(4.28)
where we denoted ρr := ρsc(γ jr )/ρ

xr (γ
xr
jr

) and used the uniform boundedness of
ρsc, ρ

x . Then, by (4.11), it follows that

E
[
P

(
Nρ1 δ̃λ

(1)
j1

(t1)
)
Q

(
Nρ2 δ̃λ

(2)
j2

(t1)
)]

= E
[
P

(
Nρ1δμ̃

(1)
j1

(t1)
)
Q

(
Nρ2δμ̃

(2)
j2

(t1)
)]

. (4.29)

Moreover, by Lemma 4.3, we have that

E
[
P

(
Nρ1δμ̃

(1)
j1

(t1)
)
Q

(
Nρ2δμ̃

(2)
j2

(t1)
)]

= E
[
P

(
Nρ1δμ

(1)
j1

(t1)
)
Q

(
Nρ2δμ

(2)
j2

(t1)
)]

+ O (
N−ω‖P‖C1‖Q‖C1

)
.

(4.30)

Additionally, by the definition of the processesμ(r)(t) in (4.10) it follows thatμ(1)(t),
μ(2)(t) are independent, and so that

E
[
P

(
Nρ1δμ

(1)
j1

(t1)
)
Q

(
Nρ2δμ

(2)
j2

(t1)
)]

= E
[
P

(
Nρ1δμ

(1)
j1

(t1)
)]

E
[
Q

(
Nρ2δμ

(2)
j2

(t1)
)]

(4.31)

Combining (4.28)–(4.31) we get

E
[
P

(
Nρ1δλ

x1
j1

(t1)
)
Q

(
Nρ2δλ

x2
j2

(t1)
)]

= E
[
P

(
Nρ1δμ

(1)
j1

(t1)
)]

E
[
Q

(
Nρ2δμ

(2)
j2

(t1)
)]

+ O (
N−ω‖P‖C1‖Q‖C1

)
.

(4.32)
Proceeding similarly to (4.28)–(4.30), but for E P and E Q separately, we also con-
clude that

E
[
P

(
Nδλ

x1
j1

(t1)
)]

E
[
Q

(
Nδλ

x2
j2

(t1)
)]

= E
[
P

(
Nρ1δμ

(1)
j1

(t1)
)]

E
[
Q

(
Nρ2δμ

(2)
j2

(t1)
)]

+ O (
N−ω‖P‖C1‖Q‖C1

)
.

(4.33)
Finally, combining (4.32)–(4.33), we conclude the proof of (4.2). ��

Before concluding this sectionwith the proof of Lemmas 4.2–4.3, in Proposition 4.6
below we state the main technical result used in their proofs. The proofs of these
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lemmas rely on extending the homogenisation analysis of [28, Theorem 3.1] to two
DBM processes with weakly coupled driving Brownian motions. We used a very
similar idea in [11, Section 7.4] for DBM processes for singular values. We now first
present the general version of this idea before applying it to prove Lemmas 4.2–4.3.

In Proposition 4.6 below we compare the evolution of two DBMs whose driving
Brownian motions are nearly the same for indices close to a fixed index i0 and are
independent for indices away from i0. Proposition 4.6 is the counterpart of [11, Propo-
sition 7.14], where a similar analysis is performed for DBMs describing the evolution
of particles satisfying slightly different DBMs.

Define the processes si (t), ri (t) to be the solution of

dsi (t) =
√

2

N
dbsi (t) + 1

2N

∑

j �=i

1

si (t) − s j (t)
dt, i ∈ [N ], (4.34)

and

dri (t) =
√

2

N
dbri (t) + 1

2N

∑

j �=i

1

ri (t) − r j (t)
dt, i ∈ [N ], (4.35)

with initial conditions si (0) = si being the eigenvalues of a deformed Wigner matrix
H satisfying Assumption 1, and ri (0) = ri being the eigenvalues of a GOE matrix.
Here we used the same notations of [11, Eqs. (7.44)–(7.45)] to make the comparison
with [11] easier. For simplicity in (4.34)–(4.35) we consider the DBMs only in the
real case (the complex case is completely analogous).

Remark 4.5 In [11, Eqs. (7.44)] we assumed that the initial condition si (0) = si were
general points satisfying [11, Definition 7.12], and not necessary the singular values
of a matrix. Here we choose si (0) = si to be the eigenvalues of a deformed Wigner
matrix to make the presentation shorter and simpler, however Proposition 4.6 clearly
holds also for collections of particles satisfying similar assumptions to [11, Definition
7.12].

We now formulate the assumptions on the driving Brownian motions in (4.34)–
(4.35). Set an N -dependent parameter K = KN := NωK , for some small fixed
ωK > 0.

Assumption 3 Suppose that the families {bsi }i∈[N ], {bri }i∈[N ] in (4.34) and (4.35) are
realised on a common probability space. Let

Li j (t) dt := d
[
bsi (t) − bri (t), b

s
j (t) − brj (t)

]
(4.36)

denote their quadratic covariation (in [11, Eqs. (7.46)] we used a different notation to
denote the covariation). Fix an index i0 in the bulk of H , and let the processes satisfy
the following assumptions:

(a) {bsi }i∈[N ], {bri }i∈[N ] are two families of i.i.d. standard real Brownian motions.
(b) {bri }|i−i0|>K is independent of {bsi }Ni=1, and {bsi }|i−i0|>K is independent of {bri }Bi=1.
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1204 G. Cipolloni et al.

