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Abstract
Let X1, X2, . . . be independent random uniform points in a bounded domain A ⊂ R

d

with smooth boundary. Define the coverage threshold Rn to be the smallest r such
that A is covered by the balls of radius r centred on X1, . . . , Xn . We obtain the
limiting distribution of Rn and also a strong law of large numbers for Rn in the
large-n limit. For example, if A has volume 1 and perimeter |∂A|, if d = 3 then
P[nπR3

n − log n − 2 log(log n) ≤ x] converges to exp(−2−4π5/3|∂A|e−2x/3) and
(nπR3

n)/(log n) → 1 almost surely, and if d = 2 then P[nπR2
n− log n− log(log n) ≤

x] converges to exp(−e−x − |∂A|π−1/2e−x/2). We give similar results for general d,
and also for the case where A is a polytope. We also generalize to allow for multiple
coverage. The analysis relies on classical results by Hall and by Janson, along with a
careful treatment of boundary effects. For the strong laws of large numbers, we can
relax the requirement that the underlying density on A be uniform.

Keywords Coverage threshold ·Weak limit · Strong law of large numbers · Boolean
model · Poisson point process
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1 Introduction

This paper is primarily concernedwith the following random coverage problem.Given
a specified compact region A in a d-dimensional Euclidean space, what is the prob-
ability that A is fully covered by a union of Euclidean balls of radius r centred on
n points placed independently uniformly at random in A, in the large-n limit with
r = r(n) becoming small in an appropriate manner?
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This is a very natural type of question with a long history; see for example [3, 7, 11–
13, 16, 20]. Potential applications include wireless communications [3, 18], ballistics
[13], genomics [2], statistics [8], immunology [20], stochastic optimization [23], and
topological data analysis [4, 9].

In an alternative version of this question, one considers a smaller compact region
B ⊂ Ao (Ao denotes the interior of A), and asks whether B (rather than all of A) is
covered. This version is simpler because boundary effects are avoided. This alternative
version of our question was answered independently in the 1980s by Hall [12] and
Janson [16]. Another way to avoid boundary effects would be to consider coverage of
a smooth manifold such as a sphere (as in [20]), and this was also addressed in [16].

However, the original question does not appear to have been addressed systemati-
cally until now (at least, not when d > 1). Janson [16, p. 108] makes some remarks
about the case where A = [0, 1]d and one uses balls of the �∞ norm, but does not
consider more general classes of A or Euclidean balls.

This question seems well worth addressing. In many of the applications areas, it is
natural to consider the influence only of the random points placed within the region
A rather than also hypothetical points placed outside A, for example in the problem
of statistical set estimation which we shall discuss below.

We shall express our results in terms of the coverage threshold Rn , which we define
to be the the smallest radius of balls, centred on a set Xn of n independent uniform
random points in A, required to cover A. Note that Rn is equal to the Hausdorff
distance between the sets Xn and A. More generally, for k ∈ N the k-coverage
threshold Rn,k is the smallest radius required to cover A k times. These thresholds
are random variables, because the locations of the centres are random. We investigate
their probabilistic behaviour as n becomes large.

We shall determine the limiting behaviour of P[Rn,k ≤ rn] for any fixed k and any
sequence of numbers (rn), for the case where A is smoothly bounded (for general
d ≥ 2) or where A is a polytope (for d = 2 or d = 3). We also obtain similar
results for a high-intensity Poisson sample in A, which may be more relevant in some
applications, as argued in [12].

We also derive strong laws of large numbers showing that nRd
n,k/ log n converges

almost surely to a finite positive limit, and establishing the value of the limit. These
strong laws carry over to more general cases where k may vary with n, and the dis-
tribution of points may be non-uniform. We give results of this type for A smoothly
bounded, or for A a convex polytope.

We emphasise that in all of these results, the limiting behaviour depends on the
geometry of ∂A, the topological boundary of A. For example, we shall show that
when d = 3 and the points are uniformly distributed over a polyhedron, the limiting
behaviour of Rn is determined by the angle of the sharpest edge if this angle is less
than π/2. If this angle exceeds π/2 then the location in A furthest from the sample
Xn is asymptotically uniformly distributed over ∂A, but if this angle is less than π/2
the location in A furthest from Xn is asymptotically uniformly distributed over the
union of those edges which are sharpest, i.e. those edges which achieve the minimum
subtended angle.

We restrict attention here to coverage by Euclidean balls of equal radius. The work
of [12, 16] allowed for generalizations such as other shapes or variable radii, in their
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Random Euclidean coverage from within 749

versions of our problem. We do not attempt to address these generalizations here; in
principle it may be possible, but it would add considerably to the complication of the
formulation of results.

One application lies in statistical set estimation. One may wish to estimate the set
A from the sampleXn . One possible estimator in the literature is the union of balls of
radius rn centred on the points ofXn , for some suitable sequence (rn)n≥1 decreasing
to zero. In particular, when estimating the perimeter of A one may well wish to take rn
large enough so that these balls fully cover A, that is, rn ≥ Rn . For further discussion
see Cuevas and Rodríguez-Casal [8].

We briefly discuss some related concepts. One of these is the maximal spacing of
the sample Xn . This is defined to be volume of the largest Euclidean ball that can
be fitted into the set A\Xn (the reason for the terminology becomes apparent from
considering the casewith d = 1).More generally, themaximal k-spacing of the sample
is defined to be volume of the largest Euclidean ball that can be fitted inside the set A
while containing fewer than k points of Xn .

The maximal spacing also has a long history; see for example [1, 10, 14, 16]. As
described in [1], there are many statistical applications. Essentially, it differs from the
coverage threshold Rn only because of boundary effects (we shall elaborate on this in
Sect. 2), but these effects are often important in determining the asymptotic behaviour
of the threshold.

Another interpretation of the coverage threshold is via Voronoi cells. Calka and
Chenavier [6] have considered, among other things, extremes of circumscribed radii
of a Poisson–Voronoi tessellation on all of R

d (the circumscribed radius of a cell is
the radius of the smallest ball centred on the nucleus that contains the cell). To get
a finite maximum they consider the maximum restricted to those cells having non-
empty intersection with some bounded window A ⊂ R

d . This construction avoids
dealing with delicate boundary effects, and the limit distribution, for large intensity,
is determined in [6] using results from [16].

It seems at least as natural to consider Voronoi cells with respect to the Poisson
sample restricted to A. A little thought (similar to arguments given in [6]) shows that
the largest circumradius of the Voronoi cells inside A (i.e., the intersections with A
of the Voronoi cells), with respect to the sample Xn , is equal to Rn , and likewise for
a Poisson sample in A; thus, our results add to those given in [6].

A somewhat related topic is the convex hull of the random sample Xn . For d = 2
with A convex, the limiting behaviour of the Hausdorff distance from this convex hull
to A is obtained in [5]. The limiting behaviour of the Hausdorff distance from Xn

itself to A (which is our Rn) is not the same as for the convex hull.

2 Definitions and notation

Throughout this paper, we work within the following mathematical framework. Let
d ∈ N. Suppose we have the following ingredients:

– A compact, Riemann measurable set A ⊂ R
d (Riemann measurability of a

bounded set in R
d amounts to its boundary having zero Lebesgue measure).
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750 M. D. Penrose

– A Borel probability measure μ on A with probability density function f .
– A specified set B ⊂ A (possibly B = A).
– On a common probability space (S,F , P), a sequence X1, X2, . . . of independent
identically distributed random d-vectors with common probability distribution
μ, and also a unit rate Poisson counting process (Zt , t ≥ 0), independent of
(X1, X2, . . .) (so Zt is Poisson distributed with mean t for each t > 0).

For n ∈ N, t > 0, let Xn := {X1, . . . , Xn}, and let Pt := {X1, . . . , XZt }. These
are the point processes that concern us here. Observe thatPt is a Poisson point process
in R

d with intensity measure tμ (see e.g. [19]).
For x ∈ R

d and r > 0 set B(x, r) := {y ∈ R
d : ‖y − x‖ ≤ r} where ‖ · ‖

denotes the Euclidean norm. (We write B(d)(x, r) for this if we wish to emphasise the
dimension.) For r > 0, let A(r) := {x ∈ A : B(x, r) ⊂ Ao}, the ‘r -interior’ of A.

Also, define the set A[r ] to be the interior of the union of all hypercubes of the
form

∏d
i=1[nir , (ni +1)r ], with n1, . . . , nd ∈ Z, that are contained in Ao (the set A[r ]

resembles A(r) but is guaranteed to be Riemann measurable).
For any point set X ⊂ R

d and any D ⊂ R
d we write X (D) for the number of

points of X in D, and we use below the convention inf{} := +∞.
Given n, k ∈ N, and t ∈ (0,∞), define the k-coverage thresholds Rn,k and R′

t,k by

Rn,k := inf {r > 0 : Xn(B(x, r)) ≥ k ∀x ∈ B} ; (2.1)

R′
t,k := RZt ,k := inf {r > 0 : Pt (B(x, r)) ≥ k ∀x ∈ B} , (2.2)

and define also the interior k-coverage thresholds

R̃n,k := inf
{
r > 0 : Xn(B(x, r)) ≥ k ∀x ∈ B ∩ A(r)

}
; (2.3)

R̃Zt ,k := inf
{
r > 0 : Pt (B(x, r)) ≥ k ∀x ∈ B ∩ A(r)

}
. (2.4)

Set Rn := Rn,1, and R′
t := R′

t,1, and R̃n := R̃n,1. Then Rn is the coverage threshold.
Observe that Rn = inf{r > 0 : B ⊂ ∪n

i=1B(Xi , r)}. In the case B = A, this agrees
with our earlier definition of Rn .

We are chiefly interested in the asymptotic behaviour of Rn for large n. More
generally, we consider Rn,k where k may vary with n. We are especially interested in
the case with B = A.

Observe that R̃n,k is the smallest r such that B ∩ A(r) is covered k times by the
balls of radius r centred on the points of Xn . It can be seen that when B = A,
the maximal k-spacing of the sample Xn (defined earlier) is equal to θd R̃d

n , where
θd := πd/2/Γ (1+ d/2), the volume of the unit ball in R

d .
We use the Poissonized k-coverage threshold R′

t,k , and the interior k-coverage

thresholds R̃n,k and R̃Zt ,k , mainly as stepping stones towards deriving results for Rn,k

and R̃n,k respectively, but they are also of interest in their own right. Indeed, some of
the literature [3, 12, 13, 18] is concerned more with R′

t than with Rn , and we have
already mentioned the literature on the maximal spacing.

We now give some further notation used throughout. For D ⊂ R
d , let D and Do

denote the closure of D and interior of D, respectively. Let |D| denote the Lebesgue
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Random Euclidean coverage from within 751

measure (volume) of D, and |∂D| the perimeter of D, i.e. the (d − 1)-dimensional
Hausdorffmeasure of ∂D, when these are defined. Write log log t for log(log t), t > 1.
Let o denote the origin in R

d . Set H := R
d−1 × [0,∞) and ∂H := R

d−1 × {0}.
Given two setsX ,Y ⊂ R

d , we setX Y := (X \Y )∪(Y \X ), the symmetric
difference betweenX andY . Also, we writeX ⊕Y for the set {x+ y : x ∈ X , y ∈
Y }. Given also x ∈ R

d we write x + Y for {x} ⊕ Y .
Given x, y ∈ R

d , we denote by [x, y] the line segment from x to y, that is, the
convex hull of the set {x, y}. We write a ∧ b (respectively a ∨ b) for the minimum
(resp. maximum) of any two numbers a, b ∈ R.

Given m ∈ N and functions f : N ∩ [m,∞) → R and g : N ∩ [m,∞) → (0,∞),
we write f (n) = O(g(n)) as n → ∞ if lim supn→∞ | f (n)|/g(n) < ∞. We write
f (n) = o(g(n)) as n → ∞ if limn→∞ f (n)/g(n) = 0. We write f (n) = Θ(g(n))

as n → ∞ if both f (n) = O(g(n)) and g(n) = O( f (n)) (and f > 0). Given s > 0
and functions f : (0, s) → R and g : (0, s) → (0,∞), we write f (r) = O(g(r))
as r ↓ 0, or g(r) = Ω( f (r)) as r ↓ 0, if lim supr↓0 | f (r)|/g(r) < ∞. We write
f (r) = o(g(r)) as r ↓ 0 if limr↓0 f (r)/g(r) = 0, and f (r) ∼ g(r) as r ↓ 0 if this
limit is 1.

3 Convergence in distribution

Themain results of this section are concernedwithweak convergence for Rn,k (defined
at (2.1)) as n → ∞ with k fixed, in cases where f is uniform on A and B = A.

Our first result concerns the case where A has a smooth boundary in the following
sense.We say that A has C2 boundary if for each x ∈ ∂A there exists a neighbourhood
U of x and a real-valued function f that is defined on an open set in R

d−1 and twice
continuously differentiable, such that ∂A ∩ U , after a rotation, is the graph of the
function f .

Given d ∈ N, define the constant

cd := 1

d!
(√

π Γ ((d/2) + 1)

Γ ((d + 1)/2)

)d−1

. (3.1)

Note that c1 = c2 = 1, and c3 = 3π2/32. Moreover, using Stirling’s formula one
can show that c1/dd ∼ e(π/(2d))1/2 as d → ∞. Given also k ∈ N, for d ≥ 2 set

cd,k :=
(

cd−1

(k − 1)!
)

θ
2−d−1/d
d θ2d−3

d−1 θ1−d
d−2 (1− 1/d)d+k−3+1/d2−1+1/d . (3.2)

By some tedious algebra, one can simplify this to

cd,1 = (d!)−121−dπ(d/2)−1(d − 1)d+(1/d)−2Γ

(
d + 1

2

)1−d

Γ

(
d

2

)d+1/d−1

,

with cd,k = cd,1(1−1/d)k−1/(k−1)! for k > 1. Note that c2,k = 21−kπ−1/2/(k−1)!
and c3,k = 2k−531−kπ5/3/(k − 1)!, and c1/dd,1 ∼ e/(2d)1/2 as d → ∞.
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752 M. D. Penrose

In all limiting statements in the sequel, n takes values in N while t takes values in
(0,∞).

Theorem 3.1 Suppose that d ≥ 2 and f = f01A, where A ⊂ R
d is compact, and has

C2 boundary, and f0 := |A|−1. Assume B = A. Let k ∈ N, ζ ∈ R.
Then

lim
n→∞P

[(
nθd f0Rd

n,k

2

)

−
(
d − 1

d

)

log(n f0) − (d + k − 3+ 1/d) log log n ≤ ζ

]

= lim
t→∞P

[(
tθd f0(R′

t,k)
d

2

)

−
(
d − 1

d

)

log(t f0) − (d + k − 3+ 1/d) log log t ≤ ζ

]

=
{
exp

(−|A|e−2ζ − c2,1|∂A|e−ζ
)

if d = 2, k = 1

exp
(−cd,k |∂A|e−ζ

)
otherwise.

(3.3)

When d = 2, k = 1 the exponent in (3.3) has two terms. This is because the
location in A furthest from the sample Xn might lie either in the interior of A, or on
the boundary.

When d ≥ 3 or k ≥ 2, the exponent of (3.3) has only one term, because the location
in A with furthest k-th nearest point of Xn is located, with probability tending to 1,
on the boundary of A, and likewise for Pt . Increasing either d or k makes it more
likely that this location lies on the boundary, and the exceptional nature of the limit in
the case (d, k) = (2, 1) reflects this.

We also consider the case where A is a polytope, only for d = 2 or d = 3. All
polytopes in this paper are assumed to be bounded, connected, and finite (i.e. have
finitely many faces). We do not require the polytope to be convex here.

Theorem 3.2 Suppose d = 2, B = A, and f = f01A, where f0 := |A|−1. Assume
that A is compact and polygonal.

Let |∂A| denote the length of the boundary of A. Let k ∈ N, ζ ∈ R. Then

lim
n→∞P[n(π/2) f0R

2
n,k − (1/2) log(n f0) − (k − 1/2) log log n ≤ ζ ]

= lim
t→∞P[t(π/2) f0(R

′
t,k)

2 − (1/2) log(t f0) − (k − 1/2) log log t ≤ ζ ]

=
{
exp(−|A|e−2ζ − |∂A|π−1/2e−ζ ) if k = 1,

exp(−c2,k |∂A|e−ζ ) if k ≥ 2.
(3.4)

One might seek to extend Theorem 3.2 to a more general class of sets A including
both polygons (covered by Theorem 3.2) and sets with C2 boundary (covered by
Theorem 3.1). One could take sets A having piecewise C2 boundary, with the extra
condition that the corners of A are not too pointy, in the sense that for each corner q,
there exists a triangle with vertex at q that is contained in A. We would expect that it
is possible to extend the result to this more general class.

When d = 3 and A is polyhedral, there are several cases to consider, depending on
the value of the angle α1 subtended by the ‘sharpest edge’ of ∂A. The angle subtended
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Random Euclidean coverage from within 753

by an edge e is defined as follows. Denote the two faces meeting at e by F1, F2. Let p
be a point in the interior of the edge, and for i = 1, 2 let �i be a line segment starting
from p that lies within Fi and is perpendicular to the edge e. Let θ denote the angle
between the line segments �1 and �2 (so 0 < θ < π ). The angle subtended by the edge
e is θ if there is a neighbourhood U of p such that A ∩U is convex, and is 2π − θ if
there is no such neighbourhood of p.

If α1 < π/2 then the location in A furthest from the sample Xn is likely to be on
a 1-dimensional edge of ∂A, while if α1 > π/2 the furthest location from the sample
is likely to be on a 2-dimensional face of ∂A, in the limit n → ∞. If α1 = π/2 (for
example, for a cube), both of these possibilities have non-vanishing probability in the
limit.

Since there are several cases to consider, to make the statement of the result more
compact we put it in terms of P[Rn,k ≤ rn] for a sequence of constants (rn).

Theorem 3.3 Suppose d = 3, A is polyhedral, B = A and f = f01A, where f0 :=
|A|−1. Denote the 1-dimensional edges of A by e1, . . . , eκ . For each i ∈ {1, . . . , κ},
let αi denote the angle that A subtends at edge ei (with 0 < αi < 2π ), and write |ei |
for the length of ei . Assume the edges are listed in order so that α1 ≤ α2 ≤ · · · ≤ ακ .
Let |∂1A| denote the total area (i.e., 2-dimensional Hausdorff measure) of all faces
of A, and let |∂2A| denote the total length of those edges ei for which αi = α1. Let
β ∈ R and k ∈ N. Let (rt )t>0 be a family of real numbers satisfying (as t → ∞)

(2α1 ∧ π) f0tr
3
t − log(t f0) − β =

{
(3k − 1) log log t + o(1) if α1 ≤ π/2

( 1+3k
2 ) log log t + o(1) if α1 > π/2.

Then

lim
n→∞P[Rn,k ≤ rn] = lim

t→∞P[R′
t,k ≤ rt ]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp

(

− 31−kα
1/3
1 |∂2A|e−β/3

(k−1)!(32)1/3
)

if α1 < π/2, or (α1 = π/2, k > 1)

exp
(
− 3π5/32k |∂1A|e−2β/3

(k−1)!3k32
)

if α1 > π/2

exp
(
−π1/3|∂2A|e−β/3

4 − π5/3|∂1A|e−2β/3

16

)
if α1 = π/2, k = 1.

(3.5)

We now give a result in general d for R̃n,k , and for Rn,k in the case with B ⊂ Ao

(now we no longer require B = A). These cases are simpler because boundary effects
are avoided. In fact, the result stated below has some overlap with already known
results; it is convenient to state it here too for comparison with the results just given,
and because we shall be using it to prove those results.

Proposition 3.4 Suppose A is compact with |A| > 0 and f = f01A, where f0 :=
|A|−1, and B ⊂ A is Riemann measurable. Let k ∈ N and β ∈ R. Then
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754 M. D. Penrose

lim
n→∞P[nθd f0 R̃

d
n,k − log(n f0) − (d + k − 2) log log n ≤ β]

= lim
t→∞P[tθd f0(R̃Zt ,k)

d − log(t f0) − (d + k − 2) log log t ≤ β]
= exp(−(cd/(k − 1)!)|B|e−β). (3.6)

If moreover B is closed with B ⊂ Ao, then

lim
n→∞P[nθd f0R

d
n,k − log(n f0) − (d + k − 2) log log n ≤ β]

= lim
t→∞P[tθd f0(R′

t,k)
d − log(t f0) − (d + k − 2) log log t ≤ β]

= exp(−(cd/(k − 1)!)|B|e−β). (3.7)

The case k = 1 of the second equality of (3.7) can be found in [6]. It provides a
stronger asymptotic result than the one in [18]. A similar statement to the case k = 1
of (3.6) can be found in [17].

Remark 3.5 Let k ∈ N. The definition (2.1) of the coverage threshold Rn,k suggests
we think of the number and (random) locations of points as being given, and consider
the smallest radius of balls around those points needed to cover B k times.

Alternatively, as in [16], one may think of the radius of the balls as being given,
and consider the smallest number of balls (with locations generated sequentially at
random) needed to cover B k times. That is, given r > 0, define the random variable

N (r , k) := inf{n ∈ N : Xn(B(x, r)) ≥ k ∀x ∈ B},

and note that N (r , k) ≤ n if and only if Rn,k ≤ r . In the setting of Theorem 3.1, 3.2 or
3.3, one may obtain a limiting distribution for N (r , k) (suitably scaled and centred) as

r ↓ 0 by using those results together with the following (wewrite
D−→ for convergence

in distribution):

Proposition 3.6 Let k ∈ N. Suppose Z is a random variable with a continuous cumu-
lative distribution function, and a, b, c, c′ ∈ R with a > 0, b > 0 are such that

anRd
n,k − b log n − c log log n−c′ D−→ Z as n → ∞. Then as r ↓ 0,

ard N (r , k) − b log
(
(b/a)r−d

)
− (c + b) log log(r−d)−c′ D−→ Z .

For example, using Theorem 3.1, and applying Proposition 3.6 with a = θd f0/2,
b = (d − 1)/d, c = d + k − 3 + 1/d, and c′ = ((d − 1)/d) log f0, we obtain the
following:
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Random Euclidean coverage from within 755

Corollary 3.7 Suppose that d ≥ 2 and f = f01A, where A ⊂ R
d is compact, and has

C2 boundary, and f0 := |A|−1. Assume B = A. Let k ∈ N, ζ ∈ R. Then

lim
r↓0 P

[ (
θd f0rd N (r , k)

2

)

−
(
d − 1

d

)

log

((
2(d − 1)

dθd

)

r−d
)

− (d + k − 2) log log r−d ≤ ζ
]

=
{
exp

(−|A|e−2ζ − c2,1|∂A|e−ζ
)

if d = 2, k = 1

exp
(−cd,k |∂A|e−ζ

)
otherwise.

(3.8)

4 Strong laws of large numbers

The results in this section provide strong laws of large numbers (SLLNs) for Rn . For
these results we relax the condition that f be uniform on A. We give strong laws for
Rn when A = B and A is either smoothly bounded or a polytope. Also for general A
we give strong laws for Rn when B ⊂ Ao, and for R̃n for general B.

More generally, we consider Rn,k , allowing k to vary with n. Throughout this
section, assume we are given a constant β ∈ [0,∞] and a sequence k : N → N with

lim
n→∞ (k(n)/ log n) = β; lim

n→∞ (k(n)/n) = 0. (4.1)

We make use of the following notation throughout:

f0 := ess infx∈B f (x); f1 := inf
x∈∂A

f (x); (4.2)

H(t) :=
{
1− t + t log t, if t > 0

1, if t = 0.
(4.3)

Observe that −H(·) is unimodal with a maximum value of 0 at t = 1. Given a ∈
[0,∞), we define the function Ĥa : [0,∞) → [a,∞) by

y = Ĥa(x) ⇐⇒ yH(a/y) = x, y ≥ a,

with Ĥ0(0) := 0. Note that Ĥa(x) is increasing in x , and that Ĥ0(x) = x and Ĥa(0) =
a.

Throughout this paper, the phrase ‘almost surely’ or ‘a.s.’ means ‘except on a set
of P-measure zero’. We write f |A for the restriction of f to A. If f0 = 0, b > 0 we
interpret b/ f0 as +∞ in the following limiting statements, and likewise for f1.

Theorem 4.1 Suppose that d ≥ 2 and A ⊂ R
d is compact with C2 boundary, and that

f |A is continuous at x for all x ∈ ∂A. Assume also that B = A and (4.1) holds. Then
as n → ∞, almost surely
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(nθd R
d
n,k(n))/k(n) → max (1/ f0, 2/ f1) if β = ∞; (4.4)

(nθd R
d
n,k(n))/ log n → max

(
Ĥβ(1)/ f0, 2Ĥβ(1− 1/d)/ f1

)
, if β < ∞. (4.5)

In particular, if k ∈ N is a constant, then as n → ∞, almost surely

(nθd R
d
n,k)/ log n → max (1/ f0, (2− 2/d)/ f1) . (4.6)

We now consider the case where A is a polytope. Assume the polytope A is compact
and finite, that is, has finitely many faces. Let Φ(A) denote the set of all faces of A (of
all dimensions). Given a face ϕ ∈ Φ(A), denote the dimension of this face by D(ϕ).
Then 0 ≤ D(ϕ) ≤ d− 1, and ϕ is a D(ϕ)-dimensional polytope embedded in R

d . Set
fϕ := inf x∈ϕ f (x), let ϕo denote the relative interior of ϕ, and set ∂ϕ := ϕ\ϕo. Then
there is a cone Kϕ in R

d such that every x ∈ ϕo has a neighbourhood Ux such that
A∩Ux = (x +Kϕ)∩Ux . Define the angular volume ρϕ of ϕ to be the d-dimensional
Lebesgue measure ofKϕ ∩ B(o, 1).

