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Abstract
We consider a lot-sizing problem with set-ups where the demands are uncertain, and 
propose a novel approach to evaluate the inventory costs. An interval uncertainty is 
assumed for the demands. Between two consecutive production periods, the adver-
sary chooses to set the demand either to its higher value or to its lower value in 
order to maximize the inventory (holding or backlog) costs. A mixed-integer model 
is devised and a column-and-row generation algorithm is proposed. Computational 
tests based on random generated instances are conducted to evaluate the model, the 
decomposition algorithm, and compare the structure of the solutions from the robust 
model with those from the deterministic model.

Keywords Lot-sizing · Set-ups · Robust optimization · Column-and-row generation

1 Introduction

Inventory problems are amongst the most studied problems under uncertainty. Since 
the seminal works on inventory management (see [13]) demands are frequently 
considered as uncertain. From a practical point of view, uncertainty usually occurs 
when companies follow make-to-stock policies [2]. For the case of lot-sizing prob-
lems with uncertain demand see the survey [1].

One of the most important characteristics in lot-sizing problems is the need 
to define the set-up periods. Given their nature, the set-ups are frequently deci-
sions taken a priori, that is, decisions taken during the planning phase which 
cannot be changed during the execution phase. In such cases, between two con-
secutive production periods there is no production and the decision maker (DM) 
can just observe the demands and hope not to incur into large amounts of stock 
(corresponding to positive inventory levels) or large amounts of backlogging 
(corresponding to negative inventory levels). Here we consider a variant of the 
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lot-sizing problem with backlogging and set-ups, which is one of the most basic 
models in production planning (see [9]). In this variant the DM wishes to estab-
lish the production plan assuming that between consecutive production periods 
the worst-case between the two extreme scenarios (highest demand versus lowest 
demand) will occur, thus establishing a plan that prevents both excessive hold-
ing and backlog costs, where the holding costs correspond to the cost of keeping 
stocks.

The most common techniques in robust optimization have been employed in 
inventory models. Among other techniques, the well-known dualization approach 
introduced by Bertsimas and Sim [5] was employed for a simple inventory model 
in [6]; affine approximations were proposed in [4] for a retailer-supplier inventory 
model, and Bienstock and Özbay [7] introduced an exact decomposition approach 
to define robust basestock levels for an inventory model. However, all these seminal 
works on robust inventory models ignore set-ups. Later on, these approaches have 
been applied to more complex (and more practical) inventory problems where dis-
crete decisions such as set-ups, that complicate the model considerably, are consid-
ered. The results presented by [6] are extended in [14] to a lot-sizing problem with 
remanufacturing, where uncertainty is considered on returns and demands. The same 
lot-sizing problem is solved using the exact decomposition algorithm in [3] where, 
in addition, a classical extended formulation for the lot-sizing problem is discussed 
for the robust case. In [11], a Lagrangian approach is proposed for robust problems 
with decomposable functions, which include the case of inventory problems, and a 
relation between the affine approximations and the dualization approaches is estab-
lished using Lagrangian duality. Computational tests on lot-sizing problems show 
that the definition of set-ups decisions depend on the approach.

Approaches based on practical policies, such as FIFO policies, have been 
employed for lot-sizing models, see [12] for an inventory model with perishable 
products.

In relation to the common robust approximation approaches, our modeling 
approach follows a new direction. Instead of restricting the DM actions as in the 
dualization and in the affine approximation, we assume that the adversary follows a 
simple policy and the DM takes the optimal decisions considering that adversary’s 
policy. This approach has two main advantages. Firstly, it allows us to obtain a trac-
table model. Secondly, the adversary’s policy can be easily interpreted by the DM 
and corresponds to one of the evaluation rules that a DM may follow, by analysing 
the two extreme cases of the inventory level between two consecutive production 
periods. As a result, the introduced model is less conservative than the most com-
mon approaches in robust optimization.

In summary, our contributions are as follows: A new robust mixed-integer model 
is proposed for the basic lot-sizing problem with backlogging assuming the adver-
sary follows a basic policy; a column-and-row generation algorithm is introduced 
to solve the robust model efficiently; and computational experiments are reported 
showing that our approach leads to solutions that have different structures from 
those using a deterministic model.
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The rest of the paper is organized as follows: In Sect. 2 we introduce the robust 
model. In Sect.  3 we provide a column-and-row generation algorithm. Computa-
tional results are presented in Sect. 4 and Sect. 5 contains some concluding remarks 
and future research directions.