(c) Fix ωQ > 0 so that ωK � ωQ . We assume that the subfamilies {bsi }|i−i0|≤K ,
{bri }|i−i0|≤K are very stronglydependent in the sense that for any |i − i0|, | j − i0| ≤
K it holds

|Li j (t)| ≤ N−ωQ (4.37)

with very high probability for any fixed t ≥ 0.

Let ρ denote the self-consistent density of H , and recall that ρsc denotes the semi-
circular density. By ρt , ρsc,t we denote the evolution of ρ and ρsc, respectively, along
the semicircular flow (see e.g. [10, Eq. (4.1)]) and let γ̂i (t), γi (t) denote the quantiles
of ρt and ρsc,t .

Proposition 4.6 Let the processes s(t) = {si (t)}i∈[N ], r(t) = {ri (t)}i∈[N ] be the
solutions of (4.34) and (4.35), and assume that the driving Brownian motions
in (4.34)–(4.35) satisfy Assumption 3. Let i0 be the index fixed in Assumption 3.
Then for any small ω1, ω� > 0 such that ω1 � ω� � ωK � ωQ there exist ω, ω̂ > 0
with ω̂ � ω � ω1, and such that it holds

ρ(γ̂i0)[si0+i (t1) − γ̂i0(t1)] − ρsc(γi0)[ri0+i (t1) − γi0(t1)] (4.38)

=
∑

| j |≤N2ω1

1

N
pt1

(
0,

− j

Nρsc(γi0)

) [
ρ(γ̂i0)(s

xr
i0+ j (0) − γ̂i0(0))

− ρsc(γi0)(r
(r)
i0+ j (0) − γi0(0))

] + O(N−1−ω),

for any |i | ≤ N ω̂, with very high probability, where t1 := n−1+ω1 and pt (x, y) is the
fundamental solution (heat kernel) of the parabolic equation

∂t f (x) =
∫

|x−y|≤η�

f (y) − f (x)

(x − y)2
ρsc(γi0) dy, (4.39)

with η� := N−1+ω�ρsc(γi0)
−1 (see [28, Eqs. (3.88)–(3.89)] for more details).

Proof The proof of (4.38) is nearly identical to that of [28, Theorem 3.1] up to a
straightforward modification owing to the fact that the driving Brownian motions
in (4.34)–(4.35) are not exactly identical but they are very strongly correlated,
see (4.37). A similar modification to handle this strong correlation was explained
in details in a closely related context in [11, Proof of Proposition 7.14 in Section 7.6],
with the difference that in [11] singular values were considered instead of eigenvalues
hence the corresponding DBMs are slightly different. Furthermore, Proposition 4.6 is
stated in a simpler form than [11, Proposition 7.14] since the initial conditions are
already eigenvalues and not arbitrary points hence they automatically satisfy certain
regularity assumptions. The precise changes due to this simplification are described
in the technical Remark 4.7 below. ��
Remark 4.7 There a fewdifferences in the setupofProposition 4.6 and [11, Proposition
7.14]. These are causedby the fact thatwenowconsider si (0) = si to be the eigenvalues
of a deformed Wigner matrix H , instead of a collection of particles satisfying [11,
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Quenched universality for deformed Wigner matrices 1205

Definition 7.12]. In particular, ν in [11, Definition 7.12] can be chosen equal to zero,
then, since the eigenvalues of H are regular ([11, Eq. (7.48)]) on an order one scale, we
can choose g = N−1+ξ , for an arbitrary small ξ > 0, and G = 1 in [11, Definition
7.12]. Additionally, t f = N−1+ω f is replaced by t1 = N−1+ω1 , and ρfc,t f in is
replaced by ρ. Finally, we remark that in [11, Proposition 7.14] for ω f we required
that ωK � ω f � ωQ , instead in Proposition 4.6 we required that ω1 � ωK � ωQ .
This discrepancy is caused by the fact that in the proof of [11, Proposition 7.14] we
first needed to run the DBM for si (t) for an initial time t0 = N−1+ω0 to regularise the
particles si (0) = si , with ωK � ω0 � ωQ , and then run both DBMs for an additional
time N−1+ω1 , with ω1 � ωK � ω0 � ωQ (see below [11, Eq. (7.56)]). Finally,
in [11, Proposition 7.14] we have t f := t0 + t1 ∼ t0, hence the reader can think
ω f = ω0. In the current case we do not need to run (4.34) for an initial time t0 since
si (0) = si are already regular being the eigenvalues of a deformed Wigner matrix.

We are now ready to prove Lemmas 4.2–4.3.

Proof of Lemmas 4.2–4.3 By construction the processes λxr (t), λ̃
(r)

(t) satisfy the
assumptions of Proposition 4.6 with i0 = jr , i = 0, ρ = ρxr and ωK = ωA. Hence,
by Proposition 4.6, we get

ρxr (γ
xr
jr

)[λxr
jr
(t1) − γ

xr
jr

(t1)] − ρsc(γ jr )[̃λ(r)
jr

(t1) − γ jr (t1)] (4.40)

=
∑

| j |≤N2ω1

1

N
pt1

(
0,

− j

Nρsc(γ jr )

) [
ρxr (γ

xr
jr

)(λ
xr
jr+ j (0) − γ

xr
jr

(0))

− ρsc(γ jr )(̃λ
(r)
jr+ j (0) − γ jr (0))