For example, if D(ϕ) = d − 1 then ρϕ = θd/2. If D(ϕ) = 0 then ϕ = {v} for
some vertex v ∈ ∂A, and ρϕ equals the volume of B(v, r) ∩ A, divided by rd , for
all sufficiently small r . If d = 2, D(ϕ) = 0 and ωϕ denotes the angle subtended by A
at the vertex ϕ, then ρϕ = ωϕ/2. If d = 3 and D(ϕ) = 1, and αϕ denotes the angle
subtended by A at the edge ϕ (which is either the angle between the two boundary
planes of A meeting at ϕ, or 2π minus this angle), then ρϕ = 2αϕ/3.

Our result for A a polytope includes a condition that the polytope be convex; we
conjecture that this condition is not needed. We include connectivity in the definition
of a polytope, so for d = 1 a polytope is defined to be an interval.

Theorem 4.2 Suppose A is a convex compact finite polytope in R
d . If d ≥ 4, assume

moreover that A is convex. Assume that f |A is continuous at x for all x ∈ ∂A, and
set B = A. Assume k(·) satisfies (4.1). Then, almost surely,

lim
n→∞ nRd

n,k(n)/k(n) = max

(
1

f0θd
, max
ϕ∈Φ(A)

(
1

fϕρϕ

))

, if β = ∞; (4.7)

lim
n→∞ nRd

n,k(n)/ log n = max

(
Ĥβ(1)

f0θd
, max
ϕ∈Φ(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

))

, if β < ∞.

(4.8)

In the next three results, we spell out some special cases of Theorem 4.2.

Corollary 4.3 Suppose that d = 2, A is a convex polygon with B = A, and f |A is
continuous at x for all x ∈ ∂A. Let V denote the set of vertices of A, and for v ∈ V
let ωv denote the angle subtended by A at vertex v. Assume (4.1) with β < ∞. Then,
almost surely,

lim
n→∞

(
nR2

n,k(n)

log n

)

= max

(
Ĥβ(1)

π f0
,
2Ĥβ(1/2)

π f1
,max

v∈V

(
2β

ωv f (v)

))

. (4.9)
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In particular, for any constant k ∈ N, limn→∞
(

nπR2
n,k

log n

)

= max
(

1
f0

, 1
f1

)
= 1

f0
.

Corollary 4.4 Suppose d = 3 (so θd = 4π/3), A is a convex polyhedron with B = A,
and f |A is continuous at x for all x ∈ ∂A. Let V denote the set of vertices of A, and
E the set of edges of A. For e ∈ E, let αe denote the angle subtended by A at edge e,
and fe the infimum of f over e. For v ∈ V let ρv denote the angular volume of vertex
v. Suppose (4.1) holds with β < ∞. Then, almost surely,

lim
n→∞

(
nR3

n,k(n)

log n

)

= max

(
Ĥβ(1)

θ3 f0
,
2Ĥβ(2/3)

θ3 f1
,

3Ĥβ(1/3)

2mine∈E (αe fe)
,max

v∈V

(
β

ρv f (v)

))

.

In particular, if β = 0 the above limit comes to max
(

3
4π f0

, 1
π f1

,maxe∈E
(

1
2αe fe

))
.

Corollary 4.5 Suppose A = B = [0, 1]d , and f |A is continuous at x for all x ∈ ∂A.
For 1 ≤ j ≤ d let ∂ j denote the union of all (d − j)-dimensional faces of A, and let
f j denote the infimum of f over ∂ j . Assume (4.1) with β < ∞. Then

lim
n→∞

(
nRd

n,k(n)

log n

)

= max
0≤ j≤d

(
2 j Ĥβ(1− j/d)

θd f j

)

, a.s. (4.10)

It is perhaps worth spelling out what the preceding results mean in the special case
where β = 0 (for example, if k(n) is a constant) and also μ is the uniform distribution
on A (i.e. f (x) ≡ f0 on A). In this case, the right hand side of (4.6) comes to (2 −
2/d)/ f0,while the right hand side of (4.8) comes to f −1

0 max(1/θd ,maxϕ∈Φ(A)
D(ϕ)
(dρϕ)

).
The limit in (4.9) comes to 1/(π f0), while the limit in Corollary 4.4 comes to
f −1
0 max[1/π,maxe(1/(2αe))], and the right hand side of (4.10) comes to 2d−1/(θdd).

Remark 4.6 The notion of coverage threshold is analogous to that of connectivity
threshold in the theory of random geometric graphs [21]. Our results show that the
threshold for full coverage by the balls B(Xi , r), is asymptotically twice the threshold
for the union of these balls to be connected, if Ao is connected, at least when A has
a smooth boundary or A is a convex polytope. This can be seen from comparison of
Theorem 4.1 above with [21, Theorem 13.7], and comparison of Corollary 4.5 above
with [22, Theorem 2.5].

Remark 4.7 We compare our results with [8]. In the setting of our Theorem 4.1, [8,
Theorem 3] and [8, Remark 1] give an upper bound on lim supn→∞(nθd Rd

n / log n) of
max( f −1

0 , 2 f −1
1 ) in probability or max(2 f −1

0 , 4 f −1
1 ) almost surely. In the setting of

our Theorem 4.2, they give an upper bound of f −1
0 ∨maxϕ(θd/( fϕρϕ)) in probability,

or twice this almost surely. Our (4.6) and (4.8) improve significantly on those results.

Remark 4.8 In Theorem 4.2 we do not consider the case where A is a non-convex
polytope. To generalize the proof of Lemma 6.12 to non-convex polytopes for general
d would seem to require considerably more work.

123



758 M. D. Penrose

Our final result is a law of large numbers for R̃n,k , no longer requiring B = A. In
the case where B is contained in the interior of A, this easily yields a law of large
numbers for the k-coverage threshold Rn,k . Recall from Sect. 2 that μ denotes the
probability measure on A with density f .

Proposition 4.9 Suppose that either (i) B is compact and Riemann measurable with
μ(B) > 0, and B ⊂ Ao, and f is continuous on A; or (ii) B = A. Assume (4.1)
holds. Then, almost surely,

lim
n→∞(nθd R̃

d
n,k(n)/k(n)) = f −1

0 if β = ∞; (4.11)

lim
n→∞(nθd R̃

d
n,k(n)/ log n) = Ĥβ(1)/ f0, if β < ∞. (4.12)

In particular, if k ∈ N is a constant then

P[ lim
n→∞(nθd f0 R̃

d
n,k/ log n) = 1] = 1. (4.13)

In Case (i), all of the above almost sure limiting statements hold for Rn,k(n) as well as
for R̃n,k(n).

Proposition 4.9 has some overlap with known results; the uniform case with A =
B = [0, 1]d and f ≡ 1 on A is covered by [10, Theorem 1]. Taking C of that paper to
be the class of Euclidean balls centred on the origin, we see that the quantity denoted
M1,m in [10] equals R̃n . In [10, Example 3] it is stated that the Euclidean balls satisfy
the conditions of [10, Theorem 3]. See also [17]. Note also that [15] has a result similar
to the case of Proposition 4.9 where d = 2, A = B = [0, 1]2 and f is uniform over
A.

5 Strategy of proofs

We first give an overview of the strategy for the proofs, in Sect. 6, of the strong laws
of large numbers that were stated in Sect. 4.

For n ∈ N and p ∈ [0, 1] let Bin(n, p) denote a binomial random variable with
parameters n, p. Recall that H(·) was defined at (4.3), and Zt is a Poisson(t) variable
for t > 0. The proofs in Sect. 6 rely heavily on the following lemma.

Lemma 5.1 (Chernoff bounds) Suppose n ∈ N, p ∈ (0, 1), t > 0 and 0 < k < n.

(a) If k ≥ np then P[Bin(n, p) ≥ k] ≤ exp (−npH(k/(np))).
(b) If k ≤ np then P[Bin(n, p) ≤ k] ≤ exp (−npH(k/(np))).
(c) If k ≥ e2np then P[Bin(n, p) ≥ k] ≤ exp (−(k/2) log(k/(np))) ≤ e−k .
(d) If k < t then P[Zt ≤ k] ≤ exp(−t H(k/t)).
(e) If k ∈ N then P[Zt = k] ≥ (2πk)−1/2e−1/(12k) exp(−t H(k/t)).

Proof See e.g. [21, Lemmas 1.1, 1.2 and 1.3]. ��
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Recall that Rn,k is defined at (2.1), that we assume (k(n))n≥1 satisfies (4.1) for
some β ∈ [0,∞], and that Ĥβ(x) is defined to be the y ≥ β such that yH(β/y) = x ,
where H(·) was defined at (4.3).

If f ≡ f0 on A for a constant f0, and r > 0, then for x ∈ A(r), Xn(B(x, r)) is
binomial with mean n f0θdrd =: M , say. Hence if M > k(n), then parts (b) and (e) of
Lemma 5.1 suggest that we should have

P[Xn(B(x, r)) < k(n)] ≈ exp(−MH(k(n)/M)).

If β < ∞, and we choose r = rn so that M = a log n with a = Ĥβ(1) this probability
approximates to exp(−a(log n)H((β log n)/(a log n))), which comes to n−1. Since
we can find n1+o(1) disjoint balls of radius rn where this might happen, this suggests
a = Ĥβ(1) is the critical value of a := M/ log n, below which the interior region
A(rn) is not covered (k(n) times) with high probability, and above which it is covered.
We can then improve the ‘with high probability’ statement to an ‘almost surely for
large enough n’ statement using Lemma 6.1. If f is continuous but not constant on
A, the value of f0 defined at (4.2) still determines the critical choice of a. If β = ∞
instead, taking M = a′k(n) the critical value of a′ is now 1. These considerations lead
to Proposition 4.9.

Now consider the boundary region A\A(r), in the case where ∂A is smooth. We can
argue similarly to before, except that for x ∈ ∂A the approximatemean ofXn(B(x, r))

changes to n f1θrd/2 =: M ′. If β < ∞, and we now choose r = rn so M ′ = a′ log n
with a′ = Ĥβ(1 − 1/d), then P[Xn(B(x, rn)) < k(n)] ≈ n−(1−1/d). Since we can
find n1−1/d+o(1) disjoint balls of radius rn centred in A\A(rn), this suggests a′ :=
Ĥβ(1− 1/d) is the critical choice of a′ for covering A\A(rn).

For polytopal A we consider covering the regions near to each of the lower dimen-
sional faces of ∂A in an analogous way; the dimension of a face affects both the
μ-content of a ball centred on that face, and the number of disjoint balls that can
packed into the region near the face.

Next, we describe the strategy for the proof, in Sect. 7, of the weak convergence
results that were stated in Sect. 3.

First, we shall provide a general ‘De-Poissonization’ lemma (Lemma 7.1), as a
result of which for each of the Theorems in Sect. 3 it suffices to prove the results for
a Poisson process rather than a binomial point process (i.e., for R′

t,k rather than for
Rn,k).

Next, we shall provide a general lemma (Lemma 7.2) giving the limiting probability
of covering (k times, with k now fixed) a bounded region of R

d by a spherical Poisson
Boolean model (SPBM) on the whole of R

d , in the limit of high intensity and small
balls. This is based on results from [16] (or [12] if k = 1). Applying Lemma 7.2 for
an SPBM with all balls of the same radius yields a proof of Proposition 3.4.

Next, we shall consider the SPBM with balls of equal radius rt , centred on a
homogeneous Poisson process of intensity t f0 in a d-dimensional half-space. In the
large-t limit, with rt shrinking in an appropriate way, in Lemma 7.4 we determine the
limiting probability that the a given bounded set within the surface of the half-space
is covered, by applying Lemma 7.2 in d − 1 dimensions, now with balls of varying
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radii. Moreover we will show that the probability that a region in the half-space within
distance rt of that set is covered with the same limiting probability.

Wecan then complete the proof ofTheorem3.2by applyingLemma7.4 to determine
the limiting probability that the region near the boundaries of a polygonal set A is
covered, and Proposition 3.4 to determine the limiting probability that the interior
region is covered, along with a separate argument to show the regions near the corners
of polygonal A are covered with high probability.

For Theorem 3.3 we again use Proposition 3.4 to determine the limiting probability
that the interior region is covered, and Lemma 7.4 to determine the limiting probability
that the region near the faces (but not the edges) of polyhedral A are covered. To deal
with the region near the edges of A, we also require a separate lemma (Lemma 7.10)
determining the limiting probability that a bounded region near the edge of an infinite
wedge-shaped region in R

3 is covered by an SPBM restricted to that wedge-shaped
region.

The proof of Theorem 3.1 requires further ideas. Let γ ∈ (1/(2d), 1/d). We
shall work simultaneously on two length scales, namely the radius rt satisfying (7.15)
(and hence satisfying rt = Θ(((log t)/t)1/d)), and a coarser length-scale given by
t−γ . If d = 2, we approximate to ∂A by a polygon of side-length that is Θ(t−γ ).
We approximate to Pt by a Poisson process inside the polygon, and can determine
the asymptotic probability of complete coverage of this approximating polygon by
considering a lower-dimensional Boolean model on each of the edges. In fact we shall
line up these edges by means rigid motions, into a line segment embedded in the
plane; in the limit we obtain the limiting probability of covering this line segment with
balls centred on a Poisson process in the half-space to one side of this line segment,
which we know about by Lemma 7.4. By separate estimates we can show that the error
terms either from the corners of the polygon, or from the approximation of Poisson
processes, are negligible in the large-t limit.

For d ≥ 3 we would like to approximate to A by a polyhedral set At obtained by
taking its surface to be a triangulation of the surface of A with side-lengths Θ(t−γ ).
However, two obstacles to this strategy present themselves.

The first obstacle is that in 3 or more dimensions, it is harder to be globally explicit
about the set At and the set difference AAt . We deal with this by triangulating ∂A
locally rather than globally; we break ∂A into finitely many pieces, each of which lies
within a single chart within which ∂A, after a rotation, can be expressed as the graph of
aC2 function on a regionU inR

d−1. Thenwe triangulateU (in the sense of tessellating
it into simplices) explicitly and use this to determine an explicit local triangulation
(in the sense of approximating the curved surface by a union of (d − 1)-dimensional
simplices) of ∂A.

The second obstacle is that the simplices in the triangulation cannot in general
be reassembled into a (d − 1)-dimensional cube. To get around this, we shall pick
γ ′ ∈ (γ, 1/d) and subdivide these simplices into smaller (d − 1)-dimensional cubes
of side t−γ ′

; we can reassemble these smaller (d − 1)-dimensional cubes into a cube
in R

d−1, and control the boundary region near the boundaries of the smaller (d − 1)-
dimensional cubes, or near the boundary of the simplices, by separate estimates.
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6 Proof of strong laws of large numbers

In this section we prove the results stated in Sect. 4. Throughout this section we are
assuming we are given a constant β ∈ [0,∞] and a sequence (k(n))n∈N satisfying
(4.1). Recall thatμ denotes the distribution of X1, and this has a density f with support
A, and that B ⊂ A is fixed, and Rn,k is defined at (2.1).

We shall repeatedly use the following lemma. It is based on what in [21] was called
the ‘subsequence trick’. This result says that if an array of random variables Un,k

is monotone in n and k, and Un,k(n), properly scaled, converges in probability to a
constant at rate n−ε, one may be able to improve this to almost sure convergence.

Lemma 6.1 (Subsequence trick) Suppose (Un,k, (n, k) ∈ N × N) is an array of
random variables on a common probability space such that Un,k is nonincreasing in
n and nondecreasing in k, that is, Un+1,k ≤ Un,k ≤ Un,k+1 almost surely, for all
(n, k) ∈ N × N. Let β ∈ [0,∞), ε > 0, c > 0, and suppose (k(n), n ∈ N) is an
N-valued sequence such that k(n)/ log n → β as n → ∞.

(a) Suppose P[nUn,�(β+ε) log n� > log n] ≤ cn−ε, for all but finitely many n. Then
P[lim supn→∞ nUn,k(n)/ log n ≤ 1] = 1.

(b) Suppose ε < β and P[nUn,�(β−ε) log n� ≤ log n] ≤ cn−ε, for all but finitely many
n. Then P[lim infn→∞ nUn,k(n)/ log n ≥ 1] = 1.

Proof (a) For each n set k′(n) := �(β + ε) log n�. Pick K ∈ N with K ε > 1. Then by
our assumption, we have for all large enough n that P[nKUnK ,k′(nK ) > log(nK )] ≤
cn−K ε, which is summable in n. Therefore by the Borel-Cantelli lemma, there exists
a random but almost surely finite N such that for all n ≥ N we have

nKUnK ,k′(nK ) ≤ log(nK ),

and also k(m) ≤ (β + ε/2) logm for all m ≥ NK , and moreover (β + ε/2) log((n +
1)K ) ≤ (β + ε) log(nK ) for all n ≥ N . Now for m ∈ N with m ≥ NK , choose n ∈ N

such that nK ≤ m < (n + 1)K . Then

k(m) ≤ (β + ε/2) log((n + 1)K ) ≤ (β + ε) log(nK ),

so k(m) ≤ k′(nK ). Since Um,k is nonincreasing in m and nondecreasing in k,

mUm,k(m)/ logm ≤ (n + 1)KUnK ,k′(nK )/ log(n
K ) ≤ (1+ n−1)K ,

which gives us the result asserted.
(b) The proof is similar to that of (a), and is omitted. ��

6.1 General lower and upper bounds

In this subsection we present asymptotic lower and upper bounds on Rn,k(n), not
requiring any extra assumptions on A and B. In fact, A here can be any metric space
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endowed with a probability measure μ, and B can be any subset of A. The definition
of Rn,k at (2.1) carries over in an obvious way to this general setting.

Later, we shall derive the results stated in Sect. 4 by applying the results of this
subsection to the different regions within A (namely interior, boundary, and lower-
dimensional faces).

Given r > 0, a > 0, define the ‘packing number’ ν(B, r , a) be the largest number
m such that there exists a collection of m disjoint closed balls of radius r centred
on points of B, each with μ-measure at most a. The proof of the following lemma
implements, for a general metric space, the strategy outlined in Sect. 5.

Lemma 6.2 (General lower bound) Let a > 0, b ≥ 0. Suppose ν(B, r , ard) =
Ω(r−b) as r ↓ 0. Then, almost surely, if β = ∞ then lim infn→∞

(
nRd

n,k(n)/k(n)
)
≥

1/a. If β < ∞ then lim infn→∞
(
nRd

n,k(n)/ log n
)
≥ a−1 Ĥβ(b/d), almost surely.

Proof First suppose β = ∞. Let u ∈ (0, 1/a). Set rn := (uk(n)/n)1/d , n ∈ N. By
(4.1), rn → 0 as n → ∞. Then, given n sufficiently large, we have ν(B, rn, ardn ) > 0
so we can find x ∈ B such that μ(B(x, rn)) ≤ ardn , and hence nμ(B(x, rn)) ≤
auk(n). If k(n) ≤ e2nμ(B(x, rn)) (and hence nμ(B(x, rn)) ≥ e−2k(n)), then since
Xn(B(x, rn)) is binomial with parameters n and μ(B(x, rn)), by Lemma 5.1(a) we
have that

P[Rn,k(n) ≤ rn] ≤ P[Xn(B(x, rn)) ≥ k(n)] ≤ exp

(

−nμ(B(x, rn))H

(
k(n)

nμ(B(x, rn))

))

≤ exp
(−e−2k(n)H

(
(au)−1)) ,

while if k(n) > e2nμ(B(x, rn)) then by Lemma 5.1(c), P[Rn,k(n) ≤ rn] ≤
e−k(n). Therefore P[Rn,k(n) ≤ rn] is summable in n because we assume here that
k(n)/ log n → ∞ as n → ∞. Thus by the Borel-Cantelli lemma, almost surely
Rn,k(n) > rn for all but finitely many n, and hence lim inf nRd

n,k(n)/k(n) ≥ u. This
gives the result for β = ∞.

Now suppose instead that β < ∞ and b = 0, so that Ĥβ(b/d) = β. Assume that
β > 0 (otherwise the result is trivial). Let β ′ ∈ (0, β). Let δ > 0 with β ′ < β − δ

and with β ′H
(

β−δ
β ′

)
> δ. For n ∈ N, set rn := ((β ′ log n)/(an))1/d and set k′(n) =

�(β − δ) log n�. By assumption ν(B, rn, ardn ) = Ω(1), so for all n large enough, we
can (and do) choose xn ∈ B such that nμ(B(xn, rn)) ≤ nardn = β ′ log n. Then by a
simple coupling, and Lemma 5.1(a),

P[Xn(B(xn, rn)) ≥ k′(n)] ≤ P
[
Bin

(
n, (β ′ log n)/n)

) ≥ k′(n)
]

≤ exp

(

− (
β ′ log n

)
H

(
β − δ

β ′

))

≤ n−δ.

Hence P[nRd
n,k′(n)

≤ (β ′/a) log n] = P[Rn,k′(n) ≤ rn] ≤ n−δ . Then by the subse-

quence trick (Lemma 6.1(b)), we may deduce that lim inf(nRd
n,k(n)/ log n) ≥ β ′/a,

almost surely, which gives us the result for this case.
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Now suppose instead that β < ∞ and b > 0. Let u ∈ (0, a−1 Ĥβ(b/d)), so that
uaH(β/(ua)) < b/d. Choose ε > 0 such that (1+ ε)uaH(β/(ua)) < (b/d) − 9ε.

For each n ∈ N set rn = (u(log n)/n)1/d . Let mn := ν(B, rn, ardn ), and choose
xn,1, . . . , xn,mn ∈ B such that the balls B(xn,1, rn), . . . , B(xn,mn , rn) are pairwise
disjoint and each have μ-measure at most ardn . Set λ(n) := n+n3/4. For 1 ≤ i ≤ mn ,
if k(n) > 1 then by a simple coupling, and Lemma 5.1(e),

P[Pλ(n)(B(xn,i , rn)) ≤ k(n) − 1] ≥ P[Zλ(n)ardn
≤ k(n) − 1]

≥
(
e−1/(12(k(n)−1))

√
2π(k(n) − 1)

)

exp

(

−λ(n)ardn H

(
k(n) − 1

λ(n)ardn

))

.

Now λ(n)rdn / log n → u so by (4.1), (k(n) − 1)/(λ(n)ardn ) → β/(ua) as n → ∞.
Thus by the continuity of H(·), provided n is large enough and k(n) > 1, for 1 ≤ i ≤
mn ,

P[Pλ(n)(B(xn,i , rn)) ≤ k(n) − 1]

≥
(

e−1/12
√
2π(β + 1) log n

)

exp

(

−(1+ ε)auH

(
β

au

)

log n

)

. (6.1)

If k(n) = 1 for infinitely many n, then β = 0 and (6.1) still holds for large enough n.
By (6.1) and our choice of ε, there is a constant c > 0 such that for all large enough

n and all i ∈ {1, . . . ,mn} we have

P[Pλ(n)(B(xn,i , rn)) ≤ k(n) − 1] ≥ c(log n)−1/2n9ε−b/d ≥ n8ε−b/d .

Hence, setting En := ∩mn
i=1{Pλ(n)(B(xn,i , rn)) ≥ k(n)}, for all large enough n we

have

P[En] ≤ (1− n8ε−b/d)mn ≤ exp(−mnn
8ε−b/d).

By assumption mn = ν(B, rn, ardn ) = Ω(r−b
n ) so that for large enough n we have

mn ≥ n(b/d)−ε, and therefore P[En] is is summable in n.
By Lemma 5.1(d), and Taylor expansion of H(x) about x = 1 (see the print version

of [21, Lemma 1.4] for details; there may be a typo in the electronic version), for all
n large enough P[Zλ(n) < n] ≤ exp(− 1

9n
1/2), which is summable in n. Since Rm,k is

nonincreasing in m, by the union bound

P[Rn,k(n) ≤ rn] ≤ P[RZλ(n),k(n) ≤ rn] + P[Zλ(n) < n] ≤ P[En] + P[Zλ(n) < n],

which is summable in n by the preceding estimates. Therefore by the Borel-Cantelli
lemma,

P[lim inf(nRd
n,k(n)/ log n) ≥ u] = 1, u < a−1 Ĥβ(b/d),

so the result follows for this case too. ��
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Given r > 0, and D ⊂ A, define the ‘covering number’

κ(D, r) := min{m ∈ N : ∃x1, . . . , xm ∈ D with D ⊂ ∪m
i=1B(xi , r)}. (6.2)

We need a complementary upper bound to go with the preceding asymptotic lower
bound on Rn,k(n). For this, we shall require a condition on the ‘covering number’ that
is roughly dual to the condition on ‘packing number’ used in Lemma 6.2. Also, instead
of stating the lemma in terms of Rn,k directly, it is more convenient to state it in terms
of the ‘fully covered’ region Fn,k,r , defined for n, k ∈ N and r > 0 by

Fn,k,r := {x ∈ A : Xn(B(x, r)) ≥ k}. (6.3)

We can characterise the event {R̃n,k ≤ r} in terms of the set Fn,k,r as follows:

R̃n,k ≤ r if and only if (B ∩ A(r)) ⊂ Fn,k,r . (6.4)

Indeed, the ‘if’ part of this statement is clear from (2.3). For the ‘only if’ part, note that
if there exists x ∈ (B∩ A(r))\Fn,k,r , then there exists s > r with x ∈ B∩ A(s)\Fn,k,s .
Then for all s′ < s we have x ∈ B ∩ A(s′)\Fn,k,s , and therefore R̃n,k ≥ s > r .

Lemma 6.3 (General upper bound) Suppose r0, a, b ∈ (0,∞), and a family of sets
Ar ⊂ A, defined for 0 < r < r0, are such that for all r ∈ (0, r0), x ∈ Ar and
s ∈ (0, r) we have μ(B(x, s)) ≥ asd , and moreover κ(Ar , r) = O(r−b) as r ↓ 0.