2  Problem formulation

2.1  Deterministic formulation

First, we consider the deterministic lot-sizing model. Consider a finite time hori-
zon N = {1,… , n}, where n is the number of time periods. Parameters ht, bt, pt 
represent, for period t,   the unit holding, backlog, and production cost, respec-
tively. The set-up cost is given by ft . The production capacity in period t is 
denoted by ct. Variables xt give the amount produced in period t,  and the inven-
tory variables st and rt give, respectively, the stock and backlog level at the end 
of period t. Binary variables yt indicate whether a set-up occurs in period t. The 
deterministic capacitated lot-sizing problem with backlogging, denoted by DLS, 
is as follows:

The objective function (1) is to minimize the total cost, which includes the set-up, 
holding, backlogging and production costs. Constraints (2) are the inventory balance 
constraints. Constraints (3) ensure that if the production is positive in a given period 
t,  then there must occur a set-up at that period, and guarantees that the production 
doesn’t exceeds the production capacity. If no capacity is assumed, then we take 
ct =

∑

i∈N di, for all t ∈ N. Constraints (4), (5) define the domain of the variables. 
We assume henceforward that s0 = r0 = 0 (which occurs in equations (2) for t = 1). 
Notice that variables sn and rn may be positive to ensure feasibility.

(1)min
∑

t∈N

(

ftyt + htst + btrt + ptxt

)

(2)s.t. st−1 + xt + rt = dt + st + rt−1, ∀t ∈ N

(3)xt ≤ ctyt, ∀t ∈ N

(4)xt, st, rt ≥ 0, ∀t ∈ N

(5)yt ∈ {0, 1}, ∀t ∈ N
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2.1.1  The adversary policy

In the robust setting we assume that in each period t the demand dt is not known 
with certainty and belongs to the (box) uncertainty set [dt − d̂t, dt + d̂t], where dt is 
the nominal demand and d̂t is the maximum allowed deviation.

Assume t and k,   k > t, are two consecutive production periods. The adversary 
has to decide whether to set the demands

or

The decision depends on the inventory level at period t (before demand dt is 
observed), which is given by st−1 + xt − rt−1. If the inventory level is high, the adver-
sary decides for the lowest values of demands (case (6)) leading to high holding 
costs. Otherwise, if the inventory level is low, setting the demands to its highest val-
ues (case (7)) leads to high backlogging costs.

From the point of view of robust theory, a decision-dependent uncer-
tainty (see the seminal works [8, 10]) is considered. Given the set of produc-
tion periods {i1,… , ip−1} ⊆ N defined by y variables, let (I(y)1,… , I(y)p) 
be a partition of N defined by consecutive production intervals. That is, 
I(y)1 = {1,… , i1 − 1}, I(y)2 = {i1,… , i2 − 1},… , I(y)p = {ip−1,… , n}. Then the 
uncertainty set is given by

It is important to notice that the adversary’s policy may not give the optimal solution 
to the following adversarial problem defined for the case of two consecutive produc-
tion periods t and k (which corresponds to an interval I(y)

�
 in the partition):

where Ctk(Q) represents the inventory cost between periods t and k − 1 
when the inventory level at the beginning of period t is Q (which is given by 
∑k−1

i=t
max{hi(Q −

∑i

�=t
d
�
), bi(

∑i

�=t
d
�
− Q)} ), and

Consider the following example with only one production period.

Example 1 Consider N = {1, 2, 3} with s0 = 0, y = (1, 0, 0) (which corresponds to 
t = 1 and k = n + 1 = 4), x = (7, 0, 0), dt = 3, t ∈ N, d̂ = (0.5, 0.5, 0.5), ht = 1, t ∈ N, 
bt = 1, t ∈ N. We can see that the adversarial problem (9) has optimal solution with 
d = (2.5, 2.5, 3.5), obtained with d1 = d1 − d̂1, d2 = d2 − d̂2, d3 = d3 + d̂3, giving an 

(6)di = di − d̂i for each i = t,… , k − 1

(7)di = di + d̂i for each i = t,… , k − 1.