] + O(N−1−κ),

with very high probability, for some small fixed κ > 0. Here γ
xr
jr

(t), γ jr (t) denote the

quantiles of ρ
xr
t and ρsc,t , respectively, with ρ

xr
t , ρsc,t the evolution of ρxr , ρsc along

the semicircular flow (see e.g. [10, Eq. (4.1)]) and pt (x, y) is defined in (4.39).
Analogously, we observe that the processes μ̃(r)(t),μ(r)(t) satisfy the assumptions

of Proposition 4.6 with i0 = jr , i = 0, ρ = ρsc, ωK = ωA, ωQ = ωE due to (4.27)
(in particular (4.27) is needed to check Assumption 3–(c)), and thus we obtain

μ
(r)
jr

(t1) − μ̃
(r)
jr

(t1) =
∑

| j |≤N2ω1

1

N
pt1

(
0,

− j

Nρsc(γ jr )

) [
μ

(r)
jr+ j (0) − μ̃

(r)
jr+ j (0)

] + O(N−1−κ ).

(4.41)
From now on we focus only on the precesses λxr (t1), λ̃

(r)
(t1) and so on the proof

of Lemma 4.2. The proof to conclude Lemma 4.3 is completely analogous and so
omitted. Combining (4.40) with another application of Proposition 4.6, this time for
i0 = jr and i = 1, we readily conclude that
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ρxr (γ
xr
jr

)
[
λ
xr
jr+1(t1) − λ

xr
jr
(t1)

] − ρsc(γ jr )
[̃
λ

(r)
jr+1(t1) − λ̃

(r)
jr

(t1)
]

=
∑

| j |≤N2ω1

1

N

[
pt1

(
0,

1 − j

Nρsc(γ jr )

)
− pt1

(
0,

− j

Nρsc(γ jr )

)]

× [
ρxr (γ

xr
jr

)(λ
xr
jr+ j (0) − γ

xr
jr

) − ρsc(γ jr )(̃λ
(r)
jr+ j (0) − γ jr )

] + O(N−1−κ)

= O(N−1−κ+ξ + N−1−ω1+ξ ),

(4.42)
with very high probability, where we used rigidity

|λxr
i − γ

xr
i | ≤ N ξ

N
, (4.43)

a similar rigidity bound for λ̃
(r)
i . Additionally, to go to the last line of (4.42) we used

the following properties of the heat kernel pt1(x, y):

∣∣∣∣pt1
(
0,

1 − j

Nρsc(γ jr )

)
− pt1

(
0,

− j

Nρsc(γ jr )

)∣∣∣∣ ≤ 1

Nρsc(γ jr )

∫ 1

0

∣∣∣∣∂y pt1
(
0,

τ − j

Nρsc(0)

)∣∣∣∣ dτ

� 1

Nt1

∫ 1

0
pt1

(
0,

τ − j

Nρsc(γ jr )

)
dτ

1

N

∑

| j |≤N2ω1

pt1

(
0,

τ − j

Nρsc(0)

)
= 1 + O(N−ω1).

(4.44)
The bound in the second line of (4.44) follows by [28, Eq. (3.96)]. The second relation
of (4.44) follows by [28, Eqs. (3.90), (3.103)]. The bound in (4.42) concludes the
proof of Lemma 4.2. ��

4.3 Proof of Proposition 3.3

We now turn to the proof of Proposition 3.3. We first present Case 2) which is struc-
turally very similar to the proof of Proposition 3.3. Afterwards we turn to Case 1)
which is easier but additionally requires to modify the flow (4.3) to account for the
correlations among entries of H .

4.3.1 Case 2)

Proceeding as in (4.1)–(4.5) and using the notations and assumptions from Case 2) of
Proposition 3.3, it is enough to prove

Cov
[
P

(
Nδλ

x1
j1
(t1)

)
, Q

(
Nδλ

x2
j2
(t1)

)]
= O (

N−ζ2‖P‖C1‖Q‖C1
)
, (4.45)

with t1 = N−1+ω1 , for some smallω1 > 0. Here λ(t) are the eigenvalues of Ĥt , which
is the solution of (4.1) with initial condition Ĥ0 = H#

t1 , where H#
t1 is from in (4.4).
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The proof of (4.45) follows by a DBM analysis very similar to the one in Sect. 4.2.

More precisely, all the processesλxr (t), λ̃
(r)

(t), μ̃(r)(t), andμ(r)(t) are defined exactly
in the same way; the only difference is that Proposition 4.4 has to be replaced by the
following bound on the eigenvector overlap (its proof will be given at the end of
Sect. 5).

Proposition 4.8 We are in the setup of Case 2) of Proposition 3.3. For any small c1 > 0
there exists a c0 > 0 and a c∗ depending on c0, c1 such that the following hold for
any ζ1 > 0 sufficiently small. Assume c0|〈A〉| ≥ 〈 Å2〉1/2, |〈A〉| ≥ c0, ‖A‖ � 1. Pick
indices j1, j2 with N 1−ζ1 ≤ | j1 − j2| ≤ c∗N and choose x1, x2 with |x1 − x2| �
| j1 − j2|/N such that ρxr (γ

xr
jr

) ≥ c1. Let {uxri }i∈[N ], for r ∈ [2], be the orthonormal
eigenbasis of the matrices H + xr A. Then there exists ωE > 0 such that

|〈ux1j1 , u
x2
j2
〉| ≤ N−ωE (4.46)

with very high probability.