Ifβ = ∞ then let u > 1/a and set rn = (uk(n)/n)1/d , n ∈ N. Thenwith probability
one, Arn ⊂ Fn,k(n),rn for all large enough n.

If β < ∞, let u > a−1 Ĥβ(b/d) and set rn = (u(log n)/n)1/d . Then there exists
ε > 0 such that P[{Arn ⊂ Fn,�(β+ε) log n�,rn }c] = O(n−ε) as n → ∞.

Proof Let ε ∈ (0, 1); if β = ∞, assume a(1− ε)du > 1+ ε. If β < ∞, assume

a(1− ε)duH((β + ε)/(a(1− ε)du)) > (b/d) + ε.

This can be achieved because auH(β/(au)) > b/d in this case. Setmn = κ(Arn , εrn).
Then mn = O(r−b

n ) = O(nb/d) (in either case). Let xn,1, . . . , xn,mn ∈ Arn with
Arn ⊂ ∪mn

i=1B(xn,i , εrn). Then for 1 ≤ i ≤ mn , ifXn(B(xn,i , (1− ε)rn) ≥ k(n) then
B(xn,i , εrn) ⊂ Fn,k(n),rn . Therefore

P[{Arn ⊂ Fn,k(n),rn }c] ≤ P[∪mn
i=1{Xn(B(xn,i , (1− ε)rn) < k(n)}]. (6.5)

Suppose β = ∞. Then for 1 ≤ i ≤ mn ,

nμ(B(xn,i , (1− ε)rn)) ≥ na((1− ε)rn)
d ≥ (1+ ε)k(n),

so that by (6.5), the union bound, and Lemma 5.1(b),

P[{Arn ⊂ Fn,k(n),rn }c] ≤ mnP[Bin(n, (1+ ε)k(n)/n) < k(n)]
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≤ mn exp(−(1+ ε)k(n)H((1+ ε)−1)).

This is summable in n, since mn = O(nb/d) and k(n)/ log n → ∞. Therefore by the
first Borel-Cantelli lemma, we obtain the desired conclusion for this case.

Now suppose instead that β < ∞. Then

nμ(B(xn,i , (1− ε)rn)) ≥ na((1− ε)rn)
d ≥ a(1− ε)du log n.

Therefore setting k′(n) := �(β + ε) log n�, by (6.5) we have

P[{Arn ⊂ Fn,k′(n),rn }c] ≤ mn exp

(

−a(1− ε)duH

(
(β + ε)

a(1− ε)du

)

log n

)

≤ mnn
−(b/d)−ε,

which yields the desired conclusion for this case. ��

6.2 Proof of Proposition 4.9

Throughout this subsection we assume that either: (i) B is compact and Riemann
measurable with μ(B) > 0 and B ⊂ Ao, or (ii) B = A. We do not (yet) assume f is
continuous on A. Recall from (4.2) that f0 := ess inf x∈B f (x).

We shall prove Proposition 4.9 by applying (6.4) and Lemma 6.3 to derive an upper
bound on R̃n,k(n) (Lemma 6.6), and Lemma 6.2 to derive a lower bound (Lemma 6.5).
For the lower bound we also require the following lemma (recall that ν(B, r , a) was
defined just before Lemma 6.2).

Lemma 6.4 Let α > f0. Then lim infr↓0 rdν(B, r , αθdrd) > 0.

Proof Let κ = 3−dθd . Note that 0 < κ < 1. Set

α′ := ακ/4+ f0(1− κ/4).

By the Riemann measurability assumption, ess infB(ε) ( f ) ↓ f0 as ε ↓ 0. Therefore
we can and do choose δ > 0 with μ(B(δ)) > 0 and with ess infB(δ) ( f ) < α′.

Note that f0 < α′ < α. Let x0 ∈ B(δ) with f (x0) < α′ and x0 a Lebesgue point of
f . Then take r0 ∈ (0, δ) such that μ(B(x0, r0)) < α′θdrd0 .
For r > 0 sufficiently small, we can and do take a collection of disjoint balls

B(xr ,1, r), . . . , B(xr ,σ ′(r), r), all contained in B(x0, r0), with σ ′(r) > (κ/2)(r0/r)d .
Indeed, we can take (1+ o(1))θdrd0 (3r)−d [as r ↓ 0] disjoint cubes of side 3r inside
B(x0, r0) and can take a closed ball of radius r inside the interior of each of these
cubes.

Given small r , write Bi for B(xr ,i , r) and B0 for B(x0, r0). Suppose fewer than
half of the balls Bi , 1 ≤ i ≤ σ ′(r) satisfy μ(Bi ) ≤ αθdrd . Then more than half of
them satisfy μ(Bi ) > αθdrd . Let D denote the union of the latter collection of balls.
Denoting volume by | · |, we have μ(D) ≥ α|D| and μ(B0\D) ≥ f0|B0\D|, and

|D| ≥ (1/2)σ ′(r)θdrd ≥ (κ/4)θdr
d
0 = (κ/4)|B0|.
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Then

μ(B0)

|B0| ≥ α
|D|
|B0| + f0(1− |D|

|B0| ) ≥ α′,

which contradicts our original assumption about r0. Therefore at least half of the balls
Bi , 1 ≤ i ≤ σ ′(r) satisfy μ(Bi ) ≤ αθdrd . Thus ν(B, r , αθdrd) ≥ σ ′(r)/2. ��
Lemma 6.5 It is the case that

P[lim inf(nθd R̃
d
n,k(n)/k(n)) ≥ 1/ f0] = 1 if β = ∞; (6.6)

P[lim inf(nθd R̃
d
n,k(n)/ log n) ≥ Ĥβ(1)/ f0] = 1 if β < ∞. (6.7)

Proof Let α′ > α > f0. Set rn := (k(n)/(nθdα
′))1/d if β = ∞, and set

rn := (Ĥβ(1)(log n)/(nθdα
′))1/d if β < ∞.

Assume for now that B is compact with B ⊂ Ao, so that there exists δ > 0 such
that B ⊂ A(δ). Then, even if f is not continuous on A, we can find x0 ∈ B with
f (x0) < α, such that x0 is a Lebesgue point of f . Then for all small enough r > 0
we have μ(B(x0, r)) < αθdrd , so that ν(B, r , αθdrd) = Ω(1) as r ↓ 0.

If β = ∞, then by Lemma 6.2 (taking b = 0), lim infn→∞ nRd
n,k(n)/k(n) ≥

(θdα)−1, almost surely. Hence for all large enough n we have Rn,k(n) > rn ; provided
n is also large enough so that rn < δ we also have R̃n,k(n) > rn , and (6.6) follows.

Suppose instead that β < ∞. Then by Lemma 6.4, ν(B, r , αθdrd) = Ω(r−d) as

r ↓ 0. Hence by Lemma 6.2, almost surely lim infn→∞
(
nRd

n,k(n)/ log n
)
≥ (αθd)

−1

Ĥβ(1), and hence for large enough n we have Rn,k(n) > rn and also R̃n,k(n) > rn ,
which yields (6.7).

Finally, suppose instead that B = A. Then by using e.g. [21, Lemma 11.12] we can
find compact, Riemann measurable B ′ ⊂ Ao with μ(B ′) > 0 and ess infx∈B′ f (x) <

α. Define Sn,k to be the smallest r ≥ 0 such that every point in B ′ is covered at least
k times by balls of radius r centred on points of Xn . By the argument already given
we have almost surely for all large enough n that Sn,k(n) > rn and also B ′ ⊂ A(rn).
For such n, there exists x ∈ B ′ ⊂ B ∩ A(rn) withXn(B(x, rn)) < k(n), and hence by
(6.4), R̃n,k(n) > rn , which gives us (6.6) and (6.7) in this case too. ��

Now and for the rest of this subsection, we do assume in case (i) (with B ⊂ Ao)
that f is continuous on A.

Lemma 6.6 Suppose that f0 > 0. Then almost surely

lim sup(nθd R̃
d
n,k(n)/k(n)) ≤ 1/ f0, if β = ∞; (6.8)

lim sup(nθd R̃
d
n,k(n)/ log n) ≤ Ĥβ(1)/ f0, if β < ∞. (6.9)

Proof We shall apply Lemma 6.3, here taking Ar = B ∩ A(r). To start, we claim that

lim inf
r↓0 inf

x∈B∩A(r),s∈(0,r)

(
μ(B(x, s))

θdsd

)

≥ f0. (6.10)
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This follows from the definition (4.2) of f0 when B = A. In the other case (with
B ⊂ Ao) it follows from (4.2) and the assumed continuity of f on A.

Suppose f0 < ∞ and let δ ∈ (0, f0). It is easy to see that κ(B∩ A(r), r) = O(r−d)

as r ↓ 0. Together with (6.10), this shows that the hypotheses of Lemma 6.3 (taking
Ar = B∩ A(r)) apply with a = θd( f0−δ) and b = d. Hence by (6.4) and Lemma 6.3,
if β = ∞ then for any u > (θd( f0 − δ))−1, we have almost surely for large enough n
that R̃n,k(n) ≤ (uk(n)/n)1/d , and (6.8) follows.

If β < ∞, then by (6.4) and Lemma 6.3, given u > Ĥβ(1)/(θd( f0 − δ)), there
exists ε > 0 such that, setting k′(n) := �(β + ε) log n� and rn := (u(log n)/n)1/d , we
have

P[n R̃d
n,k′(n) > u log n] = P[R̃n,k′(n) > rn] = P[{B ∩ A(rn) ⊂ Fn,k′(n),rn }c] = O(n−ε).

Therefore by Lemma 6.1, which is applicable since R̃d
n,k/u is nonincreasing in n and

nondecreasing in k, we obtain that lim sup(n R̃d
n,k(n)/ log n) ≤ u, almost surely. Since

u > Ĥβ(1)/(θd( f0 − δ)) and δ ∈ (0, f0) are arbitrary, we therefore obtain (6.9). ��
Proof of Proposition 4.9 Under either hypothesis ((i) or (ii)), it is immediate fromLem-
mas 6.5 and 6.6 that (4.11) holds if β = ∞ and (4.12) holds if β < ∞.

It follows that almost surely R̃n,k(n) → 0 as n → ∞, and therefore if we are in
Case (i) (with B ⊂ Ao) we have R̃n,k(n) = Rn,k(n) for all large enough n. Therefore
in this case (4.11) (if β = ∞) or (4.12) (if β < ∞) still holds with R̃n,k(n) replaced
by Rn,k(n). ��

6.3 Proof of Theorem 4.1

In this section and again later on, we shall use certain results from [21], which rely on
an alternative characterization of A having a C2 boundary, given in the next lemma.
Recall that S ⊂ R

d is called a (d − 1)-dimensional submanifold of R
d if there exists

a collection of pairs (Ui , φi ), where {Ui } is a collection of open sets in R
d whose

union contains S, and φi is a C2 diffeomorphism of Ui onto an open set in R
d with

the property that φi (Ui ∩ S) = φi (Ui ) ∩ (Rd−1 × {0}). The pairs (Ui , φi ) are called
charts. We shall sometimes also refer to the sets Ui as charts here.

Lemma 6.7 Suppose A ⊂ R
d has a C2 boundary. Then ∂A is a (d − 1)-dimensional

C2 submanifold of R
d .

Proof Let x ∈ ∂A. Let U be an open neighbourhood of x , V ⊂ R
d−1 an open set,

and ρ a rotation on R
d about x such that ρ(∂A ∩ U ) = {(w, f (w)) : w ∈ V }, and

moreover ρ(U ) ⊂ V × R. Then for (w, z) ∈ U (with w ∈ V and z ∈ R), take
ψ(w, z) = (w, z − f (w)). Then ψ ◦ ρ is a C2 diffeomorphism from U to ψ ◦ ρ(U ),
with the property that ψ ◦ ρ(U ∩ ∂A) = ψ ◦ ρ(U ) ∩ (Rd−1 × {0}), as required. ��
Remark 6.8 The converse to Lemma 6.7 also holds: if ∂A is a (d − 1)-dimensional
submanifold of R

d then A has a C2 boundary in the sense that we have defined it. The
proof of this this implication is more involved, and not needed in the sequel, so we
omit the argument.
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We shall use the following lemma here and again later on.

Lemma 6.9 Suppose A ⊂ R
d is compact, and has C2 boundary. Given ε > 0, there

exists δ > 0 such that for all x ∈ A and s ∈ (0, δ), we have |B(x, s) ∩ A| >

(1− ε)θdsd/2.

Proof Immediate from applying first Lemma 6.7, and then [21, Lemma 5.7]. ��
Recall that Fn,k,r was defined at (6.3). We introduce a new variable Rn,k,1, which

is the smallest radius r of balls required to cover k times the boundary region A\A(r):

Rn,k,1 := inf{r > 0 : A\A(r) ⊂ Fn,k,r }, n, k ∈ N. (6.11)

Loosely speaking, the 1 in the subscript refers to the fact that this boundary region is
in some sense (d − 1)-dimensional. For all n, k, we claim that

Rn,k = max(R̃n,k, Rn,k,1), if B = A. (6.12)

Indeed, if r > Rn,k then A ⊂ Fn,k,r so that A(r) ⊂ Fn,k,r and A\A(r) ⊂ Fn,k,r , and
hence r ≥ max(R̃n,k, Rn,k,1); hence, Rn,k ≥ max(R̃n,k, Rn,k,1). For an inequality the
other way, suppose r > max(R̃n,k, Rn,k,1); then by (2.3), there exists r ′ < r with
A(r ′) ⊂ Fn,k,r ′ , and hence also A(r) ⊂ Fn,k,r . Moreover by (6.11) there exists s < r
with A\A(s) ⊂ Fn,k,s . Now suppose x ∈ A(s)\A(r). Let z ∈ ∂A with ‖z − x‖ =
dist(x, ∂A) ∈ (s, r ]. Let y ∈ [x, z] with ‖y − z‖ = s. Then y ∈ A\A(s), so that
y ∈ Fn,k,s , and also ‖x − y‖ ≤ r − s. This implies that x ∈ Fn,k,r . Therefore
A(s)\A(r) ⊂ Fn,k,r . Combined with the earlier set inclusions this shows that A ⊂
Fn,k,r and hence Rn,k ≤ r . Thus Rn,k ≤ min(R̃n,k, Rn,k,1), and hence (6.12) as
claimed.

Recall that we are assuming that k(n)/ log n → β ∈ [0,∞] and k(n)/n → 0, as
n → ∞, and f1 := inf∂A f . We shall derive Theorem 4.1 using the next two lemmas.

Lemma 6.10 Suppose the assumptions of Theorem 4.1 apply. Then

P[lim inf
n→∞

(
nθd R

d
n,k(n)/k(n)

)
≥ 2/ f1] = 1, if β = ∞; (6.13)

P[lim inf
n→∞

(
nθd R

d
n,k(n)/ log n

)
≥ 2Ĥβ(1− 1/d)/ f1] = 1, if β < ∞. (6.14)

Proof Let ε > 0. By [21, Lemma 5.8], for each r > 0 we can and do take �r ∈ N∪{0}
and points yr ,1, . . . , yr ,�r ∈ ∂A such that the balls B(yr ,i , r), 1 ≤ i ≤ �r , are disjoint
and each satisfy μ(B(yr ,i , r)) ≤ ( f1 + ε)θdrd/2, with lim infr↓0(rd−1�r ) > 0. In
other words, lim infr↓0 rd−1ν(B, r , ( f1 + ε)θdrd/2) > 0.

Hence, if β = ∞ then by Lemma 6.2 we have that lim infn→∞
(
nRd

n,k(n)/k(n)
)
≥

2/(θd( f1 + ε)), almost surely, and this yields (6.13).
Now suppose β < ∞; also we are assuming d ≥ 2. By taking a = ( f1 + ε)θd/2

in Lemma 6.2, we obtain that, almost surely,
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lim inf
n→∞

(
nRd

n,k(n)/ log n
)
≥ (2/(( f1 + ε)θd)) Ĥβ (1− 1/d) ,

and hence (6.14). ��

Lemma 6.11 Under the assumptions of Theorem 4.1,

P[lim sup
n→∞

(
nθd R

d
n,k(n),1/k(n)

)
≤ 2/ f1] = 1, if β = ∞; (6.15)

P[lim sup
n→∞

(
nθd R

d
n,k(n),1/ log n

)
≤ 2Ĥβ(1− 1/d)/ f1] = 1, if β < ∞. (6.16)

Proof We shall apply Lemma 6.3, here taking Ar = A\A(r). Observe that by (6.11),
event {A\A(r) ⊂ Fn,k,r } implies Rn,k,1 ≤ r , for all r > 0, n, k ∈ N.

We claim that

κ(A\A(r), r) = O(r1−d) as r ↓ 0. (6.17)

To see this, let r > 0, and let x1, . . . , xm ∈ ∂Awith ∂A ⊂ ∪m
i=1B(xi , r), andwithm =

κ(∂A, r). Then A\A(r) ⊂ ∪m
i=1B(xi , 2r). Setting c := κ(B(o, 4), 1), we can cover

each ball B(xi , 2r) by c balls of radius r/2, and therefore can cover A\A(r) by cm balls
of radius r/2, denoted B1, . . . , Bcm say. SetI := {i ∈ {1, . . . , cm} : A\A(r) ∩ Bi #=
∅}. For each i ∈ I , select a point yi ∈ A\A(r) ∩ Bi . Then A\A(r) ⊂ ∪i∈I B(yi , r),
and hence κ(A\A(r)) ≤ cκ(∂A, r). By [21, Lemma 5.4], κ(∂A, r) = O(r1−d), and
(6.17) follows.

Let ε1 ∈ (0, 1). Since we assume f |A is continuous at x for all x ∈ ∂A, there
exists δ > 0 such that f (x) > (1 − ε1) f1 for all x ∈ A distant less than δ from ∂A.
Then, under the hypotheses of Theorem 4.1, by Lemma 6.9, there is a further constant
δ′ ∈ (0, δ/2) such that for all r ∈ (0, δ′) and all x ∈ A\A(r), s ∈ (0, r ] we have
μ(B(x, s)) ≥ (1− ε1)

2 f1(θd/2)sd .
Therefore taking Ar = A\A(r), the hypotheses of Lemma 6.3 hold with a =

(1− ε1)
2 f1θd/2 and b = d − 1.

Thus if β = ∞, then taking rn = (uk(n)/n)1/d with u > 2(1− ε1)
−2/( f1θd), by

Lemma 6.3 we have almost surely that for all n large enough, A\A(rn) ⊂ Fn,k(n),rn
and hence Rn,k(n),1 ≤ rn . That is, nRd

n,k(n),1/k(n) ≤ u, and (6.15) follows.

If β < ∞, take u > (2(1 − ε1)
−2/( f1θd))Ĥβ(1 − 1/d). By Lemma 6.3, if we

set rn = (u(log n)/n)1/d , then there exist ε > 0 such that if we take k′(n) = �(β +
ε) log n�, then

P[nRd
n,k′(n),1 > u log n] = P[Rn,k′(n),1 > rn] ≤ P[{(A\A(rn)) ⊂ Fn,k′(n),rn }c] = O(n−ε).

Also Rn,k,1 is nonincreasing in n and nondecreasing in k, so by Lemma 6.1, we have
almost surely that lim supn→∞ nRd

n,k(n),1/ log n ≤ u, and hence (6.16). ��
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α

Fig. 1 Illustration of Lemma 6.12 in in d = 3 with D(ϕ) = D(ϕ′) = 2. The dot represents a point in ϕo

Proof of Theorem 4.1 By (6.12), Proposition 4.9 and Lemma 6.11,

lim sup
n→∞

(
nθd R

d
n,k(n)/k(n)

)
≤

{
max(1/ f0, 2/ f1) if β = ∞
max(Ĥβ(1)/ f0, 2Ĥβ(1− 1/d)/ f1) if β < ∞,

almost surely. Moreover by (6.12), Proposition 4.9 and Lemma 6.10,

lim inf
n→∞

(
nθd R

d
n,k(n)/k(n)

)
≥

{
max(1/ f0, 2/ f1) if β = ∞
max(Ĥβ(1)/ f0, 2Ĥβ(1− 1/d)/ f1) if β < ∞,

almost surely, and the result follows. ��

6.4 Polytopes: Proof of Theorem 4.2

Throughout this subsection we assume, as in Theorem 4.2, that A is a compact convex
finite polytope in R

d . We also assume that B = A, and f |A is continuous at x for all
x ∈ ∂A, and (4.1) holds for some β ∈ [0,∞].

Given any x ∈ R
d and nonempty S ⊂ R

d we set dist(x, S) := inf y∈S ‖x − y‖.
Lemma 6.12 Suppose ϕ, ϕ′ are faces of A with D(ϕ) > 0 and D(ϕ′) = d − 1, and
with ϕ\ϕ′ #= ∅. Then ϕo ∩ ϕ′ = ∅, and K (ϕ, ϕ′) < ∞, where we set

K (ϕ, ϕ′) := sup
x∈ϕo

(
dist(x, ∂ϕ)

dist(x, ϕ′)

)

. (6.18)

Proof If ϕ∩ϕ′ = ∅ then K (ϕ, ϕ′) < ∞ by an easy compactness argument, so assume
ϕ ∩ ϕ′ #= ∅. Without loss of generality we may then assume o ∈ ϕ ∩ ϕ′.

If d = 3, A is convex and D(ϕ) = D(ϕ′) = 2, D(ϕ ∩ ϕ′) = 1 and moreover ϕ, ϕ′
are rectangular with angle α between them and 0 < α < π , then K (ϕ, ϕ′) = secα,
as illustrated in Fig. 1. However to generalize to all d takes some care.

Let 〈ϕ〉, respectively 〈ϕ′〉, be the linear subspace ofR
d generated by ϕ, respectively

by ϕ′. Set ψ := 〈ϕ〉 ∩ 〈ϕ′〉.
Since we assume A is convex, A ∩ 〈ϕ′〉 = ϕ′, and 〈ϕ′〉 is a supporting hyperplane

of A.
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We claim that ϕ ∩ 〈ϕ′〉 ⊂ ∂ϕ. Indeed, let z ∈ ϕ ∩ 〈ϕ′〉 and y ∈ ϕ\ϕ′. Then
y ∈ ϕ\〈ϕ′〉, and for all ε > 0 the vector y + (1 + ε)(z − y) lies in the affine hull of
ϕ but not in A, since it is on the wrong side of the supporting hyperplane 〈ϕ′〉, and
therefore not in ϕ. This shows that z ∈ ∂ϕ, and hence the claim.

Since ϕ ∩ ψ ⊂ ϕ ∩ 〈ϕ′〉, it follows from the preceding claim that ϕ ∩ ψ ⊂ ∂ϕ.
Now let x ∈ ϕo. Then x ∈ 〈ϕ〉\ψ . Let πψ(x) denote the point in ψ closest to x ,

and set a := ‖x − πψ(x)‖ = dist(x, ψ). Then a > 0.
Setw := a−1(x−πψ(x)). Then ‖w‖ = 1, w ∈ 〈ϕ〉 andw ⊥ ψ (i.e., the Euclidean

inner product of w and z is zero for all z ∈ ψ), so dist(w, 〈ϕ′〉) ≥ δ, where we set

δ := inf{ dist(y, 〈ϕ′〉) : y ∈ 〈ϕ〉, ‖y‖ = 1, y ⊥ ψ}.

If y ∈ 〈ϕ〉\ψ then y /∈ 〈ϕ′〉 so dist(y, 〈ϕ′〉) > 0. Therefore δ is the infimum of a
continuous, strictly positive function defined on a non-empty compact set of vectors
y, and hence 0 < δ < ∞. Thus for x ∈ ϕo, with w, a as given above, we have

dist(x, ϕ′) ≥ dist(x, 〈ϕ′〉) = dist(πψ(x) + aw, 〈ϕ′〉)
= dist(aw, 〈ϕ′〉)
≥ δa = δ dist(x, ψ). (6.19)

If πψ(x) /∈ ϕ, then there is a point in [x, πψ(x)] ∩ ∂ϕ, while if πψ(x) ∈ ϕ, then
πψ(x) ∈ ∂ϕ. Either way dist(x, ψ) ≥ dist(x, ∂ϕ), and hence by (6.19), dist(x, ϕ′) ≥
δ dist(x, ∂ϕ). Therefore K (ϕ, ϕ′) ≤ δ−1 < ∞ as required. ��

Recall that we are assuming (4.1). Also, recall that for each face ϕ of A we denote
the angular volume of A at ϕ by ρϕ , and set fϕ := infϕ f (·).
Lemma 6.13 Let ϕ be a face of A. Then, almost surely:

lim inf
n→∞

(
nRd

n,k(n)/k(n)
)
≥ (ρϕ fϕ)−1 if β = ∞; (6.20)

lim inf
n→∞

(
nRd

n,k(n)/ log n
)
≥ (ρϕ fϕ)−1 Ĥβ(D(ϕ)/d) if β < ∞. (6.21)

Proof Let a > fϕ . Take x0 ∈ ϕ such that f (x0) < a. If D(ϕ) > 0, assume also that
x0 ∈ ϕo. By the assumed continuity of f at x0, for all small enough r > 0 we have
μ(B(x0, r)) ≤ aρϕrd , so that ν(B, r , aρϕrd) = Ω(1) as r ↓ 0. Hence by Lemma 6.2
(taking b = 0), if β = ∞ then almost surely lim infn→∞ nRd

n,k(n)/k(n) ≥ 1/(aρϕ),
and (6.20) follows. Also, if β < ∞ and D(ϕ) = 0, then by Lemma 6.2 (again with
b = 0), almost surely lim infn→∞(nRd

n,k(n)/ log n) ≥ Ĥβ(0)/(aρϕ), and hence (6.21)
in this case.