(8)U(y) = {di = d̄i + 𝛿id̂i,−1 ≤ 𝛿i ≤ 1, 𝛿i = 𝛿j if ∃� such that i, j ∈ I(y)
�
}

(9)max
d∈U[t,k−1]

Ctk(st−1 + xt − rt−1)

(10)U[t, k − 1] = {d ∶ di = di + �id̂i,−1 ≤ �i ≤ 1, i = t,… , k − 1}.
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objective function value of 8, which does not correspond to any of the two extreme 
scenarios dL = (2.5, 2.5, 2.5) and dU = (3.5, 3.5, 3.5), both giving an objective func-
tion value of 7.

The adversary’s policy is optimal to the adversary problem (9) when the con-
straints �i = �j, for all i, j ∈ {t,… , k − 1}, are added to the definition of U[t, k − 1]. 
Consequently, in addition to model a practical evaluation of the inventory levels, this 
policy has two advantages in relation to considering problem (9) for each interval 
I4(y)

�
∶ (i) numerical tractability and (ii) reduction of conservatism.

The following proposition is fundamental to model the adversary’s decision.

Proposition 1 Let CL
tk
(Q) =

∑k−1

i=t
max{hi(Q −

∑i

�=t
(d

�
− d̂

�
)), bi(

∑i

�=t
(d

�
− d̂

�
) − Q)} 

denote the inventory cost in case the demands are at their lowest value, and 
CU
tk
(Q) =

∑k−1

i=t
max{hi(Q −

∑i

�=t
(d

�
+ d̂

�
)), bi(

∑i

�=t
(d

�
+ d̂

�
) − Q)} denote the 

inventory cost in case the demands are at their highest value, when t and k are con-
secutive production periods and the inventory level at the beginning of period t is Q. 
Assume hi > 0, bi > 0, i ∈ N. Then the function ftk(Q) = CL

tk
(Q) − CU

tk
(Q) is strictly 

increasing in [0,
∑

i∈N(di + d̂i)].

The proof is left to the “Appendix”. As function ftk(Q) is continuous (since both 
CL
tk
(Q) and CU

tk
(Q) are continuous), then using Proposition 1 we conclude that there 

exists a threshold point, denoted by Qtk, above which the adversary opts by (6) and 
below which opts by (7). That is, the adversary follows the policy (denoted by policy 
Adv):

For the case st−1 + xt − rt−1 − Qtk = 0 the choice is arbitrary.
Let N� = N ∪ {n + 1}. Observe that for each pair of time periods 

t ∈ N, k ∈ N�, k > t, the threshold point can be computed in advance. For instance, 
one can use the bisection method.

Example 2 Consider the data given in Example 1 except for the values of production 
variables x that are not specified. Let the inventory at period 1 be Q = s0 + x1 − r0 = x1. 
Hence: CL

14
(Q) = max{1(Q − 2.5), 1(2.5 − Q)} +max{1(Q − 5), 1(5 − Q)}1(5 − Q)} 

+max{1(Q − 7.5), 1(7.5 − Q)}, and CU
14(Q) = max{1(Q − 3.5), 1(3.5 − Q)}

+max{1(Q − 7), 1(7 − Q)} +max{1(Q − 10.5), 1(10.5 − Q)}. The maxi-
mum possible value for demand is 10.5. For an inventory of Q = 0 we have 
CL
14
(Q) = 2.5 + 5 + 7.5 = 15 < CU

14
(Q) = 3.5 + 7 + 10.5 = 21. For Q = 10.5 we have 

CL
14
(Q) = 8 + 5.5 + 3 = 16.5 > CU

14
(Q) = 7 + 3.5 + 0 = 10.5. Since from Proposi-

tion 1 function f (Q) = CL
14
(Q) − CU

14
(Q) is increasing, we conclude that f(Q) has one 

zero in [0, 10.5]. Using the bisection method, we obtain as threshold point Q14 = 7.5 
(which gives the zero of function f(Q)).