Then, using (4.46), instead of (4.27), as an input we readily conclude the analogous
versions of Lemmas 4.2–4.3. Finally, by Lemmas 4.2–4.3 we conclude the proof
of (4.45) proceeding exactly as in (4.28)–(4.33).

4.3.2 Case 1)

In this case we consider the following Ornstein-Uhlenbeck (OU) flow instead of (4.3):

dHt = −1

2
(Ht − E H0) dt + �1/2[dBt ]√

N
, H0 = H , �[·] := β

2
EW Tr[W ·]

(4.47)
HereW = √

N (H −E H) and note that the OU flow is chosen to keep the expectation
and the covariance structure of Ht invariant under the time evolution. As usual, the
parameter β = 1 in the real case and β = 2 in the complex case. Here �1/2 denotes
the square root of the positive operator � acting on N × N matrices equipped with
the usual Hilbert-Schmidt scalar product structure.

Then proceeding as in (4.1)–(4.5), after replacing (4.3) with (4.47), we find that to
conclude the proof of this proposition it is enough to prove

Cov
[
P

(
Nδλ

x1
j1
(t1)

)
, Q

(
Nδλ

x2
j2
(t1)

)]
= O (

N−ζ2‖P‖C1‖Q‖C1
)

(4.48)

with t1 = N−1+ω1 , for some smallω1 > 0. Here λ(t) are the eigenvalues of Ĥt , which
is the solution of (4.1) with initial condition Ĥ0 = H#

t1 , where H#
t1 is from in (4.4)

with Ht1 coming from (4.47).
Note that for A = I the gaps λx

i+1 − λx
i = λi+1 − λi do not depend on x . In

particular (4.48) simplifies since

δλ
xr
jr

= λ jr+1 − λ jr , (4.49)
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where we recall that {λi }i∈[N ] are the eigenvalues of H , ρ is its limiting density of
states, and {γi }i∈[N ] are the corresponding quantiles.

By (4.49), the proof of (4.48) is a much simpler version of the proof of Proposi-
tions 4.1 presented in Sect. 4.2 for general A’s. More precisely, since for A = I the
gaps are independent of x , it is enough to consider the DBM for the evolution of the
eigenvalues of H instead of Hx :

dλi (t) =
√

2

N
dbi (t) + 1

N

∑

j �=i

1

λi (t) − λ j (t)
dt, (4.50)

with {bi }i∈[N ] a family of standard i.i.d. real Brownian motions (we wrote up the real
symmetric case for simplicity). The fact that

d[bi (t), b j (t)] = δi j dt, (4.51)

follows by the orthogonality of the eigenvectors of H . Note that (4.50) does not
depend on x , unlike (4.7) in Sect. 4. In particular by (4.51) it follows that Ci j (t) ≡ I
in (4.16); indeed Proposition 4.4 is trivially satisfied by orthogonality since j1 and j2
are sufficiently away from each other by assumption. Additionally, it is not necessary
to define the comparison processes λ̃, μ̃ since the driving Brownian motions in (4.50)
are completely independent among each other, hence the processes λ(t) with indices
close to jr and μ(r)(t) can be compared directly (see e.g. [28, Section 3]).

5 Bound on the eigenvector overlap

The overlap in (4.27) and in (4.46) will be estimated by a local law involving the
trace of the product of the resolvents of Hx1 and Hx2 for any fixed x1, x2. Individual
resolvents can be approximated by the solution M of the MDE (2.5) but the determin-
istic approximation of products of resolvents are not simply products of M’s. Local
laws are typically proven by deriving an approximate self-consistent equation and then
effectively controlling its stability. In Proposition 5.1 we formulate a more accurate
form of the overlap bounds (4.27)–(4.46) in terms of the stability factor of the self-
consistent equation for the product of two resolvents. In the subsequent Lemma 5.2
we give an effective control on this stability factor. Proposition 5.1 will be proven in
this section while the proof of Lemma 5.2 is postponed to Appendix A.

For notational convenience we introduce the commonly used notion of stochastic
domination. For some family of non-negative random variables X = X(N ) ≥ 0 and
a deterministic control parameter ψ > 0 we write X ≺ ψ if for each ε > 0, D > 0
there exists some constant C such that

P(X > N εψ) ≤ CN−D .
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Proposition 5.1 Let {uxri }i∈[N ], for r = 1, 2, be the orthonormal eigenbasis of the
matrices H + xr A and fix indices i1, i2 in the bulk i.e. with 〈�Mxr (γ

xr
ir

)〉 � 1. Then

it holds that9

|〈ux1i1 , ux2i2 〉|2 ≺ N−1/15δ−16/15, δ := |1 − 〈Mx1(γ
x1
i1

)Mx2(γ
x2
i2

)(∗)〉| (5.1)

whenever N−1/6 � δ � 1.

Lemma 5.2 For any c1 > 0 there is a c∗ such that for any x1, x2, E1, E2 such that
|x1 − x2| + |E1 − E2| ≤ c∗ and ρxr (Er ) ≥ c1, r = 1, 2, it holds

|1 − 〈Mx1(E1)M
x2(E2)

(∗)〉| � |E1 − x1〈A〉 − E2 + x2〈A〉|2 + |x1 − x2|2〈 Å2〉
+ O(|x1 − x2|3 + |E1 − E2|3).

(5.2)

For z1, z2 ∈ C \ R we abbreviate

Gi := (Hxi − zi )
−1, Mi := Mxi (zi ), Mi j := MiMj

1 − 〈MjMj 〉 (5.3)

and will prove the following G1G2 local law.