Now suppose β < ∞ and D(ϕ) > 0. Take δ > 0 such that f (x) < a for all
x ∈ B(x0, 2δ) ∩ A, and such that moreover B(x0, 2δ) ∩ A = B(x0, 2δ) ∩ (x0 +Kϕ)

(the coneKϕ was defined in Sect. 4). Then for all x ∈ B(x0, δ)∩ϕ and all r ∈ (0, δ),
we have μ(B(x, r)) ≤ aρϕrd .

There is a constant c > 0 such that for small enough r > 0 we can find at least
cr−D(ϕ) points xi ∈ B(x0, δ) ∩ ϕ that are all at a distance more than 2r from each
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other, and therefore ν(B, r , aρϕrd) = Ω(r−D(ϕ)) as r ↓ 0. Thus by Lemma 6.2 we
have

lim inf
n→∞

(
nRd

n,k(n)/k(n)
)
≥ (aρϕ)−1 Ĥβ(D(ϕ)/d),

almost surely, and (6.21) follows. ��
We now define a sequence of positive constants K1, K2, . . . depending on A as

follows. With K (ϕ, ϕ′) defined at (6.18), set

KA := max{K (ϕ, ϕ′) : ϕ, ϕ′ ∈ Φ(A), D(ϕ′) = d − 1, ϕ\ϕ′ #= ∅}, (6.22)

which is finite by Lemma 6.12. Then for j = 1, 2, . . . set K j := j(KA+ 1) j−1. Then
K1 = 1 and for each j ≥ 1 we have K j+1 ≥ (KA + 1)(K j + 1).

For each face ϕ of A and each r > 0, define the sets ϕr := ∪x∈ϕB(x, r) ∩ A, and
also (∂ϕ)r := ∪x∈∂ϕB(x, r) ∩ A (so if D(ϕ) = 0 then (∂ϕ)r = ∂ϕ = ∅). Given also
r > 0, define for each n, k ∈ N the event Gn,k,r ,ϕ as follows:

If D(ϕ) = d− j with 1 ≤ j ≤ d, let Gn,k,r ,ϕ := {(ϕK jr\(∂ϕ)K j+1r )\Fn,k,r #= ∅},
the event that there exists x ∈ ϕK jr\(∂ϕ)K j+1r such that Xn(B(x, r)) < k.

Let Rn,k,1 be the smallest radius r of balls required to cover k times the boundary
region A\A(r), as defined at (6.11).

Lemma 6.14 Given r > 0 and n, k ∈ N, {Rn,k,1 > r} ⊂ ∪ϕ∈Φ(A)Gn,k,r ,ϕ.

Proof Suppose Rn,k,1 > r . Then we can and do choose a point x ∈ (A\A(r))\Fn,k,r ,
and a face ϕ1 ∈ Φ(A) with D(ϕ1) = d − 1, and with x ∈ (ϕ1)r = (ϕ1)K1r .

If x /∈ (∂ϕ1)K2r thenGn,k,r ,ϕ1 occurs. Otherwise, we can and do choose ϕ2 ∈ Φ(A)

with D(ϕ2) = d − 2 and x ∈ (ϕ2)K2r .
If x /∈ (∂ϕ2)K3r then Gn,k,r ,ϕ2 occurs. Otherwise, we can choose ϕ3 ∈ Φ(A) with

D(ϕ3) = d − 3 and x ∈ (ϕ3)K3r .
Continuing in this way, we obtain a terminating sequence of faces ϕ1 ⊃ ϕ2 ⊃

· · ·ϕm , with m ≤ d, such that for j = 1, 2, . . . ,m we have D(ϕ j ) = d − j and
x ∈ (ϕ j )K jr , and x /∈ (∂ϕm)Km+1r (the sequence must terminate because if D(ϕ) = 0
then (∂ϕ)s = ∅ for all s > 0 by definition). But then Gn,k,r ,ϕm occurs, completing
the proof. ��
Lemma 6.15 Let r > 0 and j ∈ N. Suppose ϕ ∈ Φ(A) and x ∈ ϕK jr\(∂ϕ)K j+1r .
Then for all ϕ′ ∈ Φ(A) with D(ϕ′) = d − 1 and ϕ\ϕ′ #= ∅, we have dist(x, ϕ′) ≥ r .

Proof Suppose some such ϕ′ exists with dist(x, ϕ′) < r . Then there exist points z ∈ ϕ

and z′ ∈ ϕ′ with ‖z − x‖ ≤ K jr , and ‖z′ − x‖ < r , so that by the triangle inequality
‖z′ − z‖ < (K j + 1)r .

By (6.18) and (6.22), this implies that dist(z, ∂ϕ) < KA(K j + 1)r . On the other
hand, we also have that

dist(z, ∂ϕ) ≥ dist(x, ∂ϕ) − ‖z − x‖ ≥ (K j+1 − K j )r ,
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and combining these inequalities shows that K j+1 − K j < KA(K j + 1), that is,
K j+1 < K j (KA + 1) + KA < (K j + 1)(KA + 1). However, we earlier defined
the sequence (K j ) in such a way that K j+1 ≥ (K j + 1)(KA + 1), so we have a
contradiction. ��

Lemma 6.16 Let ϕ be a face of A. If β = ∞ then let u > 1/( fϕρϕ). If β < ∞, let
u > Ĥβ(D(ϕ)/d)/( fϕρϕ). For each n ∈ N, set rn = (uk(n)/n)1/d if β = ∞, and set
rn = (u(log n)/n)1/d if β < ∞. Then:

(i) if β = ∞ then a.s. the events Gn,k(n),rn ,ϕ occur for only finitely many n;
(ii) if β < ∞ then there exists ε > 0 such that, setting k′(n) := �(β + ε) log n�,

we have that P[Gn,k′(n),rn ,ϕ] = O(n−ε) as n → ∞.

Proof Set j=d−D(ϕ). We shall apply Lemma 6.3, now taking Ar =ϕK jr\(∂ϕ)K j+1r .
With this choice of Ar , observe first that κ(Ar , r) = O(r−D(ϕ)) as r ↓ 0.

Let δ ∈ (0, 1). Assume u > 1/( fϕρϕ(1 − δ)) if β = ∞ and assume that u >

Ĥβ(D(ϕ)/d)/( fϕρϕ(1− δ)) if β < ∞.
By Lemma 6.15, for all small enough r , and for all x ∈ ϕK jr\(∂ϕ)K j+1r , and all

s ∈ (0, r ], the ball B(x, s) does not intersect any of the faces of dimension d − 1,
other than those which meet at ϕ (i.e., which contain ϕ). Also f (y) ≥ (1− δ) fϕ for
all y ∈ A sufficiently close to ϕ. Also we are assuming A is convex, soKϕ is a convex
cone. Hence

μ(B(x, s)) ≥ (1− δ) fϕρϕs
d .

Therefore we can apply Lemma 6.3, now with Ar = ϕK jr\(∂ϕ)K j+1r , taking a =
(1− δ) fϕρϕ and b = D(ϕ).

If β = ∞, taking u > 1/( fϕρϕ(1 − δ)) and rn = (uk(n)/n)1/d , by Lemma 6.3
we have with probability 1 that ϕK jrn\(∂ϕ)K j+1rn ⊂ Fn,k(n),rn for all large enough n,
which gives part (i).

If β<∞, taking u>Ĥβ(D(ϕ)/d)/( fϕρϕ(1−δ)), and setting rn = (u(log n)/n)1/d ,
we have from Lemma 6.3 that there exists ε > 0 such that setting k′(n) := �(β +
ε) log n�, we have P[{ϕK jrn\(∂ϕ)K j+1rn ⊂ Fn,k′(n),rn }c] = O(n−ε), which gives part
(ii). ��

Proof of Theorem 4.2 Supposeβ = ∞. Let u > max
(

1
θd f0

,maxϕ∈Φ(A)
1

fϕρϕ

)
. Setting

rn = (uk(n)/n)1/d , we have from Lemma 6.16 that Gn,k(n),rn ,ϕ occurs only finitely
often, a.s., for each ϕ ∈ Φ(A). Hence by Lemma 6.14, Rn,k(n),1 ≤ rn for all large

enough n, a.s. Hence, almost surely lim supn→∞
(
nRd

n,k(n),1/k(n)
)
≤ u.

Since u > 1/(θd f0), by Proposition 4.9 we also have lim supn→∞
(
n R̃d

n,k(n)/k(n)
)

≤ u, almost surely, and hence by (6.12), almost surely

lim sup
n→∞

(
nRd

n,k(n)/k(n)
)
≤ max

(

(θd f0)
−1, max

ϕ∈Φ(A)
1/( fϕρϕ)

)

.
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Moreover, by Lemma 6.13, Proposition 4.9 and (6.12) we also have that

lim inf
n→∞

(
nRd

n,k(n)/k(n)
)
≥ max

(

(θd f0)
−1, max

ϕ∈Φ(A)
1/( fϕρϕ)

)

,

and thus (4.7).

Now suppose β < ∞. Let u > max
(
Ĥβ(1)/( f0θd),maxϕ∈Φ(A) Ĥβ(D(ϕ)/d)/

( fϕρϕ)
)
. Set rn := (u(log n)/n)1/d . Given ϕ ∈ Φ(A), by Lemma 6.16 there exists

ε > 0 such that, setting k′(n) := �(β + ε) log n�, we have P[Gn,k′(n),rn ,ϕ] = O(n−ε).
Hence by Lemma 6.14 and the union bound,

P[nRd
n,k′(n),1/ log n > u] = P[Rn,k′(n),1 > rn] = O(n−ε).

Thus by the subsequence trick (Lemma 6.1 (a)), lim supn→∞
(
nRd

n,k(n),1/ log n
)
≤ u,

almost surely. Since u > Ĥβ(1)/( f0θd), and we take B = A here, by Proposition 4.9

we also have a.s. that lim supn→∞
(
n R̃d

n,k(n)/ log n
)
≤ u, and hence by (6.12), almost

surely

lim sup
n→∞

(
nRd

n,k(n)/ log n
)
≤ max

(
Ĥβ(1)

f0θd
, max
ϕ∈Φ(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

))

.

Moreover, by Lemma 6.13, Proposition 4.9 and (6.12), we also have a.s. that

lim inf
n→∞

(
nRd

n,k(n)/k(n)
)
≥ max

(
Ĥβ(1)

θd f0
, max
ϕ∈Φ(A)

(
Ĥβ(D(ϕ)/d)

fϕρϕ

))

,

and thus (4.8). ��

7 Proof of results from Sect. 3

Throughout this section, we assume f = f01A, where A ⊂ R
d is compact and

Riemann measurable with |A| > 0, and f0 := |A|−1.

7.1 Preliminaries, and proof of Propositions 3.4 and 3.6

We start by showing that any weak convergence result for R′
t,k (in the large-t limit)

of the type we seek to prove, implies the corresponding weak convergence result for
Rn,k in the large-n limit. This is needed because all of the results in Sect. 3 are stated
both for Rn,k and for R′

t,k (these quantities were defined at (2.1) and (2.2)).

Lemma 7.1 (de-Poissonization) Supposeμ is uniform over A. Let k ∈ N, and a, b, c ∈
R with a > 0 and b > 0. Let F be a continuous cumulative distribution function.
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Suppose that

lim
t→∞P[at(R′

t,k)
d − b log t − c log log t ≤ γ ] = F(γ ), ∀γ ∈ R. (7.1)

Then

lim
n→∞P[anRd

n,k − b log n − c log log n ≤ γ ] = F(γ ), ∀γ ∈ R. (7.2)

Proof For each n ∈ N, set t(n) := n − n3/4. Let γ ∈ R. Given n ∈ N ∩ (1,∞), set

rn :=
(
b log n + c log log n + γ

an

)1/d

.

Then

t(n)ardn − b log(t(n)) − c log log(t(n))

= (b log n + c log log n + γ )
t(n)

n
− b log(n − n3/4) − c log log(n − n3/4)

→ γ. (7.3)

Then by (7.1), and the continuity of F , we obtain that

P[R′
t(n),k ≤ rn] → F(γ ). (7.4)

Moreover, since adding further points reduces the k-coverage threshold,

P[R′
t(n),k ≤ rn < Rn,k] ≤ P[R′

t(n),k < Rn,k] ≤ P[Zt(n) > n], (7.5)

which tends to zero by Chebyshev’s inequality.
Now suppose R′

t(n),k > rn . Pick a point X of B that is covered by fewer than k of the
closed balls of radius rn centred on points inPt(n) (this can be done in a measurable
way). If, additionally, Rn,k ≤ rn , then we must have Zt(n) < n, and at least one of the
points XZt(n)+1, XZt(n)+2, . . . , Xn must lie in B(X , rn). Therefore

P[R′
t(n),k > rn ≥ Rn,k] ≤ P[{n − 2n3/4 ≤ Zt(n) ≤ n}c] + 2n3/4θd f0r

d
n ,

which tends to zero by Chebyshev’s inequality. Combined with (7.5) and (7.4) this
shows that P[Rn,k ≤ rn] → F(γ ) as n → ∞, which gives us (7.2) as required. ��

The spherical Poisson Boolean model (SPBM) is defined to be a collection of
Euclidean balls (referred to as grains) of i.i.d. random radii, centred on the points of
a homogeneous Poisson process in the whole of R

d . Often in the literature the SPBM
is taken to be the union of these balls (see e.g. [19]) but here, following [13], we take
the SPBM to be the collection of these balls, rather than their union. This enables us
to consider multiple coverage: given k ∈ N we say a point x ∈ R

d is covered k times
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by the SPBM if it lies in k of the balls in this collection. The SPBM is parametrised
by the intensity of the Poisson process and the distribution of the radii.

We shall repeatedly use the following result, which comes from results in Janson
[16] or (when k = 1) Hall [12]. Recall that cd was defined at (3.1).

Lemma 7.2 Let d, k ∈ N. Suppose Y is a bounded nonnegative random variable, and
α = θdE [Yd ] is the expected volume of a ball of radius Y . Let β ∈ R. Suppose
δ(λ) ∈ (0,∞) is defined for all λ > 0, and satisfies

lim
λ→∞

(
αδ(λ)dλ − log λ − (d + k − 2) log log λ

)
= β. (7.6)

Let B ⊂ R
d be compact and Riemann measurable, and for each λ > 0 let Bλ ⊂ B

be Riemann measurable with the properties that Bλ ⊂ Bλ′ whenever λ ≤ λ′, and that
∪λ>0Bλ ⊃ Bo.

Let Eλ be the event that every point in Bλ is covered at least k times by a spherical
Poisson Boolean model with intensity λ and radii having the distribution of δ(λ)Y .
Then

lim
λ→∞P[Eλ] = exp

(

−
(

cd(E [Yd−1])d
(k − 1)!(E [Yd ])d−1

)

|B|e−β

)

. (7.7)

In the proof, and elsewhere, we use the fact that asymptotics of iterated logarithms
are unaffected by multiplicative constants: if a > 0 then as t → ∞ we have

log log(ta) = log(log t(1+ (log a)/ log t)) = log log t + o(1). (7.8)

Proof of Lemma 7.2 For k = 1, when Bλ = B for all λ > 0 the result can be obtained
from [12, Theorem 2]. Since [12] does not address multiple coverage, we use [16]
instead to prove the result for general k. Because of the way the result is stated in [16],
we need to express log(1/(αδd)) and log log(1/(αδd)) asymptotically in terms of λ

(we are now writing just δ for δ(λ)). By (7.6),

αδd = λ−1(log λ)(1+ o(1)) (7.9)

so that log(1/(αδd)) = log λ − log log λ + o(1) and log log(1/(αδd)) = log log λ +
o(1). Therefore we have as λ → ∞ that

λδdα − log(1/(αδd)) − (d + k − 1) log log(1/(αδd))

= λδdα − log λ − (d + k − 2) log log λ + o(1), (7.10)

which tends to β by (7.6).
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Let αJ be the quantity denoted α by Janson [16] (our α is the quantity so denoted
by Hall [12]). In the present setting, as described in [16, Example 4],

αJ = 1

d!
(√

πΓ (1+ d/2)

Γ ((1+ d)/2)

)d−1
(E [Yd−1])d
(E [Yd ])d−1 = cd(E [Yd−1])d

(E [Yd ])d−1 .

Let Ã = B(o, r0)with r0 chosen large enough so that B is contained in the interior of
Ã. Let (X1,Y1), (X2,Y2), . . . be independent identically distributed random (d + 1)-
vectors with X1 uniformly distributed over Ã and Y1 having the distribution of Y ,
independent of X1.

Set n(λ) := �λ| Ã| − λ3/4�. Let Ẽλ be the event that every point of B is cov-
ered at least k times by the balls B(X1, δY1), . . . , B(Xn(λ), δYn(λ)). By (7.9) we have
λ3/4δd → 0, so that n(λ)δdα/| Ã| = λδdα + o(1), and hence by (7.10), and (7.8), we
have as λ → ∞ that

n(λ)δdα

| Ã| − log

( |B|
αδd

)

− (d + k − 1) log log

( |B|
αδd

)

+ log

(
(k − 1)!

αJ

)

→ β + log

(
(k − 1)!
αJ |B|

)

.

Then by [16, Theorem 1.1]

P[Ẽλ] → exp

(

−
(

αJ |B|
(k − 1)!

)

e−β

)

. (7.11)

We can and do assume that our Poisson Boolean model, restricted to grains centred
in Ã, is coupled to the sequence (Xn,Yn)n≥1 as follows. Taking Z

λ| Ã| to be Pois-

son distributed with mean λ| Ã|, independent of (X1,Y1), (X2,Y2), . . ., assume the
restricted Boolean model consists of the balls B(Xi , δYi ), 1 ≤ i ≤ Z

λ| Ã|.
Then P[Ẽλ\Eλ] ≤ P[Z

λ| Ã| < n(λ)], which tends to zero by Chebyshev’s inequal-
ity. Also, if Ẽλ fails to occur, we can and do choose (in a measurable way) a point
V ∈ B which is covered by fewer than k of the balls B(Xi , δYi ), 1 ≤ i ≤ n(λ). Then
for large λ, grains centred outside Ã cannot intersect B, and

P[Eλ\Ẽλ] ≤ P[Zλ|A| − n(λ) > 2λ3/4] + 2λ3/4P[X1 ∈ B(V , δ)]

which tends to zero by Chebyshev’s inequality and (7.9). These estimates, together
with (7.11), give us the asserted result (7.7) for general k in the case with Bλ = B for
all λ. It is then straightforward to obtain (7.7) for general (Bλ) satisfying the stated
conditions. ��
Proof of Proposition 3.4 Suppose for some β ∈ R that (rt )t>0 satisfies

lim
t→∞

(
θd t f0r

d
t − log(t f0) − (d + k − 2) log log t

)
= β. (7.12)
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The point process Pt = {X1, . . . , XZt } is a homogeneous Poisson process of inten-
sity t f0 in A. Let Qt be a homogeneous Poisson process of intensity t f0 in R

d\A,
independent ofPt . ThenPt ∪Qt is a homogeneous Poisson process of intensity t f0
in all of R

d .
The balls of radius rt centred on the points of Pt ∪Qt form a Boolean model in

R
d , and in the notation of Lemma 7.2, here we have δ(λ) = rt , and P[Y = 1] = 1,

so that α = θd , and λ = t f0, so that log log λ = log log t + o(1) by (7.8).
Also, by (7.12) we have the condition (7.6) from Lemma 7.2.
First assume B is compact and Riemann measurable with B ⊂ Ao. Then for all

large enough t we have B ⊂ A(rt ), in which case R′
n,k ≤ rt if and only if all locations

in B are covered at least k times by the balls of radius rt centred on points ofPt ∪Qt ,
which is precisely the event denoted Eλ in Lemma 7.2. Therefore by that result, we
obtain that P[R′

t,k ≤ rt ] → exp(−(cd/(k − 1)!)|B|e−β). This yields the second
equality of (3.7). We then obtain the first equality of (3.7) using Lemma 7.1.

Now consider general Riemannmeasurable B ⊂ A (dropping the previous stronger
assumption on B). Given ε > 0, by using [21, Lemma 11.12] we can find a Riemann
measurable compact set B ′ ⊂ Ao with |A\B ′| < ε. Then B ∩ B ′ is also Riemann
measurable. Let SZt ,k be the smallest radius of balls centred on Pt needed to cover
k times the set B ∩ B ′. Then P[SZt ,k ≤ rt ] → exp(−(cd/(k − 1)!)|B ∩ B ′|e−β).
For sufficiently large t we have P[R̃Zt ,k ≤ rt ] ≤ P[SZt ,k ≤ rt ], but also P[{SZt ,k ≤
rt }\{R̃Zt ,k ≤ rt }] is bounded by the probability that A\B ′ is not covered k times
by a SPBM of intensity t f0 with radii rt , which converges to 1 − exp(−cd/(k −
1)!)|A\B ′|e−β). Using these estimates we may deduce that

lim sup
t→∞

P[R̃Zt ,k ≤ rt ] ≤ exp
[− (cd/(k − 1)!) (|B| − ε)e−β

] ;

lim inf
t→∞ P[R̃Zt ,k ≤ rt ] ≥ exp

[

−
(

cd
(k − 1)!

)

|B|e−β

]

−
(

1− exp

(

−
(

cd
(k − 1)!

)

εe−β

))

,

and since ε can be arbitrarily small, that P[R̃Zt ,k ≤ rt ] → − exp(−(cd/(k −
1)!)|B|e−β). This yields the second equality of (3.6), and then we can obtain the
first equality of (3.6) by a similar argument to Lemma 7.1. ��

Proof of Proposition 3.6 It suffices to prove this result in the special case with c′ = 0
(we leave it to the reader to verify this). Recall that (in this special case) we assume

anRd
n,k−b log n−c log log n

D−→ Z . Let (rm)m≥1 be an arbitrary real-valued sequence
satisfying rm ↓ 0 as m → ∞. Let t ∈ R. Then for all but finitely many m ∈ N we can
and do define nm ∈ N by

nm := �a−1r−d
m

(
b log((b/a)r−d

m ) + (c + b) log log(r−d
m ) + t

)
�,
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and set tm := ardmnm − b log((b/a)r−d
m ) − (c + b) log log(r−d

m ). As m → ∞, we

have tm → t and also log nm = log[(b/a)r−d
m log((b/a)r−d

m )] + o(1), and hence
log log nm = log log(r−d

m ) + o(1). Therefore

anmr
d
m − b log nm − c log log nm = anmr

d
m − b log((b/a)r−d

m )

−b log log((b/a)r−d
m ) − c log log(r−d

m ) + o(1),

which converges to t (using (7.8)).
Also as m → ∞ we have nm → ∞ and

P[ardmN (rm, k) − b log
(
(b/a)r−d

m

)
− (c + b) log log(r−d

m ) ≤ tm]
= P[N (rm, k) ≤ nm] = P[Rnm ,k ≤ rm],

and by the convergence in distribution assumption, this converges to P[Z ≤ t]. ��
We shall use the following notation throughout the sequel. Fix d, k ∈ N. Suppose

that rt > 0 is defined for each t > 0.
Given any point process X in R

d , and any t > 0, define the ‘vacant’ region

Vt (X ) := {x ∈ R
d : X (B(x, rt )) < k}, (7.13)

which is the set of locations in R
d covered fewer than k times by the balls of radius rt

centred on the points of X . Given also D ⊂ R
d , define the event

Ft (D,X ) := {Vt (X ) ∩ D = ∅}, (7.14)

which is the event that every location in D is covered at least k times by the collection
of balls of radius rt centred on the points ofX . Again the F stands for ‘fully covered’,
but we no longer need the notation Fn,k,r from (6.3). However, we do use the notation
κ(D, r) from (6.2) in the next result, which will be used to show various ‘exceptional’
regions are covered with high probability in the proofs that follow.

Lemma 7.3 Let t0 ≥ 0, and suppose (rt )t>t0 satisfies tr
d
t ∼ c log t as t → ∞, for some

constant c > 0. Suppose (μt )t≥t0 are a family of Borel measures on R
d , and for each

t ≥ t0 letRt be a Poisson process with intensity measure tμt onR
d . Suppose (Wt )t≥t0

are Borel sets inR
d , and a > 0, b ≥ 0 are constants, such that (i) κ(Wt , rt ) = O(r−b

t )

as t → ∞, and (ii) μt (B(x, s)) > asd for all t ≥ t0, x ∈ Wt , s ∈ [rt/2, rt ]. Let
ε > 0. Then P[(Ft (Wt ,Rt ))

c] = O(t (b/d)−ac+ε) as t → ∞.

Proof This proof is similar to that of Lemma 6.3. Let δ ∈ (0, 1/2). Since κ(Wt , δrt ) is
at most a constant times κ(Wt , rt ), we can and do cover Wt by mt balls of radius δrt ,
with mt = O(r−b

t ) = O(tb/d) as t → ∞. Let B1,t , . . . , Bmt ,t be balls with radius
(1 − δ)rt and with the same centres as the balls in the covering. Then for t > t0 and
1 ≤ i ≤ mt we have tμt (Bi,t ) ≥ at(1 − δ)drdt and so by Lemma 5.1(d), provided
k < δat(1− δ)drdt and trdt > (1− δ)c log t (which is true for large t) we have
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P[Ft (Wt ,Rt )
c] ≤ P[∪mt

i=1{Rt (Bi,t ) < k}] ≤ mtP[Zat(1−δ)drdt
≤ δ(1− δ)datrdt ]

≤ mt exp(−(1− δ)datrdt H(δ))

= O(tb/d t−a(1−δ)d+1H(δ)c) as t → ∞.