(11)st−1 + xt − rt−1 − Qtk > 0 ⇒ di = di −
�di, i = t,… , k − 1

(12)st−1 + xt − rt−1 − Qtk < 0 ⇒ di = di +
�di, i = t,… , k − 1
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2.2  Formulation of the robust problem

Now we are at position to formulate the robust lot-sizing problem where the DM 
assumes (following a robust approach) that the worst-case between the two options 
will occur. The adversary’s policy can be modeled using auxiliary binary vari-
ables. For each t ∈ N ∪ {0}, k ∈ N�, k > t, binary variables �tk indicates whether the 
demand should be at the highest allowed value, when t and k are consecutive pro-
duction periods, and variables �tk indicate whether the demand should be at the low-
est allowed value. Using these variables, the demand at period t is dt + Δt where

In addition, we use binary variables ztk that indicate whether t and k are consecu-
tive production periods. Variables z0k, �0k, and �0k (corresponding to t = 0 ) model 
the case where k is the first production period. We assume ztk = 0, t ∈ N, k ≤ t and 
�0k = 0, k ∈ N, since in this case the highest cost occurs when the demand is higher.

The formulation to minimize the set-up and production costs, and the worst-case - 
in relation to policy Adv - inventory costs between production periods, is as follows:

Δt = −d̂t

t
∑

i=0

n+1
∑

k=t+1

�ik + d̂t

t
∑

i=0

n+1
∑

k=t+1

�ik.

(13)min
∑

t∈N

(htst + btrt + ptxt + ftyt)

(14)s.t. st−1 + xt + rt = dt + Δt + st + rt−1, t ∈ N

(15)
(3) − (5)

ztk ≤ yt, t ∈ N, k = t + 1,… , n

(16)ztk ≤ yk, t ∈ N, k = t + 1,… , n

(17)ztk ≥ yt + yk − 1 −

k−1
∑

i=t+1

yi, t ∈ N, k = t + 1,… , n

(18)zt,n+1 ≤ yt, t ∈ N

(19)zt,n+1 ≥ yt −

n
∑

i=t+1

yi, t ∈ N

(20)z0t ≤ yt, t ∈ N
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The objective function (13) is the same as the one for the deterministic model. The 
conservation constraints (14) are obtained from the deterministic constraints (2) by 
replacing the demand in period t, dt, with dt + Δt, which gives dt − d̂t if one of the 
variables �ik, i ≤ t, k > t, is one, and dt + d̂t if one of the variables �ik, i ≤ t, k > t, 
is one. Constraints (15)-(17) model variables ztk. Constraints (15), (16) ensure that 
variable ztk is zero if there is no set-up in period t or period k. Constraints (17) force 
ztk to be at least one if there is a set-up in periods t and k ( yt = yk = 1) and no set-up 
between these two periods ( yi = 0, i = t + 1,… , k − 1 ). Constraints (18), (19) model 
variables zt,n+1 and constraints (20), (21) model variables z0t. Constraints (22) ensure 
that if there is a set-up at time period t,  then there can be only one set-up following 
that period. Constraints (23) state that if t and k are consecutive production periods 
(ztk = 1) , than one of the variables �tk, �tk must be one, otherwise (ztk = 0) , both vari-
ables must be null. Constraints (24) and (25) model relations (11), (12). These con-
straints are active only when ztk = 1, that is, when t and k are consecutive production 
periods. In this case, if st−1 + xt − rt−1 > Qtk then constraints (24) force �tk to be one, 
otherwise, if st−1 + xt − rt−1 < Qtk then constraints (25) force �tk to be one. In case 
st−1 + xt − rt−1 − Qtk = 0, either �tk or �tk can be fixed to one. Constraints (26) define 
the domain of the variables.

We denote the robust model (3)–(5), (13)–(26) for the lot-sizing problem by RLS.
To compute the value of M,   one may bound the inventory at period t by the 

maximum possible accumulated demand during the entire horizon minus the initial 
inventory level, that is 

∑

i∈N(dt + d̂t) − s0. However, it is well-known that obtaining 
tighter bounds is very important to solve efficiently the model. Better bounds can be 
devised for each t and k,  and for each variable. In order to do that, the value of M 

(21)z0t ≥ yt −

t−1
∑

i=1

yi, t ∈ N

(22)
n+1
∑

k=t

ztk ≤ 1, t ∈ N

(23)�tk + �tk = ztk, t ∈ N ∪ {0}, k ∈ N�

(24)st−1 + xt − rt−1 − Qtk ≤ M(1 − ztk) +M�tk, t ∈ N, k ∈ N�

(25)Qtk − st−1 − xt + rt−1 ≤ M(1 − ztk) +M�tk, t ∈ N, k ∈ N�

(26)ztk, �tk, �tk ∈ {0, 1}, t ∈ N, k ∈ N�
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must be adjusted to t and k and to the variable in each constraint. Thus, we replace 
M by Mz1

tk
 and M�

tk
 in constraints (24) and by Mz2

tk
 and M�

tk
 in constraints (25).