Proposition 5.3 Fix ξ > 0 and let z1, z2 ∈ C with |�z1| = |�z2| = η be the bulk, i.e.
〈�Mi 〉 � 1, such that Nηδ12 ≥ N ξ , where δ12 := |〈1 − 〈M1M2〉〉|. Then it holds that

|〈G1G2A − M12A〉| ≺ ‖A‖
δ12Nη2

(
η1/12 + 1√

Nη
+

( η

δ12

)1/4 + 1

(δ12Nη)1/3

)
(5.4)

uniformly in deterministic matrices A.

Proof of Proposition 5.1 We will now apply Proposition 5.3 with zr = Er ± iη,
Er := γ

xr
ir

and setting η := (Nδ)−4/5. By 1/3-Hölder continuity of z �→ Mx (z) [2,

Proposition 2.4], we have δ = δ12(1 + O (1)) due to assumption δ � N−1/6 and
therefore the condition Nηδ12 ≥ N ξ of Proposition 5.3 is fulfilled. Then, together
with spectral decomposition of �Gi we obtain

∑

|λx1j1 −E1|�η

∑

|λx2j2 −E2|�η

|〈ux1j1 , u
x2
j2
〉|2

�
∑

j1, j2

|〈ux1j1 , u
x2
j2
〉|2 η4

[(λx1
j1

− E1)2 + η2][(λx2
j2

− E2)2 + η2]
= η2 Tr �G1�G2 ≺ N−1/16δ−16/15.

(5.5)

9 Star in bracket M(∗) indicates that the statement holds for both M and its adjoint M∗.
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1210 G. Cipolloni et al.

By rigidity (4.43) the sums in the l.h.s. of (5.5) contain the term |〈ux1i1 , ux2i2 〉|2 as long
as η ≥ N−1+ξ . This relation clearly holds with our choice since δ � 1, concluding
the proof. ��
Proof of Proposition 5.3 This proof is an adaptation of a similar argument from
[11, Theorem 5.2], so here we only give a short explanation. From (2.5) obtain

(1 − M1M2〈·〉)[G1G2 − M12] = � := −M1WG1G2 + M1(G2 − M2)

+ M1〈G1G2〉(G2 − M2) + M1〈G1 − M1〉G1G2,

(5.6)
where

WG1G2 := WG1G2 + 〈G1〉G1G2 + 〈G1G2〉G2.

Thus we have

〈G1G2A − M12A〉 = 〈�A〉 + 〈M1M2A〉〈�〉
1 − 〈M1M2〉 . (5.7)

Recall that it was proven in [11, Proposition 5.3] that if |〈G1G2A〉| ≺ ‖A‖θ for some
constant θ ≤ η−1 uniformly in A, then also

|〈WG1G2A〉| ≺ 1

Nη2

(
(θη)1/4 + 1

(Nη)1/2
+ η1/12

)
, (5.8)

again uniformly in A. Strictly speaking [11, Proposition 5.3] was stated in the context
of Hermitized i.i.d. random matrices. However, a simpler version of the same proof
clearly applies to deformedWignermatrices. Themain simplification compared to [11]
is that due to the constant variance profile of Wigner matrices summations as the
one in [11, Eq. (5.28a)] can be directly performed, without introducing the block
matrices E1, E2. The remainder of the proof apart from the simplified resummation
step verbatim applies to the present case. Using (5.8) in (5.7) and θ ≤ η−1, η � 1 it
follows that

|〈G1G2A − M12A〉| ≺ 1

δ12

( 1

Nη
+ θ

Nη
+ 1

Nη2

(
η1/12 + 1

(Nη)1/2
+ (θη)1/4

))

� 1

δ12Nη2

(
η1/12 + 1

(Nη)1/2
+ (θη)1/4

)

(5.9)
and therefore

|〈G1G2A〉| ≺ θ ′ := 1

δ12
+ 1

δ12Nη2

(
η1/12 + 1

(Nη)1/2
+ (θη)1/4

)
. (5.10)

We now iterate (5.10) using that Nδ12η ≥ N ξ starting from θ0 = 1/η (which follows
trivially from Cauchy-Schwarz). In doing so we obtain a decreasing sequence of θ ’s
and after finally many steps conclude that

|〈G1G2A〉| ≺ θ∗, (5.11)
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Quenched universality for deformed Wigner matrices 1211

where θ∗ is the unique positive solution to the equation

θ∗ = 1

δ12

(
1 + 1

Nη2

(
η1/12 + 1

(Nη)1/2

))
+ θ

1/4∗
δ12Nη7/4

. (5.12)

Asymptotically we have

θ∗ ∼ 1

δ12

(
1 + 1

Nη2

(
η1/12 + 1

(Nη)1/2
+ 1

(δ12Nη)1/3

))
(5.13)

and using (5.9) once more with θ∗ concludes the proof. ��

5.1 Proof of Propositions 4.4 and 4.8

Both proofs rely on Proposition 5.1 and proving that the lower bound on the stability
factor given in Lemma 5.2 with Er = γ

xr
ir
, r = 1, 2, is bounded from below by N−ε

with some small ε. This will be done separately for the two propositions.
For Proposition 4.4 we use that |E1 − E2| � |x1 − x2| ≤ c∗ with a small c∗ and

that 〈 Å2〉 � 1, hence

|1 − 〈Mx1(γ
x1
i1

)Mx2(γ
x2
i2

)(∗)〉| � |x1 − x2|2〈 Å2〉 � N−2ζ1 .