Since we can choose δ so that a(1− δ)d+1H(δ)c > ac − ε, the result follows. ��

7.2 Coverage of a region in a hyperplane by a Booleanmodel in a half-space

In this subsection, assume that d ≥ 2. Let ζ ∈ R, k ∈ N, and assume that (rt )t>0
satisfies

f0tθdrdt
2

−
(
d − 1

d

)

log(t f0) − (d + k − 3+ 1/d) log log t → ζ as t → ∞,

(7.15)

so that for some function h(t) tending to zero as t → ∞,

exp(−θd f0tr
d
t /2) = (t f0)

−(d−1)/d(log t)−d−k+3−1/de−ζ+h(t). (7.16)

For t > 0 let Ut denote a homogeneous Poisson process on the half-space H :=
R
d−1 × [0,∞) of intensity t f0. Recall from (3.2) the definition of cd,k . The next

result determines the limiting probability of covering a bounded region Ω × {0} in
the hyperplane ∂H := R

d−1 × {0} by balls of radius rt centred on Ut , or of covering
the rt -neighbourhood of Ω × {0} in H. It is crucial for dealing with boundary regions
in the proof of Theorems 3.1, 3.2 and 3.3. In it, |Ω| denotes the (d − 1)-dimensional
Lebesgue measure of Ω .

Lemma 7.4 Let Ω ⊂ R
d−1 and (for each t > 0) Ωt ⊂ R

d−1 be closed and Riemann
measurable, withΩt ⊂ Ω for each t > 0. Assume (7.15) holds for some ζ ∈ (−∞,∞]
and also lim supt→∞(trdt /(log t)) < ∞.

lim
t→∞(P[Ft (Ω × {0},Ut )]) = exp

(−cd,k |Ω|e−ζ
)
. (7.17)

Also, given a ∈ (0,∞) and δt > 0 for each t > 0,

lim
t→∞(P[Ft ((Ωt × {0}) ∪ (((∂Ωt ) ⊕ B(d−1)(o, δt )) × [0, art ]),Ut )

\Ft (Ωt × [0, art ],Ut )]) = 0. (7.18)

Remark 7.5 Usually we shall use Lemma 7.4 in the case where ζ < ∞. In this case the
extra condition lim supt→∞(trdt /(log t)) < ∞ is automatic. When ζ = ∞, in (7.17)
we use the convention e−∞ := 0.

123



Random Euclidean coverage from within 781

The following terminology and notation will be used in the proof of Lemma 7.4,
and again later on. We use bold face for vectors in R

d here. Given x ∈ R
d , we let

πd(x) denote the d-th co-ordinate of x, and refer to πd(x) as the as height of x. Given
x1 ∈ R

d , . . . , xd ∈ R
d , and r > 0, if∩d

i=1∂B(xi , r) consists of exactly two points, we
refer to these as pr (x1, . . . , xd) and qr (x1, . . . , xd) with pr (x1, . . . , xd) at a smaller
height than qr (x1, . . . , xd) (or if they are at the same height, take pr (x1, . . . , xd) <

qr (x1, . . . , xd) in the lexicographic ordering). Define the indicator function

hr (x1, . . . , xd) := 1{πd(x1) ≤ min(πd(x2), . . . , πd(xd))}
×1{#(∩d

i=1∂B(xi , r)) = 2}1{πd(x1) < πd(qr (x1, . . . , xd))}. (7.19)

Proof of Lemma 7.4 Assume for now that ζ < ∞. Considering the slices of balls of
radius rt centred on points of Ut that intersect the hyperplane R

d−1 × {0}, we have a
(d − 1)-dimensional Boolean model with (in the notation of Lemma 7.2)

δ = rt , λ = t f0rt , α = θd

2
, E [Yd−1] = θd

2θd−1
, E [Yd−2] = θd−1

2θd−2
.

To see the moment assertions here, note that here Y = (1−U 2)1/2 withU uniformly
distributed over [0, 1], so that θd−1Yd−1 is the (d−1)-dimensional Lebesgue measure
of a (d − 1)-dimensional affine slice through the unit ball at distance U from its
centre, and an application of Fubini’s theorem gives the above assertions for α :=
θd−1E [Yd−1] and hence for E [Yd−1]; the same argument in a lower dimension gives
the assertion regarding E [Yd−2]. (We take θ0 = 1 so the assertion for E [Yd−2] is
valid for d = 2 as well.)

By (7.15), as t → ∞wehave rt ∼ (2−2/d)1/d(θd t f0)−1/d(log t)1/d , and therefore
λ ∼ (2− 2/d)1/dθ

−1/d
d (t f0)1−1/d(log t)1/d so that

log λ = (1− 1/d) log(t f0) + d−1 log log t + d−1 log

(
2− 2/d

θd

)

+ o(1).

Hence, log λ = (log t)(1− 1/d)(1+ g(t)) for some function g(t) tending to zero.
Therefore log log λ = log log t + log(1 − 1/d) + o(1). Checking (7.6) here, we

have

αδd−1λ − log λ − (d + k − 3) log log λ

= (θd/2) f0tr
d
t − (1− 1/d) log(t f0) − (d + k − 3+ 1/d) log log t

−d−1 log((2− 2/d)/θd) − (d + k − 3) log(1− 1/d) + o(1), (7.20)

so by using (7.15) again we obtain that

lim
t→∞(αδd−1λ − log λ − (d + k − 3) log log λ)

= ζ − d−1 log(2/θd) − (d + k − 3+ d−1) log(1− 1/d).
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Also (E [Yd−2])d−1/(E [Yd−1])d−2 = θ2−d
d θ2d−3

d−1 θ1−d
d−2 /2, so (7.17) follows by

Lemma 7.2 and (3.2).
Having now verified (7.17) in the case where ζ < ∞, we can easily deduce (7.17)

in the other case too.
It remains to prove (7.18); we now consider general ζ ∈ (0,∞]. Let Et be

the (exceptional) event that there exist d distinct points x1, . . . , xd of Ut such that
∩d
i=1∂B(xi , rt ) has non-empty intersection with the hyperplane R

d−1 × {0}. Then
P[Et ] = 0.

Suppose that the event displayed in (7.18) occurs, and that Et does not. Let w be a
location ofminimal height (i.e., d-coordinate) in the closure ofVt (Ut )∩(Ωt×[0, art ]).
Since we assume Ft (((∂Ωt ) ⊕ B(d−1)(o, δt )) × [0, art ],Ut ) occurs, w must lie in
Ωo

t × [0, art ]. Also we claim that w must be a ‘corner’ given by the meeting point
of the boundaries of exactly d balls of radius rt centred at points of Ut , located at
x1, . . . , xd say, with x1 the lowest of these d points, and with #(∩d

i=1∂B(xi , rt )) = 2,
and w ∈ Vt (Ut\{x1, . . . , xd}).

Indeed, if w is not at the boundary of any such ball, then for some δ > 0 we have
B(w, δ) ⊂ Vt (Ut ), and then we could find a location in Vt (Ut )∩(Ωt ×[0, art ]) lower
thanw, a contradiction. Next, suppose instead thatw lies at the boundary of fewer than
d such balls. Then denoting by L the intersection of the supporting hyperplanes at w
of each of these balls, we have that L is an affine subspace of R

d , of dimension at least
1. Take δ > 0 small enough so that B(w, δ) does not intersect any of the boundaries
of balls of radius rt centred at points of Ut , other than those which meet at w. Taking
w′ ∈ L ∩ B(w, δ)\{w} such that w′ is at least as low as w, we have that w′ lies in
the interior of Vt (Ut ). Hence for some δ′ > 0, B(w′, δ′) ⊂ Vt (Ut ) and we can find
a location in B(w′, δ′) that is lower than w, yielding a contradiction for this case too.
Finally, with probability 1 there is no set of more than d points of Ut such that the
boundaries of balls of radius rt centred on these points have non-empty intersection,
sow is not at the boundary of more than d such balls. Thus we have justified the claim.

Moreoverwmust be the point qrt (x1, . . . , xd) rather than prt (x1, . . . , xd), because
otherwise by extending the line segment from qrt (x1, . . . , xd) to prt (x1, . . . , xd)
slightly beyond prt (x1, . . . , xd) we could find a point in Vt (Ut ) ∩ (Ωt × [0, art ])
lower than w, contradicting the statement that w is a location of minimal height in
the closure of Vt (Ut ) ∩ (Ωt × [0, art ]). Moreover, w must be strictly higher than x1,
since if πd(w) ≤ min(πd(x1), . . . , πd(xd)), then locations just below w would lie
in Vt (Ut ) ∩ (Ωt × [0, art ]), contradicting the statement that w is a point of minimal
height in the closure of Vt (Ut ∩ (Ωt × [0, art ])). Hence, hrt (x1, . . . , xd) = 1, where
hr (·) was defined at (7.19).

Note that there is a constant c′ := c′(d, a) > 0 such that for any x ∈ H with
0 ≤ πd(x) ≤ a we have that |B(x, 1)∩H| ≥ (θd/2)+ c′πd(x). Hence for any r > 0,
and any x ∈ H with 0 ≤ πd(x) ≤ ar ,

|B(x, r) ∩ H| = rd |B(r−1x, 1) ∩ H| ≥ (θd/2)r
d + c′rd−1πd(x).

Thus if the event displayed in (7.18) holds, then almost surely there exists at least
one d-tuple of points x1, . . . , xd ∈ Ut , such that hrt (x1, . . . , xd) = 1, and moreover
qrt (x1, . . . , xd) ∈ Vt (Ut\{x1, . . . , xd})∩ (Ωt × [0, art ]). By the Mecke formula (see
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e.g. [19]), there is a constant c such that the expected number of such d-tuples is
bounded above by

ctd(trdt )k−1
∫

H

dx1 · · ·
∫

H

dxdhrt (x1, . . . , xd)1{qrt (x1, . . . , xd) ∈ Ωt × [0, art ]}
× exp(−(θd/2) f0tr

d
t − c′ f0trd−1

t πd(qrt (x1, . . . , xd))). (7.21)

Now we change variables to yi = r−1
t (xi − x1) for 2 ≤ i ≤ d, noting that

πd(qrt (x1, . . . , xd)) = πd(x1) + πd(qrt (o, x2 − x1, . . . , xd − x1))

= πd(x1) + rtπd(q1(o, y2, . . . , yd)).

Hence by (7.16), there is a constant c′′ such that the expression in (7.21) is at most

c′′td(log t)k−1t−1+1/d(log t)3−(1/d)−d−krd(d−1)
t

∫ art

0
e−c′ f0trd−1

t udu

×
∫

H

· · ·
∫

H

h1(o, y2, . . . , yd) exp(−c′ f0trdt πd(q1(o, y2, . . . , yd)))dy2 . . . dyd .

(7.22)

In the last expression the first line is bounded by a constant times the expression

td−1+1/drd(d−1)
t (log t)2−d−1/d(trd−1

t )−1 = (trdt )d−2+1/d(log t)2−d−1/d ,

which is bounded because we assume lim supt→∞(trdt /(log t)) < ∞. The second line
of (7.22) tends to zero by dominated convergence because trdt → ∞ by (7.15) and
because the indicator function (z2, . . . , zd) (→ h1(o, z2, . . . , zd) has bounded support
and is zero when πd(q1(o, z2, . . . , zd)) ≤ 0. Therefore by Markov’s inequality we
obtain (7.18). ��

7.3 Polygons: proof of Theorem 3.2

Of the three theorems in Sect. 3, Theorem 3.2 has the simplest proof, so we give this
one first. Thus, in this subsection, we set d = 2, take A to be polygonal with B = A,
and take f ≡ f01A, with f0 := |A|−1. Denote the vertices of A by q1, . . . , qκ , and
the angles subtended at these vertices by α1, . . . , ακ respectively. Choose K ∈ (2,∞)

such that K sin αi > 9 for i = 1, . . . , κ .
For the duration of this subsection (and the next) we fix k ∈ N and β ∈ R. Assume

we are given real numbers (rt )t>0 satisfying

lim
t→∞(π t f0r

2
t − log(t f0) + (1− 2k) log log t) = β. (7.23)

Setting ζ = β/2, this is the same as the condition (7.15) for d = 2.
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Given any D ⊂ R
2, and any point process X in R

2, and t > 0, define the ‘vacant
region’ Vt (X ) and the event Ft (D,X ) as at (7.13) and (7.14).

For t > 0, in this subsection we define the ‘corner regions’ Qt and Q−
t by

Qt := ∪κ
j=1B(q j , (K + 9)rt ); Q−

t := ∪κ
j=1B(q j , Krt ).

Lemma 7.6 It is the case that P[Ft (Qt ∩ A,Pt )] → 1 as t → ∞.

Proof We have κ(Qt ∩ A, rt ) = O(1) as t → ∞. Also there exists a > 0 such that for
all large enough t , all s ∈ [rt/2, rt ] and x ∈ Qt ∩ A, we have f0|B(x, s)∩ A| ≥ ardt .
Thus we can apply Lemma 7.3, taking Wt = Qt ∩ A, and μt (·) = f0| · ∩A|, with
b = 0, to deduce that P[(Ft (Wt ,Pt ))

c] is O(t−δ) for some δ > 0, and hence tends
to 0. ��
Lemma 7.7 It is the case that

lim
t→∞(P[Ft (∂A\Q−

t ,Pt )]) = exp(−c2,k |∂A|e−β/2). (7.24)

Also,

lim
t→∞(P[Ft (A(3rt ) ∪ ∂A ∪ (Qt ∩ A),Pt )\Ft (A,Pt )]) = 0. (7.25)

Proof Denote the line segments making up ∂A by I1, . . . , Iκ , and for t > 0 and
1 ≤ i ≤ κ set It,i := Ii\Q−

t .
Let i, j, k ∈ {1, . . . , κ} be such that i #= j and the edges Ii and I j are both incident

to qk . If x ∈ It,i and y ∈ It, j , then ‖x − y‖ ≥ (Krt ) sin αk ≥ 9rt . Hence the events
Ft (It,1,Pt ), . . . , Ft (It,κ ,Pt ) are mutually independent. Therefore

P[Ft (∂A\Q−
t ,Pt )] =

κ∏

i=1

P[Ft (It,i ,Pt )],

and by Lemma 7.4 this converges to the right hand side of (7.24).
Nowweprove (7.25). For t > 0, and i ∈ {1, 2, . . . , κ}, let St,i denote the rectangular

block of dimensions |It,i |×3rt , consisting of all points in A at perpendicular distance
at most 3rt from It,i . Let ∂sideSt,i denote the union of the two ‘short’ edges of the
boundary St,i , i.e. the two edges bounding St,i which are perpendicular to It,i .

Then A\(A(3rt ) ∪ Qt ) ⊂ ∪κ
i=1St,i , and also (∂sideSt,i ⊕ B(o, rt )) ⊂ Qt for 1 ≤

i ≤ κ , so that

Ft (A
(3rt ) ∪ ∂A ∪ (Qt ∩ A),Pt )\Ft (A,Pt )

⊂ ∪κ
i=1[Ft (It,i ∪ (∂sideSt,i ⊕ B(o, rt )),Pt )\Ft (St,i ,Pt )].

For i ∈ {1, . . . , κ}, let I ′t,i denote an interval of length |Ii,t | contained in the x-axis.
By a rotation one sees that P[Ft (It,i ∪ (∂sideSt,i ⊕ B(o, rt )),Pt )\Ft (St,i ,Pt )] is at
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most

P[Ft ((I ′t,i × {0}) ∪ (((∂ I ′t,i ) ⊕ [−rt , rt ]) × [0, 3rt ]),Ut )\Ft (I ′t,i × [0, 3rt ],Ut )],

whereUt is as in Lemma 7.4. By (7.18) from that result, this probability tends to zero,
which gives us (7.25). ��
Proof of Theorem 3.2 Let β ∈ R and suppose (rt )t>0 satisfies (7.23). Then

lim
t→∞(π f0tr

2
t − log(t f0) − k log log t) =

{
β if k = 1

+∞ if k ≥ 2.

Hence by (3.6) from Proposition 3.4 (taking B = A there and using (6.4)),

lim
t→∞P[Ft (A(rt ),Pt )] = lim

t→∞P[R̃Zt ,k ≤ rt ] =
{
exp(−|A|e−β) if k = 1

1 if k ≥ 2.

(7.26)

Observe that {Ft (A(rt ),Pt ) ⊂ Ft (A(3rt ),Pt ). We claim that

P[Ft (A(3rt ),Pt )\Ft (A(rt ),Pt )] → 0 as t → ∞. (7.27)

Indeed, given ε > 0, for large t the probability on the left side of (7.27) is bounded
by P[Ft (A(rt )\A[ε],Pt )

c] (the set A[ε] was defined in Sect. 2), and by (3.6) from
Proposition 3.4 (as in (7.26) but now taking B = A\A[ε] in Proposition 3.4), the latter
probability tends to a limit which can be made arbitrarily small by the choice of ε.

Also, by (7.24) and Lemma 7.6,

lim
t→∞(P[Ft (∂A,Pt )]) = exp(−c2,k |∂A|e−β/2). (7.28)

Using (7.25) followed by Lemma 7.6, we obtain that

lim
t→∞P[Ft (A,Pt )] = lim

t→∞P[Ft (A(3rt ) ∪ ∂A ∪ (Qt ∩ A),Pt )]
= lim

t→∞P[Ft (A(3rt ) ∪ ∂A,Pt )], (7.29)

provided these limits exist.
By (7.27), (7.26) still holds with A(rt ) replaced by A(3rt ) on the left. Also, the events

Ft (∂A,Pt ) and and Ft (A(3rt ),Pt ) are independent since the first of these events is
determined by the configuration of Poisson points distant at most rt from ∂A, while
the second event is determined by the Poisson points distant more than 2rt from ∂A.
Therefore the limit in (7.29) does indeed exist, and is the product of the limits arising
in (7.26) and (7.28).

Since Ft (A,Pt ) = {R′
t,k ≤ rt }, this gives us the second equality of (3.4), and we

then obtain the first equality of (3.4) by using Lemma 7.1. ��
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7.4 Polyhedra: proof of Theorem 3.3

Now suppose that d = 3 and A = B is a polyhedron with f ≡ f01A, where f0 =
1/|A|. Fix k ∈ N and β ∈ R. Recall that α1 denotes the smallest edge angle of A.
Throughout this subsection, we assume that we are given (rt )t>0 with the following
limiting behaviour as t → ∞:

(π ∧ 2α1) f0tr
3
t − log(t f0) − β =

{
(3k − 1) log log t + o(1) if α1 ≤ π/2
( 1+3k

2

)
log log t + o(1) if α1 > π/2.

(7.30)

For D ⊂ R
3 and X a point set in R

3, define the region Vt (X ) and event Ft (D,X )

by (7.13) and (7.14) as before, now with (rt )t>0 satisfying (7.30).
To prove Theorem 3.3, our main task is to determine limt→∞ P[Ft (A,Pt )]. Our

strategy for this goes as follows. We shall consider reduced faces and reduced edges
of A, obtained by removing a region within distance Krt of the boundary of each
face/edge, for a suitable constant K . Then the events that different reduced faces and
reduced edges are covered are mutually independent. Observing that the intersection
of Pt with a face or edge is a lower-dimensional SPBM, and using Lemma 7.2, we
shall determine the limiting probability that the reduced faces and edges are covered.

If Ft (A,Pt ) does not occur but all reduced faces and all reduced edges are covered,
then the uncovered region must either meet the region A(3rt ), or go near (but not inter-
sect) one of the reduced faces, or go near (but not intersect) one of the reduced edges,
or go near one of the vertices. We shall show in turn that each of these possibilities
has vanishing probability.

The following lemma will help us deal with the regions near the faces of A.

Lemma 7.8 Let Ω ⊂ R
2 and (for each t > 0) Ωt ⊂ R

2 be closed and Riemann
measurable, withΩt ⊂ Ωo for each t > 0. LetUt be a homogeneous Poisson process
of intensity t f0 in H. Assume (7.30) holds. Then

lim
t→∞(P[Ft (Ω × {0},Ut )]) =

⎧
⎪⎨

⎪⎩

exp
(−c3,k |Ω|e−2β/3

)
, if α1 > π/2

or α1 = π/2, k = 1

1 otherwise.

(7.31)

Also in all cases, given a ∈ (0,∞) and δt > 0 for each t > 0,

lim
t→∞(P[Ft ((Ωt × {0}) ∪ ((∂Ωt ⊕ B(2)(o, δt )) × [0, art ]),Ut )

\Ft (Ωt × [0, art ],Ut )]) = 0. (7.32)

Proof In the case where α1 > π/2 or α1 = π/2, k = 1 the condition (7.30) implies
that (7.15) holds (for d = 3) with ζ := 2β/3. In the other case (with α1 < π/2 or
α1 = π/2, k > 1) the condition (7.30) implies that (7.15) holds (for d = 3) with
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(0,0,0)

Fig. 2 We show only the 2nd and 3rd co-ordinates. In the proof of Lemma 7.9, we lower bound the volume
of the intersection of the circle (representing a ball of unit radius) with the leftmost wedge shown, by the
sum of the volumes of the union of the three shaded regions, each intersected with the ball/circle

ζ := +∞, and also lim supt→∞(tr3t / log t) < ∞. Therefore we can deduce the result
(in both cases) from Lemma 7.4. ��

In this subsection we use bold face to indicate vectors in R
3. For i = 1, 2, 3, we

let πi : R
3 → R denote projection onto the i th coordinate. For x ∈ R

3 we shall
sometimes refer to π2(x) and π3(x) as the ‘depth’ and ‘height’ of x, respectively.

For r > 0 and for triples (x, y, z) ∈ (R3)3, we define the function hr (x, y, z)
and (when hr (x, y, z) = 1) the points pr (x, y, z) and qr (x, y, z), as at (7.19), now
specialising to d = 3.

For α ∈ (0, 2π), let Wα ⊂ R
3 be the wedge-shaped region

Wα := {(x, r cos θ, r sin θ) : x ∈ R, r ≥ 0, θ ∈ [0, α]}.

For α ∈ (0, 2π) and t > 0, let Wα,t be a homogeneous Poisson process in Wα of
intensity t f0.

Lemma 7.9 (Lower bound for the volume of a ball within a wedge) Let α ∈ (0, π),
and u > 0. There is a constant c′ = c′(α, u) ∈ (0,∞) such that for any r > 0 and
any x ∈ Wα ∩ B(o, ur),

|B(x, r) ∩ Wα| ≥ (2α/3)r3 + c′r2π3(x) + c′r2(π2(x) − π3(x) cot α). (7.33)

Proof As illustrated in Fig. 2, we can find a constant c′ > 0 such that for any x ∈
Wα ∩ B(o, u), we have that

|B(x, 1) ∩ Wα| ≥ (2α/3) + c′(π3(x) + (π2(x) − (π3(x)/ tan α))).

Also |B(x, r)∩Wα| = r3|B(r−1x, 1)∩Wα| by scaling, and it is then straightforward
to deduce (7.33). ��
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In the next three lemmas, we take I to be an arbitrary fixed compact interval in R,
and then, given α ∈ (0, 2π) and b ≥ 0, set

Wα,b := {(x1, x2, x3) ∈ Wα : x1 ∈ I , x22 + x23 ≤ b2}.

Also, writing I = [a1, a2], let I ′t := [a1−rt , a2+rt ] (a slight extension of the interval
I ). Let W

′
α,b,t := {(x1, x2, x3) ∈ Wα : x1 ∈ I ′t , x22 + x23 ≤ b2}.

The next lemma will help us to show that if the part of ∂A near to a given edge is
covered, then the interior of A near that edge is also likely to be covered.

Lemma 7.10 Let α ∈ [α1, π), a ∈ (1,∞). Then

lim
t→∞(P[Ft ((∂Wα) ∩ Wα,art ,Wα,t )\Ft (Wα,art ,Wα,t )]) = 0. (7.34)

Proof First, note that κ(W′
α,art ,t\Wα,art , rt ) = O(1) as t → ∞, and hence by taking

the measure μt to be f0| · ∩Wα| in Lemma 7.3,

lim
t→∞P[Ft (W′

α,art ,t\Wα,art ,Wα,t )] = 1. (7.35)

Let Et here be the (exceptional) event that there exist three distinct points x, y, z
of Wα,t such that ∂B(x, rt ) ∩ ∂B(y, rt ) ∩ ∂B(z, rt ) has non-empty intersection with
the plane R

2 × {0}. Then P[Et ] = 0.
Suppose that event Ft ((∂Wα) ∩ Wα,art ,Wα,t )\Ft (Wα,art ,Wα,t ) occurs, and that

Ft (W′
α,art ,t\Wα,art ) occurs, and that Et does not. Let w be a point of minimal height

in the closure of Vt (Wα,t )∩Wα,art . Then w ∈ Wα,art \∂Wα , and w = qrt (x, y, z) for
some triple (x, y, z) of points of Wα,t , satisfying hrt (x, y, z) = 1, where hrt (·) was
defined at (7.19). Also w is covered by fewer than k of the balls centred on the other
points of Wα,t . Hence by Markov’s inequality,

P[Ft ((∂Wα) ∩Wα,2art ,Wα,t ) ∩ Ft (W
′
α,art ,t\Wα,art ,Wα,t )\Ft (Wα,art ,Wα,t )]

≤ P[Nt ≥ 1] ≤ E [Nt ], (7.36)

where we set

Nt :=
#=∑

x,y,z∈Wα,t

hrt (x, y, z)1{qrt (x, y, z) ∈ Wα,art }1{Wα,t (B(qrt (x, y, z), rt )) < k},

and
∑ #= means we are summing over triples of distinct points in Wα,t . By the Mecke

formula, E [Nt ] is bounded by a constant times

t3(tr3t )
k−1

∫

W

dx
∫

W

dy
∫

W

dzhrt (x, y, z)1{qrt (x, y, z) ∈ Wα,art }
× exp(−t f0|B(qrt (x, y, z), rt ) ∩ Wα,art |).
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Hence by (7.33), there is a constant c such that E [Nt ] is bounded by

ct3(tr3t )
k−1

∫

Wα

dx
∫

Wα

dy
∫

Wα

dzhrt (x, y, z)1{qrt (x, y, z) ∈ Wα,art }

× exp
{
−(2α/3) f0tr

3
t − c′ f0tr2t π3(qrt (x, y, z))

−c′ f0tr2t [π2(qrt (x, y, z)) − π3(qrt (x, y, z)) cot α]
}

. (7.37)

We claim that (7.30) implies

exp(−(2α/3) f0tr
3
t ) = O(t−1/3(log t)(1/3)−k). (7.38)

Indeed, if α = α1 ≤ π/2, then the expression on the left side of (7.38) divided by the
one on the right, tends to a finite constant. Otherwise, this ratio tends to zero.