First, consider the case of constraints (24). The role of variables ztk and �tk 
is different. The value M�

tk
 becomes active when ztk = �tk = 1, that is, when t 

and k are two consecutive production periods and the demand is at its highest 
value. In this case, st−1 + xt − rt−1 can be upper bounded by 

∑n

i=t
(di + d̂i), thus, 

M�
tk
=
∑n

i=t
(di + d̂i) − Qtk. However, looking at optimal solutions, a tighter bound 

that may cut feasible suboptimal solutions can be set to M�
tk
=
∑k−1

i=t
(di + d̂i) − Qtk 

when non speculative costs are considered, that is, when it is less expensive to 
produce the demand of period k in period k,   than to produce it in period t and 
keep it in stock from t to k. For the coefficient of ztk, the bound occurs for the 
case ztk = 0. In this case we set Mz1

tk
=
∑n

i=t
(dt + d̂t) − Qtk. However, again, we 

can establish a tighter bound for st−1 + xt − rt−1 by determining the lowest time 
period u > t such that (du − d̂u)(pt +

∑u−1

i=t
hi) ≥ fu + pu(du − d̂u) (this means that 

it costs less to produce the demand in period u than to carry that demand from 
period t), and setting Mz1

tk
=
∑u−1

i=t
(dt + d̂t) − Qtk.

Similarly, in constraints (25), −st−1 − xt + rt−1 can be upper bounded by 
∑t−1

i=1
(di + d̂i), giving M

�

tk
=
∑t−1

i=1
(di + d̂i) + Qtk. Considering optimal solu-

tions, a tighter bound can be devised by determining the largest u such that 
(du − d̂u)(pt +

∑t−1

i=u
bi) ≥ fu + pu(du − d̂u) (this means that it costs less to produce 

the demand in period u than to backlog that demand from period t), and setting 
M

�

tk
=
∑t−1

i=u+1
(di + d̂i) + Qtk. For these constraints we can take Mz2

tk
= M

�

tk
.

3  Column‑and‑row generation

Model RLS has some weaknesses, namely, it includes a large number of binary 
variables and a large number of big-M constraints (constraints (24), (25)). These 
constraints make the model large and weak in the sense that such constraints 
lead to a model providing poor linear relaxation bounds. Thus, applying an exact 
approach based on this mixed-integer model, such as the branch-and-cut, may 
lead to high running times. An approach to reduce the size of the model is to add 
constraints (24), (25) and the corresponding variables dynamically. Such inequal-
ities become active when ztk = 1. The column-and-row generation algorithm pro-
posed in Algorithm 1 generates dynamically these constraints as well as inequali-
ties (23), which are not restrictive when constraints (24), (25) are omitted.
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Observe if we aim to develop the most efficient implementation, instead of 
computing the threshold points Qtk in a preprocessing phase, they can be com-
puted in Step 6 when they are used.

4  Computational experiments

It is well-known that from a practical point of view only part of the decisions in 
the optimal solution may be implemented and the inventory costs may differ from 
those in the optimal solution since, most likely, the observed demands may not fol-
low exactly the adversary policy. Here we assume that the set-up decisions are static 
and, therefore, will be implemented. Hence the examples and computational tests 
are oriented for these more rigid and important decisions in the production planning. 
First we present two examples that illustrate the usefulness of our approach.

Example 1 Consider an instance with n = 4, ft = 60, pt = 0, ht = 1, bt = 2, 
for all t ∈ N, bn+1 = 12, and d = (20, 21, 21, 19), d̂t = 0.1dt, for all t ∈ N, and 
c = (33, 46, 48, 38).

The deterministic solution is y1 = y3 = 1, x1 = 33, x3 = 48, with cost 168. If the 
adversarial follows policy Adv, with the set-ups fixed, the objective function value 
is 172.26. The optimal robust solution has a single setup occurring in period 2 and a 
value of 168.7.