The relation |E1 − E2| � |x1 − x2| follows from

|E1 − E2| = |γ x1
i1

− γ
x2
i2

| ≤ |γ x1
i1

− γ
x2
i1

| + |γ x2
i1

− γ
x2
i2

| � |x1 − x2| + |i1 − i2|/N

and the fact that |i1 − i2|/N � |x1 − x2| from the conditions of Propositions 4.4. The
estimate on |γ x1

i1
− γ

x2
i1

| comes from Lemma 3.4.
For Proposition 4.8 we have

|E1 − x1〈A〉 − E2 + x2〈A〉| ≥ |γ x1
i1

− γ
x1
i2

| − |γ x1
i2

− γ
x2
i2

− (x1 − x2)〈A〉|
≥ c1|i1 − i2|/N − C |x1 − x2|

(
〈 Å2〉1/2 + |x1 − x2|

)
.

(5.14)
In estimating the first term we used that γ x1

i1
, γ x1

i2
are in the bulk, while we used (3.12)

for the second term. Notice that

C |x1 − x2|
(
〈 Å2〉1/2 + |x1 − x2|

)
≤ c0‖A‖N−ζ1

by the bound 〈 Å2〉1/2 ≤ c0|〈A〉| ≤ c0‖A‖. Choosing c0 sufficiently small, depending
on c1, and recalling that |i1 − i2| ≥ N 1−ζ1 , we can achieve that

C |x1 − x2|
(
〈 Å2〉1/2 + |x1 − x2|

)
≤ 1

2
c1|i1 − i2|/N
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1212 G. Cipolloni et al.

in particular

|E1 − x1〈A〉 − E2 + x2〈A〉| ≥ 1

2
c1|i1 − i2|/N � N−ζ1 (5.15)

from (5.14). This shows the required lower bound for the leading (first) term in (5.2).
The second term is non-negative. The first error term is negligible, |x1−x2|3 ≤ N−3ζ1 .
For the second error term we have

|E1 − E2| ≤ |γ x2
i1

− γ
x2
i2

| + |γ x1
i1

− γ
x2
i1

| � |i1 − i2|/N + |x1 − x2| � |i1 − i2|/N

using the upper bound on the density ρx2 in the first term and (3.12) in the second term.
In the last step we used |x1− x2| � |i1− i2|/N from the conditions of Proposition 4.8.
This shows that the error term |E1−E2|3 � (|i1−i2|/N )3 is negligible comparedwith
themain termA.4of order at least (|i1−i2|/N )2 sincewealso assumed |i1−i2|/N ≤ c∗
which is small.

This proves that

|1 − 〈Mx1(γ
x1
i1

)Mx2(γ
x2
i2

)(∗)〉| � |E1 − x1〈A〉 − E2 + x2〈A〉|2 � N−2ζ1 .

in the setup of Proposition 4.8 as well.

6 Multi-gap quenched universality

The following results are the multi-gap versions of Theorems 2.2 and 2.5. The gaps
will be tested by functions of k variables, so we define the set

Fk = Fk,L,B :=
{
F : Rk → R| supp(F) ⊂ [0, L]k, ‖F‖C5 ≤ B

}
(6.1)

of k-times differentiable and compactly supported test functions F with some large
constants L, B > 0. In the followingwewill often use the notation i := (i1, . . . , ik) for
a k-tuple of integer indices i1, . . . , ik . The gap distribution for Hx will be compared
with that of the Gaussian Wigner matrices, we therefore let {μi }i∈[N ] denote the
eigenvalues of a GOE/GUE matrix corresponding to the symmetry class of H .

Theorem 6.1 (Quenched universality via eigenbasis rotation mechanism) Under the
conditions of Theorem 2.2 for any c1-bulk-index i0 we have the following multi-gap
version of Wigner-Dyson universality. There exist ε = ε(a0, c0, c1) > 0 and an event
�i0,A with PH (�c

i0,A
) ≤ N−ε such that for all H ∈ �i0,A the matrix Hx = H + x A

satisfies

max‖i‖∞≤K
sup
F∈Fk

∣∣∣∣Ex F

((
Nρx (γ x

i0
)δλxi0+i j

)

j∈[k]

)
− Eμ F

((
Nρsc(0)δμN/2+i j

)

j∈[k]

) ∣∣∣∣ ≤ CN−c,

(6.2)
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Quenched universality for deformed Wigner matrices 1213

for K := N ζ and some ζ = ζ(a0, c0, c1) > 0, and c = c(k) > 0. The constant C
in (6.2) may depend on k, L, B, a0, c0, c1 and all constants in Assumptions 1 and 2
at most polynomially, but it is independent of N .

Theorem 6.2 (Quenched universality via spectral sampling mechanism) Under the
conditions of Theorem 2.5 for any c1-bulk-energy E we have the following multi-gap
version of Wigner-Dyson universality. There exists ε = ε(a0, c0, c1) > 0 and an event
�E,A with P(�c

E,A) ≤ N−ε such that for all H ∈ �E,A the matrix Hx satisfies

max‖i‖∞≤K
sup
F∈Fk

∣∣∣∣Ex F

((
Nρx (E)δλxi0(x,E)+i j

)

j∈[k]

)
−Eμ F

((
Nρsc(0)δμN/2+i j

)

j∈[k]

) ∣∣∣∣≤CN−c,

(6.3)
where K := N ζ , and some ζ = ζ(a0, c0, c1) > 0, c = c(k) > 0. The constant C
in (6.3) may depend on k, L, B, a0, c0, c1 and all constants in Assumptions 1 and 2
at most polynomially, but it is independent of N .