Now we write c′′ for c′ f0. By (7.30), (7.38) and the assumption that I is a bounded
interval, we obtain that E [Nt ] is bounded by a constant times

t3(log t)k−1t−1/3(log t)(1/3)−k
∫

Wα

dz
∫

Wα

dy
∫ 2art

0
du

∫ 2art

0
dvhrt ((0, u, v), y, z)

×1{qrt ((0, u, v), y, z) ∈ Wα}
× exp

{
−c′′tr2t [v + (π3(qrt ((0, u, v), y, z)) − v)]

}

× exp
{
−c′′tr2t [π2(qrt ((0, u, v), y, z)) − π3(qrt ((0, u, v), y, z)) cot α]

}
.

Writing u := (0, u, v), and changing variables to y′ = r−1
t (y − u), and z′ =

r−1
t (z−u), we obtain that the previous expression is bounded by a constant times the
quantity

bt := t8/3(log t)−2/3r6t

∫ 2art

0
dv

∫

R3
dz′

∫

R3
dy′

×
∫ 2art

0
du ft (u, v, y′, z′)gt (u, v, y′, z′),

where we set

ft (u, v, y′, z′) := e−c′′tr2t v exp(−c′′tr2t [π3(qrt (u,u + rty′,u + rtz′)) − v])
×hrt (u,u + rty′,u+ rtz′),

and

gt (u, v, y′, z′) := 1{π2(qrt (u,u + rty′,u + rtz′))
> π3(qrt (u,u + rty′,u + rtz′)) cot α}

× exp{−c′′tr2t [π2(qrt (u,u + rty′,u + rtz′))
−π3(qrt (u,u + rty′,u+ rtz′)) cot α)]}.
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Observe that ft (u, v, y′, z′) does not depend on u, so it is equal to ft (0, v, y′, z′).
Therefore we can take this factor outside the innermost integral. Also, setting v :=
(0, 0, v), we have

qrt (u,u + rty′,u + rtz′) = qrt (v, v + rty′, v + rtz′) + (0, u, 0),

Therefore, setting w := w(t, v, y′, z′) := qrt (v, v + rty′, v + rtz′), we have

gt (u, v, y′, z′) = 1{π2(w) + u > π3(w) cot α1} exp(−c′′tr2t (π2(w)

+u − π3(w) cot α1)).

Defining u0 := u0(t, v, y′, z′) := π3(w) cot α1 − π2(w), we obtain for the innermost
integral that

∫ 2art

0
gt (u, v, y′, z′)du =

∫ 2art

u0
exp(−c′′tr2t (u − u0))du = O((tr2t )−1).

Also, we have

ec
′′tr2t v ft (0, v, y′, z′) = exp[−c′′tr2t π3(qrt (o, rty

′, rtz′))]hrt (o, rty′, rtz′)
= exp(−c′′tr3t π3(q1(o, y′, z′)))h1(o, y′, z′))
=: f̃t (y′, z′).

Combining all this, we obtain that bt is bounded by a constant times

t8/3(log t)−2/3r6t (tr
2
t )−1

∫ 2art

0
e−c′′tr2t vdv

∫

R3

∫

R3
dz′dy′ f̃t (y′, z′),

and since the first integral is O((tr2t )−1), this is bounded by a constant times

(tr3t )
2/3(log t)−2/3

∫

R3

∫

R3
f̃t (y′, z′)dy′dz′.

By dominated convergence the last integral tends to zero, while by (7.30) the prefactor
tends to a constant. Thusbt → 0 as t → ∞. Therefore alsoE [Nt ] → 0, and combined
with (7.36) and (7.35), this yields (7.34). ��

The next lemma helps us to show that if a given edge of A is covered, then the part
of ∂A near that edge is also likely to be covered.

Lemma 7.11 Suppose α1 ≤ α ≤ π/2. Let a > 1. Let F := ∂H := R
2 × {0}. Then

P[Ft (Wα,0,Wα,t )\Ft (F ∩ Wα,art ,Wα,t )] → 0 as t → ∞.
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Proof Given x, y ∈ R
3, and r > 0, if #(∂B(x, r) ∩ ∂B(y, r) ∩ F) = 2, then denote

the two points of ∂B(x, r)∩ ∂B(y, r)∩F, taken in increasing lexicographic order, by
p̃r (x, y) and q̃r (x, y). Define the indicator functions

h̃(1)
r (x, y) := 1{π2(y) ≥ π2(x)}1{#(∂B(x, r) ∩ ∂B(y, r) ∩ F) = 2}

×1{π2(p̃r (x, y)) > π2(x)};
h̃(2)
r (x, y) := 1{π2(y) ≥ π2(x)}1{#(∂B(x, r) ∩ ∂B(y, r) ∩ F) = 2}

×1{π2(q̃r (x, y)) > π2(x)}.

Let Et here denote the (exceptional) event that there exist two distinct points x, y ∈
Wα,t , such that ∂B(x, rt ) ∩ ∂B(y, rt ) ∩ Wα,0 #= ∅. Then P[Et ] = 0.

Suppose Ft (Wα,0,Wα,t )\Ft (F ∩ Wα,art ,Wα,t ) occurs, and Et does not. Let w be
a location in Vt (Wα,t ) ∩ F of minimal depth (i.e., minimal second coordinate). Then
w must lie at the intersection of the boundaries of balls of radius rt centred on points
x, y ∈ Wα,t , that is, at p̃rt (x, y) or at q̃rt (x, y). Moreover w must be covered by at
most k − 1 other balls centred on points of Wα,t . Also π2(w) > min(π2(x), π2(y));
otherwise, for sufficiently small δ the locationw+(0,−δ, 0)would be in Vt (Wα,t )∩F

and have a smaller depth than w. Finally, to have w ∈ Wα,art we need π2(w) ≤ art
and hence min(π2(x), π2(y)) ≤ a. Therefore

P[Ft (Wα,0,Wα,t )\Ft (F ∩ Wα,art ,Wα,t )] ≤ P[N (1)
t ≥ 1] + P[N (2)

t ≥ 1],
(7.39)

where, with
∑ #=

x,y∈Wα,t
denoting summation over ordered pairs of distinct points of

Wα,t , we set

N (1)
t :=

#=∑

x,y∈Wα,t

h̃(1)
rt (x, y)1{Wα,t (B(p̃rt (x, y), rt )) < k + 2}1{π2(x) ≤ art };

N (2)
t :=

#=∑

x,y∈Wα,t

h̃(2)
rt (x, y)1{Wα,t (B(q̃rt (x, y), rt )) < k + 2}1{π2(x) ≤ art }.

By the Mecke formula, and (7.33) from Lemma 7.9, with c′ := c′(α, a + 1) we have
that E [N (1)

t ] is bounded by a constant times

t2(tr3t )
k−1

∫ art

0
du

∫ rt

0
dv

∫

R3
dyh̃(1)

rt ((0, u, v), y) exp(−(2α/3) f0tr
3
t

−c′ f0tr2t π2(p̃rt ((0, u, v), y))),

and there is a similar bound for E [N (2)
t ], involving h̃(2)

rt and q̃rt (x, y).
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ConsiderE [N (1)
t ] (we can treatE [N (2)

t ] similarly), andwrite c′′ for c′ f0. By (7.38),
E [N (1)

t ] is bounded by a constant times

t2(tr3t )
k−1t−1/3(log t)(1/3)−k

∫ art

0
du

∫ rt

0
dv

∫

R3
dyh̃(1)

rt ((0, u, v), y)

× exp(−c′′tr2t π2(p̃rt ((0, u, v), y))). (7.40)

Set u := (0, u, v) and v := (0, 0, v). We shall now make the changes of variable
u′ = r−1

t u, v′ = r−1
t v and y′ = r−1

t (y − u). Also write u′ := (0, u′, v′) = r−1
t u and

v′ := (0, 0, v′). Then

p̃rt (u,u + rty′) = rt p̃1(u′,u′ + y′) = rt p̃1(v′, v′ + y′) + rt (0, u
′, 0).

Also

h̃(1)
rt (u,u + rty′) = h̃(1)

1 (u′,u′ + y′) = h̃(1)
1 (v′, v′ + y′).

By our changes of variable, the integral in (7.40) comes to

r5t

∫ a

0
du′

∫ 1

0
dv′

∫

R3
dy′h̃(1)

1 (v′, v′ + y′) exp(−c′′tr3t u′ − c′′tr3t π2(p̃1(v′, v′ + y′))).

Therefore since
∫ a
0 e−c′′tr3t u′du′ = O((tr3t )

−1), and tr3t = O(log t) by (7.30), the
expression in (7.40) is bounded by a constant times

t5/3(log t)−2/3r5t (tr3t )−1
∫ 1

0
dv′

∫

R3
dy′h̃(1)

1 (v′, v′ + y′) exp(−c′′tr3t π2(p̃1(v′, v′ + y′))).

For each v′ ∈ [0, 1] the function y′ (→ h̃(1)
1 (v′, v′ + y′) has bounded support and is

zero whenever π2(p̃1(v′, v′ + y′)) ≤ 0 (because π2(v′) = 0). Therefore in the last
displayed expression the integral tends to zero by dominated convergence, while the
prefactor tends to a finite constant by (7.30).

Thus E [N (1)
t ] → 0, and one can show similarly that E [N (2)

t ] → 0. Hence by
Markov’s inequality, the expression on the left hand side of (7.39) tends to zero. ��

The next lemma enables us to reduce the limiting behaviour of the probability that
a region near a given edge of A is covered, to that of the corresponding probability for
the edge itself.

Lemma 7.12 Let a0 > 1. If α ∈ [α1, π/2], then P[Ft (Wα,0,Wα,t )\Ft (Wα,a0rt ,Wα,t )]
→ 0 as t → ∞. Moreover, if α ∈ (π/2, 2π) then P[Ft (Wα,a0rt ,Wα,t )] → 1 as
t → ∞.

Proof First suppose α ≤ π/2. It follows from Lemma 7.11 that P[Ft (Wα,0,Wα,t )\Ft
((∂Wα) ∩ Wα,a0rt ,Wα,t )] → 0. Combined with Lemma 7.10, this shows that
P[Ft (Wα,0,Wα,t )\Ft (Wα,a0rt ,Wα,t )] → 0.
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Now suppose α > π/2. In this case some of the geometrical arguments used in
proving Lemmas 7.10 and 7.11 do not work. Instead we can use Lemma 7.3, taking
μt = f0| · ∩Wα|, taking Wt of that result to be Wα,a0rt , with a = 2 f0(α ∧ π)/3
and b = 1. By (7.30), we have trdt ∼ c log t with c = 1/( f0π). Hence ac =
2(α ∧ π)/(3π) > 1/3 = b/d, so application of Lemma 7.3 yields the claim. ��

Using Lemma 6.12, choose K > 4 such that for any edge or face ϕ of A, and
any other face ϕ′ of A with ϕ\ϕ′ #= ∅, and all x ∈ ϕo, we have dist(x, ∂ϕ) ≤
(K/3) dist(x, ϕ′). Denote the vertices of A by q1, . . . , qν , and the faces of A by
H1, . . . , Hm . Recall that we denote the edges of A by e1, . . . , eκ with the angle sub-
tended by A at ei denoted αi for each i . For 1 ≤ i ≤ κ , denote the length of the edge
ei by |ei |.

Define the ‘corner regions’

Qt := ∪ν
i=1B(qi , K (K + 7)rt ) ∩ A; Q+

t := ∪ν
i=1B(qi , K (K + 9)rt ) ∩ A. (7.41)

Lemma 7.13 It is the case that P[Ft (Q+
t ,Pt )] → 1 as t → ∞.

Proof As in the proof of Lemma 7.6, we can apply Lemma 7.3, takingWt = Q+
t , and

μt = f0| · ∩A|, with b = 0. ��
We now determine the limiting probability of coverage for any edge of A.

Lemma 7.14 Let i ∈ {1, . . . , κ}. If αi = α1 ≤ π/2 then

lim
t→∞(P[Ft (ei\Qt ,Pt )]) = exp(−(|ei |/(k − 1)!)(α1/32)

1/331−ke−β/3),

while if αi > min(α1, π/2) then limt→∞(P[Ft (ei\Qt ,Pt )]) = 1.

Proof The portions of balls B(x, rt ), x ∈ Pt that intersect the edge ei form a spherical
Poisson Boolean model in 1 dimension with (in the notation of Lemma 7.2)

λ = f0(αi/2)tr
2
t ; δ = rt ; α = θ3αi/(2π)

(αi/(2π))π
= 4/3.

By (7.30), as t → ∞ we have t f0r2t = (2α1 ∧ π)−2/3(t f0)1/3(log t)2/3(1+ o(1)),
so that

log λ = (1/3) log(α3
i /(8(2α1 ∧ π)2)) + (1/3) log(t f0) + (2/3) log log t + o(1),

and log log λ = log log t − log 3+ o(1). Therefore

αδλ − log λ − (k − 1) log log λ = (2/3) f0αi tr
3
t − (1/3) log(α3

i /(8(2α1 ∧ π)2))

−(1/3) log(t f0) − (2/3) log log t − (k − 1) log log t + (k − 1) log 3+ o(1),
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so that by (7.30) again,

lim
t→∞(αδλ − log λ − (k − 1) log log λ)

=
{

β/3− (1/3) log(α1/32) + (k − 1) log 3 if αi = α1 ≤ π/2

+∞ otherwise.

We then obtain the stated results by application of Lemma 7.2. ��
Recall that H1, . . . , Hm are the faces of ∂A. For t > 0 we define the ‘edge regions’

Wt := ∪κ
i=1(ei ⊕ B(o, (K + 1)rt )) ∩ A; W−

t := ∪κ
i=1(ei ⊕ B(o, Krt )) ∩ A;

W+
t := ∪κ

i=1(ei ⊕ B(o, (K + 4)rt )) ∩ A. (7.42)

The next lemma provides the limiting probability that the ‘interior regions’ of all of
the faces of A are covered. Recall that |∂1A| denotes the total area of all faces of A.
Lemma 7.15 Define event Gt := Ft (∂A\W+

t ,Pt ). It is the case that

lim
t→∞(P[Gt ]) =

{
exp

(−c3,k |∂1A|e−2β/3
)

if α1 > π/2, or α1 = π/2, k = 1

1 otherwise.

(7.43)

Proof We claim that the events Ft (H1\W+
t ,Pt ), . . . , Ft (Hm\W+

t ,Pt ) are mutu-
ally independent. Indeed, for i, j ∈ {1, . . . ,m} with i #= j , if x ∈ Hi\W+

t
then dist(x, ∂Hi ) ≥ Krt so by our choice of K , dist(x, Hj ) ≥ 3rt , so the rt -
neighbourhoods of H1\W+

t , . . . , Hm\W+
t are disjoint, and the independence follows.

Therefore

P[Gt ] =
m∏

i=1

P[Ft (Hi\W+
t ,Pt )].

By (7.31) from Lemma 7.8 and an obvious rotation, for 1 ≤ i ≤ m we have

lim
t→∞(P[Ft (Hi\W+

t ,Pt )]) =

⎧
⎪⎨

⎪⎩

exp
(−c3,k |Hi |e−2β/3

)
if α1 > π/2,

or α1 = π/2, k = 1

1 otherwise,

and the result follows. ��
Next we estimate the probability that there is an uncovered region near to a face of

A but not touching that face, and not close to any edge of A.

Lemma 7.16 Define event E (2)
t = Ft (∂A ∪ W+

t ,Pt )\Ft (A\A(3rt ),Pt ). Then
P[E (2)

t ] → 0 as t → ∞.
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Proof For 1 ≤ i ≤ m, let St,i , respectively S+t,i , denote the slab of thickness 3rt
consisting of all locations in A lying at a perpendicular distance at most 3rt from the
reduced face Hi\Wt , respectively from Hi\W−

t .
We claim that S+t,i\St,i ⊂ W+

t , for each i ∈ {1, . . . ,m}. Indeed, givenw ∈ S+t,i\St,i ,
let z be the nearest point in Hi tow. Then ‖w− z‖ ≤ 3rt . Also z /∈ Hi\Wt , so z ∈ Wt .
Therefore for some j ≤ κ wehave dist(z, e j ) ≤ (K+1)rt , so dist(w, e j ) ≤ (K+4)rt ,
so w ∈ W+

t , justifying the claim.
Suppose E (2)

t occurs. Let x ∈ Vt (Pt ) ∩ A\A(3rt ). Choose i ∈ {1, . . . ,m} and
y ∈ Hi such that ‖x − y‖ = dist(x, Hi ) ≤ 3rt . Then since x /∈ W+

t , for all j we
have

dist(y, ∂Hj ) ≥ dist(x, ∂Hj ) − 3rt > (K + 1)rt ,

so y ∈ Hi\Wt and x ∈ St,i . Thus Vt (Pt ) intersects the slab St,i . However, it does not
intersect the face Hi , and nor does it intersect the set S+t,i\St,i , (since by the earlier

claim this set is contained in W+
t which is fully covered). Hence by the union bound

P[E (2)
t ] ≤

m∑

i=1

P[Ft ((Hi\W−
t ) ∪ (S+t,i\St,i ),Pt )\Ft (St,i ,Pt )].

By (7.32) from Lemma 7.8, along with an obvious rotation, each term in the above
sum tends to zero. This gives us the result. ��

Next we estimate the probability that there is an uncovered region within distance
Krt of a 1-dimensional edge of ∂A but not including any of that edge itself.

Lemma 7.17 It is the case that P[Ft (∪κ
i=1ei ∪ Q+

t ,Pt )\Ft (W+
t ,Pt )] → 0 as t →

∞.

Proof Let i ∈ {1, . . . , κ}.
For t > 0, letW ∗

i,t denote the set of locations in A at perpendicular distance at most
(K + 4)rt from the reduced edge ei\Qt . We claim that

(ei ⊕ B(o, (K + 4)rt )) ∩ A\Q+
t ⊂ W ∗

i,t . (7.44)

Indeed, suppose x ∈ (ei ⊕ B(o, (K + 4)rt )) ∩ A\Q+
t . Let y ∈ ei with ‖x − y‖ =

d(x, ei ). Then ‖x − y‖ ≤ (K + 4)rt , and since x /∈ Q+
t , for all j ∈ {1 . . . , ν}

dist(y, q j ) ≥ dist(x, q j ) − (K + 4)rt
> [K (K + 9) − (K + 4)]rt ≥ K (K + 7)rt .

Therefore y /∈ Qt , so x ∈ W ∗
i,t , demonstrating the claim. Hence

P[Ft (ei ∪ Q+
t ,Pt )\Ft ((ei ⊕ B(o, (K + 4)rt )) ∩ A,Pt )]
≤ P[Ft (ei ,Pt )\Ft (W ∗

i,t\Q+
t ,Pt )],
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and we claim that this probability tends to zero. Indeed, if x ∈ W ∗
i,t\Q+

t , then taking
x ′ ∈ ei with‖x−x ′‖ = dist(x, ei ), we have dist(x ′, ∂ei ) ≥ dist(x, ∂ei )−(K+4)rt ≥
K (K + 7)rt , and so by the choice of K , for any face ϕ′ of A, other than the two faces
meeting at ei , we have dist(x ′, ϕ′) > 3(K+7)rt , and hence dist(x, ϕ′) ≥ (2K+17)rt .
Then the claim follows by Lemma 7.12 and an obvious rotation. Since

Ft (∪κ
i=1ei ∪ Q+

t ,Pt )\Ft (W+
t ,Pt )

⊂ ∪κ
i=1[Ft (ei ∪ Q+

t ,Pt )\Ft ((ei ⊕ B(o, (K + 4)rt )) ∩ A,Pt )],

the result follows by the union bound. ��
Proof of Theorem 3.3 First we estimate the probability of event Ft (A(3rt ),Pt )

c, that
there is an uncovered region in A distant more than 3rt from ∂A. We apply Lemma
7.3, with μt = μ, Wt = A\A(3rt ), b = d, a = f0θ3, and c = 1/( f0 min(π, 2α1)).
Then (b/d) − ac = 1− (4π/(3min(π, 2α1))) < 0, so by Lemma 7.3,

lim
t→∞(P[Ft (A(3rt ),Pt )]) = 1. (7.45)

Let ∂∗A := ([(∂A)\W+
t ] ∪ ∪κ

i=1ei )\Qt (note that the definition depends on t but
we omit this from the notation). This is the union of reduced faces and reduced edges
of ∂A.

We have the event inclusion Ft (A,Pt ) ⊂ Ft (∂∗A,Pt ), and by the union bound

P[Ft (∂∗A,Pt )\Ft (A,Pt )] ≤ P[Ft (Q+
t )c] + P[Ft (∪κ

i=1ei ∪ Q+
t ,Pt )\Ft (W+

t ,Pt )]
+P[Ft (∂A ∪W+

t ,Pt )\Ft (A\A(3rt ),Pt )] + P[Ft (A(3rt ),Pt )
c],

and the four probabilities on the right tend to zero by Lemma 7.13, Lemma 7.17,
Lemma 7.16 and (7.45) respectively. Therefore

lim
t→∞P[Ft (A,Pt )] = lim

t→∞P[Ft (∂∗A,Pt )], (7.46)

provided the limit on the right exists.
Next we claim that the events Ft (ei\Qt ,Pt ), 1 ≤ i ≤ κ , aremutually independent.

Indeed, for distinct i, j ∈ {1, . . . , κ}, if x ∈ ei\Qt then dist(x, ∂ei ) ≥ K (K +7)rt by
(7.41), so by our choice of K , dist(x, e j ) ≥ 3rt for t sufficiently large. Therefore the
rt -neighbourhoods of e1\Qt , . . . , eκ\Qt are disjoint, and the independence follows.
Hence by Lemma 7.14,

lim
t→∞(P[Ft (∪κ

i=1ei\Qt ,Pt )])

=
{
exp

(
−∑

{i :αi=α1}(|ei |/(k − 1)!)(α1/32)1/331−ke−β/3
)

if α1 ≤ π/2

1 otherwise.

(7.47)
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Observe next that by the definition of W+
t at (7.42), the set ∂A\W+

t is at Euclidean
distance at least Krt from all of the edges ei . Therefore the events Ft (∪κ

i=1ei\Qt ,Pt )

and Ft (∂A\W+
t ,Pt ) are independent. Therefore using (7.46) we have

lim
t→∞P[Ft (A,Pt )] = lim

t→∞P[Ft (∪κ
i=1ei\Qt ,Pt )] × lim

t→∞P[Ft (∂A\W+
t ,Pt )],

provided the two limits on the right exist. But we know from (7.47) and Lemma 7.15
that these two limits do indeed exist, and what their values are. Substituting these two
values, we obtain the result stated for R′

t,k in (3.5). Then we obtain the result stated
for Rn,k in (3.5) by applying Lemma 7.1. ��

7.5 Proof of Theorem 3.1: first steps

In this subsection we assume that d ≥ 2 and A has C2 boundary. Let ζ ∈ R, and
assume that (rt )t>0 satisfies (7.15). Let k ∈ N. Given any point processX in R

d , and
any t > 0, define the ‘vacant’ region Vt (X ) by (7.13), and given also D ⊂ R

d , define
Ft (D,X ), the event that D is ‘fully covered’ k times, by (7.14).

Given x ∈ ∂A we can express ∂A locally in a neighbourhood of x , after a rotation,
as the graph of aC2 function with zero derivative at x . As outlined in earlier in Sect. 5,
we shall approximate to that function by the graph of a piecewise affine function (in
d = 2, a piecewise linear function).

For each x ∈ ∂A, we can find an open neighbourhoodNx of x , a number r(x) > 0
such that B(x, 3r(x)) ⊂ Nx and a rotation ρx about x such that ρx (∂A ∩ Nx ) is
the graph of a real-valued C2 function f defined on an open ball D ⊂ R

d−1, with
〈 f ′(u), e〉 ≤ 1/9 for all u ∈ D and all unit vectors e in R

d−1, where 〈·, ·〉 denotes
the Euclidean inner product in R

d−1 and f ′(u) := (∂1 f (u), ∂2 f (u), . . . , ∂d−1 f (u))

is the derivative of f at u. Moreover, by taking a smaller neighbourhood if necessary,
we can also assume that there exists ε > 0 and a ∈ R such that f (u) ∈ [a+ε, a+2ε]
for all u ∈ D and also ρx (A) ∩ (D × [a, a + 3ε]) = {(u, z) : u ∈ D, a ≤ z ≤ f (u)}.

By a compactness argument, we can and do take a finite collection of points
x1, . . . , xJ ∈ ∂A such that

∂A ⊂ ∪J
j=1B(x j , r(x j )). (7.48)

Then there are constants ε j > 0, and rigid motions ρ j , 1 ≤ j ≤ J , such that for each
j the set ρ j (∂A ∩Nx j ) is the graph of a C

2 function f j defined on a ball I j in R
d−1,

with 〈 f ′j (u), e〉 ≤ 1/9 for all u ∈ I j and all unit vectors e ∈ R
d−1, and also with

ε j ≤ f j (u) ≤ 2ε j for all u ∈ I j and ρ j (A) ∩ (I j × [0, 3ε j ]) = {(u, z) : u ∈ I j , 0 ≤
z ≤ f (u)}.