This example illustrates a case where the production capacity prevents the pro-
duction plan to adjust to a variation in the demands, leading to large backlog costs. 
The drawback of this deterministic solution could be prevented using other robust 
approaches.
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Example 2 Consider an instance with n = 6, ft = 60, pt = 0, ht = 1, dt = 20, d̂t = 2, 
ct = M, for all t ∈ N, and bt = 2, t ∈ N�. The deterministic model has optimal alter-
native solutions with y2 = y4 = 1, x2 = 60, x4 = 40, and y1 = y4 = 1, x1 = 60, 
x4 = 40, with cost 240. The robust solution is y1 = y4 = 1, with a worst-case cost 
(assuming the adversarial follows policy N) of 252. With the first deterministic solu-
tion the worst-case cost is 255.9375.

This example illustrates the main goal of our approach, that is, when the DM 
wishes to fix the set-up periods and alternative deterministic solutions exist with 
comparable costs, the robust solution chooses the one that prevents the occurrence 
of large inventory costs.

Next we present the computational experiments carried out to test the column-
and-row generation algorithm and compare the deterministic and robust models. 
The formulations are written in Mosel and implemented in Xpress-IVE Version 
5.8.1, with 64 bits. All the tests were run on a computer with a CPU Intel(R) Core 
i7-10510U, with 16GB RAM and using the Xpress Optimizer Version 39.01.02 with 
the default options.

4.1  Testing the column‑and‑row generation algorithm

In order to test the robust model RLS and the efficiency of Algorithm 1 we consider 
a set of instances with n varying in {20, 30, 40, 50} and with ft = 100, ht = 1, pt ran-
domly generated in [1, 2],  dt randomly generated in [18, 22],  d̂t = 0.1dt, ct = M, for 
all t ∈ N, and bt = 2, t ∈ N�. Three instances are randomly generated for each set of 
parameters. The results are reported in Table 1 for both approaches with M = 1000. 
Column n gives the corresponding value of n,  column ‘version’ gives the version of 

Table 1  Computational results 
comparing Algorithm 1 with 
original robust model

n Version Algorithm 1 Model RLS

Iter Time Obj Sp Time obj

20 1 6 2.4 1511.8 4 4.9 1511.8
20 2 6 2.8 1446.4 5 5.3 1446.4
20 3 7 3.5 1533.5 5 6.9 1533.5
30 1 7 12.9 2224.4 7 142.9 2224.4
30 2 4 3.3 2216.1 7 141.0 2216.1
30 3 8 30.4 2266.6 8 374.3 2266.6
40 1 10 138.8 2981.9 11 7200 2981.9
40 2 7 78.1 2985.3 10 7200 2985.3
40 3 9 168.1 3015.9 10 7200 3015.9
50 1 7 262.5 3666.9 13 7200 3766.4
50 2 12 608.3 3744.3 12 7200 3805.3
50 3 11 4517.4 3759.3 13 7200 3871.7
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the instance generated. The number of iterations performed by Algorithm 1 is given 
in column ‘iter’. The running times in seconds are given in columns ‘time’. A run-
ning time limit of 2 h was imposed to each instance. The objective function value of 
the best feasible solution is given in columns ‘obj’. The values in boldface represent 
instances where the optimal solution was not obtained. Column ‘Sp’ gives the num-
ber of set-up periods in the optimal solution.

The results clearly indicate that solving the problem with Algorithm 1 is much 
faster than using the robust model RLS directly. All the instances are solved to opti-
mality using Algorithm 1, although the running times increase considerable with the 
increase of n. Using directly the robust model, only instances up to n = 30 where 
solved to optimality. For the instances with n = 40 the optimal solution is obtained 
but the branch-and-cut failed to prove optimality within the time limit. We can also 
observe that the number of iterations required by Algorithm 1 is relatively small and 
it increases slightly with the increase of n.

Table 2  Dimension of model RLS

n Without preprocessing With preprocessing

# Col. # Rows # Non null coef. # Col. # Rows # Non null coef.

20 1405 1631 10,521 520 936 7282
30 3005 3496 27,631 1080 2006 17,481
40 5205 6061 56,641 1840 3476 33,754
50 8005 9326 100,551 2800 5346 56,949

Table 3  Comparison of 
deterministic solution with the 
robust solutions for n = 20