First, to handle the supremum over the uncountable family Fk,L,B of test functions
F we reduce the problem to a finite set of test functions so that the union bound can
be taken. Notice that for sufficiently smooth test functions F , which are compactly
supported on some box [0, L]k of size L , we can expand F in partial Fourier series as
(see e.g. [38, Remark 3] and [12, Eq. (30)])

F(x1, . . . , xk) =
∑

|n1|,...,|nk |∈[N ζ∗ ]
CF (n1, . . . , nk)

k∏

j=1

ein j x j /Lϕ(x j ) + O
(
N−c(ζ∗)

)
,

∑

n1,...,nk

|CF (n1, . . . , nk)| � 1, (6.4)

with integer n1, . . . , nk , where ϕ : R → R is a smooth cut-off function such that it
is equal to one on [0, L] and it is equal to zero on [−L/2, 3L/2]c. Here ζ∗ > 0 is a
small fixed constant that will be chosen later. Introduce the notation

fn(x) := einx/Lϕ(x), n ∈ Z. (6.5)

Proof of Theorem 6.1 By (6.4) we get that

sup
‖i‖∞≤N ζ

sup
F

∣∣∣∣Ex F
((

Nρx (γ x
i0 )δλ

x
i0+i j

)
j∈[k]

)
− Eμ F

((
Nρsc(0)δμN/2+i j

)
j∈[k]

) ∣∣∣∣ (6.6)

� sup
‖i‖∞≤N ζ ,

‖n‖∞≤N ζ∗

∣∣∣∣∣∣
Ex

∏

j∈[k]
fn j

(
Nρx (γ x

i0 )δλ
x
i0+i j

)
− Eμ

∏

j∈[k]
fn j

(
Nρsc(0)δμN/2+i j

)
∣∣∣∣∣∣

+ O
(
N−c(ζ∗)

)
,

with fn j defined in (6.5) and n := (n1, . . . , nk).
Proceeding exactly as in the proof of Theorem 2.2 in Sect. 3.1, and using the fact

that (3.3) holds for test functions P1, P2 of k variables (see Remark 3.2), we conclude
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1214 G. Cipolloni et al.

that for any fixed i1, . . . , ik and n1, . . . , nk there exists a probability event �i0,i,n,
with P(�c

i0,i,n
) ≤ N−κ , on which

∣∣∣∣∣∣
Ex

∏

j∈[k]
fn j

(
Nρx (γ x

i0 )δλ
x
i0+i j

)
− Eμ

∏

j∈[k]
fn j

(
Nρsc(0)δμN/2+i j

)
∣∣∣∣∣∣
� N−α

∏

j∈[k]
‖ fn j ‖C5 .

(6.7)
Then choosing ζ, ζ∗ ≤ κ(10k)−1 we define the event

�i0 :=
⋂

‖i‖≤N ζ

⋂

‖n‖≤N ζ∗
�i0,i,n, PH

(
�c

i0

)
� N−κNk(ζ+ζ∗) ≤ N−κ/2. (6.8)

Finally, by (6.7)–(6.8), for all H ∈ �i0 , choosing ζ∗ ≤ α(10k)−1, the claim (6.2)
follows with exponent c = min{α − 5kζ∗, c(ζ∗)} using that ‖ fn j ‖C5 ≤ N 5ζ∗ , for any
j ∈ [k], and where c(ζ∗) is from (6.4). ��

Proof of Theorem 6.2 Given (6.6), the proof ofTheorem6.2, followingSect. 3.2 instead
of Sect. 3.1 and using that Proposition 3.3 holds for P1, P2 of k variables (see
Remark 3.2), is completely analogous and so omitted. ��
Acknowledgements The authors are indebted to Sourav Chatterjee for forwarding the very inspiring ques-
tion that Stephen Shenker originally addressed to him which initiated the current paper. They are also
grateful that the authors of [23] kindly shared their preliminary numerical results in June 2021.

Funding Open access funding provided by Institute of Science and Technology (IST Austria).

Declarations

Data availability All data generated or analysed during this study are included in this manuscript.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Bound for the stability operator

Proof of Lemma 5.2 Note that

|1 − 〈M1M
∗
2 〉| ≥ �[1 − 〈M1M

∗
2 〉] = 1

2
〈(M1 − M2)(M1 − M2)

∗〉 + O(η),
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Quenched universality for deformed Wigner matrices 1215

where we used that 〈MiM∗
i 〉 = 1 + O(η), which follows by taking the imaginary in

the MDE (2.5). Then using Taylor expansion in the x2 and the E2 variables we get
that

〈(M1 − M2)(M1 − M2)
∗〉

= 〈(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))
∗〉

+ O(|x1 − x2|3 + |E1 − E2|3).
(A.1)

To estimate the error term in (A.1) we used the following bounds for E = �z in
the bulk of the spectrum for any x ∈ [x1, x2] and E ∈ [E1, E2], a condition that is
guaranteed by |x1 − x2|+ |E1 − E2| ≤ c∗ is small. By [2, Corollary 5.3, Lemma 5.7]
we have

∥∥∥∂α
x ∂

β
EM

x (E + iη)

∥∥∥ ≤ Cα,β,

∥∥∥∥
1

1 − (Mx (z))2〈·〉
∥∥∥∥‖·‖→‖·‖

≤ C

ρx (z)[ρx (z) + |σ x (z)|] ,
(A.2)

for any α, β ∈ N, for any fixed x , where |σ x (z)| ≥ c unless ρx (z) has a near-cusp
singularity and E = �z is close to this cusp point. Recall that the norm ‖·‖ denotes
the standard euclidean matrix norm on N × N matrices. Here 1 − Mx (z)〈·〉Mx (z)
is a linear operator acting on such matrices R as (1 − Mx (z)〈·〉Mx (z))[R] = R −
Mx (z)〈R〉Mx (z). Finally, the second formula in (A.2) involves the norm induced by
the euclidean matrix norm.