Let Γ ⊂ ∂A be a closed set such that Γ ⊂ B(x j , r(x j )) for some j ∈ {1, . . . , J },
and such that κ(∂Γ , r) = O(r2−d) as r ↓ 0, where in this section we set ∂Γ :=
Γ ∩ ∂A\Γ , the boundary of Γ relative to ∂A (the κ notation was given at (6.2)). To
simplify notation we shall assume that Γ ⊂ B(x1, r(x1)), and moreover that ρ1 is the
identity map. Then Γ = {(u, f1(u)) : u ∈ U } for some bounded setU ⊂ R

d−1. Also,
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writing φ(·) for f1(·) from now on, we assume

φ(U ) ⊂ [ε1, 2ε1] (7.49)

and

A ∩ (U × [0, 3ε1]) = {(u, z) : u ∈ U , 0 ≤ z ≤ φ(u)}. (7.50)

Note that for any u, v ∈ U , by the mean value theoremwe have for somew ∈ [u, v]
that

|φ(v) − φ(u)| = |〈v − u, φ′(w)〉| ≤ (1/9)‖v − u‖. (7.51)

Choose (and keep fixed for the rest of this paper) constants γ0, γ, γ ′ with

1/(2d) < γ0 < γ < γ ′ < 1/d. (7.52)

The use of thesewill be for t−γ , t−γ ′
and t−γ0 to provide length scales that are different

from each other and from that of rt .
When d = 2, we approximate to Γ by a polygonal line Γt with edge-lengths that

are Θ(t−γ ). When d = 3, we approximate to Γ by a polyhedral surface Γt with all
of its vertices in ∂A, and face diameters that are Θ(t−γ ), taking all the faces of Γt to
be triangles. For general d, we wish to approximate to Γ by a set Γt given by a union
of the (d − 1)-faces in a certain simplicial complex of dimension d − 1 embedded in
R
d .
To do this, divide R

d−1 into cubes of dimension d − 1 and side t−γ , and divide
each of these cubes into (d − 1)! simplices (we take these simplices to be closed).
Let Ut be the union of all those simplices in the resulting tessellation of R

d−1 into
simplices, that are contained within U , and let U−

t be the union of those simplices in
the tessellation which are contained within U (3dt−γ ), where for r > 0 we set U (r) to
be the set of x ∈ U at a Euclidean distance more than r from R

d−1\U . If d = 2, the
simplices are just intervals. See Fig. 3.

Letσ−(t), respectivelyσ(t), denote the number of simplicesmakingupU−
t , respec-

tively Ut . Choose t0 > 0 such that σ−(t) > 0 for all t ≥ t0.
Let ψt : Ut → R be the function that is affine on each of the simplices making

up Ut , and agrees with the function φ on each of the vertices of these simplices.
Our approximating surface (or polygonal line if d = 2) will be defined by Γt :=
{(x, ψt (x) − Kt−2γ ) : x ∈ U−

t }, with the constant K given by the following lemma.
This lemma uses Taylor expansion to show that ψt a good approximation to φ.

Lemma 7.18 (Polytopal approximation of ∂A) Set K := supt≥t0,u∈Ut
(t2γ |φ(u) −

ψt (u)|). Then K < ∞.

Proof Set K0 := d3 sup{|φ′′
�m(v)|, �,m ∈ {1, . . . , d − 1}, v ∈ U }, i.e. d3 times the

supremum over all v ∈ U of the max-norm of the Hessian of φ at v. Then K0 < ∞.
Given t ≥ t0, denote the simplices making up Ut by Tt,1, . . . , Tt,σ (t). Let

i ∈ {1, . . . , σ (t)}. Let u0, u1, . . . , ud−1 ∈ R
d−1 be the vertices of Tt,i .
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Fig. 3 Example in d = 3. The
outer crescent-shaped region is
U , while the inner crescent is
U (3dt−γ ) (the annular region is
not to scale: its thickness should
be 9 times the length of the
shortest edges of the polygons).
The outer polygon is Ut , while
the inner polygon is U−

t

Let u ∈ Tt,i . Then u is a convex combination of u0, . . . , ud−1; write u = u0 +∑d−1
j=1 α j (u j − u0) with α j ≥ 0 for each j and

∑d−1
j=1 α j ≤ 1. Set v0 = u0, and for

1 ≤ k ≤ d − 1, set vk := u0 +∑k
j=1 α j (u j − u0). Then by the mean value theorem,

for 1 ≤ k ≤ d − 1, there exists wk ∈ Tt,i (in fact, wk ∈ [vk−1, vk]), such that

φ(vk) − φ(vk−1) = 〈vk − vk−1, φ
′(wk)〉 = αk〈uk − u0, φ

′(wk)〉.

Also, since ψt is affine on Tt,i and agrees with φ on u0, u1, . . . , ud−1, there exists
w̃k ∈ Tt,i (in fact, w̃k ∈ [u0, uk]) such that

ψt (vk) − ψt (vk−1) = αk(ψt (uk) − ψt (u0))

= αk(φ(uk) − φ(u0)) = αk〈uk − u0, φ
′(w̃k)〉.

Hence,

φ(vk) − φ(vk−1) − (ψt (vk) − ψt (vk−1)) = αk〈uk − u0, φ
′(wk) − φ′(w̃k)〉.

By the mean value theorem again, each component of φ′(wk) − φ′(w̃k) is bounded
by K0d−2‖w̃k − wk‖. Therefore ‖φ′(wk) − φ′(w̃k)‖ ≤ K0d−1‖w̃k − wk‖. Since
diam(Tt,i ) = (d − 1)1/2t−γ , and since u = vd−1 and φ(u0) = ψt (u0),

|φ(u) − ψt (u)| =
∣
∣
∣
∣
∣

d−1∑

k=1

[φ(vk) − φ(vk−1) − (ψt (vk) − ψt (vk−1))]
∣
∣
∣
∣
∣

≤
d−1∑

k=1

αk‖uk − u0‖K0d
−1‖w̃k − wk‖

≤ diam(Tt,i )
2K0d

−1 ≤ K0t
−2γ ,
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and therefore K ≤ K0 < ∞, as required. ��
We now subtract a constant from ψt to obtain a piecewise affine function φt that
approximates φ from below. For t ≥ t0 and u ∈ Ut , define φt (u) := ψt (u) − Kt−2γ ,
with K given by Lemma 7.18. Then for all t ≥ t0, u ∈ Ut we have |ψt (u) − φ(u)| ≤
Kt−2γ so that

φt (u) ≤ φ(u) ≤ φt (u) + 2Kt−2γ . (7.53)

Define the set Γt := {(u, φt (u)) : u ∈ U−
t }. We refer to each (d−1)-dimensional face

of Γt (given by the graph of φt restricted to one of the simplices in our triangulation
of R

d−1) as simply a face of Γt . Denote these faces of Γt by Ht,1, . . . , Ht,σ−(t).
The number of faces, σ−(t), is Θ(t (d−1)γ ) as t → ∞. The perimeter (i.e., the
(d − 2)-dimensional Hausdorff measure of the boundary) of each individual face
is Θ(t−(d−2)γ ).

For t ≥ t0, define subsets At , A
−
t , Ãt , A∗

t , A
∗∗
t of R

d and Poisson processes P ′
t

and P̃t in R
d by

At := {(u, z) : u ∈ Ut , 0 ≤ z ≤ φ(u)}, Ãt := {(u, z) : u ∈ Ut , 0 ≤ z ≤ φt (u)},
A−
t := {(u, z) : u ∈ U−

t , 0 ≤ z ≤ φ(u)},
A∗
t := {(u, z) : u ∈ U−

t , φt (u) − (3/2)rt ≤ z ≤ φ(u)},
A∗∗
t := {(u, z) : u ∈ U−

t , φt (u) − (3/2)rt ≤ z ≤ φt (u)},
P ′

t := Pt ∩ At , P̃t := Pt ∩ Ãt . (7.54)

Thus At is a ‘thick slice’ of A near the boundary region Γ , Ãt is an approximating
region having Γt as its upper boundary, and A∗

t , A
∗∗
t are ‘thin slices’ of A also having

Γ , respectively Γt , as upper boundary. By (7.53), (7.49) and (7.50), A∗∗
t ⊂ A∗

t ⊂
A−
t ⊂ At ⊂ A, and A∗∗

t ⊂ Ãt ⊂ At . The rest of this subsection, and the next
subsection, are devoted to proving the following intermediate step towards a proof of
Theorem 3.1.

Proposition 7.19 (Limiting coverage probability for approximating polytopal surface)
It is the case that limt→∞ P[Ft (A∗∗

t , P̃t )] = exp(−cd,k |Γ |e−ζ ), where |Γ | denotes
the (d − 1)-dimensional Hausdorff measure of Γ .

The following corollary of Lemma 7.18 is a first step towards proving this.

Lemma 7.20 (a) It is the case that |At\ Ãt | = O(t−2γ ) as t → ∞.
(b) Let K be as given in Lemma 7.18. Then for all t ≥ t0 and x ∈ U (rt )

t × R,
|B(x, rt ) ∩ At\ Ãt | ≤ 2K θd−1r

d−1
t t−2γ .

Proof Since |At\ Ãt | =
∫
Ut

(φ(u) − φt (u))du, where this is a (d − 1)-dimensional
Lebesgue integral, part (a) comes from (7.53).

For (b), let x ∈ U (rt )
t ×R, and let u ∈ U (rt )

t be the projection of x onto the first d−1
coordinates. Then if y ∈ B(x, rt )∩ At\ Ãt , we have y = (v, s) with ‖v− u‖ ≤ rt and
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φt (v) < s ≤ φ(v). Therefore using (7.53) yields

|B(x, rt ) ∩ At\ Ãt | ≤
∫

B(d−1)(u,rt )
(φ(v) − φt (v))dv ≤ 2K θd−1t

−2γ rd−1
t ,

where the integral is a (d − 1)-dimensional Lebesgue integral. This gives part (b). ��
The next lemma says that small balls centred in A, or very near to A, have almost

half of their volume in A.

Lemma 7.21 Let ε > 0. Then for all large enough t, all x ∈ A∗
t , and all s ∈ [rt/2, rt ],

we have |B(x, s) ∩ Ãt | > (1− ε)(θd/2)sd .

Proof For all large enough t , all x ∈ A∗
t and s ∈ [rt/2, rt ], we have B(x, s)∩ A ⊂ At ,

so B(x, s) ∩ At = B(x, s) ∩ A, and hence by Lemma 6.9 and Lemma 7.20(b),

|B(x, s) ∩ Ãt | = |B(x, s) ∩ At | − |B(x, s) ∩ At\ Ãt |
≥ (1− ε/2)(θd/2)s

d − O(rd−1
t t−2γ ).

Since t−2γ = o(rt ), this gives us the result. ��
Recall thatH andUt were defined just before Lemma 7.4. The next lemma provides

a bound on the probability that a region of diameter O(rt ) within A or A∗
t is not fully

covered. The bound is relatively crude, but very useful for dealing with ‘exceptional’
regions such as those near the boundaries of faces in the polytopal approximation.

Lemma 7.22 Let δ ∈ (0, 1), K1 > 0. Then as t → ∞,

sup
z∈Rd

P[Ft (B(z, K1rt ) ∩ A∗
t , P̃t )

c] = O(tδ−(d−1)/d), (7.55)

sup
z∈Rd

P[Ft (B(z, K1rt ) ∩ H,Ut )
c] = O(tδ−(d−1)/d), (7.56)

and

sup
z∈Rd

P[Ft (B(z, K1rt ) ∩ A,Pt )
c] = O(tδ−(d−1)/d). (7.57)

Proof For (7.55), it suffices to prove, for any (zt )t>0 with zt ∈ R
d for each t , that

P[Ft (B(zt , K1rt ) ∩ A,Pt )
c] = O(tδ−(d−1)/d) as t → ∞. (7.58)

To see this,we applyLemma7.3, takingμt = f0|·∩ Ãt |, takingWt = B(zt , K1rt )∩A∗
t ,

with c = 2(d − 1)/(dθd f0) (using (7.15)), b = 0, and a = (θd f0/2)(1 − δ) (using
Lemma 7.21). Then (b/d) − ac = −(1 − δ)(d − 1)/d. Application of Lemma 7.3,
taking ε = δ/d, shows that (7.58) holds, and hence (7.55).

The proofs of (7.56) and (7.57) are similar; for (7.57) we have to use (6.9) directly,
rather than using Lemma 7.21. We omit the details. ��
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Let ∂d−2Γt := ∪σ−(t)
i=1 ∂d−2Ht,i , the union of all (d − 2)-dimensional faces in the

boundaries of the faces making up Γt (the Ht,i were defined just after (7.53)). Recall
from (7.52) that γ ′ ∈ (γ, 1/d). For each t > 0 define the sets Qt , Q

+
t ⊂ R

d by

Qt := (∂d−2Γt ⊕ B(o, 7rt )); Q+
t := (∂d−2Γt ⊕ B(o, 8dt−γ ′

)) ∩ A∗
t . (7.59)

Thus Q+
t is a region near the corners of our polygon approximating ∂A (if d = 2) or

near the boundaries of the faces of our polytopal surface approximating ∂A (if d ≥ 3).
In the next lemma we show that Q+

t is fully covered with high probability.

Lemma 7.23 It is the case that P[Ft (Q+
t , P̃t )] → 1 as t → ∞.

Proof Let ε ∈ (0, γ ′ − γ ). For each face Ht,i of Γt , 1 ≤ i ≤ σ−(t), we claim that
we can take xi,1, . . . , xi,kt,i ∈ Ht,i with max1≤i≤σ−(t) kt,i = O(t−γ ′

t−(d−2)γ /rd−1
t ),

such that

((∂d−2Ht,i ) ⊕ B(o, 9dt−γ ′
)) ∩ Ht,i ⊂ ∪kt,i

j=1B(xi, j , rt ). (7.60)

Indeed, we can cover ∂d−2Ht,i by O(t (d−2)(γ ′−γ )) balls of radius t−γ ′
, denoted B(0)

i,�

say. Replace each ball B(0)
i,� with a ball B ′

i,� with the same centre as B(0)
i,� and with

radius 10dt−γ ′
. Then cover B ′

i,� ∩ Ht,i by O((t−γ ′
/rt )d−1) balls of radius rt . Every

point in the set on the left side of (7.60) lies in one of these balls of radius rt , and the
claim follows.

Given x ∈ Q+
t , write x = (u, h) with u ∈ U−

t , h ∈ R, and set y := (u, φt (u)).
Then ‖y − x‖ ≤ 2rt and there exists i with y ∈ Ht,i . Take such an i . Then
dist(y, ∂d−2Ht,i ) = dist(y, ∂d−2Γt ) ≤ 9dt−γ ′

, so ‖y − xi, j‖ ≤ rt for some j ≤ kt,i

by (7.60). Therefore Q+
t ⊂ ∪σ−(t)

i=1 ∪kt,i
j=1 B(xi, j , 3rt ), so by the union bound,

P[Ft (Q+
t , P̃t )

c] ≤
σ−(t)∑

i=1

kt,i∑

j=1

P[Ft (B(xi, j , 3rt ) ∩ A∗
t , P̃t )

c].

By Lemma 7.22 and the fact that σ−(t) = O(t (d−1)γ ), the estimate in the last display
is O(tγ−γ ′

r1−d
t tε−(d−1)/d) = O(tε+γ−γ ′

), which tends to zero. ��

7.6 Induced coverage process and proof of Proposition 7.19

We shall conclude the proof of Proposition 7.19 by means of a device we refer to as
the induced coverage process. This is obtained by taking the parts of Ãt near the flat
parts of Γt , along with any Poisson points therein, and rearranging them into a flat
region of macroscopic size. The definition of this is somewhat simpler for d = 2, so
for presentational purposes, we shall consider this case first.

Suppose that d = 2. The closure of the set Γt\Qt is a union of closed line segments
(‘intervals’) with total length |Γt |−14rtσ−(t), which tends to |Γ | as t → ∞ because
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Fig. 4 The induced coverage process in 2 dimensions. The upper thick line is part of the set Γt , while the
lower thick line is part of the line Lt . We show four of the blocks St,i next to the upper thick line, and four
of the blocks making up St next to the lower thick line. The arrows represent the rigid motions ρt,i . The
disks shown are part of Qt

σ−(t) = O(tγ ) and γ < 1/2. Denote these intervals by It,1, . . . , It,σ−(t), taking It,i
to be a sub-interval of Ht,i for 1 ≤ i ≤ σ−(t).

For 1 ≤ i ≤ σ−(t) define the closed rectangular strip (which we call a ‘block’)
St,i (respectively S+t,i ) of dimensions |It,i | × 2rt (resp. |It,i | × 4rt ) to consist of those
locations inside At lying within perpendicular distance at most 2rt (resp., at most 4rt )
of It,i . That is,

St,i := It,i ⊕ [o, 2rt et,i ], S+t,i := It,i ⊕ [o, 4rt et,i ],

where et,i is a unit vector perpendicular to It,i pointing inwards into Ãt from It,i .Define
the long interval Dt := [0, |∂At | − 14rtσ−(t)], and the long horizontal rectangular
strips

St := Dt × [0, 2rt ]; S+t := Dt × [0, 4rt ].

Denote the lower boundary of St (that is, the set Dt × {0}) by Lt .
We shall verify in Lemma 7.25 that S+t,1, . . . , S

+
t,σ−(t) are disjoint. Now choose rigid

motions ρt,i of the plane, 1 ≤ i ≤ σ−(t), such that after applications of these rigid
motions the blocks St,i are lined up end to end to form the strip St , with the long edge
It,i of the block transported to part of the lower boundary Lt of St . In other words,
choose the rigid motions so that the sets ρt,i (St,i ), 1 ≤ i ≤ σ−(t), have pairwise
disjoint interiors and their union is St , and also ρt,i (It,i ) ⊂ Lt for 1 ≤ i ≤ σ−(t) (see

Fig. 4). This also implies that ∪σ−(t)
i=1 ρt,i (S

+
t,i ) = S+t .

By the restriction, mapping and superposition theorems for Poisson processes (see

e.g. [19]), the point process P ′′
t := ∪σ−(t)

i=1 ρt,i (P ′
t ∩ S+t,i ) is a homogeneous Poisson

process of intensity t f0 in the long strip S+t .
Now suppose d ≥ 3. To describe the induced coverage process in this case, we

first define a ‘tartan’ (plaid) region Tt as follows. Recall that γ ′ ∈ (γ, 1/d). Partition

123



804 M. D. Penrose

each face Ht,i , 1 ≤ i ≤ σ−(t) into a collection of (d − 1)-dimensional cubes of side
t−γ ′

contained in Ht,i , together with a boundary region contained within ∂d−2Ht,i ⊕
B(o, dt−γ ′

). Let Tt be the union (over all faces) of the boundaries of the (d − 1)-
dimensional cubes in this partition (see Fig. 5). Set T+

t := [Tt ⊕ B(o, 11rt )] ∩ A∗∗
t .

Enumerate the (d − 1)-dimensional cubes in the above subdivision of the faces
Ht,i , 1 ≤ i ≤ σ−(t), as I+t,1, . . . , I

+
t,λ(t). For 1 ≤ i ≤ λ(t) let It,i := I+t,i\(Tt ⊕

B(o, 7rt )), which is a (d − 1)-dimensional cube of side length t−γ ′ − 14rt with
the same centre and orientation as I+t,i . We claim that the total (d − 1)-dimensional
Lebesgue measure of these (d − 1)-dimensional cubes satisfies

lim
t→∞(| ∪λ(t)

i=1 It,i |) = |Γ |. (7.61)

Indeed, for 1 ≤ i ≤ λ(t) we have |It,i |/|I+t,i | = ((t−γ ′ − 14rt )/t−γ ′
)d−1, which tends

to one since rt = O(((log t)/t)1/d) by (7.15), and γ ′ < 1/d, so the proportionate
amount removed near the boundaries of the (d− 1)-dimensional cubes I+t,i to give It,i
vanishes. Also the ‘boundary part’ of a face Ht,i that is not contained in any of the of
the I+t, j s has (d − 1)-dimensional Lebesgue measure that is O(t−(d−2)γ t−γ ′

), so that
the total (d − 1)-dimensional measure of the removed regions near the boundaries of
the faces is O(t (d−1)γ × t−(d−2)γ t−γ ′

) = O(tγ−γ ′
), which tends to zero. Thus the

claim (7.61) is justified.
For 1 ≤ i ≤ λ(t) define closed, rectilinear (but not aligned with the axes), d-

dimensional cuboids (which we call ‘blocks’) St,i (respectively S+t,i ), as follows. Let
St,i (respectively S+t,i ) be the closure of the set of those locations x ∈ Ãt such that
dist(x, It,i ) ≤ 2rt (resp., dist(x, It,i ) ≤ 4rt ) and such that there exists y ∈ I ot,i (the
relative interior of It,i ) satisfying ‖y − x‖ = dist(x, It,i ). For example, if d = 3 then
St,i (resp. S

+
t,i ) is a cuboid of dimensions (t−γ ′ − 14rt ) × (t−γ ′ − 14rt ) × 2rt (resp.

(t−γ ′ − 14rt ) × (t−γ ′ − 14rt ) × 4rt ) with It,i as its base. We shall verify in Lemma
7.25 that S+t,1, . . . , S

+
t,σ−(t) are disjoint.

Define a region Dt ⊂ R
d−1 that is approximately a rectilinear hypercubewith lower

left corner at the origin, and obtained as the union of λ(t) disjoint (d−1)-dimensional
cubes of side t−γ ′ − 14rt . We can and do arrange that Dt ⊂ [0, |Γt |1/(d−1) + t−γ ]d−1

for each t , and |Dt | → |Γ | as t → ∞. Define the flat slabs

St := Dt × [0, 2rt ]; S+t := Dt × [0, 4rt ],

and denote the lower boundary of St (that is, the set Dt × {0}) by Lt .
Now choose rigid motions ρt,i of R

d , 1 ≤ i ≤ λ(t), such that under applications of
these rigid motions the blocks St,i are reassembled to form the slab St , with the square
face It,i of the i-th block transported to part of the lower boundary Lt of St . In other
words, choose the rigid motions so that the sets ρt,i (St,i ), 1 ≤ i ≤ λ(t), have pairwise
disjoint interiors and their union is St , and also ρt,i (It,i ) ⊂ Lt for 1 ≤ i ≤ λ(t). This
also implies that ∪λ(t)

i=1ρt,i (S
+
t,i ) = S+t .
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Fig. 5 Part of the ‘tartan’ region
Tt when d = 3. The outer
triangle represents one face Ht,i ,
and the part of Tt within Ht,i is
given by the union of the
boundaries of the squares. The
triangle has sides of length
Θ(t−γ ), while the squares have

sides of length t−γ ′
. The region

between the two triangles is part

of Q+
t . It has thickness 8dt

−γ ′

(the constant 8d is not drawn to
scale), and covers the whole
boundary region not covered by
the squares

H
t,j

t–

By the restriction, mapping and superposition theorems, the point process P ′′
t :=

∪λ(t)
i=1ρt,i (P̃t ∩ S+t,i ) is a homogeneous Poisson process of intensity t in the flat slab

S+t .
In both cases (d = 2 or d ≥ 3), we extend P ′′

t to a Poisson process U ′
t in

H := R
d−1 × [0,∞) as follows. Let P ′′′

t be a Poisson process of intensity t f0 in
H\S+t , independent of P̃t , and set

U ′
t := P ′′

t ∪P ′′′
t . (7.62)

ThenU ′
t is a homogeneous Poisson process of intensity t f0 inH.We call the collection

of balls of radius rt centred on the points of this point process the induced coverage
process.

The next lemma says that in d ≥ 3, the ‘tartan’ region T+
t is covered with high

probability. It is needed because locations in T+
t lie near the boundary of blocks St,i ,

so that coverage of these locations by P̃t does not necessarily correspond to coverage
of their images in the induced coverage process.

Lemma 7.24 Suppose d ≥ 3. Then limt→∞ P[Ft (T+
t , P̃t )] = 1.

Proof The total number of the (d − 1)-dimensional cubes (in the whole of Γt ) in the
partition described above is O(t (d−1)γ ′

), and for each of these (d − 1)-dimensional
cubes the number of balls of radius rt required to cover the boundary of the cube is
O((t−γ ′

r−1
t )d−2). Thus we can take xt,1, . . . , xt,kt ∈ R

d , with kt = O(tγ
′
r2−d
t ), such

that Tt ⊂ ∪kt
i=1B(xt,i , rt ).

Then T+
t ⊂ ∪kt

i=1B(xt,i , 12rt ) ∩ A∗
t . Let ε ∈ (0, (1/d) − γ ′). By Lemma 7.22,

P[Ft (T+
t , P̃t )

c] ≤
kt∑

i=1

P[Ft (B(xt,i , 12rt ) ∩ A∗
t , P̃t )

c]

= O(tγ
′
r2−d
t tε−(d−1)/d) = O(tε+γ ′−1/d),
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which tends to zero. ��
So as to be able to treat the cases d = 2 and d ≥ 3 together, for d = 2 we define

λ(t) := σ−(t) and T+
t := Tt := ∅ (these were previously defined only for d = 3).We

verify next that the blocks S+t,i , 1 ≤ i ≤ λ(t), are pairwise disjoint. This is needed to

ensure that the Poisson processes P̃t ∩ S+t,i , 1 ≤ i ≤ λ(t), are mutually independent.

Lemma 7.25 Suppose d ≥ 2, t ≥ t0 and i, j ∈ {1, 2, . . . , λ(t)} with i < j . Then
S+i ∩ S+j = ∅.