Deterministic RLS

bt pt Version Dobj ObjD Sp ObjR Sp PiR PoR

2 0 1 792 799.6 9 797.4 9 0.3 0.7
2 0 2 793 806.8 8 794.1 9 1.6 0.1
2 0 3 783 833.8 6 793.6 9 5.1 1.3
2 1 1 1181 1224.5 8 1203.2 9 1.8 1.9
2 1 2 1174 1208.6 8 1192.6 7 1.3 1.6
2 1 3 1161 1221.2 6 1189.5 7 2.7 2.5
10 0 1 797 850.7 9 847.9 9 0.3 6.4
10 0 2 794 857.0 9 848.7 9 1.0 6.9
10 0 3 793 851.3 9 844.6 8 0.8 6.5
10 1 1 1203 1264.9 9 1256.8 9 0.6 4.5
10 1 2 1196 1260.0 9 1253.8 9 0.5 4.8
10 1 3 1192 1250.9 9 1244.1 8 0.5 4.4
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In order to understand the behaviour of the two tested approaches, Table 2 gives 
the dimension of model RLS. As the values obtained are equal for the three versions, 
we give only the results for the number of periods n. The results are given both for 
the model without preprocessing and the model after the preprocessing phase.

4.2  Comparison with the deterministic solution

In Table 3 we give the results obtained using both the deterministic and the robust 
models. The data used is the same as the one given in Sect. 4.1 with the exception 
of the unit backlog cost which is given in column ‘ bt ’. Column ‘Dobj’ gives the 
objective function of the deterministic model while columns ‘ objD ’ and ‘ objR ’ 
give the objective function value of the robust model for the corresponding 
model. For the deterministic case (under columns ‘Deterministic’) we first solve 
the deterministic model, then we fix the set-ups to their value in the optimal solu-
tion and optimize the resulting restricted robust model. The value in column 
‘ objD ’ corresponds to the value of the solution obtained using this procedure. 
This means that the given cost corresponds to the case where the set-ups are fixed 
and the DM takes the optimal decisions regarding the production quantities while 
the adversary plays according to rule Adv. For the robust case (under columns 
RLS), the robust model RLS is solved and the objective function value and the 
number of set-ups of the optimal solution are given in columns objR and Sp,   
respectively. Column ‘PiR’ gives, in percentage, the deviation between the cost 
obtained using the robust and the deterministic approaches, that is, 100 objD−objR

objR
. 

This percentage gives the gain of using the robust approach instead of the deter-
ministic one when the solution is evaluated using the rule Adv, or, saying differ-
ently, is the price of ignoring uncertainty. The value in column ‘PoR’ gives, in 
percentage, the deviation between the nominal (deterministic) value and the value 
of the robust approach, that is, 100 objR−Dobj

objR
, which is known as the price of 

robustness.
From the results we observe that for all the tested instances, fixing the set-ups 

according to the deterministic model always leads to non-optimal decisions when 
facing uncertainty. For the third instance, the deviation (see column ‘PiR’) is 
larger than 5%. Additionally, we observe that for several instances the number of 
set-up periods differs according to the model used, which means that the structure 
of the solutions obtained are quite different. Additionally, we can also observe 
from column ‘PoR’ that the deviation between the deterministic and robust values 
is larger when the backlog costs are higher.

5  Conclusions

We propose a new robust model for a lot sizing problem that takes into account 
demand uncertainty where the adversary follows a simple policy, by setting the 
demand between consecutive production periods, either at its lower level or at its 
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highest level. Such policy can be seen as a simple rule to evaluate the solution, 
and has the advantage that it can be easily understood by the decision makers. 
By design, the proposed model is less conservative than some of the most com-
mon robust models used in the literature because it restricts the actions of the 
adversary to the two possible options. Computational experiments show that the 
structure of the robust solutions are different from the deterministic ones, lead-
ing in some cases to different production (set-up) periods. The tests also show 
that the new model is large and a column-and-row generation algorithm improves 
the running times significantly. The proposed model is tractable but has a large 
number of binary variables and constraints. Despite the column-and-row genera-
tion algorithm proposed, further research is needed to solve large size instances. 
A possible direction of future research is to devise tighter formulations through 
extended formulations or families of valid inequalities. A second direction is to 
extend the idea of using heuristic policies for the adversary to obtain tractable 
robust models.

Appendix

Proof of Proposition 1 For ease of notation we define:

Let t ≤ p ≤ s < k such that:

Consider 𝛿 > 0 and t ≤ p′ ≤ s′ < k such that:
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To justify the last inequality note that �U
i
≤ 0 for i ∈ {p + 1,… , p�} and �L

i
+ � ≥ 0 

for i ∈ {s + 1,… , s�}.   ◻
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