Then differentiating the MDE in x and E we find that

∂x1M1 = − 1

1 − M2
1 〈·〉 [M1AM1], ∂E1M1 = 1

1 − M2
1 〈·〉 [M1M1].

Hence, by

(
1

1 − M2
1 〈·〉

)(
1

1 − M2
1 〈·〉

)∗
≥ c, M1M

∗
1 ≥ c,

we conclude

〈(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))(∂x1M1(x2 − x1) + ∂E1M1(E2 − E1))
∗〉

=
〈∣∣∣∣∣

1

1 − M2
1 〈·〉M1

[ − (x1 − x2)A + (E1 − E2)
]
M1

∣∣∣∣∣

2〉

� 〈[(E1 − E2) − (x1 − x2)A]2〉 = |E1 − x1〈A〉 − E2 + x2〈A〉|2 + |x1 − x2|2〈 Å2〉,

where in the last equality we wrote A = 〈A〉 + Å. This concludes the proof of (5.2)
in case when the adjoint is present. The estimate of |1 − 〈M1M2〉| is much easier, it
follows directly from (A.2). ��

123



1216 G. Cipolloni et al.

Proof of Lemma 3.4 To make the presentation clearer we just consider the case x1 = x
and x2 = 0, the general case is analogous and so omitted. For any fixed real parameters
x, y consider the MDE

M−1 = z + B + x〈A〉 + y Å + 〈M〉, �M�z > 0. (A.3)

Note that for y = 0 (A.3) is the MDE for H and for y = x (A.3) is the one for
Hx = H + x A. We denote the unique solution of (A.3) by Mx,y = Mx,y(z), the
associated scDos by ρx,y and the corresponding quantiles by γ

x,y
i . We will use that

γ
x1
i − γ

x2
i = γ x

i − γ 0
i =

∫ x

0
∂sγ

s,s
i ds =

∫ x

0

[
∂xγ

x,s
i

∣∣
x=s + ∂yγ

s,y
i

∣∣
y=s

]
ds. (A.4)

For the first term we use that that ∂xγ
x,s
i = 〈A〉, giving the leading term x〈A〉 in

Lemma 3.4. To estimate ∂yγ
s,y
i , we differentiate the defining equation of the quantiles

∫ γ
s,y
i

−∞
〈�Ms,y(E)〉 dE = i

N

with respect to y. We obtain

∂yγ
s,y
i 〈�Ms,y(γ

s,y
i )〉 +

∫ γ
s,y
i

−∞
∂y〈�Ms,y(E)〉 dE = 0

for any s, y ∈ [0, x]. Then, using that in the bulk |〈�Ms,y(γ
s,y
i )〉| ≥ c, we conclude

|∂yγ s,y
i | �

∫ γ
s,y
i

−C

〈
1

1 − (Ms,y(E))2〈·〉M
s,y(E) ÅMs,y(E)

〉
dE � 〈 Å2〉1/2, (A.5)

where we used Schwarz inequality and the bounds in (A.2). The important fact about
the second bound in (A.2) is that it is integrable in E since it has a |E − E0|−1/2

singularity near an edge point E0 and a |E − E0|−2/3 singularity near a cusp point
E0. Here we also used that |x | = |x1 − x2| ≤ c∗ is sufficiently small so that γ s,y

i is in
the bulk not only for s = y = x , but for all s, y ∈ [0, x]. From (A.4) and (A.5) we
readily conclude (3.12). ��

Appendix B. Numerics

Herewe present numerical evidence quantifying the speed of convergence of the single
gap distribution to its theoretical limit for the monoparametric ensemble, cf. Fig. 3.
This numerics was inspired by the observationmade in [23]10 on the slow convergence
of the spectral form factor.

10 We thank Stephen Shenker for communicating preliminary numerical results supporting this observation
in June 2021.
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Quenched universality for deformed Wigner matrices 1217

Fig. 3 The figure shows the Kolmogorov-Smirnov distance D(F, F ′) := sups |F(s) − F ′(s)| of the empir-
ical cumulative distribution function (CDF) of the (rescaled) eigenvalue gap λN/2+1−λN/2 to the CDF F2
corresponding to p2 for various values of N for both GUE and themonoparametric ensemble. The empirical
CDF for the GUE has been generated by sampling 100 GUEmatrices H . For the monoparametric ensemble
Hx = H + x A typical GUE random matrices H , A have been fixed and 100 Gaussian random variables x
have been sampled. The error bars represent the standard deviation of the obtained Kolmogorov-Smirnov
distance for 50 independent repetitions. In accordance with Fig. 2 we find that the gap distribution for
GUE matches its theoretical limit very well for any value of N , while for the monoparametric ensemble
the KS-distance seems to decay only slowly with N
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