Proof Suppose S+i ∩ S+j #= ∅; we shall obtain a contradiction. Let x ∈ S+i ∩ S+j . Let
y be the closest point in It,i to x , and y′ the closest point in It, j to x . Choose k, � such
that It,i ⊂ Ht,k and It, j ⊂ Ht,�. Then k #= � since if d = 2 we have k = i and � = j ,
while if d ≥ 3, if k = � then clearly we would have S+i ∩ S+j = ∅.

Let Jt,k be the projection of Ht,k ontoR
d−1, andwrite y = (u, φt (u))with u ∈ Jt,k .

Let v ∈ ∂ Jt,k . By (7.51) and (7.53),

|φt (v) − φt (u)| ≤ |φ(v) − φ(u)| + 4Kt−2γ ≤ (1/9)‖v − u‖ + 4Kt−2γ .

Since y ∈ It,i we have ‖y − (v, φt (v))‖ ≥ dist(y, ∂Ht,k) ≥ 7rt , so that

7rt ≤ ‖u − v‖ + |φt (u) − φt (v)| ≤ (10/9)‖u − v‖ + 4Kt−2γ ,

and hence ‖u − v‖ ≥ (63/10)rt − 4Kt−2γ , and hence provided t is large enough,
dist(u, ∂ Jt,k) ≥ 6rt . Similarly, writing y′ := (u′, φt (u′)) we have dist(u′, ∂ Jt,�) ≥
6rt . Therefore

‖y − y′‖ ≥ ‖u − u′‖ ≥ 12rt .

However, also ‖y− y′‖ ≤ ‖y− x‖+ ‖y′ − x‖ ≤ 8rt , and we have our contradiction.
��

Denote the union of the boundaries (relative toR
d−1×{0}) of the lower faces of the

blocks making up the strip/slab St , by C0
t , and the (9rt )-neighbourhood of this region

by Ct (the C can be viewed as standing for ‘corner region’, at least when d = 2), i.e.

C0
t := ∪λ(t)

i=1ρt,i (∂ It,i ), Ct := (C0
t ⊕ B(o, 9rt )) ∩ H. (7.63)

Here ∂ It,i denotes the relative boundary of It,i .
The next lemma says that the corner region Ct is covered with high probability. It

is needed because locations in Q+
t lie near the boundaries of the blocks assembled to

make the induced coverage process, so that coverage of these locations in the induced
coverage process does not necessarily correspond to coverage of their pre-images in
the original coverage process.

Lemma 7.26 Suppose d ≥ 2. Then limt→∞ P[Ft (Ct ,U ′
t )] = 1.
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Proof Set γ̃ := γ if d = 2, or if d ≥ 3 set γ̃ := γ ′. Let ε ∈ (0, (1/d) − γ̃ ). The
number of (d − 1)-dimensional cubes λ(t) making up Lt is O(t (d−1)γ̃ ), and for each
of these (d − 1) dimensional cubes, the number of balls of radius rt required to cover
the boundary is O((t−γ̃ r−1

t )d−2). Hence we can take points xt,1, . . . , xt,mt ∈ Lt , with
mt = O(t γ̃ r2−d

t ), such that C0
t ⊂ ∪mt

i=1B(xt,i , rt ). Then Ct ⊂ ∪mt
i=1B(xt,i , 10rt ).

Hence by (7.56) from Lemma 7.22, we obtain the estimate

P[Ft (Ct ∩ H,U ′
t )c] = O(t γ̃ r2−d

t tε−(d−1)/d) = O(tε+γ̃−1/d),

which tends to zero. ��
Lemma 7.27 (Limiting coverage probabilities for the induced coverage process) Sup-
pose d ≥ 2. Then

lim
t→∞P[Ft (St ,U ′

t )] = lim
t→∞P[Ft (Lt ,U

′
t )] = exp(−cd,k |Γ |e−ζ ). (7.64)

Proof The second equality of (7.64) is easily obtained using (7.17) from Lemma 7.4.
Recall that Lt = Dt×{0}. Also ∂Lt ⊂ C0

t , so that (∂Dt⊕B(d−1)(o, rt ))×[0, 2rt ] ⊂
Ct , and therefore by (7.18) from Lemma 7.4,

P[(Ft (Lt ,U
′
t )\Ft (St ,U ′

t )) ∩ Ft (Ct ,U
′
t )] → 0.

Therefore using also Lemma 7.26 shows that P[Ft (Lt ,U ′
t )\Ft (St ,U ′

t )] → 0, and
this gives us the rest of (7.64). ��

We are now ready to complete the proof of Proposition 7.19.

Proof of Proposition 7.19 We shall approximate event Ft (A∗∗
t , P̃t ) by events Ft (Lt ,

U ′
t ) and Ft (St ,U ′

t ), and apply Lemma 7.27.
Suppose Ft (Q

+
t ∪ T+

t , P̃t )\Ft (A∗∗
t , P̃t ) occurs, and choose x ∈ Vt (P̃t ) ∩

A∗∗
t \(Q+

t ∪ T+
t ). Let y ∈ Γt with ‖y − x‖ = dist(x, Γt ). Then ‖y − x‖ ≤ 2rt ,

and since x /∈ Q+
t , by (7.59) we have dist(x, ∂d−2Γt ) ≥ 8dt−γ ′

, and hence
dist(y, ∂d−2Γt ) ≥ 8dt−γ ′ − 2rt ≥ 7dt−γ ′

, provided t is large enough. There-
fore y lies in the interior of the face Ht,i for some i and x − y is perpendicular
to Ht,i (if y #= x). Also (if d ≥ 3), since x /∈ T+

t , dist(x, Tt ) ≥ 11rt , so
dist(y, Tt ) ≥ 9rt . Therefore y ∈ It, j for some j , and x lies in the block St, j , and
moreover dist(x, (∂S+t, j )\It, j ) ≥ 2rt . Hence B(ρt, j (x), rt ) ∩ H ⊂ ρt, j (S

+
t, j ), and

hence by (7.62), U ′
t (B(ρt, j (x), rt )) = P̃t (B(x, rt )) < k, so event Ft (St ,U ′

t ) does
not occur. Hence

Ft (St ,U
′
t )\Ft (A∗∗

t , P̃t ) ⊂ Ft (Q
+
t ∪ T+

t , P̃t )
c,

so by Lemmas 7.23 and 7.24, P[Ft (St ,U ′
t )\Ft (A∗∗

t , P̃t )] → 0, and hence using
(7.64) we have

lim inf
t→∞ P[Ft (A∗∗

t , P̃t )] ≥ exp(−cd,k |Γ |e−ζ ). (7.65)
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Suppose Ft (A∗∗
t , P̃t )\Ft (Lt ,U ′

t ) occurs, and choose y ∈ Lt ∩ Vt (U ′
t ). Take i ∈

{1, . . . , λ(t)} such that y ∈ ρt,i (It,i ). Then dist(y, ρt,i (∂ It,i )) ≤ rt , since otherwise
ρ−1
t,i (y) would be a location in A∗∗

t ∩ Vt (P̃t ). Thus y ∈ Ct by (7.63), and therefore
using Lemma 7.26 yields that

P[Ft (A∗∗
t , P̃t )\Ft (Lt ,U

′
t )] ≤ P[Ft (Ct ,U

′
t )c] → 0.

Combining this with (7.64) and (7.65) completes the proof. ��

7.7 Proof of Theorem 3.1: conclusion

Lemma 7.19 gives the limiting probability of coverage of a polytopal approximation to
a region near part of ∂A. The next two lemmas show thatP[Ft (A∗∗

t , P̃t )] approximates
P[Ft (A∗

t ,P
′
t )] (recall the definitions at (7.54)). From this we can deduce that we get

the same limiting probability even after dispensing with the polytopal approximation.

Lemma 7.28 Let E (1)
t := Ft (A∗∗

t , P̃t )\Ft (A∗
t ,P

′
t ). Then P[E (1)

t ] → 0 as t → ∞.

Proof Let ε ∈ (0, 2γ − 1/d). Suppose E (1)
t ∩ Ft (Q

+
t ,P ′

t ) occurs. Then since
P̃t ⊂ P ′

t , Vt (P
′
t ) intersects with A∗

t \A∗∗
t , and therefore by (7.53), Vt (P ′

t ) includes
locations distant at most 2Kt−2γ from Γt . Also Γt ∩ Vt (P ′

t ) = ∅, since Γt ⊂ A∗∗
t .

Pick a location x ∈ Vt (P ′
t ) ∩ A∗

t of minimal distance from Γt . Then x /∈ Q+
t , so

the nearest point in Γt to x lies in the interior of Ht,i for some i . We claim that x lies
at the intersection of the boundaries of d balls of radius rt centred on points of P ′

t ;
this is proved similarly to the similar claim concerning w in the proof of Lemma 7.4.
Moreover, x is covered by at most k − 1 of the other balls centred in P ′

t (in fact, by
exactly k − 1 such balls, but we do not need this below). Also x does not lie in the
interior of A∗∗

t .

Thus if E (1)
t ∩ Ft (Q

+
t ,P ′

t ) occurs, there must exist d points x1, x2, . . . , xd of
P ′

t such that ∩d
i=1∂B(xi , rt ) includes a point in A∗

t but outside the interior of A∗∗
t ,

within distance 2Kt−2γ of Γt and further than rt from all but at most k − 1 other
points of P ′

t . Hence by the Mecke formula, integrating first over the positions of
x2−x1, x3−x1, . . . , xd−x1 and then over the location of x1, and usingLemma7.20(a),
Lemma 7.21 and (7.16), we obtain for suitable constants c, c′ that

P[E (1)
t ∩ Ft (Q

+
t ,P ′

t )] ≤ ctdrd(d−1)
t t−2γ (trdt )k−1 exp(−(1− ε)(θd/2) f0tr

d
t )

≤ c′(trdt )k−1td+ε−2γ−(d−1)/drd(d−1)
t

= O((trdt )d+k−2t (1/d)−2γ+ε),

which tends to zero by (7.15). Also P[Ft (Q+
t ,P ′

t )] → 1 by Lemma 7.23, so

P[E (1)
t ] → 0. ��

Lemma 7.29 Let Gt := Ft (A∗
t ,P

′
t )\Ft (A∗∗

t , P̃t ). Then limt→∞ P[Gt ] = 0.
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Proof If event Gt occurs, then since A∗∗
t ⊂ A∗

t , there exists y ∈ A∗∗
t ∩ Vt (P̃t ) such

that y is covered by at least one of the balls of radius rt centred on P ′
t\P̃t . Hence

there exists x ∈ P ′
t\P̃t with B(x, rt ) ∩ Vt (P̃t ) ∩ A∗∗

t #= ∅. Therefore

Gt ⊂ Ft (∪x∈P ′
t\P̃t

B(x, rt ) ∩ A∗∗
t , P̃t )

c. (7.66)

Let ε ∈ (0, 2γ −1/d). LetQt := P ′
t\P̃t . Then P̃t andQt are independent homo-

geneous Poisson processes of intensity t f0 in Ãt , At\ Ãt respectively. By Lemma 7.22
and the union bound, there is a constant c such that for any m ∈ N and any set of m
points x1, . . . , xm in R

d , we have

P

[
Ft (∪m

i=1B(xi , rt ) ∩ A∗∗
t , P̃t )

c
]
≤ cmtε−(d−1)/d .

Let Nt := Qt (R
d). By Lemma 7.20(a), E [Nt ] = O(t1−2γ ), so that by conditioning

onQt we have for some constant c′ that

P[Ft (∪x∈Qt B(x, rt ) ∩ A∗∗
t , P̃t )

c] ≤ ctε−(d−1)/d
E [Nt ] ≤ c′t (1/d)−2γ+ε,

which tends to zero by the choice of ε. Hence by (7.66), P[Gt ] → 0. ��
To complete the proof of Theorem 3.1, we shall break ∂A into finitely many pieces,

with each piece contained in a single chart. We would like to write the probability that
all of ∂A is covered as the product of probabilities for each piece, but to achieve the
independence needed for this, we need to remove a region near the boundary of each
piece. By separate estimates we can show the removed regions are covered with high
probability, and this is the content of the next lemma.

Recall from (7.52) that γ0 ∈ (1/(2d), γ ). Define the sets Δt := ∂Γ ⊕ B(o, t−γ0)

and Δ+
t := ∂Γ ⊕ B(o, 2t−γ0).

Lemma 7.30 It is the case that limt→∞ Ft (Δ
+
t ∩ A,Pt ) = 1.

Proof Let ε ∈ (0, 2γ0 − 1/d). Since we assume κ(∂Γ , r) = O(r2−d) as r ↓ 0,
for each t we can take xt,1, . . . , xt,k(t) ∈ R

d with ∂Γ ⊂ ∪k(t)
i=1B(xt,i , t−γ0), and with

k(t) = O(t (d−2)γ0). Then Δ+
t ⊂ ∪k(t)

i=1B(xt,i , 3t−γ0). For each i ∈ {1, . . . , k(t)}, we
can cover the ball B(xt,i , 3t−γ0)with O((t−γ0/rt )d) smaller balls of radius rt . Thenwe
end up with balls of radius rt , denoted Bt,1, . . . , Bt,m(t) say, such thatΔ

+
t ⊂ ∪m(t)

i=1 Bt,i

and m(t) = O(r−d
t t−2γ0). By (7.57) from Lemma 7.22, and the union bound,

P[∪m(t)
i=1 (Ft (Bt,i ∩ A,Pt )

c)] = O(r−d
t t−2γ0 tε−(d−1)/d) = O(t (1/d)+ε−2γ0),

which tends to zero. ��
Given t > 0, define the sets Γ (t−γ0 ) := Γ \Δt and

Γ (t−γ0 )
rt := (Γ (t−γ0 ) ⊕ B(o, rt )) ∩ A; Γrt := (Γ ⊕ B(o, rt )) ∩ A,
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and define the event FΓ
t := Ft (Γ

(t−γ0 )
rt ,Pt ).

Note that the definition of FΓ
t does not depend on the choice of chart. This is needed

for the last stage of the proof of Theorem 3.1. Lemma 7.33 below shows that P[FΓ
t ]

is well approximated by P[Ft (A∗
t ,P

′
t )] and we have already determined the limiting

behaviour of the latter. We prepare for the proof of Lemma 7.33 with two geometrical
lemmas.

Lemma 7.31 For all large enough t, it is the case that Γ (t−γ0 )
rt ⊂ A∗

t .

Proof Let x ∈ Γ
(t−γ0 )
rt , and take y ∈ Γ (t−γ0 ) with ‖x − y‖ ≤ rt . Writing y =

(u, φ(u)) with u ∈ Ut , we claim that dist(u, ∂U ) ≥ (1/2)t−γ0 . Indeed, if we had
dist(u, ∂U ) < (1/2)t−γ0 , then we could take w ∈ ∂U with ‖u − w‖ < (1/2)t−γ0 .
Then (w, φ(w)) ∈ ∂Γ and by (7.51), |φ(w) − φ(u)| ≤ (1/4)t−γ0 , so

‖(u, φ(u)) − (w, φ(w))‖ ≤ ‖u − w‖ + |φ(u) − φ(w)| ≤ (3/4)t−γ0 ,

contradicting the assumption that y ∈ Γ (t−γ0 ), so the claim is justified.
Writing x = (v, s)with v ∈ R

d−1, and s ∈ R, we have ‖v−u‖ ≤ ‖x− y‖ ≤ rt , so
dist(v, ∂U ) ≥ (1/2)t−γ0 − rt , and hence v ∈ U−

t , provided t is big enough (U−
t was

defined shortly after (7.52).) Also |φ(v)−φ(u)| ≤ rt/4 by (7.51), so |φt (v)−φ(u)| ≤
rt/2, provided t is big enough, by (7.53). Also |s − φ(u)| ≤ ‖x − y‖ ≤ rt , so
|s − φt (v)| ≤ (3/2)rt . Therefore x ∈ A∗

t by (7.54). ��
Lemma 7.32 For all large enough t, we have (a) [A∗

t ⊕ B(o, 4rt )] ∩ A ⊂ At , and (b)

[A∗
t ⊕ B(o, 4rt )] ∩ ∂A ⊂ Γ , and (c) [Γ (t−γ0 )

rt ⊕ B(o, 4rt )] ∩ ∂A ⊂ Γ .

Proof Let x ∈ A∗
t . Write x = (u, z) with u ∈ U−

t and φt (u) − 3rt/2 ≤ z ≤ φ(u).
Let y ∈ B(x, 4rt ) ∩ A, and write y = (v, s) with v ∈ R

d−1 and s ∈ R. Then
‖v − u‖ ≤ 4rt so provided t is big enough, v ∈ Ut . Also |s − z| ≤ 4rt , and |φ(v) −
φ(u)| ≤ rt by (7.51), so

|s − φ(v)| ≤ |s − z| + |z − φ(u)| + |φ(u) − φ(v)| ≤ 4rt + 2rt + rt ,

and since y ∈ A, by (7.49) and (7.50) we must have 0 ≤ s ≤ φ(v), provided t is big
enough. Therefore y = (v, s) ∈ At , which gives us (a).

If also y ∈ ∂A, then φ(v) = s, so y ∈ Γ . Hence we have part (b). Then by
Lemma 7.31 we also have part (c). ��
Lemma 7.33 It is the case that P[FΓ

t Ft (A∗
t ,P

′
t )] → 0 as t → ∞.

Proof Since Γ
(t−γ0 )
rt ⊂ A∗

t by Lemma 7.31, and moreover P ′
t ⊂ Pt , it follows that

Ft (A∗
t ,P

′
t ) ⊂ Ft (Γ

(t−γ0 )
rt ,Pt ) = FΓ

t . Therefore it suffices to prove that

P[Ft (Γ (t−γ0 )
rt ,Pt )\Ft (A∗

t ,P
′
t )] → 0. (7.67)

Let ε > 0. Suppose event Ft (Γ
(t−γ0 )
rt ,Pt )∩ Ft (Δ

+
t ∩ A,Pt )\Ft (A∗

t ,P
′
t ) occurs.

Choose x ∈ A∗
t ∩ Vt (P ′

t ). Then by Lemma 7.32(a), B(x, rt ) ∩ A ⊂ At . Hence
Pt ∩ B(x, rt ) ⊂ P ′

t , and therefore x ∈ Vt (Pt ).
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Sinceweare assuming Ft (Γ
(t−γ0 )
rt ,Pt )occurs,we therefore have dist(x, Γ (t−γ0 )) >

rt . Since we also assume Ft (Δ
+
t ∩ A,Pt ), we also have dist(x, ∂Γ ) ≥ 2t−γ0 and

therefore dist(x,Δt ) = dist(x, (∂Γ ) ⊕ B(o, t−γ0)) ≥ t−γ0 > rt . Hence

dist(x, Γ ) ≥ min( dist(x, Γ (t−γ0 )), dist(x, (∂Γ ) ⊕ B(o, t−γ0)) > rt .

Moreover, by Lemma 7.32(b), dist(x, (∂A)\Γ ) ≥ 4rt . Thus dist(x, ∂A) > rt .
Moreover, dist(x, ∂A) ≤ dist(x, Γ ) ≤ 2rt because x ∈ A∗

t , and therefore x /∈ A[ε]

(provided t is large enough) since A[ε] is compact and contained in Ao (the set A[ε]
was defined in Sect. 2.) Therefore the event Ft (A(rt )\A[ε],Pt )

c occurs. Thus, for
large enough t we have the event inclusion

Ft (Γ
(t−γ0 )
rt ,Pt ) ∩ Ft (Δ

+
t ∩ A,Pt )\Ft (A∗

t ,P
′
t ) ⊂ Ft (A

(rt )\A[ε],Pt )
c. (7.68)

By (7.15),

lim
t→∞(θd t f0r

d
t − log(t f0) − (d + k − 2) log log t) =

{
2ζ if d = 2, k = 1

+∞ otherwise.

(7.69)

Hence by Proposition 3.4 (taking B = A\A[ε], and using (6.4)),

lim
t→∞P[Ft (A(rt )\A[ε],Pt )] =

{
exp(−|A\A[ε]|e−2ζ ) if d = 2, k = 1

1 otherwise.

(7.70)

Therefore since ε can be arbitrarily small and |A\A[ε]| → 0 as ε ↓ 0, the event
displayed on the left hand side of (7.68) has probability tending to zero. Then using
Lemma 7.30, we have (7.67), which completes the proof. ��
Corollary 7.34 It is the case that limt→∞ P[FΓ

t ] = exp(−cd,k |Γ |e−ζ ).

Proof By Lemmas 7.28 and 7.29, P[Ft (A∗
t ,P

′
t )Ft (A∗∗

t , P̃t )] → 0. Then by
Lemma 7.33, P[FΓ

t Ft (A∗∗
t , P̃t )] → 0, and now the result follows by Proposi-

tion 7.19. ��
Proof of Theorem 3.1 Let x1, . . . , xJ and r(x1), . . . , r(xJ ) be as described at (7.48).
Set Γ1 := B(x1, r(x1)) ∩ ∂A, and for j = 2, . . . , J , let

Γ j := B(x j , r(x j )) ∩ ∂A\ ∪ j−1
i=1 B(xi , r(xi )).

Then Γ1, . . . , ΓJ comprise a finite collection of closed sets in ∂A with disjoint
interiors, each of which satisfies κ(Γi , r) = O(r2−d) as r ↓ 0, and is contained in a
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single chart B(x j , r(x j )), and with union ∂A. For 1 ≤ i ≤ J , define FΓi
t similarly to

FΓ
t , that is, FΓi

t := Ft (Γ
(t−γ0 )
i,rt

,Pt ) with

Γ
(t−γ0 )
i,rt

:= ([
Γi\((∂Γi ) ⊕ B(o, t−γ0))

] ⊕ B(o, rt )
) ∩ A,

and ∂Γi := Γi ∩ ∂A\Γi . First we claim that the following event inclusion holds:

∩J
i=1F

Γi
t ∩ Ft (A

(rt ),Pt )\Ft (A,Pt ) ⊂
(
∩J
i=1Ft ([(∂Γi ) ⊕ B(o, 2t−γ0)] ∩ A,Pt )

)c
.

Indeed, suppose ∩J
i=1F

Γi
t ∩ Ft (A(rt ),Pt )\Ft (A,Pt ) occurs, and choose x ∈ A ∩

Vt (Pt ). Then dist(x, ∂A) ≤ rt since we assume Ft (A(rt ),Pt ) occurs. Then for some
i ∈ {1, . . . , J } and some y ∈ Γi we have ‖x − y‖ ≤ rt . Since we assume FΓi

t occurs,

we have x /∈ Γ
(t−γ0 )
i,rt

, and hence dist(y, ∂Γi ) ≤ t−γ0 , so dist(x, ∂Γi ) < 2t−γ0 .
Therefore Ft ([(∂Γi ) ⊕ B(o, 2t−γ0)] ∩ A,Pt ) fails to occur, justifying the claim.

By the preceding claim and and the union bound,

P[Ft (A,Pt )] ≤ P[∩J
i=1F

Γi
t ∩ Ft (A

(rt ),Pt )]

≤ P[Ft (A,Pt )] +
J∑

i=1

P[Ft ([(∂Γi ) ⊕ B(o, 2t−γ0)] ∩ A,Pt )
c]. (7.71)

By Lemma 7.30, P[Ft ([(∂Γi ) ⊕ B(o, 2t−γ0)] ∩ A,Pt )] → 1 for each i . Therefore
by (2.2) and (7.71),

lim
t→∞P[R′

t,k ≤ rt ] = lim
t→∞P[Ft (A,Pt )] = lim

t→∞P[∩J
i=1F

Γi
t ∩ Ft (A

(rt ),Pt )],
(7.72)

provided the last limit exists. By Corollary 7.34, we have for each i that

lim
t→∞(P[FΓi

t ]) = exp(−cd,k |Γi |e−ζ ). (7.73)

Also, we claim that for large enough t the events FΓ1
t , …, FΓJ

t are mutually indepen-

dent. Indeed, given distinct i, j ∈ {1, . . . , J }, if x ∈ Γ
(t−γ0 )
i,rt

and y ∈ Γ
(t−γ0 )
j,rt

, then
we can take y′ ∈ Γ j\(∂Γ j ⊕ B(o, t−γ0)) with ‖y′ − y‖ ≤ rt . If ‖x − y‖ ≤ 2rt then
by the triangle inequality ‖x − y′‖ ≤ 3rt , but since y′ /∈ Γi , this would contradict

Lemma 7.32(c). Therefore ‖x− y‖ > 2rt , and hence the rt -neighbourhoods ofΓ
(t−γ0 )
i,rt

and of Γ
(t−γ0 )
j,rt

are disjoint. This gives us the independence claimed.

Now observe that Ft (A(rt ),Pt ) ⊂ Ft (A(4rt ),Pt ), and we claim that

P[Ft (A(4rt ),Pt )\Ft (A(rt ),Pt )] → 0 as t → ∞. (7.74)
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Indeed, given ε > 0, for large t the probability on the left side of (7.74) is bounded by
P[Ft (A(rt )\A[ε],Pt )

c], and by (7.70) the latter probability tends to a limit which can
be made arbitrarily small by the choice of ε. Hence by Proposition 3.4 (using (6.4))
and (7.69),

lim
t→∞P[Ft (A(4rt ),Pt )] = lim

t→∞P[Ft (A(rt ),Pt )]

=
{
exp(−|A|e−2ζ ) if d = 2, k = 1

1 otherwise.
(7.75)

Moreover, by (7.72) and (7.74),

lim
t→∞P[R′

t,k ≤ rt ] = lim
t→∞P[∩J

i=1F
Γi
t ∩ Ft (A

(4rt ),Pt )], (7.76)

provided the last limit exists. However, the events in the right hand side of (7.76)
are mutually independent, so using (7.73), (7.75) and (7.15), we obtain the second
equality of (3.3). We then obtain the rest of (3.3) using Lemma 7.1. ��
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